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Abstract

The feasibility and efficiency of inversions in ocean acoustic travel-time tomography

critically relies on the ability to accurately model and predict the reception of an

acoustic source at a distant receiver in the time domain (arrival pattern), as well as

its perturbations due to changes in the sound-speed distribution. The present work

introduces an approximation method for wave-theoretic arrival-pattern predictions in

general range-dependent ocean environments based on Born and Rytov approxima-

tions of the second order. The range-dependent ocean environment is considered as

a perturbation of a range-independent reference state, for which the acoustic field of

a point source in the frequency domain, i.e. the Greens function, is modelled using

normal-mode theory. Then using the Born and Rytov approximations the perturbed

Greens function, corresponding to the perturbed ocean environment, is expressed

in terms of the unperturbed Greens function and the medium (sound-speed) per-

turbation for each frequency within the source bandwidth. Using the normal-mode

representation for the unperturbed Greens function, closed-form expressions for the

first and second Born and Rytov approximations are derived, generalizing previous

results for Green’s function perturbations in range-independent environments, and in-

dicating that the effects of range dependence on the acoustic field in the time domain

are of second order. To cope with the multi-modal nature of ocean acoustic propa-

gation, a variation of the standard Rytov method is applied, proposed by J. Keller,

according to which the Rytov approximation is applied to each modal component

independently. Having calculated the perturbed Greens function in the frequency

domain, the corresponding arrival pattern in the time domain is obtained through
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the inverse Fourier transform. A number of numerical examples demonstrate an ad-

vantage of the Rytov approximation (over the Born approximation) for time-domain

and arrival-time calculations.
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Introduction

The problem of ocean acoustic tomography is to infer from precise measurements

of travel time, or other properties of acoustic propagation, the state of the ocean

traversed by a sound field [41]. Tomography takes advantage of two facts: that the

speed of sound is a function of temperature, and that the ocean is virtually transparent

to low-frequency sound, so that signals can be transmitted over distances of thousands

of kilometers.

The spatial variability of temperature (sound speed) in the ocean gives rise to

refraction which in turn causes multi-path propagation. This means that there is a

multitude of acoustic paths connecting a source with a distant receiver. Each path

traverses different water masses with different temperature and sound-speed values.

Thus a pulsed acoustic signal emitted by the source will reach the receiver at different

time instants depending on the path it is travelling along. This leads to a sequence

of arrivals at the receiver in the time domain conveying information about different

water layers.

Ocean acoustic travel-time tomography was introduced by Munk and Wunsch [37],

as a remote-sensing technique for monitoring the ocean interior over large sea areas

using low-frequency sound waves. Measuring the travel times of pulsed acoustic

signals propagating through the water mass over different paths, and exploiting the

knowledge about how travel times are affected by the sound-speed (temperature)

distribution in the water, the latter can be obtained by inversion.

1



2

For long-range acoustic transmissions in deep-water environments the early arrivals

at the receiver can be sufficiently described using ray theory, in terms of individual

acoustic rays (ray arrivals) which exhibit large deviations from the channel axis – steep

rays [38]. The late arrival pattern, on the other hand, is the result of interference of

a large number of near-axial (shallow) rays. In terms of normal-mode theory [2], late

arrivals can be described by a few low-order modes, whereas early arrivals result from

the interference of a large number of high-order modes [38]. Thus, a good strategy for

arrival pattern calculations and modelling is to use ray theory for the early arrivals

and normal-mode theory for the intermediate and late ones.

Even though the late arrival pattern can be represented by a few low-order modes,

the identification of individual modes in the arrival pattern in the time domain (modal

arrivals) is not always possible. The modes may interfere with each other, especially

in cases of strong dispersion, and may give rise to complicated patterns with unstable

arrivals which fade in and out as the environment undergoes small perturbations,

such that individual modes cannot be associated with individual arrivals. A way to

retrieve information about the modes in such cases is to perform mode filtering using

a vertical receiving array [6], [23].

In cases where information about individual modes is difficult to extract from the

late arrival pattern (e.g. cases of strong dispersion, absence of vertical array) full-field

waveform inversion [5], [12], [11] could be an alternative for analysing tomography

data. Nevertheless, waveform inversions are associated with a large number of for-

ward calculations and thus with a heavy computational burden. Several methods have

been proposed for accelerating the computation of arrival patterns, such as narrow-

band normal-mode approximations, relying on Taylor expansion of eigenvalues and

eigenfunctions with respect to frequency [17], [26], [27], and frequency-interpolation

methods associated with normal modes [1] and the parabolic approximation [15].
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A waveform perturbation method is proposed here for the calculation of arrival

patterns corresponding to ocean states in the vicinity of a background (reference)

state. No approximation (expansion or interpolation) is performed with respect to

frequency. Instead, a second-order approximation is used for the perturbation of

the Green’s function with respect to sound-speed perturbations at each frequency,

based on the Rytov approximation [30], [36]. A waveform perturbation approach

assuming a range-independent ocean environment, both background and perturbed,

was introduced recently [28]. The present approach is general and applies to any kind

of reference (background) and perturbed ocean environment, either range independent

or range dependent.

Range-dependent features of the ocean such as internal waves [29], [33], [13],

mesoscale eddies and large-scale variations [14], [32], [39], [40] can be considered

as range-dependent perturbations of a range-independent background state. In this

connection, the background state is considered in this work as range independent,

such that the efficient normal-mode theory can be applied, whereas the perturbations

are taken of a general range-dependent nature. For these range-dependent states

the arrival pattern is obtained as a perturbation of the range-independent normal-

mode prediction. This approximation offers a computationally efficient alternative

to the cumbersome exact range-dependent calculations at each frequency, based on

adiabatic/coupled modes or the parabolic approximation [8].

The contents of this work are organized as follows: Chapter 1 is an introduction

to wave propagation theory. The time-domain wave equation and the frequency-

domain Helmholtz equation as well as the boundary, interface and radiation conditions

governing ocean acoustic propagation are introduced. Further, the Green’s function

of the ocean acoustic waveguide in the frequency domain, as well as the arrival pattern

at the receiver in the time domain are introduced and interrelated. Chapter 2 deals
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with perturbations of the Green’s function caused by perturbations of the sound-

speed distribution (medium perturbations). In particular, the first- and second-order

Born and Rytov approximations of the perturbed Green’s function, as well as the

relations between the two approximations (Born and Rytov), are derived. The two

approximations are closely related such that one can obtain the Rytov approximation

it terms of the Born approximation and vice versa. In chapter 3 using the normal-

mode representation for the background acoustic field closed-form expressions for the

first and second Born and Rytov approximations are derived. Chapter 4 presents

some numerical results from the application of the various approximations for the

calculation of time-domain arrival patterns in range-dependent ocean environments,

as well as comparisons with exact adiabatic and coupled mode results. Chapter 5

summarizes the main conclusions from this study.



Chapter 1

Wave Propagation Theory

1.1 The wave equation

The wave equation in an ideal fluid can be derived from hydrodynamics and the

adiabatic relation between pressure and density [8]. The equations for conservation

of mass, Euler’s equation, and the adiabatic equation of state are respectively:

∂ρ

∂t
+ ∇ · ρv = 0,

∂v

∂t
+ v · ∇v = −1

ρ
∇p,

p = p0 + ρ′
[
∂p

∂ρ

]
E

+
1

2
(ρ′)

2

[
∂2p

∂ρ2

]
E

+ ....

(1.1.1)

In the above equations, ρ is the density, v the particle velocity, p the pressure, and

the subscript E denotes that the thermodynamic partial derivatives are taken at

constant entropy. We use small perturbations for the pressure and density, p = p0+p′,

ρ = ρ0 + ρ′, and note that v is also small quantity. The speed of sound c for an ideal

fluid is defined as

c2 =

[
∂p

∂ρ

]
E

. (1.1.2)

5
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The linear approximations, which lead to the acoustic wave equation, involve re-

taining only first-order terms in the hydrodynamic equations. To lowest order, equa-

tions (1.1.1) become

∂ρ′

∂t
= −ρ0∇ · v, (1.1.3)

∂v

∂t
= − 1

ρ0

∇p′, (1.1.4)

p′ = ρ′c2. (1.1.5)

Considering that the time scale of oceanographic changes is much longer than the time

scale of acoustic propagation, we will assume that the material properties ρ0 and c2

are independent of time, take the partial derivative of (1.1.3) with respect to time

and the divergence of (1.1.4), interchange the derivative operations and use (1.1.5) to

obtain a wave equation for pressure:

∇2p′ − 1

c2

∂2p′

∂t2
= 0. (1.1.6)

This is a hyperbolic partial differential equation for the pressure perturbation (acous-

tic pressure) p′, and is known as the wave equation.

Sound is produced by natural or artificial phenomena through forced mass injec-

tion. Such forcing terms were neglected in the mass conservation equation (1.1.3),

and therefore also in the derived wave equation. The consideration of such terms

leads to the inhomogeneous wave equations

∇2p′ − 1

c2

∂2p′

∂t2
= f(x, t), (1.1.7)

where x represents the position vector and f(x, t) represents the volume injection as

a function of space and time. In the above equations p′ is considered as a function

of x and t whereas c ia a function of x. In the following the primes are omitted for

convenience.
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1.2 The Helmholtz equation

The wave equation involves four dimensions (three spatial and one temporal). By

applying the Fourier transform to eq. (1.1.7) with respect to time we obtain a new

partial differential equation

∇2P (x, ω) +
ω2

c2(x)
P (x, ω) = F (x, ω), (1.2.1)

where P (x, ω) is the Fourier transform of the acoustic pressure

P (x, ω) =

+∞∫
−∞

p(x, t)e−jωtdt,

and F (x, ω) the transform of the source term f(x, t)

F (x, ω) =

+∞∫
−∞

f(x, t)e−jωtdt.

Equation (1.2.1) is known as the Helmholtz equation. It is a partial differential

equation of elliptic type. A significant advantage of the Helmholtz equation over the

wave equation is the lower dimensionality, the time variable t has been replaced by the

parameter ω, the circular frequency. In this connection the majority of wave-theoretic

solutions to the acoustic propagation problem are given in the frequency domain.

1.3 Boundary conditions

The ocean is bounded by the free surface and the sea bed. The top of the sea bed

consists in general of a number of sediment layers followed by a harder subbottom.

In order to obtain unique, physically meaningful solutions of the Helmholtz equation,

we must in general impose constraints on the spatial behavior of the wave field, in

the form of boundary, interface and radiation conditions.
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a) Soft boundary

For a soft or pressure-release boundary S, such as the free surface, the acoustic

pressure is assumed to vanish at all positions on the boundary (Dirichlet condition)

P (x, ω) = 0 xεS.

b) Hard boundary

For a hard boundary S, such as a rigid bottom, the velocity of the acoustic field normal

to the boundary vanishes at all positions on the boundary. By applying the Fourier

transform to (1.1.4) we obtain V = j(ωρ0)
−1∇P and Vn = j(ωρ0)

−1∂P\∂n where

n measures distance normal to the boundary. Thus the hard boundary condition

becomes (Neuman condition)

∂P (x, ω)

∂n
= 0 xεS.

c) Interface conditions

At the interface S between two fluid layers we must have continuity of pressure

P+(x, ω) = P−(x, ω) xεS,

where the subscript (+) and (−) indicates the two sides of the interface, as well

as continuity of particle velocity normal to the interface which can be expressed in

terms of the acoustic pressure as follows (see previous relation between velocity and

pressure)

1

ρ(+)

∂P(+)

∂n
=

1

ρ(−)

∂P(−)

∂n
.

d) Sommerfeld radiation condition

The Sommerfeld radiation condition [31] quantifies the notion stemming from our

physical intuition that sources confined to a finite spatial domain produce outgoing,
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radiating wave fields at infinity. Specifically, for homogeneous media c = const. the

radiation condition in d dimensions is expressed as

lim
r→∞

r
d−1
2

[
∂P

∂r
+ jkP

]
= 0, (1.3.1)

where r is the distance from the location of the source, and k = ω/c. The above

condition leads to the following asymptotic behavior:

One dimension (d = 1):

P (r, k) ∼ A(k)e−jkr.

Two dimensions (d = 2):

P (r, k) ∼ A(k)e−jkr

√
r

.

Three dimensions (d = 3):

P (r, k) ∼ A(k)e−jkr

r
.

1.4 The Green’s function

Of particular importance for the solution of the inhomogeneous Helmholtz equation

with arbitrary forcing F is the consideration of point sources represented by the Dirac

delta function δ (x − xs) where xs is the source location. In Cartesian coordinates

(x, y, z) this function becomes

δ (x − xs) = δ (x − xs) δ (y − ys) δ (z − zs) ,

whereas in cylindrical coordinates (r, z, θ) it takes the form [4]

δ (x − xs) =
1

2πr
δ (r) δ (z − zs) ,
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assuming that the point source lies on the z-axis at depth zs.

The solution of the inhomogeneous Helmholtz equation with point source forcing

supplemented by the boundary, interface and radiation conditions described in the

previous section is called the Green’s function of the acoustic waveguide and is denoted

by G (x|xs) [
∇2 + k2(x)

]
G(x|xs) = −δ(x − xs), (1.4.1)

where k(x) = ω/c(x). Thus the Green’s function describes the acoustic field of a

harmonic point source located at xs.

If the Green’s function of an acoustic waveguide is known, then the acoustic field

of any arbitrary distributed source F (x, ω) can be represented by the integral

P (x, ω) = −
∫∫∫

V

G(x|x′)F (x′)dV (x′), (1.4.2)

where V spans the volume (support) of the distributed source F [24].

1.5 Arrival pattern

The acoustic pressure in the time domain can be obtained from the acoustic pressure

in the frequency domain through the inverse Fourier transform

p(x, t) =
1

2π

+∞∫
−∞

P (x, ω)ejωtdω. (1.5.1)

In ocean acoustic travel-time tomography we are interested in the acoustic pressure

pr at the receiver (location xr) in the time domain due to a point source at location

xs. Exploiting the Green’s function of the waveguide the pressure pr can be written

pr(t) =
1

2π

+∞∫
−∞

Pr(ω)ejωtdω =
1

2π

+∞∫
−∞

Ps(ω)G(xr,xs; ω)ejωtdω, (1.5.2)

where Ps(ω) denotes the signal emitted by the source in the frequency domain.
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Figure 1.1: Arrival pattern.

The arrival pattern is defined as the absolute value of the complex pressure at the

receiver in the time domain

α(t) = |pr(t)| .

Figure 1.1 shows an arrival pattern calculated 600 km away from a point source in

a range-independent ocean environment characterized by a linear sound speed profile

with water depth 2500 m and source/receiver depth 150 m. The different arrivals

correspond to different acoustic paths sampling different water layers. Variations in

the sound-speed (temperature) distribution will cause variations in the arrival times.
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Tomography uses measurements of the latter and tries to infer on the underlying

sound-speed (temperature) changes by applying inverse methods. The calculation of

arrival patterns for general range-dependent environments is a heavy computational

task since the range-dependent Green’s function has to be evaluated for a large num-

ber of frequencies in order to evaluate the integral (1.5.2) by using the discrete Fourier

transform (FFT) and avoid aliasing effects [21].

The present work proposes a computationally efficient method for the calculation of

the arrival pattern, based on the Rytov approximation of the Green’s function at each

frequency assuming perturbations about a background ocean state. Thus only one set

of exact calculations of the Green’s function, those corresponding to the background

state, are required. For all other ocean states (perturbations of the background state)

the Green’s function is obtained by the Rytov approximation formulas derived in the

following chapters.



Chapter 2

Perturbations of the Green’s
function

In this chapter we will explore how small perturbations of the sound-speed distribution

influence the Green’s function.The Born and Rytov approximations are introduced

relating the perturbations of the Green’s function with the underlying sound-speed

perturbations. There is a relation between the two approximations, in the sense that

the terms of the Rytov approximation can be expressed through the corresponding

terms of the Born approximation and vice versa.

2.1 First and second Born approximation

Let a background (reference) state be characterized by a sound-speed distribution

c0(x) with corresponding Green’s function G0(x|xs) satisfying the inhomogeneous

Helmholtz equation

[
∇2 +

ω2

c2
0(x)

]
G0(x|xs) = −δ(x − xs), (2.1.1)

supplemented by the boundary, interface and radiation conditions described in sec-

tion 1.3.

13



14

A small perturbation of the reference sound-speed by εΔc, where ε is a small

parameter, will cause a perturbation ΔG in the Green’s function. The perturbed

Green’s function G = G0 + ΔG satisfies the inhomogeneous Helmholtz equation[
∇2 +

ω2

[c0(x) + εΔc(x)]2

]
[G0(x|xs) + ΔG(x|xs)] = −δ(x − xs), (2.1.2)

and the same additional conditions as the unperturbed Green’s function G0. In the

following we consider an expansion of the Green’s function perturbation ΔG with

respect to ε

ΔG (x|xs) = εΔG1(x|xs) + ε2ΔG2 (x|xs) + O
(
ε3
)
. (2.1.3)

By subtracting Eq. (2.1.1) from Eq. (2.1.2) and adding the term ω2ΔG/c2 to both

sides, the following equation is obtained:[
∇2 +

ω2

c2
0(x)

]
ΔG(x|xs) = −

[
ω2

[c0(x) + εΔc(x)]2
− ω2

c2
0(x)

]
[G0(x|xs) + ΔG(x|xs)] .

(2.1.4)

The perturbation ΔG satisfies the same boundary, interface and radiation conditions

as the unperturbed Green’s function G0, whereas the operators on the left hand side

of equations (2.1.1) and (2.1.4) are identical (∇2 + ω2/c2
0). In this connection, by

considering the right-had side of Eq. (2.1.4), as a function of x, to be a distributed

source term, the integral representation (1.4.2) can be used to express the solution of

(2.1.4) as follows

ΔG(x|xs) =

∫∫∫
V

G0(x|x′)

[
ω2

[c0(x′) + εΔc(x′)]2
− ω2

c2
0(x

′)

]

× [G0(x
′|xs) + ΔG(x′|xs)] dV (x′).

(2.1.5)

This is an integral equation for the perturbation of the Green’s function. Expand-

ing the expression in brackets up to the second order with respect to ε

ω2

[c0 + εΔc]2
− ω2

c2
0

= ω2

(
−2ε

c3
0

Δc +
3ε2

c4
0

Δc2 + O
(
ε3
))

,
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and using the expansion (2.1.3), eq. (2.1.5) can be written in the form (up to the

second order):

εΔG1(x|xs) + ε2ΔG2 (x|xs) = ω2

∫∫∫
V

G0(x|x′)

[
−2Δc(x′)

c3
0(x

′)
ε +

3Δc2(x′)

c4
0(x

′)
ε2

]

×
[
G0(x

′|xs) + εΔG1(x
′|xs) + ε2ΔG2(x

′|xs)
]
dV (x′).

(2.1.6)

Equating terms of equal order, expressions can be obtained for the terms in the

expansion (2.1.3) of the Green’s function perturbation.

A. First order (ε):

ΔG1(x|xs) = −2ω2

∫∫∫
V

G0(x
′|xs)G0(x|x′)

Δc(x′)

c3
0(x

′)
dV (x′). (2.1.7)

This is the first Born approximation [19], [36] expressing the first-order pertur-

bation ΔG1 of the Green’s function through a linear integral operator applied

on the underlying sound-speed perturbation Δc. The kernel G0(x
′|xs)G0(x|x′)

represents a single scattering mechanism, in which a scatterer (sound-speed per-

turbation) at the position x′, stimulated by the primary source at position xs,

with stimulation magnitude G0(x
′|xs) acts as a secondary source whose acous-

tic field G0(·|x′) is observed at the point x. In this connection the first Born

approximation is also called single-scattering approximation, see Fig. 2.1. The

approximation (2.1.7) represents efficiently the perturbations caused by very

weak scatterers and due to this it is alternatively called weak-scattering ap-

proximation. The volume V in (2.1.7) spans the support of the sound-speed

perturbation δc.

B. Second order (ε2):

ΔG2(x|xs) = −2ω2

∫∫∫
V

ΔG1(x
′|xs)G0(x|x′)

Δc(x′)

c3
0(x

′)
dV (x′)

+3ω2

∫∫∫
V

G0(x
′|xs)G0(x|x′)

Δc2(x′)

c4
0(x

′)
dV (x′).

(2.1.8)
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Figure 2.1: Single-scattering approximation.

This is the second Born approximation [19] expressing the second-order pertur-

bation ΔG2 through two quadratic integral operators applied on the underly-

ing sound-speed perturbation. While the second integral represents a single-

scattering mechanism applying on Δc2 the kernel of the first integral

ΔG1(x
′|xs)G0(x|x′) = −2ω2

∫∫∫
V

G0(x
′′|xs)G0(x

′|x′′)G0(x|x′)
Δc(x′′)

c3(x′′)
dV (x′′),

(2.1.9)

represents a double-scattering mechanism: the primary source stimulates a scat-

terer at position x′′ which stimulates, a scatterer at position x′ which is finally

received at position x, see Fig 2.2. In this connection the second Born approx-

imation is also called double-scattering approximation.

2.2 Rytov approximation

An alternative representation of the perturbed Green’s function was introduced by

Rytov [30] in the form

G = G0e
ΔΨ. (2.2.1)
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Figure 2.2: Double-scattering approximation.

This representation emphasizes on the phase perturbation ΔΨ. Taking into account

that phase perturbations in the frequency domain reflect in waveform shifts in the time

domain [25], i.e. in arrival-time perturbations, the Rytov approximation is expected

to be particularly suitable for time-domain (arrival-time) calculations. Expanding

the phase perturbation with respect to ε

ΔΨ = εΔΨ1 + ε2ΔΨ2 + O
(
ε3
)
, (2.2.2)

and using a Taylor expansion of (2.2.1) in the neighborhood of the unperturbed state

(ε = 0) the perturbed Green’s function can be written in the form

G =G0

(
1 + εΔΨ1 + ε2ΔΨ2 +

1

2

(
εΔΨ1 + ε2ΔΨ2 + O

(
ε3
))2

+ O
(
ε3
))

=G0 + εG0ΔΨ1 + ε2

(
G0ΔΨ2 + G0

ΔΨ2
1

2

)
+ O

(
ε3
)
.

(2.2.3)

Equating the factors of corresponding orders in ε between (2.2.3) and (2.1.3) the

following relations can be obtained between corresponding terms of the Born and
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Rytov approximation

ΔG1 =G0ΔΨ1,

ΔG2 =G0

(
ΔΨ2 +

ΔΨ2
1

2

)
.

(2.2.4)

Thus, if the terms of the Rytov approximation are known the corresponding terms of

the Born approximation can be calculated and vice versa [20], [22], [10]:

ΔΨ1 =
ΔG1

G0

,

ΔΨ2 =
ΔG2

G0

− 1

2

(
ΔG1

G0

)2

.

(2.2.5)

Thus from the expressions (2.1.7) and (2.1.8) for the Born approximation, expressions

for the corresponding terms of the Rytov approximation can be obtained though

eq. (2.2.5). In this sense the two approximations are closely related to each other.

Nevertheless, the two approximations are not equally efficient, as will become clear

in the results section, and this is due to the different functional form (representation)

of each approximation: The Born approximation focuses on amplitude variations,

whereas the Rytov approximation focuses on variations in the phase.



Chapter 3

Normal Modes

In the following we assume the background ocean state to be range independent

and we use the normal-mode representation of the background Green’s function to

obtain closed-form expressions for the first and second Born approximations. The

derivation is based: a) on analytical integration in the neighborhood of the source

and the receiver, taking into account the singularity of the Green’s function at the

source and receiver location, and b) on application of the method of stationary phase

for the remaining integration domain (far field). Finally expressions for the first and

second Rytov approximations are derived based on the relations (2.2.5) and applying

a mode-by-mode approch suggested by Keller [16].

3.1 Normal-mode representation

In the case of a horizontally stratified (range-independent) background environment,

normal-mode theory can be used to represent the Green’s function [2], [8] which

is axisymmetric about the vertical axis through the source. In this connection a

cylindrical coordinate system (r, z, θ) is adapted with is origin at the sea surface and

the source located on the vertical z-axis (positive downwards) at depth z = zs. Since

the environment is horizontally stratified the sound-speed is a function of depth only,

19
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Figure 3.1: Schematic of the range-independent environmental scenario.

c = c(z), and the various interfaces are surfaces of constant depth z = hi, i = 0, 1, ..., I,

where i denotes the layer from top to bottom (i = 0 denotes the water layer). The

density in each layer is considered constant (see Fig. 3.1).

The Helmholtz equation for the Green’s function in each layer takes the following

form in cylindrical coordinates (assuming axial symmetry ∂/∂θ = 0)

∂2Gi

∂r2
+

1

r

∂Gi

∂r
+

∂2Gi

∂z2
+

ω2

c2
i (z)

Gi =
−δ (z − zs) δ(r)

2πr
. (3.1.1)

At the free surface the soft-boundary (pressure-release) condition holds

G0 = 0 at z = 0.
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At the interfaces we have the conditions for continuity of the pressure

Gi = Gi+1 at z = hi i = 0, 1, ..., I − 1,

and normal (vertical) velocity

1

ρi

∂Gi

∂z
=

1

ρi+1

∂Gi+1

∂z
at z = hi i = 0, 1, ..., I − 1.

The Green’s function will satisfy the radiation condition, eq. (1.3.1). Finally, the

condition at z = hi depends on the characteristics of the subbottom. Two cases

are considered in the following: rigid subbottom and acoustic subbottom (acoustic

halfspace).

3.1.1 Rigid subbottom

In the case of rigid subbottom the Neumann boundary conditions applies at z = hI

∂Gi

∂z
= 0 at z = hI .

In this case the Green’s function can be represented in the form [8]

G(r, z|zs) =
−j

4ρ0

∞∑
n=1

φn(zs)φn(z)H
(2)
0 (knr), (3.1.2)

where the quantities λn = k2
n and φn(z) are the eigenvalues and the eigenfunctions of

the following Sturm-Liouville problem

d2φ

dz2
+

[
ω2

c2(z)
− λ

]
φ = 0, (3.1.3)

supplemented with the conditions that φ = 0 at the sea surface (z = 0), φ and

ρ−1dφ/dz are continuous across the interfaces (z = hi, i = 0, 1, ..., I −1) and dφ/dz =

0 at z = hI . This is a proper Sturm-Liouville problem [9] which has an infinite
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countable set of eigenvalues and eigenfunctions. Some basic properties of eigenvalues

and eigenfunctions for this case are described below.

The eigenvalues λn are discrete, real and less than ω2/c2
min, where cmin is the minimum

sound speed value.

The eigenfunctions are orthogonal∫ hI

0

φn(z)φm(z)

ρ(z)
dz = 0, for m �= n. (3.1.4)

The eigenfunctions appearing in the normal-mode expansion are normalized∫ hI

0

φ2
n(z)

ρ(z)
dz = 1. (3.1.5)

Furthermore, the eigenfunctions {φn} constitute a complete set in L2 [0, hI ] such that

any square integrable function in [0 ,hI) can be expanded in a series of eigenfunctions.

There is no lower bound for the eigenvalues, and in fact they are contained in the in-

terval (−∞, ω2/c2
min] . While the positive eigenvalues correspond to positive values for

kn =
√

λn in [0, ω/cmin] the negative eigenvalues give rise to imaginary values for kn in

the interval [0, j∞). Taking into account the far-field asymptotic form of the Hankel

function H
(2)
0 (knr) (Appendix D) we see that the positive kn’s are associated with out-

going waves whereas the contribution of the imaginary kn’s is exponentially decaying

with increasing range. In this connection the eigenfunctions (modes) corresponding to

the positive eigenvalues are called propagating modes. The remaining eigenfunctions

(corresponding to negative eigenvalues – imaginary kn values) are called evanescent

modes and their contribution away from the source is negligible.

Thus the normal mode expansion in this case can be written as

G(r, z|zs) =
−j

4ρ0

M∑
n=1

φn(zs)φn(z)H
(2)
0 (knr) +

∞∑
n=M+1

A(kn)H
(2)
0 (knr), (3.1.6)

where the first sum represents the propagating modes and the second sum the evanes-

cent modes.
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Figure 3.2: The positive eigenvalues smaller than ω2/c2
B correspond to modes prop-

agating with grazing angle ψ greater than the critical ψcr, since ψ = cos−1 (kn/k) >
cos−1 (cI−1/cB) = ψcr.

3.1.2 Acoustic subbottom

The case of the acoustic bottom (acoustic halfspace) can be considered as the limit of

the previous case with the thickness of the lowermost layer (i = I) going to infinity

(hI−hI−1 → ∞). We assume that the sound speed in this layer (halfspace) is constant

(cI(z) = cB) and larger than the sound speed at any other depth. As the thickness of

the bottom layer increases the eigenvalues λn smaller than ω2/c2
B increase in number

and their separation decreases such that at the limit they form a continuum (see

appendix A).
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Figure 3.3: Location of eigenvalues kn for the problem with homogenous acoustic
bottom.

While the negative eigenvalues (imaginary kn values) correspond to evanescent

modes (evanescent spectrum), the positive eigenvalues smaller than ω2/c2
B correspond

to modes propagating with grazing angle greater than the critical [2], see Fig. 3.2.

These modes enter the bottom halfspace and thus they are strongly attenuated in

the higher layers. In this connection, they are called half-space modes and their

contribution to the acoustic field in the water layer away from the source is negligible.

In conclusion, the Green’s function for the case with acoustic subbottom can be

written in the form (see also Fig. 3.3)

G(r, z|zs) =
−j

4ρ0

M∑
n=1

φn(zs)φn(z)H
(2)
0 (knr) +

ω/cB∫
0

A(k)dk +

j∞∫
0

B(k)dk, (3.1.7)

where the sum represents the finite set of the propagating modes with ω/cB < kn <

ω/cmin, n = 1, 2, ...,M, the first integral represents the half-space modes and the

second integral spans the evanescent spectrum. Both integrals are negligible in the
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water layer away from the source.

In the following we focus on the effect of sound speed perturbations on the late

part of the arrival pattern represented in general by low-order propagating modes,

corresponding to eigenvalues λn close to ω2/c2
min. As we will see in the next section

the perturbation behavior of a particular mode can be described in terms of the

full set of modes, with the nearby modes (closest in terms of eigenvalues) playing

the dominant role. Since our interest is in the perturbation behavior of the low-order

modes, the influence of the high-order propagating modes, as well as that of half-space

and evanescent modes is negligible. Because of this, we keep only the propagating

modes for the representation of the Green’s function.

3.2 First Born approximation

In this section we obtain a closed-form expression for the first Born approximation

by substituting the normal-mode representation for the background Green’s func-

tion in the right hand side of eq. (2.1.7), assuming a range independent background

environment.

Using a cylindrical coordinate system (r, z, θ) with the source on the z-axis the

Green’s function G(x|xs) can be written in terms of the propagating modes as follows

G(x|xs) = − j

4ρw

M∑
n=1

φn(z)φn(zs)H
(2)
0 (knr), (3.2.1)

where ρw is the water density. Similarly the Green’s function G(x|xr) has the form

G(x|xr) = − j

4ρw

M∑
m=1

φm(z)φm(zr)H
(2)
0 (kmγ), (3.2.2)

where γ =
√

r2 + R2 − 2Rr cos θ is the horizontal distance from the receiver – R

is the horizontal distance between source and receiver (see Fig. 3.4). The sound-
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Figure 3.4: Geometry of the problem (top view).

speed perturbations are confined in the water column and for convenience they are

considered to be of separable form

Δc(x) = Δcr(r)Δcz(z)Δcθ(θ), (3.2.3)

where Δcr, Δcz and Δcθ are smooth, slowly varying functions of r, z and θ, respec-

tively.

Substituting the expressions (3.2.1), (3.2.2) and (3.2.3) in (2.1.7) we obtain

ΔG1(x|xs) =

(
2ω2

16ρ2
w

)∫ h

0

∫ 2π

0

∫ ∞

0

M∑
n=1

M∑
m=1

φn(zs)φm(zr)φn(z)φm(z)

× Δcz(z)

c3
0(z)

Δcθ(θ)Δcr(r)H
(2)
0 (knr)H

(2)
0 (kmγ)rdrdθdz,

where h is the water depth. Separating the integration with respect to z from that

with respect to (r, θ) this expression can be written as

ΔG1(x|xs) =
ω2

8ρ2
w

M∑
n=1

M∑
m=1

φn(zs)φm(zr)

∫ h

0

φn(z)φm(z)
Δcz(z)

c3
0(z)

dz

×
∫ 2π

0

∫ ∞

0

Δcθ(θ)Δcr(r)H
(2)
0 (knr)H

(2)
0 (kmγ)rdrdθ.

(3.2.4)
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Figure 3.5: Decomposition of the calculation domain into subdomains Γs,β, Γr,β and
Sβ.

In the following we evaluate the integral

Inm =

∫ 2π

0

∫ ∞

0

Δcθ(θ)Δcr(r)H
(2)
0 (knr)H

(2)
0 (kmγ)rdrdθ. (3.2.5)

Since the Hankel functions are singular for r = 0 and γ = 0, i.e. at the location

of the source and the receiver, respectively, we chose to evaluate the integral Inm

analytically in the vicinity Γs,β and Γr,β of the source and receiver (disks of radius

β), see Fig. 3.5. Assuming that the radius β is large enough we use the asymptotic

form of the Hankel functions (see Appendix D) at the remaining domain Sβ which is

the domain outside the above two areas.1 Further, exploiting the fact that they are

rapidly oscillating functions with respect to (r, θ) we apply the method of stationary

phase for the evaluation of Inm in this domain.

STEP 1: Analytical calculation of Inm in the vicinity of the source/receiver

In the vicinity of the source we can assume that Δcθ(θ) and Δcr(r) are constants,

1 Sβ = [β,∞) × [0, 2π) \ Γr,β .
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such that Inm(Γs,β) = ΔcθΔcrIβ,nm where Δcθ, Δcr are taken at the source and

Iβ,nm =

∫ 2π

0

dθ

[∫ β

0

rdrH
(2)
0 (knr)H

(2)
0 (kmγ)

]
. (3.2.6)

The Hankel function H
(2)
0 (kmγ) can be expressed in terms of cylindrical functions of

the argument (kmr) as follows [see M. Abramowitz and I. A. Stegun [18] form. [9.1.79]]2

H
(2)
0 (kmγ) = J0(kmr)H

(2)
0 (kmR) + 2

∞∑
�=1

J�(kmr)H
(2)
� (kmR)cos(�θ).

Substituting this expression into (3.2.6), and since
∫ 2π

0
cos�θdθ = 0, � = 1, 2, ...,

Iβ,nm becomes:

Iβ,nm =2πH
(2)
0 (kmR)I ′

β,nm, (3.2.7)

where

I ′
β,nm =

∫ β

0

J0(kmr)H
(2)
0 (knr)rdr.

a) For m �= n the integral I ′
β,nm can be evaluated as follows [Watson [35] form.

[134(8)]]

I ′
β,nm =

[
kmrJ1(kmr)H

(2)
0 (knr) − knrJ0(kmr)H

(2)
1 (knr)

k2
m − k2

n

]β

r=α→0

.

Using the asymptotic expressions for small (α) and large (β) arguments given in

Appendix D we obtain

I ′
β,nm =

2km

(k2
m − k2

n) π
√

kmkn

cos (kmβ − 3π

4
)e−j(knβ−π

4 )

− 2kn

(k2
m − k2

n) π
√

kmkn

cos (kmβ − π

4
)e−j(knβ− 3π

4 )

− lim
α→0

(kmα)2

2

(
1 − j 2

π
ln (knα)

)
− knα

(
knα
2

+ 2
knαπ

j
)

k2
m − k2

n

2This expansion holds for r < R. For r > R the expansion is different.
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and finally

I ′
β,nm =

2

π (k2
m − k2

n)
j + o.t., (3.2.8)

where o.t. stands for an oscillating term with respect to β averaging to zero.

b) For m = n the integral I ′
β,nm becomes

I ′
β,nn =

∫ β

0

J0 (knr) [J0 (knr) − jY (knr)] rdr

=

∫ β

0

[
(J0(knr))2 rdr − j

∫ β

0

J0 (knr) Y (knr)

]
rdr.

Using form. [135(11)] from Watson [35] we obtain

I ′
β,nn =

[
r2

2

(
(J0 (knr))2 + (J1 (knr))2)− j

r2

2
(J0 (knr) Y0 (knr) + J1 (knr) Y1 (knr))

]β

r=α→0

=
β2

2

[
(J0 (knβ))2 + (J1 (knβ))2 − j (J0 (knα) Y0 (knα) + J1 (knβ) Y1 (knβ))

]
− lim

α→0

α2

2

[
(J0 (knα))2 + (J1 (knα))2 − j (J0 (knα) Y0 (knα) + J1 (knα) Y1 (knα))

]
.

Using the asymptotic expressions for small (α) and large (β) arguments (Appendix D)

we obtain

I ′
β,nn =

[
cos2

(
knβ − π

4

)
+ cos2

(
knβ − 3π

4

)
− j
[
cos
(
knβ − π

4

)
sin
(
knβ − π

4

)

+ cos

(
knβ − 3π

4

)
sin

(
knβ − 3π

4

)]]
β2

2

2

knβπ

− lim
α→0

[
1 +

(
knα

2

)2

− j

(
2

π

(
ln

(
knα

2

))
−knα

2

(
− 2

knαπ

))]
α2

2

=
β

knπ

[
cos2

(
knβ − π

4

)
+ cos2

(
knβ − 3π

4

)]
=

β

knπ
.

(3.2.9)

Consequently the integral Inm calculated in the vicinity Γs,β of the source becomes

Inm(Γs,β) = 2ΔcrΔcθH
(2)
0 (kmR) ·

⎧⎪⎨
⎪⎩

β

kn

for n = m

2j

k2
m − k2

n

+ o.t. for n �= m
(3.2.10)
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where Δcr and Δcθ are taken at the source location. Similar expressions can be

derived for Inm(Γr,β).

STEP 2: Calculation of Inm away from the source/receiver

Assuming that the radius β is large enough we can use the asymptotic expression

for the Hankel functions (see Appendix D) outside the disks surrounding the source

and the receiver. The integral Inm over the domain Sβ takes the form

Inm(Sβ) =

∫∫
Sβ

Δcθ(θ)Δcr(r)H
(2)
0 (knr)H

(2)
0 (kmγ)dS(r, θ)

=

∫∫
Sβ

Δcθ(θ)Δcr(r)
2je−j(kmr+kn

√
r2+R2−2rRcosθ)

π
√

knkm

√
r
√

r2 + R2 − 2rR cos θ
dS(r, θ)

=
2j

π
√

knkm

Jβ,nm,

where dS is the differential area and

Jβ,nm =

∫∫
Sβ

Δcθ(θ)Δcr(r)
e−j(kmr+kn

√
r2+R2−2rRcosθ)√

r
√

r2 + R2 − 2rR cos θ
dS(r, θ).

The exponential part in the kernel of this integral is a rapidly oscillating function of

(r, θ). In this connection we apply the method of stationary phase [see Appendix B]

for the evaluation of Jβ,nm. The phase of the exponential is

Φ =kmr + kn

√
r2 + R2 − 2Rr cos θ

=R
[
kmη + kn

√
η2 + 1 − 2η cos θ

]
,

where η = r/R. The only contributions to the integral Jβ,nm will come from the

stationary points with respect to θ and η. The derivative of Φ with respect to θ

∂Φ

∂θ
=

Rknη sin θ√
η2 + 1 − 2η cos θ

,

vanishes at θ = 0 and θ = π (stationary points). The derivative of Φ with respect to

η is

∂Φ

∂η
= R

[
km + kn

η − cos θ√
η2 + 1 − 2η cos θ

]
. (3.2.11)
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α) For θ = 0 this derivative takes the form:

∂Φ

∂η
=R

[
km + kn

η − 1√
η2 + 1 − 2η

]

=R [km + knsign(η − 1)] ,

since the square root represents the normalized distance from the receiver and is taken

positive. Thus the stationary points for θ = 0 are η < 1 and n = m.

β) For θ = π the derivative (3.2.11) becomes:

∂Φ

∂η
=R

[
km + kn

η + 1√
η2 + 1 + 2η

]

=R [km + kn] .

This expression will always be positive such that there are no stationary points for

θ = π.

The expressions for the second derivatives of the phase with respect to η and θ,

calculated at the stationary points, are given next.

∂2Φ

∂η2

∣∣∣∣
θ=0
η<1

= Rkn

√
η2 + 1 − 2η cos θ − (η−cos θ)2√

η2+1−2η cos θ

η2 + 1 − 2η cos θ

∣∣∣∣∣∣∣
θ=0
η<1

= 0

∂2Φ

∂θ∂η

∣∣∣∣
θ=0
η<1

= Rkn sin θ

√
η2 + 1 − 2η cos θ − η η−cos θ√

η2+1−2η cos θ

η2 + 1 − 2η cos θ

∣∣∣∣∣∣
θ=0
η<1

= 0

∂2Φ

∂θ2

∣∣∣∣
θ=0
η<1

=Rknη

√
η2 + 1 − 2η

η2 + 1 − 2η
=

Rknη

1 − η

The first two derivatives are identically equal to zero. Thus expanding the phase

Φ(η, θ) in a two-dimensional Taylor series about the stationary points, and keeping
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terms up to the second order we obtain

Φ(η, θ) ≈ Φ(η, 0) +
1

2

∂2Φ

∂θ2
(η, 0)θ2.

Since the stationary points of the phase Φ are kn = km, θ = 0, β < r < R − β, the

integral Jβ,nm, can be expressed in the form

Jβ,nm =

∫∫
Sβ

Δcθ(θ)Δcr(r)
e−j(kmr+kn

√
r2+R2−2rRcosθ)√

r
√

r2 + R2 − 2rR cos θ
dS

≈Δcθ(0)e−jknR

∫ R−β

β

Δcr(r)√
r(R − r)

(∫ 2π

0

e
− j

2
∂2Φ
∂θ2

∣∣∣ θ=0
η<1

θ2

dθ

)
rdr

=Δcθ(0)e−jknRe−jπ/4

√
2π

knR

∫ R−β

β

Δcr(r)dr.

(3.2.12)

Thus the stationary phase method gives for the integral Inm(Sβ)

Inm(Sβ) ≈ δnm2Δcθ(0)
H

(2)
0 (knR)

kn

∫ R−β

β

Δcr(r)dr, (3.2.13)

where δnm is the Kronecker delta. Combining the expressions for Inm(Γs,β) and

Inm(Γr,β), eq. (3.2.10), with the above expression for Inm(Sβ) and omitting oscillat-

ing terms we finally obtain the following expression for Inm = Inm(Sβ) + Inm(Γs,β) +

Inm(Γr,β)

Inm =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2Δcθ(0)
H

(2)
0 (knR)

kn

∫ R

0

Δcr(r)dr for n=m

4jΔcθ(0)

[
H

(2)
0 (kmR)

k2
m − k2

n

Δcr(0) +
H

(2)
0 (knR)

k2
n − k2

m

Δcr(R)

]
for n �= m

(3.2.14)

Substituting the above expressions into (3.2.4) the first-order Born approximation
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takes the form

ΔG1(xr|xs) =
ω2

8ρ2
w

M∑
n=1

{
φn(zs)φn(zr)

∫ h

0

φ2
n(z)

Δcz(z)

c3
0(z)

dz

×2Δcθ(0)

kn

∫ R

0

Δcr(r)dr

+
M∑

m=1
m�=n

φm(zs)φn(zr)

h∫
0

φm(z)φn(z)
Δcz(z)

c3
0(z)

dz

× 4j

k2
n − k2

m

Δcθ(0)Δcr(0)

+
M∑

m=1
m�=n

φm(zr)φn(zs)

∫ h

0

φm(z)φn(z)
Δcz(z)

c3
0(z)

dz

× 4j

k2
n − k2

m

Δcθ(0)Δcr(R)

}
H

(2)
0 (knR).

By rearranging terms we obtain

ΔG1(xr|xs) =
ω2

8ρ2
w

M∑
n=1

{
φn(zs)φn(zr)

2Δcθ(0)

kn

∫ h

0

φ2
n(z)

Δcz(z)

c3
0(z)

dz

∫ R

0

Δcr(r)dr

+ 4jΔcθ(0)
M∑

m=1
m�=n

Δcr(0)φm(zs)φn(zr) + Δcr(R)φn(zs)φm(zr)

k2
n − k2

m

×
∫ h

0

φn(z)φm(z)
Δcz(z)

c3
0(z)

dz

}
H

(2)
0 (knR).

(3.2.15)

Setting

Λnm =k2
n − k2

m (3.2.16)

Qnm = − 2ω2

ρ2
w

∫ h

0

φn(z)φm(z)
Δcz(z)

c3
0(z)

dz, (3.2.17)

Un = − φn(zs)φn(zr)/2, (3.2.18)

Vnm =φm(zs)φn(zr)Δcr(0) + φn(zs)φm(zr)Δcr(R). (3.2.19)
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The first Born approximation can be finally written in the compact form

ΔG1(xr|xs) = − jΔcθ(0)

4ρw

M∑
n=1

⎧⎪⎨
⎪⎩

M∑
m=1
m�=n

QnmVnm

Λnm

+ j
QnnUn

kn

∫ R

0

Δcr(r)dr

⎫⎪⎬
⎪⎭H

(2)
0 (knR).

(3.2.20)

This expression is a generalization of previous results obtained for range-independent

perturbations [28]. The more important term in (3.2.20) is the one containing the

integral over r, which e.g. for range independent perturbations this will lead to

multiplication by a factor R, (the source-receiver range). However in the case of a

zero-mean range-dependent perturbation
(∫ R

0
Δcr(r)dr = 0

)
this term will vanish.

The first term including the sum over m is in general negligible to the first order.

This term will become of importance for the second Born approximation. The more

important contribution to this term comes from the elements that are close to the

diagonal (small |n − m|), for which the denominator Λnm becomes very small.

At this point we can see why the contribution of the half-space and evanescent

modes can be neglected, if we are interested in the perturbation behavior of the

low-order modes. The term containing the integral over r evaluates the contribution

of the various modes at the receiver’s location
(
H

(2)
0 (knR)

)
, and for large R the

contribution of half-space and evanescent modes will be negligible since these modes

are highly attenuated in water. Coming to the term with the sum over m, since we

are interested in low-order modes (small n) the half-space modes (large m) will be

characterized by large Λnm values and thus their contribution will be negligible. The

contribution of the evanescent modes will be even smaller since km will be imaginary

and thus the differences Λnm will become sums of the form k2
n + Im(km)2.
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3.3 Second Born approximation

We continue with the second Born approximation. The expression (2.1.8), can be

written in the form ΔG2(xr,xs) = I1 + I2 where

I1 =

∫∫
V

∫
G0(xr|x)

[
− 2ω2

c3
0(x)

Δc(x)

]
ΔG1(x|xs)dV (x), (3.3.1)

I2 =

∫∫
V

∫
G0(xr|x)

[
3ω2

c4
0(x)

Δc2(x)

]
G0(x|xs)dV (x). (3.3.2)

Substituting the normal-mode representation for the background Green’s function

and the expression (3.2.20) for the first Born approximation into the integral I1 we

obtain

I1 =

h∫
0

2π∫
0

∞∫
0

M∑
�=1

φ�(z)φ�(zr)H
(2)
0

(
k�

√
r2 + R2 − 2rR cos θ

)(
− j

4ρw

)2

Δcθ(0)

×
[
− 2ω2

c3
0(z)

Δcz(z)Δcθ(θ)Δcr(r)

] M∑
n=1

⎧⎪⎨
⎪⎩

M∑
m=1
m�=n

QnmVnm

Λnm

+ j
QnnUn

kn

∫ r

0

Δcr(r
′)dr′

⎫⎪⎬
⎪⎭

× H
(2)
0 (knr)rdrdθdz

=

h∫
0

2π∫
0

∞∫
0

M∑
�=1

φ�(z)φ�(zr)H
(2)
0

(
k�

√
r2 + R2 − 2rR cos θ

)(
−Δcθ(0)

16ρ2
w

)

×
[
− 2ω2

c3
0(z)

Δcz(z)Δcθ(θ)Δcr(r)

]

×
M∑

n=1

⎧⎪⎨
⎪⎩

M∑
m=1
m�=n

Qnm [φm(zs)φn(z)Δcr(0) + φm(z)φn(zs)Δcr(r)]

k2
n − k2

m

−j

∫ r

0

Δcr(r
′)dr′

Qnnφn(zs)φn(z)

2kn

}
H

(2)
0 (knr) rdrdθdz
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=
ω2Δcθ(0)Δcr(0)

8ρ2
w

M∑
n=1

M∑
m=1
m�=n

M∑
�=1

Qnmφ�(zr)φm(zs)

k2
n − k2

m

h∫
0

φ�(z)φn(z)

c3
0(z)

Δcz(z)dz

×
2π∫
0

∞∫
0

H
(2)
0 (knr)H

(2)
0

(
k�

√
r2 + R2 − 2rR cos θ

)
Δcθ(θ)Δcr(r)rdrdθ

+
ω2Δcθ(0)

8ρ2
w

M∑
n=1

M∑
m=1
m�=n

M∑
�=1

Qnmφ�(zr)φn(zs)

k2
n − k2

m

h∫
0

φ�(z)φm(z)

c3
0(z)

Δcz(z)dz

×
2π∫
0

∞∫
0

H
(2)
0 (knr)H

(2)
0

(
k�

√
r2 + R2 − 2rR cos θ

)
Δcθ(θ)Δc2

r(r)rdrdθ

− jω2Δcθ(0)

8ρ2
w

M∑
n=1

M∑
�=1

Qnnφ�(zr)φn(zs)

2kn

h∫
0

φ�(z)φn(z)

c3
0(z)

Δcz(z)dz

×
2π∫
0

∞∫
0

H
(2)
0 (knr)H

(2)
0

(
k�

√
r2 + R2 − 2rR cos θ

)
Δcθ(θ)Δc(r)

r∫
0

Δc(r′)dr′rdrdθ.

(3.3.3)

The integrals with respect to (r, θ) in the above expression are of the general form:

Kn� =

2π∫
0

∞∫
0

H
(2)
0 (knr)H

(2)
0

(
k�

√
r2 + R2 − 2rR cos θ

)
Δcθ(θ)F (r)rdrdθ,

where F is a smooth slowly varying function of r. This integral is of the same type

as the integral Inm, eq. (3.2.5) that we dealt with in the previous section. Applying

the same method (analytical calculation close to the source/receiver, and stationary

phase in the far field) this integral can be evaluated

Kn� =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2Δcθ(0)
H

(2)
0 (knR)

kn

R∫
0

F (r)dr for kn = k�

4jΔcθ(0)

[
H2

0 (k�R)

k2
� − k2

n

F (0) +
H2

0 (knR)

k2
n − k2

�

F (R)

]
for kn �= k�

(3.3.4)
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Using this result, the first term (first two lines) in (3.3.3) denoted by T1, becomes

(for kn = k�)

T1 =
ω2Δcθ(0)Δcr(0)

8ρ2
w

M∑
n=1

M∑
m=1
m�=n

Qnmφn(zr)φm(zs)

k2
n − k2

m

h∫
0

φ2
n(z)

c3
0(z)

Δcz(z)dz

× 2Δcθ(0)

kn

H
(2)
0 (knR)

R∫
0

Δcr(r)dr.

Using the definitions (3.2.16)-(3.2.19) T1 becomes:

T1 = − Δc2
θ(0)

4ρw

M∑
n=1

M∑
m=1
m�=n

QnmQnnφn(zr)φm(zs)Δcr(0)

2kn (k2
n − k2

m)
H

(2)
0 (knR)

R∫
0

Δcr(r)dr. (3.3.5)

Applying (3.3.4) to the second term (3rd and 4th line) of (3.3.3), denoted by T2,

we obtain (for kn �= k�)

T2 =
ω2Δcθ(0)

8ρ2
w

M∑
n=1

M∑
m=1
m�=n

Qnmφn(zr)φn(zs)

k2
n − k2

m

h∫
0

φn(z)φm(z)

c3
0(z)

Δcz(z)dz

× 2Δcθ(0)H
(2)
0 (knR)

kn

R∫
0

Δc2
r(r)dr,

and using the abbreviations (3.2.16)-(3.2.19)

T2 =
Δc2

θ(0)

4ρw

M∑
n=1

M∑
m=1
m�=n

|Qnm|2 Un

kn (k2
n − k2

m)
H

(2)
0 (knR)

R∫
0

Δc2
r(r)dr. (3.3.6)

Only the dominating terms including the factors R and R2 are retained in the

second order expressions. The second line in (3.3.4) corresponding to kn �= k� is not

taken into account for T1 and T2; this is not significance for the third order and higher

but not for the second order studied here.

The third term (T3 – last two lines) in (3.3.3) can be written as a sum of two

terms. T3a and T3b. In T3a the double sum
∑
n

∑
�

is considered over the diagonal
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(� = n) whereas in (T3b) the rest of the sum (� �= n) is considered. Using (3.3.4) the

following expression is obtained for T3a

T3a =
−jω2Δcθ(0)

8ρ2
w

M∑
n=1

Qnnφn(zr)φn(zs)

2kn

h∫
0

φ2
n(z)

c3
0(z)

Δcz(z)dz

× 2Δcθ(0)

kn

H
(2)
0 (knR)

R∫
0

Δcr(r)

r∫
0

Δcr(r
′)dr′dr,

and further using (3.2.16)-(3.2.19) we obtain the following expression

T3a =
−jΔc2

θ(0)

4ρw

M∑
n=1

|Qnn|2 Un

2k2
n

H
(2)
0 (knR)

R∫
0

Δcr(r)

r∫
0

Δcr(r
′)dr′dr. (3.3.7)

For the term T3b the eq. (3.3.4) will give

T3b =
−jω2Δcθ(0)

8ρ2
w

M∑
n=1

M∑
�=1
��=n

Qnnφ�(zr)φn(zs)

2kn

h∫
0

φ�(z)φn(z)

c3
0(z)

Δcz(z)dz

× 4jΔcθ(0)Δcr(R)

k2
n − k2

�

H
(2)
0 (knR)

R∫
0

Δcr(r)dr.

Note in this case that F (r) = Δcr(r)
r∫
0

Δcr(r
′)dr′, which vanishes for r = 0. Again

using definitions (3.2.16)-(3.2.19) this expression can be written as:

T3b =
−Δc2

θ(0)

4ρ2
w

M∑
n=1

M∑
�=1
��=n

QnnQn�φ�(zr)φn(zs)Δcr(R)

2kn (k2
n − k2

� )
H

(2)
0 (knR)

R∫
0

Δcr(r)dr. (3.3.8)

By adding T1, T2, T3a and T3b and noticing that

T1 + T3b =
−Δc2

θ(0)

4ρ2
w

M∑
n=1

M∑
m=1
m�=n

QnnQnmVnm

2kn (k2
n − k2

m)
H

(2)
0 (knR)

R∫
0

Δcr(r)dr. (3.3.9)
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The following expression is finally obtained for I1

I1 =
Δc2

θ(0)

4ρw

M∑
n=1

M∑
m=1
m�=n

|Qnm|2 Un

kn (k2
n − k2

m)
H

(2)
0 (knR)

R∫
0

Δc2
r(r)dr

− jΔc2
θ(0)

4ρw

M∑
n=1

|Qnn|2 Un

2k2
n

H
(2)
0 (knR)

R∫
0

Δcr(r)

r∫
0

Δcr(r
′)dr′dr

− Δc2
θ(0)

4ρ2
w

M∑
n=1

M∑
m=1
m�=n

QnnQnmVnm

2kn (k2
n − k2

m)
H

(2)
0 (knR)

R∫
0

Δcr(r)dr.

(3.3.10)

For the integral I2, eq. (3.3.2), using the normal-mode representation for the back-

ground Green’s functions we get:

I2 =
j2

16ρ2
w

h∫
0

2π∫
0

∞∫
0

M∑
n=1

φn(zs)φn(z)H
(2)
0 (knr)

[
3ω2

c4
0(z)

Δc2
r(r)Δc2

θ(θ)Δc2
z(z)

]

×
M∑

m=1

φm(z)φm(zr)H
(2)
0

(
km

√
r2 + R2 − 2rR cos θ

)
rdrdθdz

=
−1

16ρw

M∑
n=1

M∑
m=1

φn(zs)φm(zr)
3ω2

ρw

h∫
0

φn(z)φm(z)
Δc2

z(z)

c4
0(z)

dz

×
2π∫
0

∞∫
0

H
(2)
0 (knr)H

(2)
0

(
km

√
r2 + R2 − 2rR cos θ

)
Δc2

r(r)Δc2
θ(θ)rdrdθ.

Applying eq. (3.3.4) to the integral with respect to (r, θ) we finally obtain the follow-

ing expression for I2

I2 =
Δc2

θ(0)

4ρw

R∫
0

Δc2
r(r)dr

M∑
n=1

UnQ′
n

kn

H
(2)
0 (knR), (3.3.11)

where

Q′
n =

3ω2

ρw

h∫
0

φ2
n(z)

Δc2
z(z)

c4
0(z)

dz,
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where again we have omitted the sum over the off-diagonal terms (m �= n) since it is

not significant for the second order.

Combining the relations (3.3.10) and (3.3.11) we obtain the following expression

for the second-order term of the Born approximation

ΔG2(xr|xs) =
−jΔc2

θ(0)

4ρw

M∑
n=1

⎧⎪⎨
⎪⎩
−jQnn

2kn

M∑
m=1
m�=n

QnmVnm

Λnm

R∫
0

Δcr(r)dr

+
|Qnn|2Un

2k2
n

R∫
0

Δcr(r)

r∫
0

Δcr(r
′)dr′dr

+
jUn

kn

⎛
⎜⎝ M∑

m=1
m�=n

|Qnm|2
Λnm

+ Q′
n

⎞
⎟⎠

R∫
0

Δc2
r(r)dr

⎫⎪⎬
⎪⎭H

(2)
0 (knR).

(3.3.12)

As in the case of the first Born approximation this is a generalization of previous

results obtained for range-independent perturbations [28]. The above expression con-

tains the dominating terms, including the factors R and R2, where as the remaining

terms (not essential for the second-order approximation) have been omitted.

3.4 Rytov-Keller approximation

Once we have obtained expressions for the first and second Born approximations, it is

straightforward to obtain the corresponding expressions for the Rytov approximation

by applying eq. (2.2.5). The Rytov approximation performs well in the case of single-

component waves, but fails in the case of multiple component waves such as the

present case [36]. The reason is that each component mode of a multiple-component

wave field is characterized by its own phase, with different perturbation behavior.

The standard Rytov approximation on the other hand assumes that the whole wave

field can be described by a single phase. In such cases the Rytov method must be
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applied to each wave component separately and not to the total field as Keller pointed

out [16]. This means consider the phase perturbation of each component separately.

In this connection the perturbed Green’s function (up to the first order) is written as

follows:

GRK =
M∑

n=1

G0neΔΨn , (3.4.1)

where G0n is the n − th mode contribution to the unperturbed Green’s function.

Based on eq. (2.2.5) and (3.2.20) the first-order term of the Rytov approximation for

the n − th mode can be calculated as follows

ΔΨ1n =
−jΔcθ(0)

4ρwG0n

⎛
⎜⎝ M∑

m=1
m�=n

QnmVnm

Λnm

+ j
QnnUn

kn

R∫
0

Δcr(r)dr

⎞
⎟⎠H

(2)
0 (knR), (3.4.2)

where Qnm, Vnm, Λnm, Un are the quantities defined in eq. (3.2.16)-(3.2.19).

Using the normal-mode expression (3.1.7) for the background Green’s function C0n

finally obtain for the phase perturbation of the n − th mode

ΔΨ1n =
−Δcθ(0)

2Un

M∑
m=1
m�=n

QnmVnm

Λnm

− j
Δcθ(0)Qnn

2kn

R∫
0

Δcr(r)dr. (3.4.3)

The dominating term in this expression with respect to the phase is the second (imag-

inary) one. The first term is real and represents attenuation effects on the phase).

Taking into account the Born-Rytov relations eq. (2.2.5) and the expression for the
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second-order term of the Born approximation the corresponding term of the Rytov-

Keller approximation can be written as follows

ΔΨ2n =
−jΔc2

θ(0)

4G0nρw

⎧⎪⎨
⎪⎩

−j

2knQnn

M∑
m=1
m�=n

QnmVnm

Λnm

R∫
0

Δcr(r)dr

+
|Qnn|2Un

2k2
n

R∫
0

Δcr(r)

r∫
0

Δcr(r
′)dr′dr

+
jUn

kn

⎛
⎜⎝ M∑

m=1
m�=n

|Qnm|2
Λnm

+ Q′
n

⎞
⎟⎠

R∫
0

Δc2
r(r)dr

⎫⎪⎬
⎪⎭H

(2)
0 (knR)

− 1

2
(ΔΨ1n)2

(3.4.4)

Substituting the modal representation for G0n obtain

ΔΨ2n =
jΔc2

θ(0)

4UnknQnn

M∑
m=1
m�=n

QnmVnm

Λnm

R∫
0

Δcr(r)dr

− Δc2
θ(0)|Qnn|2

4k2
n

R∫
0

Δcr(r)

r∫
0

Δcr(r
′)dr′dr

− jΔc2
θ(0)

2kn

⎛
⎜⎝ M∑

m=1
m�=n

|Qnm|2
Λnm

+ Q′
n

⎞
⎟⎠

R∫
0

Δc2
r(r)dr

− 1

2
(ΔΨ1n)2

(3.4.5)

The dominating term in this expression in the case of a zero-mean range perturbation

is the imaginary term on the third line. All other terms either vanish or they are real,

which means that they have no effect on the phase.

In Appendix C it is seen that the second-order Rytov-Keller approximation has

strong similarities to the second-order adiabatic approximation of the Green’s func-

tion. This indicates that Keller’s approach of treating each wave component sep-

arately is based on the assumption that there is no interaction (energy exchange)
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between different modes in the perturbed state.
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Chapter 4

Numerical Results

In this chapter some numerical examples for the waveform perturbation approach are

presented. Three different range-dependent environments are considered which are

perturbations of a range independent environment characterized by a linear sound

speed profile shown in Fig. 4.1. The particular profile (1503 m/sec at the surface and

1546.9 m/sec at 2500 m depth) represents a typical average profile for the western

Mediterranean sea during winter. The water depth is 2500 m, both source and re-

ceiver depths are set to 150 m; the horizontal distance between source and receiver

is taken 600 km (these values are motivated from the Thetis-2 tomography experi-

ment conducted from January to October 1994 in the Western Mediterranean [34]).

The emitted signal is assumed to be a Gaussian pulse of central frequency 150 Hz

and effective bandwidth 60 Hz. Acoustic calculations are performed in the frequency

range from 100 to 200 Hz. Fig. 4.2 shows the background arrival pattern correspond-

ing to the reference profile of Fig. 4.1. For the calculation the complex pressure was

evaluated at 501 frequencies from 100 Hz to 200 Hz, with a step of 0.2 Hz, using a

normal-mode code and then applying FFT. An absorbing bottom is assumed filtering

out the bottom-interacting part of the acoustic energy [7].

In the following the calculations will focus on the late part of the arrival pattern

45
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Figure 4.1: Background environment for the three example-cases.

(represented by the low-order modes) – bottom panel in Fig. 4.2 – which is most

affected by range dependence.

A velocity perturbation of the form Δc(r, z) = Δcr(r)Δcz(z) is considered. Fig. 4.3

shows the depth mode Δcz(z) used in all examples. This mode is confined in the upper

50 m layer (range dependence is more pronounced in the near-surface layer), reaching

1 m/sec at the surface and decreasing linearly to zero at 50 m depth and remains

zero thereafter. As regards the range mode Δcr(r) tree cases are considered:

1) Linear zero-mean range dependence.

2) Bilinear zero-mean range dependence.

3) Linear non-zero mean range dependence.
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Figure 4.2: Background arrival pattern corresponding to the reference profile. Bottom
panel focus on the late arrival pattern represented by the low order modes.
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Figure 4.4: The range mode Δcr of the sound-speed perturbation (linear zero-mean).

4.1 Linear zero-mean range dependence

In the first example the range mode Δcr of the sound-speed perturbation is linear

from -5 at the source to 5 at the receiver, Fig. 4.4. Fig. 4.5 shows the resulting sound

speed profiles at various ranges. The 10 m/s difference in the sound speed over the

600 km corresponds to what has been observed in the Western Mediterranean Sea

(warming trend from north to south).

Fig. 4.6 shows the result of the exact calculation of the late arrival pattern for

the range-dependent perturbed state, based on adiabatic and coupled-mode theory.
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Figure 4.5: Sound speed profiles at various ranges (linear zero-mean RD environment).
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Figure 4.6: Exact calculation of the late arrival pattern (linear zero-mean) for the
range-dependent perturbed state.

The small deviation between the two predictions indicates that mode coupling is not

significant in this case.

Fig. 4.7 shows the arrival pattern predicted from the second Born approximation

together with the exact adiabatic prediction and the background arrival pattern.

Since the range mode Δcr(r) of the sound-speed perturbation has zero mean the first

Born approximation result is practically the same as the background arrival pattern.

From this figure we see that the Born approximation differs from the background

arrival pattern in amplitude but hardly as far the arrival times are concerned. In
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Figure 4.7: Late arrival pattern predicted from the Born approximation, together with
the exact adiabatic prediction and the background arrival pattern (linear zero-mean).

the perturbed arrival pattern on the other hand the arrivals, especially the late ones,

are significantly displaced by as much as 70 msec with respect to their background

locations. Thus, the Born approximation fails to predict correct arrival times in the

perturbed state.

Fig. 4.8 shows the arrival pattern predicted from the second Rytov approximation;

the exact adiabatic prediction and the background arrival pattern are also show in

this figure, as before. Again since the range mode Δcr(r) was zero mean the first

Rytov approximation, relying on the first Born approximation, predicts no deviation
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Figure 4.8: Late arrival pattern predicted from the Rytov approximation, together
with the exact adiabatic prediction and the background arrival pattern (linear zero-
mean).

from the background arrival pattern. We see that the Rytov approximation manages

to describe efficiently the arrival shifts in all cases. Thus for the late arrivals it

reproduces the delays, with respect to the background state, predicted by the exact

calculations. For the earlier arrivals the exact calculations predict advancement of

the perturbed arrivals with respect to the background state. This behavior is very

well reproduced by the second-order Rytov approximation as well.

Fig. 4.9 presents a more detailed comparison of travel times of the first 10 modes
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at the central frequency (150 Hz). The horizontal axis of this figure measures distance

from the source whereas the vertical axis measures the equivalent travel time which

is defined as the group slowness sg,m(r) of the mode m, which is different from range

to range, multiplied by the source-receiver range R. The group slowness is obtained

from the relation sg,m(r) = ∂km(r; ω)/∂ω by applying numerical differentiation with

respect to ω. The adiabatic arrival time at the receiver is given by

tg,m =

∫ R

0

sg,m(r)dr =
1

R

∫ R

0

Rsg,m(r)dr

and thus it is just the average of the equivalent travel time.

In Fig. 4.9 the equivalent travel times corresponding to the background and exact

adiabatic predictions are shown, as well as the first and second Rytov approximation.

The background equivalent travel time for each mode is constant with respect to range

and equals the corresponding group travel time. In the first Rytov approximation the

phase has a linear dependency on the sound-speed perturbation and since the latter

in this case is a linear function of range, the equivalent travel times in the first Rytov

approximation are linear functions of range, as we see in Fig. 4.9, fully reflecting the

zero-mean property of the range mode Δcr(r). In this connection the first Rytov

approximation results in exactly the same group travel times as in the background

situation. In the second Rytov approximation the phase is a quadratic functional

of the sound-speed perturbation and, since the latter varies linearly with range, the

corresponding equivalent travel times are quadratic functions of range, and thus their

average will be different than the background group travel times. In this sense the

effect of range dependence an travel times is a second-order effect.

We see from Fig. 4.9 that the second Rytov approximation lies very close to the

exact adiabatic prediction as far as the equivalent travel times are concerned. This

explains the good agreement between the Rytov approximation and the adiabatic

prediction in the previous figure.
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(150 Hz).
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Figure 4.10: Range mode Δcr of the sound speed perturbation - bilinear (I).

4.2 Bilinear zero-mean range dependence

In the second example the range mode Δcr is bilinear with zero mean. Two cases are

considered with different slopes.

Case I:

In the first case Δcr increases linearly from -2.5 at the source to 2.5 at 300 km

range and then decreases linearly to -2.5 at the receiver, Fig. 4.10. Fig. 4.11 shows

the resulting sound-speed profiles, at various ranges.

Fig. 4.12 shows the result of the exact calculation of the late arrival pattern for
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Figure 4.11: Sound speed profiles at various ranges – bilinear (I).
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Figure 4.12: Exact calculation of the late part of the arrival pattern (bilinear (I)) for
the range dependent perturbed state.

the range-dependent perturbed state, based on adiabatic and coupled-mode theory.

The small deviation between the two predictions indicate that mode coupling is not

significant in this case.

Fig. 4.13 shows the arrival pattern predicted from the second Born approximation,

together with the exact adiabatic prediction and the background arrival pattern.

Since the range mode Δcr(r) of the sound-speed perturbation has zero mean the first

Born approximation result is practically the same as the background arrival pattern.

From this figure we see that the Born approximation cannot describe the travel-time
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Figure 4.13: Late arrival pattern predicted from the Born approximation, together
with the exact adiabatic prediction and the background arrival pattern (bilinear (I)).

and amplitude changes from the background to the perturbed state.

Fig. 4.14 shows the late arrival pattern predicted from the second Rytov approxi-

mation together with the exact adiabatic prediction and the background arrival pat-

tern. Since the range mode Δcr was zero mean the first Rytov approximation, relying

on the first Born approximation, predicts no deviation from the background arrival

pattern. The Rytov approximation manages to describe efficiently the travel-time

amplitude changes in nearly all cases. Thus for the late arrivals it reproduces the

delays, with respect to the background state, predicted by the exact calculations.
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Figure 4.14: Late arrival pattern predicted from the Rytov approximation, together
with the exact adiabatic prediction and the background arrival pattern (bilinear (I)).

For the earlier arrivals the exact calculations predict advancement of the perturbed

arrivals with respect to the background state. This behavior is very well reproduced

by the second-order Rytov approximation.

Case II:

In the second case Δcr increases linearly from -5 at the source to 5 at 300 km

range and then decreases linearly to -5 at the receiver, Fig. 4.15. Fig. 4.16 shows the

resulting sound-speed profiles, at various ranges.

Fig. 4.17 shows the result of the exact calculation of the late arrival pattern for
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Figure 4.15: Range mode Δcr of the sound speed perturbation – bilinear (II).
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Figure 4.16: Sound speed profiles, at various ranges– bilinear (II).
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Figure 4.17: Exact calculation of the late arrival pattern ( bilinear (II)), for the range
dependent perturbed state.

the range-dependent perturbed state, from adiabatic and coupled-mode theory. The

deviations between the two predictions indicate that mode coupling starts to become

significant in this case.

Fig. 4.18 shows the late arrival pattern predicted from the second Born approxima-

tion together with the exact adiabatic prediction and the background arrival pattern.

Since the range mode Δcr(r) has zero mean the first Born approximation is practi-

cally the same as the background arrival pattern. From this figure we see that the

Born approximation fails to describe the travel time and amplitude changes from the
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Figure 4.18: Late arrival pattern predicted from the Born approximation, together
with the exact adiabatic prediction and the background arrival pattern (bilinear (II)).

background to the perturbed state.

Fig. 4.19 shows the late arrival pattern predicted from the second Rytov approx-

imation. Since the range mode Δcr was zero mean the first Rytov approximation,

relying on the first Born approximation, predicts no deviation from the background

and the adiabatic prediction is included in Fig. 4.19 as in the previous figure. In

Fig. 4.19 it is confirmed that the results of the second Rytov, they approach very well

the perturbed/adiabatic calculations.
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Figure 4.19: Late arrival pattern predicted from the Rytov approximation, together
with the exact adiabatic prediction and the background arrival pattern (bilinear (II)).
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Figure 4.20: Range mode Δcr of the sound speed perturbation (linear non-zero mean).

4.3 Linear non-zero mean range dependence

In this last case we consider as in the first example, that the range mode Δcr of the

sound-speed perturbation is linear, but not zero mean, from 0 at the source to 5 at

the receiver, Fig. 4.20. Fig. 4.21 shows the resulting sound speed profiles, at various

ranges.

Fig. 4.22 shows the result of the exact calculation of the late arrival pattern for the

range-dependent perturbed state, from adiabatic and coupled-mode theory. The small

deviation between the two predictions indicate that mode coupling is not significant
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Figure 4.21: Sound speed profiles at various ranges (linear non-zero means RD envi-
ronment).
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Figure 4.22: Exact calculation of the late part of the arrival pattern (linear non-zero
mean), for the range-dependent perturbed state.

in this case.

Fig. 4.23 shows the late arrival pattern predicted from the first and second Born

approximations. Since δcr is non-zero-mean the first Born approximation predicts an

arrival pattern different from the background one. The background arrival pattern is

also shown on Fig. 4.23 together with the adiabatic prediction (target arrival pattern)

for the perturbed state. From this figure we see that the two Born approximations

significantly differ from the background arrival pattern in amplitude but hardly as

far the arrival times are concerned. In the exact (perturbed) arrival pattern on the

other hand the arrivals, especially the late ones, are advanced by more than 100 msec
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Figure 4.23: Late arrival pattern predicted from the first and second Born approx-
imations, together with the exact adiabatic prediction and the background arrival
pattern (linear non-zero mean).

with respect to their background locations. Thus, the Born approximation fails to

predict correct arrival times in the perturbed state, whereas there is a remarkable

disagreement in the arrival amplitude as well.

Fig. 4.24 shows the arrival pattern predicted from the first and second Rytov ap-

proximation. Again due to the non zero average of δcr the first Rytov approximation

differs from the background prediction. The background arrival pattern and the per-

turbed adiabatic prediction are shown in Fig. 4.24 as in the previous figure. We see

that the first Rytov approximation significantly differs from the background arrival
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Figure 4.24: Late arrival pattern predicted from the first and second Rytov approx-
imations, together with the exact adiabatic prediction and the background arrival
pattern (linear non-zero mean).
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Figure 4.25: Range mode Δcr of the sound speed perturbation (linear non-zero means
RI environment).

pattern and the second Rytov approximation does not describe efficiently the arrival

shifts in all cases. In the exact (perturbed) arrival pattern, especially the last arrival,

is significantly displaced by as much as 120 msec with respect to its background loca-

tion, but with the second Rytov the shift is only 100 msec. Thus, the second Rytov

approximation fails to predict correct arrival times in the perturbed state.

In Fig. 4.25 present the range mode Δcr of the sound-speed perturbation, with

constant value, at the mean of the range dependence to previous case of the third

example. The results we obtain are shown in Fig. 4.26. This figure presents the
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Figure 4.26: Late arrival pattern: Compare linear non-zero means RD environment
(Rytov) with linear non-zero means RI environment (Exact).

perturbed exact calculations as in Fig. 4.21, the background arrival pattern, and the

first and second Rytov. In this case we tried a range independent perturbation at

the mean value of the previous case and the same reference profile. Although it was

a range independent example the results were better than the results of the previous

case.

Fig. 4.27 shows the range mode Δcr of the sound-speed perturbation, which is

linear from -2.5 at the source to 2.5 at the receiver. Taking into account as reference

profile the range independent profile of the previous case and the range dependence

of figure 4.27 the perturbed environment is the same as in the first case of the third
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Figure 4.27: Range mode Δcr of the sound speed perturbation (linear zero means RD
environment).

example.

Fig. 4.28 shows, the perturbed exact calculations, the new background arrival pat-

tern which is the perturbed exact in second case of the third example and the second

Rytov corresponds to this background. At this case the second Rytov, approaches

very well the exact calculations. Conclusively the selection of the reference profile is

very important, in order to obtain correct predictions with the second Rytov method.
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Figure 4.28: Late arrival pattern predicted from the Rytov approximation, together
with the exact adiabatic prediction and the new background arrival pattern (linear
zero means RD environment).



Conclusions

In this work we examined the possibility of using the Born and Rytov approximation of

Green’s function perturbations for arrival pattern calculations associated with long-

range acoustic propagation modelling in the time domain. Such calculations are

particularly important in the context of ocean acoustic travel–time tomography.

The proposed approach is to use first- and second-order Born and Rytov approxi-

mations to calculate the perturbations of the frequency-domain Green’s function as-

sociated with range-dependent sound-speed perturbations about a range-independent

background state for a large number of frequencies and then obtain the time-domain

acoustic field by applying the inverse Fourier transform. General expressions were

obtained for the first- and second-order terms of the Born and Rytov approxima-

tion. Further, assuming a range-independent background ocean environment the

normal-mode representation of the background Green’s function was used to obtain

closed-form expressions for the Born and Rytov terms describing the perturbation be-

havior of the low-order modes. The performance of the various approximations was

tested in several cases of range-dependent perturbations of a stratified background

environment and long range (600 km) propagation.

The main conclusions from this work are the following:

The Born approximation fails to describe the temporal displacement of arrivals

due to the sound-speed perturbations. The reason is that the Born representation is

based on a perturbation expansion of the Green’s function in the frequency domain
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which can hardly be translated in shifts in the time domain (temporal displacements)

through the inverse Fourier transform.

The Rytov approximation, on the other hand, is based on a perturbation expansion

of the phase in the frequency domain, which is directly associated with shifts in the

time domain. In this connection the Rytov approximation is suitable for time domain

calculations with emphasis on temporal displacements, as is the case in ocean acoustic

travel time tomography.

Since the acoustic field in the ocean is a multi-component wave field, each com-

ponent (mode) being characterized by a different phase and perturbation behavior

the standard Rytov approximation cannot be applied, since it imposes a single phase

and phase perturbation to the whole field. To face this problem, a quasi-adiabatic

approach preposed by Keller was adopted (Rytov-Keller approximation). According

to this approach the Rytov method must be applied to each wave component sep-

arately. The Rytov-Keller second-order approximation was shown here to perform

very well for the calculation of arrival pattern perturbations in long-range acoustic

propagation over hundreds of kilometers in the ocean.

Nevertheless, the ”adiabatic” assumption associated with the Rytov-Keller approx-

imation appears to make this approach a good approximation of the exact adiabatic

propagation model and thus limits its applications to cases of small/smooth pertur-

bations.

The effect of range dependence on travel times is a second-order effect. In particu-

lar, if the range average of the sound-speed perturbation is zero the first-order Rytov

approximation fails to predict any travel-time change from the background state. In

this case the second-order Rytov approximation (or higher) is required.



Appendices

A. Evanescent modes for homogeneous 2-layer

waveguide

In this appendix we study the behavior of propagating, half-space and evanescent

modes in a waveguide consisting of two homogeneous layers as the thickness of the

lower layer increases. The two layers, denoted by 1 (upper layer) and 2 (lower layer),

are characterized by constant density ρi and sound velocity ci and have thickness hi,

i = 1, 2. The top boundary of the upper layer is considered a pressure-release surface

whereas the bottom boundary of the lower layer is considered a rigid bottom.

Adopting a cylindrical coordinate system (r, z, θ) and assuming that a harmonic

point source of circular frequency ω is located on the z-axis at depth zs the axisym-

metric pressure field in the upper layer is given by [2]

p(r, z) =
−j

4ρ1

∞∑
n=1

N2
n sin (γ1nzs) sin (γ1nz)H

(2)
0

(√
λnr
)

, (A-1)

where

γin =

√
ω2

c2
i

− λn i = 1, 2

and λn are the eigenvalues of the associated Sturm-Liouville problem. All eigenvalues

are real and can be obtained by solving the following characteristic equation [2]

ρ1

ρ2

γ2

γ1

tan (γ1h1) tan (γ2h2) = 1. (A-2)

77



78

The quantity Nn is defined as

Nn =

(
h1

2ρ1

− sin γ1nh1 cos γ1nh1

2γ1nρ1

+
1

2γ2nρ2

sin2 γ1nh1
sinγ2nh2

cos γ2nh2

+
h2

2ρ2

sin2 γ1nh1

cos2 γ2nh2

)− 1
2

(A-3)

The use of H
(2)
0 instead of H

(1)
0 has to do with the time dependence of the source,

assumed here to be of the form ejωt cf. eq. (1.5.1). Assuming that c1 < c2 (we

think of the upper layer as water and the lower layer as solid) the eigenvalues are

bounded from above by ω2/c2
1 whereas there is no lower bound. The eigenvalues in

the interval (ω2/c2
2, ω

2/c2
1) correspond to modes that propagate in the upper layer.

The limit ω2/c2
2 corresponds to the critical angle see Fig. 3.2, and the he interval

(0, ω2/c2
2) corresponds to modes penetrating the lower layer; as h2 increases these

modes become the half-space modes. Finally the interval (−∞, 0) corresponds to the

evanescent modes with imaginary
√

λn values.

In the following we give some results for an environment characterized by a water

layer (ρ1 = 1 gr/cm3, c1 = 1500 m/s, h1 = 100 m) and a bottom layer (ρ2 =

1.8 gr/cm3, c2 = 1800 m/s,) with different values for its thickness from 0.1 m to

1000 m. The source depth is taken zs = 10 m and the frequency f = 70 Hz (ω = 2πf).

Fig. A-1 shows the eigenvalues λn (measured on the horizontal axis) vs. excitation

amplitudes N2
n sin2 γ1nzs (measured on the vertical axis), assuming z = zs, for different

thicknesses of the lower layer, from 0.1 m to 1000 m. The upper bound for the

eigenvalues and the value corresponding to the critical angle are also shown an this

figure. It is seen from Fig. A-1 that as the thickness h2 increases the eigenvalues

smaller than ω2/c2
2 increase in number and get closer to each other and at the limit

(h2 → ∞) they form a continuum. Further, the maximum excitation amplitudes for

the propagating (ω2/c2
2, ω

2/c2
1), the half-space (0, ω2/c2

2) and the evanescent (−∞, 0)

modes are comparable.



79

h
2
=10m

h
2
=100m

h
2
=200m

   
   

   
   

   
   

   
  E

xc
ita

tio
n 

am
pl

itu
de

h
2
=500m

h
2
=1000m

0 ω2/c
2
2 ω2/c

1
2

h
2
=0.1m

Figure A-1: Eigenvalues and Excitation amplitudes (z = zs) of evanescent (*), half-
space (o) and propagating modes (•) modes for different thickness (h2) of lower layer.
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The contribution of each mode to the acoustic field 10 m away from the source

(r = 10 m, z = zs)is shown in Fig. A-2. From this figure we see that the contribution

of the evanescent modes is negligible. The distance of 10 m corresponds to about half

of the acoustic wavelength in this case. The rapid attenuation of the evanescent modes

is due to the exponential decay caused by the imaginary
√

λn values in H
(2)
0

(√
λnr
)
.

B. Stationary phase method in one and two

dimensions

The stationary phase method is an approach for evaluating integrals whose kernel is

expressed as a product of a highly oscillating function with a slowly varying function

of the integration variable(s) [3].

In one dimension, integrals of the form

I(k) =

∫ ∞

−∞
ejkφ(x)f(x)dx

where f(x) is a continuous (slowly varying) function of x, are approximated asymp-

totically [42] when k → ∞ by

I(k) ≈ ejkφ(xs)f (xs) esign(φ′′(xs))
jπ
4

[
2π

k|φ′′ (xs) |

] 1
2

(B-1)

where xs is the stationary point in which the derivative of the phase is zero. The

approximation described in equation (B-1) assumes that the second derivative is dif-

ferent from zero at the stationary point.

In the two-dimensional case

I =

∫ ∫ ∞

−∞
f(x, y)e−jkΦ(x,y)dxdy (B-2)
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The stationary point (xs, ys) is defined as

∂φ

∂x
(xs, ys) = 0,

∂φ

∂y
(xs, ys) = 0.

(B-3)

Expanding φ(x, y) in a two-dimensional Taylor series about the stationary point, and

keeping terms up to the second order we obdain

φ (x, y) ≈ φ (xs, ys) +
1

2

[
∂2φ

∂x2

∣∣∣∣
xs,ys

(x − xs)
2 + 2

∂2φ

∂x∂y

∣∣∣∣
xs,ys

(x − xs)(y − ys)

+
∂2φ

∂y2

∣∣∣∣
xs,ys

(y − ys)
2

] (B-4)

Substituting this into (B-2) gives

I ≈ f (xs, ys) e−jkφ(xs,ys)

∫ ∫ ∞

−∞
e
−j k

2

[
∂2φ

∂x2

∣∣∣∣
xs,ys

u2+2 ∂2φ
∂x∂y

∣∣∣∣
xs,ys

uυ+ ∂2φ

∂y2

∣∣∣∣
xs,ys

υ2

]
dudυ (B-5)

where u = (x − xs) and υ = (y − ys).

Remark. If the phase has more than one stationary points, then we split the

integration domain into subdomains containing only one stationary point, and deal

with each one independently.

C. Adiabatic approximation

The axisymmetric acoustic field of a harmonic point source in the adiabatic approxi-

mation is given by [8]

G′(R, zr|zs) =
e−jπ/4

ρw

√
8πR

M∑
n=1

φn(0, zs)φn(R, zr)√
kn(r)

e−j
∫ R
0 kn(r)dr, (C-1)

where zs is the depth of the source located on the z-axis of the (r, z, θ) cylindrical

coordinate system, R and zr are the receiver range and depth. In the case of a range-

dependent environment the quantities φn and kn are functions of range as well. The
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phase of each modal component is associated with the integral

Ψn = −j

R∫
0

kn(r)dr. (C-2)

Assuming a range-independent background environment, characterized by c0(z), and

an axisymmetric range-dependent sound-speed perturbation of the form Δcr(r)Δcz(z),

we can obtain the perturbed phase using a second-order Taylor expansion of kn with

respect to the sound-speed about the background state [28]

kn(r) = kn,0 +
Qnn

2kn,0

Δcr(r) +
1

2kn,0

⎡
⎢⎣Q′

n +
M∑

m=1
m�=n

|Qnn|2

Λnm

− |Qnn|2

4k2
n,0

⎤
⎥⎦Δc2

r(r) (C-3)

and substituting this expansion into the above integral we obtain

Ψn = −jkn,0R−j
Qnn

2kn,0

∫ R

0

Δcr(r)dr− j

2kn,0

⎡
⎢⎣Q′

n +
M∑

m=1
m�=n

|Qnn|2

Λnm

− |Qnn|2

4k2
n,0

⎤
⎥⎦

R∫
0

Δc2
r(r)dr.

(C-4)

Comparing the right-hand side with the first and second Rytov-Keller approximation

eq. (3.4.3), ( 3.4.5), we note that:

• The first-order adiabatic approximation is equivalent to the dominant part of

the first Rytov-Keller approximation.

• In case of zero-mean range dependent perturbations, the second-order adiabatic

approximation has the same dominant part as the second Rytov-Keller approx-

imation except for the last term in the bracket in eq. (C-4) which does not

appear in the Rytov-Keller approximation – this term is much smaller than the

previous term including the sum over m. Thus the Rytov-Keller approxima-

tion has strong similarity to the above second order adiabatic approximation,

separately is intrinsically of adiabatic nature.
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D. Asymptotic approximations of Bessel and

Hankel functions

The solutions for the differential equation [18]

z2 d2w

dz2
+ z

dw

dz

(
z2 − ν2

)
w = 0, (Abr.–St.–9.1.1)

are the Bessel functions of the first kind J±ν(z) of the second kind Yν(z) (also called

Weber’s functions) and of the third kind H
(1)
ν (z), H

(2)
ν (z) (also called the Hankel

functions, where z ε C.

Relations between solutions

H(1)
ν (z) = Jν(z) + jYν(z) (Abr.–St.–9.1.3)

H(2)
ν (z) = Jν(z) − jYν(z) (Abr.–St.–9.1.4)

J−ν(z) = (−1)νJν(z)

Y−ν(z) = (−1)νYν(z)
(Abr.–St.–9.1.5)

H
(1)
−ν (z) = eνπjH(1)

ν (z)

H
(2)
−ν (z) = e−νπjH(2)

ν (z)
(Abr.–St.–9.1.6)

When ν is fixed and z → 0

Jν(z) =

(
−1

2
z
)ν

Γ(ν + 1)
(ν �= −1,−2,−3, ...) (Abr.–St.–9.1.7)

Y0(z) =
2

π
ln z (Abr.–St.–9.1.8)
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Yν(z) = − 1

π
Γ(ν)

(
1

2
z

)−ν

, (ν > 0). (Abr.–St.–9.1.9)

Asymptotic expansions for large arguments, when ν is fixed and |z| → ∞

Jν(z) ≈
√

2

πz
cos (z − 1

2
νπ − 1

4
π) (Abr.–St.–9.2.1)

Yν(z) ≈
√

2

πz
sin (z − 1

2
νπ − 1

4
π) (Abr.–St.–9.2.2)
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