ÅéóáãùãéêÝò Ìåôáðôõ÷éáêÝò ÅîåôÜóåéò 2001



ÅéóáãùãéêÝò åîåôÜóåéò ãéá ôï Ìåôáðôõ÷éáêü Ðñüãñáììá - ÌÝñïò 2ï
ÐÑÏÓÏ×Ç: Ôá èÝìáôá ðïõ áêïëïõèïýí êáëýðôïõí Ýíá åõñý öÜóìá äéáöüñùí ðåñéï÷þí ôùí Ìáèçìáôéêþí. Áõôü óáò äßíåé ôç äõíáôüôçôá íá áó÷ïëçèåßôå ü÷é ìüíï ìå ôá èÝìáôá ôçò ðåñéï÷Þò ðïõ ãíùñßæåôå êáëýôåñá, áëëÜ êáé íá åðåêôáèåßôå (ðñÜãìá ðïõ èá åðéèõìïýóå ç ÅðéôñïðÞ) óå èÝìáôá ôïõëÜ÷éóôïí ìéáò áêüìç ðåñéï÷Þò.
ÐñïâëÞìáôá ÁíÜëõóçò
1.
Ôá åßíáé óõìðáãÞ îÝíá õðïóýíïëá åíüò ìåôñéêïý ÷þñïõ
ìå
ìåôñéêÞ
.
Äåßîôå üôé õðÜñ÷åé
ôÝôïéï þóôå
ãéá êÜèå
.
2.
Ìå
óõìâïëßæïõìå ôï êëáóìáôéêü ìÝñïò ôïõ ðñáãìáôéêïý
áñéèìïý
.
Áí
åßíáé Üññçôïò äåßîôå üôé ôï óýíïëï
åßíáé ðõêíü óôï
.
3.
Ç áêïëïõèßá óõíáñôÞóåùí
óõãêëßíåé óôçí
ïìïéüìïñöá óôï
. ÊÜèå ìéá áðü ôéò
åßíáé åðßóçò ïìïéüìïñöá óõíå÷Þò
óôï
.
Äåßîôå üôé ç
åßíáé ïìïéüìïñöá óõíå÷Þò óôï
.
4.
Äåßîôå üôé ïé ÷þñïé ìå íüñìá
êáé
äåí Ý÷ïõí
áñéèìÞóéìï ðõêíü õðïóýíïëï.
5.
¸óôù ÷þñïò ìå íüñìá êáé
ãñáììéêü óõíáñôçóïåéäÝò. Äåßîôå üôé
ôï
åßíáé öñáãìÝíï áí êáé ìüíï áí åßíáé óõíå÷Ýò óå êÜðïéï óçìåßï
.
6.
¸óôù
áíáëõôéêÞ óå üëï ôï
ôÝôïéá þóôå
, ãéá êÜðïéïõò èåôéêïýò áñéèìïýò
êáé ãéá üëá ôá
.
Äåßîôå üôé ç
åßíáé ðïëõþíõìï.
7.
¸óôù åêåßíá ôá óçìåßá
ôïõ
ãéá ôá ïðïßá ôï
Þ ôï
Ý÷åé äåêáäéêü áíÜðôõãìá óôï ïðïßï äåí åìöáíßæåôáé ôï øçößï 5.
Äåßîôå üôé ôï
Ý÷åé ìÝôñï 0.
8.
¸óôù óýíïëï èåôéêþí áñéèìþí. Ïñßæïõìå ôï Üèñïéóìá ôùí óôïé÷åßùí ôïõ
,
, ùò ôï supremum ôùí áèñïéóìÜôùí
, ãéá üëá
ôá ðåðåñáóìÝíá õðïóýíïëá
ôïõ
.
Áí
åßíáé õðåñáñéèìÞóéìï äåßîôå üôé
.
9.
(á)
¸óôù
ðåðåñáóìÝíá õðïóýíïëá ôïõ óõíüëïõ
.
ÕðïèÝóôå üôé ãéá êÜèå
,
ç Ýíùóç ïðoéùíäÞðïôå
áðü ôá
ðåñéÝ÷åé ôïõëÜ÷éóôïí
óôïé÷åßá.
Äåßîôå üôé õðÜñ÷ïõí äéáöïñåôéêÜ áíÜ äýï
.
(Õðüäåéîç: ÅðáãùãÞ ùò ðñïò
- äéáêñßíåôå ôçí ðåñßðôùóç üðïõ
êÜðïéá
áðü ôá
Ý÷ïõí Ýíùóç ìå áêñéâþò
óôïé÷åßá.)
(â) Äåßîôå üôé ôï ßäéï éó÷ýåé ãéá ìéá Üðåéñç áêïëïõèßá ðåðñáóìÝíùí
óõíüëùí , ðïõ ðëçñïýí ôçí ßäéá õðüèåóç ãéá ôéò åíþóåéò ïðïéùíäÞðïôå
, ãéá
.
10.
Óôï èåùñïýìå ôç óõíÞèç ôïðïëïãßá. Óå ðïéåò áðü ôéò ðáñáêÜôù
ðåñéðôþóåéò õðÜñ÷åé óõíå÷Þò óõíÜñôçóç
áðü ôï
åðß ôïõ
?
ÐñïâëÞìáôá áðü ÓõíÞèåéò êáé ÌåñéêÝò ÄéáöïñéêÝò Åîéóþóåéò
11.
Áðïäåßîôå üôé ç ëýóç
, åßíáé
áóôáèÞò ëýóç ãéá ôï ðñüâëçìá

12. Íá âñåèåß ç ãåíéêÞ ëýóç ôïõ óõóôÞìáôïò

Õðüäåéîç: Ìéá ((äåýôåñç ëýóç)) ìðïñåß íá âñåèåß óôç ìïñöÞ

13.
Áðïäåßîôå ðùò ç ëýóç ôïõ ðñïâëÞìáôïò

ïñßæåôáé óå üëï ôï äéÜóôçìá

14.
Íá ëõèåß ôï ðñüâëçìá Áñ÷éêþí-Óõíïñéáêþí Ôéìþí

ìå ôç óõíèÞêç

15.
Íá âñåèåß áñìïíéêÞ óõíÜñôçóç óôçí çìéëùñßäá
ðïõ íá éêáíïðïéåß

êáé íá åßíáé öñáãìÝíç.
16. Áðïäåßîôå ôï ìïíïóÞìáíôï ôùí ïìáëþí ëýóåùí ôïõ ðñïâëÞìáôïò

ÐñïâëÞìáôá ÁñéèìçôéêÞò ÁíÜëõóçò
17.
Äåßîôå üôé ç áêïëïõèßá , ìå
,
,
, óõãêëßíåé óôï ìïíáäéêü óôáèåñü óçìåßï ôïõ óõíçìéôüíïõ ãéá
ïðïéäÞðïôå
.
18.
¸óôù
óõììåôñéêüò êáé èåôéêÜ ïñéóìÝíïò ðßíáêáò,
äçë.
êáé
ãéá êÜèå ìç ìçäåíéêü äéÜíõóìá
.
(á) Äåßîôå üôé ,
.
(â) Äåßîôå üôé
.
(ã) Åßíáé ï èåôéêÜ ïñéóìÝíïò?
19.
¸óôù êáé
,
, êáé
ðïëõþíõìï ðáñåìâïëÞò ôçò
óôá
,
.
Äåßîôå üôé
.
20.
Ôï ïëïêëÞñùìá
ìðïñåß íá ðñïóåããéóèåß ìå ôï
üðïõ
ìéá áñêåôÜ ïìáëÞ óõíÜñôçóç óôï
êáé
ôï ðïëõþíõìï ðáñåìâïëÞò ôçò
óôá
.
(á) Äþóôå ôï óáí óõíÜñôçóç ôùí óçìåßùí
êáé ôùí
áíôéóôïß÷ùí ôéìþí ôçò
.
(â) Ðïéïò ãíùóôüò ôýðïò áñéèìçôéêÞò ïëïêëÞñùóçò ðñïÝêõøå óôï (á)?
21.
Èåùñåßóôå ôï äéáìåñéóìü ,
ôïõ
êáé
ôç óõíÜñôçóç
,

(á) Õðïëïãßóôå ðïëõþíõìï ðáñåìâïëÞò




(â) Õðïëïãßóôå ôçí êõâéêÞ spline ðáñåìâïëÞò




(ã) Ðïéá áðü ôéò ðáñáêÜôù ôñåéò ðñïóåããßóåéò


![$\max_{x\in[0,3]}{\left\vert{f(x)-g(x)}\right\vert}$](img96.png)





ÐñïâëÞìáôá ÐéèáíïôÞôùí-ÓôáôéóôéêÞò
22.
Äýï ößëïé, êáé
, ðáßæïõí darts (âåëÜêéá) êáé ï ðñþôïò ðïõ èá âñåß
êÝíôñï êåñäßæåé. Ï
Ý÷åé ðéèáíüôçôá
íá âñåß êÝíôñï êÜèå öïñÜ ðïõ
ðáßæåé, êáé ï
Ý÷åé ðéèáíüôçôá
.
Ïé äå äïêéìÝò åßíáé üëåò áíåîÜñôçôåò ìåôáîý ôïõò.
Âñåßôå ôçí ðéèáíüôçôá íá êåñäßóåé ï
üôáí áõôüò ðáßæåé ðñþôïò.
23.
¸óôù ,
, ìéá áêïëïõèßá ãíÞóéá èåôéêþí, áíåîÜñôçôùí êáé éóüíïìùí
ôõ÷áßùí ìåôáâëçôþí êáé Ýóôù üôé
êáé
õðÜñ÷ïõí êáé åßíáé ðñáãìáôéêïß áñéèìïß (ãéá êÜèå
).
Áí
, âñåßôå ôçí
.
(Äéáêñßíåôå ôéò ðåñéðôþóåéò
,
,
.)
24.
Ï ÃéÜííçò ñß÷íåé Ýíá íüìéóìá öïñÝò êáé ç Ìáñßá
öïñÝò.
Ïé ñßøåéò åßíáé áíåîÜñôçôåò ìåôáîý ôïõò êáé êåñäßæåé üðïéïò öÝñåé
ôéò ðåñéóóüôåñåò êïñþíåò.
Âñåßôå ôçí ðéèáíüôçôá íá êåñäßóåé ç Ìáñßá.
25.
(á) Âñåßôå ôçí êáôáíïìÞ ôïõ áèñïßóìáôïò áíåîáñôÞôùí ôõ÷áßùí ìåôáâëçôþí ìå
êáôáíïìÞ Poisson ìå ðáñÜìåôñï
ãéá ôçí êáèåìßá. (Ç ôõ÷áßá ìåôáâëçôÞ
Ý÷åé êáôáíïìÞ Poisson ìå ðáñÜìåôñï
áí ðáßñíåé ôç ôéìÞ
ìå ðéèáíüôçôá
.)
(â) Äåßîôå üôé

26.
(á) Áí åßíáé ìéá ôõ÷áßá ìåôáâëçôÞ ìå ôéìÝò óôï
, äåßîôå üôé
![\begin{displaymath}
{\bf E}\left[{N}\right] = \sum_{n=0}^\infty {\mathbf P}(N>n).
\end{displaymath}](img118.png)
(â) ¸óôù

![$[0,1]$](img11.png)

Äåßîôå üôé
![${\bf E}\left[{N}\right] = e$](img121.png)
27.
Óå Ýíá ðåßñáìá ãåíåôéêÞò Ýíá äåßãìá áðü Üôïìá âñÝèçêå íá Ý÷åé
,
êáé
áðü ôñßá äõíáôÜ ãïíüôõðá (genotypes)
,
êáé
áíôßóôïé÷á.
Ç óõ÷íüôçôá ôïõ ãïíéäßïõ
óôïí ðëçèõóìü åßíáé
üðïõ
ìéá Üãíùóôç ðáñÜìåôñïò ìå ôéìÝò óôï
.
Õðïôßèåôáé üôé Üôïìá ôïõ ßäéïõ äåßãìáôïò åßíáé áóõó÷Ýôéóôá êáé üôé äýï ãïíßäéá
óôï ßäéï Üôïìï åßíáé áíåîÜñôçôá. Âñåßôå ôçí åêôéìÞôñéá ìåãßóôçò ðéèáíïöÜíåéáò ôçò
.
Âñåßôå åðßóçò ôçí åêôéìÞôñéá ìåãßóôçò ðéèáíïöÜíåéáò ôçò
êáé
åîåôÜóôå áí áõôÞ åßíáé áìåñüëçðôç.
28.
(á) Äåßîôå üôé áí êáé
åßíáé áíåîÜñôçôåò êáé éóüíïìåò ôõ÷áßåò ìåôáâëçôÝò, ç
êÜèå ìéá ìå ôçí ôõðéêÞ êáíïíéêÞ êáôáíïìÞ, ôüôå ç
Ý÷åé ôçí åêèåôéêÞ êáôáíïìÞ ìå
ðáñÜìåôñï
.
(â) ¸óôù
êáé
äýï áíåîÜñôçôá ôõ÷áßá äåßãìáôá,
ôï ðñþôï áðü Ýíá ðëçèõóìü ìå êáôáíïìÞ
êáé ôï äåýôåñï áðü Ýíá
ðëçèõóìü ìå êáôáíïìÞ
.
Âñåßôå Ýíá ôåôñÜãùíï
êáé Ýíá êõêëéêü äßóêï
, ôÝôïéá þóôå êÜèå Ýíá áðü
ôá
êáé
íá åßíáé ìéá 95% ðåñéï÷Þ åìðéóôïóýíçò ãéá ôçí ðáñÜìåôñï
, ìå êÝíôñï óôï
.
Ðïéá áðü ôéò äýï ðåñéï÷Ýò åìðéóôïóýíçò èá ðñïôéìïýóáôå ãéá åêôßìçóç ôïõ
êáé ãéáôß?
ÐñïâëÞìáôá ¶ëãåâñáò - Ãåùìåôñßáò
29.
(á) ÊÜèå áâåëéáíÞ ïìÜäá ôÜîçò 143 åßíáé êõêëéêÞ.
(â) Áí êáé
ôüôå
,
.
(ã) Áí ïìÜäá ôÜîçò ðñþôïõ áñéèìïý
êáé
ïìïìïñöéóìüò
ïìÜäùí íá áðïäåé÷èåß üôé ï
åßíáé ï ôåôñéììÝíïò ïìïìïñöéóìüò Þ ìïíïìïñöéóìüò.
(ä) Áí êáé
êáé
, íá áðïäåé÷ôåß üôé ãéá êÜèå
êáé êÜèå
éó÷ýåé
.
Åßíáé áõôü éóïäýíáìï ìå ôï
?
(å) Áí êáé
,
, ðüóï åßíáé ç ôÜîç ôïõ
?
30.
(á) Åßíáé ôï
óþìá?
(â) Åßíáé ôï
óþìá?
(ã) ¸óôù
. Íá âñåßôå Ýíáí õðïäáêôýëéï
ôïõ
ðïõ íá ìçí åßíáé éäåþäåò ôïõ
.
(ä) Âñåßôå Ýíá ìÝãéóôï (maximal) éäåþäåò ôïõ .
(å) Âñåßôå Ýíá ìç ôåôñéììÝíï ãíÞóéï éäåþäåò ôïõ ðïõ íá ìçí åßíáé ðñþôï.
31.
(á) ¸óôù
. Íá âñåèåß Ýíá ðïëõþíõìï ìå ñçôïýò óõíôåëåóôÝò
ðïõ íá ìçäåíßæåôáé óôï
.
(â) Áí ðåðåñáóìÝíç åðÝêôáóç óùìÜôùí êáé
áíÜãùãï õðåñÜíù ôïõ
,
ôÝôïéï þóôå
äå äéáéñåß ôï
, íá áðïäåé÷ôåß üôé ôï
äåí Ý÷åé ñßæåò óôï
.
(ã) Áí åðÝêôáóç ôïõ óþìáôïò
êáé
áëãåâñéêü óôïé÷åßï ùò ðñïò ôï óþìá
,
ðåñéôôïý âáèìïý, íá áðïäåé÷ôåß üôé ôï
åßíáé áëãåâñéêü óôïé÷åßï,
åðßóçò ðåñéôôïý âáèìïý ùò ðñïò ôï
, êáé üôé
.
32. ÊÜðïéïò åß÷å óôçí ôóÝðç ôïõ 15 íïìßóìáôá, 20-äñá÷ìá, 50-äñá÷ìá, êáé 100-äñá÷ìá. Áí ôï óõíïëéêü ðïóü Þôáí 690 äñá÷ìÝò ðüóá íïìßóìáôá åß÷å áðü êÜèå åßäïò?
33.
Íá õðïëïãéóôïýí ïé ñßæåò ôïõ ðïëõùíýìïõ
óôï óþìá
.
34. ¸íá éóôïñéêü ãéá ôçí ÊñÞôç ãåãïíüò Ýãéíå óå Ýôïò ôïõ ïðïßïõ üëá ôá øçößá åßíáé ðåñéôôïß áñéèìïß åíþ ôï ðñþôï êáé ôï ôåëåõôáßï øçößï åßíáé ìåôáîý ôïõò äéáöïñåôéêÜ. Ôï Üèñïéóìá ôùí ôñéþí ôåëåõôáßùí øçößùí ôïõ, áí áõîçèåß êáôÜ 1 ãßíåôáé ðïëëáðëÜóéï ôïõ 7 åíþ ôï äåýôåñï øçößï åßíáé ìåãáëýôåñï áðü ôï Üèñïéóìá ôïõ ôñßôïõ êáé ôïõ ôÝôáñôïõ êáôÜ 5. Ðïéï åßíáé ôï Ýôïò êáé ôé Ýãéíå ôüôå?
35.
Óôïí ôïðïëïãéêü ÷þñï ãéíüìåíï , üðïõ
ï ìïíáäéáßïò êýêëïò,
Ýóôù ç ó÷Ýóç éóïäõíáìßáò
(
).
Íá äåé÷èåß üôé ï ÷þñïò ðçëßêï åßíáé ïìïéïìïñöéêüò ìå ôï ìïíáäéáßï äßóêï.
36.
¸óôù
ç óõíÜñôçóç ìå ôýðï

êáé

(á) Íá äåé÷èåß üôé ôï

(â) Íá âñåèïýí ïé óõíôåëåóôÝò ôçò 1çò êáé ôçò 2çò èåìåëéþäïõò ìïñöÞò.
(ã) Íá õðïëïãéóôïýí ïé êýñéåò êáìðõëüôçôåò, ç êáìðõëüôçôá Gauss êáé ç ìÝóç êáìðõëüôçôá óôï ôõ÷üí óçìåßï ôïõ

ÊáëÞ åðéôõ÷ßá. Ã. ÁíôùíéÜäçò, Ì. ÊïëïõíôæÜêçò, Á. Ôåñôßêáò ÇñÜêëåéï, 28 Éïõëßïõ 2001



ÔìÞìá Ìáèçìáôéêþí