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Preface

The injectivity radius injM of a complete Riemannian manifold M is always not
greater than its diameter diamM . A natural question to ask is what are the compact
Riemannian manifolds M for which injM = diamM? In other words, what are the
compact Riemannian manifolds M on which every unit speed geodesic from any given
point of M hits its cut locus at distance diamM? It is obvious that equality of the
injectivity radius and the diameter is a very strong condition. Oddly, however, the
above question has not been answered yet, except in special cases. The only known
examples are the (unit) n-sphere Sn, n ≥ 2, the real projective n-space RPn, n ≥ 2,
the complex projective n-space CPn, n ≥ 1, the quaternionic projective n-space HPn,
n ≥ 1, and the Cayley projective plane CaP 2, with their standard metrics. These are
the compact rank one symmetric spaces (known as CROSS for brevity). The condition
that there exists a point x ∈ M such that all geodesics emanating from x hit its cut
locus at constant distance is not strong and one can expect that it has only topological
implications. For example, every Riemannian metric of revolution on the 2-sphere S2

has a point (the ”north pole”) whose cut locus is a singleton (the ”south pole”) and
has this property. It has been proved by R. Bott [4] and H. Samelson [16] that such a
Riemannian manifold has the integral cohomology ring of a CROSS.

In particular, the Riemannian manifolds on which there exists a point with cut locus
a singleton are called stigmatic and are important in geometrical optics. We require
that our metric is stigmatic at every point. A complete Riemannian n-manifold M is
called Wiedersehen if there exists L > 0 such that the cut locus of every point of M
is a singleton at distance L. Normalizing, we can always take L = π. This term is
originally due to W. Blaschke who in the 1921 edition of his book ”Vorlesungen über
Differentialgeometrie”, Springer-Verlag, conjectured that a ”Wiedersehenfläche” is a 2-
sphere with the usual Euclidean metric (up to a constant factor). A wrong ”proof” of
the conjecture due to K. Reidemeister appeared in the second 1924 edition of the book.
The problem remained open until 1963 when L. Green proved that the standard round
2-sphere is indeed the only ”Wiedersehenfläche”.

A connected compact Riemannian n-manifold M , n ≥ 2, such that injM = diamM
is called a Blaschke manifold. If L = diamM , it follows from results of H. Nakagawa
and K. Shiohama (see [12] and [13]) that at each point x ∈M the exponential map expx
is a smooth embedding when restricted on the open ball S(0, L) of radius L centered
at 0 in the tangent space TxM and expx|∂S(0,L) is a smooth r-sphere fiber bundle for
some r ≥ 0. In the case of the standard n-sphere we have L = π and r = n − 1, and

in the other cases of CROSS L =
π

2
and r = 0, 1, 3, 7, respectively. Another nice and

important feature of a Blaschke manifold is that it has periodic geodesic flow and all of
its geodesics are simple, closed and of the same length 2L.

The Blaschke conjecture is simply stated as follows.

Blaschke conjecture. A Blaschke manifold is isometric (up to a constant factor) to a
CROSS.

The Bott-Samelson Theorem reduces the effort to answer the conjecture to a case
by case verification and the CROSSes (with their canonical metrics) are the models
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for Blaschke manifolds. Thus the conjecture can be restated as follows: The only
Riemannian metric on a manifold having the cohomology ring of a CROSS is a scalar
multiple of the standard metric on the corresponding CROSS. The first natural question
to ask is whether we can at least exclude fake CROSSes, namely the conjecture is true
topologically.

Topological Blaschke conjecture. A Blaschke Riemannian manifold is homeomor-
phic (or diffeomorphic) to a CROSS.

This is elementary for spheres and projective spaces, but has not yet been fully
established in the other cases. Every Blaschke manifold gives rise to a fibration of a
sphere in TpM by great subspheres as we show in chapter 2. This fibration encodes the
diffeomorphism type of the manifold and all the work done on the topological Blaschke
conjecture consists of proving that such a fibration is equivalent up to homeomorphism
or diffeomorphism to the corresponding Hopf fibration (see [9]). In a series of papers
this is done for a fibration by great circles proving a diffeomorphism and deriving that
a Blaschke manifold modelled on CPn is diffeomorphic to CPn (see [17], [23] and [11]).
The case of HPn was handled by H. Sato and T. Mizutani. H. Sato proves in [19]
that such a Blaschke manifold is homotopy equivalent to HPn, whereas for n = 2 he
and T. Mizutani obtain in [18] a PL−homeomorphism. Furthermore, he states without
proof that the K−theory of HPn and the homotopy equivalence ensure the existence of
a homeomorphism. The CaP 2 case was settled by H.Gluck, F.Warner and C.T. Yang
in [9] who show homeomoprhism to the model.

The next step towards the resolution of the Blaschke conjecture, which is crucial
for the proof of the spherical case, was initiated by the work of Weinstein [21]. Using
the fact that a Blaschke manifold M has closed geodesics of length 2diamM , Weinstein
constructed the manifold of geodesics CM (see chapter 3) and computed the volume of
M from the integral cohomology of CM , finally proving that it is an integral multiple of
the volume of the standard model. For even dimensional Blaschke manifolds modelled
on Sn, A. Weinstein showed that vol(CM) = vol(Sn) and shortly after, C.T. Yang
proved in [22] the odd dimensional case. This answered the spherical case of the so
called Weak Blasche Conjecture, which can be stated as follows.

Weak Blaschke Conjecture. The volume of a Blaschke manifold equals the volume
of its model CROSS of the same diameter.

A. Reznikov proved this conjecture for HPn, CaP 2 and finally CPn (see [14]). How-
ever, contrary to the spherical case, it is assumed that the Blaschke manifold is home-
omorphic to its model. Therefore it is a proof of the above conjecture for HPn, n > 2,
modulo the Topological Blaschke conjecture.

The Blaschke Conjecture was finally established for spheres by M. Berger using an
analytical inequality of J. Kazdan.

Berger’s isoembolic inequality. The volume of a Riemannian manifold is greater
or equal to the volume of the standard sphere of the same dimension and diameter.
Equality occurs only in the case of isometry to the standard sphere.
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Clearly the above result, proved in [1], combined with the work of A. Weinstein
and C.T. Yang for the Weak Blascke Conjecture settles the Blaschke conjecture for
spheres. There are no known curvature restrictions for Blaschke manifolds, however
assuming certain curvature bounds it is possible to show the Blaschke Conjecture, as it
is done in [20]. Specifically it is derived that there exist many totally geodesic Blaschke
submanifolds and the conjecture is proven by a generalization of the argument of Berger.
In [2] and [10] the authors proved the Blaschke Conjecture under additional assumptions
concerning the behavior of geodesics.

The main purpose of this work is to give a detailed account of the proof of the
Blaschke conjecture in the spherical case, namely for Wiedersehen manifolds.

This work has the following structure. Chapter 1 is mostly introductory and is
devoted to the presentation of notions and tools that are basic in the sequel. The Berger-
Kazdan isoembolic inequality is proved in detail, since it is an important ingredient of
the proof. In Chapter 2 gives an account of the general properties of Blaschke manifolds.
Chapter 3 is the core of the proof. The material is a detailed presentation of the papers
of A. Weinstein [21] and C.T. Yang [22], which calculate the volume of Riemannian
manifolds with closed geodesics and show that Wiedersehen manifolds, i.e. Blaschke
manifolds diffeomorphic to spheres, have the right volume. Combination of this with the
Berger-Kazdan inequality yields the theorem.
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Chapter 1

Introduction

1.1 The cut locus and the injectivity radius

In this introductory section and the next two we shall recall some basic notions and
facts which are necessary in the sequel. Proofs can be found in standard textbooks on
Riemannian Geometry such as [7], [8] and [15], which we refer to and are included in the
bibliography.

Let (M, g) be a connected Riemannian manifold. For p, q ∈M we denote by d(p, q)
the distance of p and q induced by the Riemannian metric g, which is by definition the
infimum of lengths of piecewise smooth curves from p to q. The function d is a distance
on M whose induced topology coincides with the original manifold topology. We will
denote by B(p, r) or Br(p) the open ball on M with respect to d of radius r > 0 centered
at p ∈M .

The injectivity radius Inj(p) of M at the point p ∈M is the supremum of all r > 0
such that the exponential map expp at p maps the open ball B(0, r) in TpM of radius r
centered at 0 ∈ TpM diffeomorphically onto its image. The fact that 0 < Inj(p) ≤ +∞
is a consequence of the Inverse Function Theorem. The injectivity radius of M is by
definition Inj(M) = inf{Inj(p) : p ∈M}. If M is compact this is positive and finite. In
case M is not compact, it may happen that Inj(p) = 0 or Inj(p) = +∞.

A unit speed curve γ : [a, b] → M is a segment if its length equals d(γ(a), γ(b)).
Segments are necessarily geodesics of the Riemannian metric, since geodesics locally
minimize length and do this uniquely. We shall denote by seg(p, q) the set of all segments
from p to q. For example, if 0 < s < Inj(p) and v ∈ TpM is a unit vector, the geodesic
γv(t) = expp(tv), 0 < t ≤ s is the unique element of seg(p, γv(s)).

If M is complete, then given any two points p, q ∈M the set seg(p, q) is not empty,
by the Hopf-Rinow Theorem. However, it may not be a singleton. A standard example
is the n-sphere (of any radius) with the usual Euclidean metric. The uniqueness of
segments, i.e. minimal geodesics, can be investigated through the notions of cut value
and cut locus.

Let p ∈ M , v ∈ TpM with ‖v‖ = 1 and γv be the unique geodesic with initial
conditions γ(0) = p and γ̇v(0) = v, that is γv(t) = expp(tv). Put

c(v) = sup{t > 0 : γv(t) is defined and d(p, γv(t)) = t}.

Then 0 < c(v) ≤ +∞ and it is called the cut value, which is the distance of p from the
cut point γv(c(v)) along γv. For any 0 < s < c(v) the restriction of γv to [0, s] is the

3



4 CHAPTER 1. INTRODUCTION

unique segment from p to γv(s). If M is complete and c(v) is finite, then either γv(c(v))
is the first conjugate point to p along γv or seg(p, γv(c(v))) is not a singleton.

Let UM = {v ∈ TM : ‖v‖ = 1} be the unit tangent bundle of M . We have a well
defined cut function c : UM → (0,+∞] which is upper semicontinuous. However, if M is
complete, then c is continuous. We have Inj(p) = inf{c(v) : v ∈ UpM} for every p ∈M .

Assuming that M is complete, the cut locus of p in M is the set

cut(p) = {expp(c(v)v) : v ∈ UpM, c(v) < +∞}.

This is a set of measure zero in M . Note also that for p, q ∈M we have that p ∈ cut(q)
if and only if q ∈ cut(p).

For example the cut locus of a point in a Euclidean n-sphere is a singleton consisting
of its antipodal point. On a cylinder in R3 the cut locus of any point is the opposite
vertical line. In general the cut locus can be topologically complicated.

In Chapter 2 we will use repeatedly a useful property of segments called the Acute
Angle Property. In order to prove it we need some preparation.

Let p ∈ M and f : M → R be the distance function from p, that is f(q) = d(p, q).
This is a continuous function on M , but it is not smooth. For instance, it is never
differentiable at p. If Vp = {tv ∈ TpM : v ∈ UpM, 0 ≤ t < c(v)}, then expp
maps Vp diffeomorphically onto Dp = expp(Vp), which is a geodesically star-shaped
open neighborhood of p. For every q ∈ Dp \ {p} there exists a unique vq ∈ UpM such
that γvq(t) = expp(tvq), 0 ≤ t < f(q), is the unique segment from p to q. Obviously,
Vp \ {0} = {f(q)vq : q ∈ Dp \ {p}}. Since f(q) = ‖ exp−1

p (q)‖ for every q ∈ Dp \ {p}, it
follows that f is smooth on Dp \ {p}.

We will calculate the gradient of f with respect to the Riemannian metric. Let
X ∈ TqM and δ : (−ε, ε)→ Dp \{p} be a smooth curve for some ε > 0 with δ(0) = q and
δ̇(0) = X. Let Γ(s, t) be a small variation of γvq so that Γ(s, .) is the unique segment
from p to δ(s), that is Γ(s, t) = γvδ(s)(t). Since the variation field at q is X, from the
first variation formula for the length functional L(s) = L(Γ(s, .)) we get

(Xf)(q) =
d

ds

∣∣∣
s=0

f(δ(s)) = L′(0) = g(X, γ̇vq(f(q))).

Therefore ∇f(q) = γ̇vq(f(q)).

Proposition 1.1.1 (Acute Angle Property) Let p, q ∈ M with d(p, q) = l > 0 and
let γ : [0, l]→M to be a segment from p to q. Let δ be a smooth curve with δ(0) = q and
such that g(δ̇(0), γ̇(l)) < 0. Then d(p, δ(s)) < d(p, q) for small enough s > 0.

Proof We take any point on γ, for instance the middle point x = γ(
l

2
) and consider

the function f : M → R defined by f(y) = d(x, y). Then q 6∈ cut(x) and the above
calculation of (∇f)(q) = γ̇(l) shows that

d

ds

∣∣∣
s=0

f(δ(s)) = g(δ̇(0), γ̇(l)).

Therefore, our assumption means that f(δ(s)) <
l

2
for s > 0 small enough. The triangle

inequality now gives

d(δ(s), p) ≤ d(δ(s), x) + d(p, x) <
l

2
+
l

2
= d(p, q).
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1.2 The geodesic flow

In this section we assume that (M, g) is a complete Riemannian n-manifold. We denote
by η ∈ Ω1(TM) the pullback of the canonical Liouville 1-form on T ∗M by the musical
isomorphism TM → T ∗M . In other words η is defined by

η(ξ) = g(τ∗ξ, v)

with τ : TM → M is the tangent bundle projection, v ∈ TM and ξ ∈ TvTM . Since
the pullback commutes with the exterior differentiation, we see that dη is a symplectic
2-form on TM . In local coordinates (x1, ..., xn, v1, ..., vn) on TM , we have

η =
n∑

i,j=1

gijv
idxj

dη =
n∑

i,j=1

gijdv
i ∧ dxj +

n∑
i,j,k=1

∂gij
∂xk

vidxk ∧ dxj

The energy function E : TM → R is defined by

E(v) =
1

2
g(v, v).

The Liouville vector field Y ∈ X(TM) is defined to be the infinitesimal generator of
the flow of dilations in TM , that is ψt(x, v) = (x, etv).

The geodesic vector field Z ∈ X(TM) can be defined as the Hamiltonian vector field
of the energy, which is the unique solution of the equation

iZdη = −dE.

We denote by ζt : TM → TM , t ∈ R, the geodesic flow, i.e the flow of Z.
Next we consider the tangent bundle as a differentiable manifold. Its tangent bundle

T : TTM → TM has a natural subbundle, consisting of ”vertical” vectors. We set
V TM := kerτ∗ ≤ TTM , where τ : TM →M is the bundle projection. The bundle

T : V TM → TM

is called the vertical subbundle of TTM .
There are many equivalent formulations for the concept of a connection. Next, we are

going to define the connector of the Levi-Civita connection of the Riemannian manifold
(M, g). The connector of the Levi-Civita connection is the map

K : TTM → TM

defined as follows. Let z : (−ε, ε) → TM , ε > 0, be a smooth curve such that z(0) = v
and ż(0) = ξ, where v ∈ TM , ξ ∈ TvTM . Let γ = τ ◦ z : (−ε, ε)→M be the projected
curve. There exists a smooth vector field X along γ, such that z(t) = (γ(t), X(t)).

We define

Kv(ξ) =
DX

dt
(0)

where
D

dt
is the covariant derivative along γ with respect to the Levi-Civita connection.
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We consider the exact sequence

0→ V TM → TTM
τ∗→ TM → 0 (1.1)

Noting that K is a natural isomorphism when restricted to V TM , we can consider the
connector as a projection K : TTM → V TM . Therefore, setting HTM := kerK we
have a splitting of the above exact sequence

TTM = HTM ⊕ V TM (1.2)

and there is a fiberwise isomorphism (τ∗,K) which is shown in the following diagram:

TTM TM ⊕ TM

TM M

T

(τ∗,K)

τ

τ ⊕ τ

Now, if v, w ∈ TM , there is a unique vector vH ∈ HwTM such that τ∗v
H = v. This

is called the horizontal lift of v at w ∈ TM .
Likewise, we denote by vV the preimage of v with respect to the natural isomorphism

VwTM → Tτ(w)M

This is the vertical lift of v at w ∈ TM .
We now equip TM with a Riemannian metric compatible with the decomposition of

its tangent bundle into horizontal and vertical subbundles. We define the Sasaki metric
g on TM by

g(ξ1, ξ2) = g(τ∗ξ1, τ∗ξ2) + g(Kξ1,Kξ2)

for ξ1, ξ2 tangent vectors at v ∈ TM .
We observe that the bundle projection τ : TM → M becomes a Riemannian sub-

mersion, when we equip TM with the above metric. Moreover, the bundles HTM and
V TM are orthogonal with respect to this metric. Specifically, let {e1, . . . , en} be an or-
thogonal basis of TpM , where p = τ(w). Then, the basis {eH1 , eV1 , . . . , eHn , eVn } of TwTM
is orthogonal.

Another useful observation is that the geodesic vector field Z : TM → TTM has
a very simple expression. If γv denotes the unique geodesic through γv(0) with initial
velocity γ̇v(0) = v ∈ TM , then

Z(v) =
d

dt

∣∣∣∣
t=0

(γv(t), γ̇v(t))

Recall that γ̇v(t) is the parallel translation of γ̇v(0) along γv. Therefore, by definition

KZ(v) =
D

dt

∣∣∣∣
t=0

γ̇v(t) = 0

and Z is thus horizontal. Moreover

τ∗Z(0) =
d

dt

∣∣∣∣
t=0

γv(t) = γ̇v(0) = v
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and therefore Z(v) = vH

On the other hand, we observe that KY (v) = v and τ∗Y (v) = 0. Therefore, the
Liouville vector field is Y (v) = vV .

The fiberwise isomorphism (τ∗,K) : TTM
'→ TM ⊕ TM allows the introduction of

an almost complex structure J on TM , namely the bundle isomorphism

TM ⊕ TM → TM ⊕ TM (v, w) 7−→ (−w, v).

Explicitly, the almost complex structure J is given by:

J(vH + wV ) = −wH + vV

Obviously J2 = −id and J is an isometry of the tangent bundle with respect to g,
because

g(Jξ1Jξ2) = g(τ∗Jξ1, τ∗Jξ2)+g(KJξ1,KJξ2) = g(−Kξ1,−Kξ2)+g(τ∗ξ1, τ∗ξ2) = g(ξ1, ξ2).

One can compute that the symplectic form dη ∈ Ω2(TM), the Sasaki metric g and the
almost complex structure J are compatible, that is

−dη(ξ1, ξ2) = g(Jξ1, ξ2)

which is
dη(ξ1, ξ2) = g(Kξ1, τ∗ξ2)− g(Kξ2, τ∗ξ1).

Let us now consider the case of the unit tangent bundle

UM = {v ∈ TM | ‖v‖ = 1} = E−1(1/2)

for ξ ∈ TUM we have

g(Y, ξ) = g(JZ, ξ) = −dη(Z, ξ) = dE(ξ) = 0

and therefore the Liouville vector field Y is perpendicular to UM .
Next we write η|UM or just η if no confusion can arise, to denote the restriction of

the form η to UM , i.e the pullback of η by the injection UM ↪→ TM . Our goal is to
describe the canonical volume form and induced Riemannian measure on the manifold
UM .

Since dη ∈ Ω2(TM) is symplectic, dηn ∈ Ω2n(TM). We have just proved that Y is
everywhere transverse to UM . We conclude that iY (dη)n is a volume form on UM . But

iY (dη)n = n(iY dη) ∧ dηn−1 = nη ∧ dηn−1

and therefore η ∧ dηn−1 is a volume form. We have used the fact that iY dη = η. Indeed
let ξ ∈ TvTM . Then

(iY dη)(ξ) = −dη(JZ, ξ) = g(Z, ξ) = g(v, τ∗ξ) = η(ξ).

Hence η is a contact 1-form on UM .
Next we find a Riemannian volume form of the Sasaki metric on UM , which will of

course be proportional to η ∧ dηn−1. We select an orthonormal basis {v = e1, . . . en}
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of Tτ(v)M . Since Y (v) = vV is the unit normal to UM , we have that the basis {vH =

Z(v), eH2 , e
V
2 , . . . , e

H
n , e

V
n } is an orthonormal basis of TvUM . We compute

η ∧ dηn−1(Z, eH2 , e
V
2 , . . .) = η(Z)dηn−1(eH2 , e

V
2 , . . .) = (n− 1)!

n∏
i=2

dη(eHi , e
V
i ) = (n− 1)!

Therefore the form

dUMg :=
η ∧ dηn−1

(n− 1)!

is the Riemannian volume form on UM .

We denote by dνg the corresponding measure, which is called the Liouville measure
on UM . It is easy to show (see [6]) that locally

dνg = dνg ⊗ dSn−1

where dνg denotes the Riemannian measure on (M, g) and dSn−1 denotes the canonical
spherical Lebesgue measure on the unit sphere of TpM for p ∈M .

The geodesic vector field Z is tangent to UM , since dE(Z) = −dη(Z,Z) = 0. So,
UM is invariant by the geodesic flow.

Proposition 1.2.1 The contact 1-form η|UM on UM and the Liouville measure dνg are
invariant under the geodesic flow, so that

(ζt)∗dνg = dνg

Proof We have

LZη|UM = iZdη|UM + diZη|UM = −dE|UM + d(η(Z))|UM

Now, on UM we have η(Z) = 1 and E takes the constant value 1/2. Therefore

LZη|UM = 0.

We conclude now that

LZdUMg = 0

In turn, this implies invariance of the induced measure, which is the last assertion.

Let now v ∈ TM and γv(t) = τ(ζtv) be the geodesic with initial velocity γ̇v(0) = v.
We are going to identify the space Jv of Jacobi fields along γv with the tangent space
TvTM . This will be useful in subsequent chapters. Let ξ ∈ TvTM and z : (−ε, ε)→ TM
be a smooth curve with z(0) = v and ż(0) = ξ. Then

F (s, t) = τ ◦ ζt(z(s))

is a variation of γv by geodesics and therefore, the variation vector field

Jξ(t) =
∂

∂s

∣∣∣∣
s=0

F (s, t) =
∂F

∂s
(0, t)
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is a Jacobi field along γv with initial conditions:

Jξ(0) =
∂F

∂s
(0, 0) = τ∗ξ

J
′
ξ(0) =

D

dt

∂F

∂s
(0, 0) =

D

ds

∂F

∂t
(0, 0) =

D

ds

∣∣∣∣
s=0

z(s) = Kξ

If we denote by Jv the vector space of Jacobi fields along γv, the map

jv : TvTM → Jv

defined by jv(ξ) = Jξ is a linear isomorphism since kerτ∗∩kerK = {0} and the dimension
of both vector spaces is equal to 2n.

We now restrict to UM and identify a suitable subspace of TvUM to the space of
normal Jacobi fields along γv, a fact needed in Chapter 3.

Proposition 1.2.2 The restriction of the map

jv : TvUM ∩ kerηv −→ Jv

with the above notation, is an isomorphism onto the space J ⊥v , of normal Jacobi fields
along γv

Proof It is immediate that we can describe the tangent space to UM as

TvUM = {ξ ∈ TvTM | g(Kξ, v) = 0}

Moreover, from the definition of η we have

kerηv = {ξ ∈ TvTM | g(τ∗ξ, v) = 0}.

Therefore, for ξ ∈ TvUM ∩kerηv, the initial conditions Jξ(0) = τ∗ξ and J
′
ξ(0) = Kξ give

a Jacobi vector field normal to v = γ̇(0). By the standard theory of Jacobi fields, Jξ is
normal along γv and thus

jv(TvUM ∩ kerηv) ⊂ J ⊥v
The conclusion is now obvious since the dimension of both spaces is equal to 2n−2.

1.3 Integration via geodesic spherical coordinates

Let (M, g) be a complete Riemannian n-manifold. Let p ∈ M and r > 0 be such that
the exponential map is a diffeomorphism on Br(0) ⊂ TpM , the open ball of radius r
centered at 0. ¿From the Theorem of Fubini, the Riemannian volume of the ball Br(p)
of radius r on M centered at p is

volBr(p) =

∫
x∈Br(0)

√
det gij(x)dx

=

∫
v∈Sn−1

dSn−1

∫ r

0
tn−1

√
det gij(tv)dt

=

∫
v∈Sn−1

dSn−1

∫ r

0
θ(t, v)dt
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where we have set θ(t, v) = tn−1
√

det gij(tv) and dSn−1 is the canonical Lebesgue mea-
sure on the unit sphere of TpM .

The normal volume element θ(t, v) can be described in terms of Jacobi fields as
follows. Let {e1, . . . , en = v} be an orthonormal basis of TpM . Take Jacobi fields Ji(t),
i = 1, . . . , n−1, normal along the geodesic γv(t) = expp(tv) with Ji(0) = 0 and J ′i(0) = ei.
Then

θ(t, v) = ‖J1(t) ∧ · · · ∧ Jn−1(t)‖

=
√

det(< Ji(t), Jj(t) >i≤i,j≤n−1)

The proof of this formula can be found on page 65 of [15].

As usual we denote by (ζt)t∈R the geodesic flow on TM . We shall see how θ(t, ζsv)
is expressed in terms of Jacobi fields.

Let ei(t), for i = 1, · · · , n− 1, be the parallel translation of ei along the (unit speed)
geodesic γv, and Ji(t; s), i = 1, . . . , n − 1 normal Jacobi fields along γv satisfying the
initial conditions Ji(s; s) = 0 and J ′i(s; s) = ei(s). We may write

Ji(t; s) =
n−1∑
j=1

aji(t; s)ej(t)

and consider the (n− 1)× (n− 1) matrix A(t; s) = [aji(t; s)]. Then we have{
A′′(t; s) +R(t)A(t; s) = 0,

A(s; s) = 0, A′(s; s) = In−1

where the prime stands for the differentiation with respect to t, In−1 is the identity
matrix and R(t) = [Rji(t)] denotes the symmetric (n− 1)× (n− 1) matrix given by the
formula

R(ei(t), γ̇v(t))γ̇v(t) =
n−1∑
j=1

Rji(t)ej(t)

for i = 1, . . . , n− 1. Then from

θ(t, ζsv) = ‖J1(t+ s; s) ∧ · · · ∧ Jn(t+ s; s)‖ = |detA(t+ s; s)|

we get

θ(t, ζsv) = |detA(t+ s; s)|

1.4 The Berger-Kazdan isoembolic inequality

Let (M, g) be a complete Riemannian n-manifold and let (ζt)t∈R denote the geodesic flow
on TM and UM . We let αk = V ol(Sk, can) and Br(p) = {q ∈M |d(p, q) < r}, while we
refer to the previous sections 2 and 3 for integration using in geodesic polar coordinates
in M and also for concepts of integration on UM . We use the normalization InjM = π.
This section is devoted to the detailed proof of an isoembolic inequality originally due
to M. Berger.
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Theorem 1.4.1 (Berger-Kazdan) Let (M, g) be a n-dimensional compact Rieman-
nian manifold with InjM = π. Then,

V ol(M, g) ≥ V ol(Sn, can)

and the equality holds if and only if (M, g) is isometric to (Sn, can)

Proof Since InjM = π, we have d(τu, τζπu) = π for u ∈ UM , which implies that
Bs(τu) ∩Bπ−s(τζπu) = ∅ for s ∈ [0, π], where (ζt)t∈R is the geodesic flow. Therefore,

V olM ≥ V olBs(τu) + V olBπ−s(τζ
πu).

Integrating this inequality with respect to the Liouville measure for u ∈ UM and using
that

V ol(UM, ḡ) = V ol(M, g)V ol(Sn−1, can) = V ol(M, g)αn−1

we get:

αn−1(V olM)2 ≥
∫
UM

V olBs(τu)dνg +

∫
UM

V olBπ−s(τζ
πu)dνg

=

∫
p∈M

dνg

∫
UpM

V olBs(p)dS
n−1 +

∫
u∈UM

V olBπ−s(τζ
πu)dνg

=

∫
p∈M

dνg

(∫
UpM

(V olBs(p) + V olBπ−s(p)) dS
n−1

)

= αn−1

∫
p∈M

(V olBs(p) + V olBπ−s(p)) dνg

where we have used the invariance of the Liouville measure dνg on (UM, g) under the
geodesic flow.

Now we have

(V olM)2 ≥
∫
p∈M

(V olBS(p) + V olBπ−s(p)) dνg

=

∫
p∈M

dνg

(∫ s

0
dt

∫
u∈UpM

θ(t, u)dSn−1 +

∫ π−s

0
dt

∫
u∈UpM

θ(t, u)dSn−1

)

=

∫ s

0
dt

∫
UM

θ(t, u)dνg +

∫ π−s

0

∫
UM

θ(t, u)dνg

where we have used the Fubini Theorem again, and the equality

V olBr(p) =

∫ r

0
dt

∫
UPM

θ(t, u)dSn−1

for r ≤ InjM .

Next we employ the Liouville Theorem, to write the last inequality as

(V olM)2 ≥
∫ s

0
dt

∫
UM

θ(t, ζπ−su)dνg +

∫ π−s

0
dt

∫
UM

θ(t, ζsu)dνg
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Averaging this last inequality with respect to s ∈ [0, π] and then changing the variable
s to π − s in the first integral we obtain:

(V olM)2 ≥ 1

π

∫ π

0
ds

(∫ s

0
dt

∫
u∈UM

θ(t, ζπ−s)dνg +

∫ π−s

0
dt

∫
UM

θ(t, ζsu)dνg

)
=

2

π

∫ π

0
ds

∫ π−s

0
dt

∫
UM

θ(t, ζsu)dνg

=
2

π

∫
UM

dνg

(∫ π

0
ds

∫ π−s

0
detA(t+ s; s)dt

)
since θ(t, ζsu) = | detA(t+ s; s)| and t ∈ (0, π) implies that the determinant is positive.
Using the Fubini Theorem and interchanging variables t to s∫ π

0
ds

∫ π−s

0
detA(t+ s; s)dt =

∫ π

0
ds

∫ π−s

0
detA(t+ s; t)dt

Therefore we get the inequality

(V ol(M, g))2 ≥ 2

π

∫
UM

dνg

∫ π

0
ds

∫ π−s

0
detA(t+ s; t)dt

If we prove the Kazdan inequality∫ π

0
ds

∫ π−s

0
detA(t+ s; t)dt ≥ π

∫ π
2

0
(sin s)n−1ds

with equality if and only if R(t) = In−1 and A(t; s) = sin(t − s)In−1, we get that the
above quantity is greater than or equal to

2

∫
UM

dνg

∫ π
2

0
(sin s)n−1ds = 2an−1

∫ π
2

0
(sin s)n−1ds V ol(M, g) = V ol(Sn, can)V ol(M, g)

as is seen by the specific values of the Jacobi Fields in the sphere. Thus

V ol(M, g) ≥ V ol(Sn, can)

as stated in the theorem.

Moreover, equality implies all the above inequalities are actually equalities, and in
particular ∫ π

0
ds

∫ π−s

0
detA(t+ s; t)dt = π

∫ π
2

0
(sin s)n−1ds, ∀u ∈ UM

and again using the Kazdan inequality, we get R(t) = In−1, with In−1 the (n−1)×(n−1)
identity matrix. This implies in turn that M has constant sectional curvature, and thus
also has (Sn, can) as a Riemannian universal covering space.

Consider the Riemannian covering (Sn, can) → (M, g) and p ∈ M . Any nontrivial
element of π1(M,p) is represented by a geodesic loop γ at p, with minimal length. This
loop corresponds to a minimal geodesic γ̃, joining p̃0, p̃1 ∈ Sn, which both map to p ∈M .
But then

π = InjM ≤ 1

2
L(γ) ≤ 1

2
L(γ̃) ≤ diam(Sn, can)

2
=
π

2
,
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which is a contradiction. This proves that (M, g) is simply connected and therefore
isometric to (Sn, can), finishing the proof of Theorem 1.4.1.

So, the proof of the Berger-Kazdan inequality is reduced to the proof of the following.

Proposition 1.4.2 (Kazdan inequality) Set m = n − 1. Suppose A(t; s) and R(t)
are m×m matrices such that:

(i) R(t) is self-adjoint,

(ii) A(t+ s; t) is non-degenerate for s ∈ (0, π)

(iii) A
′′
(t; s)+R(t)A(t; s) = 0 with initial conditions A(s; s) = 0, A

′
(s; s) = Im, where

derivatives are taken with respect to t. .

Then ∫ π

0
ds

∫ π−s

0
detA(t+ s; t)dt ≥ π

∫ π
2

0
(sin s)mds

and the equality holds if and only if R(t) = Im and A(t; s) = sin(t− s)Im.

The proof consists of a series of intermediate lemmas.

Lemma 1.4.3 Let S+ denote the space of m×m Symmetric Positive Definite matrices,

which can be considered as an open convex subset of R
m(m+1)

2 , if we identify the latter
with the vector space S of symmetric matrices. The function F : S+ → R defined by

F (B) = detB−1

is strongly convex, i.e. D2F (B) is positive definite for all B ∈ S+.

Proof Let B ∈ S+ and A ∈ S \ {0}. If we consider f : R → R defined by f(t) =
F (B + tA), it suffices to prove f

′′
(0) > 0. Set C(t) = B + tA. We have:

d

dt
detC(t) = detC(t)tr(AC−1(t)).

Differentiating the equality C(t)C(t)−1 = Im at t = 0 we get

AB−1 +B
d

dt

∣∣∣∣
t=0

C(t)−1 = 0,

which means that
d

dt

∣∣∣∣
t=0

C(t)−1 = −BAB−1.

Now

f
′
(t) = −detC(t)−1tr(AC(t)−1)

and

f ′′(t) = detC(t)−1((tr(AC(t)−1))2 − detC(t)−1tr(A
d

dt
C(t)−1)

In particular for t = 0 we find

f ′′(0) = detB−1(tr(AB−1))2 + (detB)−1tr(AB−1AB−1).
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By the spectral theorem there is an orthonormal basis {e1, ..., em} diagonalising B and
A remains symmetric in this basis. If λi is the eigenvalue of ei, we have

tr(AB−1AB−1) =
∑
i,j,k

δikαijλ
−1
j αjkλ

−1
k =

∑
i,j

(λjλi)
−1αijαji =

∑
i,j

(λjλi)
−1αij

2 > 0

since λi > 0 and A = (aij) 6= 0. Therefore f
′′
(0) > 0 and the lemma is proved.

¿From this we derive a Jensen-type inequality.

Corollary 1.4.4 Let Ω be a measure space with a positive measure µ. Then, for a
function B : Ω→ S+ in L1(µ) we have

det
( 1

µ(Ω)

∫
Ω
B(r)dµ(r)

)−1
≤ 1

µ(Ω)

∫
Ω

(detB(r))−1dµ(r)

with equality if and only if B is constant almost everywhere.

Proof For B,B0 ∈ S+ the strong convexity of F implies

F (B) ≥ F (B0) +DF (B0)(B −B0).

¿From Taylor’s formula

F (B) = F (B0) +DF (B0)(B −B0) +
1

2
D2F (B1)(B −B0, B −B0)

where B1 lies in the segment with endpoints B and B0. We let

B0 =
1

µ(Ω)

∫
Ω
B(r)dµ(r),

B = B(r) and we integrate the above inequality to get∫
Ω

detB−1(r)dµ(r) =

∫
Ω
F (B(r))dµ(r)

≥ µ(Ω)F

(
1

µ(Ω)

∫
Ω
B(r)dµ(r)

)−1

+DF (B0)

(∫
Ω
B(r)dµ(r)− µ(Ω)B0

)
= µ(Ω) det

(
1

µ(Ω)

∫
Ω
B(r)dµ(r)

)−1

which is the desired inequality.

Equality implies that

F (B) = F (B0) +DF (B0)(B −B0)

µ-almost everywhere in Ω, since µ is a positive measure. By Taylor’s theorem this is
equivalent to

D2F(B1)(B(r)−B0, B(r)−B0) = 0

or B(r) = B0 µ-almost everywhere since F is strongly convex.
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Now we come to the proof of Proposition 1.4.2 and we make the assumptions made
there. The proof will be done by successive reductions. This requires several steps.

Lemma 1.4.5 Let φ(t) = (detA(t))
1
m , where A(t) = A(t; 0). Then

(detA(t; s))
1
m ≥ φ(t)φ(s)

∫ t

s
φ−2(r)dr

for 0 < s < t < π and equality holds for all 0 < s < t < π if and only if A(t) = φ(t)Im.

Proof The assumptions of Proposition 1.4.2 imply that A∗(t)A′(t) = A′∗(t)A(t) and

A(t; s) = A(t)

(∫ t

s
(A∗(r)A(r))−1dr

)
A∗(s).

Also, φ(0) = 0 and

φ′(0) = lim
t→0

(detA(t))
1
m

t
=
(

lim
t→0

det
A(t)

t

) 1
m

=
(

detA′(0)
) 1
m

= 1.

Setting B(r) = (A∗(r)A(r))−1 we see that B(r) ∈ S+ for r ∈ (0, π) and(
detA(t; s)

) 1
m

= φ(r)φ(s)
(

det

∫ t

s
B(r)dr

) 1
m
.

Now we take Ω = [s, t] with measure dµ(r) = φ−2(r)dr and apply the Jensen-type
inequality to φ2(r)B(r) ∈ S+. This gives

det
(
µ(Ω)−1

∫ t

s
φ2(r)B(r)dµ(r)

)−1
≤
∫ t

s
det(φ2(r)B(r))−1dµ(r)

/
µ(Ω)

=

∫ t

s
det(B(r))−1φ−2m−2(r)dr

/∫ t

s
φ−2(r)dr

=

∫ t

s
det(A(r)A∗(r))φ−2m−2(r)dr

/∫ t

s
φ−2(r)dr

=

∫ t

s
φ−2(r)dr

/∫ t

s
φ−2(r)dr

= 1

since detA∗(r) = detA(r) = (φ(r))m. This is

1 ≥ det
(
µ(Ω)−1

∫ t

s
φ2(r)B(r)φ−2(r)dr

)−1
= µ(Ω)m det

(∫ t

s
B(r)dr

)−1

or (
det

∫ t

s
B(r)dr

) 1
m ≥ µ(Ω) =

∫ t

s
φ−2(r)dr

and substituting(
det(A(t; s)

) 1
m

= φ(r)φ(s)
(

det

∫ t

s
B(r)dr

) 1
m ≥ φ(r)φ(s)

∫ t

s
φ−2(r)dr
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as claimed.

If we have equality, then
1

φ(r)
A(r) is constant on [s, t]. If this holds for all 0 < s <

t < π, then A(r) = φ(r)Im for every r ∈ (0, π), because

lim
r→0+

1

φ(r)
A(r) = lim

r→0+

r

φ(r)

A(r)

r
=

1

φ′(0)
A′(0) = Im.

This concludes the proof of the lemma.

Proof of Proposition 1.4.2 The left hand side of the Kazdan inequality can be written∫ π

0
ds

∫ π−s

0
detA(t+ s; t)dt =

∫ π
2

0
ds

∫ π−s

0
detA(t+ s; t)dt+

∫ π

π
2

ds

∫ π−s

0
detA(t+ s; t)dt

=

∫ π
2

0
ds
(∫ π−s

0
detA(t+ s; t)dt+

∫ s

0
detA(t+ π − s; t)dt

)
≥
∫ π

2

0

[ ∫ π−s

0
φ(t)φ(t+ s)

∫ s+t

t
φ−2(r)dr)mdt+

∫ s

0
(φ(t)φ(t+ π − s)

∫ t+π−s

t
φ−2(r)dr)mdt

]
using the last lemma. Equality implies(

detA(t+ s; t)
) 1
m

= φ(t+ s)φ(t)

∫ t+s

s
φ−2(r)dr for all 0 ≤ s ≤ t+ s < π

since the equality of integrals gives equality almost everywhere and all the above functions
are continuous. This implies in turn that A(t) = φ(t)Im.

Since we want φ(t) = sin t for t ∈ [0, π], we are led to define u : [0, π)→ R by

φ(r) = sin reu(r)

for r ∈ [0, π) and note that since sinπ = 0, u may become singular at r = π.
We also define for t ≤ r ≤ t+ s < π the functions vt,s, ht,s : [t, t+ s]→ R by

vt,s(r) = u(t) + u(t+ s)− 2u(r)

and

ht,s(r) =
sin t sin(t+ s)

sin2 r
.

Then, substituting we get

∫ π

0
ds

∫ π−s

0
detA(t+ s; t) ≥

∫ π
2

0
ds
[ ∫ π−s

0
(

∫ t+s

t
h(r)ev(r)dr)mdt+

∫ s

0
(

∫ t+π−s

t
h(r)ev(r)dr)mdt

]
suppressing the subscripts t, s. Thus, if we set for λ ∈ [0, 1]

fλ(s) :=

∫ π−s

0
(

∫ t+s

t
h(r)eλv(r)dr)mdt+

∫ s

0
(

∫ t+π−s

t
h(r)eλv(r)dr)mdt

we have ∫ π

0
ds

∫ π−s

0
detA(t+ s; t) ≥

∫ π
2

0
f1(s)ds
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On the other hand, we compute∫ t+s

t
h(r)dr =

∫ t+s

t

sin t sin(t+ s)

sin2 r
dr = − sin t sin(t+ s)[cot t− cot(t+ s)] = sin s

and therefore, since for φ = sin we get u = 0, we have∫ π
2

0
f0(s)ds =

∫ π
2

0
ds
[ ∫ π−s

0
(

∫ t+s

t
h(r)dr)m +

∫ s

0
(

∫ t+π−s

t
h(r)dr)mdt

]
=

∫ π
2

0

(∫ π−s

0
(sin s)mdt+

∫ s

0
(sin(π − s))mdt

)
= π

∫ π
2

0
(sin s)mds.

It suffices now to prove that ∫ π
2

0
f1(s)ds ≥

∫ π
2

0
f0(s)ds.

We are going to investigate the behaviour of fλ(s) with respect to λ ∈ [0, 1]. Differenti-
ating twice with respect to λ we get

d

dλ
fλ(s) =m

∫ π−s

0
(

∫ t+s

t
h(r)λv(r)dr)m−1(

∫ t+s

t
h(r)v(r)eλv(r)dr)dt

+m

∫ s

0
(

∫ t+π−s

t
h(r)λv(r)dr)m−1(

∫ t+π−s

t
h(r)v(r)eλv(r)dr)dt

and

d2

dλ2
fλ(s) =m(m− 1)

∫ π−s

0
(

∫ t+s

t
h(r)eλv(r)dr)m−2(

∫ t+s

t
h(r)v(r)eλv(r)dr)2dt

+m

∫ π−s

0
(

∫ t+s

t
h(r)eλv(r)dr)m−1(

∫ t+s

t
h(r)v2(r)eλv(r)dr)dt

+m(m− 1)

∫ s

0
(

∫ t+π−s

t
h(r)eλv(r)dr)m−2(

∫ t+π−s

t
h(r)v(r)eλv(r)dr)2dt

+m

∫ s

0
(

∫ t+π−s

t
h(r)eλv(r)dr)m−1(

∫ t+π−s

t
h(r)v(r)eλv(r)dr)2dt ≥ 0

We observe
d2

dλ2
fλ(s) ≥ 0, since h(r) =

sin t sin(t+ s)

sin2 r
> 0 for 0 < t < r < t + s < π.

Hence,

f1(s) ≥ f0(s) +
d

dλ

∣∣∣∣
λ=0

fλ(s).

¿From Taylor’s theorem and we will be done if we show

d

dλ

∣∣∣∣
λ=0

fλ(s) = 0

Given this, suppose we have

∫ π
2

0
f1(s)ds =

∫ π
2

0
f0(s)ds or f1(s) = f0(s) for all s ∈ (0,

π

2
).

Then,
d

dλ

∣∣∣∣
λ=0

fλ = 0 and
d2

dλ2
fλ ≥ 0 imply fλ is increasing with respect to λ and is
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thus constant for λ ∈ [0, 1]. Therefore,
d2

dλ2
fλ = 0, which in turn, using the previous

calculation, implies vt,s = 0 for all t, s, since hse
λv > 0. Now,

du

dr
= −1

2

dv

dr
= 0 and

therefore u(r) = C, a constant, and φ(r) = sin reu(r) = C sin r with

φ(r)

sin(r)
= lim

r→0

φ(r)

sin r
= lim

r→0

φ(r)

r
= φ′(0) = 1

which gives φ(r) = sin r as claimed.

So the final step will be to prove that
d

dλ

∣∣∣∣
λ=0

fλ(s) = 0.

We compute

d

dλ

∣∣∣∣
λ=0

fλ(s) =m

∫ π−s

0

( ∫ t+s

t
h(r)dr

)m−1( ∫ t+s

t
h(r)v(r)dr

)
dt

+m

∫ s

0
(

∫ t+π−s

t
h(r)dr)m−1(

∫ t+π−s

t
h(r)v(r)dr)dt

= m(sin s)m−1
[ ∫ π−s

0
(

∫ t+s

t
h(r)v(r)dr)dt+

∫ s

0
(

∫ t+π−s

t
h(r)v(r)dr)dt

]
and setting

k(s) =

∫ π−s

0
(

∫ t+s

t
ht,s(r)vt,s(r)dr)dt

we have
d

dλ

∣∣∣∣
λ=0

fλ(s) = m(sin s)m−1[k(s) + k(π − s)]

Thus, we are reduced to showing that k(s) + k(π − s) = 0. We define

ψ(t) =

∫ π
2

t

u(r)

(sin r)2
dr

and compute,

k(s) =

∫ π−s

0

[ ∫ t+s

t
h(r)(u(s+ t) + u(t)− 2u(r))dr

]
dt

=

∫ π−s

0
(u(s+ t) + u(t))(

∫ t+s

t
h(r)dr)dt− 2

∫ π−s

0
sin(t+ s) sin t(

∫ t+s

t

u(r)

sin2 r
dr)dt

=

∫ π−s

0
sin s(u(s+ t) + u(t))dt− 2

∫ π−s

0
sin t sin(t+ s)(ψ(t)− ψ(t+ s))dt

= sin s(

∫ π−s

0
u(t)dt+

∫ π

s
u(t)dt)

− 2(

∫ π−s

0
sin(t+ s) sin tψ(t)dt+

∫ π

s
sin t sin(s− t)ψ(t)dt)

and in a similar manner

k(π−s) = sin s(

∫ s

0
u(t)dt+

∫ π

π−s
u(t)dt)−2(

∫ s

0
sin(s−t) sin tψ(t)dt+

∫ π

π−s
sin t sin(s+t)ψ(t)dt)
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Therefore

k(s) + k(π − s) =2 sin s

∫ π

0
u(t)dt− 2

∫ π

0
(sin(s− t) sin t+ sin t sin(s+ t))ψ(t)dt

= 2 sin s(

∫ π

0
u(t)dt−

∫ π

0
sin 2tψ(t)dt)

The second integral in this expression is∫ π

0
sin 2tψ(t)dt =

∫ π

0
sin 2t(

∫ π
2

t

u(r)

sin2 r
dr)dt

=

∫ π
2

0

u(r)

sin2 r
(

∫ r

0
sin 2tdt)dr −

∫ π

π
2

u(r)

sin2 r
(

∫ π

r
sin 2tdt)

=

∫ π
2

0
u(r)dr +

∫ π

π
2

u(r)dr =

∫ π

0
u(r)dr

Consequently,

k(s) + k(π − s) = 2 sin s(

∫ π

0
u(t)dt−

∫ π

0
u(r)dr) = 0

and the proof of the Kazdan inequality is complete.
The equality above implies A(t) = φ(t)Im and φ = sin. Thus A(t) = (sin t)Im and

A′′(t) +R(t)A(t) = 0 which give R(t) = Im. Solving

A(t; s) +R(t)A(t; s) = 0

with the given initial conditions, we get A(t; s) = (sin(t− s))Im, as claimed.
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Chapter 2

Blaschke manifolds

A Blaschke manifold is a compact Riemannian manifold (M, g) with the property
Inj(M) = diam(M). In this chapter we are going to investigate various properties of
Blaschke manifolds and explore the most readily accessible consequences of the Blaschke
condition, showing that it is indeed very restrictive.

Further on, the aim of the chapter is to get a feeling of the geometry of Blaschke
manifolds as well as a primary and intuitive justification of the Blaschke conjecture,
still unproved in most cases, concerning their classification up to isometry. The desired
classification, even up to homeomorphism was considerable amount of work by several
authors and already out of the scope of this work.

2.1 The cut locus of a pointed Blaschke manifold

In this section we will be concerned with pointed Blaschke manifolds.
Let (M, g) be a compact Riemannian manifold and p ∈M . We call (M, g) a pointed

Blaschke manifold at p if cut(p) is spherical, which means that d(p, q) does not depend
on q ∈ cut(p).

If M is a Blaschke manifold and p ∈M , then

Inj(M) ≤ Inj(p) ≤ d(p, q) ≤ diam(M)

for every q ∈ cut(p) and we conclude that M is Blaschke at p. The converse is also
true but we postpone its proof until the next section of the present chapter, since it
will be rather obvious after subsequent development of the theory of pointed Blaschke
manifolds.

Our aim now is to find a suitable description for manifolds that are Blaschke at a
point. First we need the following definition.

Let p ∈M and q ∈ cut(p). We define the link from p to q to be

Λ(p, q) = {γ̇(0) ∈ UqM : γ ∈ seg(q, p)}

where seg(q, p) as usual denotes the set of all segments, i.e. minimizing unit speed
geodesics, from q to p.

Proposition 2.1.1 Let (M, g) be a pointed Blaschke manifold at p ∈ M . Then, for all
q ∈ cut(p), Λ(p, q) is a great sphere in UqM , i.e. Λ(p, q) = UqM ∩ V , where V is some
vector subspace of TqM .

21
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The proof uses a sequence of lemmas. We normalize to d(p, cut(p)) =
π

2
and denote

by g = ( , ) the Riemannian metric. Let the point p be fixed and q ∈ cut(p). We let

• Λ(q) := Λ(p, q),

• v̂ :=
v

‖v‖
for non-zero v ∈ TqM and

• N(q) be the set of all w ∈ UqM such that there exists a sequence (qn)n∈N in

cut(p) \ {q} with qn → q and ̂exp−1
q (qn)→ w.

Lemma 2.1.2 For all v1 ∈ Λ(q) and v2 ∈ N(q), we have (v1, v2) ≤ 0.

Proof Let (v1, v2) > 0 and γ ∈ seg(q, p) be such that v1 = γ̇(0). By the Acute Angle
Property (see Proposition 1.1.1) there is a neighbourhood V of v2 in UqM and δ > 0

small enough such that d(p, expq(tw)) <
π

2
for all w ∈ V and 0 < t < δ. This implies

that v2 cannot belong to N(q).

Lemma 2.1.3 For all v ∈ UqM \ Λ(q) there exist v1 ∈ Λ(q) and v2 ∈ N(q) such that
v ∈ R+v1 + R+v2 and (v1, v2) = 0.

Proof Let v /∈ N(q). By assumption, d(p, x) <
π

2
for x /∈ cut(p). Since v /∈ N(q),

if we set x(ε) := expq(εv), then d(p, x(ε)) <
π

2
for ε > 0 small, and there is a unique

γε ∈ seg(p, x(ε)) which we can extend until it hits cut(p) at a point q(ε) = γε(π/2). Since
for ε small enough there is a unique minimal geodesic of small length joining x(ε) and q,
we have q(ε) 6= q, for if q(ε) = q then the curve x(t) is actually γε traversed backwards
and thus v ∈ Λ(q), contrary to the hypothesis.

Now exp−1
q q(ε) 6= 0 for small ε and thus ̂exp−1

q q(ε) is a well defined vector in UqM .
Moreover, it is obvious that lim

ε→0
x(ε) = lim

ε→0
q(ε) = q.

By compactness of UM×UM , there a sequence εn → 0, and write from now on n for

the subscript case of εn, such that −γ̇n(
π

2
) converges to some v1 and ̂exp−1

q (qn) converge

to some v2. Now v2 ∈ N(q) immediately from the construction, and we also see that

expq(
π

2
v1) = p from the continuity of the exponential map on TM . Thus we also have

v1 ∈ Λ(q).
It will suffice to show v ∈ R+v1 + R+v2 and (v1, v2) = 0. To show v ∈ R+v1 + R+v2,

we work in exponential local coordinates at q. We will write x̃n for exp−1
q xn or x̃− ỹ to

denote a vector with application point at ỹ ∈ TqM . We have

˜̂xn − q̃n =
x̃n − q̃n
‖x̃n − q̃n‖

=
‖x̃n‖v
‖x̃n − q̃n‖

− ‖q̃n‖ˆ̃qn
‖x̃n − q̃n‖

.

Therefore, since ˆ̃qn → v2, if there’s a limit of ˜̂xn − q̃n, it belongs to the limit plane of
the sequence of planes spanned by {v, ˆ̃qn}, i.e. the plane spanned by {v, v2}. Moreover

if there is such a limit, lim
n→+∞

˜̂xn − q̃n = av − bv2 for a, b ≥ 0.

We are going to show that this limit indeed exists and equals v1, thus v1 = av − bv2

and since v 6∈ Λ(q) we have that v =
1

a
v1 +

b

a
v2 as desired.
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We now prove that lim
n→+∞

x̃n − q̃n = v1 = lim
n→+∞

(−γ̇n(
π

2
)).

We choose r > 0 so small that the open ball B(q, r) is geodesically convex, and n ∈ N
so that xn, qn ∈ B(q, r). We may choose the exponential local coordinates so that ˙̄̃γn(0)

is proportional to
∂

∂x1
in TqM , where γ̄n(t) = γn(

π

2
− t). We just rotate the coordinates

so that ˙̄̃γn(0) becomes g−1/2(qn)
∂

∂x1

We also set Γr := sup{|Γijk(x)| : 1 ≤ i, j, k ≤ dimM and x ∈ B(q, r)}. We know that
Γr → 0 for r → 0.

Let 0 < d < 2r be the distance of xn and qn in M . We also write δ for ˜̄γn|[0,d] and

φn be the Euclidean angle of δ̇(0) and x̃n − q̃n. We now have

tanφn =
(∑
i>1

(x̃in − q̃in)2
)1/2

/
|x̃1
n − q̃1

n|

¿From the equations of geodesics we deduce that |δ̈i| ≤ CΓr, where C > 0 is a constant,
since (δ̇, δ̇) = 1, and gij → δij for r → 0. From Taylor’s theorem

x̃in − q̃in = δi(d)− δi(0) = δ̇i(0)d+
1

2
δ̈i(ti)d

2

for some 0 < ti ≤ d and for i > 1. Since δ̇(0) = g
−1/2
11

∂

∂x1
and |δ̈i(ti)| ≤ CΓr, we have

(∑
i>1

(x̃in − q̃in)2
)1/2

≤ CΓrd
2.

On the other hand, |x̃1
n − q̃1

n| ≥ g
−1/2
11 d− CΓrd

2 for the same reasons. Now

tanφn ≤
CΓrd

g
−1/2
11 − CΓrd

→ 0

for r → 0. This establishes φn → 0 and thus we end up with v ∈ R+v1 +R+v2 as desired.
It remains to prove that (v1, v2) = 0. This will be a consequence of the Toponogov

Comparison Theorem (see Theorem 2.2 in [8]) and Lemma 2.1.2. Since M is compact,
the sectional curvature has a lower bound, say −k.

Let Hk denote the hyperbolic space of constant curvature equal to −k of the same

dimension as M . Let p̃, q̃ ∈ Hk with d(p̃, q̃) =
π

2
and {γ̃} = seq(p̃, q̃). Given ε > 0, the

Acute Angle Property implies the existence of some δ > 0 such that for all 0 < t < δ

and ũ ∈ Uq̃Hk with (ũ, ˙̃γ(
π

2
)) ≤ −ε we have

d(p̃, expq̃(tũ)) <
π

2
.

Now let γ ∈ seg(p, q) and u ∈ UqM be such that (u, γ̇(
π

2
)) ≤ −ε and u ∈ UqM with

(u, γ̇(
π

2
)) ≤ −ε. We find ũ ∈ Uq̃Hk with

(ũ, ˙̃γ(
π

2
)) = (u, γ̇(

π

2
)) ≤ −ε
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and compare the geodesic hinges at q ∈ M and q̃ ∈ Hk, spanned by the above vectors.
The Toponogov Comparison Theorem gives

d(p, expq(tu)) ≤ d(p̃, expq̃(tũ)) <
π

2

for 0 < t < δ.
Now we return to the proof of (v1, v2) = 0. Let qn → q and γn → γ be as above, with

v1 = −γ̇(
π

2
). We suppose (v1, v2) < 0 and derive a contradiction. We set

wn =
exp−1

qn (q)

‖ exp−1
qn (q)‖

∈ UqnM

and observe that wn → −u2. The existence of such a sequence leads to a contradiction
because

lim
n→+∞

(wn, γ̇n(
π

2
)) = (−v2,−v1) = (v1, v2) < 0

and setting tn = d(q, qn) we have tn → 0 and d(p, expqn(tnwn)) = d(p, q) =
π

2
.

The above argument also shows that for given u ∈ N(q), after repeating the procedure

of establishing the existence of γn → γ and v1 = −γ̇(
π

2
) ∈ Λ(q) we have (v1, u) = 0 which

is the last assertion of the lemma.

Lemma 2.1.4 The subset Λ(q) of UqM is convex, meaning that for u,w ∈ Λ(q), such
that u 6= −w, we have (R+u + R+w) ∩ UqM ⊂ Λ(q). Moreover, there is some u ∈ Λ(q)
such that −u ∈ Λ(q).

Proof Let v ∈ (R+u+R+w)∩UqM , for u,w ∈ Λ(q), u 6= ±w. So v = λu+µw for some
λ, µ ≥ 0. Certainly v 6∈ N(q), for otherwise

1 = (v, v) = λ(u, v) + µ(w, v) ≤ 0

by Lemma 2.1.3.
Suppose that v 6∈ Λ(q). Then, Lemma 2.1.3 gives v = av1 + bv2 for some a, b > 0

and v1 ∈ Λ(q), v2 ∈ N(q), (v1, v2) = 0. We have now

0 < b|v2|2 = λ(u, v2) + µ(w, v2) ≤ 0.

Note that Λ(q) is closed from the continuity of the exponential map and thus it is a
compact subset of UqM . Since it is also convex in the above sense, we will deduce that
it contains a pair of antipodal points by contradiction.

Suppose it does not. We claim that Λ(q) is contained in an open hemisphere of UqM .
Indeed, there is a point e0 in the complement such that d(e0,Λ(q)) is maximum, where

d denotes the geodesic distance on a euclidean sphere of unit radius. If d(e0,Λ(q)) <
π

2
and is attained at e1 ∈ Λ(q), then there is no other point e2 ∈ Λ(q) with d(e2,Λ(q)) =
d(e1,Λ(q)), because otherwise, e1, e2 cannot be antipodal since (e1, e0) = (e2, e0) > 0
and the segment joining e1 to e2 is contained in Λ(q). However, it contains points v
with d(v, e0) < d(e1, e0) = d(e0,Λ(q)), a contradiction. Now, since there is no such e2,
it is easy to see that moving e0 away from e1 along the plane spanned by them, locally
increases d(e0,Λ(q)) which is contrary to the choice of e0.
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Now let us suppose d(e0,Λ(q)) =
π

2
and set Λ′(q) := Λ(q) ∩ e⊥0 where

e⊥0 := {v ∈ UqM : d(v, e0) =
π

2
}.

Then Λ′(q) is also convex and compact, and we can assume inductively that it is contained
in the open southern hemisphere of e⊥0 whose north pole we can assume to be a vector
e1. Then, moving e0 towards e1 along the segment in the plane spanned by them, also
increases the distance from Λ(q), again contradicting the definition of e0.

Thus Λ(q) is contained in the open hemisphere of UqM with opposite pole e0. Now
using Lemma 2.1.3 we may write e0 = λv1 + µv2, for some v1 ∈ Λ(q), v2 ∈ N(q) and
λ, µ ≥ 0. Then (v1, e0) = λ‖v1‖2 ≥ 0. This contradiction completes the proof of the
lemma.

Lemma 2.1.5 For every u ∈ Λ(q), there exists v ∈ Λ(q) such that (u, v) < 0.

Proof By Lemma 2.1.4 we can pick a point u0 in Λ(q) such that −u0 is also contained
in Λ(q) and assume (u, u0) = 0, for if not, then (u, u0) = −(u,−u0) and we are done.

We assert that d(p, expq(εv)) <
π

2
for every v close to −u and ε > 0 small.

By Lemma 2.1.4 there is a smooth variation of geodesics in seg(p, q) whose velocity
vectors at q run through the great half circle defined by u0,−u0, and −u. In particular,

along the geodesic γ in seg(p, q) with γ̇(
π

2
) = −u0 there is a Jacobi field J with J(0) = 0,

J(
π

2
) = 0 and J ′(

π

2
) = −u. Now choose any vector field Z along γ with Z(0) = 0 and

Z(
π

2
) = −u and define for δ > 0, small the one parameter family of curves

γδ,s(t) = expγ(t)(s(δZ − J)γ(t)).

¿From the first variation of energy we have

∂

∂s

∣∣∣∣
s=0

Eδ(s) = (γ̇, δZ − J)|
π
2
0 = 0

and
∂2

∂s2

∣∣∣∣
s=0

Eδ(s) = I(δZ − J, δZ − J)

with I the index form along γ. Since J is a Jacobi field vanishing at 0 and
π

2
we have

I(J, J) = 0. We also have

I(J, Z) = (J ′(
π

2
), Z(

π

2
))− (J ′(0), Z(0)) = (−u, u) = −1

hence for δ small we have

I(δZ − J, δZ − J) = −2δ + δ2I(Z,Z) < 0

and thus Eδ(s) < Eδ(0). This shows that for small δ > 0 we have,

d(expq(δ(−u)), p) ≤ L(γs) <
π

2
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and continuity of the index form (see Proposition 1.98 in [3]) shows d(expq(δv), p) <
π

2
for all v ∈ UqM close enough to −u, which finishes the proof of the assertion.

Now, this implies in turn that −u is not in N(q). Applying Lemma 2.1.3 to −u we
get −u = av1 + bv2 for some a > 0, b ≥ 0, and v1 ∈ Λ(q), v2 ∈ Λ(q) with (v1, v2) = 0.
Then (−u, v1) = a > 0 and thus (u, v1) < 0 which completes the proof.

Proof of Proposition 2.1.1 We shall prove that Λ(q) is a great sphere.
By Lemma 2.1.3, it is enough to show that for all u in Λ(q), −u is also in Λ(q). If we

have that, along with convexity of Λ(q) as established above, we can assume a maximal
set of linearly independent vectors {v1, . . . , vk} in Λ(q) spanning a vector subspace V of
TqM , and it is immediate that Λ(q) = V ∩ UqM . We assume S = V ∩ UqM where S is
a maximal great subsphere contained in Λ(q).

By Lemma 2.1.4, S is not empty, since there is one element of Λ(q) such that its
antipodal element is also in Λ(q). We set S⊥ := V ⊥ ∩ UqM . If Λ(q) = S, then we are
done. If not, convexity implies Λ(q) ∩ S⊥ 6= ∅.

Now by assumption, no pair of antipodal points is contained in Λ⊥(q) := S⊥ ∩ Λ(q)
and thus Λ⊥(q) is forced to be contained in an open hemisphere of S⊥, as shown in the
proof of Lemma 2.1.4. Let e be a north pole to that hemisphere, all points u ∈ Λ⊥(q)
satisfying (u, e) > 0.

We note (w, e) > 0 for all points w ∈ Λ(q) \ S, for otherwise the great half sphere of
dimension one greater than that of S and spanned by S and w would have a non trivial
intersection with S⊥, forced to be contained in Λ⊥(q) by convexity. However (u, e) > 0
for all u ∈ Λ⊥(q) as noted earlier, and this would be contradicting such an intersection.

In particular (u, e) ≥ 0 for all u ∈ Λ(q), and thus e cannot be in Λ(q) by the last
lemma. We choose v1 ∈ Λ⊥(q) such that (v1, e) is maximum, implied by compactness of
Λ⊥(q).

We use the last lemma again to find v2 ∈ Λ(q) with (v1, v2) < 0 and since v2 6∈ S we
argue as above and use the half sphere spanned by v2 and S to replace v2 by v3 ∈ Λ⊥(q)
such that (v3, e) > 0 and (v3, v1) < 0. We now let {v1, v0} be obtained from {v1, v3} by
Gram-Schmidt and note (v0, e) > 0 as well.

Next we consider the convex arc v(t) with v(0) = v0, v(
π

2
) = v1 given by the formula

v(t) = cos tv0 + sin tv1, t ∈ [0,
π

2
]

contained in Λ⊥(q), since Λ⊥(q) = Λ(q)∩S⊥ is convex, and it is a sub-arc of the convex
arc spanned by v1, v3 ∈ Λ⊥(q). However the function d(t) = (v(t), e) takes a maximum

at some t ∈ (0,
π

2
), which contradicts maximality of (v1, e) and finishes the proof.

We note without proof that sphericity of Λ(p, q) for all q ∈ cut(p) is indeed equivalent
to the pointed Blaschke condition, a fact proved in [3]. In fact, slight modification of
the proof of the next proposition would allow not to use sphericity of cut(p) and finally
derive it as a corollary. This aspect is however not of great importance to us and we
will proceed to derive further properties of pointed Blaschke manifolds. We begin with
a definition.

Definition 2.1.6 An SLp2l manifold is a Riemannian manifold such that all unit speed
geodesics emanating from the point p return back at p in time 2l and are simple geodesic
loops on the interval [0, 2l]. An SL2l manifold is one that is SLp2l for all its points p ∈M .
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Proposition 2.1.7 If (M, g) is a Blaschke manifold at p ∈M , then (M, g) is SLp2l for
l = d(p, cut(p)). Moreover, all geodesic loops with length 2l emanating from p, have the
same index, say k.

Proof The loop property is trivial from Proposition 2.1.1, since −v ∈ Λ(p, q), if v ∈
Λ(p, q), for all q ∈ cut(p).. All geodesic loops emanating from p return to p at time
2l = 2d(p, cut(p)). They are simple until time 2l, since a point of self-intersection would
imply Inj(p) < l.

The last assertion is immediate from continuity of the index (see Proposition 1.98 [3]),
which shows that this index is locally and thus globally constant (M is connected), once
we show there are no conjugate points on the intervals (0, l) and (l, 2l). For the first
interval this is immediate from Inj(p) = l, while for the second let J be a nonzero Jacobi
field on γ, with J(0) = J(t) = 0 for some t ∈ (l, 2l). The SLp2l property implies that
J(2l) = 0 and Inj(p) ≤ 2l − t < l, a contradiction.

A Riemannian manifold M is called Allamigeon-Warner at a point p, named after
the mathematicians who first studied them, if there exists l > 0 and an integer k > 0
such that for every unit speed geodesic emanating from p the first conjugate point to p
at length l and has index k. So a Blaschke manifold at p is Allamigeon-Warner at the
point p. Note that in case k = 0 this holds for l = 2Inj(p) and the index is n− 1.

Let k > 0 and S := {v ∈ TpM : ‖v‖ = l} and f := expp |S . By Proposition 2.1.7, f
is C∞ and of constant rank n− k − 1.

Lemma 2.1.8 For every v ∈ S there is a neighbourhood V of v in S, such that f(V ) is
a submanifold of dimension n− k − 1 of M .

Proof This is immediate from the rank theorem.

Now, we consider the k-dimensional subbundle of TS spanned by the k-planes
kerTvf , for v ∈ S, which is involutive and gives rise to a k-dimensional C∞ foliation of
S. We denote by φ(v) the maximal leaf containing v ∈ S and let Φ := {φ(v) : v ∈ S) be
the leaf space.

We first consider a given maximal leaf φ ∈ Φ. Its image f(φ) is a single point q
in M and the inverse image f−1f(φ) = f−1(q) is compact being closed in S. Hence
φ is compact as well, being a connected component of f−1(q). Note that if V is a
neighbourhood of v ∈ S in S, f−1f(V ) is a union of maximal leaves, containing φ(v).

Lemma 2.1.9 For v ∈ φ, let γv(t) = expp(
tv

‖v‖
). Then the map ψ : φ → UqM defined

by ψ(v) = γ̇v(l) maps φ diffeomorphically onto the great sphere S′ := (Tqf(V ))⊥ ∩UqM ,
where q = γv(l).

Proof The map ψ is injective since a geodesic with given initial velocity vector is unique.
Moreover, it is of maximal rank, because its tangent map can be described as follows: Let
w ∈ Tvφ, ε > 0 and v : (−ε, ε)→ φ be any parametrised smooth curve with v(0) = v and
v̇(0) = w. The Jacobi vector field J along γv with J(0) = 0 and J ′(0) = w is the variation
field of the variation through geodesics of γv given by the formula Γ(t, s) = expp(tv(s))
with Γ(0, s) = γv. Therefore, at t = l we have

DJ

dt
(l) =

D

dt
(
∂Γ

∂s
)(l, 0) =

D

ds
(
∂Γ

∂t
)(l, 0) =

(
D

ds

)
s=0

(γ̇v(s))(l) =
d

ds

∣∣∣∣
s=0

(ψ(v(s))) = ψ∗v(w).
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But then ψ∗v(w) 6= 0 for w 6= 0 since a Jacobi field with J(l) = 0 and J ′(l) = 0 must
be identically zero. Note also that the image ψ(φ) is contained in (Tqf(V ))⊥ from the
first variation formula. So, ψ : φ → S′ is a C∞ injective map of maximal rank between
compact manifolds, and is thus a diffeomorphism.

We will now prove the following theorem due Allamigeon and Warner, which describes
the structure of Allamigeon-Warner manifolds. We use only the Allamigeon-Warner
condition and its implications, not assuming M to be necessarily a Blaschke manifold.

Theorem 2.1.10 Let M be an Allamigeon-Warner n-manifold at p. Then the set Φ of
maximal leaves has a natural structure of a C∞ (n− k − 1)-dimensional manifold. The
canonical projection (quotient map) P : S → Φ which sends v to φ(v) makes S into a
k-sphere bundle over Φ and f factors through an immersion T : Φ → M such that f =
T ◦P. If on B̄ = B(0, l) := {v ∈ TpM : ‖v‖ ≤ l} we define the equivalence relation R by
setting vRw if v = w or v, w ∈ S and are contained in the same maximal leaf, then M̂ =
B̄/R has a natural structure of a C∞ n-dimensional manifold. Moreover, the topological
structure of M̂ can be described as follows: M̂ = D ∪a E where D is the n-dimensional
disc, E is a C∞ (k + 1)-disc bundle over a C∞ (n− k − 1)-dimensional manifold, with
boundary diffeomorphic to Sn−1 and a : ∂D → ∂E an attaching diffeomorphism. Finally,
the restriction expp

∣∣
B̄

factors through a map T̂ : M̂ → M which is a covering map and

satisfies expp
∣∣
B̄

= T̂ ◦ P̂.

S B̄

M

Φ M̂

f

P
expp|B̄

P̂

T T̂

Proof Since f is constant on the leaves, it factors as

S

M

Φ

f

P
T

Now let v ∈ φ. Since φ is compact, ‖D expp ‖ attains a positive minimum on the
unitary normal bundle UNsφ in S. The continuity of the exponential map implies that
there is a neighbourhood V of v in S such that T : P(V ) → f(V ) is one-to-one. This
gives the manifold structure of Φ.

Let ψ be the map of Lemma 2.1.9. We consider the diffeomorphism

(f, ψ) : ψ−1ψ(V )→ UNMf(V ) = (Tf(V ))⊥ ∩ UM.

The commutative diagram

S ⊃ ψ−1ψ(V ) UNMf(V )

Φ ⊃ Pψ−1ψ(V ) f(V )

(f,ψ)

P P⊥

T
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gives the smooth k-sphere bundle structure of P : S → Φ.
To pass to M̂ , let us consider the normal geodesic neighbourhood of radius ε of f(V )

in M , denoted (f(V ))ε. We suppose that ε is small, so that (f(V ))ε = B(f(V ), ε) and
the exponential map restricted on the open normal disc bundle of radius ε of f(V ) in M

exp : {v ∈ NMf(V ) : ‖v‖ < ε} → (f(V ))ε

is a diffeomorphism.
By compactness there are some ε > 0 and a finite open cover of Φ consisting of open

sets V such that
⋃
V

f−1f(V ) = S and we have diffeomorphisms onto (f(V ))ε as above.

We then set D = B̄(0, l− ε) and E = (B̄ \B(0, l− ε))/R which are the ones as claimed
in the statement, as it is seen noting that P̂ : E → Φ is actually the mapping cone for
the projection of the bundle P : S → Φ.

The map T̂ is a covering since M is compact and T̂ has maximal rank everywhere.
This holds on D from the Allamigeon-Warner condition and at Φ, it is implied by its
manifold structure and Lemma 2.1.9.

We now return to Blaschke manifolds. Note that in Proposition 2.1.7 it may happen
that γ(l) is not a conjugate point along γ (for example this is the case for the real
projective spaces). In this case the first conjugate point appears at distance 2l = 2Inj(p)
on all geodesics emanating from p, since M is SLp2l and M is Allamigeon-Warner for the
index is n−1. We will nevertheless call this the k = 0 case. This is mainly to distinguish
from the k = n− 1 case, where the first conjugate point appears at distance l = Inj(p).
From now on the integer k ≥ 0 will always denote the common index of unit speed
geodesics emanating from p on the interval [0, Inj(p)].

Corollary 2.1.11 Let M be a Blaschke n-manifold at p and k > 0. Let also l = Inj(p).
Then, the cut locus cut(p) is a n− k− 1 dimensional submanifold of M and there exists
a smooth k-sphere fibration S → cut(p) where S is the sphere of radius l in TpM as
denoted. If k = n− 1, then M is homeomorphic to a sphere.

Proof Since the exponential map expp is injective on B = B(0, l), the proof of Theo-

rem 2.1.10 shows that the covering T̂ : M̂ → M constructed there is actually a diffeo-
morphism, also showing cut(p) = f(s). The other assertions follow immediately from
Theorem 2.1.10, while for the last M ≈ B̄/R ≈ Sn.

Now we treat the case k = 0.

Proposition 2.1.12 Let M be a Blaschke manifold at p and k = 0. Consider the
Riemannian universal cover π̃ : M̃ →M and p̃ ∈ M̃ be a lift of p. Then, M̃ is a Blaschke
manifold at p̃ with Inj(p̃) = 2l, where l = Inj(φ). Moreover, M is homeomorphic to
RPn and its cut locus is a n− 1 dimensional submanifold diffeomorphic to RPn−1.

Proof First we see that Λ(p, q) consists of two antipodal points, since it is a great
sphere and dimΛ(p, q) ≤ k = 0. As noticed earlier our manifold is an Allamigeon-
Warner manifold at p for the distance 2l and for k = n − 1. We observe that M is not
simply connected. If this was the case then T̂ : M̂ →M would be a diffeomorphism and
cut(p) = p, a contradiction.
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We will show that all cut values of M̃ at p̃ are exactly 2l, establishing the first
assertion. A unit speed geodesic γ̃ emanating from p̃ projects down to M on a geodesic
γ and since M is SLp2l, there is a nonzero Jacobi field J along γ with J(0) = J(2l) = 0.

We can lift it to a Jacobi field along γ̃, showing that all cut valus of M̃ at p̃ are ≤ 2l.
For the other inequality we claim that all unit speed geodesics γ̃ emanating from p̃ are
minimizing for t < 2l, which will prove that all the cut points appear at distance ≥ 2l
and therefore the cut locus of p̃ is indeed spherical and d(p̃, cut(p̃)) = 2l. Indeed, let
q ∈M \ {p}. Since M is SLp2l, any geodesic of length r ≤ 2l joining p and q in M gives
rise to a second geodesic joining those points, of nonzero length 2l − r < 2l. Now we
conclude that there are exactly two geodesics of length ≥ 2l joining p and q in M , namely
any segment of length r = d(p, q) ≤ l and the corresponding geodesic of length 2l − r.
Indeed if q is not in cut(p), a third geodesic would imply the existence of two different
geodesics joining p and q of length less than l = Inj(p), a contradiction. For q ∈ cut(p)
any such geodesic must be of length l for otherwise the SLp2l property gives one with
length < l. So we get exactly two geodesics in this case as well, since Λ(p, q) consists of
two antipodal points. However, different lifts of q in M̃ correspond to different segments
joining p̃ to each of these lifts. These are necessarily of length ≤ 2l and therefore project
down to M to geodesics of length ≤ 2l joining p and q, which we counted to be exactly
two. Thus there can be at most two such lifts and exactly two since M if not simply
connected. Moreover there is exactly one geodesic of length ≤ 2l joining p̃ to each of
these lifts, showing the minimality of all geodesics of length < 2l emanating from p and
establishing the Blaschke property of M̃ at p̃.

For this Blaschke manifold, we have k = n− 1 and is therefore homeomorphic to Sn

by Corollary 2.1.11. In fact, points q ∈ cut(p) correspond to points q̃ with d(p̃, q̃) = l and
this shows cut(p) is a smooth, free Z2 quotient of the n− 1 sphere exp−1

p̃ {q̃ : d(p̃, q̃) = l}
and is therefore diffeomorphic to a projective space RPn−1.

In fact much more can be proved concerning pointed Blaschke manifolds and we quote
without proof the following important theorem of Bott and Samelson (see [4], [16]).

Theorem 2.1.13 Let (Mn, g) be a pointed Blaschke manifold for n ≥ 2 and k ≥ 0 be
as before. Then if k > 0, M is simply connected and the integral cohomology ring of M
is generated by a single element. More precisely, one has only the following possibilities:

(i) k = 1, n ∈ 2Z, and M has the homotopy type of CPn/2.
(ii) k = 3, n ∈ 4Z and M has the integral cohomology ring of the quaternionic

projective space HPn/4.
(iii) k = 7, n = 16, and M has the integral cohomology ring of the Cayley projective

plane CaP 2.
(iv) k = n− 1, any n and M is homemorphic to a sphere.
(v) k = 0, any n and M is diffeomorphic to RPn.

The Riemannian manifolds appearing in the Bott-Samelson theorem are actually
Blaschke, i.e. Blaschke manifolds at all their points. This motivates us to say that a
Blaschke manifold is modelled on one of the above manifolds if it fits the corresponding
description in terms of k. The above spaces are thus the models for Blaschke manifolds.

Note that for n = 2, 4 case (iv) above has the same description in terms of n and
k, with the cases (i), (ii) respectively. This causes no problem however, since the corre-
sponding manifolds also coincide (up to isometry with respect to the standard metrics).
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2.2 Blaschke’s conjecture

We move now to Blaschke manifolds and the Blaschke Conjecture. First we will prove
that Blaschke manifolds are exactly the ones that are pointed Blaschke manifolds at all
their points. We need a proposition, which is of independent interest. We continue to
use the notations of the last section 2.1.

Proposition 2.2.1 Let (M, g) be a Blaschke manifold at each point. Then, for every
p ∈M , the fibers of the fibration

expp : S → cut(p)

are great spheres. Moreover, each geodesic loop γ of length 2l is closed at p = γ(0), i.e.
γ̇(0) = γ̇(2l) where l is the cut value at p.

Proof For every q ∈ cut(p) we have

exp−1
p (q) = {lv : v ∈ UpM, expp lv = q} = lΛ(q, p)

which is a great sphere in UpM since M is Blaschke at q. For the other assertion, let
γ be a unit speed geodesic with γ(0) = p and γ̇(0) 6= γ̇(2l). The continuity of the cut
value implies continuity of l as a function of p. Now for ε > 0 small we consider q = γ(ε).
By Proposition 2.1.7, γ is simple and thus γ(t) 6= q for t ∈ [0, 2l] \ {ε}. The fact that
M is Blaschke at q and the continuity of the cut value, imply the existence of a small
δ > 0 such that γ(2l+ δ) = γ(ε), since the geodesic γ(t+ ε) emanating from q must be a
loop with length 2l(q). But this is a contradiction, since γ̇(0) 6= γ̇(2l) implies γ|[0,ε] and
γ|[2l,2l+δ] are two geodesic segments joining p and q, of small length and with different
initial vectors.

Proposition 2.2.2 A Riemannian manifold is Blaschke if and only if it is Blaschke at
all points.

Proof Only the converse statement needs proof. Let M be Blaschke at all points and
p, q ∈ M . There is a segment from p to q which extends to a simple closed geodesic on
[0, 2l(p)], by Proposition 2.2.1, where l(p) denotes the cut value at p. Shifting the origin
of this geodesic to be q rather than p we obtain l(p) = l(q). This shows that the cut
value is constant. Therefore,

InjM = inf
p∈M

l(p) = sup
p∈M

l(p) = diamM

which shows M is a Blaschke manifold.

The Blaschke Conjecture states that a Blaschke manifold should be isometric to its
model with its standard Riemannian metric (up to constant rescaling).

Since the main subject of this survey is to present in detail the proof of the spherical
case, let us first show that this case also implies the RPn case.

Proposition 2.2.3 If the Sn case of the Blaschke conjecture is true, then so is the RPn
case.
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Proof Let g be a Blaschke metric on RPn. From Proposition 2.1.12, the Riemannian
universal cover is a Blaschke manifold at all points, and is a Blaschke manifold, by
Proposition 2.2.2. So, if the spherical Blaschke Conjecture is true, it is isometric to the
euclidean n-sphere (up to a constant factor). This implies that g is isometric to the
standard metric on RPn.



Chapter 3

The volume of manifolds with
closed geodesics

In this chapter we shall prove the result of A. Weinstein (in the even dimensional case)
and C.T. Yang (in the odd dimensional case) that the volume of a Blaschke manifold
modelled on the sphere equals the volume of the standard sphereof the same dimension
and diameter. We will follow and analyse the original papers [21] and [22]. Historically,
this was the first step, topological in nature as we will see below, towards the resolution of
the Blaschke conjecture in the spherical case. The proof of the affirmative answer consists
of the above result combined with the analytic in nature Berger-Kazdan isoembolic
inequality presented in chapter 1, from which we get that equality of volumes is possible
only in the case of isometry.

3.1 The manifold of geodesics

A Blaschke manifold (M, g) has the property that all unit speed geodesics are simple
closed loops of length 2InjM . This condition as well as a weaker version of it are
important in the topological study of Blaschke manifolds which follows and therefore
deserves a special name.

Definition 3.1.1 A Cp2l manifold is a Riemannian manifold such that all unit speed
geodesics through the point p are closed and with length 2l. A SCp2l manifold is a Cp2l
manifold but we also demand that all geodesics are also simple on [0, 2l]. We say that
(M, g) is a C2l or SC2l manifold if it is Cp2l or SCp2l for all p ∈M , respectively.

Let (M, g) be a C2π-manifold. The geodesic vector field Z generates a free action of
SO(2) on the unit tangent bundle UM , defined by(

cos t − sin t
sin t cos t

)
· v = ζtv, v ∈ UM,

where (ζt)t∈R is the geodesic flow.
The quotient UM/SO(2) is a compact 2n−2 dimensional manifold and the projection

π : UM → UM/SO(2)

is a principal fiber bundle with structure group SO(2) (see [6], Chapter II, Theorem 5.4).
The manifold CM = UM/SO(2) is called the manifold of oriented geodesics.

33
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Proposition 3.1.2 The contact form η ∈ Λ1UM is a connection form for the principal
SO(2)-bundle π : UM → CM and dη is the curvature of this connection.

Proof We define a horizontal distribution Q on TUM . For v ∈ UM let

Qv := {ξ ∈ TvUM |η(ξ) = 0} = {ξ ∈ Tv(UM)|ḡ(ξ, Z) = 0}

where ḡ is the Sasaki metric.
Then differentiability of ḡ and Z implies a differentiable ḡ − orthogonal splitting

TUM = RZ ⊕Q. Moreover, Q = kerηv is SO(2) invariant.
Thus Q is a connection on this principal bundle, and since η(Z) = 1, η is the

associated connection form. Then the curvature form of this connection is dη since
SO(2) is abelian and thus dη is horizontal.

The tangent space of the manifold of oriented geodesics at a point γ ∈ CM is
identified with the horizontal space Qv, with γ = π(v). We now prove that tangent
vectors at γ naturally correspond to normal Jacobi fields along γ. We first prove a
lemma.

Lemma 3.1.3 Let v, u ∈ UM and π(u) = π(v) = γ. Then u = ζtv for some t ∈ R,
so that γv(t) = γu(0). Shifting time by t, we get a map σt : Jv → Ju which restricts to
σt : J ⊥v → J ⊥u . There is a commutative diagram of isomorphisms.

Qv J ⊥v

Qu J ⊥u

ζt∗

jv

ju

σt

In particular, σt is independent of t, and we have a natural identification J ⊥v ∼= J ⊥u . In
view of this we will write J ⊥γ to denote the space of normal Jacobi fields along γ.

Proof By definition, Qv = TvUM ∩ kerηv and the horizontal isomorphisms are thus a
consequence of Proposition 1.2.1. Let now ξ ∈ Qv. We compute (with the notation of
section 1.2):

Jξ(t) =
∂

∂s

∣∣∣∣
s=0

τ ◦ ζt(z(s)) = τ∗(ζ
t
∗(ż(0)) = τ∗ζ

t
∗ξ = Jζt∗ξ(0)

and

J ′ξ(t) =
D

dt

∂F

∂s
(0, t) =

D

ds

∂F

∂t
(0, t) =

D

ds

∣∣∣∣
s=0

τ∗Z(ζtz(s))

=
D

ds

∣∣∣∣
s=0

(ζtz(s)) = K(J t∗ξ) = J ′ζt∗ξ(0).

Therefore, the Jacobi fields Jξ and Jζt∗ξ have the same initial conditions at the point
γu(0) = γv(t), which implies commutativity of the diagram. Now let u = ζsv for some
s ∈ R. Since M is C2π we must have s = t+ 2kπ, k ∈ Z and therefore ζt = ζs : UM →
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UM for the same reason, and the left arrow of the diagram is independent of t. The
last statement follows and therefore we get J ⊥γ , the space of (nonparametrized) normal
Jacobi fields along γ.

Proposition 3.1.4 Let γ ∈ CM . With the notation above, there is a natural identifi-
cation:

TγCM ∼= J ⊥γ

Proof Let v ∈ π−1(γ). The obvious fact π∗ζ
t
∗ = π∗ and the previous lemma imply that

the sequence of isomorphisms

TγCM
π−1
∗−−→ Qv

jv−→ J ⊥v → J ⊥γ

does not depend on the choice of v ∈ UM and identifies the tangent space TγCM to the
space J ⊥γ , as stated.

3.2 The volume of spheres with closed geodesics

Let (M, g) be a C2π-manifold. In what follows we shall use the notations and conventions
of the previous section 3.1.

¿From Proposition 3.1.2, we see that dη, or

(
0 dη
−dη 0

)
in so(2) notation, is hori-

zontal and invariant under the SO(2) action LZdη = dLZη = 0 on UM . Thus it is the
pullback of some two form in CM . By the standard theory of the Euler class, if we set

π∗(Ω) =
1

2π
Pf

(
0 dη
−dη 0

)
=

1

2π
dη

then Ω is closed and represents a real cohomology class in CM which is the image of the
Euler class

e ∈ H2(CM,Z)

of the principal SO(2)-bundle π : UM → CM under the coefficient homomorphism

H2(CM,Z)→ H2(CM,R).

Proposition 3.2.1 The 2-form Ω is nondegenerate on CM and since it is also closed,
it defines a symplectic structure on CM . In particular, CM is orientable and Ωn−1 is a
nowhere vanishing 2n− 2 form. Moreover,

j(M, g) :=

∫
CM

Ωn−1 =
〈
en−1, [CM ]

〉
where e ∈ H2(CM,Z) is the Euler class of the fibration π : UM → CM and 〈·, ·〉 is the
duality pairing.
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Proof The nondegeneracy of Ω is immediate since dη is nondegenerate on the horizon-
tal distribution. Thus Ω is a closed and nondegenerate two-form on the 2n − 2 dimen-
sional manifold CM , and thus a symplectic structure, which also implies orientability.
The commutative diagram:

H2n−2(CM,Z) H2n−2(CM,R)

H0(CM,Z) = Z R

'∩[CM ] '
∫
CM

where the upper horizontal arrow stands for the coefficient homomorphism followed by
the de Rham isomorphism, yields that∫

CM
Ωn−1 =

〈
en−1, [CM ]

〉
and thus j(M, g) is an integer topological invariant of the fibration π : UM → CM .

We next relate the volume of (M, g) to the integer j(M, g).

Proposition 3.2.2 j(M, g) =
2V ol(M, g)

V ol(Sn, can)
.

Proof The Liouville measure on UM is induced by the contact 1-form η and is repre-
sented by the 2n− 1-form

dUMḡ =
1

(n− 1)!
η ∧ dηn−1.

We compute:

V ol(UM, ḡ) =
1

(n− 1)!

∫
UM

η ∧ dηn−1

=
(2π)n−1

(n− 1)!

∫
UM

η ∧ π∗Ωn−1 =
(2π)n−1

(n− 1)!

∫
γ∈CM

(∫
π−1γ

η

)
Ωn−1

=
(2π)n

(n− 1)!

∫
CM

Ωn−1 =
(2π)nj(M, g)

(n− 1)!

where in the third equality we have used the Fubini formula for integration over the
fiber, while for the fourth we have∫

π−1γ
η =

∫ 2π

0
η(Zγ̇(t))dt = 2π.

Now we use V ol(UM, ḡ) = V ol(Sn−1, can)V ol(M, g) and obtain:

j(M, g) =
(n− 1)!V ol(Sn−1, can)

(2π)n
V ol(M, g) =

2V ol(M, g)

V ol(Sn, can)

where for the last equality we have used the well known formula

V ol(Sn, can)V ol(Sn−1, can) = 2
(2π)n

(n− 1)!
.
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We have thus proved that the volume of a C2π-manifold is actually a half-integer
multiple of the volume of the standard sphere:

V ol(M, g) =
j(M, g)

2
V ol(Sn, can).

If we prove that j(M, g) = 2, then the spherical case of Blaschke’s conjecture will follow.
In other words, the proof of Blaschke’s conjecture for the spheres is reduced to proving
the following theorem to which the rest of this section is devoted.

Theorem 3.2.3 If M is a Blaschke manifold homeomorphic to the n-sphere, then
j(M, g) = 2.

First we need to compute the (integral) cohomology of UM , when M is a n-sphere.
A standard reference for the topological tools used below is [5].

Since M is orientable, we have a Gysin sequence for the fibration τ : UM →M :

· · · → Hk−1(UM)→ Hk−n(M)
∪ē−→ Hk(M)

τ∗−→ Hk(UM)→ Hk−n+1(M)→ · · ·

where ē is the Euler class of the bundle τ : UM →M . Now 〈ē, [M ]〉 = χ(M), the Euler
characteristic, and thus ē is zero or the double of the generator of Hn(M), depending
on whether n is odd or even.

Now, UM is a compact and connected (2n−1)− dimensional orientable manifold and
thus we have

H0(UM) ∼= H2n−1(UM) ∼= Z

We consider the even and odd dimensional cases separately.
Let n be even. For k = n the Gysin sequence gives the short exact sequence

Z multiplication−−−−−−−−→
by 2

Z τ∗−→ Hn(UM)→ 0

from which follows that Hn(UM) ∼= Z2. If n < k < 2n−1, then 1 < k− (n−1) < n and
so Hk(M) = Hk−(n−1)(M) = 0. Therefore Hk(UM) = 0. Similarly, we set Hk(UM) = 0
for 0 < k < n− 1. For k = n, the Gysin sequence gives the exact sequence

0→ Hn−1(UM)→ Z multiplication−−−−−−−−→
by 2

Z

and so Hn−1(UM) = 0.
Let n be odd. For k = n− 1 we have the exact sequence

0→ Hn−1(UM)→ Z→ 0

which means that Hn−1(UM) ∼= Z. For k = n we have the exact sequence

0→ Z τ∗−→ Hn(UM)→ 0

and so τ∗ : Z ∼= Hn(UM). In all other cases, it is obvious that Hk(UM) vanishes.
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Summarizing, we conclude that if n is even, then

Hk(UM) =


Z, for k = 0, 2n− 1

Z2, for k = n

0, otherwise,

and if n is odd, then

Hk(UM) =

{
Z, for k = 0, n− 1, n, 2n− 1

0, otherwise.

We are now ready to study the cohomology of the circle bundle π : UM → CM .

Proposition 3.2.4 Let M be a C2π-manifold homeomorphic to the n-sphere, n ≥ 2.

(a) If n even, then

Hk(CM) =

{
Z, for k = 0, 2, 4, . . . , 2n− 2
0, otherwise

Moreover, the homomorphism Hk−2(CM)
∪e−→ Hk(CM) appearing in the Gysin sequence

for π : UM → CM is an isomorphism for k = 2, . . . , n − 2, n + 2, . . . , 2n − 2 and a
monomorphism of cokernel Z2 for k = n.

(b) If n is odd, then

Hk(CM) =


Z, for k = 0, 2, 4, . . . , 2n− 2
Z⊕ Z, for k = n− 1
0, otherwise

Moreover there are exact sequences:

0→ Hn−3(CM)
∪e−→ Hn−1(CM)

π∗−→ Hn−1(UM)→ 0
0→ Hn(UM)→ Hn−1(CM)→ Hn+1(CM)→ 0

which are parts of the Gysin sequence of the fibration π.

Proof We use the Gysin sequence of the oriented circle bundle π : UM → CM :

· · ·Hk−1(UM)→ Hk−2(CM)
∪e−→ Hk(CM)

π∗−→ Hk(UM)→ · · ·

and the previous calculations.
First of all we have:

H0(CM) ∼= H2n−2(CM) ∼= Z

(a) Suppose that n is even. If 0 < k < n, from the Gysin sequence we get the exact
sequence

0→ Hk−2(CM)
∪e−→ Hk(CM)→ 0.

It follows inductively that Hk(CM) ∼= Z for even 0 ≤ k < n and Hk(CM) = 0 for odd
0 < k < n.
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If n < k < 2n− 2 is even, then we have a exact sequence

0→ Hk(CM)
∪e−→ Hk+2(CM)→ 0

and so Hk(CM) ∼= Z, inductively. Obviously, Hn+1(CM) = H2n−1(CM) = 0, from the
Gysin sequence and what we have proved already. Also, H2n−3(CM) = H1(CM) = 0,
by duality and the Universal Coefficient Theorem. Inductively, as above, we see that
Hk(CM) = 0 for odd n < k < 2n− 2.

Finally, in the case k = n we get the exact sequence

0→ Hn−2(CM)
∪e−→ Hn(CM)→ Z2 → 0

where Hn−2(CM) ∼= Z. Thus, we have two possibilities: Hn(CM) ∼= Z or Hn(CM) ∼=
Z ⊕ Z2. But Hn(CM) ∼= Hn−2(M), by duality, and the torsion part of Hn−2(CM) is
isomorphic to the torsion part of Hn−1(M) = 0, by Universal Coefficients. So the latter
is excluded and Hn(CM) ∼= Z.

(b) Let now n be odd. As in case (a), inductively we see that Hk(CM) ∼= Z for even
0 ≤ k ≤ 2n with k 6= n− 1 and Hn(CM) = 0 for k odd.

For k = n− 1 we have the split short exact sequence

0→ Hn(UM)→ Hn−1(CM)
∪e−→ Hn+1(CM)→ 0

and therefore Hn−1(CM) ∼= Z⊕ Z, because Hn−3(CM) ∼= Z, since n is odd.

Proof of Theorem 3.2.4, when n is even. The previous lemma shows that:

(∪e)n−1 : H0(CM)→ H2n−2(CM)

is a monomorphism of cokernel Z2 and thus
〈
en−1, [CM ]

〉
= 2.

Now we move on to investigate the case when n is odd. Recall our assumptions that
M is an n−dimensional C2π manifold, with n = 2m+1, homeomorphic to the sphere. We
make a further assumption on (M, g) which is certainly satisfied for Blaschke manifolds.
Namely that there is a point p ∈ M , such that for all γ ∈ CM , p is not a point of
self-intersection for γ.

Since ∪e : H2k(CM) ∼= H2k+2(CM) for 0 ≤ k < m − 1, it follows that em−1 is a
generator of H2m−2(CM). From the exact sequence

0→ H2m−2(CM)
∪e−→ H2m(CM)

π∗−→ H2m(UM)→ 0

there exists b ∈ H2m(CM) such that π∗(b) is a generator of H2m(UM) ∼= Z and {b, em}
is a basis of H2m(CM). We will construct a suitable element b which which make the
calculation of j(M, g) easy.

First we need some preparation in order to work geometrically with homology and
intersection numbers rather than cohomology and cup products.

We derive a homology Gysin sequence which is Poincare dual to the one in coho-
mology. Let πD : DM → CM be the disc bundle associated to the principal circle
bundle π : UM → CM , so that UM = ∂DM . We write i : CM → DM for the zero
section and j : UM → DM and k : DM → (DM,UM) for the inclusions. Let also
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u ∈ H2(DM,UM) be the Thom class of the bundle and e ∈ H2(CM) be its Euler class
as before. Using the homology and cohomology versions of the Thom isomorphism

TC : H2m(CM)→ H2m+2(DM,UM)

b 7→ (π∗Db) ∪ u

TH : H2m(DM,UM)→ H2m−2(CM)

z 7→ πD∗(u ∩ z)

we derive the commutative (modulo sign) diagram

H2m(CM) H2m−2(CM)

0 H2m(UM) H2m(DM) H2m(DM,UM) 0

0 H2m+1(UM) H2m+2(DM,UM) H2m+2(DM) 0

H2m(CM) H2m+2(CM)

ψ

π∗

j∗

πD∗∼= TH∼=

∩[UM ]∼=

k∗

∩[DM ]∼= ∩[DM ]∼=

∪e

TC∼= π∗D∼=

Thus, since the upper part of the diagram is the standard derivation of the Gysin
sequence, we will have the sequence we need once we show that the two vertical com-
positions of isomorphisms represent Poincare duality. Let b ∈ H∗(CM). On the one
hand,

πD∗(TCb ∩ [DM ]) = πD∗

(
(π∗D(b) ∪ u) ∩ [DM ]

)
= πD∗

(
π∗Db ∩ (u ∩ [DM ])

)
= πD∗(π

∗
Db ∩ i∗[CM ])

= b ∩ [CM ]

and on the other hand,

TH(π∗Db ∩ [DM ]) = πD∗

(
u ∩ (π∗Db ∩ [DM ])

)
= πD∗

(
π∗Db ∩ (u ∩ [DM ])

)
= b ∩ [CM ].

Note that since the upper horizontal arrow is cup product with the Euler class e, by
duality the lower horizontal arrow must represent cap product with e. Thus we have
derived the following Poincare duality commutative (modulo sign) diagram

0 H2m+1(UM) H2m(CM) H2m+2(CM) 0

0 H2m(UM) H2m(CM) H2m−2(CM) 0

Gysin map

∩[UM ]∼= ∩[CM ]∼= ∩[CM ]∼=

π∗
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It follows that the Gysin map H2m+1(UM) → H2m(CM) corresponds under Poincare
duality to the induced homomorphism π∗ : H2m(UM)→ H2m(CM).

Lemma 3.2.5 Consider the exact sequence

0→ H2m+1(UM)
Gysin−−−→
map

H2m(CM)
∪e−→ H2m+2(CM)→ 0

and let a ∈ H2m(CM) be a generator of the image of the Gysin map. Then a ∪ a = 2g
for some generator g ∈ H4m(CM).

Proof We will work in homology, so that we can make use of geometric data to compute
intersection rather than cup products. Since cup and intersection product correspond
under duality, we have (a ∪ a) ∩ [CM ] = a ∩ a∗ where a∗ is the corresponding generator
of the image of π∗ : H2m(UM)→ H2m(CM) to a, i.e. a ∩ [CM ] = a∗.

We are going to prove that the intersection product a ∩ a∗ = 2 which is of course
equivalent to the original statement. By hypothesis, there is a point p ∈ M such that
any closed geodesic in M doesn’t have p as a point of self-intersection.

Now, an easy compactness argument shows that there is a neighbourhood (geodesic
ball) V of p in M , satisfying:

1. for all q ∈ V , q is not a point of self-intersection of any geodesic in M .

2. The intersection of V with each geodesic emanating from p to a single open arc.

We consider the homology Gysin sequence for the bundle τ : UM → M , derived as
above,

Hn(UM)→ Hn(M)
∩ē−→ H0(M)→ Hn−1(UM)→ 0

and we use that the map ∩ē : H0(M)→ Hn−1(UM) is zero in the odd dimensional case,
where ē is the Euler class of UM . This gives the isomorphism of the upper horizontal
arrow of the commutative diagram:

H0(M) H2m(UM)

Hn(TM, TM \M) Hn−1(TM \M)

∼=TH ∼=

∂

and we get that choosing q ∈M representing a generator of H0(M), we can represent a
generator of H2m(UM) by τ−1q and therefore πτ−1q represents a generator of the image
of:

π∗ : H2m(UM)→ H2m(CM)

Next we consider the map:
π|τ−1q : τ−1q → CM

and prove that it is injective, and of maximal rank for all q ∈ V and since τ−1q =
UqM is compact it follows that it is an imbedding, i.e. τ−1q is a submanifold of CM
diffeomorphic to S2m.

That τ−1q is 1−1 follows from property (1) of V which assumes that distinct vectors
in UqM correspond to geometrically distinct geodesics.
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Next recall that TγCM is identified with the space of vertical Jacobi fields along γ,
denoted by J ⊥γ . Now, let γ ∈ CM with γ(0) = q and w ∈ Tγ̇(0)τ

−1q. Then, under the
above identification, π∗w is the Jacobi field along γ with J(0) = 0 and J ′(0) = w. This
shows that the map:

π∗ : Tγ̇(0)τ
−1q → {J ∈ J ⊥γ : J(q) = 0}

is onto, and the latter space is 2m dimensional. Thus we finally have πτ−1q ≈ S2m for
all q ∈ V .

Let now p ∈M be as chosen and choose another q ∈M and γ ∈ seg(p, q). Let τ−1p
and τ−1q be thus oriented, so that they represent the same generator of H2m(UM).
Property (2) of V implies that the intersection of the sets πτ−1p and πτ−1q consists of
two points exactly, namely

πτ−1p ∩ πτ−1q = {γ,−γ}.

We claim that this intersection is transversal at both points and that the intersection
number is equal. This will imply a ∩ a∗ = 2.

First we observe that the intersection is transversal. Under the identification
TγCM ∼= J ⊥γ mentioned above, we have:

Tγπτ
−1p = {J ∈ J ⊥γ : J(p) = 0} and

Tγπτ
−1q = {J ∈ J ⊥γ : J(q) = 0}

Thus Tγπτ
−1p ∩ Tγπτ−1q = 0 for q close enough to p, since then a Jacobi field with

J(p) = J(q) = 0 should be zero.

In order to show that the intersection numbers are equal, we consider the maps

λ : UM → UM , λ′ : CM → CM
v 7→ −v , γ 7→ −γ

with the commutative diagram:

UM UM

CM CM

λ

π π

λ′

from the coordinate expression η = gijv
idxj we immediately see that λ∗η = −η and

thus λ∗dηn−1 = (−1)2mdηn−1 = dηn−1 and since dη is horizontal, we get (λ′)∗Ωn−1 =
Ωn−1 and λ′ is orientation preserving on CM . Combining with the fact that λ′ reverses
orientation on both πτ−1p and πτ−1(q), since a free Z2 action on S2m is orientation
reversing, shows the intersection numbers are equal, and the lemma is proved.

Lemma 3.2.6 There is a basis {b, em} of H2m(CM) such that if a and g are as in the
previous lemma, we have a ∪ b = g and a = 2b− em.

Proof The exact sequences
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0 H2m−2(CM) H2m(CM) H2m(UM) 0∪e π∗

0← H2m+2(CM)
∪e←− H2m(CM)

Gysin←−−−
map

H2m+1(UM)← 0

are dual to each other and split. Since a is a generator of the image of the Gysin map,
there exists b ∈ H2m(CM) such that b∪ a = g, by Poincaré duality. If σ ∈ H2m+1(UM)
is the generator mapped to a by the Gysin map, then

〈π∗(b) ∪ σ, [UM ]〉 = 〈b ∪ a, [CM ]〉 = 〈g, [CM ]〉 = 1.

Hence π∗(b) is a generator of H2m(UM), again by Poincaré duality. Since em−1 is a
generator of H2m−2(CM), we conclude that {b, em} is a basis of H2m(CM).

Now a = kb+ lem, for some k, l ∈ Z, since {b, em} is a basis and we get from the last
lemma

2g = a ∪ a = a ∪ (kb+ lem) = kg

which means that k = 2. Moreover, a ∪ em = 0, by exactness of

H2m+1(UM)→ H2m(CM)
∪e−→ H2m+2(CM)

and thus a = 2b+ lem. Since

g = a ∪ b = (2b+ lem) ∪ b = 2b ∪ b+ lem ∪ b

is a generator, l must be odd, say l = 2s − 1, for some s ∈ Z. If we set b′ = b + sem,
then {b′, em} is a basis of H2m(CM), a ∪ b′ = g and a = 2b′ − em. Therefore the lemma
holds for the basis {b′, em}.

We are now ready to complete the proof of Theorem 3.2.4.

Proof of Theorem 3.2.4, when n is odd Let {b, em} be the basis given by the last
lemma, and also b ∪ b = rg, for some r ∈ Z. Then

b ∪ em = b ∪ (2b− a) = (2r − 1)g

and

em ∪ em = em ∪ (2b− a) = 2b− em = (4r − 2)g.

Now Poincare duality implies:

±1 = det

(
〈b ∪ b, [CM ]〉 〈b ∪ em, [CM ]〉
〈em ∪ b, [CM ]〉 〈em ∪ em, [CM ]〉

)
=

(
r 2r − 1

2r − 1 4r − 2

)
= 2r − 1

and thus r = 0 or 1. Hence e2m = ±2g and thus the theorem follows.
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3.3 Wiedersehen manifolds

In this final section we summarize the results that we have proved. We have been
concerned with Blaschke manifolds homeomorphic to a sphere. This is precisely the
class of the so called Wiedersehen manifolds.

A complete Riemannian n-manifold is called Wiedersehen if there exists some R > 0
such that the cut locus cut(p) of any point p ∈ M is a singleton at distance R from p.
Obviously, such a manifold is compact and diam(M) = Inj(M) = R. Therefore, it is a
Blaschke manifold modelled on the sphere.

The main result that we have proved can be summarized as follows.

Theorem 3.3.1 A Wiedersehen Riemannian n-manifold, n ≥ 2, of diameter R > 0 is
isometric to the standard round n-sphere of radius R/π.
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