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Introduction

1 Introduction

Elliptic partial differential equations (PDEs) are important tools for math-
ematical modeling in a wide variety of fields. Many important advances in
Science and Engineering depend on the ability to solve elliptic PDEs quickly
and accurately. As a result, in the past few decades much research activity
has been directed at proposing, analyzing, studying and improving numerical
methods for this class of problems. Lately, domain decomposition methods
have been proven to be very effective and powertul tools for the solution of
elliptic PDEs. It has been observed that they can offer increased computa-
tional efficiency especially in modern multiprocessor computer environments.
On the other hand they might be helpful in treating accurately some inherent
difficulties arising in Physics problems, e.g., singularities, boundary layers,
etc.

In the domain decomposition methods the domain under consideration
is decomposed into a number of smaller subdomains and the solution in the
entire domain is computed via sequences of solutions computed in the sub-
domains. There are two main approaches characterized by the way the sub-
domains are defined. Namely, the overlapping (Schwarz) approach and the
non—overlapping (Schur complement) one. The convergence of the underly-
ing iterative process is critical to the success of the specific method proposed
and has therefore attracted a great deal of attention by many researchers in
the area.

Numerous articles that propose, study, compare and review various over-
lapping methods (see, e.g., [6], [15], [16]), non—overlapping ones (see, e.g.,
[11]) as well as survey preconditioners for domain decomposition (see, e.g.,
[4]) have appeared in the literature. The comparison of the main characteris-
tics of these two classes of methods and the existence of possible equivalence
between them have received a great deal of study (see, e.g., [2], [3]). Both
approaches have already been used in a real life environment to effectively
model large scale, industrial, ill-conditioned problems (see, e.g., [9], [13],
[14]) . Nevertheless it is believed that both theoretical and experimental
analysis is required before such methods become practical and useful tools
for non—experts.



Introduction

In this study we are interested in non—overlapping domain decomposition
methods which are formulated as iterative interface smoothing procedures.
From this interface relaxation viewpoint non—overlapping domain decompo-
sition methods consist of partitioning the domain in a set of non—overlapping
subdomains and appropriate boundary conditions on the interface lines de-
fined by the partitioning are imposed. Then, using arbitrary initial guesses
on the interfaces, the set of the resulting PDE problems is solved. In each
iteration subproblems, with Dirichlet and Neumann boundary conditions on
the interfaces of each subdomain, are solved alternatively. Since, in general,
the obtained solutions do not satisfy the interface boundary conditions an in-
terface relaxation is applied to obtain new interface boundary values, which,
hopefully, will satisfy them better, and the PDE subproblems are solved
again using these new values. If the relaxation parameter(s) is(are) chosen
appropriately the process just described, when applied iteratively, produces
sequences of solutions in each subdomain who eventually converge to the
solution of the original PDE problem in the entire domain.

For our study we select two such methods whose formulation and theo-
retical analysis at differential equation level can be found in [10] and [12].
Although their convergence has been theoretically analyzed to some extend in
the aforementioned references, important questions (like the selection of the
relaxation parameter values involved in both methods) are left unanswered.
Our main objective here is an attempt to analyze and formulate these two
domain decomposition schemes at linear algebra level hoping that we will
elucidate the role of the relaxation parameters in the iteration process.

The rest of this thesis is organized as follows. In Chapter 2 we present
the formulation of the two domain decomposition methods at differential
equation level. In Chapter 3 we present in detail the formulation of the
two domain decomposition methods at discrete (linear algebra) level for a
Helmholtz Equation in the one—dimensional case. The convergence analysis
carried out at linear algebra level for both methods is presented in Chapter
4. In Chapter 5 we present the formulation of the two domain decomposition
methods and the convergence analysis for the corresponding Poisson Equa-
tion. Chapter 6 contains a description of the implementation of our schemes
using software that we have developed in Fortran 77. It also contains sets
of experimental data that support our theoretical results. Finally, Chapter
7 contains a summary of our results as well as some concluding remarks.



Formulation of the Domain Decomposition Method for the Continuous

Problem

2 Formulation of the Domain Decomposition
Method for the Continuous Problem

We consider the PDE problem
Lu=fin Q, u=gon 09 (1)

where L is a second order elliptic differential operator, f, ¢ are such that
f € L*Q) while g € mwgbv“ where O C R?, d =1,2,...,1is an open convex
domain with piecewise smooth boundary 0f2. Assume that € is split into &
open subdomains ;, 7 = 1,...,k, such that O = U*,Q,, 2, N Q; = 0 and
NN #0, 4,7 =1,..., k. For reasons related either to the characteristics
of this problem or to the computing resources available one would like to
replace (1) with a system of similar problems defined on the subdomains ;.
There are many ways to realize the coupling of the problems in this system
(see [11]). From them we select one, consider two different approaches and
subsequently we present the corresponding iterative schemes. They both use
Dirichlet boundary conditions on the interfaces. The first approach does not
use the fact that the operator L acts on the interface while the second one
does.

2.1 The First Scheme

For simplicity we choose k& = 2 and denote the interface of the two subdo-
mains by I' = 99, N 9. Under certain conditions the original problem is
equivalent to the following split problem

N\QH = .\. mn :H N\Qw = .\. mn :w
up=g¢g on JNN I up=g¢ on 0NN I,
Uy =uy on I us =u; on [
Juy  Ous Juy  Ouy
% % = O on H_.J % l_l % = O on H_.J

where for n = 1,2, w, = u |g, and where v™ is the outward unit normal
vector to 0f),,.
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The Second Scheme

Problem

This allows us to define the mozoaicm QOE@E decomposition method. We

arbitrarily choose u(”) € H'(f,,) with u{’

satisfying

b:mwlc
hz%l;

b:mwls

b:%t&

_QDDQD:

m and, for?2 = 0,1,2,.

construct the sequence :Ai: € EDAD:V with u) (1) _%D%s g, n =12,
= fin Qy, :%1: = @:H +(1- S:N onI'
= fin Q, :%s.i (1—"b)u M + @:N DonT
(2)
. 92+ 2+ P
= fin Q, QHN\H =a QHN\H n_lﬁlgv%ocﬂ
. 9y 2+ DD g, 2D
= fin Q, %Hﬁlav %tw +a %tw on T

where a, b are relaxation parameters to be determined later.

2.2 The Second Scheme

Again we choose k& = 2 and denote the interface of the two subdomains by
' = 09, N 0Q,. This time the split problem is

N\QHH.\. n :HCH_.J N\QNH.\. n :wCH_.J
up=g¢g on JNN I up=g¢ on 0NN I,
Uy =uy on I us =u; on [
Juy  Ous Juy  Ouy
— +—=0 r — 4+ — =0 r
ovt + ov? on ov? + ovt on

where for n = 1,2, w, = u |g, and where v™ is the outward unit normal
vector to 0f),,.

As we have already mentioned, this second approach differs from the first
one because operator L acts not only on domains ; and 2, but on the
interface I' as well.

In the ooHHmmwOB&Bm domain decomposition method we arbitrarily choose
ul® ¢ H'(Q,) with u® |s9n00, = m and, for ¢ = 0,1,2,..., construct the
sequence ulit!) € EDAD:V with «(i+!) _%3%: g, n=1,2, satisfying
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Problem The Second Scheme

h:%i: =finQUT, :%1: = @:H +(1- S:N JonT
M on I'

h:%i: =finQUT, :%s.i (1 —0b)uy”’ + @:N g

(2i+2) (2i+1) (2i+1)
Aws.n_vwv B . QQH . QQH @gw
Ly =fin QUT, ol g +(1- @vﬂ on T’
s. . 9y 21+ GulEt) gy, 2D
b:% 2 fin QUT, % =(1—a) %tw +a %tw on T’

where a, b are relaxation parameters to be determined.

Most researchers work at the differential equation level. This means that
they try to determine values for the parameters a, b so that the scheme pro-
posed produces a sequence of solutions that converges to the solution of the
original PDE problem; in other words, to make the errors vanish asymptoti-
cally along the interface and also to determine those (optimal) values of a, b
that make the scheme converge asymptotically as fast as possible. Then,
they discretize the (continuous) PDE problem(s) and the linear system(s)
produced is(are) solved by using as values for the parameters a, b the ones
determined from the continuous problem(s). For convergence results at the
PDE level see e.g., [11].

On the other hand, very few research works at the linear algebra level can
be found in the literature (see e.g. [7], [8], [15], [16], etc.). This is because
of the inherent difficulties the solution to the corresponding linear problem
presents. In this case, first the entire domain is discretized, next the subdo-
mains are defined and then finite difference, finite element or even collocation
methods are used to approximate the PDE problem and subproblems. Fol-
lowing exactly the same idea as the one in the continuous case, the solution
to the linear system is found by means of an analogous iterative scheme. So,
the problem this time is to determine the values of the parameters a, b in
such a way as to make the iterative scheme that solves the linear system
at hand converge and if possible converge in an optimal sense. In general,
the determination of the parameters a, b this time constitutes a much more
difficult problem.
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3 Formulation of the Domain Decomposition
Method for the Discrete Problem

To illustrate the difficulties the method presents in this case we restrict
ourselves to studying the solution of the one—dimensional Helmholtz equation
where for simplicity we will consider the case of two subdomains. More
specifically, we consider that the model problem is given by

—u'+ecu=f in Q=(0,1) (4)
u(0) =a and u(l)=p

where ¢ 1s a positive constant and «, /3 are the given boundary values.

We then split the domain € into the two subdomains Oy = (0,1) and

Q; = (3,1) so that the interface I' is at # = ;. A uniform grid of mesh
size h is imposed on 2, where h = zyﬂ“ n > 5 odd, and a three—point finite

difference discretization formula is used to approximate the values of the
unknown function at the grid points. Let p = % be the index of the point
x; that corresponds to the interface. For reasons that will become clear in
the sequel, in case we are working in subdomain €y the index p will be used
as p while if we are working in subdomain 5 p’ will be used instead.

0 1/2 1

| | | | | | | | |

, 1 1 1 \ 1 1 1 1 !
vm_. xw xn-H xb MU_ xU+“_. x:-“_. x:

Figure 1: Discretization of Domain ()

3.1 Derivation of the Equations of the Linear System
3.1.1 First Approach

Using Taylor series expansion about any interior grid point x; we can obtain

that . oz .
Q:A&L _ QA&THV — QNMMQV + QA&S+HV + QA\@NV

10
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Let u; denote the approximation of u(z;) resulting from the numerical scheme.
Then considering the given differential equation (4) at all grid points, exclud-
ing the one on the interface, and following closely the iterative scheme of the
domain decomposition method described previously in (2), after the first
sweep of the iterative method on the subdomain € the following equations

will be yielded

(2 + n\%v:mc — :w: = \%i,ﬁv + a
—ult 4 (2 + n\%v:m: —ulV = R f(z2)

ISMWVMW +(2+ Q%VSMWN - :%i = mwi&@kv
Iz%lvw + Aw + ch? :%L — QM: = \@N&A&@lyv
ul) = ?&me +(1- @v:%v

Obviously, the last equation satisfies the domain decomposition method re-
quirement on the interface. For the subdomain 25, the corresponding equa-
tions will be

W= (1= bl 4 b
4 @t o]y = 1y
ISMH._NH +(2+ n\%v:%_ww - :%._ww = \%i,ﬁiwv

Izmﬂvw +(2+ n\%v:mk — Fm: = R f(x,_1)
—uM 4 (2+ n\%v:m: = h’f(z,) + 3

n—1

If we now proceed to the next iteration, the domain decomposition method
requirement on the interface for ©; will be :\%v = @:\M: +(1- @v:\%v while
for Q, will be :\%v =(1- @v:mm: + @:\%v. To find a way to determine the

derivative at the points x, and z,/, using in each case points only from

11
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and s, respectively, we work as follows ([5]). For v/, we write down

u(x —h) = u(z)— hu'(z) + W::A&v + QQ%V
u(x —2h) = wu(x)— 2hu'(z) + w\%::@v + QQ%V

from which one can very easily get that
—3u(z) +4u(x — h) —u(z — 2h) = —2hu'(z) + O(h?)

or, equivalently,

() = Bu(x) — 4u(x M\@S + u(x — 2h) N QQ%V

Similarly, for 25 we will have

() = —3u(x) + m:@w.w@\@v —u(x + 2h) N QQ%V

To satisty the aforementioned requirements on the interface, we will have

:\%v = :mm: +(1- @v:\%v —
w:%v — %:@Wﬁ + :%N =
a(3ull — %:%& + :%Lv +(1- @Xlw:%v + %:%._NH — :%._va =

w:%v — %:Qﬁ +u
@Aw@:%v + (1 = b)u Qv _ %:A:H n :vavn_l
(- 00101 0+ )l )

(
P
Igzew + daul! 4(1 — @v:%_ﬁ +(1- @v:%_ww + :%uw 4B, 30 =

P p—1 " p—1 P

3a+b— C:Mov + 3(a — S:%v

So the equations for €y for the second iteration will be

12
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(2+ n\%v:mwv — :%v = \%i,ﬁv + a
—ul? 4 (2+ n\%v:%v —ul? = R f(xs)

g — Uy = mwi&?wv
I:%vw + (2 + ch? W @ = R f(z,_1)

Igzmww + dqutV. — 4(1 — @v:%_ﬁ +(1- @v:%_ww + P %:%ﬁ 4 3u® =

p—1 p—=2

3a+b— C:Mov + 3(a — S:%v

Again to satisfy the requirements on I' for 2, we will have

1-— 5:%& + %@:%._NH — @:%._NN + w:%v - %:%._NH + :%._ww =

So the equations for €2, for the second iteration will be

(1-— @v:%uw —4(1 - 5:%& + %@:%._NH — @:%._NN + w:%v — %:%._NH + :%._ww =
3(a — S:@E +3(a+b— C:%v

—u) 4 2+ bl — gy = B f(2p)
Iz%_ﬁ +(2+ n\%v:%_ww - :%_ww = \%i,ﬁiwv

—ul?y + @+ chul —u) = B f(r)
g +(2+ n\%v:%v = mwi&zv +

n—1

3.1.2 Second Approach

As we have already mentioned, the second approach differs from the first one,
because we use the differential equation on the interface node as well. So in
this case the last equation of the first and third block and the first equa-
tion of the second and fourth block, will not only satisfy the requirements

13
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of our domain decomposition method, but they will also be the equations at
the interface point(s) and thus will implicitly satisfy the requirements of our
method.

So for the first iteration, in €y, we will have

—ul, + 2+ ch?)ul)) —ul) = B2 f(2, )

- - P

We substitute :M: with @:Mov +(1- S:%v to get

I:Mww +(2+ n\%v:%L = h%f(zpo1) + bul” 4+ (1 - byu')
Similarly, in 25 we will have

IQ%V +(2+ nmwvzmﬁ - :%TVN = "2 f(2pt1)

We now substitute u'" with (1-— S:MS + @:@.

P’ P
Thus our new equation will be

2+ ch®)ull)y —ully = b2 () + (1= b)ul® + buly)
For the second iteration things are slightly different. If we tried to apply
the discretization scheme on the interface we would have

—u 2+ (2 ch)ul?) — )y = 1 f ()

But now u,4 is only a fictitious point for ;. So we need to find a way to
replace u,yq with values at points in the left subdomain. For this we know

that (e h)— e — 1)
u'(z) = 57 + QQ%V.

So, applying this relation at the point z, we equivalently have that

u(epi1) = 20 (2,) + ulepos) + O(R?)

14
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and the equation is now transformed into

Iz@H +(2+ nmwv:%v —ohu/® 2 1 =R f(xy)

P P p—

We now substitute :\%v with @:\M: +(1- @v:\%v. Thus our new equation will
be

Iw\@ﬁ:\%v —2h(1 — @v:\%v — w:%ﬁ +(2+ n\%v:%v = h2f(x,)
However, since we have already found expressions for u’, and ', using
points only from 2, and Q5 respectively, we substitute these expressions in
the equation above to obtain an equivalent one. Namely,

_ p—1

0 —3(1 — a)ul?

S~

Iaze + 4dau

p—2

R*f(z,) + 3au

:H —4(1 - @v:%_ﬁ +(1- @v:%_ww —2y? +(2+ m\%v:%v =

—_

3

Similarly, for €25, the equation that we will obtain eventually is
(1-— @v:%uw —4(1 - 5:%& + %@:%._NH — @:%._NN +(2+ nbwv:%v - w:%._ﬁ =

R f(x,) —3(1 — @v:%v + w@:%v

The rest remains the same as in the previous approach.

3.2 Formulation of the Iterative Scheme in Matrix Form

In the previous section we saw how we could obtain two successive iterations
for the domain decomposition method we proposed. We will now consider
these two iterations in one. In this way, a new iteration will consist of a
Dirichlet—type half-iteration and a Neumann-type half-iteration. For the
sake of simplicity in the calculations that will follow we will make the sub-
stitution

2 + ch? = 2 cosh 0.
3.2.1 Formulation of the First Approach

The sets of equations (5), (6), (7) and (8) lead to the equivalent iterative
scheme

15
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Problem Formulation of the Iterative Scheme in Matrix Form
w (i+1)
d —1
-1
d -1 _Up—1
1 d Up+1
d —1 .
-1
d —1 Upn
-1 d “1
d —1
—1 d —1
-1
. d —1 .
k ! m n —44d 2 Up
n m ! k 2 —4 4+ d Upt
—1 d —1
-1
d —1
—1 d
Up
tuxmeuv + a
uq (1) .
: R f(zp_1)
b [ Up—1 h xAHﬁ+Hv
= b Upt1 .
R f(an) + 5
un R f(21) +
= + AH.Q a
k! 7 . tuxﬂaﬁluv
77 Y __UYp tuxﬂamluv
“p! h2 f(@py1)
: R f(@pg1)
§.§ :
R*f(zn) + B
where
= —a | =4a m = —4(1 —a) n=(1-a)
E=3(a+b—1) I'=-3(b—a) d = 2cosh ¢

16
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Formulation of the Iterative Scheme in Matrix Form

3.2.2 Formulation of the Second Approach

In a similar way we can obtain for the second approach

s (i+1)
Up—1

Up+1

Un

Up

b

1—b

1 -5

k'

o

4a

m = —4(1 —a)

I'=-3(1-a)

n=(1-a)

d = 2cosh ¢

17

Up_1
Up+1

Un

Up
w1t

u_ s

Un

h2f(z1) + o

B2 f(zp_1)
B2 f(zpg1)

R2f(zw) + 8
tuxmeuv + a

B2 f(zp_1)
R2f(zp)
h xﬂaﬁv

B2 f(@pq1)

2 f(on) + B




Formulation of the Domain Decomposition Method for the Discrete
Problem Formulation of the Iterative Scheme in Matrix Form

3.2.3 Iterative Solution of the Linear System

Each one of the two iterative schemes in the two different approaches solves
a linear system. This system is formed from the equations that approximate
the given differential equation at all the interior grid points of the two sub-
domains and also from the equations obtained from conditions imposed on
the interface in both the Dirichlet and the Neumann iterations. Each linear
system has the form Au = b or, equivalently, (M — N)u = b. The matrices
M and N are the two matrices shown on the left and the right hand sides,
respectively, of the iterative schemes in sections (3.2.1) and (3.2.2), the
vector b is the known vector of the right hand sides, while the unknown vec-
tor u is the vector that contains the approximate values of u(x) at the grid
points and the point on the interface. This vector is the limit of the sequence
of vectors u(? produced by each one of the two iterative schemes proposed
provided they converge.

The dimensions of the first two tri-diagonal blocks of the matrix M are
(p—1)x(p—1), while those of the last two tri-diagonal blocks are p x p, where
as we have already mentioned, p is the index of the point that corresponds
to the interface point p = 3% Thus the dimensions of the two matrices M
and N in each iteration scheme are 2n x 2n

18



Convergence Analysis

4 Convergence Analysis

In this section our aim is to determine the optimum values for the param-
eters a, b so that our iterative schemes converge as fast as possible (see, e.g.,
[1], [17], and [18]). The iterative schemes that we have formed in the previous
section can be described by the following procedure Mul+Y) = Nu® + b, In
both approaches the matrices M and N involved can be written in general
in the forms below

M =
M
Mja
M3 ] M3 Mss
My o My My
and
N =
Nis B Nia
Nag R Nog
N33 B N34
Nas R Naa

19



Convergence Analysis The Iteration Matrix T of the Procedure

It is noted that the symbol ” —” in the previous matrices indicates the only
possible positions in the corresponding blocks where the elements may be
non-zero ones.

4.1 The Iteration Matrix 7T of the Procedure

Let T = M'N, where M’ = M™!, be the iteration matrix of the procedure.
Exploiting the block form as well as the sparsity of the matrix M we may
avoid computing M ~! explicitly since this is a very demanding and unafford-
able task. For this reason, we shall take advantage of the properties that M
appears to have. For this we can easily realize and prove that

1. M~! will not have the "Zero Blocks’ filled in with non-zero elements,

2. The blocks M;', My', Mz' and M,,' will be filled with non-zero ele-

ments and will not preserve the tridiagonal form any more.

These remarks make of course our approach much easier because we now
need to compute only the blocks that appear in the figure below

NSMH
, gmw
M -
ng gww gww
gﬁH gﬁw gﬁ%
where
M x M =1.

The blocks of the matrix M ™!, we need to compute satisfy the equations

20
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MM, =1
Mo M, = 1
MasMly = 1
MMy, =1 (9)

Mz M{, + M3sM3, =0
Msy My + MssMs, = 0
MM, + MMy, =0
Mo My + Myg My, =0

Because of the sparsity of NV it can be readily checked that 7' = M~!N
will have the following sparsity pattern

T3 H H T4
T3 H H T4
133 H H T34
Ty3 H H Tyq

The sparsity pattern of T indicated above makes the task of the determina-
tion of the spectrum of it much easier.

4.2 Determination of the Eigenvalues of T

Since our objective is to solve the optimization problem min, ; p(7') we must
find the eigenvalues of T'. For this we form the expression below
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T—X
—Al T3 T
—Al Ty To4
) T3z — Al T34
Ty Tag — A

Our problem is now to find all A € @' such that det(T — A1) = 0.

If we expand the determinant about the elements of its first column etc.,
we can readily see that because of the presence of zero elements in the first
2(p — 1) columns we will obtain

det(T — M)

Tys — AN 1| Ty

Ths Sl Tyg = M

and so we need to compute the determinant of the last two blocks only.
Using the same idea again and expanding successively about the elements of
the first and the last p — 1 columns, we will eventually obtain

det(T — M)

= (=022 det —Atlsp-23p-2| tsp-23p-1
t3p—-1,3p—2 7 —A+t3p_13p-1

22
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So, we observe that in order to determine explicitly all the eigenvalues of the
iteration matrix 7', only four of its elements are needed!

Putting

det(T — X) =0 <
(=N 72 (A + tapmz3p-2) (A + lapor3p-1) = Lap—23p-1l3p-1.3p-2) =0

we can see that 7' has the eigenvalue A = 0 with a multiplicity 2n — 2 and two
other eigenvalues that are given as the zeros of a quadratic equation whose
coefficients are functions of the two parameters a, b. From the observation
just made and bearing in mind that our problem is that of the minimization
of p(T') we are just wondering if we can find values for the two parameters

that make the zeros of the aforementioned quadratic be zero. For this the
following two equations must be satisfied

t3p—23p—2 + l3p—13p-1 = 0 (10)

Nwﬁlwawﬁlw Nwﬁlfw@lﬂ - Nwﬁlfwﬁlw Nwﬁlwqwﬁlﬂ = 0 A”_.”_.v

4.3 Determination of the Elements of the Matrix 7T

At this point we should see how we can determine the elements of the itera-
tive matrix 7' = M'N that appear in equations (10) and (11).

For n < ¢ <2n

n

. — M /.

,3p—2 — meNe3p—2
k=1

n
. — /.
,3p—1 — my Nk 3p—1
k=1

If we apply equations (12) and (13) for determining the four elements of T'
that we need in equations (10) and (11) we will have

23

= m S%I:@@Ifw@lw |_| m S%S?wﬁlw |_| m sqwﬁlwg@w@lwawﬁlw |_| m fwﬁli@wﬁlf

! ! ! !
= M p—1Np_13p—1 T M pNp3p—1 T M 3p—2M3p—23p—1 + M ;3p—1M3p—1,

(12)

3p—2

(13)

3p—1
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l3p—23p—2 = E\w@L%Lz@Lu@L + §\w@|§3?w@|w + 3@\%&*%&3%&*%& (14)
tp—23p—1 = M'3p_2p—1Mp_13p—1 + M'3p_2,,Mp3p—1 + M'35-2 3p—2n3,-23p—1 (15)
l3p—13p—2 = E\w@L%Lz@Lu@L + §\w@|§3?w@|w + §\w@|rw@|yzw@|rw@|w (16)

(17)

! ! !
l3p—13p—1 = M 3p—1p—1Mp—13p—1 T M 3p—1 pMp3p—1 T MM 3p—13p—113p—1,3p—1

In the aforementioned equations, there are only six elements of M’ (
involved. So, what we need is to determine these six elements only.

M=)

So far, we have taken, in some way, advantage of the form and sparsity
of all the matrices and submatrices involved in order to avoid heavy and
unnecessary computations. In the sequel, we will take full advantage of the
properties of all the matrices, to obtain analytic expressions for the very few
elements that we need for our computations in the most convenient way. In

order to find them, difference equations will be used ([5]).

From equations (9) we obtain equivalently the equations we need to com-

pute M’

!
11

!
22

!

33
!
44 T
!
31

!
32

/

41

!

42

M

M}

M

M}
53 M1 My,
53 M3z My,
riﬁir
e Mz M,

If we use the equations above we have that

E\w@L%L = |§\w@|wqw@|wAgwﬁé%ég\@é%L + §w@|wq@|ﬂ3@\@|g|yv
3&%&% = |§\w@|wqw@|wAgw@|w%§\@% + Ew@L%ig\@i%v

E\w@L%L = |§\w@|r%LAgwﬁl%ég\@L%L + 3%L%L3@\@|§|L
§\w@|r@ = |§\w@|rw@$Agwwl%g\@% + Ewwl%ig\@i%v
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4.4 Determination of ¢« and b: First Approach

We substitute the elements of the matrix N in equations (14), (15), (16) and
(17). So we equivalently have

lspo23p—2 = bm'sp_o, 1+ (1 —b)m'sp_a, +3(a+b—1)m's, 25,2 (22)
tsp—2sp-1 = (1= b)m'spnp1+bmspmap —3(b—a)mspzs52  (23)
tsp-13p—2 = bmsp1p1 + (L= b)mspm1p —3(b—a)misp15p1 (24)
tspo13p—1 = (1 —=0)m'sp_1 o1+ bm'sp_1, + 3(a+b—1)m's,_1 5,1 (25)

4.4.1 Determination of m', 5,4 m/,_y ,-1 m/,, and m/ 41,

Elements m’,_5,-1 and m’,_y ,_; belong to the block M], and specifically
they are the last two elements of the last column. We know that My M|, = 1.
Let then the elements of the last column of M{, be denoted by z;, ¢ =
1,2,...,p—1. Thus, doing the multiplication indicated previously, and writ-
ing down the equations that arise from the last column we will have

2coshgpax;y — a3 = 0

—x1 + 2coshopay — x5 = 0

—&,_3 + 2coshoz, y — 2,4 = 0

— 2,2 + 2coshoz,; = 1

Or, equivalently,

o = 0 (26)
—x;1 + 2coshga;, — a0y = 0 =1,...,p—1 (27)
v, = 1 (28)

Equation (27) is the general difference equation, whereas equations (26) and
(28) can be regarded as its boundary conditions. Boundary conditions are
obtained by applying the general equation for ¢+ = 1 and ¢ = p — 1 and
requiring that x¢ and z, satisfy them. If in addition «_; and x4, are defined
in such a way so that z¢ and z, are given by the solution of the difference
equation then this difference equation will hold for + = 0 and and ¢+ = p as
well. To solve (27) we consider its characteristic equation

p* — (2coshd)p + 1 = 0
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Convergence Analysis Determination of a and b : First Approach

whose solutions are
p1 = cosh¢ + sinh¢ and py; = cosh¢ — sinh ¢
Thus the general solution of (27) is

z; = c¢i(cosh¢ + sinh @) + cy(cosh ¢ — sinh @)

= e 4 e

Applying the boundary condition (27) we have
To = 0 <<= ¢ + ¢ =0 << ¢ = —¢
which makes the general solution of (27)
2, = 1€’ — e = 2¢; sinh ¢ (29)
If we now apply (28) we have

1

T, <= 2c; sinh po — ¢ 25 o

However, from (29) we can obtain all the elements of the last column of M,
from the expression

sinh 7¢
T = ——/——
sinh p¢
Therefore
! mwﬂrﬁﬁ — wvﬂ / mwﬂrﬁﬁ — Hvﬂ
Mp-2p-1 = ~ Mptp-1 = ~
sinh p¢ sinh p¢

To go on with our analysis we observe that the elements m;  and m
belong to the block M), and specifically they are the first two elements of
its first column. We also note that the matrices M, and M,; are centro—
symmetric. So will then be their inverses. Thus M, and M,, are also
centro-symmetric. Therefore, the first two elements of the first column of

5o are the same as the last two elements of the last column of M7, in reverse
order.

Consequently,
! mwﬂrﬁﬁ — Hvﬂ / mwﬂrﬁﬁ — wvﬂ

m = m =
pp sinh p¢ ptlp sinh p¢
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4.4.2 Determination of m's, 53,2 m 3,1 3,-1

We observe that the element m/s,_5 3,_2 belongs to the block M3, and specif-
ically it is the last element of its last column.

Again, starting with Ms3 M2, = [ and denoting the elements of the last
column of M}, by z;, « = 1,2,...,p, we can write down the equations that
arise in the last column which are the following

2coshgpax;y — a3 = 0

—x1 + 2coshgpay — x5 = 0

—&p,_9 + 2coshoz, 1 — 2, = 0

(=4 4+ 2cosh@)ay1 + 22, = 1

Or, equivalently,

o = 0 (30)
—2i-1 + 2coshopa;, — x4y = 0 i=1....p (31)
(2cosh® ¢ — 4coshé + 1)z, + 2,41 = cosh¢ (32)

Again, equation (31) is the general difference equation, whereas equations
(30) and (32) are the boundary conditions. Working in a similar way as in the
previous case we have to solve the difference equation (31). Its characteristic
equation 1s

p* — (2cosh¢)p +1 = 0

and as we have already seen in section 4.4.1 the general solution of (31) is
given by

r, = Dm& + Sm|§
Applying the boundary condition (30) we have
To = 0 <<= ¢ + ¢ =0 << ¢ = —¢
which makes the general solution of (31)

T = Qums.& — Qumls.& =2¢ muﬂraﬂ Awwv
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If we now apply (32) we have

(2cosh® ¢ — 4coshé + 1), + 2,41 = coshg <
(2cosh® ¢ — 4 cosh ¢ + 1)2¢; sinh(p — 1)¢ + 2¢; sinh(p + 1)¢ = cosh ¢~ <=
cosh ¢
2sinh(p + 1)¢ + 2sinh(p — 1)¢ (2cosh® ¢ — 4cosh & + 1)

1 =

From (33) we can now obtain all the elements of the last column of M, from
the expression

cosh ¢ sinh 7¢
sinh(p + 1)¢ + sinh(p — 1)¢ (2cosh® ¢ — 4cosh ¢ + 1)

T, =

Therefore,

sinh p¢ cosh ¢
sinh(p + 1)¢ + sinh(p — 1)¢ (2cosh® ¢ — 4cosh ¢ + 1)

!
Mgy, 23p—2 —

Now element m3,_; 5, ; belongs to the block Mj, and specifically it is the
first element of its first column. We note that this time the matrices Ms3 and
M,y are centro—symmetric to each other meaning that the same property is
possessed by their inverses M}, and Mj,. So the first element of the first
column of M’44 is the same as the last element of the last column of Mj,.

Therefore,

sinh p¢ cosh ¢
sinh(p + 1)¢ + sinh(p — 1)¢ (2cosh® ¢ — 4cosh ¢ + 1)

!
M3y 13p-1 =

4.4.3 Determination of m's, 5, 1, m's,—2,, m's,—1,-1 and m's,_,
If we use equations (18) and (19) we readily have
a cosh ¢ (sinh(p —2)¢ — 4sinh(p — 1)9¢)

18) <— m =
(18) M3p=2p-1 sinh(p + 1)¢ + sinh(p — 1)¢ (2cosh? ¢ — 4cosh ¢ + 1)

(1 —a) cosh ¢ (4sinh(p —1)¢ — sinh(p — 2)9¢)
sinh(p + 1)¢ + sinh(p — 1)¢ (2cosh® ¢ — 4cosh ¢ + 1)

(19) —= EW@L%H
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If we now use the equations (20) and (21) we have

B (1 —a) cosh ¢ (4sinh(p — 1)¢ — sinh(p — 2)9¢)
P~ sinh(p 4+ 1)¢ + sinh(p — 1)¢ (2cosh? ¢ — 4cosh ¢ + 1)
a cosh ¢ (sinh(p —2)¢ — 4sinh(p — 1)9¢)
" sinh(p 4+ 1)¢ + sinh(p — 1)¢ (2cosh® ¢ — 4cosh ¢ + 1)

(20) — EW@L

4.4.4 Elements of the Matrix 7" : First Approach

If we use equations (22)—(25) we have

(22) <= tl3p_93p-2 =
(a +b—1)cosh ¢ (sinh(p — 2)¢ — 4sinh(p —1)¢) + 3(a + b — 1) cosh ¢ sinh po
sinh(p + 1)¢ + sinh(p — 1)¢ (2cosh® ¢ — 4cosh ¢ + 1)

(23) < l3p—23p—1 =
(a — b)cosh ¢ (sinh(p — 2)¢ — 4sinh(p — 1)¢) — 3(b — a) cosh ¢ sinh pg
sinh(p + 1)¢ + sinh(p — 1)¢ (2cosh® ¢ — 4cosh ¢ + 1)

(24) <= t3p_13p-2 =
(a — b)cosh ¢ (sinh(p — 2)¢ — 4sinh(p — 1)¢) — 3(b — a) cosh ¢ sinh pg
sinh(p + 1)¢ + sinh(p — 1)¢ (2cosh® ¢ — 4cosh ¢ + 1)

(25) <= lgp_13p-1 =
(a +b—1)cosh ¢ (sinh(p — 2)¢ — 4sinh(p —1)¢) + 3(a + b — 1) cosh ¢ sinh po
sinh(p + 1)¢ + sinh(p — 1)¢ (2cosh® ¢ — 4cosh ¢ + 1)

4.4.5 Optimum Values of ¢ and b

Now we have all the elements that will allow us to use equations (10) and
(11). These equations give successively

(10) < (a+b—1)(sinh(p —2)¢ — 4sinh(p — 1)¢ + 3sinh pp) = 0
= atb-1=0 (34)
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(11) < [(a+b—1)((sinh(p — 2)¢ — 4sinh(p — 1)¢ + 3sinh p¢)]?
— [(a@ — b)(sinh(p — 2)¢ — 4sinh(p — 1)é + 3sinh pg)]* = 0
< (a+b—-1)? — (a—b)* =0
= (2a—1)(2b—1) = 0
1 1

< @Hm or @HM Aw@v

Equation (34) was obtained since it can be proved that the second factor
in the product preceding it is different form zero. Now, in view of (34) either

solution of equation (35) gives as the optimum values for a and b the following

and b =

a —

1 1
2 2

REMARK

For the optimum values of « and b just determined we observe that the
four elements t3,_53,-2, f3p-23,-1, l3p—1,3p—2, I3p—1.3p—1 of T become zero.
As a result of this, it can be checked out that 72 = 0 (!) implying that in
the absence of round-off errors the exact solution of the linear system will
obtained after two iterations.
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4.5 Determination of ¢« and b: Second Approach

A similar analysis to the one before can be done. Specifically, we substitute
the elements of the matrix /V in the equations (14), (15), (16) and (17) and
obtain equivalently

tsp—23p—2 = bm'sp_9, 14+ (L —0)m's,_a, + 3am's,_23,—2 (36)
tsp2sp-1 = (1 —b)m'spapr +bm'spnp —3(1 — a)m'spa5,—2 (37)
tsp-1sp—2 = bmsp_1p-1+ (1= b)mspm1p — 3(1 — a)m'sp_1 -1 (38)
tspo13p—1 = (1 —=0)m/sp1po1 +bm'sp1, + 3am/s,_1 351 (39)

4.5.1 Determination of m’,_y, 4 m',—y,-1 m',, and m’, 41,

Here we follow exactly the same steps as in section 4.4.1. Consequently,

o _ sinh(p — 2)¢ o _ sinh(p — 1)¢
p=2p-l sinh po p=lp—l sinh po
o sinh(p — 1)¢ o _ sinh(p — 2)¢

pp sinh p¢ ptlp sinh po

4.5.2 Determination of m';, 53, 2 and m/s,_1 3,1

The element m's,_s3,-2 belongs to the block M/, and specifically it is the
last element of its last column. Since we know that MssMi, = I we denote
the elements of the last column of M}, by ;, : = 1,2,...,p, and multiplying
out we can write down the equations that arise from the last column. Thus

we have
2coshopary — a3 = 0
—x1 + 2coshgpay — x5 = 0
—&p,_9 + 2coshoz, 1 — 2, = 0
—2x,1 + 2coshoz, = 1
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or, equivalently,

v = 0 (40)
—zio1 + 2coshga; —xip1 = 0 i=1,...,p (41)
—Tp1 F+ Tpp = 1 (42)

Equation (41) is the general difference equation, whereas equations (40) and
(42) can be regarded as boundary conditions which are obtained by applying
the general equation for ¢« = 1 and ¢ = p and requiring that x¢ and 2,4,
satisfy them.

The characteristic equation of (41) is

p* — (2cosh¢)p +1 = 0

and as we have already seen in section 4.4.1 the general solution of (41) is
given by

T, = Dm% + Sm|§
Applying now the boundary condition (40) we have
To = 0 <<= ¢ + ¢ =0 << ¢ = —¢
which makes the general solution of (41) be as follows
2, = cre'? — ¢1e™ = 2¢q sinh (6 (43)
If we apply (42) we have

—Tp1 F Tpp1 =1

—2¢y sinh(p — 1)¢ + 2¢; sinh(p+ 1)¢p =1
1

2sinh(p + 1)¢ — 2sinh(p — 1)¢

—
—

1 =

From (43) we can obtain all the elements of the last column of M}, from the
expression

sinh 7¢
sinh(p 4+ 1)¢ — sinh(p — 1)¢

T, =
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So

Y

, B sinh p¢
Map-28p-2 = sinh(p + 1)¢ — sinh(p — 1)¢

The element m3, ;3 ; belongs to the block My, and specifically it is
the first element of its first column. The matrices M35 and M,4 are centro—
symmetric to each other and as we saw in section 4.4 .1 we can deduce that
Mj, and Mj, are also centro—symmetric to each other. Therefore, the first

element of the first column of M}, is the same as the last element of the last
column of MJ;. Consequently,
, sinh p¢
m =
Sp—13p-1 sinh(p + 1)¢ — sinh(p — 1)¢

4.5.3 Determination of m's, 5, 1, m's,—2,, m's,—1,-1 and m's,_4,
If we use the equations (18)—(21) we have
sinh(p —2)¢ — 4sinh(p—1)¢

sinh(p 4+ 1)¢ — sinh(p — 1)¢
sinh(p —2)¢ — 4sinh(p—1)¢

(18) <= mb, ,, 4 = a

(19) <= my,,, = —(1—q) sinh(p + 1)¢ — sinh(p — 1)¢

\ C (—a sinh(p —2)¢ — 4sinh(p—1)¢
(20) = my,_q,0 = —(1—a) sinh(p + 1)¢ — sinh(p — 1)¢
(21) o i = oS =2)0 — dsinh(p—1)¢

sinh(p 4+ 1)¢ — sinh(p — 1)¢
4.5.4 Elements of the Matrix 7 : Second Approach

If we use the equations (36)—(39) we have

(36) <= t3p_23p-2 =
(¢ +b—1)(sinh(p —2)¢ — 4sinh(p — 1)¢) + 3a sinh po
sinh(p 4+ 1)¢ — sinh(p — 1)¢

(37) <= t3p_23p-1 =
(a — b) (sinh(p — 2)¢ — 4sinh(p — 1)¢) — 3(1 — a) sinh po
sinh(p 4+ 1)¢ — sinh(p — 1)¢
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(38) <= t3p_13p-2=
(a — b) (sinh(p — 2)¢ — 4sinh(p — 1)¢) — 3(1 — a) sinh po
sinh(p 4+ 1)¢ — sinh(p — 1)¢

(39) <= t3p_13p-1 =
(a +b—1)(sinh(p — 2)¢ — 4sinh(p — 1)¢) + 3a sinh po
sinh(p 4+ 1)¢ — sinh(p — 1)¢

4.5.5 Optimum Values of ¢ and b

Now we can try to find the solutions of the system of equations (10) and
(11). For this we successively have

(10) < (a+b—1)(sinh(p —2)¢ — 4sinh(p — 1)¢) + 3asinhpy = 0 (44)
(11) < [(a+b—1)(sinh(p —2)¢ — 4sinh(p — 1)¢) + 3asinh ps]* —
[(a — b)(sinh(p — 2)¢ — 4sinh(p — 1)8) — 3(1 — a)sinh pp)]*> = 0
< [(2a —1)(sinh(p — 2)¢ — 4sinh(p — 1)¢) + 3(2a¢ — 1) sinh pg]
[(2b — 1)(sinh(p — 2)¢ — 4sinh(p — 1)¢) + 3sinh pg] = 0
< [(2a — 1)(sinh(p — 2)¢ — 4sinh(p — 1)¢ + 3sinh pg)]
[(2b — 1)(sinh(p — 2)¢ — 4sinh(p — 1)¢) + 3sinh pg] = 0
< (2a — 1)[(2b— 1)(sinh(p — 2)¢ — 4sinh(p — 1)¢) + 3sinh pg] = 0
1
— a = M
or (45)

sinh(p — 2)¢ — 4sinh(p — 1)¢ — 3sinh po
2(sinh(p — 2)¢ — 4sinh(p — 1)9¢)

Using either solution of equation (45) into (44) we find out that the op-

b =

timum values for ¢ and b are

1 sinh(p — 2)¢ — 4sinh(p — 1) — 3sinhpe
2 2(sinh(p — 2)¢ — 4sinh(p — 1)9)
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REMARK

In this case it is also observed that for the optimum values of « and b
above the four elements t3,_53,-2, f3,-23,-1. I3p—13p—2, l3p—13p-1 of T
become zero and, therefore, 7% = 0! Again, as in the first approach, in
the absence of round-off errors the exact solution of the linear system will
obtained after two iterations.
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5 The Poisson Equation

The Poisson equation is a particular case of the Helmholtz equation stud-
ied in the previous two chapters. The Poisson equation was the very first
part of our study and so we present very briefly the corresponding results
here. The PDE problem for the Poisson equation is given by

—u"=f in Q=(0,1) (46)

,1
u(0)=a and u(l)=p

~—

where o and 3 are the given boundary values.

Since, as was already mentioned, the Poisson equation can be obtained
from the Helmholtz one (4) with ¢ = 0, and therefore the diagonal element
d in the matrices M will be 2, all the results in this present case can also be
obtained from the ones in the the previous case adopting limiting processes
letting ¢ — 0.

5.1 Determination of ¢« and b : First Approach

Again, the elements i3,_23, 2, f3,-23,-1, l3p-13p-2 and {3,_13,-1 Will be
given by equations (22)—(25).
What we now need are the necessary elements of the matrix M’.

5.1.1 Determination of the Elements of the Matrix M’

The elements m',_5,_ 1 and m’,_;,_1 belong to the block M{,. To com-
pute these elements we write down the equations that correspond to the last
column of the product My M{, = I, we have

N&H — X2 = 0

—x1 + N&w — X3 = 0
—Tp-3 + N&@Iw — Tp-1 = 0
— Tp-2 + N&@IH = 1
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or, equivalently,

—ri 1 +2x; —wiyy = 0 i=1,...,p—1 (48)
v, = 1 (49)

Again, the boundary conditions (47) and (49) are obtained by applying the
general equation for ¢ = 1 and ¢+ = p — 1 and demanding that z¢ and z,
satisfy them.

The characteristic equation of the general difference equation (48) is

PP —2p4+1=0

whose solutions are
pr = p2 =1
Thus the general solution of (48) is
x;, = DR + S%w = ;1" + cyil?
= (8] + QN@.
Applying the boundary condition (47) we have
&OHOAHVQHA_'QNOHOA“VQHHO
which makes the general solution of (48) be given by
T; = Cot (50)

If we now apply (49) we have

1
&@HHAHVQ%HHAHVQNHM

From (50) we can obtain all the elements of the last column of M7, from the
expression

So
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We could continue in the same way and show how we could find all the
elements of M’ we need. However, at this point we can comment that in our
case we can find all the elements we need, by using the various expressions
we have already found in section 4.4, and determining the limits of the
corresponding expressions as ¢ — 07. Thus we have

a
SW@IN%IH = MA|w% |_| Nv
1—a
SW@IN% = - 2 A|w% + Nv
' P
Mgy, 93p—2 = 5
1—a
SW@IH%IH = - 2 A|w% + Nv
a
SW@IH% = MA|w% + Nv
' P
M3y, 13p-1 — 5

5.1.2 Elements of the Matrix 7' : First Approach

If we use equations (22)—(25) we have

(22) <= t3pnspn = a+b—1
(23) < t3p_23p-1 = a—0b
(24) <= t3p_13p—2 = a—0b
(25) <= t3p13p1 = a+b—1

5.1.3 Optimum Values of ¢« and b

We will try to see if we can make equations (10) and (11) be satisfied simul-
taneously.

(10) <= a+b—-1 =0 (51)
(1) = (a+b—-1>—(a—b) = 0 < (2a—1)(2b—1) = 0
— @HW or @HW (52)

38



The Poisson Equation Determination of a and b: Second Approach

From the system of equations (52) and (51) we readily find that the op-

timum values for ¢ and b are

We remark that this result was somehow expected since the values found
for the optimal ones for ¢ and b in the case of Helmholtz equation were
independent of ¢.

5.2 Determination of ¢« and 0: Second Approach
The elements Nwﬁlwqwﬁlw“ Nwﬁlwawﬁlf Nwﬁlfwﬁlw and Nwﬁlfw@lﬂ will be wmdw@ﬁ
again by equations (36)—(39).

5.2.1 Determination of the Elements of the Matrix A/’

As the blocks My, Mss Ms3 and Mgy are identically the same with the ones
of the previous approach, we do not need to find the necessary elements of
their inverse matrices again. We can refer to the corresponding expressions
in section 5.1.1 instead.

5.2.2 Elements of the Matrix 7' : Second Approach

If we use the equations (36)—(39) we have

(a+b—1)(=3p+2) + 3ap
2

(a—b)(=3p+2) —3(1—a)p
2

(a—0)(=3p+2) = 3(1 —a)p
2

Awmv < Nwﬁlwawﬁlw —

Awﬂv < Nwﬁlwqwﬁlﬂ —

Awmv < Nwﬁlfwﬁlw —

(a+b—1)(=3p+2) + 3ap

A@@V < Nwﬁlfw@lﬂ — N
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5.2.3 Optimum Values of ¢« and b
If we try to find the solution of (10) and (11) we have

(10) <= (a+b—1)(-3p+2)+ 3ap=0 (53)

(11) <= [a+b—1)(=3p+2) + 3ap]" —[(a = b)(=3p+2) — 3(1 —a)p]* =0
<— (4a —2)(4b—6bp+6p—2) =0
1 3p—1
S =X - 54
&= a=g o 32 (54)
The solution to the system of equations (54) and (53) gives that the op-

timum values for ¢ and b are

_3p-1

and b =
3p—2

1
a = —
2
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6 Numerical Experiments

In this section numerical examples are presented to confirm the theoretical
results given above. In all computations below, we apply second order finite
difference discretizations on uniform grids in each of the two subdomains.

The resulting linear systems of algebraic equations are solved by banded
Gaussian Elimination. Single precision is used for all calculations. The initial
guesses are always taken to be zero.

The errors are evaluated in the L° norm of the vector of the differences
at all the points of the discretization of the values obtained after the second
Neumann iteration from the theoretical values. For all the numerical results
in the examples the interface is at = = 0.5.

Note that the subdomain problems at each iteration level in our method
are completely independent and thus parallelizable.

We select the following model problems on 9 = (0,1).

—u"+05u = f, in Q u=g, in 09,
—u" = f, in Q u=g, in 9N

Example 1: The functions f and ¢ are chosen such that the exact solu-
tion 1s:
. T
u(x) = mEAM&V.

Example 2: The functions f and ¢ are chosen such that the exact solu-
tion 1s:
u(z) =a (1 —x).

Example 3: The functions f and ¢ are chosen such that the exact solu-
tion 1s:

In tables (1)-(6) we present the results obtained for the Helmholtz equa-
tion whereas in tables (7)-(12) we present those for the Poisson equation.
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6.1 Results from the First Approach—Helmhotlz

Table 1: Example 1, Helmholtz, First Approach

Test Problem 1. First Approach
iteration || Grid size m|o Grid size %|N Grid size HHQ
1 1.1211F — 4 || 2.6643F — 5 || 5.8472F — 5
2 1.1211F — 4 || 2.7060F — 5 || 5.9902F — 5

Table 2: Example 2, Helmholtz, First Approach

Test Problem 2. First Approach
iteration || Grid size m|o Grid size %|N Grid size HHQ
1 2.6822F — 7 || 5.2154F — 7 || 1.9356F — 5
2 2.9802F — 7 || 5.2154F — 7 || 1.9356F — 5

Table 3: Example 3, Helmholtz, First Approach

Test Problem 3. First Approach
iteration || Grid size m|o Grid size %|N Grid size HHQ
1 4.0793F — 4 || 8.6307F — 5 || 5.7578F — 5
2 4.0793F — 4 || 8.6000F — 5 || 5.7578F — 5
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6.2 Results from the Second Approach—Helmholtz

Table 4: Example 1, Helmholtz, Second Approach

Test Problem 1. Second Approach
iteration || Grid size m|o Grid size %|N Grid size HHQ
1 5.5645F — 3 || 6.3955F —4 || 1.2171F — 4
2 5.5646F — 3 || 6.3955 — 4 || 1.2272F — 4

Table 5: Example 2, Helmholtz, Second Approach

Test Problem 2. Second Approach
iteration || Grid size m|o Grid size %|N Grid size HHQ
1 2.6822F — 7 || 7.4505F — 7 || 1.9356F — 5
2 2.9802F — 7 || 5.5134F — 7 || 1.9356F — 5

Table 6: Example 3, Helmholtz, Second Approach

Test Problem 3. Second Approach
iteration || Grid size m|o Grid size %|N Grid size HHQ
1 1.1623F — 2 || 1.3067F — 3 || 1.6671F — 4
2 1.1623F — 2 || 1.3064F — 3 || 1.6820F — 4
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6.3 Results from the First Approach—Poisson

Table 7: Example 1, Poisson, First Approach

Test Problem 1. First Approach
iteration || Grid size m|o Grid size %|N Grid size HHQ
1 1.1062F — 4 || 2.9683F — 5 || 5.3644F — 6
2 1.1068F — 4 || 2.9683F — 5 || 6.1988F — 6

Table 8: Example 2, Poisson, First Approach

Test Problem 2. First Approach
iteration || Grid size m|o Grid size %|N Grid size HHQ
1 59604F — 8 || 2.3841F — 7 || 3.1441F — 6
2 59604F — 8 || 2.3841F — 7 || 3.1441F — 6

Table 9: Example 3, Poisson, First Approach

Test Problem 3. First Approach
iteration || Grid size m|o Grid size %|N Grid size HHQ
1 4.1782F — 4 || 9.2864F — 5 || 1.3947TF — 5
2 4.1782F — 4 || 9.2864F — 5 || 1.3947TF — 5
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6.4 Results from the Second Approach—Poisson

Table 10: Example 1, Poisson, Second Approach

Test Problem 1. Second Approach
iteration || Grid size m|o Grid size %|N Grid size HHQ
1 5.8453F — 3 || 6.6816F — 4 || 6.3419F — 5
2 5.8450F — 3 || 6.6846F — 4 || 6.6339F — 5

Table 11: Example 2, Poisson, Second Approach

Test Problem 2. Second Approach
iteration || Grid size m|o Grid size %|N Grid size HHQ
1 59604F — 8 || 2.3841F — 7 || 3.1441F — 6
2 1.0430F — 7 || 4.9173F — 7 || 3.7252F — 6

Table 12: Example 3, Poisson, Second Approach

Test Problem 3. Second Approach
iteration || Grid size m|o Grid size %|N Grid size HHQ
1 1.2203F — 2 || 1.3688F — 3 || 1.4823F — 4
2 1.2203F — 2 || 1.3688F — 3 || 1.4823F — 4

45




sin(pi*x/2)

u(x)

Numerical Experiments

Results from the Second Approach—Poisson

08 |

0.8

&
0.6

0.4

0.2

06
04 |

02 |

(z/x«1d)uis

Figure 2: Example 1, Helmholtz equation
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Numerical Experiments

Results from the Second Approach—Poisson
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Figure 3: Example 2, Helmholtz equation
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7 Conclusions

From the theoretical analysis done in this work it became clear that the
best possible asymptotic convergence of the iterative schemes for both ap-
proaches was achieved. More specifically, as was remarked in sections 4.4,
4.5, in the absence of round-off errors, the exact solutions of the correspond-
ing linear systems are obtained after two iterations.

However, in all of the experiments we tried and despite the presence of
round—off errors and the single precision arithmetic used, we observe that
the solutions obtained are much better than what one would expect. The
errors in each one of them are even better than the order of accuracy (the
order of the truncation errors) which for the grid sizes chosen should be
1072, 1073, 107*, respectively, for the three test examples.

The very good order of accuracy obtained in all the experiments tried
seemns to be achieved after the very first iteration. The second iteration gives
results which are very close to the ones already obtained after the first one.

Out of the two approaches analyzed and studied in this work, the exper-
iments show that the first one seems to give slightly better results than the
second approach.

The way our theory was developed enables us to solve the discrete ana-
log of the differential problem at the two half-iteration levels (Dirichlet and
Neumann iterations) for the two subdomains independently. Thus this in-
herent parallelism can be fully exploited when one moves on to considering
more than two subdomains and/or one dimension, an issue which is open for
further research at the linear algebra level. The theoretical difficulties for the
determination of the optimum parameters might have become obvious even at
this "elementary” one-dimension, two-equally—uniformly-sized-subdomain—
problem. So it is fully understandable that the theoretical issues one has to
overcome will be of a much more difficult nature.
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A Source Code developed in Fortran 77

The linear systems were solved using routines from the Linpack Package.

A.1 First Approach

Q

QO aQ

Implementation of the first approach of the domain decomposition
method proposed. Solves numerically the PDE problem
-u’’ |x + cku =f(x), defined in an interval (a,b), with c>0 and
Dirichlet Conditions u(a)=\alpha and u(b)=\beta
In the particular case where c=0, the corresponding Poisson
equation is solved.

(Helmholtz)

program firstapproach

integer lda, lda2

parameter (1da=250, lda2=2x1da)

integer dec, i, irumn, it, n, p

real a, b, c, alpha, beta, al, bl

real h, norm, rp, phi

real sol(lda2), grdx(lda)

real rhs1(lda), rhs2(1lda), rhs3(1lda), rhs4(lda)
real lhs1(lda,lda), 1hs3(lda,lda),lhs4(1lda,lda)

write (*,*) ’Give the parameter c of the Helmholtz Eqn’
read (*,*) c

write (*,*) ’Give the interval (a,b)’
write (*,%) ’a:=’

read (*,%*) a

write (*,%) ’b:=’

read (*,*) b

50



Source Code developed in Fortran 77 First Approach

10

write (*,*) ’Give the Dirichlet boundary conditions’
write (*,%*) ’alpha=u(a):=’

read (*,*) alpha

write (*,%) ’beta=u(b):=’

read (*,%*) beta

write (*,*) ’Which test problem to run?’

write (*,*) ’u(x)=sin(pi*x/2) (1 to accept)’

write (*,*) ’u(x)=x*(1-x) (2 to accept)’

write (*,*) ’u(x)=-e"(2*x)/4 (3 to accept)’

read (*,%*) irun

if ((irun.NE.1) .AND. (irun.NE.2) .AND. (irun.NE.3)) goto 1000

write (*,%) ’Give number of discritisation points n, 0 to stop’
write (*,%) ’n:=’

read (*,*) n

p=(n+1)/2

rp=real(p)

h=(b-a)/(n+1)

if (n .EQ. 0) goto 1000

write (*,%*) ’Let a:=1/27 (1 to accept)’
read (*,*) dec
if ( dec .EQ. 1 ) then
al=0.5
else
write (*,%) ’al:=’
read (*,%*) al
endif
write (*,*) ’Let b:=(optimum value)? (1 to accept)’
read (*,*) dec
if ( dec .EQ. 1 ) then
tmp=1. + c*hxh/2.
phi=acosh(tmp)
snhpm2=sinh((rp-2)*phi)
snhpmil=sinh((rp-1)*phi)
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snhp=sinh (rp*phi)
bl=(snhpm2-4.*snhpml-3*snhp)/(2* (snhpm2-4.*snhpml))
else
write (*,%) ’bl:=’
read (*,%*) bl
endif
if ((dec .EQ. 1) .AND. (c .EQ. 0)) bl=(3.*rp-1.)/(3.*rp-2.)

do 20 i=1,n
grdx(i)=a+i*h
20 continue

C Form the left hand side matrix
call lhsgen(lda,p,al,bl,c,h,lhs1,1hs3,1hs4)

C Form the right hand side matrix
call HWmmmbAHQmwuwuwumwwwmudmdmuHchuoumHQNuHWmHMHWmMMHme“HWmﬁv

C Iteration routine
call = second(tl)
call iterate(lda,p,al,bl,irun,grdx,lhs1,1hs3,1lhs4,rhsl,rhs2,
& rhs3, rhs4,so0l,it,c)
call = second(t2)

C Find L_infinity norm
norm = findnorm(n,irun,c,sol,grdx)

C Print out results
write (x,%) ’ _ _ _ )
write (*,%) ’|Iter’,it,’Norm=’,norm,’Time=’,t2-t1
do 30 i=1,n
write (*,*) grdx(i),sol(i)
30 continue

goto 10
1000 stop
end
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Form the left hand side lhs:= 4 block tridiag(-1,2+c*h"~2,-1)
The first two blocks are (p-1)x(p-1)

The next two are pxp having (24c*h~2,-2) in the last row of the
third and first row of the fourth

Q

Q Q QQ

subroutine lhsgen(lda,p,al,bl,c,h,lhs1,1lhs3,1lhs4)
integer lda, p

integer j

real al, bl, ¢, h

real lhs1(1lda,1), 1lhs3(1lda,1), lhs4(lda,l)

real diag

diag=2. + c*hx*h

do 10 j=1,p
call vfill(p,lhs1(1,3),0.)
call vfill(p,lhs3(1,3),0.)
call vfill(p,lhs4(1,3),0.)
10 continue

lhs1(1,1)=diag

lhs1(1,2)=-1.

do 20 1=2,p-2
lhs1(i,1-1)=-1.
lhs1(i,i)=diag
lhs1(i,1+1)=-1.

20 continue
lhs1(p-1,p-2)=-1.
lhs1(p-1,p-1)=diag

1hs3(1,1)=diag

lhs3(1,2)=-1.

do 30 i=2,p-1
lhs3(i,1-1)=-1.
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30

40

1hs3(i,i)=diag

lhs3(i,1+1)=-1.
continue
1hs3(p,p-1)=-4.+diag
1hs3(p,p)=2

lhs4(1,1)=2
1lhs4(1,2)=-4.+diag
do 40 i=2,p-1
lhs4(i,1-1)=-1.
lhs4(i,i)=diag
lhs4(i,1+1)=-1.
continue
lhs4(p,p-1)=-1.
lhs4(p,p)=diag

return
end
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C | Form the right hand side standard vector rhs:= h™2 * f(x)
C | £(x) given by function f, depending on the test problem to run

subroutine HWmmmbAHQmwuwuwumwwwmudmdmuchbuoumwaxu
& rhs1l,rhs2,rhs3,rhs4)

integer lda2, p, irun

integer i, n

real alpha, beta, h

real hs

real grdx(1), rhsi(1), rhs2(1), rhs3(1), rhs4(1)

real fc(1lda2)

hs=h*h
n=2%p-1

call vfill(p,rhs1,0.)
call vfill(p,rhs2,0.)
call vfill(p,rhs3,0.)
call vfill(p,rhs4,0.)

call f(n,irun,c,grdx,fc)

C First Dirichlet Iteration
do 10 i=1, p-1
rhs1(i)=hs*fc (i)
10 continue
rhs1(1)=rhs1(1) + alpha

C Second Dirichlet Iteration
do 20 i=1, p-1
rhs2(i)=hs*fc(i+p)
20 continue
rhs2(p-1)=rhs2(p-1) + beta
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C First Neumann Iteration
do 30 i=1, p-1
rhs3(i)=rhs1(i)
30 continue
rhs3(p)=rhs3(p-1)

C Second Neumann Iteration
do 40 i=2,p
rhs4(i)=rhs2(i-1)
40 continue
rhs4(1)=rhs4(2)

return
end
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C | Iterative Procedure as it comes from the Iterative schemes.
C | Only 2 full iterations are done.

subroutine iterate(lda,p,al,bl,irun,grdx,lhs1,lhs3,1lhs4,
& rhs1,rhs2,rhs3,rhs4,un,it,c)

parameter (itmax=2)

integer lda, p, it, irun

integer j, info, pml

real al, bl, c, grdx(1l)

real lhs1(1lda,1), 1lhs3(1lda,1), lhs4(lda,l)

real rhs1(1), rhs2(1), rhs3(1), rhs4(1), un(1)

real upi(lda), up2(1lda), up3(lda), up4(lda)

real ucl(lda), uc2(lda), uc3(lda), uc4(lda)

real diag(lda), updiag(lda), botdiag(lda)

real pnorm

pmi=p-1
n=2%p-1

call vfill(pml, upl, 0.)
call vfill(pml, up2, 0.)
call vfill(p, up3, 0.)
call vfill(p, up4, 0.)

C up: the previous solution, uc: the current one
do 70 it=1, itmax

C First Dirichlet Iteration
call scopy (pml, rhsi, 1, un, 1)
un(pmi)= un(pml) + bl*xup3(p) + (1.-bl)*up4(1)
do 10 j=1,pml
diag(j)=1lhs1(j,j)
updiag(j)=1hs1(j,j+1)
10 continue

57



Source Code developed in Fortran 77 First Approach

updiag(pm1)=0.
call sptsl(pml, diag, updiag, un)
call scopy (pml, un, 1, ucl, 1)

C Second Dirichlet Iteration
call scopy (pml, rhs2, 1, un, 1)
un(1)= un(1) + (1.-b1)*up3(p) + bl¥up4(1)
do 20 j=1,pml
diag(j)=1lhs1(j,j)
updiag(j)=1hs1(j,j+1)
20 continue
updiag(pm1)=0.
call sptsl(pml, diag, updiag, un)
call scopy (pml, un, 1, uc2, 1)

C First Neumann Iteration
call scopy (p, rhs3, 1, un, 1)
un(p)= un(p) + 3.*(al+bl-1.)*up3(p) - 3.*(bl-al)*up4(1)
& + alxucl(p-2) - 4.*al*ucl(pmil)
& + 4 .%(1.-al)*uc2(1) - (1.-al)*xuc2(2)
do 30 j=1,p
botdiag(j)=1hs3(j,j-1)
diag(j)=1hs3(j,j)
updiag(j)=1hs3(j,j+1)
30 continue
botdiag(1)=0.
updiag(p)=0.
call sgtsl(p, botdiag, diag, updiag, un, info)
call scopy (p, un, 1, uc3, 1)

C Second Neumann Iteration
call scopy (p, rhs4, 1, un, 1)
un(1)= un(1) - 3.*(bl-al)*up3(p) + 3.*(al+bl-1.)*up4(1)
& - (1.-al)*ucl(p-2) + 4.*(1.-al)*ucl(pml)
& - 4 . *alxuc2(1l) + al*uc2(2)
do 40 j=1,p
botdiag(j)=1hs4(j,j-1)
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diag(j)=1hs4(j,j)
updiag(j)=1hs4(j,j+1)
40 continue
botdiag(1)=0.
updiag(p)=0.
call sgtsl(p, botdiag, diag, updiag, un, info)
call scopy (p, un, 1, uc4, 1)

do 50 j=1,pml
upl(j)=uci(j)
up2(j)=uc2(j)
50 continue
do 60 j=1,p
up3(j)=uc3(j)
up4 (j)=uc4(j)
60 continue

70 continue

C Find solution vector
call scopy(pml, uc3, 1, un, 1)
call scopy(pml, uc4(2), 1, un(p+1), 1)
un(p)=(uc3(p)+uc4(1))/2.

it=it-1

return
end
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Q

Form function f depending on the test problem.
irun:1 f£(x)=(pi~2+4*c)*sin(pi*x/2)/4

irun:2 f(x)=2+c*x*(1-x)

irun:3 f(x)=(4-c)*xe~(2%xx)/4

Q Q QQ

subroutine f(n,irun,c,grdx,fc)
integer n, irun

integer 1

real c, ttgrdx, pi

real grdx(1), fc(1)

if (irun .EQ. 1) then
pi=4.*atan(1.)
do 10 i=1,n
ttgrdx=pi*grdx(i)/2.
pis=(pixpi+d.*c)/4.
fc(i)=pis*sin(ttgrdx)
10 continue
elseif (irun .EQ. 2) then
do 20 i=1,n
ttgrdx=c*xgrdx(i)*(1.-grdx(i))
fc(i)=2. + ttgrdx
20 continue
else
do 30 i=1,n
ttgrdx=2.*grdx (i)
fc(i)=(4.-c)*exp(ttgrdx) /4.
30 continue
endif

return
end
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| Compute the Infinite Norm of the real solution and the computed
| solution depending on the test problem.

| irun:1 £(x)=(pi~2+4.*c)*sin(pi*x/2)/4, real solution sin(pi*x/2)
| irun:2 f(x)=2+c*x*(1-x), real solution is x*(1-x)

| irun:3 f(x)=(4-c)*e"(2*x)/4, real solution is -e” (2%x)/4

QO

real function findnorm(n,irun,c,sol,grdx)
integer n

real normres, cC

real sol(1), grdx(1)

real pi

normres=0.

if (irun .EQ. 1) then
pi=4.*atan(1.)
do 10 i=1, n
pikgrdx(i)/2.
tmp sin(tmp)
tmp sol(i) - tmp
normres = amaxl(normres, abs(tmp))

tmp

10 continue
elseif (irun .EQ. 2) then
do 20 i=1, n
grdx(i)*(1.-grdx(i))
sol(i) - tmp

tmp
tmp

normres = amaxl(normres, abs(tmp))
20 continue
else
do 30 i=1, n
tmp

grdx (i)
tmp = -exp(2*tmp)/4.
tmp sol(i) - tmp
normres = amaxl(normres, abs(tmp))
30 continue
endif
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findnorm=normres

return
end

A.2 Second Approach

The subroutines that do not appear here, are the same with the corresponding
ones in the first approach.

C | Iterative Procedure as it comes from the Iterative schemes.
C | Only 2 full iterations are done.

subroutine iterate(lda,p,al,bl,irun,grdx,lhs1,lhs3,1lhs4,
& rhs1,rhs2,rhs3,rhs4,un,it,c)

parameter (itmax=2)

integer lda, p, it, irun

integer j, info, pml

real al, bl, c, grdx(1l)

real lhs1(1lda,1), 1lhs3(1lda,1), lhs4(lda,l)

real rhs1(1), rhs2(1), rhs3(1), rhs4(1), un(1)

real upi(lda), up2(1lda), up3(lda), up4(lda)

real ucl(lda), uc2(lda), uc3(lda), uc4(lda)

real diag(lda), updiag(lda), botdiag(lda)

real pnorm

pmi=p-1
n=2%p-1

call vfill(pml, upl, 0.)
call vfill(pml, up2, 0.)
call vfill(p, up3, 0.)
call vfill(p, up4, 0.)
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C up: the previous solution, uc: the current one
do 70 it=1, itmax

C First Dirichlet Iteration
call scopy (pml, rhsi, 1, un, 1)
un(pmi)= un(pml) + bl*xup3(p) + (1.-bl)*up4(1)
do 10 j=1,pml
diag(j)=1lhs1(j,j)
updiag(j)=1hs1(j,j+1)
10 continue
updiag(pm1)=0.
call sptsl(pml, diag, updiag, un)
call scopy (pml, un, 1, ucl, 1)

C Second Dirichlet Iteration
call scopy (pml, rhs2, 1, un, 1)
un(1)= un(1) + (1.-b1)*up3(p) + bl¥up4(1)
do 20 j=1,pml
diag(j)=1lhs1(j,j)
updiag(j)=1hs1(j,j+1)
20 continue
updiag(pm1)=0.
call sptsl(pml, diag, updiag, un)
call scopy (pml, un, 1, uc2, 1)

C First Neumann Iteration
call scopy (p, rhs3, 1, un, 1)
un(p)= un(p) + 3.*al*up3(p) - 3.*(1l.-al)*up4(1)
& + alxucl(p-2) - 4.*al*ucl(pmil)
& + 4 .%(1.-al)*uc2(1) - (1.-al)*xuc2(2)
do 30 j=1,p
botdiag(j)=1hs3(j,j-1)
diag(j)=1hs3(j,j)
updiag(j)=1hs3(j,j+1)
30 continue
botdiag(1)=0.
updiag(p)=0.
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call sgtsl(p, botdiag, diag, updiag, un, info)
call scopy (p, un, 1, uc3, 1)

C Second Neumann Iteration

40

50

60

70

call scopy (p, rhs4, 1, un, 1)
un(1)= un(1) - 3.*(1.-al)*up3(p) + 3.*al*up4(1)
- (1.-al)*ucl(p-2) + 4.*(1.-al)*ucl(pml)
- 4 . *alxuc2(1l) + al*uc2(2)
do 40 j=1,p
botdiag(j)=1hs4(j,j-1)
diag(j)=1hs4(j,j)
updiag(j)=1hs4(j,j+1)
continue
botdiag(1)=0.
updiag(p)=0.
call sgtsl(p, botdiag, diag, updiag, un, info)
call scopy (p, un, 1, uc4, 1)

do 50 j=1,pml
upl(j)=uci(j)
up2(j)=uc2(j)

continue

do 60 j=1,p
up3(j)=uc3(j)
up4 (j)=uc4(j)

continue

continue

C Find solution vector

call scopy(pml, uc3, 1, un, 1)
call scopy(pml, uc4(2), 1, un(p+1), 1)
un(p)=(uc3(p)+uc4(1))/2.

it=it-1

return
end
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Form the left hand side lhs:= 4 block tridiag(-1,2+c*h"~2,-1)
The first two blocks are (p-1)x(p-1)

The next two are pxp having (24c*h~2,-2) in the last row of the
third and first row of the fourth

Q

Q Q QQ

subroutine lhsgen(lda,p,al,bl,c,h,lhs1,1lhs3,1lhs4)
integer lda, p

integer j

real al, bl, ¢, h

real lhs1(1lda,1), 1lhs3(1lda,1), lhs4(lda,l)

real diag

diag=2. + c*hx*h

do 10 j=1,p
call vfill(p,lhs1(1,3),0.)
call vfill(p,lhs3(1,3),0.)
call vfill(p,lhs4(1,3),0.)
10 continue

lhs1(1,1)=diag

lhs1(1,2)=-1.

do 20 1=2,p-2
lhs1(i,1-1)=-1.
lhs1(i,i)=diag
lhs1(i,1+1)=-1.

20 continue
lhs1(p-1,p-2)=-1.
lhs1(p-1,p-1)=diag

1hs3(1,1)=diag

lhs3(1,2)=-1.

do 30 i=2,p-1
lhs3(i,1-1)=-1.
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30

40

1hs3(i,i)=diag

lhs3(i,1+1)=-1.
continue
1hs3(p,p-1)=-2.
1hs3(p,p)=diag

lhs4(1,1)=diag

lhs4(1,2)=-2.

do 40 i=2,p-1
lhs4(i,1-1)=-1.
lhs4(i,i)=diag
lhs4(i,1+1)=-1.

continue

lhs4(p,p-1)=-1.

lhs4(p,p)=diag

return
end
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C | Form the right hand side standard vector rhs:= h™2 * f(x)
C | £(x) given by function f, depending on the test problem to run

subroutine HWmmmbAHQmwuwuwumwwwmudmdmuchbuoumwaxu
& rhs1l,rhs2,rhs3,rhs4)

integer lda2, p, irun

integer i, n

real alpha, beta, h

real hs

real grdx(1), rhsi(1), rhs2(1), rhs3(1), rhs4(1)

real fc(1lda2)

hs=h*h
n=2%p-1

call vfill(p,rhs1,0.)
call vfill(p,rhs2,0.)
call vfill(p,rhs3,0.)
call vfill(p,rhs4,0.)

call f(n,irun,c,grdx,fc)

C First Dirichlet Iteration
do 10 i=1, p-1
rhs1(i)=hs*fc (i)
10 continue
rhs1(1)=rhs1(1) + alpha

C Second Dirichlet Iteration
do 20 i=1, p-1
rhs2(i)=hs*fc(i+p)
20 continue
rhs2(p-1)=rhs2(p-1) + beta
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C First Neumann Iteration
do 30 i=1, p-1
rhs3(i)=rhs1(i)
30 continue
rhs3(p)=hs*fc(p)

C Second Neumann Iteration
do 40 i=2,p
rhs4(i)=rhs2(i-1)
40 continue
rhs4(1)=rhs3(p)

return
end
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