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Abstract

We propose a renormalization process of a two phase WKB solution, which is based

on an appropriate surgery of local uniform asymptotic approximations of the Wigner

transform of the WKB solution. We explain in details how this process provides the

correct spatial variation and frequency scales of the wave field on the caustics where

WKB method fails. The analysis has been thoroughly presented in the case of a

fundamental problem, that is the semiclassical Airy equation, which arises from the

model problem of acoustic propagation in a layer with linear variation of the sound

speed.
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Chapter 1

Introduction

High-frequency wave propagation in inhomogeneous media, has been traditionally

investigated employing the method of geometrical optics. Not only it is used to draw

a qualitative picture of how the energy propagates, but also to evaluate the wave

fields quantitatively. However, geometrical optics fails either on caustics and focal

points where it predicts infinite wave amplitudes, or in shadow regions (i.e. regions

devoid of rays) where it yields zero fields. On the other hand, formation of caustics

is a typical situation in optics, underwater acoustics and seismology, as a result of

multipath propagation from localized sources. Indeed, even in the simplest oceanic

models and geophysical structures (see, e.g. Tolstoy and Clay [TC], Chapt. 5, and

Cĕrvenỳ, et.al. [CMP], Chapt. 3, respectively) a number of caustics occur, depending

upon the position of the source and the stratification of the wave velocities.

1.1 Caustics and phase-space methods

Mathematically, caustic surfaces are envelopes of rays. Physically, these surfaces are

distinctive in that the field intensity increases on them sharply as compared with the

adjacent regions. The rise of field is best of all seen at the focal points where all the

rays corresponding to the converging wave front intersect.

In his classical book Stavroudis [Sta] has remarked that in contrast to rays and

wave fronts, the caustic is one of the few objects in optics that can be observed in

1



CHAPTER 1. INTRODUCTION 2

reality. This remark emphasizing the role of caustics, of course, has its own range of

validity, and it is true only to the point that in the close vicinity of caustics, one can

observe or measure a concentration of the field. Is the caustic real in the above sense

in all situations, i.e., is the effect of field buildup on a caustic appreciable enough

for instruments to reveal, separate and identify the caustics? This question may be

answered with heuristic criteria. A caustic may be deemed real, i.e., observed or

recorded, if the amplitude on the caustic is at least a few times the mean field value

elsewhere and the near-caustic zones of adjacent caustics do not completely overlap.

Some other conditions of practical character like, noise should not be high, resolution

and sensitivity of the instruments should be sufficient, should be satisfied.

Moving across a caustic gives birth or annihilation of a pair of rays at a time, and

this discontinuous variation of the number of rays across a caustic is qualified as a

catastrophe. This new and fruitful approach to caustics, developed only in the recent

years, allows a universal classification of the typical caustics (see, e.g., [KO1]).

From specific examples allowing exact solutions, it has been known that the phase

of the wave fields change by −π/2 upon touching a smooth (nonsingular) caustic,

and by −π after passing a three-dimensional focus. However, a universal rule on the

additional phase shift at a caustic has been formulated only in the comparative recent

works of Maslov ([Ma1], [Ma2]) and Lewis [Le], although the germ of the idea goes

back to Keller [Kel]. The formulation is based on the stationary-phase approximation

of certain diffraction integrals, and it finally leads to the notion of the so-called Maslov

trajectory index, in the general case of multiple caustic reflections.

Because the wave amplitude predicted by geometrical optics is infinite on the caus-

tics, as a result of ray convergence, geometrical optics is inapplicable within a close

neighborhood of the caustic, as actual wave fields are always finite. However, available

exact and approximate solutions for certain canonical wave problems involving caus-

tics in the high-frequency limit, indicate a substantial concentration of energy near

a caustic. This phenomenon is more profound within a finite region which is usually

referred as caustic zone or caustic volume. The rigorous estimation of the size of this

zone should rely upon delicate uniform asymptotic expansions of certain canonical

diffraction integrals associated with the particular caustic, but for the moment only
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heuristic estimations leading rather to qualitative than to fully quantitative results

exist. A very important feature is that the rays cannot be adequately resolved in the

caustic zone, and therefore we can draw the general conclusion that within any caustic

zone, no physical device is capable of separate determination of ray parameters. In

this sense, in that caustic zone, rays loose their physical individual properties, though

they continue to play the role of the geometric framework for the wave field.

From the mathematical point of view, formation of caustics and the related mul-

tivaluedness of the phase function, is the main obstacle in constructing global high-

frequency solutions of the wave equation. The problem of obtaining the multivalued

phase function is traditionally handled by resolving numerically the characteristic

field related to the eikonal equation (ray tracing methods), see, e.g. [CMP]. A con-

siderable amount of work has been done recently on constructing the multivalued

phase function by properly partitioning the propagation domain and using eikonal

solvers (see, e.g., [Ben], [FEO]).

Given the geometry of the multivalued phase function, a number of local and

uniform methods to describe wave fields near caustics have been proposed. The local

methods are essentially based on boundary layer techniques as they were developed

by Babich, Keller, et.al. (see, e.g., [BaKi], [BB]). The uniform are those which exploit

the fact that even if the family of rays has caustics, there are no such singularities

for the family of the bicharacteristics in the phase space. This basic fact allows the

construction of formal asymptotic solutions (FAS) which are valid also near and on

the caustics. For this purpose two main asymptotic techniques have been developed.

The first one is the Kravtsov-Ludwig method (sometimes called the method of relevant

functions). This method starts with a modified FAS involving Airy-type integrals, the

phase functions of which take account of the particular type of caustics. The second

one is the method of the canonical operator developed by Maslov. The construction of

the canonical operator exploits the fact that the Hamiltonian flow associated with the

bichararcteristics generates a Lagrangian submanifold in the phase space, on which

we can “lift” the phase function in a unique way (see, e.g., [MF],[MSS],[Va1]).

Although uniform caustic asymptotics have been widely used by the acoustical

and seismological community (see, e.g., [CH1], [CH2] and the references cited there),
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the problem of the limits of applicability of uniform asymptotic expressions has not

been completely resolved yet, as it has been observed by Asatryan and Kravtsov

[AsK] who attempted to give a qualitative answer. Note also that apart from their

importance in the qualitative description of wavefields near caustics, the Kravtsov-

Ludwig solutions have been also proved useful for numerical computations through

appropriate matching with geometric optics far away from the caustics [KKM].

1.2 The Wigner-function approach

A relatively new technique to treat high frequency dispersive problems is based on

the Wigner transform of the wavefunction, whose basic properties (i.e. the relation

of its moments with important physical quantities, as energy density, current density,

et.al.), make it a proper and extremely useful tool for the study of the wavefield.

Wigner function is a phase space object satisfying an integro-differential equation

(Wigner equation), which for smooth medium properties can be expressed as an

infinite order singular perturbation (with dispersion terms with respect to the mo-

mentum of the phase space)of the classical Liouville equation. At the high frequency

limit the solution of the Wigner equation equation converges weakly to the so called

Wigner measure [LP] governed by the classical Liouville equation, and this measure,

in general, reproduces the solution of single phase geometrical optics.

We should note at this point that there does not exist, up to now, either some

systematic theoretical study of the Wigner integro-differential equation (except the

results of Markowich [SMM] for the equivalence of Wigner and Schrödinger equations).

This is due to fundamental difficulties of this equation, which is an equation with

non-constant coefficients, that combines at least two different characters, that of

transport and that of dispersive equations. The first character is correlated with

the Hamiltonian system of the Liouville equation (and the classical mechanics of the

problem), and the second with the quantum energy transfer away from the Lagrangian

manifold of the Hamiltonian system, but mainly inside a boundary layer around it,

the width of which depends on the smoothness of the manifold and the presence or

not of caustics.
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Moreover, in the case of multi-phase optics and caustic formation, Wigner measure

is not the appropriate tool for the study of the semi-classical limit. In fact ut has

been shown by Filippas & Makrakis [FM1], [FM2] through examples in the case

of time-dependent Schrodinger equation that the Wigner measure (a) it cannot be

expressed as a distribution with respect to the momentum for a fixed space-time point,

and thus cannot produce the amplitude of the wavefunction, and (b) it is unable to

“recognize” the correct frequency dependencies of the wavefield near caustics. It was

however explained that the solutions of the integro-differential Wigner equation do

have the capability to capture the correct frequency scales. It must be said here that

a numerical approach based on classical Liouville equation has been developed, as an

alternative to WKB method, in order to capture the multivalued solutions far from

the caustic. This technique is based on a closure assumption for a system of equations

for the moments of the Wigner measure (essentially by assuming a fixed number of

rays passing through a particular point) (see, e.g., ([JL], [Ru1], [Ru2]).

1.3 The present work: Renormalization of WKB

solutions

In the present work we employ Wigner transform as a tool for the renormalization of

WKB solutions near caustics (wignerization). More precisely, we consider the funda-

mental example of the semiclassical Airy equation, whose two-phase WKB solution

fails at the caustic (namely the turning point of the Airy equation) due to the di-

vergence of the geometric amplitudes. We show that the combination (“surgery”)

of appropriate asymptotic approximations of the Wigner function in various areas of

the phase space leads to an approximate Wigner function which recovers the correct

semiclassical (Airy) amplitude in a spatially uniform way. Moreover, the interaction

mechanism between the two geometric phases (realized as the two branches of the

folded Lagrangian manifold) is investigated by thoroughly analyzing the structure of

the stationary points of the corresponding cross Wigner integrals and their asymptotic

contribution in the Airy structure. Note that for our particular examples, it happens
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that the asymptotics of the Wigner function leads to the exact Wigner transform of

the semiclassical Airy function, which confirms the validity of the proposed wigner-

ization. It should be emphasized that the proposed renormalization process has many

similarities and it has been inspired by the so-called quantization processes (see, e.g.,

Nazaikinskii et al [NSS]), since we can consider the WKB solution as the “classical

object” and the constructed approximation of the Wigner function as the “quantum

object”. It is then interesting to observe that in the full high-frequency limit the

approximation of the Wigner function, the quantum object, gives us back the WKB

solution, that is the classical object.

The structure of the work is the following. In Chapter 2 we present the technique

of geometric optics(WKB solutions) and the method developed by Kravtsov & Lud-

wig. We also analyze the propagation of plane acoustic waves in a layer with linear

variation of the reafraction index, we construct the WKB and Kravtsov-Ludwig solu-

tions and we explain how the semiclassical Airy eqaution bounces out of this model.

In Chapter 3 we introduce the Wigner transform, we review its basic properties and

we also present in details Berry’s construction of the semiclassical Wigner function.

In Chapter 4, which is our main contribution, we construct the asymptotics of the

Wigner transform of the WKB solution of the semiclassical Airy equation and we

make some remarks on the stationary Wigner function and the possibility of gen-

eralizing our process in problems with more complicated refraction indices as well

in two-dimensional propagation problems where folds can also appear. Finally, in a

series of four appendices we briefly append basic results for the uniform stationary

phase method and the idea of the parametrization of the Lagrangian manifold used

by Kravtsov and Ludwing in the derivation of their asymptotic formula.



Chapter 2

Geometrical optics

2.1 The WKB method

We consider the propagation of n-dimensional time-harmonic acoustic waves in a

medium with variable refraction index η(x) = c0/c(x), c0 being the reference sound

velocity and c(x) the wave velocity at the point x = (x1, ..., xn) ∈ M , where M is

some unbounded domain in Rn
x
. We assume that η ∈ C∞(Rn

x
) and η > 0. The wave

field u(x, κ) is governed by the Helmholtz equation

∆u(x, κ) + κ2η2(x)u(x, κ) = f(x) , x ∈M , (2.1)

where κ = ω/c0 is the wavenumber (ω being the frequency of the waves) and f is a

compactly supported source generating the waves. We are interested in the asymp-

totic behavior of u(x, κ) as κ→ ∞ (i.e. for very large frequencies ω) , assuming that

x remains in a compact subset of M . Note that the asymptotic decomposition of

scattering solutions when simultaneously |x| and κ go to infinity is a rather compli-

cated problem, as, in general, the caustics go off to infinity. This problem has been

rigorously studied in Vainberg [Va], when M is a full neighborhood of infinity and

η = 1 for |x| > r0 , r0 being a fixed positive constant, and by Kucherenko [Ku] for

the case of a point source (i.e., f(x) = δ(x)) , under certain conditions of decay for

η(x) as |x| → ∞ .

7
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For fixed κ > 0 there is, in general, an infinite set of solutions of (2.1), and

we thus need a radiation condition to guarantee uniqueness (cf. [CK] for scattering

by compact inhomogeneities, and [Wed] for scattering by stratified media). This

condition is essentially equivalent to the assumption that there is no energy flow from

infinity, which in geometrical optics is translated to the requirement that the rays

must go off to infinity (cf. [PV], [Ca]).

Definition We say that

uN(x, κ) = eiκS(x)
N∑

`=0

(iκ)−`A`(x) , (2.2)

where the phase S and the amplitudes A` are real-valued functions in C∞(Rn
x
) , is a

formal asymptoptic solution (FAS) of (2.1), if it satisfies the asymptotic equation

(∆ + κ2η2(x))uN(x, κ) = O(κ−N1) , κ→ ∞ , (2.3)

with N1 → ∞ as N → ∞ , in a bounded domain |x| ≤ a , a being a positive constant.

According to the WKB procedure, we seek a FAS of (2.1) in the form (2.2). Substi-

tuting (2.2) into (2.3), and separating the powers (iκ)−`, ` = 0, 1, . . . , we obtain the

eikonal equation

(∇S(x))2 = η2(x) , (2.4)

for the phase function, and the following hierarchy of transport equations

2∇S(x) · ∇A0(x) + ∆S(x)A0(x) = 0 , (2.5)

2∇S(x) · ∇A`(x) + ∆S(x)A`(x) = −∆A`−1(x), ` = 1, 2, . . . , (2.6)

for the principal and higher-order amplitudes, A0 and A` , respectively.
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2.2 Rays and Caustics

A standard way for solving the eikonal equation (2.4) is based on the use of bichar-

acteristics (see, e.g., [Ho], Vol. I, Chap. VIII, and [Jo], Chap. 2). Let H(x,k) be the

Hamiltonian function

H(x,k) =
1

2

(
k2 − η2(x)

)
, x ∈M, k ∈ Rn , (2.7)

corresponding to the Helmholtz equation (2.1), where k = (k1, ..., kn) is the momen-

tum, conjugate to the position x = (x1, ..., xn) .

The associated Hamiltonian system reads as follows

dx

dt
= ∇kH(x,k) = k ,

dk

dt
= −∇xH(x,k) = η(x) · ∇xη(x) . (2.8)

Here, since we deal with a time-independent problem, t is simply a time-like parameter

which parametrizes the trajectories. For k = ∇xS(x) , we see that H(x,k) = 0 gives

just the eikonal equation (2.4).

Let now Λ0 be a manifold of dimension n− 1 in Rn ,

Λ0 = {x = x0(θ) , θ = (θ1, ..., θn−1) ∈ U0 ⊆ Rn−1} .

For t = 0 we specify on Λ0 the following initial conditions

x(0) = x0(θ) , k(0) = k0(θ) , θ ∈ U0 , (2.9)

for the Hamiltonian system (2.8), and for this reason, in the sequel, we refer to Λ0 as

the initial manifold (from which the bicharacteristics depart).

Also, we assume the initial conditions

S(x) = S0(θ) , Al(x) = αl(θ) for x = x0(θ) ∈ Λ0 , (2.10)

for the phase and the amplitudes, S0(θ) , αl(θ) being given smooth functions on the
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initial manifold Λ0 . Note that k0(θ) must satisfy the condition

| k0(θ) |2 =
(
η(x0(θ))

)2
, x0 ∈ Λ0 , (2.11)

for the eikonal to be satisfied also at t = 0 .

Definition The trajectories {x = x(t, θ) , k = k(t, θ) , t ∈ R , θ ∈ U0} which solve

the initial value problem (2.8), (2.9), in the phase space R2n
xk

are called bicharac-

teristics, and their projection {x = x(t, θ) , t ∈ R , θ ∈ U0} onto Rn
x

are called

rays.

The initial manifold Λ0 evolves under the Hamiltonian flow defined by the bicharecter-

istics to the manifold

Λt =
{
(x(t, θ),k(t, θ)) , θ ∈ U0 , t ≥ 0

}
.

Obviously, since k = ∇xS , the bicharacteristics lie on the manifold H(x,k) = 0 ,

thanks to the eikonal equation, and therefore Λt is a subset of the constant-energy

manifold H(x,k) = 0 for any t ≥ 0 . Moreover, in order to the eikonal to be satisfied

for t = 0 , it must be k0 = ∇xS0(x) and therefore Λ0 has the important property

that it is a Lagrangian manifold in the phase space R2n
xk

(see, the book by Maslov

& Fedoryuk [MF] for a detailed introduction to the theory of Lagrangian manifolds

and its relation to the construction of asymptotics, and also the expository paper by

Littlejohn [Lit]). This property remains invariant under the Hamiltonian flow, and

therefore Λt remains Lagrangian for all t ≥ 0 .

Also, in the sequel, we will assume that that k0(θ) is nowhere tangent to Λ0 in

order to the (non-characteristic) Cauchy problem for the eikonal equation have a

smooth unique solution for small t (see, e.g. Courant & Hilbert [CH], Vol. II, Chap.

II ).

Now, using the first equation of the Hamiltonian system (2.8)

dx

dt
= k = ∇Sx (2.12)
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we see that S satisfies the following ordinary differential equation

dS(x)

dt
= ∇xS · dx

dt
= k

dx

dt
= |k|2 = η2(x) . (2.13)

Integrating the last equation along the rays, we obtain the phase

S(x(t, θ)) = S0(θ) +
∫ t

0
η2(x(τ, θ))dτ . (2.14)

The solution of the transport equation (2.5) for the principal amplitude A0 along

the rays, is obtained by applying divergence theorem in a ray tube Tt . Assuming that

A0 is finite and non-zero, the transport equation (2.5) is rewritten in the divergence

form

∇ · (A0
2∇S) = 0 , (2.15)

and integrating on the ray tube Tt with boundary ∂Tt = Σ0 ∪ Σ0t ∪ Σt , we have

0 =
∫

Tt

∇ · (A0
2∇S) dT =

∫

∂Tt

A0
2(∇S · ~ν) dΣ (2.16)

where ~ν the unit outer normal vector on the boundary ∂Tt of Tt , and dΣ is surface

element.

Now, since the rays have the direction of ∇S , that is, the rays are perpendicular

to the wave fronts S = const. , the vectors ~ν and ∇S are orthogonal on the lateral

boundary Σ0t of the ray tube, and we therefore obtain

0 =
∫

∂Tt

A0
2(∇S · ~ν) dΣ =

∫

Σ0

α2
0(∇S · ~ν) dΣ0 +

∫

Σt

A0
2(∇S · ~ν) dΣt

= −
∫

Σ0

α2
0|k0| dΣ0 +

∫

Σt

A0
2|k| dΣt . (2.17)

Then, we have

−α2
0|k0| dΣ0 + A0

2|k| dΣt = 0 (2.18)
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that gives

A0
2 = α2

0

|k0|
|k|

dΣ0

dΣt

=
α2

0

J
(2.19)

where

J = J(t, θ) =
D(t, θ)

D(0, θ)
, D(t, θ) = det

∂x(t, θ)

∂(t, θ)
, (2.20)

is the Jacobian of the ray transformation (t, θ) 7→ x(t, θ) (see, e.g., [BB], [Zau]).

Therefore we derive the principal amplitude

A0(x(t, θ)) =
α0(θ)√
J(t, θ)

(2.21)

where A0(x(t = 0, θ)) = α0(θ) is the amplitude at the point x = x0(θ) on the initial

manifold Λ0 .

Remark An alternative way to derive the formula (2.21) starts form the Liouville

formula [Ha]

d

dt
ln
D(t, θ)

D(0, θ)
=

n∑

i=1

∂ki

∂xi
=

n∑

i=1

∂2S

∂x2
i

= ∆S (2.22)

which, since D(0, θ) = 1 , implies

d

dt
lnD(t, θ) = ∆S . (2.23)

From the transport equation (2.5) we have

−∆S =
2

A0
∇S · ∇A0

and since

d

dt
lnA0

2 =
2

A0

dA0

dt
=

2

A0
∇A0

dx

dt
=

2

A0
∇A0 · ∇S

it follows

d

dt
lnA0

2 = −∆S .
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Then using (2.22) we get

d

dt
lnA0

2 = − d

dt
lnD(t) ,

which after integration on the interval (0, t) leads to the formula (2.21) for the prin-

cipal amplitude.

The higher-order amplitudes can be also derived by integrating the hierarchy of

transport equations (2.6) in a similar way.

The transformation

(t, θ) 7→ x(t, θ) ,

is one-to-one, provided that the determinant of the Jacobian

D(t, θ) = det
∂(x1, ..., xn)

∂(t, θ1, ..., θn−1)
,

is non-zero. Note that D(t, θ) is non-zero since we have excluded the possibility of

the characteristics to be tangent to Λ0 at t = 0 . But even if D(t = 0, θ) 6= 0 , D(t, θ)

and therefore J(t, θ) , it does not necessarily remain non-zero for all t . Whenever

J = 0 , it can happen that (t, θ) may be non-smooth or multi-valued functions of

x, and the rays may intersect, touch, and in general have singularities, although the

bicharacteristics never develop such singularities in the phase space. Then, the phase

function S = S(x(t, θ)) may be a multi-valued or even a non-smooth function. It must

be emphasized that in the neighborhoods of the singular points we cannot choose the

coordinates x1, . . . , xn as local coordinates.

Definition The points x = x(t, θ) at which J(t, θ) = 0 , are called focal points,

and the manifold generated from these points, that is, the envelope of the family of

the rays, is called caustic.

It follows from (2.21), that the principal amplitude A0 blows up on the caustics.

However, it is known that solutions of the Helmholtz equation are analytic away
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form source points and it is therefore the WKB procedure for constructing the (FAS)

which fails to predict the correct amplitudes on the caustics. From the geometrical

point of view, this non-physical blow up of the amplitude at the caustic is associated

with the diminishing of the ray tubes there (the ray tube cross section Σt vanishes

whenever the ray touches the caustic), and it is clearly a consequence of the way of

solving the transport equation by integrating along the rays. In fact, a boundary layer

analysis [BaKi], [BuKe] shows that the ray structure breaks down near the caustic,

and within a boundary layer the modal structure of the wave field is dominant, which

makes therefore impossible to separate the waves approaching the caustic from those

leaving from it. However, uniform asymptotic solutions which will be considered in

the sequel, show that it exists considerable energy concentration near the caustic,

which makes it detectable, but the field is spatially finite but strongly increasing with

increasing frequency.

Asymptotic methods for calculating finite fields on the caustics have been devel-

oped by Kravtsov [Kra], [KO] and Ludwig [Lu] (the method of relevant functions)

and by Maslov [MF](the method of the canonical operator). Although the two meth-

ods have been developed along different lines, they are both essentially based on the

symplectic properties of the Lagrangian manifold Λt . We will briefly present the

Kravtsov-Ludwig technique. A relatively recent way to treat high frequency prob-

lems is based on the Wigner transform of the wavefunction, whose basic properties

(i.e. the relation of its moments with important physical quantities, as energy density,

current density, et.al.), make it a proper and extremely useful tool for the study of

the wavefield. Wigner function is satisfying an integro-differential equation in phase

space, which for smooth potential functions can be expressed as an infinite order

singular perturbation (with dispersion terms with respect to the momentum of the

phase space), of the classical Liouville equation.

At the high frequency limit, the solution of Liouville equation converges weakly to

the so called Wigner measure [LP], which for relatively smooth initial phase functions

S0 produces the solution of single phase geometrical optics. But in the case of multi-

phase optics and caustic formation, Wigner measure is not the appropriate tool for

the study of the semi-classical limit, because as is shown through examples for the
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time-dependent Schrodinger equation by Filippas & Makrakis [FM1], [FM2] (a) it

cannot be expressed as a distribution with respect to the momentum for a fixed

space-time point, and thus cannot produce the amplitude of the wavefunction, and

(b) it is unable to “recognize” the correct dependencies of the wavefield from the

semiclassical parameter ε near caustics. This is a property that the solutions of the

integro-differential Wigner equation do have.

We should note that up to now, there does not exist either some systematic

theoretical study of the Wigner integro-differential equation (except the results of

Markowich [SMM] for the equivalence of Wigner and Schrödinger equations), nei-

ther some method for constructing solutions or their representations. This is due to

fundamental difficulties of this equation, which is an equation with non-constant co-

efficients, that combines at least two different characters, that of transport and that

of dispersive equations. The first character is correlated with the Hamiltonian system

of the Liouville equation (and the classical mechanics of the problem), and the second

with the wave energy transfer away from the Lagrangian manifold of the Hamilto-

nian system- mainly inside a boundary layer around the manifold- the width of which

depends on the smoothness of the manifold and the presence or not of caustics.

2.3 The Kravtsov-Ludwig technique

2.3.1 Motivation and heuristic foundation

The idea of obtaining global high-frequency solutions of the Helmholtz equation (2.1)

by the method of relevant functions, is to replace (2.2) by integrals of the form (see,

e.g., the classical paper by Ludwig [Lu], the modern approach by Duistermaat [Dui1],

[Dui2], also the book by Guillemin & Sternberg [GS])

u(x, κ) =
(
iκ

2π

) 1
2
∫

Ξ
eiκS(x,ξ)A(x, ξ) dξ , x ∈M ⊆ Rn

x
, ξ ∈ Ξ ⊆ Rξ . (2.24)

where the phase S(x, ξ) and the amplitude A(x, ξ) must satisfy the eikonal equation

(2.4) and the transport equation (2.5), respectively, identically with respect to ξ.
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Here, the term global solution means that the integral representation holds uniformly

away and on the caustics.

The integral (2.24) can be regarded as a continuous superposition of oscillatory

functions of the form (2.2). The underlying physical motivation is the fact that in

every small region in which the refraction index of the medium can be approximately

considered as constant, and the wave front as plane, the field can be represented as

a superposition of plane waves AeiκS , where the local amplitude A and the local

wavenumber ∇xS vary slowly in transition from one region to the next.

The phase S(x, ξ) parametrizes the Lagrangian submanifold Λt generated by the

corresponding Hamiltonian flow, in the sense that Λt is locally represented by (x,k) =

(x,∇xS(x, ξ)) . In the language of microlocal analysis, the representation (2.24) de-

fines a Lagrangian distribution on Λ, which for large κ is an asymptotic solution

(compound asymptotics) of the Helmholtz equation (see the book by Guilllemin and

Sternberg [GS] for a detailed but rather technical exposition of this technique). In

this sense, the construction of an asymptotic expansion in the form (2.24) is “equiva-

lent” with the construction of the Lagrangian submanifold Λ. Near caustics S(x, ξ) is

a multivalued function and, in general, it cannot be derived by integration along the

bicharacteristics by simply applying (2.14). Representation formulae for the phase

function S(x, ξ) are constructed, for each caustic which is generated from the particu-

lar ray system (different caustics may appear for the same Hamiltonian with different

initial data), by appealing, in general, to the methods of singularity theory (see, e.g.,

[AVH]). For a simple fold caustic this construction is relatively simple, and we briefly

present it in the next section.

First of all, in the case of single-phase geometrical optics, we can take S(x, ξ) =

φ(x)−ξ2 . Then, ∂ξS(x, ξ) = −2ξ , and there is only a simple stationary point ξ = 0.

By the standard stationary phase lemma (see, e.g., [BH], p. 219), the oscillatory

integral (2.24) reduces asymptotically to (2.2). If there are more than one simple

stationary points ξj(x) , that is, ∂ξS(x, ξj(x)) = 0 and ∂2
ξS(x, ξj(x)) 6= 0 , we obtain
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the asymptotic expansion

u(x, κ) ∼
j=J∑

j=1

Aj
0(x)eiκSj(x) . (2.25)

Here

Sj(x) = S(x, ξj(x)) , (2.26)

solve the eikonal equation (2.4), and

Aj
0(x) = e

iπ
4
(1+sgn∂2

ξ
S(x,ξj(x))) A(x, ξj(x))√

|∂2
ξS(x, ξj(x))|

, (2.27)

solve the zero-order transport equation (2.5).

Note that the existence of many stationary points ξj(x) , j = 1, · · · , J for some

fixed point x, means that from this point pass J rays, and Sj(x) , Aj
0(x) are the phase

and the amplitude computed by integrating the eikonal and the transport equations

along the j−th ray passing from x. The summation in (2.25) extends over all the

rays, a fact which implies that the principal asymptotic contribution to the wavefield

is just the superposition of the individual geometric (WKB) wavefields, and there no

significant interference effects between these waves. However, the above picture is

not valid whenever ∂2
ξS(x, ξj(x)) = 0 , i.e. for the stationary points of multiplicity

greater than one. In this case, a modified stationary phase lemma ([BH], p. 222, [Bor],

[CFU]) must be applied in order to obtain the correct expansion. The appearance of

many stationary points which coalesce, is associated with the formation of caustics

and the interference effects between the local geometrical waves cannot be ignored,

thus making the modal structure of the wavefield important within a boundary layer

adjacent to the caustic.

2.3.2 Phase functions for smooth caustic (folds)

We start by stating and briefly describing the proof of the following basic proposition

which can be found in the book by Guillemin & Sternberg ([GS], p.431, Proposition

6.1).
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Proposition 2.3.1 Near a smooth caustic (fold), the phase function has the form

S(x, ξ) = φ(x) + ξρ(x) − ξ3

3
, (2.28)

and the amplitude admits of the decomposition

A(x, ξ) = g0(x) + ξg1(x) + h(x, ξ)
(
ρ(x) − ξ2

)
, (2.29)

where h(x, ξ) is a smooth function, and ρ(x) − ξ2 = ∂ξS(x, ξ) .

Substituting (2.28) and (2.29) into (2.24), integrating the first two terms, and

estimating by the standard stationary phase lemma the contribution of the third

term, we obtain the following uniform asymptotic expansion

u(x) =
√

2πκ
1
6e

iπ
4 eiκφ(x)

(
g0(x)Ai

(
−κ 2

3ρ(x)
)

+ iκ−
1
3 g1(x)Ai′

(
−κ 2

3ρ(x)
))

+O(κ−1) ,

(2.30)

κ→ ∞ , where Ai(·) is the Airy function.

Now, by inserting the asymptotic expansions of the Airy functions for large neg-

ative arguments (see, e.g., [Leb]) into (2.30), we find for κ → ∞ and ρ 6= 0 , the

following geometrical-optics expansion of the field

u(x) =
1√
2

((
g0(x) + g1(x)

√
ρ(x)

)
ρ−

1
4 eiκΦ+(x)+

(
g0(x) − g1(x)

√
ρ(x)

)
ρ−

1
4eiκΦ−(x)+ iπ

2

)

(2.31)

where

Φ±(x) = φ(x) ± 2

3
ρ

3
2 (x) . (2.32)

In order to define the Kravtsov-Ludwig amplitude and phases φ, ρ, g0 and g1, we

apply the so-called asymptotic matching principle, which states that the expansion

(2.31) must coincide with the WKB expansion

u(x) = A+(x)eiκS+(x) + A−(x)eiκS−(x) , (2.33)
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away from the caustic and for large frequencies. This principle implies that

1√
2

(
g0(x) + g1(x)

√
ρ(x)

)
ρ−1/4 = A+(x) , (2.34)

1√
2

(
g0(x) − g1(x)

√
ρ(x)

)
ρ−1/4e

iπ
2 = A−(x) , (2.35)

and

Φ±(x) = S±(x) , (2.36)

and therefore we obtain

g0(x) =
ρ

1
4√
2

(A+(x) − iA−(x)) , (2.37)

g1(x) =
ρ−

1
4√
2

(A+(x) + iA−(x)) , (2.38)

and

φ(x) =
1

2

(
S+(x) + S−(x)

)
and ρ(x) =

(
3

4

(
S+(x) − S−(x)

))2/3

. (2.39)

Note that near the caustic, from any point M near the fold pass two rays (see

Figure 2.1). The subscript (−) (respectively (+)) indicates the ray which arrives at

M directly from the initial manifold (respectively, after “reflection” from the caustic),

and A± are the principal geometrical amplitudes A0 along the (±) rays.

( − ) M

( + )

initial manifold

fold

Figure 2.1: Initial manifold, rays & caustic
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The geometrical amplitudes A±(x) solve the transport equations (2.5), and ac-

cording to (2.21) they are given by

A±(x) =
α0(θ±)√
J±(x)

, (2.40)

where θ± = θ±(x) are the values of the parameter at the initial manifold corresponding

to the rays (±) passing from M, α0(θ±) are the corresponding initial amplitudes, and

J±(x) are the values of the Jacobian at the point x calculated along the (±) rays.

The value of the square root
√
J± is given by the formula

√
J± =

√
| J± |ei π

2
γ± where

γ+ = 1 and γ− = 0 . Note that γ± is the Maslov trajectory index, and it counts the

number of tangencies of the rays with the caustic along their course from the points

x0(θ±) on the initial manifold to the point M. Moreover, the geometrical phases S±(x)

can be computed by integration along the rays according to (2.14).

On the basis of the asymptotic formula (2.30), Ludwig [Lu] has drawn the following

qualitative picture of the wave field near the fold:

i) At points in the illuminated zone whose distance from the caustic is small compared

with κ−
2
3 , the predictions of geometrical optics are correct to order −1

2
.

ii) The intensity of the field on the caustic is large but finite (of order κ
1
6 ).

iii) In the shadow zone there is an illuminated strip (penumbra) of width of the order

κ
2
3 . It must be emphasized here that WKB method fails to predict any penumbra

as the shadow zone is devoid of classical rays.

It is finally interesting to note that we can construct the equations satisfied by the

functions φ, ρ, g0 and g1 entering the Kravtsov-Kudwig formula (2.30). For this, we

substitute this formula into the Helmholtz equation (2.1), and we ask for the equation

to be asymptotically valid for large κ. This procedure leads to the following system

for the Kravtsov-Ludwig phases

(∇xφ)2 + ρ (∇xρ)
2 = η2(x) , (2.41)

∇xφ · ∇xρ = 0 . (2.42)

The system for g0, g1 is rather complicated and it is given in [Lu], [KO].
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2.4 Example: Plane wave incident on linear layer

We consider the two-dimensional Helmholtz equation

∆U(x) + κ2
0η

2(z)U(x) = 0 , x = (y, z)

in a linearly stratified medium occupying the strip 0 < z < h, with refraction index

(see Figure 2.2)

η2(z) = µ0 + µ1z

which increases with depth z (µ1 > 0).

A plane wave of the form

U(y, h) = exp(iκ0y sinψ)

arrives at the boundary z = h, with angle ψ (0 < ψ < π/2) with respect to the

vertical direction z.

0

z

h

( − ) ( + )

caustic

(y,z)

y

Figure 2.2: Caustic for a linear layer

For this medium, the Hamiltonian function is



CHAPTER 2. GEOMETRICAL OPTICS 22

H(y, z, ky, kz) =
1

2

(
|k|2 − η2(z)

)
, k = (ky, kz)

and the equations of the rays are given by the Hamiltonian system

dy

dt
= ky , y(0) = ξ

dz

dt
= kz , z(0) = h

dky

dt
= 0 , ky(0) = η0 sinψ

dkz

dt
= −µ1

2
, kz(0) = −η0 cosψ . (2.43)

Solving the above system, we find the parametric equations of the rays

z =
µ1

4
t2 − η0t cosψ + h

y = ξ + η0t sinψ . (2.44)

The Jacobian of the ray transformation is given by

J =
1

η0 cosψ

∣∣∣∣∣

∂y
∂t

∂z
∂t

∂y
∂ξ

∂z
∂ξ

∣∣∣∣∣ =
1

η0 cosψ

(
−µ1

2
t+ η0 cosψ

)
, (2.45)

and it vanishes on the caustic given by

zc = h− 1

µ1

η0
2 cos2 ψ . (2.46)

From the equations of the rays (2.44), and for any given point (y, z < h), we find

two values of the parameter t, that is

t+(z) =
2

µ1

(
η0 cosψ +

√
η0

2 cos2 ψ + µ1(z − h)
)
, (2.47)

t−(z) =
2

µ1

(
η0 cosψ −

√
η0

2 cos2 ψ + µ1(z − h)
)
, (2.48)
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and the corresponding initial positions

ξ+(y, z) = y − 2

µ1

η0 sinψ
[
η0 cosψ +

√
η0

2 cos2 ψ + µ1(z − h)
]
, (2.49)

ξ−(y, z) = y − 2

µ1
η0 sinψ

[
η0 cosψ −

√
η0

2 cos2 ψ + µ1(z − h)
]
. (2.50)

This means that from every given point (y, z), at the times t± pass two rays

emanating from the points ξ± on the illuminated boundary z = h. Note that for

z = zc , we have t+(zc) = t−(zc) =: tc .

Using now the equation (2.14) we compute the phase function

S(t) =
∫ t

0
η2(z(τ))dτ + S(y(0), z(0))

=
∫ t

0
(µ0 − µ1z(τ))dτ + S(ξ, h)

=
µ1

2

12
t3 − µ1η0 cosψ

2
t2 + (µ0 + µ1h)t+ η0ξ sinψ ,

and substituting the values of t+ , t− , ξ+ , ξ− , we obtain the geometrical phases

S+(y, z) = −6(µ0 + µ1h)(α− β) + 6α2β − 4α3 − 2β3

3µ1

+ η0ξ+ sinψ , (2.51)

S−(y, z) = −6(µ0 + µ1h)(α + β) − 6α2β − 4α3 + 2β3

3µ1
+ η0ξ− sinψ (2.52)

where

α = −η0 cosψ , β =
√
η0

2 cos2 ψ + µ1(z − h) . (2.53)

Using the equations (2.39), we compute the Kravtsov-Ludwig coordinates (modi-

fied phases)

φ(y) =
2

3µ1
η3

0 cos3 ψ + η0y sinψ (2.54)

and

ρ(z) =
( 1

µ1

)2/3

(α2 + µ1(z − h)) . (2.55)
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The Jacobians J± along the two rays passing from the point (y, z), are given by

J+ = − 1

η0 cosψ

√
η0

2 cos2 ψ + µ1(z − h) , (2.56)

J− =
1

η0 cosψ

√
η0

2 cos2 ψ + µ1(z − h) (2.57)

and the corresponding principal geometrical amplitudes are

A+ = −i(η0 cosψ)1/2
[
η2

0 cos2 ψ + µ1(z − h)
]−1/4

, (2.58)

A− = (η0 cosψ)1/2
[
η2

0 cos2 ψ + µ1(z − h)
]−1/4

. (2.59)

Therefore the modified amplitudes (2.37) are given by

g0 = −i
√

2(η0 cosψ)1/2
( 1

µ1

)1/6

, g1 = 0 . (2.60)

It is then easy to check that the Kravtsov-Ludwig formula coincides in the layer

0 < z < h with the analytical solution of the Dirichlet boundary value problem in

the half space z < h. In fact, by separation of variables we look for solutions of the

form U(y, z) = exp(iκ0y sinψ) u(z) , and it follows that u(z) satisfies the ordinary

equation u′′(z) + κ2
0(µ0 + µ1z − sin2 ψ)u(z) = 0 which using the changes of variables

Z = µ0 + µ1z − sin2 ψ and x = Zε1/3 , ε = (µ1/κ0)
2 , is transformed to the Airy

equation

ε2uε′′(x) + xuε(x) = 0 , x ∈ R . (2.61)

In the sequel we are interested for the high-frequency regime, that is when ε is

small, and we study as a model problem the geometrical optics of the semiclassical

Airy equation (2.61).
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2.5 Geometrical optics for the semiclassical Airy

equation

According to the WKB method we are looking for asymptotic solution of the semi-

classical Airy equation

ε2uε′′(x) + xuε(x) = 0 , x ∈ R (2.62)

in the form

uε(x) = A(x) eiS(x)/ε

where S(x) is a real-valued phase and A(x) is the complex-valued principal amplitude

(from now on we drop the subscript in the principle amplitude A0), solving the eikonal

equation

(S ′(x))2 = x (2.63)

and transport equation (2.5), respectively.

The Hamiltonian (2.7) is given by

H(x, k) =
1

2
(k2 − x) , (2.64)

and the corresponding Hamiltonian system (2.8) has the simple form

dx

dt
= Hk = k ,

dk

dt
= −Hx =

1

2
. (2.65)

We assume that the rays are launched from a point source at x = x0, where x0 > 0,

therefore (2.65) must satisfy the initial conditions

x(0) = x0 , k(0) = k0 . (2.66)
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Solving the system (2.65) with the above initial conditions we obtain the bichar-

acteristics

x(t; x0, k0) = t2/4 + k0t+ x0 , k(t; x0, k0) = t/2 + k0 . (2.67)

Now for constructing the rays, since k0 must satisfy the condition H(x0, k0) = 0,

we have k0 = ±√
x0 . The positive sign (k0 = +

√
x0) corresponds to the ray

xR(t; x0) = t2/4 + t
√
x0 + x0 (2.68)

moving from x0 towards x = +∞ , while the negative one (k0 = −√
x0) to the ray

xL(t; x0) = t2/4 − t
√
x0 + x0 (2.69)

moving from x0 towards the turning point x = 0 (which is the caustic of the problem

as we will see in the sequel).

The Jacobian of the right-moving ray xR is

JR(t; x0) =
∂xR

∂x0

= 1 + t/2
√
x0 , (2.70)

and it is always positive. However, the Jacobian of the left-moving ray xL ,

JL(t; x0) =
∂xL

∂x0

= 1 − t/2
√
x0 , (2.71)

vanishes for t = tc := 2
√
x0 corresponding to xL(tc; x0) = 0 . Therefore, x = 0 is

the caustic for the left-moving ray and it coincides with the turning point of the Airy

equation.

We now observe that for any x > x0 the equation xR(t; x0) = x has the single

solution tR = 2(
√
x−√

x0) , while for 0 < x < x0 the equation xL(t; x0) = x has two

solutions

t− = 2(
√
x0 −

√
x) , t+ = 2(

√
x0 +

√
x) (2.72)
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and the corresponding values of the Jacobian JL are

J− =

√
x√
x0

> 0 , J+ = −
√
x√
x0

< 0 . (2.73)

The arrival time t− and the Jacobian J− correspond to the ray left-moving ray

from the source, while t+ and J+ correspond to the ray reflected from the caustic

x = 0 .

Moreover, using the formula (2.14) and imposing the condition that the geometric

phase of the rays emitted from the source must vanish at the source point (see Avila

& Keller [AK] for a detailed analysis of the geometrical optics with point sources),

we obtain the geometric phases

S±(x) = ±2

3
x3/2 +

2

3
x

3/2
0 , 0 < x < x0 , (2.74)

and

SR(x) =
2

3
(
√
x− 2

√
x0)

3 +
2

3
x

3/2
0 , x > x0 . (2.75)

Note that SR(x0) = 0 , S−(x0) = 0 , that is the rays emitted by the source

satisfy the Avila-Keller condition, while S+(x0) = 4
3
x

3/2
0 for the reflected ray and

S+(x = 0) = S−(x = 0) = 2
3
x

3/2
0 .

Concerning the geometry of the ray system, obviously the bicharacteristics (2.67)

lie on the Lagrangian manifold Λ = {(x, k) : x = k2} since k2 = (t/2 + k0)
2 =

x+ (k2
0 − x0) = x , and for k = S ′

±,R(x) we have in fact H(x, k) = 0 (see Figure 2.3).

The principal amplitudes A±(x; x0) of the WKB waves along the rays in the region

0 < x < x0 are found from (2.21) using the corresponding values of the Jacobian, and

they are given by

A− =
α0√
J−

=
α0x

1/4
0

x1/4
, A+ =

α0√
J+

= −iα0x
1/4
0

x1/4
. (2.76)

Then, the multiphase WKB solution in the region 0 < x < x0 is given by
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Figure 2.3: Lagrangian manifold for the semiclassical Airy equation

uε
WKB(x) = A+e

iS+(x)/ε + A−e
iS−(x)/ε

= α0x
1/4
0 ei 1

ε
2
3
x
3/2
0

(
−ix−1/4ei 1

ε
2
3
x3/2

+ x−1/4e−i 1
ε

2
3
x3/2

)
. (2.77)

Here α0 is the WKB amplitude of the wave at the source and it is equal to α0 =

e−1/4x
−1/2
0 /2 . This value follows from the asymptotics of the fundamental solution

of the semiclassical Airy equation which are presented in Appendix A, in particular

by comparing (2.77) with (D.5). The same value would be derived by applying the

Avila-Keller technique for the WKB approximation of fundamental solutions near the

source point.

Finally the Kravtsov-Ludwig solution is found from the formula (2.30). To apply

this formula we compute the Kravtsov-Ludwig coordinates (2.39) and the modified

amplitudes (2.37),

φ(x) =
1

2

(
S+(x) + S−(x)

)
=

2

3
x

3/2
0 (2.78)
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ρ(x) =

[
3

4

(
S+(x) + S−(x)

)]2/3

= x (2.79)

and

g0(x) =
1√
2
ρ1/4(x)

(
A+(x) − iA−(x)

)
= − 1√

2
eiπ/4x

−1/4
0 (2.80)

g1(x) =
1√
2
ρ1/4(x)

(
A+(x) + iA−(x)

)
= 0 . (2.81)

Then the KL uniform solution in the region 0 < x < x0 is given by

uε
KL(x) = π1/2e−iπ/2

(
x
−1/4
0 ei 1

ε
2
3
x
3/2
0

)
ε−1/6Ai

(
− x

ε2/3

)
(2.82)

and it coincides with the fundamental solution (D.4) derived in Appendix D.



Chapter 3

Wigner functions and its

asymptotics

3.1 The Wigner transform and basic properties

For any smooth complex valued function ψ(x) rapidly decaying at infinity, say ψ ∈
S(R) , the Wigner transform of ψ is a quadratic transform defined by

W [ψ](x, k) = W (x, k) =
1

2π

∫

R
e−iky ψ(x+

y

2
)ψ(x− y

2
) dy (3.1)

where ψ is the complex conjugate of ψ. The Wigner transform is defined in phase

space Rxk , it is real, and it has, among others, the following remarkable properties.

First, the integral of W (x, k) wrt. k gives the squared amplitude (energy density)

of ψ, ∫

R
W (x, k)dk = |ψ(x)|2 . (3.2)

In fact, we have

∫

R
W (x, k)dk =

1

2π

∫

R

∫

R
e−iky ψ(x+

y

2
)ψ(x− y

2
) dy dk

=
∫

R

(
1

2π

∫

R
e−iky dk

)
ψ(x+

y

2
)ψ(x− y

2
) dy

=
∫

R
δ(y)ψ(x+

y

2
)ψ(x− y

2
) dy

30
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= ψ(x)ψ(x) = |ψ(x)|2. (3.3)

where we have used the Fourier transform δ(y) = 1
2π

∫
R e

−iky dk δ of Dirac’s measure.

Second, the first moment of W (x, k) wrt. to k gives the (energy) flux of ψ,

∫

R
kW (x, k) dk =

1

2i

(
ψ(x)ψ′(x) − ψ(x)ψ

′

(x)
)

= F(x) . (3.4)

In fact, we have

∫

R
kW (x, k) dk =

∫

R

(
1

2π

∫

R
ke−iky dk

)
ψ(x+

y

2
)ψ(x− y

2
) dy

= −1

i

∫

R
δ
′

(y)ψ(x+
y

2
)ψ(x− y

2
) dy

=
1

i

∫

R
δ(y)

(
1

2
ψ

′

(x+
y

2
)ψ(x− y

2
) − 1

2
ψ′(x− y

2
)ψ(x+

y

2
)
)
dy

=
1

2i

(
ψ(x)ψ

′

(x) − ψ(x)ψ′(x)
)
. (3.5)

The x to k duality in phase space can be recognized using the alternative definition

W (x, k) =
∫

R
eipx ψ̂(−k − p

2
) ψ̂(−k +

p

2
) dp , (3.6)

where ψ̂(k) = 1
2π

∫
R e

ikz ψ(z) dz denotes the Fourier transform of ψ.

In fact, the definitions (3.1) and (3.6) are equivalent, since we have

W (x, k) =
1

2π

∫

R
e−iky ψ(x+

y

2
)ψ(x− y

2
) dy

=
1

2π

∫

R
e−iky

∫

R
e−iz(x+ y

2
) ψ̂(z) dz

∫

R
e−iw(x− y

2
) ψ̂(w) dw dy

=
1

2π

∫

R
e−iky

∫

R
e−iz(x+ y

2
) ψ̂(z) dz

∫

R
eiw(x− y

2
) ψ̂(w) dw dy

=
∫

R

∫

R

(
1

2π

∫

R
e−iy(k+ z

2
+ w

2
) dy

)
e−i(z−w)x ψ̂(z) ψ̂(w) dz dw

=
∫

R

∫

R
δ(k +

z

2
+
w

2
) e−i(z−w)x ψ̂(z) ψ̂(w) dz dw

= 2
∫

R
e−i2(k+z)x ψ̂(z) ψ̂(−2k − z) dz

=
∫

R
eipx ψ̂(−k − p

2
) ψ̂(−k +

p

2
) dp . (3.7)
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As we have explained in the previous chapter, in the case of high frequency wave

propagation, it is useful to use WKB wave functions of the form

ψε(x) = A(x) eiS(x)/ε , (3.8)

where S(x) is a real-valued and smooth phase, and A(x) is a real-valued and smooth

amplitude of compact support or at least rapidly decaying at infinity. The Wigner

transform of ψε(x) is the Wigner function

W (x, k) := W [ψε](x, k) =
1

2π

∫

R
e−iky e

i
ε
S(x+ y

2
)A(x+

y

2
) e−

i
ε
S(x− y

2
)A(x− y

2
) dy , (3.9)

but W (x, k) does not converge to a nontrivial limit, as ε → 0 . However, it can be

shown that the rescaled version of W (x, k) , that we call the scaled Wigner transform

of ψε,

W ε(x, k) =
1

ε
W
(
x,
k

ε

)
(3.10)

converges weakly as ε→ 0 to the limit Wigner distribution [PR], [LP]

W 0(x, k) = |A(x)|2 1

2π

∫

R
e−i(k−S′(x))y dy = |A(x)|2δ(k − S ′(x)) , (3.11)

which is a Dirac measure concentrated on the Lagrangian manifold k = S ′(x) , asso-

ciated with the phase of the WKB wavefunction, and it is the correct weak limit of

W ε (see, e.g., Lions & Paul [LP]).

Indeed, proceeding formally, we rewrite W ε in the form

W ε(x, k) =
1

2π

∫

R
e−iky A(x+

εy

2
)A(x− εy

2
) e

i
ε [S(x+ εy

2
)−S(x− εy

2
)] dy ,

and we expand in Taylor series about x both A(x ± εy
2
) and S(x ± εy

2
) . Then, we

have

A(x+
εy

2
)A(x− εy

2
) =

(
A(x) +

ε

2
yA

′

(x) + . . .
)(

A(x) − ε

2
yA

′

(x) + . . .
)

= A(x)A(x) +O(ε)

= |A(x)|2 +O(ε) ,
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and

S(x+
εy

2
) − S(x− εy

2
) =

(
S(x) +

ε

2
yS

′

(x) +
ε2

8
y2S

′′

(x) + . . .

)

−
(
S(x) − ε

2
yS

′

(x) +
ε2

8
y2S

′′

(x) − . . .

)

= εyS
′

(x) +O(ε3) .

Retaining only terms of order O(1) in A and O(y) in S, and integrating the expansion

termwise we obtain that W ε(x, k) “converges” to (3.11).

More precisely, if Q is any test function in S(R2
xk) , then

∫

R

∫

R
Q(x, k)W ε(x, k) dx dk →

∫

R
Q(x, S

′

(x)) |A(x)|2dx .

The above observations suggest that the scaled Wigner transform

W ε(x, k) =
1

ε
W
(
x,
k

ε

)

=
1

2π

∫

R
e−iky ψε(x+

εy

2
)ψ

ε
(x− εy

2
) dy , (3.12)

is the correct phase-space object for analyzing high frequency waves.

3.2 Asymptotics of the Wigner function for a WKB

wave function

Consider now the (scaled) Wigner function

W ε(x, k) =
1

πε

∫

R
ψε(x+ σ)ψ

ε
(x− σ) e−

i
ε
2kσ dσ (3.13)

of the WKB wave function

ψε(x) = A(x) eiS(x)/ε (3.14)

where we assume that A, S are smooth and real-valued, and S ′(x) is globally concave.
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We want to construct an asymptotic expansion of W ε(x, k), that is the oscillatory

integral

W ε(x, k) =
1

πε

∫

R
D(σ, x) ei 1

ε
F (σ,x,k) dσ , (3.15)

where

D(σ, x) = A(x+ σ)A(x− σ) (3.16)

is the amplitude, and

F (σ, x, k) = S(x+ σ) − S(x− σ) − 2kσ (3.17)

is the Wigner phase. Asymptotics of such integrals are usually constructed by apply-

ing the method of stationary phase.

For this purpose, we first compute the critical points of the phase F (σ; x, k), that

is the roots of

Fσ(σ; x, k) = S ′(x+ σ) + S ′(x− σ) − 2k = 0 (3.18)

Λ

T

Q

R
P

x x σ+x- σ0 0

Figure 3.1: Berry’s chord

By the geometrical picture of Figure 3.1 (Berry’s chord construction; see the

seminal paper by Berry [Ber]), we conclude that (3.18) has a pair of symmetric roots

±σ0(x, k) such that the point P = (x, k) be the middle of a chord QR having its ends

on the Lagrangian (“manifold”) curve Λ = {k = S ′(x)} .

We observe that as P moves toward Λ the chord QR tends to the tangent of Λ
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and σ0(x, k) → 0 . Therefore, the two critical points of (3.18) tend to coalesce to the

double point σ = 0 as P moves towards Λ.

In fact, we have

Fσσ(σ, x, k) = S ′′(x+ σ) − S ′′(x− σ) (3.19)

and

Fσσσ(σ, x, k) = S ′′′(x+ σ) + S ′′′(x− σ) (3.20)

and therefore

Fσσ(σ = 0, x, k) = 0 , Fσσσ(σ = 0, x, k) = 2S ′′′(x) 6= 0 (3.21)

which assert that σ = 0 is a double stationary point of F .

We would like therefore to apply a uniform stationary formula like that derived

in Appendix C which holds even when the stationary points coalesce. For this we

need to identify the parameter α of the uniform stationary formula, which controls

the distance between the stationary points of the Wigner phase. In order to do this

we expand F about σ = 0 ,

F (σ; x, k) = S(x) + σS ′(x) +
σ2

2
S ′′(x) +

σ3

6
S ′′′(x) + ...

−
(
S(x) − σS ′(x) +

σ2

2
S ′′(x) − σ3

6
S ′′′(x) + ...

)
− 2kσ

= −2(k − S ′(x))σ +
1

3
S ′′′(x)σ3 +O(σ5) .

It becomes evident that for P lying close enough to Λ, the parameter α has to be

identified as

α = α(x, k) := k − S ′(x) . (3.22)

Then, for any fixed x we rewrite the Wigner phase F in the form

F (σ;α, x) = S(x+ σ) − S(x− σ) − 2σ(α + S ′(x))

=
(
S(x+ σ) − S(x− σ) − 2σS ′(x)

)
− 2σα , (3.23)
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and we have

Fσσ(σ = 0; x, k) = 0 , Fσσσ(σ = 0; x, k) = 2S ′′′(x) , Fσα(σ = 0;α, x) = −2 .

(3.24)

These are exactly the conditions in Appendix C which are needed for applying the

uniform asymptotic formula.

Then, the asymptotic formula of Appendix C (B0 vanishes since D is even wrt σ)

gives the following approximation of the Wigner function

W ε(x, k) ≈ 2πA0(x, k)ε
2/3Ai

(
−ε2/3ξ(x, k)

)
(3.25)

where

A0(x, k) = 2−1/2ξ1/4 2D(σo(x, k), x)

| Fσσ(σ0(x, k); x, k) |1/2
, (3.26)

ξ(x, k) =

[
3

2

(
S(x+ σ0) − S(x− σ0) − 2kσ0

)]2/3

(3.27)

and

Fσσ(σ = σ0; x, k) = S ′′(x+ σ0) − S ′′(x− σ0) < 0 . (3.28)

We now further approximate the various quantities entering (3.25) as α → 0 .

First of all, in this approximation

ξ ≈ −Fσα

(
Fσσσ

2

)−1/3

α

= 2(k − S ′(x))

(
2S ′′′(x)

2

)−1/3

= 2(S ′′′(x))−1/3(k − S ′(x)) . (3.29)

Furthermore we approximate

Fσσ(σ = σ0; x, k) = S ′′(x+ σ0) − S ′′(x− σ0) ≈ 2σ0(x, k)S
′′′(x) (3.30)
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and since σ0 is approximated by

σ0 ≈ (−2Fσσσ Fσα α)1/2(Fσσσ)−1

= (−2 · 2S ′′′(x)(−2)(k − S ′(x))1/2(2S ′′′(x))−1

=

(
2

S ′′′(x)
(k − S ′(x))

)1/2

(3.31)

when α → 0 , we have

Fσσ(σ0, x, k) ≈ 2σ0S
′′′(x) = 2

[
2(k − S ′(x))

S ′′′(x)

]1/2

S ′′′(x) , (3.32)

and then
ξ1/4

| Fσσ |1/2
=

(
2

| S ′′′(x) |

)1/3
1

21/2+1/3
. (3.33)

Moreover, since D(σo; x) = D(−σ0; x) , it follows

B0 = 0 (3.34)

and using the approximation (3.29) of ξ, we have

A0 =
1

21/3

(
2

| S ′′′(x) |

)1/3

D(σ0(x, k), x) . (3.35)

Finally, using (3.25) with

F (σ = 0; x, k) = 0 , B0 = 0

and ξ, A0 given by (3.29), (3.35), respectively, we arrive to the Airy-type approxima-

tion of (3.15),

W̃ ε(x, k) ≈ 22/3

ε2/3

(
2

| S ′′′(x) |

)1/3

D(σo(x, k), x) ·

· Ai

(
−22/3

ε2/3

(
2

| S ′′′(x) |

)1/3

(k − S ′(x))

)
(3.36)
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which is Berry’s semiclassical approximation of W ε, and we call it the semiclassical

Wigner function (of the WKB function). Note that (3.36) is an approximation of

(3.25) which holds locally near the manifold (α = k − S ′(x) very small).



Chapter 4

Wignerization of two-phase WKB

solutions

In this chapter we study the structure of the Wigner transform of wave functions

whose high-frequency asymptotics are described by two-phase WKB solutions, which

is typical for wave fields around fold caustics. In order to start understanding the

related asymptotic mechanisms, we first investigate the Wigner transform of the Airy

function and its relation to the Wigner transform of the WKB asymptotic solution

of the semiclassical Airy equation.

More precisely, we first compute the exact Wigner transform W ε
Ai (see (4.7) below)

of the fundamental solution

uε(x) = π1/2e−iπ/2
(
x
−1/4
0 ei 1

ε
2
3
x
3/2
0

)
ε−1/6Ai

(
−ε−2/3x

)
, (4.1)

(cf eq. (D.4)) of the semiclassical Airy equation. Recall that the Kravtsov-Ludwig

formula (2.82) coincides with (4.1) in this case.

In the sequel we compute the asymptotics of the Wigner transform of the WKB

approximation (2.77) of the fundamental solution, using the semiclassical Wigner

function developed in previous chapter, and we show that this approximation coin-

cides with the exact Wigner transform (4.7) below.

39
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4.1 Wigner transform of the Airy function

We start with the integral representation

ψε(x) := Ai(−ε−2/3x) =
1

2π

∫

R
ei( ρ3

3
−ε−2/3xρ) dρ , (4.2)

of the Airy function. The scaled Wigner transform W ε of ψε is given by

W ε[ψε](x, k) =
1

πε

∫

R
ψε(x+ σ)ψ

ε
(x− σ) e−

i
ε
2kσ dσ (4.3)

and therefore, if we substitute (4.2) and we put λ = ε−2/3, we have

W ε[ψε](x, k) = (2π)−3
∫

R

∫

R
ei 1

3
(ρ3−σ3) e−iλx(ρ−σ)

∫

R
e−i(k+λε(ρ+σ)/2)τ dτ dρ dσ

= (2π)−2 2ε−1/3
∫

R

∫

R
ei 1

3
(ρ3−σ3) e−iλx(ρ−σ) δ

(
ρ+ σ + 2kε−1/3

)
dρ dσ ,

where Dirac’s mass is expressed through the Fourier transform

δ(z) =
1

2π

∫

R
e−izτ dτ . (4.4)

On the support of Dirac’s mass σ = −(ρ + 2ε−1/3k), and ρ − σ = 2(ρ + u) with

u = ε−1/3k , so we have

ρ3 − σ3 = 2ρ3 + 6uρ2 + 12u2ρ+ 8u3 .

After some straightforward algebra, and by the linear change ρ = 2−1/3r − u , we

obtain

W ε[ψε](x, k) =
22/3

2π
ε−1/3

∫

R
e

i

(
τ3

3
+2−1/3(2u2−2λx)τ

)

dτ , (4.5)

which by the integral representation (4.2) gives the Wigner transform of the Airy

function

W ε[ψε](x, k) =
1

21/3ε1/3π
Ai
(
22/3ε−2/3(k2 − x)

)
. (4.6)

Then, the Wigner transform of the fundamental solution (4.1) is given by
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W ε
Ai(x, k) := W ε[uε](x, k) =

1

21/3ε2/3
x
−1/2
0 Ai

(
22/3ε−2/3(k2 − x)

)
. (4.7)

By employing the asympotics of the Airy function we see that in the interior of

the Lagrangian manifold x > k2, W ε[uε] oscillates at the scale ε,

W ε[uε](x, k) ≈ 1√
2π

ε−1/2x
−1/2
0 (x− k2)

−1/4
cos

(
4

3ε
(x− k2)3/2 − π

4

)
, (4.8)

while at the exterior of the manifold (which is connected to the shadow region) x < k2,

W ε[uε] decays exponentially

W ε[uε](x, k) ≈ 1

23/2
√
π
ε−1/2x

−1/2
0 (k2 − x)

−1/4
e−

4
3ε

(k2−x)3/2

. (4.9)

This asymptotic picture suggests the existence of a transition boundary layer

with thickness O(ε2/3) around the Lagrangian manifold x = k2 , inside which the

wave field is described by Airy structure and where most of the energy of the wave

field is concentrated.

The weak limit of W ε[uε] as ε→ 0 , is computed by the formula

1

ε
F
(
z

ε

)
→ δ(z)

∫

R
F (y) dy , ε→ 0 , (4.10)

and, since ∫

R
Ai(y)dy = 1 ,

it is given by

W 0(x, k) = x
−1/2
0 2−1/3δ

(
22/3(k2 − x)

)
=

1

2x
1/2
0

δ(k2 − x) . (4.11)

Note that in the illuminated zone x > 0 ,

W 0(x, k) =
1

2x
1/2
0

δ(k2 − x) =
1

4x
1/2
0 x1/2

(
δ(k − x1/2) + δ(k + x1/2)

)
, (4.12)

that is, W 0 splits to two Dirac masses supported on the branches k = ±x1/2 . This
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splitting fails on the caustic x = 0 , while in the shadow zone x < 0 the limit Wigner

W 0 is weakly zero since k2 − x > 0 .

On the other hand we can compute the limit Wigner distribution of the (two-

phase) WKB expansion of the fundamental solution (2.77) of the semiclassical Airy

equation (cf also (D.5)),

uε
WKB(x) = A+(x) eiS+(x)/ε + A−(x) eiS−(x)/ε

= α0x
1/4
0 ei 1

ε
2
3
x
3/2
0

(
−ix−1/4ei 1

ε
2
3
x3/2

+ x−1/4 e−i 1
ε

2
3
x3/2

)
,

By (3.11) we have the weak limits

W ε

[
A±(x)eiS±(x)/ε

]
→ | A±(x) |2δ(k − S ′

±(x)) , ε→ 0 .

Moreover, the cross Wigner transform

W ε

[
A+(x) eiS+(x), A−(x) eiS−(x)

]
=

= (πε)−1
∫
RA+(x+ σ)A−(x− σ) ei 1

ε
(S+(x+σ)−S+(x−σ)−2kσ) dσ , (4.13)

converges weakly to zero, since following the same reasoning as for proving (3.11) by

expanding the phase and the amplitude in Taylor series wrt. σ, we get in front of the

integral the oscillatory term

ei 1
ε
(S±(x)−S∓(x)) ,

which weakly tends to zero as ε→ 0, for S ′
+(x) 6= −S ′

−(x) .

It then follow that

W ε[uε
WKB](x, k) → | A+(x) |2δ(k − S ′

+(x)) + | A−(x) |2δ(k − S ′
−(x))

=
1

4x
1/2
0 x1/2

(
δ(k − x1/2) + δ(k + x1/2)

)
, (4.14)

and, as it is anticipated for ε→ 0 , we derive that

W ε[uε
WKB](x, k) →W 0(x, k) . (4.15)
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4.2 Wigner transform of the WKB expansion for

the Airy equation

We have already constructed the WKB solution of the Airy equation in the form

uε
WKB(x) = A+(x) e

i
ε
S+(x) + A−(x) e

i
ε
S−(x) , (4.16)

where the phases S± and the amplitudes A± are given by (2.74) and (2.76),

S±(x) = ±2

3
x3/2 +

2

3
x0

3/2 ,

and

A+(x) = (−i)1
2
x−1/4e−iπ/4x0

−1/4 , A−(x) =
1

2
x−1/4e−iπ/4x0

−1/4 .

The scaled Wigner transform of uε
WKB is given by

W ε
WKB(x, k) =

1

πε

4∑

`=1

∫

R
D`(σ; x) e

i
ε
F`(σ;x,k) dσ =

4∑

`=1

W ε
` (x, k) (4.17)

where

W ε
` (x, k) =

∫

R
D`(σ; x) e

i
ε
F`(σ;x,k) dσ , ` = 1, .., 4 . (4.18)

The amplitudes and phases of the above four Wigner integrals are given by

D1(σ; x) = A+(x+ σ)A+(x− σ)

D2(σ; x) = A−(x+ σ)A−(x− σ)

D3(σ; x) = A+(x+ σ)A−(x− σ)

D4(σ; x) = A−(x+ σ)A+(x− σ) (4.19)

and

F1(σ; x, k) = S+(x+ σ) − S+(x− σ) − 2kσ (4.20)

F2(σ; x, k) = S−(x+ σ) − S−(x− σ) − 2kσ (4.21)
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F3(σ; x, k) = S+(x+ σ) − S−(x− σ) − 2kσ (4.22)

F4(σ; x, k) = S−(x+ σ) − S+(x− σ) − 2kσ . (4.23)

In the sequel we compute the stationary-phase asymptotic expansions of the

Wigner integrals W ε
` , using either the standard or the uniform formula according

to the structure of the stationary points in each case.

4.2.1 Stationary points of the Wigner phases

In the sequel we compute the stationary points of the Wigner phases in the illuminated

area x > 0 , since the real-valued phases S±(x) of the WKB solution have been

computed only in the illuminated region. It turns out that all real stationary points,

which give the main asymptotic contribution to the Wigner integrals, lie in the area

|σ| < x in which the Wigner phases are real. Outside this area, the stationary points

are imaginary and their contribution to the Wigner integrals is exponentially small.

Stationary points of the Wigner phase F1(σ; x, k) . The critical points of

F1(σ; x, k) are given by

F1σ(σ; x, k) = S ′
+(x+ σ) + S ′

+(x− σ) − 2k = 0 , (4.24)

that is

(x+ σ)1/2 + (x− σ)1/2 − 2k = 0 . (4.25)

For k < 0 we see that the phase F1(σ; x, k) has not critical points since (x±σ)1/2 >

0 , while for k > 0 we can see that the roots of (4.24) appear in symmetric pairs. In

fact, if we set σ = σR + iσI and substitute into (4.25) we have

(σR − 2k2)2 − σI
2 + 2iσI(σR − 2k2) = 4k2(x− σR) − 4k2σI i , (4.26)

and equating the real and imaginary parts to zero, we obtain

(σR − 2k2)2 − σI
2 − 4k2(x− σR) = 0 (4.27)
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σIσR = 0 . (4.28)

Thus we must consider the following cases.

Case 1 : σI = 0 . Then, σ = σR ∈ R and (4.27) gives

(x2 − σ2)1/2 = 2k2 − x , (4.29)

which implies the restriction x ≤ 2k2 . From the last equation we find that the real

critical points of F1 are

σ(x, k) = ±2|k|(x− k2)1/2 =: ±σ0(x, k) . (4.30)

Therefore, in the region k2 < x ≤ 2k2 F1 has two real stationary points, the

±σ0(x, k) = ±2|k|(x − k2)1/2 , which coalesce to σ(x, k) = 0 on the upper branch

of the Lagrangian manifold x = k2 . Now since

F1σσ(σ = ±σ0; x, k) =
1

2

(x∓ σ0)
1/2 − (x± σ0)

1/2

(x2 − σ2
0)

1/2
6= 0 , (4.31)

and

F1σσ(σ = 0; x, k) = 0 , F1σσσ(σ = 0; x, k) = −1

2
x−3/2 6= 0 , (4.32)

it turns out that the points ±σ0(x, k) are simple and the point σ(x, k) = 0 formatted

by the coalescence of ±σ0(x, k) is double. In fact, by Berry’s chord construction we

see that, as we move toward the Lagrangian manifold {(x, k) : k = S ′
+(x)} the chord

tends to the tangent of the manifold, and the critical points ±σ0 tend to the double

stationary point σ = 0 .

Case 2 : σI 6= 0 . Then from (4.28) we have

σI = ±2|k|(k2 − x)1/2 ,

and therefore for x < k2 F1 has simple imaginary stationary points σ(x, k) = ±2|k|i(k2−
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x)1/2 , since in this region

F1σσ(σ = ±iσ0; x, k) 6= 0 . (4.33)

Stationary points of the Wigner phase F2(σ; x, k) . The critical points of F2

are given by the equation

F2σ(σ; x, k) = S ′
−(x+ σ) + S ′

−(x− σ) − 2k = 0

that is,

(x+ σ)1/2 + (x− σ)1/2 + 2k = 0 . (4.34)

For k > 0 the equation (4.34) has no solution since (x± σ)1/2 > 0 . For k < 0 we

set σ = σR +iσI into (4.34) and we obtain again the system (4.27), (4.28) . Therefore,

the critical points of F2 are σ(x, k) = ±2|k|(x − k2)1/2 = ±σ0 , when k2 ≤ x ≤ 2k2

and σ(x, k) = ±2|k|i(k2 − x)1/2 = ±iσ0 , when x < k2 .

At any point (x, k) in k2 < x ≤ 2k2 there exist two simple stationary points, ±σ0.

For fixed (x, k) moving towards S ′
−(x) = −√

x we see again that the critical points

coalesce to the double point σ = 0 . Finally, in the region x < k2 we have two simple

imaginary stationary points, ±iσ0 , which again coalesce to σ = 0 on the lower branch

of the Lagrangian manifold x = k2 .

Stationary points of the Wigner phase F3(σ; x, k) . The critical points of the

phase F3(σ; x, k) are given by the equation

(x+ σ)1/2 − (x− σ)1/2 − 2k = 0 . (4.35)

In this case we find that the solutions of the above equation are σ = ±2|k|(x −
k2)1/2 = ±σ0 for x ≥ 2k2 , and σ = ±2|k|i(k2 − x)1/2 = ±iσ0 for x < k2 . By

geometrical considerations similar to Berry’s chord construction, we see that for fixed

(x, k) with x > 2k2 , the stationary point is σ = +σ0 if k > 0, while if k < 0 the
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stationary point is σ = −σ0 . These stationary points are always simple since

F3σσ(σ = ±σ0; x, k) =
1

2

(x∓ σ0)
1/2 + (x± σ0)

1/2

(x2 − σ2
0)

1/2
6= 0 , (4.36)

and

F3σσ(σ = ±iσ0; x, k) =
1

2

(x∓ iσ0)
1/2 + (x± iσ0)

1/2

(x2 + σ2
0)

1/2
6= 0 . (4.37)

Note that F3σσ(σ = ±σ0; x, k) becomes infinite for x = 2k2 .

Finally, it is important to observe that in this case there are no stationary points

in the region k2 < x < 2k2 .

Stationary points of the Wigner phase F4(σ; x, k) . In this case the critical

points are σ = ±σ0 when x ≥ 2k2 and σ = ±iσ0 when x < k2 . Here, for fixed x with

x > 2k2 , the stationary point is σ = −σ0 for k > 0 , and σ = +σ0 for k < 0 . Again,

the stationary points ±σ0 and ±iσ0 are simple.

For easier consideration of the structure of the stationary points, the results of

the above computations are tabulated in the following two tables, where we have set

σ0 = σ0(x, k) = 2 |k| | x− k2 |1/2 .

Fi, k (−∞,−√
x) (−√

x,−
√
x/2) (−

√
x/2,

√
x/2) (

√
x/2,

√
x) (

√
x,∞)

F1 no s.p. no s.p. no s.p. σ = ±σ0 σ = ±iσ0

simples simples

F2 σ = ±iσ0 σ = ±σ0 no s.p. no s.p. no s.p.

simples simples

F3 σ = ±iσ0 no s.p. σ = ±σ0 no s.p. σ = ±iσ0

simples simple simples

F4 σ = ±iσ0 no s.p. σ = ±σ0 no s.p. σ = ±iσ0

simples simple simples

Table 4.1: A. Stationary points between the parabolas
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Fi, k k = −√
x k = −

√
x/2 k =

√
x/2 k =

√
x

F1 no s.p. no s.p. σ = ±σ0 σ = 0

simples double

F2 σ = 0 σ = ±σ0 no s.p. no s.p.

double simples

F3 no s.p. σ = −σ0 σ = +σ0 no s.p.

simple simple

F4 no s.p. σ = +σ0 σ = −σ0 no s.p.

simple simple

Table 4.2: B. Stationary points on the parabolas

4.2.2 Asymptotics of the diagonal Wigner function

For constructing the asymptotics of the diagonal Wigner functions W ε
1 , W ε

2 , we first

observe that the asymptotic contribution to W ε
1 comes from the stationary points in

the region x ≤ 2k2 , k > 0 , while the contribution to W ε
2 comes from the stationary

points in the region x ≤ 2k2 , k < 0 , since there are no stationary point of the

corresponding Wigner phases outside from the above indicated regions, respectively.

We therefore consider the following two regions.

Region 1 : k2 ≤ x ≤ 2k2

Because σ = 0 is a double stationary point for the diagonal Wigner phases on

the Lagrangian manifold x = k2 (see Tables 4.1, 4.2) we need to apply the uniform

approximation formula (3.25) of Section 3.2. .

For the integral W ε
1(x, k) we choose the parameter α = α(x, k) := k − √

x .

Expanding F1 in Taylor series about σ = 0 , we have

F1(σ;α, x) = −2ασ − 1

12
x−3/2σ3 (4.38)

and F1σα(σ = 0, α = 0, x) = −2 6= 0 , and we easily see that all other conditions for

the validity of (3.25) also hold. For applying this formula, we need to compute the

unknowns ξ, A0, B0, and F1(σ = 0, α = 0, x) .
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From (3.27) we have

ξ(x, k) =

[
3

4

(
F1(σ0) − F1(−σ0)

)]2/3

=

[
3

4

(
4
2

3
(x− k2)3/2

)]2/3

= 22/3(x− k2) ,

and from (3.26) we get

A0 = 27/6(x− k2)1/4(x2 − σ0
2)−1/4x3/4x0

−1/2σ0
−1/2 .

Since (x2 − σ0
2)1/2 = 2k2 − x , we rewrite A0 in the form

A0 = 2−4/3k−1/2x3/4x0
−1/2(2k2 − x)−1/2 . (4.39)

and from (4.38) we also have F1(σ = 0, α = 0, x) = 0 .

Thus (3.25) leads to the following approximation formula of W ε
1 for small ε,

W ε
1 (x, k) ≈ 1

2
√
x0

(
2

ε

)2/3

Ai

((
2

ε

)2/3

(k2 − x)

)
=: W̃ ε

1(x, k) . (4.40)

Similarly for the integral W ε
2(x, k) we choose the parameter α := k +

√
x and

compute that,

ξ = 22/3(x− k2) , A0 = 2−4/3(−k)−1/2x3/4x0
−1/2(2k2 − x)−1/2

and

F2(σ = 0, α = 0, x) = 0

then from (3.25) as ε→ 0 we have,

W ε
2 (x, k) ≈ 1

2
√
x0

(
2

ε

)2/3

Ai

((
2

ε

)2/3

(k2 − x)

)
=: W̃ ε

2(x, k) . (4.41)

Region 2 : x ≤ k2

In this region the imaginary stationary points σ(x, k) = ±2|k|i(k2 − x)1/2 =
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±iσ0(x, k) coalesce for x = k2 to the double point σ = 0 .

For the integral W ε
1(x, k) , as in the case of real stationary points, we apply the

uniform stationary formula (3.25) for k > 0 , with small parameter α := k −√
x . In

this case we have

ξ(x, k) =

[
3

4

(
F1(iσ0) − F1(−iσ0)

)]2/3

=

[
3

4

(
−4i

2

3
(k2 − x)3/2

)]2/3

= −22/3(k2 − x)

and

A0 = 2−4/3x0
−1/2(−1)1/4i−1/2 , F1(σ = 0, α = 0, x) = 0

Thus (3.25) gives the approximation

W ε
1 (x, k) ≈ 1

2
√
x0

(
2

ε

)2/3

Ai

((
2

ε

)2/3

(k2 − x)

)
=: Ŵ ε

1(x, k) . (4.42)

Similarly, for the integral W ε
2(x, k) we choose the parameter α := k+

√
x , with k < 0

and we have

ξ(x, k) = −22/3(k2 − x)

and

A0 = 2−4/3x0
−1/2(−1)1/4i−1/2 , F2(σ = 0, α = 0, x) = 0

Thus (3.25) gives the approximation

W ε
2 (x, k) ≈ 1

2
√
x0

(
2

ε

)2/3

Ai

((
2

ε

)2/3

(k2 − x)

)
=: Ŵ ε

2(x, k) . (4.43)

Note that the symbols Ŵ ε
1 , Ŵ

ε
2 denote the approximations of W1

ε , W2
ε in the

region x ≤ k2 , although they are formally the same with W̃ ε
1 , W̃ ε

2 which denote

the corresponding approximations in the region k2 ≤ x ≤ 2k2 with k > 0 , k < 0 ,

respectively.



CHAPTER 4. WIGNERIZATION OF TWO-PHASE WKB SOLUTIONS 51

4.2.3 Asymptotics of the non-diagonal Wigner functions

Recall from Table 4.1 that the non-diagonal Wigner phases F3, F4 have two simple

real stationary points ±σ0(x, k) in the region x ≥ 2k2 , and also two imaginary

stationary points ±iσ0(x, k) in the region x < k2 . Recall also that these phases have

no stationary points in the intermediate region k2 ≤ x ≤ 2k2 .

We therefore consider the following two regions and we compute the asymptotics

of W ε
3 , W ε

4 by applying the standard stationary phase formula since the stationary

points are simple and never coalesce to a double point due to the lack of stationary

points in the intermediate region. The resulting asymptotic formulae are

Region 1 : x ≥ 2k2

W ε
3 (x, k) ≈ − ix0

−1/2

23/2π1/2ε1/2
(x− k2)−1/4eiπ/4ei 4

3ε
(x−k2)3/2

=: W̃ ε
3(x, k) (4.44)

and

W ε
4 (x, k) ≈ ix0

−1/2

23/2π1/2ε1/2
(x− k2)−1/4e−iπ/4e−i 4

3ε
(x−k2)3/2

=: W̃ ε
4(x, k) . (4.45)

It is important here to observe that in the region x ≥ 2k2 the non-diagonal Wigner

functions W ε
3 , W ε

4 are the asymptotic approximations of the expression

1

2
√
x0

(
2

ε

)2/3

Ai

((
2

ε

)2/3

(k2 − x)

)

and we can therefore substitute this expression in place of them.

Region 2 : x < k2

W ε
3(x, k) ≈ Ŵ ε

3(x, k) :=
−i1/2x0

−1/2

25/2π1/2ε1/2
(x2 + σ0

2)−1/4 1

| F3σσ(iσ0) |1/2
·

·
[
e

i
ε
F3(iσ0)+iπ/2 + e

i
ε
F3(iσ0)+i3π/2 + e

i
ε
F3(−iσ0)+iπ/2 + e

i
ε
F3(−iσ0)+i3π/2

]
. (4.46)



CHAPTER 4. WIGNERIZATION OF TWO-PHASE WKB SOLUTIONS 52

and

W ε
4(x, k) ≈ Ŵ ε

4(x, k) :=
−i1/2x0

−1/2

25/2π1/2ε1/2
(x2 + σ0

2)−1/4 1

| F4σσ(iσ0) |1/2
·

·
[
e

i
ε
F4(iσ0)+iπ/2 + e

i
ε
F4(iσ0)+i3π/2 + e

i
ε
F4(−iσ0)+iπ/2 + e

i
ε
F4(−iσ0)+i3π/2

]
. (4.47)

From the last two equations we see that

W ε
3 (x, k) +W ε

4(x, k) ≈ Ŵ ε
3(x, k) + Ŵ ε

4(x, k) = 0 . (4.48)

This means that in the region x < 2k2 the contribution of the non-diagonal Wigner

functions is asymptotically negligible.

It is however important to stress here that the computation of the Wigner function

in the high-frequency regime through any direct solution of the Wigner equation

which will be presented in the next chapter, would face severe difficulties because of

the (essentially cancelling) oscillations of the terms W ε
3 , W ε

4 which appear outside

the Lagrangian manifold.

Therefore, combining the asymptotic expansions derived in the various regions we

find that the leading order approximation of the Wigner transform W ε
WKB(x, k) =

W ε[uε
WKB](x, k) , where uε

WKB is the WKB approximation of the fundamental solution

of the semiclassical Airy equation, is given for every (x > 0, k) by

W ε
WKB(x, k) ≈ W̃ ε

WKB(x, k) =
1

2
√
x0

(
2

ε

)2/3

Ai

((
2

ε

)2/3

(k2 − x)

)
. (4.49)

We observe that this approximation coincides with the exact Wigner transform

(4.7) of the fundamental solution of the semiclassical Airy equation,

W̃ ε
WKB(x, k) ≡W ε

Ai(x, k) , (4.50)

and it therefore is meaningful on the caustic x = 0 , in the sense that it can provide

the correct amplitude of the wavefunction there.

In the sequel, for easy reference, we collectively use the term WKB-Wigner trans-

form, for the approximation W̃ ε
WKB .
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4.2.4 k−integration of the asymptotics of the WKB-Wigner

transform

The amplitude |ψε(x)|2 of a wavefunction, for any fixed x, is given by the k− integral

of its Wigner function

|ψε(x)|2 =
∫

R
W ε(x, k) dk (4.51)

and therefore, in general, for small ε, we expect that

|uε(x)|2 ≈
∫

R
W̃ ε

WKB(x, k) dk (4.52)

where W̃ ε
WKB is the WKB-Wigner transform.

Of course, in our particular example of the fundamental solution (4.1) of the

semiclassical Airy equation, it turns out that the integration of the WKB-Wigner

function gives the exact amplitude of the fundamental solution, as the WKB-Wigner

function coincides with the exact one.

In fact, using the formula [VS]

∫ ∞

−∞
Ai(r1k

2 + r2k + r3) dk =
2π√
r1

1

21/3
Ai2

(
−r

2
2 − 4r1r3
44/3r1

)
, r1 > 0 (4.53)

with r1 = (2/ε)2/3 , r2 = 0 , r3 = −(2/ε)2/3x , we obtain

|uε(x)|2 =
∫

R

1

2
√
x0

(
2

ε

)2/3

Ai

((
2

ε

)2/3

(k2 − x)

)
dk =

π√
x0ε1/3

Ai2(−ε−2/3x) , (4.54)

which is the anticipated result as the fundamental solution is given by

uε(x) = Cπ1/2x
−1/4
0 ε−1/6Ai(−ε−2/3x) , C = e−iπ/2ei 1

ε
2
3
x
3/2
0 .

The constant C cannot be computed from the Wigner function. Indeed, the first
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moment of the Wigner function is

ε Im
(
d

dx
uε(x) ūε(x)

)
=
∫

R
kW ε(x, k) dk =

∫

R
k

1

2
√
x0

(
2

ε

)2/3

Ai

((
2

ε

)2/3

(k2−x)
)
dk = 0 .

(4.55)

If we write uε in the form uε = αε(x) eiφε(x), then (4.55) implies that d
dx
φε(x) = 0,

that is φε(x) = const., and obviously C = eiφε
, |C| = 1. However, it is possible to fix

this constant by going back to the semiclassical Airy equation.

4.2.5 The stationary Wigner equation

Along the same lines as for time-dependent Schrödinger equation (see, e.g., [LP]; also

[Tat]), we can show for the homogeneous Helmholtz equation

ε2uε′′(x) + η2(x)uε(x) = 0, x ∈ R . (4.56)

(by formally dropping the time derivative and identifying V (x) = −η2(x)/2 in the

time-dependent Schrödinger equation), that the Wigner transform f ε(x, k) of the

wave function uε(x) must satisfy stationary Wigner equation

k∂xf
ε + 1/2(η2(x))′∂kf

ε = −1/2
∞∑

m=1

αmε
2m(η2(x))(2m+1)(x)∂2m+1

k f ε(x, k) . (4.57)

Note that in the formal limit ε = 0 the series disappears and the limit Wigner distri-

bution f 0 satisfies the classical Liouville equation

k∂xf
ε + 1/2(η2(x))′∂kf

ε = 0 . (4.58)

In the special case of the Airy equation, η2(x) = x, the stationary Wigner equation

(4.57) takes the very simple form

k∂xf
ε + 1/2∂kf

ε = 0 . (4.59)

It is important to note that in this case the Wigner equation coincides with the
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limiting Liouville equation,and we easily find that its solution is given by

f ε(x, k) = F ε(x− k2) (4.60)

where F ε(z) is an arbitrary differentiable function, which may contain ε as parameter.

We observe that the Wigner transform (4.7) of the semiclasical Airy function

indeed is of the form (4.60), and therefore is a solution of the stationary Wigner

equation (4.59), as it should be. However, F ε (Airy, in our case) cannot be derived

from (4.59). This can be done either by using the ∗−equation derived by Moyal [Mo]

and Baker [Ba] or, alternatively, employing the so called deformation quantization

procedure; see e.g., Zachos [Za]), but we will not enter this subject here.

Finally, we must emphasize that we cannot derive a pure Wigner equation for

the inhomogeneous Helmholtz equation, because in this case the wave function itself

appears in the right-hand side of (4.57) (see, e.g., Castella et al [BCKP]; also [Za]),

and therefore the influence of a point source cannot be studied by directly solving the

stationary Wigner equation. This makes our approach of wignerization of a WKB

solution to derive a uniform solution in phase space, a promising way for constructing

solutions, or at least appropriate anzatz, for kinetic equations.

4.2.6 Remarks on the wignerization of a general two-phase

WKB solution

We first observe that in the case of semiclassical Airy equation, by using the Airy

phases (2.74),

S±(x) = ±2

3
x3/2 +

2

3
x

3/2
0 ,

the Kravtsov-Ludwig coordinates (2.39) are

φ(x) =
2

3
x

3/2
0 , φ′(x) = 0 (4.61)

and

ρ(x) =

[
3

4

(
S+(x) − S−(x)

)]2/3

= x , (4.62)
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and they obviously satisfy (2.41). Also in the case of a general smooth refraction

index η(x) , we obtain the same results since the geometric phases have the form

S±(x) = ±
∫ x

x0

η2(z)dz + S0(x0) , (4.63)

and the whole procedure of the wignerization of the WKB solution can be repeated

along the same lines as for the semiclassical Airy equation.

In the more general case of, for example, a two dimensional problem with a smooth

caustic (fold), the Kravtsov-Ludwig coordinates φ arises naturally from the consider-

ation of the stationary points of the diagonal Wigner phases

F1(σ; x, k) = S+(x+ σ) − S+(x− σ) − 2kσ

F2(σ; x, k) = S−(x+ σ) − S−(x− σ) − 2kσ

since the point σ = 0 is stationary when

k =
1

2

(
S ′

+(x) + S ′
+(x)

)
=: φ′(x) .

However, the role of the second Kravtsov-Ludwig coordinate ρ, is not obvious before

we pass to local (tangent and normal) coordinates at the caustic, which are typically

used in boundary layer analysis (see, e.g., the detailed exposition in the book by

Babich & Kirpichnikova [BaKi]). In these local coordinates coordinates, the semi-

classical Airy equation appears again in a way quite similar with that in the model

example presented in Section 2.4., and then the proposed wignerization process can

be applied.



Chapter 5

Conclusions

We have studied the asymptotic expansion of the Wigner transform (wignerization)

of the two-phase WKB solution of the semiclassical Airy equation, combining uniform

and standard stationary phase approximations for two kinds of Wigner integrals in

various regions of the phase space (“surgery” of asymptotics).

The diagonal Wigner integrals in the illuminated zone have been locally handled

in the same way as in the derivation of the semiclassical Wigner function for single-

phase WKB functions. It turned out that this derivation holds true in regions near

the two branches of the folded Lagrangian manifold (x = k2) , which are comprised

between the manifold and the conjugate curve (x = 2k2) , defined as the locus of

points beyond which Berry’s chord does not exist any more.

The non-diagonal Wigner integrals have been handled in the illuminated region

by the standard stationary phase formula including the contribution of two conjugate

imaginary points appearing at points of phase space at the exterior of the Lagrangian

manifold. However, although important for understanding the structure of the wigner-

ized WKB solution W ε
WKB , these imaginary points do not contribute asymptotically

to the approximation W̃ ε
WKB . On the other hand, the real symmetric stationary

points arising at points of phase space at the interior of the conjugate curve, offer

oscillatory contributions which can be recognized as the high-frequency asymptotics

of W ε
Ai , an observation which is decisive in the “surgery” of asymptotic formulae in
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order to show that W̃ ε
WKB is finally expressible in the Airy form

W̃ ε
WKB(x, k) ≡W ε

Ai(x, k) =
1

21/3ε2/3
x
−1/2
0 Ai

(
22/3ε−2/3(k2 − x)

)
.

Although the whole process has been done in the illuminated zone, all formulae can

be meaningfully extended in the shadow zone, and then they predict there the antici-

pated exponentially decaying wave fields away from the caustic. Such an extension is

plausible in the light of complex geometric optics (see, e.g., Chapman et al [CLOT],

for a recent review), and it has been probably used for first time in the works by J.B.

Keller (see, e.g., [SK]).

The analysis performed for the semiclassical Airy equation suggests how some-

one can wignerize fold caustics in two dimensional propagation, by introducing local

caustic coordinates which reveal the essential Airy structure of the problem, but the

details of such a computation are long and still to be worked out.

Finally, the observation that the wignerized WKB solution W̃ ε
WKB satisfies the

stationary Wigner equation (although almost trivially in our model problem), suggests

that, in the general case, the wignerized two-phase WKB solution is expected to be

a formal asymptotic solution of the Wigner equation (a fact which has been already

confirmed for the single-phase case in [FM1]), which could be a fruitful way to handle

multiphase wave-kinetic equations.



Appendix A

Stationary-phase method

Lemma A.0.1

J =
∫ ∞

0
tγ eiνtp dt

=

(
1

|ν|

)γ+1
p Γ(γ+1

p
)

p
ei π

2p
(γ+1)sgnν

where γ and ν are real constants, γ > −1 and p is a positive integer.

A heuristic analysis of the leading term of the asymptotic expansion of Fourier

type integrals closely follows Laplace’s method (see also [BH]). Consider the integral

I(λ) =
∫ b

a
f(t) eiλφ(t) dt (A.1)

and suppose that f ∈ C[a, b] while φ ∈ C2[a, b], real-valued function. Suppose further

that t = c is the only point in [a, b] where φ′(t) vanishes and φ′′(c) 6= 0. We rewrite

I(λ) as

I(λ) = eiλφ(c)
∫ b

a
f(t) eiλ(φ(t)−φ(c)) dt.

The main contribution to the integral (A.1) comes from a small neighborhood of c.
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Then we expect that the large λ behavior of (A.1) is given by

∫ c+r

c−r
f(c) eiλ[φ(c)+

(t−c)2

2
φ′′(c)] dt

where r is small but finite. To evaluate this integral, we let

µτ 2 = (t− c)2 φ
′′(c)

2
λ, or τ = (t− c)

√
|φ′′(c)|λ

2

where µ = sgnφ′′(c). Then the above integral becomes

f(c)eiλφ(c)

√
2

|φ′′(c)|λ
∫ r

√
λ|φ′′(c)|/2

−r
√

λ|φ′′(c)|/2
eiµτ2

dτ

As λ→ ∞ the last integral reduces to
∫∞
−∞ eiµτ2

dτ , which can be evaluated exactly

∫ ∞

−∞
eiµτ2

dτ = 2
∫ ∞

0
eiµτ2

dτ =
√
πe

iπµ
4

where we have used the lemma A.0.1 with γ = 0, p = 2, and ν = µ (recall that

Γ(1/2) =
√
π ). Hence our formal analysis suggests that

I(λ) ≈ eiλφ(c)+iµπ/4f(c)

[
2π

λ|φ′′(c)|

]1/2

(A.2)

as λ→ ∞, where µ = sgnφ′′(c).



Appendix B

Sketch-proof of the Proposition

2.3.1

The idea of the proof is due to Chester, Friedman and Ursell [CFU], who worked out

the analytic rather the smooth case.

The starting point is the following lemma.

Lemma B.0.2 (Whitney’s lemma) Let f be a smooth even function on the real line.

Then, there exists a smooth function g on the real line such that f(x) = g(x2) . If f

depends smoothly on a set of parameters, g can be chosen so that it depends smoothly

on the same set of parameters.

Now, let us assume that the Lagrangian submanifold has a fold point at (x0,p0) ∈
M ×Rn . We assume for simplicity that M ⊆ Rn

x
, and that x0 = 0. Let S = S(x, ξ)

on M × R be a phase function parametrizing Λ in the neighborhood of x0 , i.e.,

(x,k = ∇S) ∈ Λ for x near x0 , and let

C = {(x, ξ)|∂ξS(x, ξ) = 0} ,

be the critical set of Λ. The caustic Σ(Λn) consists of those points in C where

∂ξS(x, ξ) = ∂2
ξS(x, ξ) = 0 . Without loss of generality, we may assume that the point

in C corresponding to (x0,p0) is the origin. Then, the following lemma holds.
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Lemma B.0.3 There exist smooth functions v0(x) and ρ(x) on M , and ζ(x, ξ) on

M ×R , such that

ζ3

3
− ρζ + v0 = S,

∂ζ

∂ξ
> 0, and ζ2 − ρ = 0 for (x, ξ) ∈ C . (B.1)

Proof First us prove the assertion for the special case when the base manifold M , is

one dimensional (n = 1, x = x). The assumption that the origin is a fold point of C

means that
∂S

∂ξ
=
∂2S

∂ξ2
= 0 and

∂2S

∂ξ∂x
6= 0 at x = 0 .

Since ∂2S
∂ξ∂x

6= 0, we can solve for x as a function of ξ on C and let x = x(ξ). Since

∂2S

∂ξ2
(x(ξ), ξ) +

∂2S

∂ξ2
(x(ξ), ξ)x′(ξ) = 0 ,

on C, we conclude that x′(0) = 0. Now since

∂3S

∂ξ3
6= 0 ,

we conclude that x′′(ξ) 6= 0, so by a change of coordinates on R we can assume x = ξ2

on C. Let C+ be the part of C where ξ > 0 , and C− be the part where ξ < 0 . By

the last of the equations (2.20) we have ξ = +
√
ρ on C−. So on C+ we have

−2

3
ρ

3
2 + v0 = S(ξ)

and on C− we have
2

3
ρ

3
2 + v0 = S(−ξ) .

Since ρ and v0 are functions of x alone, we must have

v0(x) =
1

2

(
S(ξ) + S(−ξ)

)
,

(
ρ(x)

)3

=
9

16

(
S(ξ) − S(−ξ)

)2

, (B.2)

with x = ξ2 . The expressions on the right are both even functions of ξ, so v0 and ρ3

exist by the above lemma . To show that the cubic roots of ρ3 exists we note that
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since S ′(ξ) = S ′′(ξ) = 0, and S ′′′(ξ) 6= 0, the Taylor series for
(
S(ξ)− S(−ξ)

)2
starts

with a non-zero term of order six. Thus ρ exists and is of order two with respect

to ξ, and of order one with respect to x. In particular, ζ = +
√
ρ exists on C and

∂ζ/∂ξ 6= 0.

Now suppose dimM > 1. Choose coordinates (x1, ..., xn) on M , such that

∂S

∂ξ∂x1
6= 0 .

For α = (α2, ..., αn) , let Cα be the intersection of C with the line x2 = α2, ..., xn =

αn. Applying the preceding argument to Cα, we find functions v0
α, ρα and ζα on

Cα satisfying (2.20) and depending smoothly on α. We let v0, ρ1 and ζ be the

corresponding functions on C. Finally, we extend ζ from C to M × R arbitrarily.

This concludes the proof of the lemma.

To prove the Proposition (2.3.1), let ψ(x, ξ) = v0(x)+ρ(x)ζ(θ)−ζ3/3. From (B.1)

it follows easily that the critical set of ψ equals the critical set of S. Making the change

of coordinates x → x and ξ → ζ(θ,x), we get the phase function of the desired form.

The representation (2.29) follows directly from the Malgrange preparation theorem

(see, e.g., [Ho], vol. 1, Sec 7.5).



Appendix C

Uniform stationary phase

asymptotics

We consider the integral

I(λ, α) =
∫ ∞

−∞
eiλφ(x,α)f(x)dx,

where α > 0, λ is a large positive parameter. With smooth f, for the case when the

phase function φ ∈ C∞ has two stationary points, x1(α) and x2(α), which approach

the same limit x0 when α → 0. Let φxx(x1, α) < 0 and φxx(x2, α) > 0.

The standard stationary-phase approximation of I(λ, α) fails:

I(λ, α) ≈
(2π

λ

)1/2 ∑

l=1,2

f(xl(α))eiλφ(xl(α),α)

| φxx(xl(α)) |1/2
ei π

4
δl

with δl = sgnφxx(xl(α)). In our consider δ1 = −1, δ2 = 1, so we have

I(λ, α) =
(2π

λ

)1/2[f(x2(α))e(iλφ(x2(α),α)+iπ/4)

√
φxx(x2(α))

+
f(x1(α))e(iλφ(x1(α),α)−iπ/4)

√
| φxx(x1(α)) |

]
+O(λ−1),(C.1)

λ→ ∞.
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Assume also that φ(x, α) is analytic for small (x− x0) and small α > 0, we have

φxxx 6= 0, φ′
x = φxx = 0, φxα 6= 0 (C.2)

at x = x0, α = 0.

Under these conditions a theorem by Chester, Friedman and Ursell (“An extension

of the method of steepest descent”, Proc. Cambr. Phil. 1957, 53, 599-611) imples

that there exists a change of variable x = x(τ), analytic and invertible for small

(x− x0) and small α > 0, depending parametrically on α, such that

φ(x, α) = φ0(α) +
τ 3

3
− ξ(α) τ (C.3)

where φ0(α) and ξ(α) are analytic functions of α.

Then, we have

I(λ, α) = eiλφ0

∫ ∞

−∞
eiλ(τ3/3−τξ(α))f(x(τ))

dx(τ)

dτ
dτ (C.4)

By a version of Malgranges preparation theorem, we have the representation

f(x(τ))
dx(τ)

dτ
dτ = A0(α) +B0(α)τ + h(τ)(τ 2 − ξ) (C.5)

where h(τ) is smooth function.

Substituting (C.5) into (C.4) we have

I(λ, α) = eiλφ0(α)
[
2πA0(α)λ−1/3Ai(−λ2/3ξ) − 2πiB0(α)λ−2/3Ai′(−λ2/3ξ) + C(λ, ξ)

]

where

C(λ, ξ) =
i

λ

∫ ∞

−∞
h′(τ)eiλ(τ3/3−τξ)dτ = O(λ−4/3)

Integrating the integral for C as many time as we wish we obtain

I(λ, α) = eiλφ0(α)
[
2πAλ−1/3Ai(−λ2/3ξ) − 2πiBλ−2/3Ai′(−λ2/3ξ)

]
(C.6)
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where

A =
∞∑

n=0

An(α)
( i
λ

)n
, B =

∞∑

n=0

Bn(α)
( i
λ

)n

In order to compute φ0(α), ξ(α) and the leading coefficients A0(α), B0(α) we use

the principle of asymptotic matching.

We fix α > 0 and we consider λ → ∞. Then the asymptotics of Ai,Ai′ read as

follows

Ai(−λ2/3ξ) ≈ 1

2
√
π
λ−1/6ξ−1/4

[
e2iλξ3/2/3−iπ/4 + e−2iλξ3/2/3+iπ/4

]
(C.7)

Ai′(−λ2/3ξ) ≈ −1

2
√
π
λ1/6ξ1/4

[
e2iλξ3/2/3+iπ/4 + e2iλξ3/2/3−iπ/4

]
(C.8)

Substituting (C.7) and (C.8) into (C.6), we get the expression

I(λ, α) ≈
( π
iλ

)1/2
(A0ξ

−1/4 −B0ξ
1/4) eiλ(φ0+2ξ3/2/3)

=
( π
iλ

)1/2
(A0ξ

−1/4 +B0ξ
1/4) eiλ(φ0−2ξ3/2/3) +O(λ−3/2) (C.9)

The principle of asymptotic matching requires that the expansion (C.9) must

coincide with the non-uniform expansion (C.1). Comparing these expressions, and

taking into account that φ(x1, α) > φ(x2, α) we obtain

φ0 +
2

3
ξ3/2 = φ(x1, α) (C.10)

φ0 −
2

3
ξ3/2 = φ(x2, α) (C.11)
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for the phases, and

A0ξ
−1/4 +B0ξ

1/4 =
√

2
f(x2)

(φxx(x2, α))1/2
(C.12)

A0ξ
−1/4 −B0ξ

1/4 =
√

2
f(x1)

| φxx(x1, α) |1/2
(C.13)

which give

φ0(α) =
1

2

(
φ(x1(α), α) + φ(x2(α), α)

)
(C.14)

ξ(α) =
[ 3

4
(φ(x1(α), α) − φ(x2(α), α))

]2/3
(C.15)

We want now to approximate ξ(α), α → 0+. For this we set x0 = 0 (which

amounts for changing the variable x to x′ = x − x0) and we expand φ(x, α) near

(x = 0, α = 0),

φ(x, α) = φ(0, 0) + φx(0, 0) x+ φα(0, 0) α

+
1

2
φxx(0, 0) x2 + φxα αx+

1

2
φαα α

2

+
1

6
φxxx(0, 0) x3 +

1

2
φxxα x

2α +
1

2
φxαα xα

2

+
1

6
φααα(0, 0) α3 + (4th − order terms)

= φ+ φα α + φxα αx+
1

2
φαα α

2 +
1

6
φxxx x

3

+
1

2
φxxα x

2α +
1

2
φxαα xα

2 +
1

6
φααα α

2 (C.16)

Differentiating the last equation we have

φx(x, α) = φxα α +
1

2
φxxx x

2 + φxxα xα +
1

2
φxααα

2 (C.17)
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and

φxx(x, α) = φxxx x+ φxxα α (C.18)

We compute x1(α), x2(α) by solving the equation (approximate eq. (C.17), O(α2))

φx(x, α) =
1

2
φxxx(0, 0) x2 + φxxα(0, 0) xα + φxα(0, 0) α = 0 (C.19)

The roots of the last equation are

x1,2(α) =
−α φxxα ± (φ2

xxα α
2 − 2φxxx φxα α)1/2

φxxx

≈ ±(−2φxxx φxα α)1/2(φxxx)
−1

since
√
α >> α > α2 as α→ 0+. The assumptions φ′′(x1(α), α) < 0, φ′′(x2(α), α) > 0

and equation (C.18) , for α→ 0+, imply that

x1(α) ≈ −(−2φxxx φxα α)1/2(φxxx)
−1 (C.20)

x2(α) ≈ +(−2φxxx φxα α)1/2(φxxx)
−1 (C.21)

We also need to approximate the difference

δφ = φ(x1(α), α) − φ(x2(α), α) ≈ 1

6
φxxx (x1

3 − x2
3) + φxα α(x1 − x2) + . . .(C.22)

From (C.20), (C.21) and (C.22) we have (for α > 0)

x1
3 − x2

3 = −2(φxxx)
−3(−2φxxxφxα)3/2α3/2

x1 − x2 = −2(φxxx)
−1(−2φxxx φxα)1/2α1/2
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and therefore

δφ = −2α3/2(φxxx)
−1(−2φxxx φxα)1/2

·
[ 1

6
(φxxx)

−1(−2φxxx φxα) + φxα

]

= −2

3
α3/2(−2φxxx φxα)3/2(φxxx)

−2 (C.23)

Then, using (C.16) we obtain

ξ =
(3

4
δ φ

)2/3 ≈ 2−2/3α(−2φxxx φxα)(φxxx)
−4/3

ξ = −21/3φxα φ
−1/3
xxx α (C.24)

(ξ ≈ −φxα

(
φxxx

2

)−1/3
α)

Going now back to (C.16) we have for α→ 0+,

φx(x, α) ≈ φ(0, 0) + φxα xα +
1

6
φxxx x

3 (C.25)

and comparing with (C.3) we obtain that as α → 0+,

φ0(α) ≈ φ(0, 0)

ξ(α) ≈ −φxα

(φxxx

2

)−1/3
α

τ 3 ≈ −1

2
φxxx x

3 ⇒ τ ≈ −
(φxxx

2

)1/3
x

Also using φxx(x, α) = φxxx(0, 0) x+ φxxα(0, 0) α, we have

φxx(x1(α), α) = −φxxx (−2φxxx φxα α)1/2(φxxx)
−1 + φxxα α

≈ −(−2φxxx φxα α)1/2 (C.26)
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| φxx(x1(α), α) | ≈ (−2φxxx φxα α)1/2

| φxx(x2(α), α) | ≈ (−2φxxx φxα α)1/2

and

ξ1/4 ≈
(
−φxα

(φxxx

2

)−1/3
α
)1/4



Appendix D

The fundamental solution of the

Airy equation

We consider the semiclassical Airy equation with a point source

ε2uε′′(x) + xuε(x) = σδ(x− x0), x ∈ R , (D.1)

where the constant σ depends on ε, and it will be defined for uε(x) to have appropriate

asymptotics at x = +∞.

The solution of (D.1) is given by

uε(x) = iσπ

(
Ai
(
−ε−2/3x0

)
− iBi

(
−ε−2/3x0

))
ε−4/3Ai

(
−ε−2/3x

)
, x < x0(D.2)

uε(x) = iσπAi
(
−ε−2/3x0

) (
Ai
(
−ε−2/3x

)
− iBi

(
−ε−2/3x

))
ε−4/3 , x > x0 ,(D.3)

where Ai(z) , Bi(z) are the Airy functions of the first and second kind which are the

two linearly independent solutions os the homogeneous Airy equation w′′(z)−zw(z) =

0 (see, e.g. [Leb]).

We can now choose the constant σ so that uε(x) = Oε(1), as ε→ 0, for x→ +∞.

This choice leads to the value σ = −ie−iπ/4ε.

Moreover, if we consider the solution in the region x < x0 and we approximate

71



APPENDIX D. THE FUNDAMENTAL SOLUTION OF THE AIRY EQUATION72

the coefficient of the Airy function Ai
(
−ε−2/3x

)
, that is

iσπ

(
Ai
(
−ε−2/3x0

)
− iBi

(
−ε−2/3x0

))
ε−4/3 ,

for small ε we get the approximation

uε(x) ≈ π1/2e−iπ/2
(
x
−1/4
0 ei 1

ε
2
3
x
3/2
0

)
ε−1/6Ai

(
−ε−2/3x

)
, (D.4)

Furthermore, invoking the asymptotics of the Airy function for small ε and fixed x in

(D.4), we arrive to the expansion

uε
WKB(x) ≈ 1

2
e−iπ/4

(
x
−1/4
0 ei 1

ε
2
3
x
3/2
0

)(
−ix−1/4ei 1

ε
2
3
x3/2

+ x−1/4e−i 1
ε

2
3
x3/2

)

=

(
1

2
e−iπ/4x

−1/2
0

)(
−ix

1/4
0

x1/4
e

i 1
ε

(
2
3
x
3/2
0 + 2

3
x3/2

)

+
x

1/4
0

x1/4
e

i 1
ε

(
2
3
x
3/2
0 − 2

3
x3/2

))
.(D.5)

Therefore, we have constructed the fundamental solution of the semiclassical Airy

equation in 0 < x < x0,

uε(x) = iσπ

(
Ai
(
−ε−2/3x0

)
− iBi

(
−ε−2/3x0

))
ε−4/3Ai

(
−ε−2/3x

)
,

which has the desired compound asymptotics at infinity, namely

uε(x) = O(1) , x→ +∞ , ε→ 0 ,

and it leads to a WKB approximation which remains O(1), as ε → 0 in the region

0 < x < x0.

We close this Appendix by noting that for large x0 � ε, we can approximate

the fundamental solution for any x > 0 by (D.4), a fact which is used in checking

the uniformization process of the WKB approximation to the Airy equation near the

caustics.
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[Ho] L. Hörmander, The Analysis of Linear Partial Differential Operators I,

Springer-Verlag, New York, 1983

[JL] S. Jin and X.Li, Multi-Phase Computations of the Semiclassical limit

of the Scroedinger equation and related problems:Whitham vs Wigner,

Physica D 182, 2003, 46-85

[Jo] F. John, Partial differential equations, Springer-Verlag, New York, 1980



REFERENCES 76

[Kel] J.B. Keller, Corrected Bohr-Sommerfeld quantum conditions for non-

separable systems, Ann. Phys. 4 (1958), 180-188

[KKM] T. Katsaounis, G.T. Kossioris and G.N. Makrakis, Computation of high

frequency fields near caustics, Math. Meth. Model. Appl. Sci. 11(2)

(2001), 1-30

[KO] Yu.A. Kravtsov and Yu.I. Orlov, Caustics, Catastrophes and Wave Fields,

Springer Series on Wave Phenomena 15, Springer-Verlag, Berlin, 1999

[KO1] Yu.A. Kravtsov and Yu.I. Orlov, Geometrical Optics of Inhomogeneous

Media, Springer Series on Wave Phenomena 6, Springer-Verlag, Berlin,

1990

[Kra] Yu.A. Kravtsov, Two new asymptotic methods in the theory of wave

propagation in inhomogeneous media(review), Sov. Phys. Acoust. 14(1)

(1968), 1-17

[Ku] V.V. Kucherenko, Quasiclassical asymptotics of a point-source function

for the stationary Schrödinger equation, Theoret. Math. Phys. (English

Translation) 1(3) (1969), 294-310

[Le] R.M. Lewis, Asymptotic theory of wave propagation, Arch. Rat. Mech.

Anal., 20 (1965), 191- 250

[Leb] N.N. Lebedev, Special Functions and Their Applications, Dover Publica-

tions, Inc., New York, 1972

[Lit] R.G. Littlejohn, The Van Vleck formula, Maslov theory and phase space

geometry, J. Statist. Phys. 68(1/2), 1992, 7-50

[LP] P.L. Lions & T. Paul, Sur les measures de Wigner, Rev. Math. Iberoamer-

icana 9, (1993), 563-618

[Lu] D. Ludwig, Uniform asymptotic expansions at a caustic, Comm. Pure

Appl. Math. XIX (1966), 215-250



REFERENCES 77

[Ma1] V.P. Maslov, Operational Methods, Mir Publishers, Moscow, 1979

[Ma2] V.P. Maslov, Theory of Perturbations and Asymptotic Methods, Dunod,

Paris, 1972

[MF] V.P Maslov and V.M. Fedoryuk, Semi-classical approximations in quan-

tum mechanics , D. Reidel, Dordrecht, 1981

[Mo] Moyal, J. E., Quantum mechanics as a statistical theory, Proc. Camb.

Phil. Soc., 45 (1949), 99-124

[MSS] A. Mishchenko, V. Shatalov, and B. Sternin, Lagrangian Manifolds and

the Maslov Operator, Springer-Verlag, Berlin-Heidelberg

[NSS] V.E. Nazaikinskii, B.-W. Schulze and B. Yu. Sternin, Quantization Meth-

ods in Differential Equations, Taylor & Francis, London & New York,

2002

[PR] G. Papanikolaou & L. Ryzhik, Waves and transport, Hyperbolic Equations

and Frequency Interactions, (Eds L. Caffarelli and E. Weinan), IAS/Park

City Mathematical Series, AMS, 1999

[PV] B. Perthame & L. Vega, Sommerfeld condition for a Liouville equation

and concentration of trajectories, Bull. Braz. Math. Soc., New Series

34(1) (2003),43-57

[Ru1] O. Runborg, Multiscale and Multiphase Methods for Wave Propagation,

Doctoral Dissertation, Dept. Num. Anal. Comp. Sci., Roy. Inst. Techn.,

Stockholm, 1998

[Ru2] O. Runborg, Some new results in multiphase geometrical optics,J. Math.

Model. Num. Anal. 34(6), (2000) 203-1231

[SK] B.D., Seckler & J.B. Keller, Geometrical theory of diffraction in inhomo-

geneous media, J. Acoust. Soc. Amer. 31 1959, 192-205



REFERENCES 78

[SMM] C. Sparber, P.A. Markowich & N.J. Mauser, Wigner functions versus

WKB-methods in multivalued geometrical optics, Asymptot. Anal. 33(2)

(2003), 153-187

[Sta] O.N. Stavroudis, The Optics of Rays, Wavefronts and Caustics, Aca-

demic Press, New York, 1972

[Tat] V.I. Tatarskii, The Wigner representation of quantum mechanics, Soviet

Phys. Uspekhi 26 (1984), 311-327

[TC] I. Tolstoy and C.S. Clay, Ocean Acoustics. Theory and Experiment in

Underwater Sound, American Institute of Physics, New York, 1966

[Va] B.R. Vainberg, Quasiclassical approximation in stationary scattering

problems, Func. Anal. Appl. 11 (1977), 247-257

[Va1] B. R. Vainberg, Asymptotic Methods in Equations of Mathematical

Physics, Gordon and Breach, New York, 1989

[VS] O. Vallee & M. Soares, Airy functions and applications to physics, Im-

perail College Press, London, 2004

[Wed] R. Weder, Spectral and Scattering Theory for Wave Propagation in Per-

turbed Stratified Media, Springer-Verlag, New York, 1991

[Za] C. Zachos, Deformation quantization: Quantum mechanics lives and

works in phase-spase, Int. J. Mod.Phys. A, 17(3) (2002),297-316

[Zau] E. Zauderer, Partial differential equations of applied mathematics, Wiley,

New York, 1983


