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Summary

Continuum models are in most cases conditional approximations of atomistic models. Although the atom-

istic models are considered to capture in a more accurate way the true nature of significant applications,

it is extremely difficult to base computational models on them, because of the vast number of unknowns

due to the scale of the formulation. A kind of such atomistic models that is of interest are the crystal

lattices models, which appear in modern material science. In a more macroscopic perspective, discrete

models can be replaced by continuum ones described by PDEs, where difference operators are replaced

by derivatives. However, it is already known that in many cases the continuum models fail to describe

properly the behaviour of discrete equations. To tackle this fundamental issue, new methods are proposed

: methods that picture the phenomena in a quasi-continuum way : in areas where the solution is expected

to be relatively smooth, far from discontinuities and large gradients, the discrete lattice is replaced by a

continuum material described by finite elements theory, while the initial discrete (atomistic) form is main-

tained in areas of non-smooth or large gradient solutions. The aim of this work is the study and analysis

of methods with quasi-continuum approach in 1D.

Key words : quasicontinuum method, coupling, finite elements, coarse-graining, stresses, crystal defor-

mation
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1
Introduction

The idea of modeling an atomistic system without explicitly treating every atom of the domain is the baseline of all

the methods presented in this project. This need comes naturally when simulating materials using a large amount of

unknowns that make the fully atomistic representation too costly for a computational implementation. The problem of

high computational cost of large-scale finite element analysis has been reported earlier [2]. On the other hand, coarse-

graining may result in loss of important information. So, we try to significantly reduce the degrees of freedom (and,

concequently, the energy calculations) and, at the same time, maintain atomistic detail wherever it is necessary. Sys-

tems that require atomistic scale information are, for instance, crack-tip studies, nano-identation, dislocation motion,

the grain boundaries in certain applications and some tiny structures used in computer chips and micro-electronical

systems. In such applications, it should be possible to treat the regions containing points of discontinuity with an

atomistic point of view and use continuum mechanics to describe the behavior of the rest of the material.

The first method of this kind and the precursor of similar formulations was the Quasicontinuum (QC) method, devel-

oped by Tadmor, Ortiz and Phillips in 1996 [6]. They assumed that the exact description of the material at hand is the

atomistic model and attempted to reproduce it with decreased computational cost. Given an interatomic potential (eg.

Lennard-Jones, Morse) we look for equilibrium atomic configurations when external forces are applied. Recognizing

that, even in the presence of defects, the bulk of the material will deform elastically and smoothly [5], the degrees of

freedom are effectively reduced by defining a relatively small number of representative atoms (or repatoms) in areas

where the deformation gradient changes gradually and approximating the positions of the atoms in-between through

interpolation. At this point, it is important to highlight the fact that most continuous finite element techniques apply

when the energy function is convex, which is not the case for atomistic models [5]. Also, equilibrium atomistic solu-

tions are, in general, stable local minimizers of the energy functional, rather than global minimizers (however, in [18],

there is a study of necessary conditions for global minimization).

To compute the total energy without having to compute every atom’s separately, we apply the Cauchy-Born rule which

states that all atoms in a uniformly deformed region contribute the same energy; therefore, for the calculation of the

total energy we only need the repatoms (that form the finite elements) and one atom in each element. This is, roughly

speaking, the formulation of the local QC method. Although the local QC succeeds in reducing the energy evaluations,

it fails to represent accurately the energy of atoms on the interface of the finite elements and on the boundary of the

1



CHAPTER 1. INTRODUCTION

material.

Therefore, a non-local model is necessary. In practice, this involves computing the total energy or the forces (as the

derivatives of the total energy) on each repatom and finding a configuration that minimizes the energy or is root of the

forces. Apparently there are two approaches : the energy-based and the force-based. A fully non-local model has an

increased computational cost compared to the local QC, so one wonders if he can benefit from both models without

suffering from their drawbacks.

The real problem is how to couple the local and non-local models in one simulation. What is suggested is to divide the

set of repatoms in two and use the local model for the one subset and the non-local model for the other. The result of

this partition is the emergence of spurious forces, called ghost forces near the local - non-local interface that have no

physical meaning. This was, by the way, the first energy-based method that was suggested. A means to overcome this

difficulty is to add corrective forces near the interface (Ghost Force Correction method, GFC [12]) or use force-based

formulation that doesn’t derive from the differentiation of an energy functional.

The most popular force-based method and the starting point of a number of generalizations is the QCF method. The

system is translated in terms of forces, (instead of energies) and typically there is also some coarse-graining in the

region where the material deforms smoothly. Equilibrium can be sought as a configuration for which the force on each

degree of freedom is zero either from explicit differentiation of an energy functional or directly from an approximate

expression for the forces.

This thesis is divided into two Chapters : in Chapter 2, there is the mathematical formulation of the methods studied and

the adopted notation. In Chapter 3, there is a presentation of the numerical results of the implementations in MATLAB.
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2
Formulation of the methods

2.1 Problem setting in 1-D

The domain of the material in its reference state will be an infinite 2N-periodic chain of equally-spaced atoms : the

reference points are {xi}i∈Z and we look for deformations in the form of discrete functions yi = y(xi) on the reference

lattice with the property

yi+1+2N− yi+2N = yi+1− yi ∀i ∈ Z

for a fixed N ∈ N. We name the set of all such functions AN . From now on, we adopt the convention that all elements

of AN are identified with their continuous piecewise affine interpolants.

Step 1 We limit our study on intervals of length equal to the period 2N, say the set L = {−N +1, · · · ,N}. We also

define the spacing constant ε = 1/N, the distance between two neighbouring atoms in an undeformed state. The

nodes of L are illustrated below.
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FIGURE 2.1: The reference cell L = {−N +1, · · · ,N}.

Step 2 The next step is to divide the set of nodes L in two disjoint sets according to the accuracy we wish to achieve.

For atoms in areas of smooth deformation we will use a coarse-grained continuum model and in non-smooth

areas that present large variations we will keep the atomistic description (see Step 3). In the figure below, the

white nodes are the ones in the continuum region and the black ones are in the atomistic region. We will often
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also use the notation Ωa and Ωc for the atomistic and continuum domain respectively (more details in 2.3.3).
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FIGURE 2.2: We separate the nodes in two distinct groups : where atomistic detail is required (black) and where a

continuum description is adequate (white).

Step 3 The extra step that will significantly decrease the computational cost of our model is to coarsen the grid used

in the continuum domain. This is feasible due to the assumption that the deformation of the material in hand is

smooth in the particular area, so a P1 finite element approximation can be used for its description. This is done as

follows : we define a subset L ⊇ Lrep = {i1, · · · , iM}, the indexes of the so-called repatoms. Following the most

commonly used setup, let’s say that the ”atomistic” region lies in (x−κ,xκ) and the rest is the ”continuum” region.

In the set Lrep we will include all indexes La = {−κ, · · · ,κ} and name the rest of the nodes Lc = Lrep rLa. .

We name the reference positions of the repatoms Xi, i = 1, · · · ,M, so we end up with the following picture. Note

that the spacing between the repatoms outside the atomistic region is not necessarily constant (later on, we will

demand something more for Lc, but for the time being this setup suffices). Of course, the repatoms are repeated

periodically. Repatoms do not need to be on points of the atomic grid, as long as they satisfy a conservation

of mass condition. This is useful for example to attempts of adaptive mesh, node distribution algorithms and

automatic refinement [20, 2].
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FIGURE 2.3: An example of a choice of repatoms.

2.2 The interatomic potential

The simulations contained in this work make use of a pair-wise description for atom interactions. The resulting energy

can be considered in terms of two components: a long range interaction and a short range interaction. We assume that

long range interactions are negligible and that short range interactions are approximated by pair potentials; atoms will

interact according to a two-body potential φ (typically a Lennard-Jones or a Morse potential) in an up-to-R-neighbour

style for a fixed R ∈ N, i.e.

φ : R+→ R

φ(|yi− y j|) = 0, if |i− j| > R
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2.2. THE INTERATOMIC POTENTIAL

Some of the literature deals only with the case R = 2 [12, 14]. Our study doesn’t make any assumptions about R.

Lennard-Jones potential The Lennard Jones potential (or 6-12 potential) is a mathematically simple model that ap-

proximates the interaction between a pair of neutral atoms or molecules. A form of the potential was first pro-

posed in 1924 by John Lennard-Jones. Due to its simplicity it is the most popular potential function in molecular

mechanics. In its general form the LJ potential is

φ(r) = 4De

{(
σ

r

)12
−
(

σ

r

)6
}

(2.1)

where De is the depth of the potential well and σ is the finite distance at which inter-particle potential is zero.

Morse potential The Morse potential is a convenient model for the potential energy of a diatomic molecule and can

also be used to model other interactions, such as the interaction between an atom and a surface. It is of the form

φ(r) = De(1− exp−α(r− re))
2 (2.2)

where De is again the depth of the potential well, re is the equilibrium bond distance and α controls the width of

the well.

For the simulations, we used a LJ potential.

FIGURE 2.4: Lennard-Jones potential (source : wikimedia commons)

The values of the parameters of the definition (2.1) are selected based on the data of the problem (see also Chapter 3).
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2.3 The Mathematical Models

2.3.1 Notation

For the setting presented in section 2.1 and a deformation y ∈ AN , we define the forward difference operators for all

r = 1, · · · ,R

Dr : y→ Dry

(Dry)i =
yi+r− yi

rε
(2.3)

Note that Dr are linear, as for α ∈ R, v ∈ AN

(Dr(y+αv))i =
yi+r +αvi+r− yi−αvi

rε

=
yi+r− yi

rε
+α

vi+r− vi

rε

= Dryi +αDrvi

We will also use the discrete derivative

y′i = (D1y)1 =
yi+1− yi

ε
(2.4)

the norm on AN

‖y‖U1,∞ = max
i∈L

∣∣y′i∣∣ (2.5)

and the inner product on AN×AN

(v,w)
ε
= ε ∑

i∈L
viwi (2.6)

2.3.2 The Atomistic Model (Step 1)

We will now introduce the basic atomistic model for the deformation of a 1-D crystal lattice, which is based on the

principle that equilibrium states minimize the total energy. First, we define the space of admissible deformations, then

6
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we write down an expression of the total energy of the system and then we compute the internal atomistic forces that

will be used in the QCF model (Section 2.7). The deformation given by this model is considered to be the exact one

and will be compared to other approximations.

We define the space of admissible deformations with the aid of the displacement space

U =
{

v ∈ AN :
(

v, 1̃
)

ε

= 0
}

(2.7)

where 1̃ = (1)i∈Z. For a constant uniform deformation B, we define the set of deformations as

Y + =
{

y ∈ Bx+U : y′i > 0 ∀i ∈ Z
}

(2.8)

So, we focus on periodic deformations with zero mean displacement from the homogeneous lattice Bx with positive

discrete derivatives1.

If the two-body potential φ is known (in our case, LJ potential (2.1)), then the internal atomic energy for a displacement

y ∈ Y + is given by

Ea(y) = ε

R

∑
r=1

∑
i∈L

φ(rDryi) (2.9)

Its variation (or more precisely, its Fréchet derivative) is the bounded linear operator

DEa(y) : U→ R

DEa(y;v) = ε

R

∑
r=1

∑
i∈L

φ
′(rDryi) · rDrvi (2.10)

Proof of (2.10).

Ea(y) = ε

R

∑
r=1

∑
i∈L

Ea
r,i(y) (2.11)

where

Ea
r,i : Y +→ R

Ea
r,i(y) = φ(rDryi) (2.12)

so, due to linearity in (2.11), Ea(y) is Fréchet differentiable, if all Ea
r,i(y) are Fréchet differentiable and

1The reason for this restriction is that potential functions give arbitrarily high values for r→ 0. As there is no physically correct way to cross the

origin in a continuous manner, we will only use positive differences yi+r− yi.

7
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DEa(y;v) =
R

∑
r=1

∑
i∈L

DEa
r,i(y;v) (2.13)

First we compute the Gâteaux derivatives DEa
r,i(y;v):

DEa
r,i(y;v) = lim

τ→0

Ea
r,i(y+ τv)−Ea

r,i(y)

τ

=
d
dτ

Ea
r,i(y+ τv)|τ=0

=
d
dτ

φ(r (Dr(y+ τv))i) |τ=0

=
d
dτ

φ(rDryi + rτDrvi) |τ=0

= φ
′ (rDryi + rτDrvi) · rDrvi|τ=0

= φ
′(rDryi) · rDrvi

Now, to verify that DEa
r,i are also the Fréchet derivatives, we check if the following limits exist and

lim
v→0

∣∣∣Ea
r,i(y+ v)−Ea

r,i(y)−DEa
r,i(y;v)

∣∣∣
‖v‖U1,∞

= 0, ∀i ∈ L , r = 1, · · · ,R

∣∣∣Ea
r,i(y+ v)−Ea

r,i(y)−DEa
r,i(y;v)

∣∣∣
‖v‖U1,∞

=

=
|φ(rεDryi + rεDrvi)−φ(rεDryi)−φ′(rεDryi) · rεDrvi|

‖v‖U1,∞

=

∣∣ 1
2 φ′′(rεDryi) · (rεDrvi)

2 +O
[
(rεDrvi)

3
]∣∣

‖v‖U1,∞

≤

∣∣∣ 1
2 φ′′(rεDryi) · r2 ‖v‖2

U1,∞ +O
(
‖v‖3

U1,∞

)∣∣∣
‖v‖U1,∞

v→0−→ 0

�

Next, we perform the patch test which indicates if the method is consistent.
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2.3. THE MATHEMATICAL MODELS

The patch test : to ensure convergence of a method that approximates total energy by a function Ẽ(y) it must be true

that for the uniform deformation y = Bx

DẼ(Bx;v) = 0 ∀v ∈U (2.14)

Indeed,

DEa(Bx;v) = ε

R

∑
r=1

∑
i∈L

φ
′(rB) · rDrvi

=
R

∑
r=1

[
rφ
′(rB) ∑

i∈L
(vi+r− vi)

]
= 0 ∀v ∈U (2.15)

due to periodicity of v. In general, to include external forces, we introduce g∈U a vector with dead loads on the nodes

and hence the total energy will be

Ea
tot(y) = Ea(y)− (g,y)ε (2.16)

and we seek a local minimizer

ya ∈ Y + : Ea
tot(y

a) = min
y∈Y +

Ea
tot(y) (2.17)

It is easy to prove that the variation of Ea
tot is

DEa
tot(y;v) = ε

R

∑
r=1

∑
i∈L

φ
′(rDryi) · rDrvi − ε ∑

i∈L
givi (2.18)

A necessary condition for ya ∈ Y + to be a solution to (2.17) is to satisfy the condition

DEa
tot(y

a;v) = 0 ∀v ∈U (2.19)

If we collect the internal atomistic forces in a vector f a(y), where

f a
i (y) = −

1
ε

∂Ea(y)
∂yi

∀i ∈ Z (2.20)

we can rewrite the condition (2.19), in the equivalent form

( f a(ya)+g,v)ε = 0 ∀v ∈U (2.21)

9
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Proof that (2.19)⇒ (2.21). First, note that

∂Ea(ya)

∂yi
= ε

R

∑
r=1

[
∂

∂yi

N

∑
j=−N+1

φ

(ya
j+r− ya

j

ε

)]

=
R

∑
r=1

[
φ
′
(

ya
i − ya

i−r

ε

)
−φ
′
(

ya
i+r− ya

i

ε

)]
(2.22)

Now, suppose ya ∈ Y + satisfies (2.19) and v ∈U. Then,

( f a(ya)+g,v)
ε
= ( f a(ya),v)

ε
+ (g,v)

ε

=−
N

∑
i=−N+1

∂Ea(ya)

∂yi
· vi + ε

N

∑
i=−N+1

givi

(2.19)
= −

N

∑
i=−N+1

∂Ea(ya)

∂yi
· vi + ε

R

∑
r=1

∑
i∈L

φ
′(rDrya

i ) · rDrvi

=−
N

∑
i=−N+1

∂Ea(ya)

∂yi
· vi +

R

∑
r=1

∑
i∈L

φ
′
(

ya
i+r− ya

i

ε

)
· (vi+r− vi)

=
N

∑
i=−N+1

[
−∂Ea(ya)

∂yi
· vi +

R

∑
r=1

φ
′
(

ya
i+r− ya

i

ε

)
· (vi+r− vi)

]
(2.22)
=

N

∑
i=−N+1

[
vi ·

R

∑
r=1

φ
′
(

ya
i+r− ya

i

ε

)
− vi ·

R

∑
r=1

φ
′
(

ya
i − ya

i−r

ε

)
+

+
R

∑
r=1

vi+r ·φ′
(

ya
i+r− ya

i

ε

)
− vi ·

R

∑
r=1

φ
′
(

ya
i+r− ya

i

ε

)]

= ∑
i∈L

R

∑
r=1

[
vi+r ·φ′

(
ya

i+r− ya
i

ε

)
− vi ·φ′

(
ya

i − ya
i−r

ε

)]

=
R

∑
r=1

[
N

∑
i=−N+1

vi+r ·φ′
(

ya
i+r− ya

i

ε

)
−

N

∑
i=−N+1

vi ·φ′
(

ya
i − ya

i−r

ε

)]

=
R

∑
r=1

[
N

∑
i=−N+1

vi+r ·φ′
(

ya
i+r− ya

i

ε

)
−

N−r

∑
i=−N+1−r

vi+r ·φ′
(

ya
i+r− ya

i

ε

)]

= 0 due to periodicity of functions v,y

�

The formula (2.21) is the strong formulation of the atomistic model.

2.3.3 The Continuum Model (Step 2)

In a region Ωc where the deformation is smooth, instead of the atomistic model we can use a continuum one. The most

commonly used continuum model is the Cauchy-Born approximation, which results in

10



2.3. THE MATHEMATICAL MODELS

Ec(y) =
R

∑
r=1

∫
Ωc

φ(ry′(x))dx (2.23)

where y ∈W 1,∞ is the continuum approximation of the discrete function yi we used so far and y′ is its weak derivative.

A way to see how (2.23) works is to use the energy density

W (α) =
R

∑
r=1

φ(rα) (2.24)

and identify the energy as

Ec(y) =
∫

Ωc

W (y′(x))dx (2.25)

Just as we did for the atomistic formulation, we write down the variation of Ec(y), y ∈ Y + as

DEc(y) : U→ R

DEc(y;v) =
R

∑
r=1

∫
Ωc

φ
′(ry′(x)) · rv′(x)dx (2.26)

Proof of (2.26). Write

Ec(y) =
R

∑
r=1

Ec
r (y)

where

Ec
r : Y +→ R

Ec
r (y) =

∫
Ωc

φ(ry′(x))dx (2.27)

The Gâteaux derivatives are

11
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DEc
r (y;v) =

d
dτ

Ec
r (y+ τv)|τ=0

=
d
dτ

∫
Ωc

φ(ry′(x)+ rτv′(x))dx|τ=0

=
∫

Ωc

d
dτ

φ(ry′(x)+ rτv′(x))dx|τ=0

=
∫

Ωc

φ
′(ry′(x)+ rτv′(x)) · rv′(x)dx|τ=0

=
∫

Ωc

φ
′(ry′(x)) · rv′(x)dx

so it’s left to verify that

|Ec
r (y+ v)−Ec

r (y)−DEc
r (y;v)|

‖v‖U1∞

v→0−→ 0 (2.28)

|Ec
r (y+ v)−Ec

r (y)−DEc
r (y;v)|

‖v‖U1∞

=

∣∣∣∣∫
Ωc

φ(ry′(x)+ rv′(x))−φ(ry′(x))−φ
′(ry′(x)) · rv′(x)dx

∣∣∣∣
‖v‖U1,∞

≤

∫
Ωc

∣∣∣∣12 r2(v′(x))2 ·φ′′(ry′(x))+O
[
(v′(x))3]∣∣∣∣dx

‖v‖U1,∞

≤
r2 ‖v‖2

U1,∞

∫
Ωc

∣∣φ′′(ry′(x))
∣∣dx+O(‖v‖3

U1,∞)

‖v‖U1,∞

v→0−→ 0

So

DEc
r (y;v) =

∫
Ωc

φ
′(ry′(x)) · rv′(x)dx (2.29)

Consequently,

DEc(y;v) =
R

∑
r=1

∫
Ωc

φ
′(ry′(x)) · rv′(x)dx (2.30)

�

The total energy for a deformation y ∈ Y + is

Ec
tot(y) = Ec(y)− (g,y)ε (2.31)
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2.3. THE MATHEMATICAL MODELS

2.3.4 The Coarse-grained Model (Step 3) - Local QC (QCL)

As we briefly described in Section 2.1, in order to limit the computational cost in regions where it is not necessary to

be very scholastic, we define the set of repatoms in one period

Lrep = {i1, · · · , iM} ⊆ L (2.32)

and to be consistent we extend it 2N-periodically :

im+M = im +2N ∀m ∈ Z

Then we are able to define the reference positions of repatoms Xm = xim , the mesh size for elements hm = Xm−Xm−1

and the mesh size for nodes Hm = 1
2 (Xm+1−Xm−1). We are now ready to define the spaces of the coarse-grained

solutions; the intermediate step of the continuum model will not be present in the final formulation. Only the coarse-

grained version will be used from now on. We begin with the set T 1
h , the space of piecewise linear functions with

respect to the new mesh (Xm)m∈Z. Every uh ∈ T 1
h is uniquely determined by its nodal values Um = uh(Xm) = uh,im

and, after observing that its gradient in the interval (Xm−1,Xm) is exactly equal to U ′m =
Um−Um−1

hm
, then the values of

the nodes with indexes between im−1 and im are

uh(xi) = uh,i = Um−1 +U ′m(xi−Xm−1), i = im−1, · · · , im (2.33)

Proof of (2.33). By definition of T 1
h , uh is a linear function on every interval of the form (Xm−1,Xm).

x
i
m−1

 = X
m−1

X
m

 = x
i
m

x
i

U
m−1

U
h,i

U
m

uh|[Xm−1,Xm] = αx+β

uh(Xm−1) = Um−1

uh(Xm) = Um

 ⇒ uh|[Xm−1,Xm] = Um−1 +U ′m(x−Xm−1)
x=xi⇒

13



CHAPTER 2. FORMULATION OF THE METHODS

uh,i = Um−1 +U ′m(xi−Xm−1)

�

For the time being, assume Lrep = L (in other words Ωc = (x−N+1,xN)). The spaces of functions we use in this coarse-

grained version are based on the inner product

(v,w)h =
M

∑
m=1

Hmvimwim (2.34)

which is defined for two discrete functions v,w ∈ AN ; actually, v and w only need to be defined on the set Lrep. The

inner product (2.34) is an approximation of the ε-inner product (2.6) used in the atomistic (exact) model and will be

used in the same way. The displacement space and deformation space are then defined in a way similar to the atomistic

ones

Uh =
{

vh ∈ AN ∩T 1
h :

(
v, 1̃
)

h
= 0

}
(2.35)

Y +
h =

{
yh ∈ Yh : y′h,i > 0 ∀i ∈ Z

}
(2.36)

The energy of a deformation yh ∈ Y +
h is an approximation to Ec

tot (2.25) and is given by

Ec,h(yh) =
M

∑
m=1

hmW (Y ′m) (2.37)

If we collect the nodal values of yh and external forces g with respect to the mesh (Xm) in Y ∈RM and G ∈RM respec-

tively, the total continuum energy Ec,h
tot is given by

Ec,h
tot (yh) = Ec,h(yh)− (G,Y )h (2.38)

and the problem is reduced to finding a local minimizer

yh ∈ Y +
h : Ec,h

tot (yh) = min
y∈Y +

h

Ec,h
tot (y) (2.39)

A necessary condition for yh ∈ Y +
h to be a solution to (2.39) is to satisfy

DEc,h
tot (yh;vh) = 0 ∀vh ∈Uh (2.40)

14



2.3. THE MATHEMATICAL MODELS

The analogue of the internal atomic forces f a(y) defined in the atomistic model are the generalized forces Fc

Fc
m(yh) = −

1
Hm

∂Ec,h(yh)

∂Ym
∀m ∈ Z (2.41)

so we get the condition

(Fc(yh)+g,vh)h = 0 ∀vh ∈Uh (2.42)

which is equivalent to the condition (2.40).

Proof of (2.40)⇒ (2.42). First, note that

∂Ec,h(yh)

∂Yi
=

∂

∂Yi

M

∑
m=1

hmW
(

Ym−Ym−1

hm

)
=W ′

(
Yi−Yi−1

hi

)
−W ′

(
Yi+1−Yi

hi+1

)
(2.43)

Now, suppose yh ∈ Y +
h satisfies (2.40) and vh ∈Uh. Then,

(2.40)⇒
M

∑
m=1

hmW ′(Y ′m) ·V ′m −
M

∑
m=1

HmgimVm = 0 (2.44)

⇒
M

∑
m=1

W ′(Y ′m) · (Vm−Vm−1) − (g,vh)h = 0 (2.45)

and
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(Fc(yh)+g,vh)h = (Fc(yh),vh)h + (g,vh)h

(2.45)
= −

M

∑
m=1

∂Ec,h(yh)

∂Ym
·Vm +

M

∑
m=1

W ′(Y ′m) · (Vm−V m−1)

(2.43)
=

M

∑
m=1

[
−W ′

(
Ym−Ym−1

hm

)
·Vm +W ′

(
Ym+1−Ym

hm+1

)
·Vm +

+ W ′
(

Ym−Ym−1

hm

)
· (Vm−Vm−1)

]
=

M

∑
m=1

[
Vm ·W ′

(
Ym+1−Ym

hm+1

)
− Vm−1 ·W ′

(
Ym−Ym−1

hm

)]
=

M

∑
m=1

R

∑
r=1

[
rVm ·φ′

(
r
Ym+1−Ym

hm+1

)
− rVm−1 ·φ′

(
r
Ym−Ym−1

hm

)]

=
R

∑
r=1

r

[
M

∑
m=1

Vm ·φ′
(

r
Ym+1−Ym

hm+1

)
−

M

∑
m=1

Vm−1 ·φ′
(

r
Ym−Ym−1

hm

)]

=
R

∑
r=1

r

[
M

∑
m=1

Vm ·φ′
(

r
Ym+1−Ym

hm+1

)
−

M−1

∑
m=0

Vm ·φ′
(

r
Ym+1−Ym

hm+1

)]

= 0 due to periodicity of vh,yh

�

The criticality condition (2.42) is the strong formulation of the QCL method (Quasi Continuum Local), which keeps a

continuum approach in the whole domain. Apparently, this will not be enough if the material in hand presents cracks

and steep dislocations.

2.4 The QCE method - the emergence of ghost forces

Having defined all the forces and criticality conditions, what is left is to decide how to use them according to the

specific setting in 1-D we have described earlier. The essence of the QC notion is how to couple the two formulations

in one method and what happens across the interface between the atomistic and the continuum regions. From now on

we will demand that the choice of repatoms is such that {−κ−R, · · · ,κ+R} ⊆ Lrep. So far, we have introduced two

modes of numbering atoms : the purely atomistic one with indexes in L and the one using repatoms with indexes in

{1, · · · ,M} and, as mentioned earlier, they are related by the sequence im : Xm = xim . This relation is not very easy to

handle; from now on, to use a common symbolism, we will use the symbols L,U ∈ {1, · · · ,M} to denote the repatoms

on the interface, meaning

iL = −κ, iU = κ (2.46)

16



2.4. THE QCE METHOD - THE EMERGENCE OF GHOST FORCES

... ... ...

... ... ...

x
−N+1

x
−κ−1

x
−κ
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κ−1
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κ
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κ+1
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N

X
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X
L−1

X
L

X
L+1

X
U−1

X
U

X
U+1

X
M

FIGURE 2.5: The two styles of enumerating the atoms. The top row contains the repatoms and the bottom row the

original atoms.

The first energy-based model, the QCE method [6], attempted a straightforward coupling : write down the atomistic

(exact) energy for a yh ∈ Y +
h as

Ea(y) =
N

∑
i=−N+1

R

∑
r=1

εφ(rDryi)

≈
U

∑
m=L

R

∑
r=1

εφ
(
r (Dryh)im

)
+

L−1

∑
m=1

hmW (Y ′m) +
M

∑
m=U+1

hmW (Y ′m) = Eqce(yh) (2.47)

So, the atoms x−κ, · · · ,xκ are treated atomistically, whereas the rest use the form of the continuum energy Ec,h.

DEqce(yh;vh) =
U

∑
m=L

R

∑
r=1

εφ
′ (r (Dryh)im

)
· r (Drvh)im +

+
L−1

∑
m=1

R

∑
r=1

hmrφ
′(rY ′m) ·V ′m +

M

∑
m=U+1

R

∑
r=1

hmrφ
′(rY ′m) ·V ′m

Applying the patch test (2.14) for the nearest neighbor interaction (R = 1), we have:

DEqce(Bx;vh) =φ
′(B) ·

[
U

∑
m=L

(vh,im+1− vh,im) +

+
L−1

∑
m=1

(Vm−Vm−1) +
M

∑
m=U+1

(Vm−Vm−1)

]

= φ
′(B) · [(VU+1−VL) + (VL−1−V0) + (VM−VU )]

V0=VM= φ
′(B) · [VU+1 − VL + VL−1 − VU ]

This is not necessarily zero for every vh ∈Uh. The terms that bother us arise around the interface and they are known
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CHAPTER 2. FORMULATION OF THE METHODS

in the field as ghost forces, as they have no physical meaning. The problem of ghost forces emerges for most energy-

based methods, reducing their accuracy due to interfacial errors, but a lot of effort has been made to go around it. Some

techniques are GFC(Ghost Force Correction) (see [12, 13, 15, 16, 17]), coupling of length scales, GCS(Geometrically

Consistent Scheme) etc. The reason seems to be that we use energy contribution per atom, missing some information

when we switch from atomistic to continuum approach. More specifically, there is an asymmetry, as a repatom Xα

in Ωa will not be affected by a repatom Xβ in Ωc near the interface, but Xβ, that interacts according to the continuum

model, will be affected by the displacement of Xα (see also [20]). This is not the case for the force-based methods,

where a similar methodology doesn’t lead to errors on the interface.

2.5 The ECC Method

This method, as well as the next one, was proposed by A.Shapeev in [1]. It is based on the concept of dividing the con-

tributions to the total energy (2.9) of bonds in two : the exact ones and the continuum ones. For a more understandable

presentation, we begin with no coarsening. In the atomistic system, we define the set of all bonds as all the possible

open intervals with up-to-R-neighbouring atoms as end points. Formally,

B := {(xi,xi+r), 1≤ r ≤ R, i ∈ L} (2.48)

The idea is to write down the atomistic energy (2.9) in terms of an exact contribution of all bonds in B . This is achieved

by simply defining for any (xi,xi+r) = bi,r (or simply b) ∈ B its exact contribution as

eb(y) = εφ(rDryi) (2.49)

and it is clear that

Ea(y) = ∑
b∈B

eb(y) (2.50)

The trick is to treat the bonds lying entirely inside the continuum area Ωc in a different way using their continuum

contribution

cb(y) =
1
r

∫ xi+r

xi

φ(ry′(x))dx (2.51)

This is allowed, because these two contributions have the same variation for a uniform deformation y = Bx:
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eb(y) = εφ(rDryi)

⇒ Deb(y;v) = εφ
′(rDryi) · rDrvi

y=Bx⇒ Deb(Bx;v) = φ
′(rB) · (vi+r− vi) (2.52)

cb(y) =
1
r

∫ xi+r

xi

φ(ry′(x))dx

⇒ Dcb(y;v) =
1

�r

∫ xi+r

xi

φ
′(ry′(x)) ·�rv′(x)dx

y=Bx⇒ Dcb(Bx;v) = φ
′(rB) · (vi+r− vi)

So the atomistic energy (2.9) is approximated by

Ea(y) ≈ Eecc(y) := ∑
b∈B

b 6⊂Ωc

eb(y) + ∑
b∈B

b⊂Ωc

cb(y) (2.53)

2.6 The ACC Method

The previous method actually treated all bonds located entirely inside the continuum region with a continuum approxi-

mation and all other bonds used atomistic approximations. The concept of this method is based on the bonds we defined

earlier but this time every bond has both an atomistic and a continuum contribution to the total energy. The setting

we are working on will simplify some definitions we will need. Recall that the atomistic region is Ωa = (x−κ,xκ);

for a bond b = (xi,xi+r) we will use the following symbols : the open interval b∩Ωa will be (lb,rb) and the remain-

ing endpoint will be cb. The following figure shows the possible relative positions of Ωa and an intersecting bond

B 3 b = (xi,xi+r).

x
−κx

i
x

i+r

l
b

c
b

r
b

xκx
i

x
i+r

r
b

c
b

l
b

FIGURE 2.6: The continuum region is marked with a black line and the atomistic with a white line. The interface

points are black and the endpoints of b are colored purple.

Lastly, we will need the definition of a generalization of the discrete forward difference operator we have used so far.
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For an open interval ω = (lω,rω), we define

Dω : y→ Dωy

Dωy =
1
|ω|

(y(rω) − y(lω)) (2.54)

Our purpose is to use a proportion of the atomistic contribution we defined earlier; this proportion is determined by the

measure of b∩Ωa compared to the overall measure of b itself. A similar strategy is used for the continuum part. Put in

formulas, the atomistic contribution is

ab(y) :=
|b∩Ωa|

rε
φ(rDb∩Ωay) (2.55)

and the continuum contribution is

cb(y) :=
1
rε

∫
b∩Ωc

φ(ry′(x))dx (2.56)

For a uniform deformation y = Bx we compute the variation of ab and cb:

ab(y) =
|b∩Ωa|

rε
φ(rDb∩Ωay)

⇒ Dab(y;v) =
|b∩Ωa|

�rε
φ
′(rDb∩Ωay) ·�rDb∩Ωav

y=Bx⇒ Dab(Bx;v) =
|b∩Ωa|

ε
φ
′(rB) · (v(rb)− v(lb))

cb(y) =
1
rε

∫
b∩Ωc

φ(ry′(x))dx

⇒ Dcb(y;v) =
1

�rε

∫
b∩Ωc

φ
′(ry′(x)) ·�rv′(x)dx

y=Bx⇒ Dcb(Bx;v) =
|b∩Ωc|

ε
φ
′(rB) · (v(rb)− v(lb))

and the sum
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Dab(Bx;v)+Dcb(Bx;v) =
|b∩Ωa|

ε
φ
′(rB) ·Db∩Ωav +

|b∩Ωc|
ε

φ
′(rB) ·Db∩Ωcv

=
1
ε

φ
′(rB) · (vi+r− vi)

(2.52)
=

1
ε
·Deb(Bx;v) (2.57)

(2.58)

So, it is natural to choose

Eacc(y) = ∑
b∈B

(ab(y)+ cb(y))

as an approximation of Ea(y), because

DEacc(Bx;v) = ∑
b∈B

(Dab(y)+Dcb(y))

(2.57)
=

1
ε

∑
b∈B

Deb(Bx;v)

(2.50)
=

1
ε

DEa(Bx;v) (2.59)

2.7 The QCF Method

2.7.1 Strong Formulation

The present section presents a force-based method, the QCF method, the underlying principle behind the most com-

monly used quasicontinuum software. The concept is the same as that of the Quasicontinuum Non-Local (QNL)

method, which was the first energy-based model without ghost-forces [22]. In short, the interfacial atoms interact with

the atomistic region using the atomistic model and with the continuum region using the continuum model. The first

version of QNL was restricted to R = 2, but extensions to arbitrary finite range exist [1, 23]. The QCF Method is a

force-based coupling method that doesn’t present interfacial errors and approximates forces rather than energy, as it

does not give a conservative force field. In other words, the equilibrium solutions do not come from minimization of

an energy functional [13]. Its formulation starts from the QCL method mentioned above (eqn. 2.42) and the effective

atomistic forces Fa given by

Fa
m = − 1

Hm

∂Ea(yh)

∂Ym
m ∈ Z (2.60)
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It is essential that Fa
m are defined on the grid Xm and for atoms ”well inside” the atomistic area they coincide with

the internal atomic forces f a
im defined in (2.20). The term ”well inside”, needs to be clarified : this property holds in

particular for the indexes im which satisfy {im−1, im, im +1} ⊂ Lrep. In other words, when three consecutive repatoms

are consecutive in the atomistic grid as well.

Proof. In case all three xim−1,xim ,xim+1 are chosen as repatoms, we have the following image.

... X
m−1

X
m

X
m+1

...

ε ε

2H
m

FIGURE 2.7: Three consecutive repatoms.

It is clear that Hm = ε, so:

Fa
m(yh) =−

1
Hm

∂Ea(yh)

∂Ym

=−1
ε

∑
j∈L

∂Ea(yh)

∂y j

∂yh, j

∂Ym

(2.20)
= ∑

j∈L
f a

j (yh)

= f a
im(yh) (2.61)

because

∂yh, j

∂Ym
= δ j,im

�

This remark is effectively used for the atoms in La, as, due to the assumption that

{−κ−R, · · · ,κ+R} ⊂ Lrep
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we will surely have that Fa
m(yh) = f a

im(yh), ∀im ∈ La, so we can define the QCF force operator Fqcf for yh ∈ Y +
h as

Fqcf
m (yh) =


Fa

m(yh) im ∈ La

Fc
m(yh) im ∈ Lc

(2.62)

extended periodically. Similarly to the formulation of the atomistic model (2.21) and the QCL method (2.42), we

produce the variational problem:

find yqc
h ∈ Y +

h so that
(

Fqcf(yqc
h )+g,vh

)
h
= 0 ∀vh ∈Uh (2.63)

This is done by breaking the inner product in two, using the ε-inner product (2.6) for the atomistic atoms and main-

taining the h-inner product (2.34) for the continuum region. The nonlinear problem (2.63) is the strong formulation

of the QCF method. The QCF model doesn’t suffer from ghost forces, as one can easily see that it satisfies exactly

the conditions (2.21), (2.42) in the respective areas. We see that by talking in terms of forces rather than of energy

contributions, we get rid of ghost forces; however, the QCF method has some stability issues [4, 16, 17], attributed to

some terms it presents when written in weak form.

2.7.2 Weak Formulation

In this subsection, we will make use of the stress functions. This will allow us to reduce (2.63) to a model that involves

only nearest neighbor interactions. We will assume zero external forces g = 0; to be included again, they are just added

to Fc
m(yh). Recall from the computation in (2.44), that the variation of Ec,h for yh ∈ Y +

h is

DEc,h(yh;vh) =
M

∑
m=1

hmW ′(Y ′m) ·V ′m

=
M

∑
m=1

hmσ
c
m(yh)V ′m ∀vh ∈Uh (2.64)

where we have defined the stress functions

σ
c
m(yh) := W ′(Y ′m) (2.65)

=
R

∑
r=1

rφ
′(rY ′m) (2.66)

The stresses are related to the forces of the QCL model according to the formula
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Fc
m(yh) =

1
Hm

[
σ

c
m+1(yh)−σ

c
m(yh)

]
(2.67)

Proof of (2.67). Indeed,

1
Hm

[
σ

c
m+1(yh)−σ

c
m(yh)

] (2.65)
=

1
Hm

[
W ′(Y ′m+1)−W ′(Y ′m)

]
(2.43)
= − 1

Hm

∂Ec,h(yh)

∂Ym
(2.41)
= Fc

m(yh)

�

We have mined the stresses with the aim to include only nearest neighbor interactions of the test functions vh, i.e. the

terms V ′m in (2.64). Next, we derive a similar result for the atomistic model from the initial formulation (2.10). We

begin with an expression of long-range interactions through ”closest-neighbor” ones : for v ∈U, r ∈ {1, · · · ,R},

Drv j =
v j+r− v j

rε

=
1
rε
· [v j+r− v j+r−1 + v j+r−1−·· ·− v j+1 + v j+1− v j]

=
1
r
·
[

v j+r− v j+r−1

ε
+ · · · +

v j+1− v j

ε

]
=

1
r
·
[
v′j+r + · · · + v′( j+1)

]
=

1
r

j+r

∑
i= j+1

v′i (2.68)

(2.10)⇒ DEa(y;v) = ε

R

∑
r=1

N

∑
j=−N+1

φ
′(rDry j) · rDrv j

(2.68)
= ε

R

∑
r=1

N

∑
j=−N+1

j+r

∑
i= j+1

φ
′(rDry j) · v′i

= ε

N

∑
i=−N+1

R

∑
r=1

i−1

∑
j=i−r

φ
′(rDry j) · v′i

(2.69)

So, the appropriate stresses are

σ
a
i (y) :=

R

∑
r=1

i−1

∑
j=i−r

φ
′(rDry j) (2.70)
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and

DEa(y;v) = ε

N

∑
i=−N+1

σ
a
i (y) · v′i (2.71)

The atomic stresses and the internal atomic forces defined in (2.20) are related by

f a
i (y) =

1
ε

[
σ

a
i+1(y)−σ

a
i (y)

]
(2.72)

Proof. Indeed,

1
ε

[
σ

a
i+1(y)−σ

a
i (y)

] (2.70)
=

1
ε

R

∑
r=1

[
i

∑
j=i+1−r

φ
′(rDry j)−

i−1

∑
j=i−r

φ
′(rDry j)

]

=
1
ε

R

∑
r=1

[
φ
′(rDryi)−φ

′(rDryi−r)
]

=
1
ε

R

∑
r=1

[
φ
′
(

yi+r− yi

ε

)
−φ
′
(

yi− yi−r

ε

)]
(2.22)
= −1

ε

∂Ea(y)
∂yi

(2.20)
= f a

i (y)

�

We start from the strong formulation (2.63) for yh ∈ Y +
h : (the argument yh is omitted from all the stresses)

(
Fqcf(yh),vh

)
h
=

M

∑
m=1

HmFqc
m (yh) ·Vm

= ∑
im∈La

HmFqc
m (yh) ·Vm + ∑

im∈Lc

HmFqc
m (yh) ·Vm

=
κ

∑
i=−κ

ε f a
i (yh) · vi +

L−1+M

∑
m=U+1

HmFqc
m (yh) ·Vm

(2.72),(2.67)
=

κ

∑
i=−κ

[
σ

a
i+1−σ

a
i
]
· vi +

L−1+M

∑
m=U+1

[
σ

c
m+1−σ

c
m
]
·Vm

= I1 + I2 (2.73)

The terms I1 and I2 are computed separately:
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I1 =
κ

∑
i=−κ

[
σ

a
i+1−σ

a
i
]
· vi

=
κ

∑
i=−κ

σ
a
i+1 · vi −

κ

∑
i=−κ

σ
a
i · vi

=
κ+1

∑
i=−κ+1

σ
a
i · vi−1 −

κ

∑
i=−κ

σ
a
i · vi

=
κ+1

∑
i=−κ

σ
a
i · (vi−1− vi) + σ

a
κ+1 · vκ+1 − σ

a
−κ · v−κ−1

=−
κ+1

∑
i=−κ

εσ
a
i · v′i + σ

a
κ+1 · vκ+1 − σ

a
−κ · v−κ−1

I2 =
L−1+M

∑
m=U+1

[
σ

c
m+1−σ

c
m
]
·Vm

=
L−1+M

∑
m=U+1

σ
c
m+1 ·Vm −

L−1+M

∑
m=U+1

σ
c
m ·Vm

=
L+M

∑
m=U+2

σ
c
m ·Vm−1 −

L−1+M

∑
m=U+1

σ
c
m ·Vm

=
L−1+M

∑
m=U+2

σ
c
m · (Vm−1−Vm) + σ

c
L+M ·VL−1+M − σ

c
U+1 ·VU+1

=−
L−1+M

∑
m=U+2

hmσ
c
m ·V ′m + σ

c
L ·VL−1 − σ

c
U+1 ·VU+1

Now, we divide the domain of the problem, not according to reference points of atoms but based on intervals of the

form Im = (Xm−1,Xm) to Ma and Mc such that Ma]Mc = {1, · · · ,M}. In the atomistic region we will include all the

finite elements with at least one edge in L . So,

Ma := {L, · · · ,U +1} (2.74)

Mc := {1, · · · ,L−1}∪{U +2, · · · ,M} (2.75)

Using this notation and the convention that we will be using the repatom numbering everywhere and σa
m = σa

im , we

complete the calculation of
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2.8. THE SAC METHOD

(
Fqcf(yh),vh

)
h
= I1 + I2

=− ∑
m∈Ma

εσ
a
m ·V ′m +σ

a
U+1 ·VU+1−σ

a
L ·VL−1−

− ∑
m∈Mc

hmσ
c
m ·V ′m +σ

c
L ·VL−1−σ

c
U+1 ·VU+1

⇒−
(

Fqcf(yh),vh

)
h
= ∑

m∈Ma

εσ
a
m ·V ′m + ∑

m∈Mc

hmσ
c
m ·V ′m+

− (σc
L−σ

a
L) ·VL−1 +(σc

U+1−σ
a
U+1) ·VU+1 (2.76)

It is easy to see that the extra interfacial terms are unwanted. Indeed, (2.63) implies that

0 =− ∑
m∈Ma

εσ
a
m ·V ′m− ∑

m∈Mc

hmσ
c
m ·V ′m+

+(σc
L−σ

a
L) ·VL−1− (σc

U+1−σ
a
U+1) ·VU+1

(2.71),(2.64)
= −DEa(ya

h;vh)−DEc,h(yc
h;vh)+(σc

L−σ
a
L) ·VL−1− (σc

U+1−σ
a
U+1) ·VU+1

(2.19),(2.40)
= (σc

L−σ
a
L) ·VL−1− (σc

U+1−σ
a
U+1) ·VU+1 (2.77)

These terms affect the stability of the method and are used to derive results regarding consistency and a priori errors,

as in [4]. A study for a linearization of the problem was made in [10]. Specifically, the linearized QCF operator has

been proven to be non-positive definite and uniform stability cannot be achieved with respect to any norm ([11]). The

lack of positive-definiteness complicates a generalization to more dimensions.

2.8 The SAC Method

After the remarks at the end of the previous section, it is natural to introduce a method with the required property. The

idea is to do the coupling, not on the level of forces but on the level of stresses. To this end, rewrite equations (2.71)

and (2.64).

DEa : Y +→U∗ DEc : Y +
h →U∗h

DEa(y;v) =
N

∑
i=−N+1

εσ
a
i v′i DEc(yh;vh) =

M

∑
m=1

hmσ
c
mV ′m

So, the coupling will give
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Sac : Y +
h →U∗h

Sac(yh;vh) = ∑
m∈Ma

εσ
a
m ·V ′m + ∑

m∈Mc

hmσ
c
m ·V ′m

Using (2.76),

Sac(yh;vh) =−
(

Fqcf(yh),vh

)
h
+(σc

L−σ
a
L) ·VL−1− (σc

U+1−σ
a
U+1) ·VU+1

(2.77)
= (g,vh)h

So, we impose weakly that the stresses are equal at the interface and end up to the stress-based atomistic/continuum

(SAC) method

find yac
h ∈ Y +

h so that Sac(yac
h ;vh) = (g,vh)h ∀vh ∈Uh (2.78)

This method was first suggested and studied in [3, 4]. In short, the SAC approximation is valid whenever the atomistic

solution is stable and the linearized Sac operator is positive definite. It is still tricky though, to write down an SAC

method in 2-D or 3-D, since stress functions are not uniquely defined.
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3
Numerical results

All numerical simulations ran in MATLAB, using the Optimization Toolbox. For the energy-based methods, as well

as for the atomistic (accurate) model, we used the fminsearch function, which finds the local minimum of a real-

valued scalar function of several variables, starting at an initial estimate. To be sure that this local minimum is the

equilibrium solution we look for, the initial estimate is the solution of the atomistic model and we set the options:

MaxIter to 2000, TolFun and TolX to 1.e-12. The atomistic approximation itself was obtained with even stricter

tolerance options. For the energy-based methods see Section 3.1. The QCF and SAC methods were implemented using

the algorithm described in [15] (see Section 3.2). More details of the simulations are below.

3.1 Some words about optimization

For the problem of unconstrained minimization of a general non-linear function, one can choose from an arsenal of

numerical methods to approximate a point of minimum. Most iterative methods converge to a point of local minimum

which under certain conditions is also a global minimum. Some methods are applied especially on functions with

specific characteristics while others have broader scope. The problem of minimization belongs to a larger area of

numerical mathematics : optimization. In 1960s, a variety of methods emerged, methods that are used today, either in

their initial forms or after modifications and improvements. All these techniques can be grouped in three categories

based on the main idea : the conjugate direction methods, second derivative methods and direct search methods [24,

25, 29]. I will make a brief description of each and elaborate on the Nelder-Mead algorithm, the direct search method

which I used for my computations.

3.1.1 Conjugate direction methods

When the Hessian matrix of the objective function is not available or difficult to compute, one can use a conjugate

gradient method. In general, these are iterative methods that perform a line-search at every iteration in a direction de-

cided on-the-spot. The term ”conjugate” refers to the set of candidate directions that need to be mutually independent.

Smith, Fletcher, Powell, Zangwill and Rhead have all worked on a conjugate direction method using no derivatives.
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However, even with all the improvements, its convergence is slow for general functions and n > 10, so it is preferable

to use the conjugate gradient method which chooses the steepest descent direction subject to conjugacy conditions and

requires the function’s gradient. Other methods are Powell’s method, which reduces iteratively the dimension of the

search space, and Partan method, which executes a steepest descent step and a line search to that direction.

3.1.2 Second derivative methods

If the Hessian matrix of the objective function is known (or easily approximated), second derivative methods offer

reliability and fast convergence. Typical examples are the Newton’s method and its variants. Again, a line search is

made but this time the Hessian matrix is employed. Variants are Greenstadt’s method, Marquardt-Levengberg method

and Quasi-Newton methods.

3.1.3 Direct search methods

Methods that fall into this category produce a sequence of approximations by comparing values of the objective function

only, making no use of its gradient or any approximation to it. Thus, they are useful in case the function is non-

differentiable, has discontinuous first-order derivatives or the computation of the gradient is complex. Elementary

examples of direct search methods are the bounded methods. A notable bounded method is the generalized Fibonacci

search that, based on the Fibonacci numbers, narrows down the interval containing the optimum point. Another popular

strategy is to pick a destination (or destinations) and minimize along it. In its simplest form, this is the alternating

variable method (or compass search ), which minimizes with respect to every co-ordinate one at a time periodically

until termination conditions are satisfied. This can work for specific cases but in general slow (or even none at all)

convergence is observed. This is mainly due to the fact that the directions are fixed throughout the process; in 1961

Hooke and Jeeves suggeseted the pattern search method that includes ”exploring” around the current point and move

accordingly to the suitable direction. Variants of the Hooke and Jeeves method are the Spider method and razor search.

A similar concept is behind Rosenbrock’s method, but a whole new orthonormal set of directions is generated in every

iteration while expanding, contracting and reversing exploration steps. Finally, there is the simplex method which uses

regular simplexes of Rn reflecting the ”worst” vertex with respect to the centroid of the rest of the vertices at every

iteration. This way the simplex moves towards smaller values of the objective function.

The method that I used for the implementation of the methods described in Chapter 2 is the Nelder-Mead simplex

method, an improved version of the classic simplex method. Nelder and Mead decided to rescale the simplex depending

on the result of the reflection. As all my numerical results were taken using this algorithm, it is presented below. I

include the algorithm and a presentation of all possible cases for R3.

In words, the algorithm is described as substituting the ”worst” vertex of the current simplex with a ”better” point.

Of course, these labels are based on the values of the objective function on the current simplex vertices. During this

process, the simplex becomes expanded or contracted depending on the specific points selected by reflection. Starting

with an initial simplex of n+1 points not lying on a hyperplane {~xk}N+1
k=1 , the algorithm points out the vertices (out of

all N +1 that define the simplex) that give the best, the worst and the second-worst value to f ;as this is a minimization
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problem, this criterion is reduced to determining w,s,b indices s.t.

f (xw) = max
1≤k≤N+1

f (xk), f (xs) = max
1≤k≤N+1

k 6=w

f (xk), f (xb) = min
1≤k≤N+1

f (xk) (3.1)

x
b

x
w

x
s

FIGURE 3.1: Initial simplex

Every iteration of the method changes the simplex by using only the function values on specific points. The first

approach is to substitute the worst point with a better one. The first candidate is the reflection xr of xw with respect to

the centroid of the rest of the vertices, called

x0 =
1
N

N+1

∑
i=1
i6=w

xi (3.2)

x
r

x
0

x
b

x
w

x
s

FIGURE 3.2: Reflection

If this point is better than xw but still worse than xb, it replaces xw.

x
r

x
0

x
b

x
w

x
s

FIGURE 3.3: Reflection successful. The new simplex is the blue one.

If it is better than our best xb, we attempt an expansion towards its direction with the hope of getting an even better

point xe.
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x
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b
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w

x
s

FIGURE 3.4: Expansion

xw is replaced either by xr

x
e

x
r

x
0

x
b

x
w

x
s

FIGURE 3.5: Expansion unsuccessful; the new simplex is the red one, where xr replaces xw

or by xe (whichever suits us better).

x
e

x
r

x
0

x
b

x
w

x
s

FIGURE 3.6: Expansion successful; the new simplex is the red one, where xe replaces xw
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In case xr is worse than the worst point, we try a contraction.

x
r

x
0

x
c

x
b

x
w

x
s

FIGURE 3.7: If f (xc)< f (xw), substitute xw by xc

If this doesn’t work either, we shrink the initial simplex and start over.

x
r

x
0

x
c

x
b

x
w

x
s

FIGURE 3.8: Start over with a shrunken simplex.

The geometrical operations of reflection, expansion, contraction and shrinkage are determined by the parameters

α,γ,ρ,σ respectively. For our implementation the values are 1,2,1 /2,
1 /2. The procedure continues until some cri-

teria of tolerance are satisfied (usually in the form of ε-small standard deviation of { f (xk)}N+1
k=1 ) or until a maximum

number of iterations has been exhausted.
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Algorithm 1 Nelder-Mead method( f ,{~xk} ,α,γ,ρ,σ, tol, MaxIter)

1: i← 0

2: while i < MaxIter && stdev( f (xk))> tol do

3: find w,s,b indices s.t. (3.1) holds

4: calculate x0 using (3.2)

5: find the reflection of the worst vertex wrt to x0 as xr = (1+α)x0−αxw

6: if f (xb)≤ f (xr)< f (xs) then

7: xw← xr

8: else if f (xr)< f (xb) then

9: compute xe = (1+ γ)x0− γxw

10: if f (xe)< f (xr) then

11: xw← xe

12: else

13: xw← xr

14: end if

15: else

16: compute xc = (1−ρ)xw +ρx0

17: if f (xc)< f (xw) then

18: xw← xc

19: else

20: for k = 1 to N +1, k 6= b do

xk← (1−σ)xb +σxk

21: end for

22: end if

23: end if

24: i← i+1

25: end while

At this point, I would like to explain the choice of algorithm : direct search methods are an effective option (and

sometimes the only one) for several optimization problems. One could argue that they are not strictly supported

mathematically and they are based on heuristics [21]. This is exactly the reason why I implemented most of the

methods using the Newton’s method, but for the energy functions of some of the QC methods the condition number

of the Hessian matrix or its approximation would become very large. However, for the methods I got final results they

were almost identical to the ones given by the Nelder-Mead algorithm, so, for reasons of uniformity, I chose to use

N.M. on all of them.
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3.2 Ghost force correction algorithm

To solve the equilibrium equation of the strong form of the QCF method (2.63), we implemented the algorithm de-

scribed in [15]. The same algorithm or slightly different definitions of it have also been used in [13, 12, 16, 17]. We

have already explained the reason behind the existence of ghost- forces. The concept of this technique is to balance the

forces in the areas of the discrepancy. Each representative atom has forces acting on it as though it were surrounded by

representative atoms of the same type.

Define for a deformation yh ∈ Y +
h

(gfc(yh))m := Fqc f
m (yh)− f a

im(yh) (3.3)

Because of the definition of Fqc f and the remark 2.61, for our model

(gfc(yh))m = 0 m = L, · · · ,U

Then this correction is normally applied during a quasistatic loading process.

Algorithm 2 Ghost Force Correction(y0,δB)

1: for k = 1, · · · do

2: yn← argmin{Eqce(y)− (g,y)ε− (gfc(yn−1 + xδB),y)h}

3: end for

As initial approximation, we inserted the atomistic solution and δB = 0.01;the number of iterations is determined by

tolerance criteria. In practise, for all the runs we include not more than ten iterations were necessary. The same iterative

algorithm was used for the SAC method and the suitable force function.

3.3 Results

This 1-D problem involves many parameters, each of which can be studied separately in order to make a verdict on

its role. The codes we have available in MATLAB can be used to simulate many possible sets of data. Here, a specific

input is presented : N = 1000, R = 2, B = 1, κ = 3, CG = 32 and

Test 1 zero external forces

gi = 0 ∀i ∈ L
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Test2 crack at the origin

gi =



−1− xi, i =−N +1, · · · ,−2

− N/4, i =−1

N/2, i = 0

− N/4, i = 1

2− xi, i = 1, · · · ,N

(3.4)

The parameter CG is used to determine the level of coarse-graining : repatoms in Ωc are chosen to be the points

of a uniform grid with step CG · ε. The external dead loads gathered in g are intentionally picked, so that the exact

(atomistic) solution simulates a crack at the origin. All errors are computed in the U1,∞-norm (2.5). Also, for the plots

the x-axis has been scaled to [0,1]. The methods are grouped as follows : QCE, ECC and ACC, QCF and SAC; this

is done, because the U1,∞-distance between yECC and yACC (or yQCF and ySAC) is O(10−6). As mentioned in Section

2.4, the QCE method presents errors near the interface, whereas ECC, ACC, QCF and SAC achieve high accuracy in

Ω apart from the crack location (second test).
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FIGURE 3.9: Test 1 : left: the whole domain right : a close up including all the atomistic region Ωa which is between

the black dotted lines
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FIGURE 3.10: Test 2 : left: the whole domain right : a close up including all the atomistic region Ωa which is

between the black dotted lines
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The level of coarse-graining against the errors of each method is plotted below. Remember CG = 1 means we have

the fully atomistic grid and as CG increases the grid is coarsened. The QCE method, due to the problem of ghost

1248163264128
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forces, presents significant error. Zooming in only on the other two options The two methods both perform well and,
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as atomistic accuracy is approached, they seem to end up in a flat line; this is due to the inevitable model error. For

values of CG less than 8 the modeling error is more significant than the coarse-graining error [4].

3.4 Possible future projects

There is still a lot left to be examined on QC methods. They appear to be promising thanks to their computational

potential and accuracy and have already been modified to meet needs of specific applications [7, 8, 9, 19]. Aspects that

could give rise to new directions are : generalization to 2-D or 3-D [1], improved mesh generation, faster solvers of the

equilibrium equations, strong theroetical basis for a priori computational results [17], parallelization etc.
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[5] C. Ortner and E. Süli, Analysis of a quasicontinuum method in one dimension, ESAIM: M2AN, 42(1):5791 (2008)

[6] E. B. Tadmor, M. Ortiz and R. Phillips, Quasicontinuum analysis of defects in solids, Phil Mag A, Vol 73, pp

1529-1563 (1996)

[7] E. B. Tadmor, R. Miller and R. Phillips, Nanoidentation and incipient plasticity, J Mater Res, Vol 14, No. 6 (1999)

[8] L. Truskinovsky and A. Vainchtein, Dynamics of martensitic phase boundaries: discreteness, dissipation and

inertia, Continuum Mech. Thermodyn. 20:97-122 (2008)

[9] L. Truskinovsky and A. Vainchtein, Kinetics of martensitic phase transitions : lattice model

[10] M. Dobson, C. Ortner and A. Shapeev, Stability of the force-based quasicontinuum method, arXiv:1004.3435

(2010)

[11] M. Dobson, C. Ortner and A. Shapeev, Stability, instability and error of the force-based quasicontinuum approx-

imation, arXiv:0903.0610 (2009)

[12] M. Dobson and M. Luskin, Analysis of a force-based quasicontinuum approximation, ESAIM: M2AN, 42(1):113-

139 (2008)

40



BIBLIOGRAPHY

[13] M. Dobson and M. Luskin, Iterative solution of the quasicontinuum equilibrium equations with continuation, J

Sci Comput 37: 1941 (2008)

[14] M. Dobson and M. Luskin, An optimal order error analysis of the one-dimensional quasicontinuum approxima-

tion, SIAM J Numer Anal, 47:2455-2475 (2009)

[15] M. Dobson, M. Luskin and C. Ortner, Iterative methods for the force-based quasicontinuum approximation

[16] M. Dobson, M. Luskin and C. Ortner, Sharp stability estimates for the force-based quasicontinuum method

[17] M. Dobson, M. Luskin and C. Ortner, Stability, instability and error of the force-based quasicontinuum approxi-

mation

[18] P. Lin, Theoretical and numerical analysis for the quasicontinuum approximation of a material particle model,

Mathematics of Computation, Vol 72, No 242, pp 657-675 (2002)

[19] Q. Peng, X. Zhang, L. Hung, E. A. Carter and G. Lu, Quantum simulation of materials at micron scales and

beyond, Physical Review B 78, 054118 (2008)

[20] R. E. Miller and E.B. Tadmor, The quasicontinuum method: overview, applications and current directions, Journal

of Computer-Aided Materials Design, 9:203-239 (2002)

[21] T. G. Kolda, R. M. Lewis and V. Torczon, Optimization by direct search : new perspectives on some classical and

modern methods, SIAM, Vol 45,No 3, pp 385482 (2003)

[22] T. Shimokawa, J. Mortensen, J. Schiotz and K. Jacobsen, Matching conditions in the quasicontinuum method :

removal of the error introduced at the interfacebetween the coarse-grained and fully atomistic region, Phys Rev

B, 69(21):214104 (2004)

[23] X. H. Li and M. Luskin, A generalized quasi-nonlocal atomistic-to-continuum coupling method with finite range

interaction

[24] A. Quarteroni, R. Sacco and F. Saleri, Numerical Mathematics, Springer-Verlag (2000)

[25] D. Kincaid and W. Cheney, Numerical Analysis : Mathematics of Scientific Computing, 3rd edition, Brooks/Cole

(2002)

[26] H. Brezis, Functional Analysis : Theory and Applications, ntua press (1997)

[27] P. G. Ciarlet, Introduction to Numerical Linear Algebra and Optimization, Cambridge University Press (1989)

[28] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 2nd edition, Springer-Verlag

(2002)

[29] W. Murray, Numerical Methods for Unconstrained Optimization, Academic Press, London and New York (1972)

41


