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Preface

In the following pages, I tried to write a short introduction to the theory of nonlinear
lattices (and especially the periodic Toda lattice) as part of my master’s thesis.
The problem was inrtoduced to me in the Spring of 2010 in a seminar held at
the department of Applied Mathematics by Professor Spyridon Kamvissis. I was
interested in that and so I asked him to give me more information about it. And so
he did. He advised me that I should start with Toda’s book [8].

I actually started studying the book in September and when I finished it, I
went on with another one this time more “mathematically rigorous”. I’m talking
about the monograph of Teschl [7] (mainly I read the second part of that book
concerning the Toda lattice). Here the exposition follows [8] and specifically:

• Chapter 1 explains how the origin of the problem lies in the so-called Fermi-
Pasta-Ulam lattice and describes how Toda chose a specific potential that
made the lattice periodic.

• The second chapter is concerned with some analytic tools that enable us solve
the initial value problem with periodic conditions.

• In Chapter 3 the notions of spectrum and auxiliary spectrum are studied in
depth in order to acquire the first results. The chapter ends with a short
paragraph on Riemann surfaces the usefulness of which will be clear in the
following chapter.

• The fourth Chapter reveals the role of Riemann surfaces and subsequently of
theta functions. This chapter is the heart of the theory. Some tricky calcula-
tions are necessary to provide useful formulas in terms of theta functions.

• The final chapter (namely Chapter 5) combines all the previously acquired
results in order to study the time evolution and finally state the solution of
the problem being discussed.

Literature

As I’ve already stated, I used mainly two books in order to write this article.
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Toda’s [8] and Teschl’s [7]. These concern the study of nonlinear lattices and include
the theory used in the present article.

Furthermore, I used the classic book of Springer [5] to enter the world of
Riemann surfaces. There’s also the book of Farkas and Kra [4] which in my opinion
is great. When I was finishing the typing of this article I came up with another book
in the same direction. I’m talking about Donaldson’s Riemann surfaces [3]. The
reader who’s not familiar with this topic is advised to take a look at one of these.

In order to understand how Toda found the lattice with exponential interaction
I had to study a few things about elliptic functions and integrals. I used the book of
Byrd and Friedman [2]. Also, I used Whitham’s book [9] to gain some knowledge in
nonlinear waves (lattice-solitons) but the reader doesn’t have to know a thing about
these in order to proceed.

Finally, the reader has to be familiar with some basic facts from complex anal-
ysis like Cauchy’s Theorem, the Residue Theorem, etc.. I recommend the classics
[1] and [6].
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Chapter 1

An introduction to the problem

1.1 A few things about the problem

In 1955 Enrico Fermi, John Pasta and Stanislaw Ulam carried out a seemingly
innocent computer experiment at Los Alamos. They considered a simple model for
a nonlinear one-dimensional crystal describing the motion of a chain of particles
with nearest neighbor interaction (in other words non-linear lattice).

They wanted to study the problem from the perspective of energy. They
wanted to know how energy is shared between modes. They expected that because
of the nonlinearity of interaction, energy flow between modes would take place
finally establishing energy equipartition. So, they wanted to verify their expectation
numerically. However, contrary to their assumption only a little energy partition
occurred and the state of the system was found to almost return to the initial state.

So as mentioned above, the problem being considered is classical mechanics of
one-dimensional lattices (i.e. chains) of particles with nearest neighbor interaction.
First of all, we restrict ourselves to a uniform system (also referred to as a system
without impurities). This means that each particle has mass m. Also, we denote by
yn the displacement of the nth particle and by φ(yn+1− yn) the interaction potential
between neighboring particles. The mechanical analogue is this: we can think of the
above system as a chain of infinitely many particles joined together with “nonlinear”
springs (see Figure 1.1).

Then, if

f(r) ≡ −φ′(r) = −dφ(r)

dr
is the force of the spring when it is stretched by the amount r and

rn = yn+1 − yn

1



1 An introduction to the problem

is the mutual displacement, Newton’s law tells us that the equations of motion
are given by:

(1.1) m
d2yn
dt2

= φ′(yn+1 − yn)− φ′(yn − yn−1), n ∈ Z

n n+ 1

yn yn+1

Figure 1.1: A model for one-dimensional lattice.

1.2 The harmonic interaction

As an intuitive example let’s first of all consider the linear case. When f(r) is
proportional to r, that is when Hooke’s law is obeyed, the spring is said to be linear
and the potential (in this case we say that we have harmonic interaction) can be
written as

φ(r) =
κ

2
r2.

Then, the equations of motion take the form:

(1.2) m
d2yn
dt2

= κ(yn−1 − 2yn + yn+1).

If y
(1)
n ≡ y

(1)
n (t) and y

(2)
n ≡ y

(2)
n (t) are solutions of (1.2), then the linear superposition

yn = y(1)
n + y(2)

n

is also a solution of the linear equation (1.2). In particular, when the particles n = 0
and n = N + 1 (where N ∈ Z) are fixed, then

(1.3)

 y
(l)
n (t) = Cn sin

(
πl
N+1

n
)

cos(ωlt+ δl)

ωl = 2
√

κ
m

sin
(

πl
2(N+1)

)
, l = 1, 2, . . . , N

is the lth normal mode, and the general motion is given by a linear superposition of
such modes. The amplitude Cn of each mode is a constant determined by the initial
conditions and no energy transfer occurs between the modes. The linear lattice is
therefore nonergodic and cannot be an object of statistical mechanics unless some
modification is made.
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1.3 Nonlinear interaction

1.3 Nonlinear interaction

Fermi did some work on similar problems when he was young and after computers
were developed he came back to this as one of the problems computers might solve.
He thought that if one added a nonlinear term to the force between particles in a
one-dimensional lattice, energy would flow from mode to mode eventually leading
to a statistical equilibrium state where the energy is shared equally among linear
modes (equipartition of energy).

They tested potentials one with a cubic term (α is the nonlinearity constant)

(1.4) φ(r) =
κ

2
r2 +

κα

3
r3,

another with a quartic term (α′ is the nonlinearity constant)

φ(r) =
κ

2
r2 +

κα′

4
r4,

and a third one with broken linear force

f(r) =

{
−κr, if |r| ≤ r0,

−(κ− κ′)r0 − κ′r, if |r| > r0

where κ, κ′ and r0 are positive constants such that κ 6= κ′.

For these potentials the results turned out to be qualitatively similar. They
treated lattices with N = 32 and N = 64 particles so that both ends (n = 0 and
n = N + 1) were fixed. The lattice was initially at rest and given the displacement

yn(0) = B sin
πn

N + 1
.

This means that they excited the lowest mode. They observed that after a certain
time almost all the energy went back to the initial mode. The displacement of each
particle went back to the initial state too. This is the so-called FPU recurrence
phenomenon. Computer experiments sometimes yield unexpected findings and
the FPU recurrence phenomenon is one of them. This was reconfirmed by many
researchers. It can be said that if the energy is not too large, recurrence phenomena
will occur.

These results combined with subsequent ones from Ford et al. showed that
nonlinear lattices have rather stable motion (for this reason Ford introduced the
term nonlinear normal modes). This remarkable property led to the finding of
an explicitly solvable one-dimensional lattice in the particular case of exponential
interaction.

3



1 An introduction to the problem

1.4 A useful interpretation

The lattice with exponential interaction was found after looking for a system with
explicit exactly periodic solutions. The concept of dual systems pointed in that way.

Systems A and B are said to be dual to one another if B is obtained from A
by replacing particles by springs and springs by particles following certain rules (e.g.
for a harmonic lattice we can replace heavier/lighter particles by weaker/stronger
springs in such way that the normal mode frequencies (1.3) are the same in both
systems).

We can generalize the idea of dual systems by the following consideration. The
Hamiltonian which gives rise to the equation of motion (1.1) is:

H =
1

2m

∑
n∈Z

p2
n +

∑
n∈Z

φ(rn),

where the momentum pn is related to the kinetic energy :

K =
1

2

∑
n∈Z

mẏ2
n.

Differentiating K with respect to the velocity ẏn, we obtain

pn =
∂K
∂ẏn

= mẏn.

We shall now use the mutual displacement rn as the generalized coordinate. For
brevity’s sake, we consider here an infinite lattice where only N particles can move
and the rest are pinched down. For example, assuming that the left end particle
n = 0 is fixed we have{

y0 = 0, y1 = r0, y2 = r0 + r1, . . .
ẏ0 = 0, ẏ1 = ṙ0, ẏ2 = ṙ0 + ṙ1, . . .

So, for a lattice with N movable particles

K =
1

2

N−1∑
n=0

m(ṙ0 + ṙ1 + · · ·+ ṙn)2.

The momentum sn conjugate to rn is defined by

sn ≡
∂K
∂ṙn

= m
(

(ṙ0 + ṙ1 + · · ·+ ṙn) + (ṙ0 + ṙ1 + · · ·+ ṙn+1) + · · ·

+ (ṙ0 + ṙ1 + · · ·+ ṙN−1)
)

= m
N−1∑
k=n

k∑
j=0

ṙj.
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1.4 A useful interpretation

Therefore we have

(1.5) sn−1 − sn = mẏn, n = 1, . . . , N − 1

sN = 0

and the Hamiltonian becomes:

H =
1

2m

N−1∑
n=0

(sn − sn+1)2 +
N−1∑
n=0

φ(rn).

Then, the canonical equations of motion are:

(1.6) ṙn =
∂H
∂sn

= −sn−1 − 2sn + sn+1

m
,

(1.7) ṡn = −∂H
∂rn

= −φ′(rn)

If we eliminate sn from these equations, we obtain:

(1.8) mr̈n = φ′(rn−1)− 2φ′(rn) + φ′(rn+1)

which is, however, the difference of (1.1) with the same equation in which n is
replaced by n+ 1 and therefore is not a new equation.

If (1.7) admits an inverse, we may write

(1.9) rn = − 1

m
χ(ṡn).

(χ being a function of ṡn). Then, we can eliminate rn from (1.6) to obtain:

(1.10)
d

dt
χ(ṡn) = sn−1 − 2sn + sn+1.

This is an equation dual to (1.8). If we think of sn as the “displacement” then the
right-hand side of (1.10) can be interpreted as the force of linear springs and in the
left-hand side, χ(ṡn) can be interpreted as the momentum associated to the “speed”
ṡn. Then (1.10) turn out to be the mechanical equations of motion.

The force fn of the spring is related to ṡn by

(1.11) fn = −φ′(rn) = ṡn

and the equation of motion (1.8) is rewritten as:

d2

dt2
χ(fn) = fn−1 − 2fn + fn+1.

5



1 An introduction to the problem

Further, we introduce the integral of sn by

Sn =

∫ t

0

sn(u)du

Choosing the integration constant appropriately, we have from (1.6), (1.5):

yn =
1

m
(Sn−1 − Sn),

rn = − 1

m
(Sn−1 − 2Sn + Sn+1),

and the equations of motion take the form:

χ(S̈n) = Sn−1 − 2Sn + Sn+1.

1.5 An integrable lattice

Since Fermi et al. indicated that there are nonlinear lattices which admit periodic
behavior at least when the energy is not too high, it is reasonable to look for a
nonlinear lattice which admits periodic waves.

We seek such a lattice here, and we shall show that a lattice with exponen-
tial interaction has the desired properties. This means finding a potential function
φ(r) such that the equations of motion (1.1) can be integrated. Equation (1.1) or
equivalently (1.8) is ubiquitous but it proved hard to find such a potential φ(r). On
the contrary, (1.10) can be considered as a recurrence formula expressing sn+1 in
terms of sn, sn−1 and the derivative of some function at sn, which is related to the
inverse function of the potential φ(r). Under these conditions, many functions φ(r)
were tried.

In the case of the harmonic lattice, typical periodic waves are sinusoidal.
Therefore, it was quite natural to think of elliptic functions (for elliptic integrals
and Jacobian functions see [2]) as possible candidates because they are in a sense
extensions of trigonometric functions. However, the first obvious choice of a solution
proportional to Jacobi’s sn or cn functions did not work.

On the other hand, an addition formula for sn2 had been noticed:

sn2(u+ v)− sn2(u− v) = 2
d

dv

(sn(u) · cn(u) · dn(u) · sn2(v)

1− k2sn2(u) · sn2(v)

)
which led to the lattice being searched for.

6



1.5 An integrable lattice

Indeed, using

dn2(u) = 1− k2sn2(u)

we define a function ε(u) by

ε(u) =

∫ u

0

dn2(v)dv

hence

ε′(u) = dn2(u)

ε′′(u) = −2k2sn(u) · cn(u) · dn(u).

Thus, we obtain

(1.12) ε(u− v)− 2ε(u) + ε(u+ v) =
ε′′(u)

1
sn2(v)

− 1 + ε′(u)
.

Though ε(u) is not a periodic function, the function defined by

Z(u) = ε(u)− E

K
u

is a periodic function with period 2K, where K and E are respectively the complete
elliptic integrals of the first and second kind (see [2]).

Rewriting (1.12), we have

Z(u− v)− 2Z(u) + Z(u+ v) =
d

du
log

(
1 +

1
1

sn2(u)
− 1 + E

K

Z ′(u)

)

which is to be compared with (1.10). Thus we see that (1.10) is satisfied when we
put {

u = 2
(
νt± n

λ

)
K

v = 2K
λ

where λ (the wavelength) and ν (the frequency) are constants, and identify the
functions sn and χ with

sn(t) =
2Kν

b/m
Z(u)

and

(1.13) χ(ṡ) =
m

b
log

(
1 +

b/m
(2Kν)2

1
sn2(v)

− 1 + E
K

ṡ

)
−mσ,

7



1 An introduction to the problem

where b and σ are constants. χ(ṡ) is the inverse function of ṡ = −φ′(r) and must not
contain ν and v which means that the factor of ṡ in (1.13) is a constant independent
of ν and v. Therefore, the relation

(2Kν)2 =
a

b

( 1

sn2(2K/λ)
− 1 +

E

K

)−1

must hold where a is a constant and in order that the right-hand side is positive,
we must assume that ab > 0.

By (1.9) and (1.13), we have

r = −1

b
log
(

1 +
ṡ

a

)
+ σ

with r = rn. Taking the inverse, by (1.7) we have

ṡ = a(e−b(r−σ) − 1) = −φ′(r).

Therefore, for the potential we obtain a function with three parameters : a, b and σ
which can be written as:

(1.14) φ(r) =
a

b
e−b(r−σ) + ar + const.

or
φ(r) = Ae−br + ar.

Take a look at Figure 1.2.

Figure 1.2: The Toda potential φ(r) = e−r + r − 1.

1.6 The Toda lattice

If we take the position of the minimum of φ(r) at the origin r = 0, the potential
(1.14) takes the form:

(1.15) φ(r) =
a

b
e−br + ar, (ab > 0).

8



1.6 The Toda lattice

In the following, we use this expression for the interaction potential. The lattice
with exponential interaction is now called the Toda lattice.

Observe that if we expand (1.15) assuming “small” r, we have

φ(r) = const.+
ab

2
r2 − ab2

6
r3 + · · · .

Thus, for sufficiently “small” amplitude motion, the lattice looks like a linear lattice
with spring constant

κ = ab.

For a somewhat “larger” motion the nonlinear parameter of (1.4) is given by

α = − b
2
.

Considering the potential (1.15), from (1.1) and (1.8) we have the following
equations of motion:

m
d2yn
dt2

= a(e−b(yn−yn−1) − e−b(yn+1−yn))

and respectively:

m
d2rn
dt2

= a(−e−brn−1 + 2e−brn − e−brn+1).

As for the equivalent dual expression, (1.10) yields:

d

dt
log(a+ ṡn) =

b

m
(sn−1 − 2sn + sn+1)

or
s̈n

a+ ṡn
=

b

m
(sn−1 − 2sn + sn+1).

Differentiating the last equation, we have

d2

dt2
log
(

1 +
fn
a

)
=

b

m
(fn−1 − 2fn + fn+1)

and integrating, we obtain

log
(

1 +
S̈n
a

)
=

b

m
(Sn−1 − 2Sn + Sn+1),

after choosing the integration constants appropriately. These are the equations of
motion for the lattice with exponential interaction. The force of the spring is, by
(1.11), given as

fn = a(e−brn − 1) = ṡn.

9





Chapter 2

Some useful tools

2.1 Periodic systems

In this chapter we treat periodic systems. We are going to see that a discrete version
of Hill’s Equation comes in play. To solve the problem it is convenient to use the
spectrum and the auxiliary spectrum for fixed boundary conditions of this equation.
The fundamental solutions and the discriminant of the discrete Hill’s Equation are
introduced and actually play important roles. The discriminant is a polynomial of
the spectrum. The initial value problem reduces to inverse spectral theory.

2.2 Matrix formalism

We discuss the initial value problem of a periodic lattice with exponential interaction
between neighbors. We assume no impurity (we take m = 1) and a system composed
of N particles. The equations of motions can then be written as:

(2.1)

{
Q̇n = Pn
Ṗn = e−(Qn−Qn−1) − e−(Qn+1−Qn),

where Qn and Pn are to be interpreted as displacement and momentum, respectively.
Further, we use the transformation:{

an = 1
2
e−(Qn+1−Qn)/2

bn = 1
2
Pn.

These are the so-called Flaschka’s variables. Then the equations (2.1) give:

(2.2)

{
ȧn = an(bn − bn+1)

ḃn = 2(a2
n−1 − a2

n).

11



2 Some useful tools

Observe that these equations are not altered when we change the sign of an. Since
we are interested in a periodic lattice consisting of N particles, we have

(2.3) an+N = an, bn+N = bn

We introduce the N ×N matrices L and B by

L =



b1 a1 aN
a1 b2

. . . 0
bn−1 an−1

an−1 bn an
an bn+1

0
. . .

bN−1 aN−1

aN aN−1 bN


,

B =



0 −a1 aN
a1 0

. . . 0
0 −an−1

an−1 0 −an
an 0

0
. . .

0 −aN−1

−aN aN−1 0


.

We write now (2.2) in matrix form. We have:

(2.4)
dL

dt
= BL− LB ≡ [B,L].

This is Lax’s formalism. Lax’s formalism is to write a time evolution equation in
the form of (2.4). Here, it is essential that B is antisymmetric so that the matrix U
defined by

dU

dt
= BU, U(0) = I

is unitary. In other words
dU−1

dt
= −U−1B

UU−1 = U−1U = I.

12



2.2 Matrix formalism

Therefore, we have
d

dt
(U−1LU) = 0

so that U−1LU is time independent and

(2.5) L(t) = U(t)L(0)U−1(t).

Thus, L(t) and L(0) are unitarily equivalent.

Let λ(t) (a scalar function) and φ(t) (a N ×1 - matrix valued function) denote
the eigenvalues and eigenfunctions of L(t) respectively; then at t = 0 :

L(0)φ(0) = λ(0)φ(0)

and using (2.5), we have

L(t)U(t)φ(0) = λ(0)U(t)φ(0).

Compairing this with the equation

(2.6) L(t)φ(t) = λ(t)φ(t),

at time t, we see that
φ(t) = U(t)φ(0)

or

(2.7)
dφ

dt
= Bφ

and
λ(t) = λ(0) = λ.

Therefore, the eigenvalues are independent of time. Furthermore, since all the el-
ements of the matrix L are real, all the eigenvalues λ are also real. Thus, motion
in the lattice conserves its spectrum λ (the isospectral deformation). By (2.6) the
eigenvalues are determined by the determinant equation

det(λI − L) = 0.

The equation of motion (2.4) is equivalent to (2.6) and (2.7), namely to:{
L(t)φ(t) = λφ(t)
dφ
dt

= Bφ.

To show this it is only necessary to differentiate (2.6) with respect to t, to
obtain

dL

dt
φ+ LBφ = λ

dφ

dt
⇒ dL

dt
φ+ LBφ = λBφ = BLφ

or (dL
dt
− (BL− LB)

)
φ = 0

Thus, we have (2.4).

13



2 Some useful tools

2.3 Discrete Hill’s equation

Remember that for the dynamical variables we have chosen Flaschka’s variables
an ≡ an(t), bn ≡ bn(t). Remember also that the periodic conditions are expressed
as an+N = an, bn+N = bn. It is convienient to consider an infinite system composed
of such an and bn. For this infinite system we discuss the equation:

(2.8) (Lφ)n ≡ an−1φ(n− 1) + bnφ(n) + anφ(n+ 1) = λφ(n),

with a constant λ. Since the coefficients an and bn are periodic the above is a discrete
version of Hill’s Equation

−d
2φ

dx2
+ (u− λ)φ = 0, u(x+ `) = u(x),

and (2.8) is called the discrete Hill’s Equation. This is a difference relation of second
rank which can be solved for φ(n) when for example the values φ(0) and φ(1) at
n = 0 and n = 1 respectively, are given. The function φ(n) obtained is not periodic
in general and may tend to +∞ as n → ±∞. A solution is said to be stable if it
is bounded. It will be shown below that stable solutions correspond to bands
of the spectrum λ and between these stable regions there are unstable
regions (gaps). Such a spectral structure depends on an, bn and conversely the
spectral structure restricts an, bn to some extent. It will be shown that if a certain
set of data regarding the initial conditions is given, we can determine the future
evolution of the lattice. Since we want to determine an and bn from the knowledge
of the spectrum, this is an inverse spectral problem.

2.4 Some formulas

To begin with, we describe certain properties of the discrete Hill’s Equation. Since
this is a difference equation of the second rank, for every fixed λ we have two lin-
early independent solutions (called fundamental solutions). Any other arbitrary
solution (for the same λ of course) can be written as a linear combination of these
fundamental solutions. Let us denote the fundamental solutions of (2.8) by

φ1(n) ≡ φ1(n, λ), φ2(n) ≡ φ2(n, λ).

Any arbitrary solution φ(n) ≡ φ(n, λ) can be written as

(2.9) φ(n) = c1φ1(n) + c2φ2(n).
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2.5 The spectrum

From now on, we consider the fundamental solutions defined by the boundary con-
ditions

(2.10)

{
φ1(0) = 1, φ1(1) = 0
φ2(0) = 0, φ2(1) = 1

Writing down (2.8) for φ1(n), we have
a0 + a1φ1(2) = 0
b2φ1(2) + a2φ1(3) = λφ1(2)
a2φ1(2) + b3φ1(3) + a3φ1(4) = λφ1(3)

...

and solving successively, we obtain
φ1(2) = −a0

a1

φ1(3) = − a0
a1a2

(λ− b2)

φ1(4) = − a0
a1a2a3

(
λ2 − (b1 + b2)λ+ b2b3 − a2

2

)
...

In general, by induction we have :

(2.11) φ1(n) = −a0

(n−1∏
j=1

aj

)−1
(
λn−2 −

(n−1∑
j=2

bj

)
λn−3 + · · ·

)
, n ≥ 2.

Similarly, we have:

(2.12) φ2(n) =
(n−1∏
j=1

aj

)−1
(
λn−1 −

(n−1∑
j=1

bj

)
λn−2 + · · ·

)
, n ≥ 2.

2.5 The spectrum

Replacing n in (2.8) by n + N and remembering (2.3) we see that φ1(n + N) and
φ2(n+N) also satisfy (2.8). So, they can be expressed as linear combinations of φ1(n)
and φ2(n). To be more precise: we consider the shift operator acting on sequences,
i.e. S : `(Z,R)→ `(Z,R) (where `(Z,R) is the space of real valued sequences from
Z) such that `(Z,R) 3 φ 7−→ Sφ ∈ `(Z,R) and the n-term of the sequence Sφ is

given by:
(
Sφ
)

(n) = φ(n + 1) (or else is the (n + 1)-term of the sequence φ). In

the same spirit, SN denotes the composition of N -copies of the operator S. In other

15



2 Some useful tools

words,
(
SNφ

)
(n) = φ(n+N). Replacing now n in (2.8) by n+N and remembering

(2.3) yields

an−1

(
SNφ

)
(n− 1) + bn

(
SNφ

)
(n) + an

(
SNφ

)
(n+ 1) = λ

(
SNφ

)
(n)

But this says that SNφ1 and SNφ2 satisfy the discrete Hill’s equation and so they
can be written in terms of φ1 and φ2. Thus{

SNφ1 = m11φ1 +m12φ2

SNφ2 = m21φ1 +m22φ2

Or else [
SNφ1

SNφ2

]
= M

[
φ1

φ2

]
,

where M is the 2× 2 matrix with real entries

M =

[
m11 m12

m21 m22

]
.

Equivalently

(2.13)

[
φ1(n+N)
φ2(n+N)

]
= M

[
φ1(n)
φ2(n)

]
Evaluating this at n = 0 and n = 1 using (2.10), we can determine the elements of
M as:

(2.14) M =

[
φ1(N) φ1(N + 1)
φ2(N) φ2(N + 1)

]
.

M is called a monodromy matrix.

On the other hand, φ1 and φ2 satisfy{
an−1φ1(n− 1) + bnφ1(n) + anφ1(n+ 1) = λφ1(n)
an−1φ2(n− 1) + bnφ2(n) + anφ2(n+ 1) = λφ2(n).

Eliminating λ from these, we have

W ≡ an

(
φ1(n)φ2(n+ 1)− φ1(n+ 1)φ2(n)

)
= an−1

(
φ1(n− 1)φ2(n)− φ1(n)φ2(n− 1)

)

16



2.6 The discriminant

This is a relationship concerning a discrete version of the Wronskian W for
the differences φ1(n+ 1)− φ1(n) and φ2(n+ 1)− φ2(n). Lifting n to N on one side
and lowering n to 1 on the other, we obtain

W ≡ aN

(
φ1(N)φ2(N + 1)− φ1(N + 1)φ2(N)

)
= a0

(
φ1(0)φ2(1)− φ1(1)φ2(0)

)
= a0(2.15)

where we have used (2.10). Further, since a0 = aN we have

(2.16) detM = φ1(N)φ2(N + 1)− φ1(N + 1)φ2(N) = 1.

For some very special values of λ the solutions φ(n) in (2.9) can be periodic
but more generally we have solutions satisfying:

(2.17) φ(n+N) = ρφ(n)1,

which means that for n = 0, 1, we have

(2.18)

{
c1φ1(N) + c2φ2(N) = ρc1

c1φ1(N + 1) + c2φ2(N + 1) = ρc2

Multiplying these two equations we see that ρ is a root of the equation:

(2.19) ρ2 −∆(λ)ρ+ 1 = 0

Here,

(2.20) ∆(λ) ≡ φ1(N) + φ2(N + 1) = tr{M}

which is called the discriminant. And solving (2.19) we have

(2.21) ρ =
1

2

(
∆±

√
∆2 − 4

)

2.6 The discriminant

When λ satisfies
∆2(λ) ≤ 4,

1Such a function is called Bloch function. The fact that such a function exists is known as the
Floquet Theorem (See chapter 7 of [7])
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Figure 2.1: Schematic diagram of ∆(λ) ∼ λ - (an example).

ρ in (2.21) is in general complex and |ρ| = 1. Thus, such λ belongs to a stable
region, that is, the solution is stable. When ρ = 1, the period of the solution is
N (since then, φ(n + N) = φ(n)) and when ρ = −1 the period is 2N (we have:
φ(n+N) = −φ(n)).

When
∆2(λ) > 4,

λ belongs to an unstable region.

The roots of the equations

∆(λ)− 2 = 0 and ∆(λ) + 2 = 0

(see Figure 2.1), belong to eigenfunctions with periods N and 2N . It is easy to show
that these are, respactively, eigenfunctions of L+ and L− defined by

(2.22) L± =



b1 a1 ±aN
a1 b2

. . . 0
bn−1 an−1

an−1 bn an
an bn+1

0
. . .

bN−1 aN−1

±aN aN−1 bN


.

Furthermore, the eigenvalues of these symmetric matrices are real (since the
entries of the matrices are real). This is an easy fact. Indeed

λu · u = u · λu = u · Lu, and
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2.7 The spectrum - continued

λu · u = u · λu = u · Lu = Lu · u = u · Lu

and then

(λ− λ)u · u = 0.

Therefore, λ is real. All the eigenvalues of (2.22) are thus real.

Now, equations (2.11), (2.12) and (2.20) yield:

(2.23) ∆(λ) =
( N∏
j=1

aj

)−1
(
λN −

( N∑
j=1

bj

)
λN−1 + · · ·

)
.

Since ∆2(λ) = 4 has 2N roots λl, l = 1, 2, . . . , 2N , we have:

(2.24) ∆2(λ)− 4 =
( N∏
j=1

aj

)−2
2N∏
l=1

(λ− λl).

If the λl’s are numbered in increasing order, we have:

(2.25) λ1 < λ2 ≤ λ3 < λ4 ≤ λ5 < · · · < λ2N−2 ≤ λ2N−1 < λ2N .

Only the intervals [λ2l, λ2l+1], l = 1, 2, . . . , N − 1 may degenerate to one point
yielding double roots. The spectrum (2.25) consists of two series interlaced ; one
coming from ∆− 2 = 0 and the other from ∆ + 2 = 0.

2.7 The spectrum - continued

To prove the above alteration (2.25) of the spectrum we use two solutions of (2.8)
with different λ:

φ(n) ≡ φ(n, λ), ψ(n) ≡ ψ(n, λ′).

Then, from (2.8) we have

(λ− λ′)φ(n)ψ(n) = ψ(n)
(
anφ(n+ 1) + bnφ(n) + an−1φ(n− 1)

)
− φ(n)

(
anψ(n+ 1) + bnψ(n) + an−1ψ(n− 1)

)
= an

(
φ(n+ 1)ψ(n)− φ(n)ψ(n+ 1)

)
− an−1

(
φ(n)ψ(n− 1)− φ(n− 1)ψ(n)

)
,
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so that

(λ− λ′)
N∑
n=1

φ(n)ψ(n)

= aN

(
φ(N + 1)ψ(N)− φ(N)ψ(N + 1)

)
− a0

(
φ(1)ψ(0)− φ(0)ψ(1)

)
.

Applying this to two fundamental solutions:

φ(n) ≡ φ1(n, λ), ψ(n) ≡ φ1(n, λ′)

we obtain

(λ− λ′)
N∑
n=1

φ1(n, λ)φ1(n, λ′)

= aN

(
φ1(N + 1, λ)φ1(N, λ′)− φ1(N, λ)φ1(N + 1, λ′)

)
(always remembering that the boundary conditions for these functions satisfy: φ1(1, λ) =
φ1(1, λ′) = 0). We let λ converge to λ′ and write the derivative as

φ′1 ≡
dφ1

dλ
.

Then we have the expression for the norm

‖φ1‖2 =
N∑
n=1

φ2
1(n) = aN

(
φ1(N)φ′1(N + 1)− φ1(N + 1)φ′1(N)

)
.

Similar expressions are obtained for φ2 and φ1 · φ2. Namely

φ1 · φ2 =
N∑
n=1

φ1(n)φ2(n) = aN

(
φ2(N)φ′1(N + 1)− φ2(N + 1)φ′1(N)

)
and

‖φ2‖2 =
N∑
n=1

φ2
2(n) = aN

(
φ2(N)φ′2(N + 1)− φ2(N + 1)φ′2(N)

)
.

Now, if we solve these equations for φ′1(N+1), φ′1(N) etc. and substitute them
into the derivative of ∆(λ) with respect to λ, we have

d∆

dλ
= φ′1(N) + φ′2(N + 1)

=
1

aN

N∑
n=1

(
φ2(N)φ2

1(n)− (φ1(N)− φ2(N + 1))φ1(n)φ2(n)− φ1(N + 1)φ2
2(n)

)
,
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2.7 The spectrum - continued

or by using (2.16):

d∆

dλ
= −φ1(N + 1)

aN

N∑
n=1

((
φ2(n) +

φ1(N)− φ2(N + 1)

2φ1(N + 1)
φ1(n)

)2

− Γ

4φ2
1(N + 1)

φ2
1(n)

)
,

where by (2.16) and (2.20):

Γ ≡
(
φ1(N)− φ2(N + 1)

)2

+ 4φ1(N + 1)φ2(N)

=
(
φ1(N) + φ2(N + 1)

)2

− 4

= ∆2 − 4.(2.26)

Therefore, as long as ∆2−4 < 0, d∆
dλ

will have the same sign as −φ1(N + 1). If
φ1(N + 1) were to vanish when ∆2−4 < 0, (2.16) would indicate that φ1(N)φ2(N +
1) = 1 and that |∆| = |φ1(N) + 1

φ1(N)
| ≥ 2, which would be a contradiction. So,

φ1(N + 1) cannot vanish as long as ∆2 − 4 < 0. In other words, d∆
dλ

can only
change sign in the region where ∆2 − 4 > 0. This proves the alteration of the
spectral points.
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Chapter 3

Analyzing the problem

3.1 The spectrum - revisited

Though the total number of the roots λj (i.e. the spectrum) of ∆2(λ) − 4 = 0
is 2N and is the same as the total number of the dynamical variables an, bn, we
cannot determine these dynamical variables even if all the λj’s are given. Indeed, it
can be shown that λj’s are not all independent. Therefore, to solve the inverse
problem we have to have further information. As such, we may use the auxiliary
spectrum µj which is defined under boundary conditions different from those for
λj.

But first we shall establish the above assertion about the spectrum. Let λ+
j be

the roots of ∆(λ) = 2 and λ−j be those of ∆(λ) = −2. Then if we denote a1a2 · · · aN
by A, we have

∆(λ)− 2 = A−1

N∏
j=1

(λ− λ+
j ) = A−1

N∏
j=1

(λ− λ−j )− 4,

which means that if the λ+
j ’s are given then they determine λ−j and vice versa.

Furhtermore, we shall show that the simple roots of ∆2(λ) = 4 determine
all the roots. For this, let λ◦i , i = 1, 2, . . . , 2g+ 2 be the simple roots of ∆2(λ) = 4
and λj be the remaining ones. Then, we may write

4−∆2(λ) = c1

2g+2∏
i=1

(
1− λ

λ◦i

)N−g−1∏
j=1

(
1− λ

λj

)2

with a certain constant c1 (where for brevity we already assumed that λ◦j , λj are
different from zero).
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3 Analyzing the problem

On the other hand, let λ′j be the root of ∆′(λ) ≡ d∆(λ)
dλ

= 0 which lies between
λ◦2j and λ◦2j+1. This is simple. Since λj is a double root, it is also a root of ∆′(λ) = 0.
Therefore, we may write

∆′(λ) = c2

g∏
j=1

(
1− λ

λ′j

)N−g−1∏
k=1

(
1− λ

λk

)
with a certain constant c2 (remember that since ∆(λ) is a polynomial of degree N
with respect to λ, ∆′(λ) is a polynomial of degree N − 1).

Thus, we have

∆′(λ)√
4−∆2(λ)

= c3

∏g
j=1(λ− λ′j)√∏2g+2
i=1 (λ− λ◦i )

,

where c3 is a constant. Now, let

∆(λ) ≡ 2 cosψ(λ),

where ψ(λ) is a specific function. Then, we have

ψ′(λ) =
dψ

dλ
(λ) = − ∆′(λ)

2 sinψ(λ)
= ± ∆′(λ)√

4−∆2
= c4

∏g
j=1(λ− λ′j)√∏2g+2
i=1 (λ− λ◦i )

,

with c4 = ±c3. Integrating, we take

ψ(λ) = c4

∫ λ

λ1

∏g
j=1(λ̃− λ′j)√∏2g+2
i=1 (λ̃− λ◦i )

dλ̃.

Therefore, for sufficiently large λ we have ψ(λ) ∼ c4 log λ + · · · . But we have
∆(λ) ∼ A−1(λN + · · · ). Thus, we see that

c4 = ±iN.

Also, since ∆2(λ) < 4 and ∆′(λ) is real for λ ∈ [λ◦2j−1, λ
◦
2j], ψ

′ is purely imaginary
in this region and we have

ψ(λ◦2j−1)− ψ(λ◦2j) = iε,

where ε is a certain real number. However, λ◦2j is a root of ∆2 = 4 which implies
that: cosψ(λ◦2j) = ±1, or

ψ(λ◦2j) = ±mjπ
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3.2 The auxiliary spectrum (I)

for some integer mj. Therefore, we have

±1 = cosψ(λ◦2j−1) = cos(±mjπ + iε) = ± cosh ε.

So, we obtain ε = 0 and
ψ(λ◦2j−1) = ψ(λ◦2j).

Hence, we have the simultaneous equations :∫ λ◦2j

λ◦2j−1

∏g
k=1(λ− λ′k)√∏2g+2
i=1 (λ− λ◦i )

dλ = 0, j = 1, 2, . . . , g.

These equations determine the λk’s as functions of λ◦j which means that the function
ψ(λ) and then all the roots of ∆2(λ) = 4 are determined by the simple roots
λ◦i .

3.2 The auxiliary spectrum (I)

Now, we define the auxiliary spectrum µj by:

(3.1) φ1(N + 1, µj) = 0, j = 1, 2, . . . , N − 1.

Since φ1(N+1) is polynomial of order N−1, there are N−1 roots µj. According to
the definition of φ1, we have: φ1(1, µj) = 0 (remember that it also holds: φ1(0, µj) =
1, but this doesn’t affect the previous definition). Since by (3.1) and (2.16):

φ1(N,µj)φ2(N + 1, µj) = 1,

we have

∆(µj) = φ1(N,µj) +
1

φ1(N,µj)

by (2.20). Hence
|∆(µj)| ≥ 2

which means that the µj lie in the unstable regions (or else, spectral gaps).
All the µj are simple and each µj lies between λ2j and λ2j+1:

λ2j ≤ µj ≤ λ2j+1, j = 1, 2, . . . , N − 1.

We are going to show below the reason why the auxiliary spectrum µj is simple.

The equation for φ1 is

(3.2) anφ1(n+ 1) + bnφ1(n) + an−1φ1(n− 1) = λφ1(n).

25



3 Analyzing the problem

Differentiating with respect to λ and writing φ′1 = dφ1
dλ

, we have

(3.3) anφ
′
1(n+ 1) + bnφ

′
1(n) + an−1φ

′
1(n− 1) = φ1(n) + λφ′1(n).

By eliminating λ from (3.2), (3.3) and then taking the sum we obtain

N∑
n=1

(
anφ1(n+ 1)φ′1(n)− an−1φ1(n)φ′1(n− 1)

)
−

N∑
n=1

(
anφ1(n)φ′1(n+ 1)− an−1φ1(n− 1)φ′1(n)

)
= −

N∑
n=1

φ2
1(n)

But since the auxiliary spectrum satisfies{
φ1(N + 1, µj) = 0
φ′1(0, µj) = φ′1(1, µj) = 0,

we have

aNφ1(N,µj) · φ′1(N + 1, µj) =
N∑
n=1

φ2
1(n, µj) 6= 0.

Therefore:

(3.4)


φ1(N,µj) 6= 0

dφ1(N+1,λ)
dλ


λ=µj

6= 0

and the second equation of (3.4) implies that µj are simple.

3.3 The first results

Since by (2.11) and (3.1):

φ1(N + 1, λ) = −a0

( N∏
j=1

aj

)−1
(
λN−1 −

( N∑
j=2

bj

)
λN−2 + · · ·

)

= −a0

( N∏
j=1

aj

)−1
N−1∏
j=1

(λ− µj),
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3.3 The first results

we obtain the relation
N∑
j=2

bj =
N−1∑
j=1

µj

which can be written as
N∑
j=1

bj − b1 =
N−1∑
j=1

µj.

On the other hand, comparing (2.23), (2.24) we have

(3.5) Λ̃ ≡
N∑
j=1

bj =
1

2

2N∑
j=1

λj = const. (independent of time).

Thus, if all the µj are known, b1 is given as:

(3.6) b1 = Λ̃−
N−1∑
j=1

µj =
1

2

2N∑
j=1

λj −
N−1∑
j=1

µj.

When the curve ∆(λ) “cuts” the lines y = ±2, we have a simple root, and when
it “touches” y = ±2 we have a double root. When λ2j and λ2j+1 coincide, (i.e. we
have a double root), µj also coincides with them (λ2j = µj = λ2j+1). When λ2j and
λ2j+1 differ (so we are in the case of simple roots), µj lies between them (actually,
µj oscillates with time between λ2j and λ2j+1 as will be shown later). In the
following discussion the simple roots λj play a central role. Changing a little bit the
previously used notation for λj we henceforth denote the simple roots by:

λ1, λ2, . . . , λ2g+2,

assuming that their number is 2g + 2. For the double ones we write:

λ2j+1 = λ2j+2, j = g + 1, . . . , N − 1.

We also change the numbering of µj so that:

λ2j < µj < λ2j+1, j = 1, 2, . . . , g

and of course for the remaining double roots:

λ2j+1 = µj = λ2j+2, j = g + 1, . . . , N − 1.

Using these definitions, (3.6) is rewritten now as:{
b1 = Λ−

∑g
j=1 µj

Λ = 1
2

∑2g+2
j=1 λj = const.

Therefore, b1 is obtained by the auxiliary spectrum µj, j = 1, 2, . . . , g.
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3 Analyzing the problem

3.4 Generalizing the procedure

A similar argument to the above will lead us to a formula for all bk if we shift all the
suffixes n by a constant k. Thus, let φ1(n|k) ≡ φ1(n, λ|k) and φ2(n|k) ≡ φ2(n, λ|k)
denote the solutions of

an+k−1φ(n− 1) + bn+kφ(n) + an+kφ(n+ 1) = λφ(n),

subject to the boundary conditions{
φ1(0|k) = 1, φ1(1|k) = 0
φ2(0|k) = 0, φ2(1|k) = 1

In terms of φ1(n) and φ2(n) we can express φ1(n|k), φ2(n|k) as{
φ1(n|k) = α1φ1(k + n) + β1φ2(k + n)
φ2(n|k) = α2φ1(k + n) + β2φ2(k + n)

For n = 0 and n = 1, we have
1 = α1φ1(k) + β1φ2(k)
0 = α1φ1(k + 1) + β1φ2(k + 1)
0 = α2φ1(k) + β2φ2(k)
1 = α2φ1(k + 1) + β2φ2(k + 1)

Therefore, eliminating β1 from the first two equations we have

φ2(k + 1) = α1

(
φ1(k)φ2(k + 1)− φ1(k + 1)φ2(k)

)
=
W

ak
α1 =

a0

ak
α1

where we have used the Wronskian W (take a look at (2.15) ). Similarly
φ1(k + 1) = −W

ak
β1 = − a0

ak
β1

φ2(k) = −W
ak
α2 = − a0

ak
α2

φ1(k) = W
ak
β2 = a0

ak
β2

Thus:

(3.7)

 φ1(n|k) = ak
a0

(
φ2(k + 1)φ1(k + n)− φ1(k + 1)φ2(k + n)

)
φ2(n|k) = ak

a0

(
−φ2(k)φ1(k + n) + φ1(k)φ2(k + n)

)
It is easy to show now that the discriminant remains invariant

∆(λ|k) = φ1(N |k) + φ2(N + 1|k) = ∆(λ),
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3.4 Generalizing the procedure

which means that the roots λj(k) of ∆2(λ|k)− 4 = 0 are invariant:

λj(k) = λj(0) ≡ λj

We define now µj(k) by:

φ1(N + 1, µj(k)|k) = 0.

By an argument similar to the above, we see that:

λ2j ≤ µj(k) ≤ λ2j+1,

but in general:
µj(k) 6= µj ≡ µj(0).

Similarly to (2.11), we have

φ1(N + 1, λ|k) = −ak
( N∏
j=1

aj+k

)−1
(
λN−1 − (

N∑
j=2

bj+k)λ
N−2 + · · ·

)

= −ak
( N∏
j=1

aj+k

)−1
N−1∏
l=1

(λ− µl(k))(3.8)

Therefore, by virtue of

N∑
j=2

bj+k = bk+2 + bk+3 + · · ·+ bN + bN+1 + · · ·+ bk+N−1 + bk+N

= bk+2 + bk+3 + · · ·+ bN + b1 + · · ·+ bk−1 + bk

=
N∑
l=1

bl − bk+1,

we have
N∑
l=1

bl − bk+1 =
N−1∑
j=1

µj(k).

On the other hand, we obtain (3.5) or

Λ̃ ≡ 1

2

2N∑
j=1

λj =
N∑
j=1

bj.

Thus, we are led to the formula:

bk+1 = Λ̃−
N−1∑
j=1

µj(k).
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3 Analyzing the problem

By rearranging the numbering so that µj(k), j = 1, 2, . . . , g is between simple roots,
we have: {

λ2j < µj(k) < λ2j+1, j = 1, 2, . . . , g
λ2j+1 = µj(k) = λ2j+2, j = g + 1, . . . , N − 1.

Using the definitions we thus obtain the important formula:

(3.9)

{
bk+1 = Λ−

∑g
j=1 µj(k)

Λ = 1
2

∑2g+2
j=1 λj

3.5 Riemann surfaces: a few facts

Remember that our task is to solve an Inverse Problem and since - as will be clear
in the following pages - this is related to differentials on a Riemann surface 1, called
Abelian differentials, we shall investigate them in this section providing a useful
formula.

Our Riemann surface consists of two sheets of complex planes joined along
the branch cuts [λ1, λ2], [λ3, λ4],. . .,[λ2g+1, λ2g+2] . We first make two complex spheres
by stereographic projection of each sheet. Along the banks of the cuts we put + and
− signs: the + signs refer to the positive side of the imaginary axis and the − signs
to the negative side - take a look at Figure 3.1.

We place these spheres so that the corresponding branch cuts of the two
spheres face each other: the + banks facing the − banks of the other sphere and
vice versa. We open the cuts widely and join the facing banks by g + 1 tubes and
paste. (See Figure 3.2)

By topological deformation we have a surface consisting of handles (tubes) and
a sphere which is made from the two facing spheres and the tube for the branch cut
[λ1, λ2]. Then, we cut along the curves a1, b1, a2, b2, . . . , ag, bg on the surface passing
from a point O as shown in Figure 3.3. Thus, we obtain a simply connected region
S0 as shown in the same Figure. We specify the edges of this region by the arrows
a1, b1, a

−1
1 , b−1

1 , a2, b2, a
−1
2 , b−1

2 , . . . , ag, bg, a
−1
g , b−1

g , and flatten the surface to the nor-

mal form: a1b1a
−1
1 b−1

1 · · · agbga−1
g b−1

g (also called the fundamental polygon of
the Riemann surface - take a look at Figure 3.4). In this case we say that our
Riemann surface is of genus g.

Consider αj, a closed contour which surrounds the cut [λ2j+1, λ2j+2], j =
1, 2, . . . , g on the upper sheet of the Riemann surface. Also take βj to be a

1for example see [3], [4], or [5]. Some introductory results can be found also in the appendix of
[7].
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∞
λ - sphere

λ - plane

Upper sheet

−
−

−
+

+

+

− −

−

+ +

+

∞′

−

−

−

+

+

+

Figure 3.1: Stereographic projection of two Riemann sheets.

closed contour which starts at λ2, goes on the lower sheet as far as λ2j+1, crosses
back to the upper sheet and ends where it started at λ2.

So, a1 gives the path of integration α1, b1 gives the path β1, a−1
1 gives the path

α−1
1 - which is the reverse of α1, b−1

1 is the reverse of β1 and so forth.

Let ω, η be meromorphic differentials on the Riemann surface 2 such that{ ∫
αi
ω = Ai,

∫
βi
ω = Bi∫

αi
η = A′i,

∫
βi
η = B′i

The Ai’s are called the α-periods and the Bi’s are named the β-periods of ω. The
same holds for the periods of η.

Let Q′ be a point on the curve a−1
i which corresponds to Q on ai as shown in

Figure 3.5 and let

ω = df,

2they are meromorphic functions on the Riemann surface times dλ.
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∞

∞′

λ1

λ1 λ6

λ6

λ2

λ2

λ3

λ4

λ3

λ4

λ5

λ5

Figure 3.2: Topological mapping of the Riemann surface.

for a function f on the Riemann surface. Then, we have∫
QQ′

ω =

∫
QO

df +

∫
OO′

df +

∫
O′Q′

df =

∫
OO′

df =

∫
βi

df = Bi,

where we just used the fact that∫
QO

df = −
∫
O′Q′

df.

But this says exactly that

Bi = f(Q′)− f(Q).

Similarly, we obtain

−Ai = f(R′)− f(R)

where R′ is the point on b−1
i corresponding to R on bi.

So, since it holds

η(Q′) = −η(Q)
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b1

a1

a−1
1

b−1
1

a2

b2

b−1
2

a−1
2

”cut” and ”open”

b2
b1

a1
a2

S0

Figure 3.3: Canonical dissection (g=2).

a1

b1

a−1
1

a2

b−1
1

b2

a−1
2

b−1
2

Figure 3.4: Normal form (g=2).

too, we have∫
αj+βj+α−1

j +β−1
j

fη =

∫
αj

fη +

∫
βj

fη −
∫
αj

(f +Bj)η −
∫
βj

(f − Aj)η

= −Bj

∫
αj

η + Aj

∫
βj

η

= AjB
′
j −BjA

′
j.

Therefore ∫
C

fη =

g∑
j=1

(AjB
′
j −BjA

′
j),

where the contour C encircles the polygon a1b1 · · · a−1
g b−1

g .

Some definitions now: meromorphic differentials on a Riemann surface are
called Abelian differentials. The ones that have no poles are called Abelian
differentials of the first kind. Differentials with poles but vanishing residues
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b−1
g

a1b1

b−1
1

Q

Q′

R

R′

a−1
1

Figure 3.5: Paths of integration.

are called Abelian differentials of the second kind and the remaing ones, i.e.
differentials with nonvanishing residues are Abelian differentials of the third
kind.

Let ω = df = ω1 be a differential of the first kind and η = ω3 be one of the
third kind. Especially, assume that the latter has poles at Pl, l = 1, 2, . . . ,m with
residues Cl, l = 1, 2, . . . ,m. Then, by the Residue Theorem, we have

(3.10)

g∑
j=1

(AjB
′
j −BjA

′
j) =

∫
C

fω3 = 2πi
m∑
l=1

f(Pl)Cl = 2πi
m∑
l=1

Cl

∫ Pl

P0

ω1

where P0 is a point on S0 (such that f(P0) = 0) and f(Pl) =
∫ Pl

P0
df =

∫ Pl

P0
ω1.

Furthermore, let ω3 be an Abelian differential of the third kind such that it has
residues +1 and −1 at two points P and Q respectively and furthermore,

∫
αj
ω3 = 0.

Such a differential is called a normal differential of the third kind.

Also, consider ω1 = ωk to be an Abelian differential of the first kind such that∫
αj
ω1 = δij, δij being Kronecker’s delta. Such differentials are called normalized

Abelian differentials of the first kind.

So, with all the above in mind we have

A′j = 0 and Aj = δjk, j = 1, 2, . . . .

Then by (3.10), we obtain

B′k = 2πi
m∑
l=1

Cl

∫ Pl

P0

ωk

or

(3.11)

∫
βk

ω3 = 2πi
m∑
l=1

Cl

∫ Pl

P0

ωk.
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3.5 Riemann surfaces: a few facts

If ω3 has a pole at P ≡ µj(k) with residue CP = 1 and at Q ≡ µj(0) with
residue CQ = −1, then (3.11) reduces to:∫

βk

ω3 = 2πi
(∫ P

P0

ωk −
∫ Q

P0

ωk

)
,

or

(3.12)

∫
βk

ω3 = 2πi

∫ P

Q

ωk.

This is the formula we promished from the begining.
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Chapter 4

The role of Riemann surfaces

4.1 The auxiliary spectrum (II)

While the roots λj of ∆2(λ) − 4 = 0 are independent of time, each of µj(k) will
oscillate in the interval [λ2j+1, λ2j+2], j = 1, 2, . . . , g. Before solving the system we
shall note an important relation between µj(k) and µj(0).

The Bloch function defined by: φ(n+N) = ρφ(n) in (2.17) may be written
except for a constant factor as

(4.1) φ±(n) =
c1

c2

φ1(n) + φ2(n),

where c1
c2

is given by solving (2.18) as

(4.2)
c1

c2

=
ρ− φ2(N + 1)

φ1(N + 1)
=
φ1(N)− φ2(N + 1)±

√
∆2 − 4

2φ1(N + 1)
.

Alternatively, we may write

c1

c2

=
φ2(N)

ρ− φ1(N)
=

2φ2(N)

−φ1(N) + φ2(N + 1)±
√

∆2 − 4
.

Equating these two expressions we once again obtain (2.26). On the other hand,
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4 The role of Riemann surfaces

using (4.1), (4.2) and (2.26) we have

φ+(n)φ−(n) =
1

4φ2
1(N + 1)

((
φ1(N)− φ2(N + 1) +

√
∆2 − 4

)
φ1(n)

+ 2φ1(N + 1)φ2(n)

)

·

((
φ1(N)− φ2(N + 1)−

√
∆2 − 4

)
φ1(n) + 2φ1(N + 1)φ2(n)

)

=
1

φ1(N + 1)

((
φ1(N)− φ2(N + 1)

)
φ1(n)φ2(n)

+ φ1(N + 1)φ2
2(n)− φ2(N)φ2

1(n)

)

=
a0/an−1

φ1(N + 1)
φ1(N + 1|n− 1),

where for the last line we have used (3.7) and (2.13), (2.14). Changing n to n + 1,
we have

(4.3) φ+(n+ 1)φ−(n+ 1) =
a0

an

φ1(N + 1|n)

φ1(N + 1)
.

Now, by the definition of µj ≡ µj(0) we have φ1(N + 1, µj) = 0 where - by (2.26) -
the numerator of (4.2) for the + sign is

φ1(N,µj)− φ2(N + 1, µj) +
√

∆2(µj)− 4 = 2
√

∆2(µj)− 4,

which does not vanish in general. Therefore, φ+(n + 1) has a pole at λ = µj. On
the other hand, φ1(N + 1, λ|n) vanishes at λ = µj(n) so that by (4.3) we see that
φ−(n+ 1, λ) has a zero at λ = µj(n). Thus writing k for n, we have

φ+(k + 1, µj) =∞, φ−(k + 1, µj(k)) = 0.

We can consider φ+(k + 1, λ) and φ−(k + 1, λ) as values of the function φ(k + 1, λ)
on the two sheets of the Riemann surface S with branch cuts along the intervals
between λ2j−1 and λ2j, j = 1, 2, . . . , g, (the zeros of (∆2(λ)− 4)1/2). On the upper

sheet (∆2(λ) − 4)1/2 has the value:
√

∆2(λ)− 4 and on the lower sheet has the

value: −
√

∆2(λ)− 4. Thus, the Bloch function φ(k + 1, λ) has simple zeros at
µj(k) and simple poles at µj(0).
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4.1 The auxiliary spectrum (II)

Moreover, φ(k+ 1, λ) has a zero and a pole at infinity on the Riemann
surface. In fact, for sufficiently large λ since φ1(N) ∼ λN−2, φ2(N) ∼ λN−1,
φ1(N + 1) ∼ λN−1, φ2(N + 1) ∼ λN and ∆(λ) = φ1(N) + φ2(N + 1) ∼ λN ,

(4.4) φ+(k + 1) ∼ φ2(k + 1) ∼ λk

and by (4.3), (4.4) and (3.8) we have

φ−(k + 1) ∼ φ1(N + 1|k)

φ1(N + 1)φ+(k + 1)
∼ λ−k.

Therefore, φ(k + 1) has a pole of kth-order at ∞ on the upper sheet and a
zero of kth-order at ∞′ on the lower sheet.

Consider now the differential :

(4.5) ω(k) =
( d
dλ

log φ(k + 1, λ)
)
dλ,

which has poles at µj(0) and µj(k) with residues +1 and −1 respectively
and poles at ∞ and ∞′ with residues +k and −k respectively.

Since there are 2g + 2 simple roots among the 2N roots of ∆2(λ)− 4 = 0, we
may write (

∆2(λ)− 4
)1/2

= (polynomial of λ) ·
(
R(λ)

)1/2

with

R(λ) =

2g+2∏
j=1

(λ− λj).

We introduce the differentials :

ω(s) =
λsdλ(
R(λ)

)1/2
, s = 0, 1, 2, . . . , g − 1

and define the following base {ωl} for the space of holomorphic differentials:

(4.6) ωl =

g−1∑
s=0

cl,sω(s), l = 1, 2, . . . , g.

Such differentials have no pole and so are Abelian differentials of the first
kind. The base {ωl} consists of normalized differentials of the first kind when the
coefficients cl,s are normalized in such a way that

(4.7)

∫
αj

ωl = δjl, j, l = 1, 2, . . . , g.
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4 The role of Riemann surfaces

Also, we put ∫
βj

ωl = τjl, j, l = 1, 2, . . . , g.

Here, αj and βj are the previously introduced curves on the Riemann surface so
that the above two integrals on the Riemann surface are the α and β-periods (See
Figure 4.1).

The function
(
R(λ)

)1/2

is real as λ→ +∞ on the real axis. Thus,
(
R(λ)

)1/2

is purely imaginary between [λ2j+1, λ2j+2] on the real axis and therefore the
coefficients cl,s are purely imaginary too. Consequently, τjk are also purely
imaginary. Finally, one can easily show that: τjk = τkj.

��
��
��

��
��
��

�
�
�

�
�
�

−

+

λ1

λ2

λ3

λ4

λ5

λ6

µ1 µ2

β2

α2

α1β1

Figure 4.1: α-periods and β-periods. (g=2)

4.2 Jacobi’s inversion problem

By the Residue Theorem, the sum of the residues vanishes. Let ω(P,Q) denote the
Abelian differential of the third kind with residue +1 and −1 at P and Q respectively.
We can add certain differentials of the first kind to the differential of the third kind
so that all the α-periods vanish: ∫

αj

ω(P,Q) = 0.

Hence, ω(P,Q) is a normal differential of the third kind.

Let now Ω be an Abelian differential of the second kind. The differential (4.5)
can be expressed as a linear combination of the differential Ω, the normal differential
ω(P,Q) of the third kind and the normalized differential ωj of the first kind. Being
carereful with the poles, we can express (4.5) as

(4.8) ω(k) = Ω + kω(∞′,∞) +

g∑
j=1

ω
(
µj(k), µj(0)

)
+

g∑
j=1

cjωj,

40



4.2 Jacobi’s inversion problem

where cj are complex numbers.

Since in (4.5), φ(k + 1, λ) is a single-valued function on the Riemann surface
S, we have { ∫

αl
ω(k) = 2πnli∫

βl
ω(k) = 2πmli

where nl and ml are certain integers. And since ω
(
µj(k), µj(0)

)
is normalized so

that ∫
αl

ω
(
µj(k), µj(0)

)
= 0,

(4.8) yields (by virtue of (4.7))
cj = 2πnji.

Therefore, the βl-integral of (4.8) gives

(4.9) k

∫
βl

ω(∞′,∞) +

g∑
j=1

∫
βl

ω
(
µj(k), µj(0)

)
+ 2πi

g∑
j=1

nj

∫
βl

ωj = 2πmli.

However, from (3.12) it holds∫
βl

ω
(
µj(k), µj(0)

)
= 2πi

∫ µj(k)

µj(0)

ωl,

where as usual ωl is the normalized differential of the first kind defined by (4.6).
Thus, (4.9) yields

k

∫ ∞′
∞

ωl +

g∑
j=1

∫ µj(k)

µj(0)

ωl = −
g∑
j=1

njτlj +ml.

Though the first term on the left-hand side vanishes for k = 0, the second term
depends on the path of integration and is equal - for k = 0 - to the right-hand side
which does not depend on k. We therefore have:

g∑
j=1

∫ µj(k)

µ0

ωl = k

∫ ∞
∞′

ωl

+

g∑
j=1

∫ µj(0)

µ0

ωl −
g∑
j=1

njτlj +ml, l = 1, 2, . . . , g,(4.10)

where µ0 is a fixed point on S which can be chosen arbitrarily. This is the required
relationship between µj(k) and µj(0). If the λj are given and if we know µj(0), the
right-hand side of (4.10) is a known quantity.
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4 The role of Riemann surfaces

Now comes the power of Riemann surface theory. The above equations indicate
that we can find the µj(k) from the µj(0). In order to prove how this actually
happens, we have to state some definitions first.

Consider the (discrete) subset of Cg

L(S) ≡ {m + τn|m,n ∈ Zg} ⊂ Cg

and define the Jacobian variety of S

J(S) ≡ Cg/L(S).

(It is a compact, commutative, g-dimensional, complex Lie group). Further, we
define Abel’s map with base point µ0

Uµ0 : S → J(S)

P 7→
[(∫ P

µ0

ω1, . . . ,

∫ P

µ0

ωg
)]
,

where [z] ∈ J(S) denotes the equivalence class of z ∈ Cg. It is holomorphic (since
ωl, l = 1, 2, . . . , g are) and well-defined as long as we choose the same path of
integration for all ωl.

We need to extend the Abel map to the set Div(S) of divisors of S. A divisor
D ∈ Div(S) is a linear combination of points on S, i.e. D =

∑
P∈S nPP , where only

finitely many of the integers nP are nonzero. The degree of the divisor D is the
integer : deg(D) =

∑
P∈S nP .

Now, the extension of Abel’s map is defined by

Aµ0 : Div(S) → J(S)

D 7→
∑
P∈S

D(P )Uµ0(P ).

Note that the above sum is to be understood in J(S).

Also, if we consider the set Sg (g being the genus of S) to be the set of all
D ∈ Div(S) such that deg(D) = g, we have Jacobi’s inversion problem which is
to invert Aµ0 : Sg → J(S).

So, 4.10 can be seen in the above spirit. The left-hand side is the image of a
divisor on S (with degree g) under the Abel map and the right-hand side is a point
in J(S).

In our case it is not necessary to obtain each µj(k) but we have to find∑g
j=1 µj(k) in (3.9) to express bk+1 as a function of k.
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4.3 The Riemann ϑ function

4.3 The Riemann ϑ function

The multidimensional ϑ function (the Riemann ϑ function) is defined by:

ϑ(u) =
+∞∑

m1,...,mg=−∞

exp
(

2πi

g∑
j=1

mjuj + πi

g∑
j,k=1

τjkmjmk

)
.

This can be also written as

ϑ(u) =
∑
m

exp
(

2πim · u + πim·τm
)
,

where u and m are vectors and τ is a matrix. More presicely

u =

u1
...
ug

 ,m =

m1
...
mg

 , τ =

τ11 · · · τ1g
...

. . .
...

τg1 · · · τgg


Now, we introduce the notation

ek =


0
...
1
...
0

 , τk =


τ1k
...
τkk
...
τgk

 .

We easily see that

(4.11)

{
ϑ(u + ek) = ϑ(u)
ϑ(u + τk) = e−2πiuk−πiτkkϑ(u)

The first equality is clear. The second one is derived by replacing mk by mk + 1.
Indeed, we have

ϑ(u) =
∑
m

e2πi(m+ek)·u+πi(m+ek)·τ(m+ek)

= e2πiek·u+πiek·τek
∑
m

e2πim·u+πim·τm+2πim·τek

= e2πiek·u+πiek·τek
∑
m

e2πim·(u+τek)+πim·τm

But this tells us that
ϑ(u + τk) = e−2πiuk−πiτkkϑ(u).
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4 The role of Riemann surfaces

We consider the function

F (u) = ϑ(u− c)

where c is a constant vector ; namely

c =

c1
...
cg

 .
Therefore

(4.12)

{
F (u + ek) = F (u)
F (u + τk) = e−2πi(uk−ck)−πiτkkF (u)

Now, let

(4.13) ul(P ) =

∫ P

P0

ωl

or

dul = ωl =

g−1∑
s=0

cl,s
λsdλ(
R(λ)

)1/2
,

where P is a point on the Riemann surface. Moreover, we write

f(P ) ≡ F (u(P )) = ϑ
(
u(P )− c

)
,

and let Pj be the zeros of f(P ):

f(Pj) = 0.

We are going to find the number of zeros of f . In the vicinity of Pj we have: f → reiθ

and
∫

df
f

= i
∫
dθ. Therefore, the integral

(4.14) n(f) =
1

2πi

∫
C

df

f

over the contour C gives the number of zeros of f .

Let u+
j and u−j be the values at the corresponding points on ak and a−1

k , or bk
and b−1

k . If P is on ak, then

(4.15) u−j = u+
j +

∫
βk

ωj = u+
j + τkj,
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4.4 An important formula

and

(4.16)

{
f− = F (u−) = F (u+ + τk) = e−2πi(uk−ck)−πiτkkf+

df− = e−2πi(uk−ck)−πiτkk
(
df+ − 2πif+duk

)
.

Similarly, if P is on bk

u−j = u+
j +

∫
α−1
k

ωj = u+
j − δjk,

and

f− = F (u−) = F (u+ − ek) = f+.

Then, we have

(4.17)

{
df−

f−
= df+

f+
− 2πiωk, on ak

df−

f−
= df+

f+
, on bk

and therefore (4.14) gives

n(f) =
1

2πi

g∑
k=1

(∫
αk

+

∫
βk

)(df+

f+
− df−

f−

)
=

1

2πi

g∑
k=1

2πi

∫
αk

ωk

=

g∑
k=1

δkk = g

Hence, we see that the number of zeros Pj of f is equal to the genus g.

4.4 An important formula

Since the Pj are the zeros of f(P ), we may write

(4.18)

g∑
j=1

ul(Pj) =
1

2πi

∫
C

ul
df

f
,
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4 The role of Riemann surfaces

by the Residue Theorem. Using (4.15), (4.16) and (4.17) we rewrite the integral on
the right-hand side as∫

C

ul
df

f
=

g∑
k=1

(∫
αk

+

∫
βk

)(
u+
l

df+

f+
− u−l

df−

f−

)
=

g∑
k=1

∫
αk

(
u+
l

df+

f+
− (u+

l + τlk)
(df+

f+
− 2πiωk

))

+

g∑
k=1

∫
βk

(
u+
l

df+

f+
− (u+

l − δlk)
df+

f+

)

= 2πi

g∑
k=1

τlk

∫
αk

ωk −
g∑

k=1

τlk

∫
αk

df+

f+

+ 2πi

g∑
k=1

∫
αk

u+
l ωk +

∫
βl

df+

f+
.(4.19)

On αk if we start from Q
(k)
0 and finish at Q

(k)
1 , then

f+
(
Q

(k)
1

)
= F

(
u+(Q

(k)
0 ) + ek

)
= f+

(
Q

(k)
0

)
by (4.12). Therefore∫

αk

df+

f+
= log f+(Q

(k)
1 )− log f+(Q

(k)
0 ) = 0.

Similarly, on βl if we start from Q
(l)

0 and finish at Q
(l)

1 , then

f+
(
Q

(l)

1

)
= F

(
u+(Q

(l)

0 ) + τl

)
= e

−2πi

(
ul(Q

(l)
0 )−cl−πiτll

)
· f+

(
Q

(l)

0

)
.

Hence ∫
βl

df+

f+
= log f+

(
u(Q

(l)

1 )
)
− log f+

(
u(Q

(l)

0 )
)

= −2πi
(
ul(Q

(l)

0 )− cl
)
− πiτll.

Thus, using (4.18) and (4.19) we have the important formula:

(4.20)

g∑
j=1

ul(Pj) = cl −Kl +

g∑
k=1

τlk,

where the Kl ( called Riemann constants) are given by:

Kl = −
g∑

k=1

∫
αk

u+
l ωk +

1

2
τll + ul(Q

(l)

0 ).
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4.5 The integral
∫
C
λdf
f

.

4.5 The integral
∫
C λ

df
f .

Here, we consider the integral :
∫
C
λdf
f

. By (4.17) we have

(4.21)
1

2πi

∫
C

λ
df

f
=

1

2πi

g∑
k=1

(∫
αk

+

∫
βk

)
λ
(df+

f+
− df−

f−

)
=

g∑
k=1

∫
αk

λωk.

On the other hand, by a Residue Calculation we have

(4.22)
1

2πi

∫
C

λ
df

f
=

g∑
j=1

λ(Pj) +Res(∞) +Res(∞′),

where λ(Pj) is the projection of the zero Pj of f(P ) = ϑ
(
u(P ) − c

)
on C ∪ {∞}.

The residue at infinity can be calculated as follows. Let ζ−1 = λ; then

1

2πi

∫
λ
d

dλ
log ϑdλ = − 1

2πi

∫
λ
d

dζ
log ϑdζ.

Noting that the direction of the integration with respect to ζ is the reverse of the
integration with respect to λ, we have

(4.23) Res(∞) ≡ Res
(
λ
d

dλ
log ϑ, λ =∞

)
= Res

(
λ
d

dζ
log ϑ, ζ = 0

)
.

However, since d
dζ

= − 1
ζ2

d
dλ

if we use the notation

Dl =
∂

∂ul

for the upper sheet, we have

d

dζ
log ϑ(u− c) = − 1

ζ2

g∑
l=1

dul
dλ

Dl log ϑ(u− c)

= − 1

ζ2

g∑
l=1

g−1∑
j=0

cl,j
λj√
R(λ)

Dl log ϑ(u− c)

= − 1

ζ2

g∑
l=1

cl,g−1λ
g−1 + cl,g−2λ

g−2 + · · ·√∏2g+2
j=1 (λ− λj)

Dl log ϑ(u− c)

= −
g∑
l=1

(
cl,g−1 +O(ζ)

)
Dl log ϑ(u− c),
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4 The role of Riemann surfaces

for “small” ζ. Thus

lim
λ→∞

λ
d

dζ
log ϑ(u− c) = − lim

ζ→0

1

ζ

g∑
l=1

cl,g−1Dl log ϑ(u− c)

and the residue at ∞ is given by (4.23) as

Res(∞) = −
g∑
l=1

cl,g−1Dl log ϑ(u(∞)− c).

For the lower sheet, the sign of
√
R(λ) is different and we have

Res(∞′) = +

g∑
l=1

cl,g−1Dl log ϑ(u(∞′)− c).

Therefore, (4.21) and (4.22) give:

(4.24)

g∑
j=1

λ(Pj) =

g∑
l=1

∫
αl

λωl +

g∑
l=1

cl,g−1Dl log
ϑ
(
u(∞)− c

)
ϑ
(
u(∞′)− c

) .
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Chapter 5

Solving the problem

5.1 Solution of Jacobi’s inverse problem

Let
g∑
j=1

ul(Pj) ≡ Xl.

Then, from (4.20) we have

(5.1) cl = Xl +Kl −
g∑
j=1

τlj,

where ul is given by (4.13). Therefore, for a given Xl the solution of Jacobi’s inverse
problem:

g∑
j=1

∫ Pj

P0

ωl = Xl

is given as the zeros P1, P2, . . . , Pg of ϑ
(
u(P )− c

)
with c specified by (5.1).

Equation (4.10) can be written as:

g∑
j=1

∫ µj(k)

µ0

ωl = Xl(k)

where:

(5.2) Xl(k) = k

∫ ∞
∞′

ωl +

g∑
j=1

∫ µj(0)

µ0

ωl −
g∑
j=1

njτlj +ml.

51



5 Solving the problem

Thus, if the last term of the right-hand side of (5.1) is absorbed in Xl(k) (namely,
in the third term on the right-hand side of (5.2)), µ1(k), µ2(k), . . . , µg(k) are given

as the values of λ at the zeros Pj, j = 1, 2, . . . , g of ϑ
(
u(P )−X(k)−K

)
, or

µj(k) = λ(Pj).

Thus, by (4.24) we have:

g∑
j=1

µj(k) =

g∑
l=1

∫
αl

λωl +

g∑
l=1

cl,g−1Dl log
ϑ
(
u(∞)−X−K

)
ϑ
(
u(∞′)−X−K

)
and by (5.2) we may write

ul(∞)−Xl −Kl = kcl + dl

with

(5.3)

{
cl =

∫∞′
∞ ωl

dl = −
∑g

j=1

∫ µj(0)

µ0
ωl +

∑g
j=1 njτlj −ml +

∫∞
µ0
ωl −Kl

By the periodicity (4.11) of ϑ, the second and third terms of dl can be omitted.

Furthermore

ul(∞′) =

∫ ∞′
µ0

ωl =

∫ ∞
µ0

ωl +

∫ ∞′
∞

ωl.

Therefore we have:

(5.4)

g∑
j=1

µj(k) =

g∑
l=1

∫
αl

λωl +

g∑
l=1

cl,g−1Dl log
ϑ(kc + d)

ϑ
(

(k + 1)c + d
) ,

where
∑g

l=1

∫
αl
λωl =

∑g
j=1 λj, i.e. a constant. Inserting (5.4) into (3.9) we finally

obtain:

(5.5) bk+1 = const.−
g∑
l=1

cl,g−1Dl log
ϑ(kc + d)

ϑ
(

(k + 1)c + d
) .

5.2 Time evolution

The equations of motion for the lattice:{
Q̇n = Pn
Ṗn = e−(Qn−Qn−1) − e−(Qn+1−Qn)
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5.2 Time evolution

can be written -as stated in chapter 2- as:{
ȧn = an(bn − bn+1)

ḃn = 2(a2
n−1 − a2

n)

where:

an =
1

2
e−

Qn+1−Qn
2 , bn =

1

2
Pn.

We may also write them as:

(5.6) L̇ = BL− LB

with the definition:

(5.7)

{
(Bφ)n ≡ −anφ(n+ 1) + an−1φ(n− 1)
(Lφ)n ≡ anφ(n+ 1) + bnφ(n) + an−1φ(n− 1)

In addition, we impose the periodic conditions

Qn+N = Qn, Pn+N = Pn, n ∈ Z,

which imply

A ≡
N∏
k=1

ak = 2−N .

We consider φ ≡ φ(n), n ∈ Z which satisfy (2.8) or the equation with a time-
independent parameter λ:

(5.8)

{
Lφ = λφ

λ̇ = 0.

Differentiating (5.8) with respect to time, we obtain

L̇φ+ Lφ̇ = λφ̇.

We multiply (5.6) by φ and then substract it from the above equation to obtain

L(φ̇−Bφ) = λ(φ̇−Bφ).

Since this is of the same form as (5.8), if we let φ1 and φ2 be the fundamental solutions
of (5.8) we see that φ̇1 − Bφ1 and φ̇2 − Bφ2 are given as linear combinations of φ1

and φ2. For example

(5.9) (φ̇1 −Bφ1)n = αφ1(n) + βφ2(n)
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5 Solving the problem

where α and β are certain constants. We let n = 0 and n = 1 in (5.8), (5.9) and
make use of the conditions: φ1(0) = 1, φ1(1) = 0, φ2(0) = 0 and φ2(1) = 1. Thus,
we get 

(Lφ1)0 = b0 + a−1φ1(−1) = λ
(Lφ1)1 = a1φ1(2) + a0 = 0
−(Bφ1)0 = −a−1φ1(−1) = α
−(Bφ1)1 = a1φ1(2)− a0 = β

and therefore
α = b0 − λ, β = −2a0.

Hence, (5.9) yields

(5.10) φ̇1(n) = −anφ1(n+ 1) + an−1φ1(n− 1) + (b0 − λ)φ1(n)− 2a0φ2(n).

In the same way, we have

(5.11) (φ̇2 −Bφ2)n = αφ1(n) + βφ2(n)

so that 
(Lφ2)0 = a0 + a−1φ2(−1) = 0
(Lφ2)1 = a1φ2(2) + b0 = λ
−(Bφ2)0 = a0 − a−1φ2(−1) = α

−(Bφ2)1 = a1φ2(2) = β

and therefore
α = 2a0, β = λ− b0.

Thus, (5.11) yields

φ̇2(n) = −anφ2(n+ 1) + an−1φ2(n− 1) + 2a0φ1(n) + (λ− b0)φ2(n).

If we differentiate
∆(λ) = φ1(N) + φ2(N + 1)

with respect to time considering the periodic boundary conditions, we obtain

∆̇(λ) = φ̇1(N) + φ̇2(N + 1)

= −aNφ1(N + 1) + aN−1φ1(N − 1) + (bN − λ)φ1(N)− 2aNφ2(N)

− aN+1φ2(N + 2) + aNφ2(N) + 2aNφ1(N + 1) + (λ− bN)φ2(N + 1).

But now we see that
∆̇(λ) = 0.

Namely, ∆(λ) does not depend on time.
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5.2 Time evolution

Now, we put n = N + 1 in (5.7), (5.10) to obtain{
a1φ1(N + 2) + b1φ1(N + 1) + a0φ1(N) = λφ1(N + 1)

φ̇1(N + 1) = −a1φ1(N + 2) + a0φ1(N) + (b0 − λ)φ1(N + 1)− 2a0φ2(N + 1).

Eliminating φ1(N + 2), we get

φ̇1(N + 1) = 2a0φ1(N) + (b0 + b1 − 2λ)φ1(N + 1)− 2a0φ2(N + 1).

The auxiliary spectrum µ satisfies: φ1(N + 1, µ) = 0. Therefore, by (2.26) we have

(5.12) φ̇1(N + 1, λ)

λ=µ

= 2a0

(
φ1(N,µ)− φ2(N + 1, µ)

)
= ±2a0

√
∆2(µ)− 4.

From (2.24) we may rewrite the right-hand side of (5.12):

(5.13)
√

∆2(λ)− 4 = A−1Q(λ)
√
R(λ)

with

Q(λ) =
N−1∏
l=g+1

(
λ− µl(0)

)
, R(λ) =

2g+2∏
j=1

(
λ− λj

)
.

On the other hand, we may write

(5.14) φ1(N + 1, λ) = −a0A
−1Q(λ)

g∏
j=1

(
λ− µj(0)

)
.

For l ≥ g + 1, µl(0) = λ2l+1 = λ2l+2 is a constant. Therefore, if we differentiate
(5.14) with respect to time keeping λ constant, we have

φ̇1(N + 1, λ) = A−1a0Q(λ)

g∑
j=1

µ̇j(0)
∏
l 6=j

(
λ− µl(0)

)
− ȧ0A

−1Q(λ)

g∏
j=1

(
λ− µj(0)

)
.

We then let λ→ µk(0) to obtain

(5.15) φ̇1(N + 1, λ)

λ=µk(0)

= A−1a0Q
(
µk(0)

)
µ̇k(0)

∏
l 6=k

(
µk(0)− µl(0)

)
.

Equating (5.12) with (5.15) and using (5.13), we have:

(5.16) µ̇k(0) = ∓
2
√
R(µk(0))∏

l 6=k

(
µk(0)− µl(0)

) .
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5 Solving the problem

5.3 Lagrange’s interpolation formula

Continuing our study, we prove the famous Lagrange’s Interpolation Formula. We
are going to use it in a while, so it is necessary to explain it first.

For that, consider a polynomial of degree n+ 1, namely

P (x) =
n∏
l=0

(x− xl),

with constants xl 6= 0. By Cauchy’s Integral Theorem, for a contour C which
encircles all the xl, we have

1

2πi

∮
C

zm

P (z)(z − x)
dz =

xm

P (x)
+

m∑
j=0

xmj
P ′(xj)(xj − x)

.

On the other hand, this is the same as the integral over a circle of center O and
“large enough” radius R. Hence

1

2πi

∮
C

zm

P (z)(z − x)
dz = lim

R→+∞

Rm

P (R)
.

Therefore we have

xm

P (x)
+

n∑
j=0

xmj
P ′(xj)(xj − x)

=

{
0, 0 ≤ m ≤ n
1, m = n+ 1

where

P ′(xj) =
n∏

l=1
l 6=j

(xj − xl).

If we put x = 0, we have

n∑
j=0

xm−1
j∏n

l=1,l 6=j(xj − xl)
=

{
0, m < n+ 1
1, m = n+ 1

or equivalently:

(5.17)

g∑
j=1

xsj∏g
l=1,l 6=j(xj − xl)

=

{
0, s < g − 1
1, s = g − 1

So, if f(x) denotes a polynomial of nth−degree, then since

f(x) =
n∑

m=0

cmx
m,

56



5.4 Solving the problem

we have:

f(x) =
n∑
j=0

f(xj)P (x)

P ′(xj)(x− xj)

which is exactly Lagrange’s Interpolation Formula.

5.4 Solving the problem

We return now to the problem discussed earlier and go back to (5.3) and ask for the
rate of change of dl with respect to time which turns out to be:

(5.18) ḋl(t) = −
g∑
j=1

µ̇j(0, t)
ωl
dλ


λ=µj(0)

= −
g∑
j=1

µ̇j(0, t)

∑g−1
s=0 cl,sµ

s
j(0, t)

±
√
R
(
µj(0, t)

) .
On the right-hand side, using (5.16) we may write

(5.19)

g∑
j=1

µ̇j(0, t)µ
s
j(0, t)

±
√
R
(
µj(0, t)

) = 2

g∑
j=1

µsj(0, t)∏
l 6=j

(
µj(0, t)− µl(0, t)

)
which can be simplified by the use of Lagrange’s Interpolation Formula.

Indeed, putting xj = µj(0, t) in (5.17), from (5.19) we have

(5.20)

g∑
j=1

µ̇j(0, t)µ
s
j(0, t)

∓
√
R
(
µj(0, t)

) =

{
0, s < g − 1
2, s = g − 1

Equations (5.16), (5.20) were first derived by Kac and van Moerbeke. Substi-
tuting (5.20) into (5.18) we obtain:

ḋl(t) = −2cl,g−1t

or

(5.21) dl(t) = dl(0)− 2cl,g−1t.

Thus, using (5.21) we can write (5.5) as:

bn+1(t) = const.−
g∑
l=1

cl,g−1Dl log
ϑ
(
nc + d(t)

)
ϑ
(

(n+ 1)c + d(t)
)
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5 Solving the problem

where we note from (5.21) that

2cl,g−1Dl = − d

dt
.

Finally, since bn = Pn

2
= Q̇n

2
we have the final results:

Pn+1(t) = P 0 + d
dt

log
ϑ

(
nc−c′t+δ′

)
ϑ

(
(n+1)c−c′t+δ′

)
Qn+1(t) = Qn+1(0) + P 0t+ log

ϑ

(
nc−c′t+δ′

)
ϑ

(
(n+1)c−c′t+δ′

)
where P 0 and Qn+1(0) are some constants. These results were first obtained by Date
and Tanaka. In these formulas

cl =

∫ ∞
∞′

ωl, c′l = 2cl,g−1 and δ′ = (δ′1, . . . , δ
′
g) ≡ (d1(0), . . . , dg(0))

are phase constants determined by the initial conditions.
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