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Abstract

In this thesis the results of P.W. Bates and J. Xun regarding the metastable

patterns for the Cahn-Hilliard equation are reviewed. The main tool that is

used for studying the dynamics of the patterns is the Invariant Manifold. The

Invariant manifold, which is firstly constructed and suggested by J. Carr and

R.L. Pego for studying the metastable patterns of the Reaction-Diffusion

equation, approximates the phase space of the solutions of the Reaction-

Diffusion equation. In the thesis the same results are proved for the Cahn-

Hilliard equation. More specifically, if a Cahn Hilliard solution at a fixed time

is close enough to an element of the Invariant Manifold, then afterward it

goes closer and remains close to the Invariant Manifold. For the proof of this

result, the eigenvalues of the integrated Cahn-Hilliard operator are estimated.

Additionally, a system of ODEs that describes the evolution in terms of the

Invariant Manifold is derived. Finally some results regarding the stochastic

Cahn-Hilliard equation are presented. All the results are obtained using the

integrated form of the Cahn-Hilliard equation. The reason is that it has the

useful property of self-adjointness of the tensor of integrated Cahn-Hilliard

which is used in the proof of the results regarding dynamics.





PerÐlhyh

Se aut  thn ergasÐa parousi�zontai ta apotelèsmata twn P.W. Bates kai

J. Xun gia ta metaeustaj  prìtupa sthn exÐswsh Cahn-Hilliard. To kÔrio

ergaleÐo pou qrhsimopoieÐtai gia th melèth thc dunamik c twn protÔpwn eÐnai

h analloÐwth pollaplìthta. H analloÐwth pollaplìthta, h opoÐa dhmiour-

g jhke kai prot�jhke apì touc J. Carr kai R.L. Pego gia th melèth twn

metaeustaj¸n protÔpwn thc exÐswshc antÐdrashc di�qushc, proseggÐzei to

q¸ro f�sewn thc exÐswshc antÐdrashc di�qushc. Sthn paroÔsa ergasÐa ta

Ðdia apotelèsmata apodeiknÔontai gia thn exÐswsh Cahn-Hilliard. Piì sug-

kekrimèna, e�n mia lÔsh thc exÐswshc Cahn-Hilliard se miadedomènh qronik 

stigm  eÐnai arket� kont� se èna shmeÐo thc analloÐwthc pollaplìthtac, tote

apì ekeÐnh th qronik  stigm  kai met� paramènei kont� sthn analloÐwth pol-

laplìthta. Gia thn apìdeixh autoÔ tou apotelèsmatoc, ektim¸ntai oi idiotimèc

tou telest  thc exÐswshc Cahn-Hilliard sthn oloklhrwtik  tou morf . Epi-

plèon par�getai èna sÔsthma sun jwn diaforik¸n exis¸sewn pou perigr�fei

th dunamik  thc exÐswshc p�nw sthn pollaplìthta. Tèloc parousi�zontai

orismèna apotelèsmata sqetik� me th stoqastik  exÐswsh Cahn-Hilliard. O-

la ta apotelèsmata èqoun paraqjeÐ me qr sh thc oloklhrwtik c morf c thc

exÐswshc Cahn-Hilliard. O lìgoc eÐnai h axiopoÐhsh thc idiìthtac thc auto-

suzugÐac tou telest  thc oloklhrwtik c morf c thc exÐswshc Cahn-Hilliard,

pou qrhsimopoieÐtai stic apodeÐxeic.
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Chapter 1

Introduction

In this thesis the metastable patterns for the one-dimensional Cahn-Hilliard

differential equation are studied. More specifically the results of P. W. Bates

and J. Xun in [BX1, BX2] are reviewed. The goal is studying and under-

standing every aspect of their work. I have attempted to review these results

in a comprehensive and I hope interesting way.

In the rest of the introduction we have the opportunity of taking a first

look at this subject and at what we are going to do. Firstly the natural prob-

lem that is described by the Cahn-Hilliard equation is introduced. Secondly

the equation is defined. Thirdly an overview of the structure and chapters

of the thesis is given.

1.1 The Natural Problem

The natural problem which is described by the Cahn-Hilliard equation is the

evolution of metastable patterns. For a detailed introduction to them see

[GD]. The most famous metastable patterns phenomenon that the equa-

tion describes is the behaviour of a melted binary homogeneous alloy with

given concentrations of two components. When it is quenched rapidly to a

temperature between the melting temperatures of the two components, the

homogeneous alloy divides into two different concentration phases. The evo-

lution after the quench has two stages: the Separation, which is relatively
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fast, and the Coarsening, which is extremely slow.

For a more detailed description of the alloy and the phases described, see

Figure 1.1. The components of the alloy are A and B with concentrations

CA and CB = 1−CA respectively. The melting temperatures of A, B are TA,

TB. T0 is the temperature that is quenched. T0 is valued between TA and

TB. The two phases are the solid and liquid phase. If we assume that λ is

the concentration of the liquid phase, then we have the following equations.

CB = CL
B(T0)λ+ CS

B(T0)(1− λ)

CA = 1− CB

. Now what we have to do is to investigate the dynamics of the two phases.

Equivalently we can investigate just the dynamics of one of the two phases

or of the layer points between them. Nevertheless, before we start thinking

about it, we should be familiar with the equation.

1.2 The Equation

One of the most celebrated models that describes the patterns mentioned in

the previous section is the Cahn-Hilliard equation. It is suggested by Cahn

and Hilliard (see [C, CH]). For a general reference on differential equations

see [KPDE, KFA]. The Cahn-Hilliard equation is defined as:

ut = (−ε2uxx +W ′(u))xx, x ∈ (0, 1), t > 0, (1.1)

where 0 < ε << 1 is the interaction length and W (u) = 1/4(u2 − 1)2 the

potential.

The unknown function u is the rescaled concentration of one of the compo-

nents of the binary alloy and takes values between −1 and 1, the potential

with the boundary conditions:

ux = uxxx = 0, x ∈ {0, 1}, t > 0. (1.2)

2



Figure 1.1: A typical phase diagram of two components A and B

What is the reason for (1.2) boundary conditions? While u is the rescaled

concentration of one of the components and the fraction of it is fixed, there

must exist a constant −1 < M < 1 such that
∫ 1

0
udx = M for all t > 0, or

3



equivalently

(

∫ 1

0

udx)t = 0∫ 1

0

utdx = 0∫ 1

0

(−ε2uxx +W ′(u))xxdx = 0∫ 1

0

(−ε2uxxx +W ′′(u)ux)xdx = 0[
−ε2uxxx +W ′′(u)ux

]1
0

= 0

which is satisfied because of (1.2) boundary conditions.

Free Energy Functional

Before we close this section, we need to mention the free energy functional:

J(u) =

∫ 1

0

((ε2/2)u2x +W (u))dx

It describes the free energy of the metastable patterns. Figure 1.2 shows that

the solution likes to be valued near 1 and −1 in order to has less energy. The

Cahn-Hilliard equation is derived from the free energy functional. Finally a

lot of results regarding the solutions of the Cahn-Hilliard equation have been

generated by it:

� Every solution u of the Cahn-hilliard equation approaches an equilib-

rium state as t→∞ (see [EZ]).

� The limit of a Cahn-Hilliard solution u as t → ∞ is a local minimizer

of J in the world of fixed mass functions (see [H]).

� Let u be a Cahn-Hilliard solution. The J(u), as t function, is mono-

tonically decreasing (see [AA, CGS]).
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Figure 1.2: The graph of W (u)

1.3 Structure and Chapters of the Thesis

Before we start reading the main text let us have an overview of it.

In Chapter 2 some preliminaries are given, in order to provide us with

some tools needed for the investigation of the equation. The basic tool of this

thesis, which is the Invariant Manifold, is defined in this chapter. Neverthe-

less, firstly we define the first approximation manifold as a first step to the

final construction of the Invariant Manifold. Invariant Manifold is like phase

space of the solutions of the problem. Finally, the integrated Cahn-Hilliard
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equation is defined. (In the rest of the thesis we work with the integrated

form because...) In this chapter we do not have important results about our

problem but we build the base for the next two chapters.

In Chapter 3 Theorem A and Theorem B are proved. Theorem A gives

estimations for the eigenvalues of the integrated Cahn-Hilliard operator. The

estimations of Theorem A are used for the proof of Theorem B, which pro-

vides a good description of the dynamics of the solutions of the equation.

Theorem B is based on the idea of Invariant Manifold. We will see that the

Invariant Manifold is not an invariant manifold, with the strict meaning of

the term but it is almost invariant.

And we finish with Chapter 4. In Chapter 3 the dynamics of the equation

have already been investigated. Nevertheless, we have no analytical approxi-

mations of the solutions. In Chapter 4 we derive an analytical approximation

of the ODEs system of the problem. This system sheds more light on the be-

haviour of the solutions. The thesis is closed with a reference to the dynamics

of the stochastic Cahn-Hilliard equation.
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Chapter 2

Preliminaries

2.1 First Approximation Manifold

The basic idea used during this thesis is Invariant Manifold. Invariant Man-

ifold comes from works related with the Reaction-Diffusion (or Allen Cahn)

equation. It is used by G.Fusco, J.Hale [FH] and J.Carr, R.L.Pego [CP] for

results regarding Reaction Diffusion equation. P.W. Bates, J. Xun uses In-

variant Manifold in their work [BX1, BX2] regarding Cahn-Hilliard equation.

Invariant Manifold in both, Reaction-Diffusion and Cahn-Hilliard equation,

is an approximation of the phase space of solutions.

In order to reach the key idea of Invariant Manifold, we have to answer

the question: what is Reaction-Diffusion equation;

Definition 2.1.1 The Reaction-Diffusion Differential Equation is

ut = ε2uxx −W ′(u), x ∈ (0, 1), t > 0,

where ε as in (1.1) .

With the boundary condition

ux = 0, x ∈ {0, 1}, t > 0.

Figure 2.1 helps us understanding the Reaction-Diffusion Equation.

7



Figure 2.1: The graph of W ′(u)

The elements of the Invariant Manifold, which are approximately com-

ponents of the phase space of the solutions of the Cahn-Hilliard equation,

are constructed in terms of solutions of the Reaction-Diffusion stationary

problem. Obviously Reaction-Diffusion stationary problem is a specific case

of the Cahn-Hilliard stationary problem. This is the main reason for the

compatibility of the Invariant Manifold in both equations.

Definition 2.1.2 The Reaction-Diffusion stationary problem is

ε2φxx −W ′(φ) = 0 x ∈ (−l/2− ε, l/2 + ε),

φ = 0 x ∈ {−l/2, l/2},

where l > 0.

This ODE is autonomous which means that we don’t need to be concerned

about the domain of the solution φ. Nevertheless we define the domain as

8



above for technical and practical convenience.

And now we just need evidence of the existence of the solutions of the

stationary problem. It is given by the next theorem.

Theorem 2.1.3 There exists ρ0 > 0, such that if l > ε/ρ0, there exist

� a unique solution φ(x, l,+) satisfying Definition 2.1.2

and φ(x, l,+) > 0 for |x| < l/2, W ′′(φ(0, l,+)) > 0,

� a unique solution φ(x, l,−) satisfying Definition 2.1.2

and φ(x, l,−) < 0 for |x| < l/2, W ′′(φ(0, l,−)) > 0.

Proof

ε2φxx −W ′(φ) = 0

or

(W (φ)− 1

2
ε2φ2

x)x = 0

or

W (φ)− 1

2
ε2φ2

x = α,

where α is a constant, or

ε2φ2
x = 2(W (φ)− α)

or

εφx = 21/2(W (φ)− α)1/2

or
1

εφx
=

1

21/2(W (φ)− α)1/2
.

Integrating from x = −l/2 to x = l/2 with respect to φ

we obtain ∫ x=l/2

x=0

1

εφx
dφ =

∫ x=l/2

x=0

1

21/2(W (φ)− α)1/2
dφ

or
l

2εφx
=

∫ 0

φ(0)

1

21/2(W (φ)− α)1/2
dφ

9



where α = W (φ(0))

The solution exists if and only if there exists a value for φ(0) whereW ′′(φ(0)) >

0 such that the last equation is satisfied.

According to the results of J. Carr, M. Gurtin and M. Slemrod [CGS] the last

integral tent to infinity as φ(0) approaches −1 from above, and it is a mono-

tone function of φ(0) for φ(0) close to −1. Hence for ρ0 sufficiently small,

there exists a unique value for φ(0) such that the last equation is satisfied.

In Figure 2.2 we can see an example of a solution provided by Theorem

2.1.3.

Figure 2.2: Simulation of a solution of 2.1.2. According to Theorem 2.1.3
this is the unique positive solution φ(x, l,+) with parameters ε = 0.01 and
l = 0.316.
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The elements of the Invariant Manifold are constructed by piecing to-

gether solutions of the reaction diffusion stationary problem provided by

Theorem 2.1.3. The connecting points between different solutions are called

transition layers of the manifold. The term comes from the natural problem.

As we mentioned in the Introduction, the problem we are studying has two

phases. The points that are called transition layers are the points at which

the phase changes. The whole number of these points, as we will see later, is

the dimension of the manifold. The way that the solutions of the stationary

reaction diffusion problem are pieced together is as smooth as the solutions

of the problem that are pieced together. For an overview of this process we

can take a look at Figures 2.3, 2.4, 2.5 and 2.6 or above, where it is strictly

defined.

Let us start from the transition layer. Strictly the transition layers of a

N+1 dimensional manifold are valued in Ωρ0 = {h ∈ RN+1 | 0 < h1 < · · · <
hN+1, ε/ρ0 < (hj − hj−1)}, where ρ0 as in Theorem 2.1.3, h0 := −h1 and

hN+2 := 2− hN+1

Before we define the Invariant Manifold we define something more general,

the first approximation Manifold. The first approximation manifold M1 is

defined by the following rule:

Let χ : R → [0, 1] be C∞ (in order to have a manifold as smooth as

the solutions of the stationary reaction diffusion problem φ that are pieced

together) with χ(x) = 0 for χ ≤ −1 and χ(x) = 1 for χ ≥ 1.

Let mj = (hj−1 + hj)/2 for j = 1, 2, ..., N + 2.

For given h ∈ Ωρ0 , we define

uh(x) = (1− χ(
x− hj
ε

))φ(x−mj, hj − hj−1, (−1)j)

+χ(
x− hj
ε

)φ(x−mj+1, hj+1 − hj, (−1)j+1),

where x ∈ [mj,mj+1], j = 1, 2, ..., N + 1.

M1 := {uh |h ∈ Ωρ0}.

In Figure 2.7 we can see a simulation of a component of the first approx-

11



imation manifold.

Figure 2.3: Construction of the first approximation manifold, step 1: φ(x−
mj, hj − hj−1, (−1)j).

Figure 2.4: Construction of the first approximation manifold, step 2: [1 −
χ(

x−hj
ε

)]φ(x−mj, hj − hj−1, (−1)j). It is smooth.
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Figure 2.5: Construction of the first approximation manifold, step 3:
[1 − χ(

x−hj
ε

)]φ(x − mj, hj − hj−1, (−1)j) like in Figure 2.4 with blue and

χ(
x−hj
ε

)φ(x−mj+1, hj+1 − hj, (−1)j+1) with red. They are smooth.

Figure 2.6: Construction of the first approximation manifold, step 4:
The sum of the two functions of Figure 2.5, [1 − χ(

x−hj
ε

)]φ(x − mj, hj −
hj−1, (−1)j) + χ(

x−hj
ε

)φ(x−mj+1, hj+1−hj, (−1)j+1). This is the way that
solutions of reaction diffusion problem are pieced together for constructing
the first approximate manifold. This way of piecing conserves smoothness.

13



Figure 2.7: Simulation of a component of the first approximation manifold
with ε = 0.01, N=4 and h = (0.1250, 0.2800, 0.5370, 0.7770, 0.8830).

The first approximation manifold is a good step. Nevertheless, the bound-

ary conditions (1.2) have not been used for the construction of it. Unfor-

tunately before we involve the boundary conditions, we have to face some

propositions and some notation. After that section 2.3 is dedicated to the

Invariant Manifold, which involves the boundary conditions.

14



2.2 Notation and Useful Propositions

Basic notation

� For any function φ(x), φ̃(x) :=
∫ x
0
φ(y)dy

� Lc(φ̃) := −ε2φ̃xxxx+(W ′(φ̃x))x the integrated Cahn-Hilliard differential

operator

� Lb(φ) := ε2φxx −W ′(φ), the bistable reaction diffusion differential op-

erator

� Lc(φ̃) := −ε2φ̃xxxx + (W ′′(uh)φ̃x)x, this is Lc linearized at ũh

� uhj := ∂uh/∂hj, j = 1, 2, ..., N + 1

� αj = W (uh(mj)), β
j = 1− |uh(mj)|,

lj := hj − hj−1, rj := ε/lj

� α(r) := maxαj(r), β(r) := max βj(r),

l := min lj, r = max rj = ε/l

� Ij := [mj,mj+1]

� χj(x) := χ(
x−hj
ε

)

� φj(x) := φ(x−mj, lj, (−1)j)

The thesis is written by using the notation above. Below some important

prepositions.

Propositions

Proposition 2.2.1 Let Φ(x) be the unique solution of

ε2Φxx −W ′(Φ) = 0

Φ(0) = 0

15



with

Φ(x)→ ±1 as x→ ±∞

and K1, δ1, δ2 be positive with K1 > 1 and such that min | Φ(x) ± 1 |< δ1/2

for every ±x > εK1. Then there is a ρ1 = ρ1(K1, δ1, δ2) > 0 such that if

ρ ≤ ρ1 and h ∈ Ωρ we have

| uh(x)− Φ((x− hj)(−1)j−1) |< δ2 x ∈ [hj − εK1, hj + εK1]

and

| uh(x)− (−1)j |< δ2 x ∈ [hj−1 + εK1, hj − εK1] ∩ [0, 1]

for j = 1, 2, ..., N + 1.

Proof See Proposition 2.2 of [BX1].

Proposition 2.2.2 For x ∈ [−l/2, l/2]

2φl(x, l,±1) = −sgn(x)φx(x, l,±1) + 2w(x, l,±1)

where, for x 6= 0

w(x, l,±1) = ε−1l−2α′±(r)φ(|x|, l,±1)

∫ |x|
l/2

φx(s, l,±1)−2ds

and

w(0, l,±1) =
−ε−1l−2α′±(r)

(0, l,±1)
.

Proof See Proposition 2.8 of [BX1].

Proposition 2.2.3 The interval [hj−1 − ε, hj+1 + ε] contains the support of

uhj and

16



uhj (x) =


χj−1wj, x ∈ Ij−1
(1− χj)(−φjx + wj) + χj(−φj+1

x − wj+1)

+χjx(φ
j − φj+1), x ∈ Ij

−(1− χj+1)wj+1, x ∈ Ij+1

where wj as in Proposition 2.2.2 when we replace φ(x, l,±) by φj(x, l,±).

Proof See Proposition 2.11 of [BX1].

Proposition 2.2.4 There exists r0 such that for 0 < r < r0,

|w(x, l,±1)| ≤ Cε−1β±(r) for x ∈ [−l/2− ε, l/2 + ε]

|w(x, l,±1)| ≤ Cε−1α±(r) for x ∈ [−l/2−ε, l/2−ε] and x ∈ [−l/2+ε, l/2+ε].

Proof See Proposition 2.9 of [BX1].

Proposition 2.2.5 For x ∈ [−l/2− ε, l/2 + ε]

|wx(x, l,±1)| ≤ Cε−2r−1β±(r)

|wxx(x, l,±1)| ≤ Cε−3β±(r).

Proof See Proposition 2.10 of [BX1].

Proposition 2.2.6 There is a ρ0 > 0 such that if 0 < ρ < ρ0 and uh ∈ M
with h ∈ Ωρ, then we have

| Lcũh(x) | ≤ Cα(r)ε−1, x ∈ [0, 1]

‖ Lcũh ‖ ≤ Cα(r)ε−1

for some constant C independent of r and uh

Proof See Proposition 2.2.6.
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Proposition 2.2.7 There is a ρ0 > 0 such that if 0 < ρ < ρ0 and uh ∈ M
with h ∈ Ωρ, then we have

| ∂

∂hj
Lbuh(x) | ≤ Cβ(r)ε−2, x ∈ [0, 1]

| ∂

∂hj

∂

∂x
Lbuh | ≤ Cβ(r)ε−4, x ∈ [0, 1]

for some constant C independent of r and uh

Proof See Proposition 2.2.7

Proposition 2.2.8 There exists r0 > 0 such that, for 0 < r < r0,

|w(x, l,±1)| ≤

{
Cε−1β(r), x ∈ [−1

2
l − ε, 1

2
l + ε],

Cε−1α(r), x ∈ [−1
2
l − ε,−1

2
l + ε] ∪ [1

2
l − ε, 1

2
l + ε],

Where w as in Proposition 2.2.2.

Proof See Lemma 7.9 of [CP].

Proposition 2.2.9 There is a ρ0 > 0 such that if 0 < ρ < ρ0 and uh ∈ M
with h ∈ Ωρ, then we have

|Lb(uξ)| ≤ C|αi+1 − αi|

for x ∈ Ii+1

Proof See Theorem 3.5 of [CP].

2.3 Invariant Manifold

Definition and explanation of the Invariant Manifold

First approximation manifold is a good step. Nevertheless we need to con-

sider the boundary conditions. According to (1.2) we have
∫ 1

0
uh(x) = M
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where −1 < M < 1. Consequently we define the Invariant Manifold (or the

second approximate manifold according to the [BX1, BX2]).

M := {uh ∈M1 |
∫ 1

0

uh(x) = M},

As opposed to the first approximate manifold, it decreases from N + 1 to

N -dimensional and can be parametrized it by (h1, h2, ..., hN). In other words

we have the following expression

hN+1 := hN+1(h1, h2, ..., hN)

This is quite obvious to understand. If we order the first N layers the last

layer should go to a specific place in order to be satisfied the conservation

of mass. This claim is proved using the Implicit function theorem. More

strictly and detailed we have the following proposition.

Proposition 2.3.1 Let M(h) =
∫ 1

0
uh(x)dx for h ∈ Ωρ, then M(h) is a

smooth function of h and ∂M/∂hj = 2(−1)j+1 +O(ε−1β(r)).

Proof By Proposition 2.2.3, [hj−1 − ε, hj+1 + ε] contains the support and in

Ij we have

uhj = (1− χj)(−φjx + wj) + χj(−φj+1
x − wj+1) + χjx(φ

j − φj+1)

= −[(1− χj)φjx + χjφj+1
x + χjx(φ

j+1 − φj)] + (1− χj)wj − χjwj+1

= −uhx + (1− χj)wj − χjwj+1

By Propositions 2.2.4 and 2.2.3, there exists a r0 > 0 such that if 0 < r < r0,

then

|
∫
Ij+1∪Ij−1

uhj (x)dx| ≤ Cε−1β(r)

|
∫
Ij

[(1− χj)wj − χjwj+1]dx| ≤ Cε−1β(r)
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for some constant C.

Thus

∂

∂hj
M(h) =

∫ 1

0

uhj dx

=

∫
Ij

uhj dx+

∫
Ij−1∪Ij+1

uhj dx

=

∫
Ij

[−uhx + (1− χj)wj − χjwj+1]dx+

∫
Ij−1∪Ij+1

uhj dx

=

∫
Ij

−uhxdx+

∫
Ij

[(1− χj)wj − χjwj+1]dx+

∫
Ij−1∪Ij+1

uhj dx

=

∫
Ij

−uhxdx+O(ε−1β(r))

= uh(mj)− uh(mj+1) +O(ε−1β(r))

= (−1)j(β(rj)− 1)− (−1)j+1(β(rj+1)− 1) +O(ε−1β(r))

= 2(−1)j+1 +O(β(r)) +O(ε−1β(r))

= 2(−1)j+1 +O(ε−1β(r))

By Proposition 2.3.1 and the implicit function Theorem, if uh ∈ M we can

think of hN+1 as a function of h1, h2, ..., hN . Furthermore,

∂

∂hj
M(h) +

∂

∂hN+1

M(h)
∂hN+1

∂hj
= 0,

or
∂hN+1

∂hj
=
− ∂
∂hj
M(h)

∂
∂hN+1

M(h)
,

or
∂hN+1

∂hj
=
−2(−1)j+1 +O(ε−1β(r))

2(−1)N+2 +O(ε−1β(r))

or
∂hN+1

∂hj
= (−1)j−N +O(ε−1β(r)) (2.1)
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While for the Invariant Manifold M, we are interested in, hN+1 is de-

pendent on h1, h2, ..., hN we denote uh by uξ, where ξ = (ξ1, ξ2, ..., ξN) :=

(h1, h2, ..., hN).

Consequently we denote

uξj :=
∂uξ

∂ξj
=
∂uh

∂hj
+

∂uh

∂hN+1

∂hN+1

∂hj

while uhj still means ∂uh/∂hj.

Integrated Cahn-Hilliard Equation

We are going to slightly change the way we study this problem. What we

change is the Cahn-Hilliard equation. We convert our equation to an in-

tegrated form and consequently we mutually convert the elements of the

Invariant Manifold. Integrated Cahn Hilliard equation, which is equivalent

to Cahn-Hilliard is defined as follows:

ũt = −ε2ũxxxx + (W ′(ũx))x, x ∈ (0, 1), t > 0,

ũ(0, t) = 0, ũ(1, t) = M, t > 0, (2.2)

ũxx = 0, x ∈ {0, 1}, t > 0,

where ũ(x, t) =
∫ x
0
u(y, t)dy.

What we have to do is to study the dynamics of (2.2) in a neighbourhood

of M. For this we adopt the following coordinate system

ũ −→ (ξ, ṽ) meaning ũ = ũξ + ṽ

where 〈ṽ, Eξ
j 〉 = 0 for j = 1, 2, ..., N

and ṽ = ṽxx = 0 at x = 0, 1,
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where Eξ
j is defined by:

Eξ
j (x) := w̄j(x)−Qj(x)

w̄j(x) := ũhj (x) + ũhj+1(x), j = 1, 2, ..., N,

and

Qj(x) := (−1

6
x3 +

1

2
x2 − 1

3
x)w̄jxx(0) +

1

6
(x3 − x)w̄jxx(1) + xw̄j(1)

substituting ũ = ũξ + ṽ to the ICH, we get

N∑
j=1

ũξj ξ̇j + ṽt = −ε2(ũξxxxx + ṽxxxx) + (W ′(ũξx + ṽx))x (2.3)

Differentiating 〈ṽi, Eξ
i 〉 = 0 with respect to t, we get

〈ṽ, Eξ
i 〉t = 0

〈ṽt, Eξ
i 〉+ 〈ṽ, (Eξ

i )t〉 = 0

〈ṽt, Eξ
i 〉+ 〈ṽ,

N∑
j=1

Eξ
ij ξ̇j〉 = 0

or, 〈ṽt, Eξ
i 〉 = −〈ṽ,

∑N
j=1E

ξ
ij ξ̇j〉 for i = 1, 2, ..., N.

Denote aij = 〈ũξj , E
ξ
i 〉 − 〈ṽ, E

ξ
ij〉 for i, j = 1, 2, ..., N

where Eξ
ij = (∂/∂ξj)E

ξ
i .
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taking the inner product for i = 1, 2, ..., N we have

〈
N∑
j=1

ũξj ξ̇j + ṽt, E
ξ
i 〉 = 〈−ε2(ũξxxxx + ṽxxxx) + (W ′(ũξx + ṽx))x, E

ξ
i 〉

〈
N∑
j=1

ũξj ξ̇j, E
ξ
i 〉+ 〈ṽt, Eξ

i 〉 = 〈−ε2(ũξxxxx + ṽxxxx) + (W ′(ũξx + ṽx))x, E
ξ
i 〉

〈
N∑
j=1

ũξj ξ̇j, E
ξ
i 〉 − 〈ṽ,

N∑
j=1

Eξ
ij ξ̇j〉 = 〈−ε2(ũξxxxx + ṽxxxx) + (W ′(ũξx + ṽx))x, E

ξ
i 〉

N∑
j=1

〈ũξj , E
ξ
i 〉ξ̇j −

N∑
j=1

〈ṽ, Eξ
ij〉ξ̇j = 〈−ε2(ũξxxxx + ṽxxxx) + (W ′(ũξx + ṽx))x, E

ξ
i 〉

So

N∑
j=1

αij ξ̇j = 〈−ε2(ũξxxxx + ṽxxxx) + (W ′(ũξx + ṽx))x, E
ξ
i 〉 (2.4)

This gives the motion of coordinate point on M
Denoting

f2 =

∫ 1

0

(1− τ)W ′′′(ũξx + τ ṽx)dτ

we can get the following equation

N∑
j=1

ũξj ξ̇j + ṽt = Lcũξ + Lcṽ + (f2ṽ
2
x)x. (2.5)
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Chapter 3

Dynamics

As mentioned at the start of the previous chapter, the basic tool used in the

study is Invariant Manifold. It is also known by [CP] that it approximates the

phase space of the solutions of Reaction-Diffusion (or Allen Cahn) equation.

So we need to prove that Invariant Manifold also approximates the phase

space of the solutions of the Cahn-Hilliard equation. This result is given by

the following Theorem.

Theorem 3.0.2 (Theorem B of [BX1]) Let ũξ(t) + ṽ be an orbit of the in-

tegrated Cahn-Hilliard equation starting outside the slow channel. If the

H2 − norm of ṽ(0) is o(ε7), then the H2 − norm of ṽ will decrease exponen-

tially until ũ(t) enters the slow channel. Then it will remain in the channel

while h ∈ Ωρ and will follow the approximate manifold with speed O(e−c/r).

Here c is less than W ′′(±1) but close to it and r = ε/l, therefore ũ will stay

in the slow channel for an exponentially long time.

Where the slow channel is defined by the following Definition

Definition 3.0.3 Let Aε(ṽ) =
∫ 1

0
[ε2ṽxx +W ′′(uh)ṽ2x]dx. The slow channel is

defined to be the set

Γ = {ũ : ũ = ũξ + ṽ, Aε(ṽ) < bε−5α2(r)},

where b is a positive number.

24



In order to prove this important theorem we need one more theorem

Theorem 3.0.4 (Theorem A of [BX1]) There exists a positive number C

independent of ε and ρ such that if h ∈ Ωρ with ρ < ρ0, then Lc has exactly

N exponentially small eigenvalues ψ1, ψ2, ..., ψN and all the other eigenvalues

ψN+1, ψN+2, ... are valued with values less than −C.

For technical convenience, the eigenvalues {ψi}∞i=1 are defined to be ψ1 ≥
ψ2 ≥ · · · .

3.1 Proof of Theorem A

The proof of Theorem A has two parts. In the first part it is proved that all

the eigenvalues except N are valued with values less than −C. In the second

part it is proved that there are N eigenvalues that are exponentially small.

First part: All the eigenvalues except N are valued with

values less than −C.

Lemma 3.1.1 There exists a ρ0 > 0 such that for 0 < ρ < ρ0, and if

uh ∈ M with h ∈ Ωρ, then ψ′2, ψ
′
3, ..., ψ

′
N+1 are linearly independent, where

{ψi}N+1
i=1 are orthonormal eigenfunctions of

ε2ψ′′ −W ′′(uh)ψ = µ(ε)ψ, 0 < x < 1

ψ′ = 0, x = 0, 1

Proof If we suppose that ψ′2, ψ
′
3, ..., ψ

′
N+1 are not linearly independent, then

we can write them as
N+1∑
i=2

Ciψ
′
i = 0.

where Ci are constants which are not all zero.
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Integrating from 0 to x, we get,

N+1∑
i=2

Ciψi = C,

where C is constant.

In order to finish this proof we can follow two ways.

(1) In [BX1] it is proved with this argument:

If we take the inner product with ψ1 of
∑N+1

i=2 Ciψi = C, we get

0 =

∫ 1

0

ψ1dx,

so C = 0 which is a contradiction because ψ2, ψ3, ..., ψN+1 are linearly inde-

pendent.

(2) Another argument for the same result:

is based on the fact that C is an eigenfunction of our problem, with eigen-

value µ = −W ′′(uh).

The functions of the set {ψ2, ψ3, ..., ψN+1, C} are linearly dependent which is

a contradiction because it is a subset of {ψ1, ψ2, ...}.

Lemma 3.1.2 Let λξi (ε), i > N be an eigenvalue of the following problem

LcH = λ(ε)H, 0 < x < 1

H ′′ = H = 0, x = 0, 1.

Then for h ∈ Ωρ with ρ sufficiently small

λξi (ε) ≤ −C < 0,

where C is constant independent of ε and ξ.

Proof Applying the variational characterization of the eigenvalues for the
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problem

−λN+1 = max
F

min
H

∫ 1

0
[ε2H2

xx +W ′′(uξ)H2
x]dx∫ 1

0
H2dx

,

where

H = {H : H(0) = H(1) = 0, 〈H,φi〉 = 0, i = 1, 2, ..., N}

and

F = {{φi}Ni=1 : {φi}Ni=1 a set of N linearly independent functions}.

The inequality we want to show can be written as

−λξi (ε) ≥ C > 0.

By the variational characterization, it can be written as

max
F

min
H

∫ 1

0
[ε2H2

xx +W ′′(uξ)H2
x]dx∫ 1

0
H2dx

≥ C > 0.

In order to prove what we want, it suffices to find a component {φi}Ni=1

in F such that

min
H

∫ 1

0
[ε2H2

xx +W ′′(uξ)H2
x]dx∫ 1

0
H2dx

≥ C > 0.

The component with which we attempt to minimize it is defined using Lemma

3.1.1: φ1 = ψ′2, φ2 = ψ′3, ..., φN = ψ′N+1, where ψi as in Lemma 3.1.1.

Additionally, instead of minimizing
∫ 1
0 [ε2H2

xx+W
′′(uξ)H2

x]dx∫ 1
0 H

2dx
under H we are

going to minimize it under the following set

H′ = {H : H =

∫ x

0

h(x)dx, ‖h‖ = 1,

∫ 1

0

h(x)dx = 0,

〈H,ψ1〉 ≥ 0, 〈H,ψi〉 = 0, i = 2, ..., N + 1}.
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So before calculate minH′
∫ 1
0 [ε2H2

xx+W
′′(uξ)H2

x]dx∫ 1
0 H

2dx
we prove that

min
H′

∫ 1

0
[ε2H2

xx +W ′′(uξ)H2
x]dx∫ 1

0
H2dx

= min
H

∫ 1

0
[ε2H2

xx +W ′′(uξ)H2
x]dx∫ 1

0
H2dx

(3.1)

{
∫ 1
0 [ε2H2

xx+W
′′(uξ)H2

x]dx∫ 1
0 H

2dx
: H ∈ H} ≥ H′

First we prove that for every H ∈ H there exists a H ′ ∈ H′ such that∫ 1
0 [ε2H2

xx+W
′′(uξ)H2

x]dx∫ 1
0 H

2dx
=

∫ 1
0 [ε2H′2xx+W

′′(uξ)H′2x ]dx∫ 1
0 H

′2dx
.

Let H ∈ H, then because H is two times differentiable h = Hx is continuous

and consequently H =
∫ x
0
h(t)dt.

0 = H(1) =
∫ 1

0
h(x)dx

〈H ′, ψi+1〉+ 〈H,ψ′i+1〉 = [Hψi]
1
0

〈h, ψi+1〉+ 〈H,φi〉 = 0− 0

〈h, ψi+1〉+ 0 = 0

there are two more conditions, ‖h‖ = 1 and 〈h, ψ1〉 ≥ 0. These conditions

determine a real valued constant C ′ such that

H ′ = C ′H Obviously this fact does not influence the number given by

the type
∫ 1
0 [ε2H2

xx+W
′′(uξ)H2

x]dx∫ 1
0 H

2dx

We have proved that

min
H′

∫ 1

0
[ε2H2

xx +W ′′(uξ)H2
x]dx∫ 1

0
H2dx

≤ min
H

∫ 1

0
[ε2H2

xx +W ′′(uξ)H2
x]dx∫ 1

0
H2dx

.

In the same way someone can prove and the opposite inequality. It is not

written because it is not necessary for the continuing of the proof.

Calculation of minH′
∫ 1
0 [ε2H2

xx+W
′′(uξ)H2

x]dx∫ 1
0 H

2dx
is accomplished in the steps (I)-

(V):
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(I)

〈Ah, h〉 :=

∫ 1

0

[ε2h2x +W ′′(uξ)h2]dx

=
∞∑
k=1

a2kµ̄k,

where µk are the eigenvalues defined on the problem of Lemma 3.1.1 and

µ̄k := −µk. It is known that µ1, µ2, ..., µN+1 are exponentially small and

that the rest of them are negative and bounded away from zero uniformly in

ε and ξ ∈ Ωρ0 . This result is known by the [ABF].

Thus we can write

〈Ah, h〉 ≥ a21µ̄1 + · · ·+ a2N+1µ̄N+1 + µ̄N+2

∞∑
k=N+2

a2k

= µ̄N+2 ‖ h ‖2 −
N+1∑
k=1

(µ̄N+2 − µ̄k)a2k.

By Definition of H′ we have ‖ h ‖= 1, so

〈Ah, h〉 ≥ µ̄N+2 − (µ̄N+2 − µ̄1)a
2
1

= µ̄N+2(1− a21) + µ̄1a
2
1.

Let

δ(ε) := 1− a1 ≤ 1− a21,

then

〈Ah, h〉 ≥ µ̄N+2δ(ε) + µ̄1a
2
1

≥ µ̄N+2δ(ε)−O(e−c/ε),
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thus

〈Ah, h〉 ≥ Cδ(ε)−O(e−c/ε), (3.2)

where C independent of ε and ξ. This happens because, according to [ABF],

µ̄N+2 is positive and bounded away from zero uniformly in ε and ξ ∈ Ωρ.

(II)Let φ̂ =
∫ 1

0
ψ(x)dx. Then

‖ h− (ψ1 − ψ̂1) ‖2 = 〈h, h〉 − 2〈h, ψ1 − ψ̂1〉+ ‖ ψ1 − ψ̂1 ‖2

= 〈h, h〉 − 2〈h, ψ1〉+ 2〈h, ψ̂1〉+ 〈ψ1 − ψ̂1, ψ1 − ψ̂1〉
= 〈h, h〉 − 2〈h, ψ1〉+ 2〈h, ψ̂1〉+ 〈ψ1, ψ1〉 − 2〈ψ̂1, ψ1〉+ 〈ψ̂1, ψ̂1〉

= 1− 2〈h, ψ1〉+ 2ψ̂1

∫ 1

0

hdx+ 1− 2ψ̂1

∫ 1

0

ψ1dx+ ψ̂2
1

= 1− 2〈h, ψ1〉+ 2ψ̂10 + 1− 2ψ̂2
1 + ψ̂2

1

= 2[1− 〈h, ψ1〉]− ψ̂2
1,

thus

‖ h− (ψ1 − ψ̂1) ‖2 +ψ̂2
1 = 2[1− 〈h, ψ1〉] = 2δ(ε).

(III) Estimation of ‖ H ‖2

|H(x)| = |
∫ x

0

h(t)dt|

≤ |
∫ x

0

(ψ1 − ψ̂1)dt|+ |
∫ x

0

h− (ψ1 − ψ̂1)dt|

≤ ψ̂1+ ‖ h− (ψ1 − ψ̂1) ‖
≤
√

2[ψ̂2
1+ ‖ h− (ψ1 − ψ̂1) ‖2]1/2

= 2δ(ε)1/2,

thus

‖ H ‖2≤ 4δ(ε). (3.3)
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(IV) δ(ε) ≥ Kε for some positive constant K:

δ(ε) = 1− a1 =
1− a21
1 + a1

≥ (1− a21)
2

Let Q(k) := 〈k, ψ1〉2 where k ∈ L2. Then

max
k∈H′

Q(k) ≤ max∫ 1
0 kdx=0, ‖k‖=1

Q(k) = Q(
ψ1 − ψ̂1

‖ ψ1 − ψ̂1 ‖
) = 1− ψ̂2

1.

Therefore

a21 = Q(h) ≤ 1− ψ̂2
1

or

δ(ε) ≥ 1

2
ψ̂2
1.

thus

δ(ε) ≥ Kε.

(V) Combining (3.1), (3.2) and (3.3)

−λN+1 = min
H∈H′

∫ 1

0
[ε2H2

xx +W ′′(uξ)H2
x]dx∫ 1

0
H2dx

= min
H∈H′

〈Ah, h〉
‖ H ‖2

≥ [Cδ(ε)−O(e−c/ε)]

4δ(ε)

≥ C > 0

We have already proved that all the eigenvalues except N are valued with

values less than −C.
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Second part: There are N eigenvalues that are expo-

nentially small.

In this part we prove that the first N eigenvalues are exponentially small. In

order to reach our goal, we approximate the first N eigenfunctions of Lc. The

functions that approximate the first N eigenfunctions are Eξ
j , 1 ≤ j ≤ N

defined as follows:

Eξ
j (x) := w̄j(x)−Qj(x)

w̄j(x) := ũhj (x) + ũhj+1(x), j = 1, 2, ..., N,

and

Qj(x) := (−1

6
x3 +

1

2
x2 − 1

3
x)w̄jxx(0) +

1

6
(x3 − x)w̄jxx(1) + xw̄j(1)

with

Ej = Ejxx = 0 for x = 0, 1.

Before we prove this claim (that Ej approximate the eigenvalues) in

Lemma 3.1.3 we need some calculations.

First of all we need to calculate the following term

ũhj =

∫ x

0

∂uh

∂hi
(y)dy

By Proposition 2.2.3 we have the following formula

uhj (x) =



χj−1wj, x ∈ Ij−1
(1− χj)(−φjx + wj) + χj(−φj+1

x − wj+1)

+χjx(φ
j − φj+1), x ∈ Ij

−(1− χj+1)wj+1, x ∈ Ij+1

0, otherwise

(3.4)

32



Therefore it is easy to obtain

uhj (x) = −uhx(x) + (1− ξj)wj − ξjwj+1, x ∈ Ij

Using Propositions 2.2.2, 2.2.4 and 2.2.5, we also obtain

w̄j =



0, x ≤ mj−1

e, x ∈ Ij−1
uh(mj)− uh(x) + e, x ∈ Ij ∪ Ij+1

uh(mj)− uh(mj+2) + e, x ≥ mj+2

0, otherwise

(3.5)

Where e is an error estimated as

In Ij−1

e =

∫ x

mj−1

ξj−1(y)wj(y)dy,

so by Proposition 2.2.4

|e| ≤ Cε−1β(r).

In Ij

e =

∫ mj

mj−1

ξj−1(y)wj(y)dy

∫ x

mj

(1− ξj(y))wj(y)dy,

so by Proposition 2.2.4

|e| ≤ Cε−1β(r).

In Ij+1

e = Cε−1β(r)−
∫ x

mj+1

ξj+1(y)wj+2(y)dy,

so by Proposition 2.2.4

|e| ≤ Cε−1β(r).

For x ≥ mj+2

e = Cε−1β(r)−
∫ x

mj+2

(1− ξj+2(y))wj+2(y)dy,
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so by Proposition 2.2.4

|e| ≤ Cε−1β(r).

Therefore

|e| ≤ Cε−1β(r) everywhere in [0, 1] (3.6)

So after the approaches of e in Ij−1, Ij, Ij+1 and Ij+2 we know that w̄j
looks like Figure 3.1

Figure 3.1: Simulation of the w̄j

continuing we can take

|w̄j(1)| ≤ Cε−1β(r)

34



|w̄jxx(0)|, |w̄jxx(1)| ≤ Cε−3β(r) (3.7)

Therefore

Eh
j (x) =


e, x ≤ mj

uh(mj)− uh(x) + e, x ∈ Ij ∪ Ij+1

uh(mj)− uh(mj+2) + e, x ≥ mj+2

(3.8)

where e satisfies (3.6)

Now we are ready to take some rigorous results regarding the approxima-

tion of the eigenfunctions by Ej

Lemma 3.1.3 Let H1, H2, ..., HN be the orthonormal eigenfunctions of Lc

corresponding to the first N eigenvalues λ1, λ2, ..., λN respectively. Let Ri,

1 ≤ i ≤ N satisfies the equation below

Ei =
N∑
j=1

CijHj +Ri, 〈Ri, Hj〉 = 0.

Then if h ∈ Ωρ with ρ sufficiently small, we have

(i)

‖ R ‖ ≤ Cε−5β(r),

‖ R′ ‖ ≤ Cε−6β(r),

‖ R′′ ‖ ≤ Cε−7β(r).

(ii) Both (Cij) and ε(Cij)
−1 are bounded uniformly with respect to ε when ε

is enough small.

Proof proof of (i)

(1) By 3.8 in Ii ∪ Ii+1, we have

LcEi = Lce− Lcuh

and

Lcuh = −(Lb(uh))xx.
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As in the proof of Proposition 2.2.6

|Lcuh| ≤ Cε−2α(r)

And also

|Lce| ≤ Cε−5β(r)

Finally we have

|LEi | ≤ Cε−5β(r) (3.9)

(2) Applying Lc to the Ei =
∑N

j=1CijHj +Ri we obtain

LcEi =
N∑
j=1

CijL
cHj + LcRj

=
N∑
j=1

CijλjHj + LcRj

Taking the inner product with Ri, we get

|〈LcRi, Ri〉| = |〈LcEi, Ri〉 − 〈
N∑
j=1

CijλjHj, Ri〉|

= |〈LcEi, Ri〉|

so

|〈LcRi, Ri〉| ≤ Cε−5β(r)‖Ri‖. (3.10)

by Lemma 3.1.2

λi ≥ C > 0, i > N

so

|〈LcRi, Ri〉| ≥ C‖Ri‖2

Therefore from the last two inequalities we take

‖ Ri ‖≤ Cε−5β(r). (3.11)
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(3)

〈−LcRi, Ri〉 =

∫ 1

0

[ε2(R′′i )
2 +W ′′(uh)(R′i)

2]dx

≥ ε2 ‖ R′′i ‖2 −C ‖ R′i ‖2

By interpolation

‖ R′i ‖2≤ η ‖ R′′i ‖2 +η−1 ‖ Ri ‖2

where η = ε2

2
1
C

.

Substituting,

〈−LcRi, Ri〉 ≥
ε2

2
‖ R′′i ‖2 −

2

ε2
C ‖ Ri ‖2

On the other hand, by (3.10) (3.11) we have

|〈−LcRi, Ri〉| ≤ Cε−5β(r)‖Ri‖
≤ Cε−10β(r)2

= Cε−10α(r),

thus

ε2

2
‖R′′i ‖2 ≤ 〈LcRi, Ri〉+

2

ε2
C‖Ri‖2

≤ Cε−10α(r) +
2

ε2
C(Cε−5β(r))2

≤ Cε−10α(r) +
2

ε2
Cε−10α(r)

= Cε−12α(r)

Consequently

‖R′′i ‖2 ≤ Cε−14α(r)

and

‖R′i‖2 ≤ Cε−12α(r)

proof of (ii)

Let A = (aij) a matrix such as A = CCT where C = Cij and CT the
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transpose of C. We have three different cases: for |i− k| > 1, for i = k and

for i = k + 1.

For |i− k| > 1

|〈Ei, Ek〉| ≤ Cε−6α(r)

For k = i

〈Ei, Ek〉 = 〈Ei, Ei〉

=

∫ mi+2

mi

E2
i dx+O(ε−3β(r))

=

∫ mi+2

mi

[uh(x)− uh(mi)]
2dx+O(ε−3β(r))

by Proposition 2.2.1

〈Ei, Ei〉 ≥
1

2
[mi+2 −mi] +O(ε−3β(r))

≥ min
1≤j≤N

(hj+1 − hj) +O(ε−3β(r))

thus

〈Ei, Ei〉 ≥
ε

ρ

For k = i+ 1

〈Ei, Ek〉 = 〈Ei, Ei+1〉

=

∫ mi+2

mi+1

EiEi+1dx+O(ε−3β(r))

=

∫ mi+2

mi+1

[uh(x)− uh(mi)][u
h(x)− uh(mi+1)]dx+O(ε−3β(r))

While x is valued in Ii+1 by Proposition 2.2.1 we have the following state-

ments:

I f x > hi+1 then the first factor of the integral [uh(x)− uh(mi)] is small.

Otherwise if x < hi+1 then the second factor [uh(x)− uh(mi+1)] is small.
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In fact we can show that

〈Ei, Ei+1〉 = O(ε)

as r → ∞. Consequently we have for ρ sufficiently small and h ∈ Ωρ, the

matrix A is diagonally dominant. Since

|Cij| ≤‖ Hj ‖‖ Ei ‖

is bounded and

C−1 = CTA−1

we can see that the elements of C and εC−1 are uniformly bounded as ε→ 0

The proof of Theorem A is completed by the next lemma

Lemma 3.1.4 Let λ1, λ2, ..., λN be the the first N eigenvalues of EVP. Then

λi = O(ε−6β(r)), i = 1, 2, ..., N

Proof proof for i=1:

By the variational characterization of eigenvalue λ1

λ1 = −
∫ 1

0

[ε2H ′′21 +W ′′(uh)H ′21 ]

where ‖ H1 ‖= 1.

By Lemma 3.1.3 for some constants ai, bi, we have

H1 =
N∑
i=1

[aiEi + biRi],

where εai, εbi are uniformly bounded as ε→ 0.
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Let

Z =
N∑
i=1

aiEi,

then we have∫ 1

0

[ε2H ′′21 +W ′′(uh)H ′21 ]dx

= ε2
∫ 1

0

(H1 − Z)′′2dx+

∫ 1

0

W ′′(uh)(H1 − Z)′2dx

+

∫ 1

0

[ε2Z ′′2 +W ′′(uh)Z ′2]dx

+2{ε2
∫ 1

0

(H1 − Z)′′Z ′′dx+

∫ 1

0

W ′′(uh)(H1 − Z)′Z ′dx}

=: I + II + III,

where

I := ε2
∫ 1

0

(H1 − Z)′′2dx+

∫ 1

0

W ′′(uh)(H1 − Z)′2dx

II := +

∫ 1

0

[ε2Z ′′2 +W ′′(uh)Z ′2]dx

III := +2{ε2
∫ 1

0

(H1 − Z)′′Z ′′dx+

∫ 1

0

W ′′(uh)(H1 − Z)′Z ′dx}

By (3.9),

LcZ = O(ε−6β(r))

Consequently

Lc(H1 − Z) = λ1H1 +O(ε−6β(r))

−ε2
∫ 1

0

(H1 − Z)′′′′Zdx+

∫ 1

0

(W ′′(uh)(H1 − Z)′)′Zdx

= λ1

∫ 1

0

H1Zdx+O(ε−6β(r)),
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Integrating by parts we take

λ1

∫ 1

0

H1Zdx+O(ε−6β(r)) = −ε2
∫ 1

0

(H1 − Z)′′Z ′′dx

−
∫ 1

0

W ′′(uh)(H1 − Z)′Z ′dx

= −1

2
III.

By 3.9 the second term is estimated as

II =

∫ 1

0

LcZZdx

= O(ε−7β(r))

and by (3.10), (3.11)we take

I = O(ε−5β(r)).

Therefore because

λ1 = −I − II − III

we have

λ1 = 2λ1

∫ 1

0

H1Zdx+O(ε−7β(r))

so

λ1(1− 2

∫ 1

0

H1Zdx) = O(ε−7β(r))

and
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∫ 1

0

H1Zdx =

∫ 1

0

H1(H1 −
N∑
i=1

biRi)dx

= 1−
N∑
i=1

bi

∫ 1

0

H1Ridx

= 1.

Thus

λ1 = O(ε−7/β(r)).

3.2 Proof of Theorem B

Now we are ready to prove Theorem B.

Definition 3.2.1 Let ṽ ∈ C2[0, 1], ṽ = 0 at x = 1, 2,

� Aε(ṽ) :=
∫ 1

0
[ε2ṽ2xx +W ′′(uh)ṽ2x]dx,

� Bε(ṽ) :=
∫ 1

0
[ε2ṽ2xx + ṽ2x]dx.

Under this definition we have the following lemma.

Lemma 3.2.2 Let ṽ ∈ C2[0, 1], ṽ = 0 at x = 0, 1,

‖ṽ‖2∞ ≤ Bε(ṽ)

ε‖ṽ‖2∞ ≤ (1 + ε)Bε(ṽ).
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Proof It is not so hard to see that for every x

|ṽ(x)| = |
∫ x

0

ṽ(t)dt |

≤ |
∫ x

0

| ṽ(t) | dt

≤ ‖ṽx‖
≤ Bε(ṽ)1/2

thus

|ṽ(x)|2 ≤ Bε(ṽ)

max
x
{|ṽ(x)|2} ≤ Bε(ṽ)

{max
x
|ṽ(x)|}2 ≤ Bε(ṽ)

‖ṽ‖2∞ ≤ Bε(ṽ)

We have already finished with the first inequality.

For the second inequality we assume that ṽ2x(x1) = ‖ṽx‖2∞. By the Roll

theorem and the boundary conditions ṽ = 0 at x = 0, 1 we know that there

exists x0 6= x1 such that ṽx(x0) = 0 and consequently we have

ṽ2x(x0) ≤ Bε(ṽ).

We can assume that x1 ≥ x0, without lost of generality because otherwise

we can reflect the function around x = 1/2.

0 ≤ (εṽxx − ṽx)2

0 ≤ ε2ṽ2xx + ṽ2x − 2εṽxxṽx

2εṽxxṽx ≤ ε2ṽ2xx + ṽ2x.

Integrating from x0 to x1 we get

43



∫ x1

x0

2εṽxx(x)ṽx(x)dx ≤
∫ x1

x0

ε2ṽ2xx(x) + ṽ2x(x)dx∫ x1

x0

2εṽxx(x)ṽx(x)dx ≤
∫ 1

0

ε2ṽ2xx(x) + ṽ2x(x)dx[
εṽ2x
]x1
x0
≤ Bε(ṽ)

εṽ2x(x1)− εṽ2x(x0) ≤ Bε(ṽ)

εṽ2x(x1) ≤ Bε(ṽ).

Consequently

ε‖ṽx(x1)‖2∞ ≤ Bε(ṽ)

Lemma 3.2.3 There is a ρ0 > 0 such that if 0 < ρ < ρ0 and h ∈ Ω, then

for any ṽ ∈ C2 with ṽ = 0 at x = 0, 1 and 〈ṽ, Ej〉 = 0, 1 ≤ j ≤ N , there is

a constant C such that

CAε(ṽ) ≥ ε2Bε(ṽ)

Proof By Lemmas 3.1.2 and 3.1.4 we have

Aε(ṽ) = −
∞∑
j=1

λj〈Hj, ṽ〉2

≥
N∑
j=1

−λj〈Hj, ṽ〉2 − λN+1

∞∑
j=N+1

〈Hj, ṽ〉2

≥ (λN+1 − λ1)
N∑
j=1

〈Hj, ṽ〉2 − λN+1

∞∑
j=1

〈Hj, ṽ〉2

= (λN+1 − λ1)
N∑
j=1

〈Hj, ṽ〉2 − λN+1‖ṽ‖2

≥ −λN+1

2
‖ṽ‖2
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where Hj, j = 1, 2, ..., N as in Lemma 3.1.3

Suppose that...

Lemma 3.2.4 Let h ∈ Ωρ where ρ small enough, ũ(t, x) = ũξ + ṽ is such

that ṽ satisfies (2.5) ξ(t) satisfies (2.4) . Additionally ũ is so close to M
such that Bε(ṽ) ≤ ε7O(1), then

|ξ̇i| ≤ C[ε−5β(r)Bε(ṽ)1/2 + ε−2Bε(ṽ) + ε−2α(r)].

Proof by (2.5) and (2.4)

〈−ε2(ũξxxxx + ṽxxxx) + (W ′(ũξx + ṽx))x, E
ξ
i 〉

= 〈Lcũξ + Lcṽ + (f2ṽ
2
x)x, Ei〉

where

f2 =

∫ 1

0

(1− τ)W ′′′(ũξx + τ ṽx)dτ. (3.12)

By Proposition 2.2.6

|〈Lcũξ, Ei〉| ≤ Cε−1α(r)

additionally

〈Lcṽ, Ei〉 = 〈ṽ, LcEi〉

= 〈ṽ, ∂

∂hi

∂

∂x
Lbuξ〉+ 〈ṽ, ∂

∂hi+1

∂

∂x
Lbuξ〉 − 〈ṽ, LcQi〉

consequently

and by Proposition 2.2.7

| ∂
∂hi

∂

∂x
Lbuh| ≤ Cε−4β(r)

So
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〈Lcṽ, Ei〉 ≤ Cε−4β(r)‖ṽ‖ (3.13)

thus

〈Lcṽ, Ei〉 ≤ Cε−4β(r)‖ṽ‖∞ (3.14)

By Lemma 3.2.2

〈Lcṽ, Ei〉 ≤ Cε−4β(r)Bε(ṽ)1/2

if we assume that

ε−1Bε(ṽ) is bounded (3.15)

and by (3.12), (3.4) and integration by parts , we have

|〈(f2ṽ2x)x, Ei〉| ≤ Cε−1Bε(ṽ)

.

Next we need to estimate the coefficient matrix (aij) defined as in (2.4)

aij := 〈ũξj , Ei〉 − 〈ṽ, Eij〉.

Let

bij := 〈ũξj , Ei〉

we can rewrite ũξi as

ũξi := w̄i − w̄i+1 + · · ·+ (−1)N−iw̄N + eiu
h
N+1,

where w̄i is defined as in (3.3)

w̄i := ũξi (x) + ũξi+1(x)

and

ei = O(ε−1β(r)).

Therefore by the proof of Lemma 3.1.3 and because Ej = w̄j(x)−Qj(x), we
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get

bij = O(ε−1β(r)) +


0, j > i+ 1

O(ε), j = i+ 1

(−1)i−j ‖ ‖wi‖O(ε), j ≤ i

also

| ∂
∂ξi

w̄ |≤ Cε−1

and by the Poincare inequality

ṽ ≤ CBε(ṽ)1/2.

So

|〈ṽ, Eij〉| ≤ Cε−1Bε(ṽ)1/2.

Proof of Theorem B

First we need some estimations onAε(ṽ). We start with this term 1
2
∂
∂t
〈−Lcṽ, ṽ〉.

1

2

∂

∂t
〈−Lcṽ, ṽ〉 = −1

2
〈(Lcṽ)t, ṽ〉 −

1

2
〈Lcṽ, ṽt〉

= −1

2
〈(−ε2ṽxxxx + (W ′′(uξ)ṽx)x)t, ṽ〉 −

1

2
〈Lcṽ, ṽt〉

= −1

2
〈−ε2ṽtxxxx + (W ′′(uξ)ṽtx)x + (

∂

∂t
W ′′(uξ)ṽx)x, ṽ〉 −

1

2
〈Lcṽ, ṽt〉

= −1

2
〈Lcṽt + (

∂

∂t
W ′′(uξ)ṽx)x, ṽ〉 −

1

2
〈Lcṽ, ṽt〉

= −1

2
〈Lcṽt, ṽ〉 −

1

2
〈( ∂
∂t
W ′′(uξ)ṽx)x, ṽ〉 −

1

2
〈Lcṽ, ṽt〉

= −〈Lcṽ, ṽt〉+ 〈−1

2
(
∂

∂t
W ′′(uξ)ṽx)x, ṽ〉
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where we have used selfadjoint structure (see [BF] ):

〈Lcṽt, ṽ〉 = 〈ṽt, Lcṽ〉.

Now

ṽt = Lcũ−
N∑
j=1

ũξj ξ̇j

= Lc(ũξ + ṽ)−
N∑
j=1

ũξj ξ̇j

= Lcũξ + Lcṽ + (f2ṽ
2
x)x −

N∑
j=1

ũξj ξ̇j,

where f2 as in (3.12).

Therefore

1

2

∂

∂t
〈−Lcṽ, ṽ〉 = −〈Lcṽ, Lcṽ〉

−〈Lcṽ,Lcũξ〉
−〈Lcṽ, (f2ṽ2x)x〉

+
N∑
j=1

〈Lcṽ, ũξj ξ̇j〉

+〈−1

2
(W ′′(uξ)tṽx)x, ṽ〉

=: (1) + (2) + (3) + (4) + (5).
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where

(1) := −〈Lcṽ, Lcṽ〉
(2) := −〈Lcṽ,Lcũξ〉
(3) := −〈Lcṽ, (f2ṽ2x)x〉

(4) := +
N∑
j=1

〈Lcṽ, ũξj ξ̇j〉

(5) := +〈−1

2
(W ′′(uξ)tṽx)x, ṽ〉

Then we estimate these terms

|(2)| ≤ ‖Lcṽ‖‖Lcũξ‖ ≤ 1

4
‖Lcṽ‖+ ‖Lcũξ‖ (3.16)

In order to estimate (3), we expand (f2ṽ
2
x)x

(f2ṽ
2
x)x = 2ũxũxx

∫ 1

0

(1− τ)W ′′′(ũξx + τ ṽx)dτ

+ṽ2x

∫ 1

0

(1− τ)W ′′′(ũξx + τ ṽx)(ũ
ξ
xx + τ ṽxx)dτ

So under the assumption (3.15)

|(3)| ≤ C[‖Lcṽ‖‖ṽx‖∞‖ṽxx‖+ ‖Lcṽ‖‖ṽx‖2∞(
1

ε
+ ‖ṽxx‖)]

≤ 1

8
‖Lcṽ‖2 + C(ε−4Bε(ṽ)2)

|(4)| ≤ ‖Lcṽ‖‖ũξj‖|ξ̇j|
≤ Cε−1/2‖Lcṽ‖|ξ̇j|

≤ 1

8
‖Lcṽ‖+ Cε−1|ξ̇j|2
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|(5)| =
1

2
| 〈[W ′′(uξ)]tṽx, ṽx〉 |

≤ C
N∑
j=1

|ξ̇j|‖uξj‖1‖ṽx‖2∞

≤ Cε−1
N∑
j=1

|ξ̇j|Bε(ṽ),

because by Proposition 2.2.5 we know that ‖ uξj ‖1 is bounded.

Using the approximations |(2)|, |(3)|, |(4)| and |(5)|, we get

1

2

∂

∂t
〈−Lcṽ, ṽ〉+

1

2
‖ Lcṽ ‖2≤‖ Lc(ũξ) ‖2 +Cε−1|ξ̇j|2 + Cε−4B2

ε (ṽ) (3.17)

so using Proposition 2.2.6

1

2

∂

∂t
〈−Lcṽ, ṽ〉+

1

2
‖ Lcṽ ‖2≤ C[ε−2α2(r) + ε−1|ξ̇j|2 + ε−4B2

ε (ṽ)]. (3.18)

Using Lemma 3.2.4 we can get

|ξ̇j|2 ≤ C[ε−10β2(r)Bε(ṽ) + ε−4B2
ε (ṽ) + ε−4α2(r)]

Combining this inequality with (3.18), we get

1

2

∂

∂t
〈−Lcṽ, ṽ〉+

1

2
‖ Lcṽ ‖2≤ C[ε−5α2(r) + ε−5B2

ε (ṽ) + ε−11β(r)Bε(ṽ)].

By Lemma 3.2.3, we have

ε2Bε(ṽ) ≤ C ‖ Lcṽ ‖2 .
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Thus

1

2

∂

∂t
〈−Lcṽ, ṽ〉+ 1

2
‖ Lcṽ ‖2≤ C[ε−5α2(r)+(ε−5Bε(ṽ)+ε−11β(r))ε−2 ‖ Lcṽ ‖2].

Using the assumption ε−7Bε(ṽ) = o(1) of Lemma 3.2.4, we get

1

2

∂

∂t
〈−Lcṽ, ṽ〉+

1

3
‖ Lcṽ ‖2≤ Cε−3α2(r) ≤ Cε−5α2(r).

Using Lemma 3.1.2, we can get

∂

∂t
Aε(ṽ) + aAε(ṽ) ≤ Cε−5α2(r),

where

a =
1

3
|λN+1| > 0.

Integration gives

Aε(ṽ(t)) ≤ Aε(ṽ(0))e−at + Cε−5α2(r)(1− e−at),

so

Aε(ṽ(t)) ≤ max
{
Aε(ṽ(0)), Cε−5α2(r)

}
, (3.19)

Where C, a are positive constants, independent of ε and ṽ.

By Lemma 3.2.2 and 3.19, we write the inequality of Lemma 3.2.4 as

|ξ̇i| ≤ C[ε−6β(r)A1/2
ε (ṽ) + ε−4Aε(ṽ) + ε−2α(r)]

≤ C[ε−6β(r)(Aε(ṽ(0))1/2e−(at)/2 + ε−5/2α(r)) + ε−4Aε(ṽ(0))e−at + ε−2α(r)],

thus

|ξ̇i| ≤ C[ε−6β(r)(Aε(ṽ(0))1/2e−(at)/2 + ε−4Aε(ṽ(0))e−at + ε−2α(r)].
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The slow channel is defined by the following inequality

Aε(ṽ(0)) ≤ Cε−5α2(r).

Therefore from the last two inequalities we get

|ξ̇j| ≤ Cε−2a(r) (3.20)

The proof of Theorem B follows from (3.19) and (3.20).

The slow channel as we know is defined by Definition 3.0.3 to be

Γ = {ũ : ũ = ũξ + ṽ, Aε(ṽ) < bε−5α2(r)}.

Additionally if we define

Γ′ = {ũ : ũ = ũξ + ṽ, ε−7+δ1Bε(ṽ) < C},

with some fixed δ1, then we have the conclusion of Figure 3.2. If a solution

starts in Γ′, then by (3.19) it will decay exponentially towards Γ until uξ

leaves the boundary of the Invariant Manifold. Additionally, if it enters the

Γ then it will stay there and it can leave it only through the ends of the

channel.

Figure 3.2: The Invariant Manifold is in blue and Γ and Γ′ are in red and
green respectively. The arrows shows the motion of the solutions
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Chapter 4

System of ODEs

For any function φ(x), φ̃(x) :=
∫ 1

0
φ(y)dy

4.1 The System of ODEs

We have already proven that the Invariant Manifold attracts the solutions

which are close to its neighbourhood called ”slow channel” (Theorem B).

Nevertheless, we have not investigated the evolution of the solution close to

the Invariant Manifold. Because v is negligibly small, what we have to find

is the behaviour of ξ = (ξ1, ξ2, ..., ξN). The answer to this question is given

rigorously by the following ODE system.

dξ1
dt

=
1

4(ξ2 − ξ1)
(α3 − α1) +O(εα)

dξ2
dt

=
1

4(ξ2 − ξ1)
(α3 − α1) +

1

4(ξ3 − ξ2)
(α4 − α2) +O(εα)

dξ3
dt

=
1

4(ξ3 − ξ2)
(α4 − α2) +

1

4(ξ4 − ξ3)
(α5 − α3) +O(εα)

...
dξN
dt

=
1

4(ξN − ξN−1)
(αN+1 − αN−1) +

1

4(hN+1 − ξN)
(αN+2 − αN) +O(εα)
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In order to take an easier view of this system, we can imagine hN+1 as a

variable adding one more equation

dhN+1

dt
=

1

4(hN+1 − ξN)
(αN+2 − αN) +O(εα).

The derivation of this system is given in the next section. As we can see,

between two neighbour quantities of the same phase (ξj−1, ξj) and (ξj+1, ξj+2)

the bigger of them two out to pump quantity from the smaller. This happens

because of the sign of number αj+2 − αj. The tempo of this process is

proportional to (αj+2 − αj)/(ξj+1 − ξj).
Regarding the layer points, because they are between two different phases,

their movement depends on the pumping of both phases. That’s why in the

system every ξ̇i is equal to the sum of two terms. An example is given in

Figure 4.1

4.2 Derivation of the ODE System

In this section we derive the system mentioned in the previous section. We

work with the integrated equation and with inner product, so:

N∑
j=1

αij ξ̇j = 〈−ε2(ũξxxxx + ṽxxxx) + (W ′(ũξx + ṽx))x, E
ξ
i 〉

The key, in order to produce the system, is estimation of 〈−ε2(ũξxxxx+ṽxxxx)+

(W ′(ũξx + ṽx))x, E
ξ
i 〉 and of the matrix αij. Afterwards we invert the matrix

αij to α−1ij and we multiply with it both , right and left hand, sides of the

equation.

Approximation of 〈−ε2(ũξxxxx + ṽxxxx) + (W ′(ũξx + ṽx))x, E
ξ
i 〉

〈−ε2(ũξxxxx + ṽxxxx) + (W ′(ũξx + ṽx))x, E
ξ
i 〉

〈Lcũξ + Lcṽ + (f2ṽ
2
x)x, Ei〉 =: I1 + I2 + I3
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Figure 4.1: In this Figure are the dynamics described by the system of ODEs.
The arrows are the velocities of ξis with measure |ξ̇i|.

where

I1 = 〈Lc, Ei〉
I2 = 〈Lcṽ+, Ei〉
I3 = 〈(f2ṽ2x)x, Ei〉

Estimation of I1:
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I1 = 〈Lcuξ, Ei〉
= 〈−(Lbuξ)x, Ei〉
= 〈Lbuξ, Eix〉
= 〈Lbuξ, uξi + uξi+1 −Qix〉

by Proposition 2.2.3 we can take some results about uξi + uξi+1

uξi + uξi+1 =



χi−1wi, x ∈ Ii−1
(1− χi)(−φix + wi) + χi(−φi+1

x − wi+1)

+χix(φ
i − φi+1) + χiwi+1, x ∈ Ii

−(1− χi+1)wi+1 + (1− χi+1)(−φi+1
x + wi+1)

+χi+1(−φi+2
x − wi+2) + χi+1

x (φi+1 − φi+2), x ∈ Ii+1

−(1− χi+2)wi+2, x ∈ Ii+2

or,

uξi + uξi+1 =



χi−1wi, x ∈ Ii−1
(1− χi)(−φix + wi)− χiφi+1

x + χix(φ
i − φi+1), x ∈ Ii

−(1− χi+1)φi+1
x + χi+1(−φi+2

x − wi+2)

+χi+1
x (φi+1 − φi+2), x ∈ Ii+1

−(1− χi+2)wi+2, x ∈ Ii+2

or,

uξi+u
ξ
i+1 =


χi−1wi, x ∈ Ii−1
(1− χi)wi − (1− χi)φix − χiφi+1

x + χix(φ
i − φi+1), x ∈ Ii

−χi+1wi+2 − (1− χi+1)φi+1
x − χi+1φi+2

x + χi+1
x (φi+1 − φi+2), x ∈ Ii+1

−(1− χi+2)wi+2, x ∈ Ii+2
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or,

uξi + uξi+1 =


χi−1wi, x ∈ Ii−1
(1− χi)wi + uξx, x ∈ Ii
−χi+1wi+2 + uξx, x ∈ Ii+1

−(1− χi+2)wi+2, x ∈ Ii+2

Therefore we have

I1 =

∫
Ii∪Ii+1

Lb(uξ)uξxdx+ 〈Lbuξ, e〉

where

e =



−Qix + χi−1wi, x ∈ Ii−1
−Qix + (1− χi)wi, x ∈ Ii
−Qix − χi+1wi+2, x ∈ Ii+1

−Qix − (1− χi+2)wi+2, x ∈ Ii+2

−Qix, elsewhere

∫
Ii∪Ii+1

Lb(uξ)uξxdx =

∫ mi+2

mi

(ε2uξxx −W ′(uξ))uξxdx

= [
ε2

2
uξx

2 −W (uξ)]mi+2
mi

=
ε2

2
uξx(mi+2)

2 −W (uξ(mi+2))−
ε2

2
uξx(mi)

2
+W (uξ(mi))

= 0− αi+2 − 0 + αi

= αi − αi+2

by Proposition 2.2.9 |Lb(uξ)| ≤ C|αi+1 − αi| for x ∈ Ii+1

by (3.7) and Proposition 2.2.8, |e| ≤ Cε−3β(r).

Thus

I1 = αi − αi+2 +O(ε−3β(r)α(r))

The new Estimation of I2: By (3.14)
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|〈Lcṽ, Ei〉| ≤ Cε−4β(r)Bε(ṽ)1/2

By Lemma 3.2.3

|〈Lcṽ, Ei〉| ≤ Cε−5β(r)Aε(ṽ)1/2

By Definition 3.0.3 of the slow channel Γ

|〈Lcṽ, Ei〉| ≤ Cb1/2ε−15/2α(r)β(r)

Thus

I2 = O(ε−15/2α(r)β(r))

Estimation of I3:

By (3.15)

〈(f2ṽ2x)x, Ei〉 ≤ Cε−1Bε(ṽ)

By Proposition 3.2.3

〈(f2ṽ2x)x, Ei〉 ≤ Cε−3Aε(ṽ)

By Definition 3.0.3 of the slow channel Γ

|〈(f2ṽ2x)x, Ei〉| ≤ Cε−3bε−5α2(r)

|〈(f2ṽ2x)x, Ei〉| ≤ Cbε−8α2(r)

Thus

I3 = O(ε−8α2(r))

Now it remains to estimate the matrix αij.

αij = 〈ũξj , E
ξ
i 〉 − 〈ṽ,

∂

∂ξj
Eξ
i 〉

Consequently, it suffices to estimate 〈ũξj , E
ξ
i 〉 and 〈ṽ, ∂

∂ξj
Eξ
i 〉.
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estimation of 〈ũξj , E
ξ
i 〉:

〈ũξj , E
ξ
i 〉 = 〈w̄j − w̄j+1 + · · ·+ (−1)N−jw̄N + ejũ

h
N+1, E

ξ
i 〉,

where by (3.6) and Figure 3.1

ej = ∂hN+1/∂hj − 1 = O(ε−1β(r))

Continuing we have

〈ũξj , E
ξ
i 〉 = 〈w̄j − w̄j+1 + · · ·+ (−1)N−jw̄N + ejũ

h
N+1, E

ξ
i 〉

= 〈w̄j − w̄j+1 + · · ·+ (−1)N−jw̄N + ejũ
h
N+1, w̄i −Qi(x)〉

= 〈w̄j − w̄j+1 + · · ·+ (−1)N−jw̄N , w̄i〉
−〈w̄j − w̄j+1 + · · ·+ (−1)N−jw̄N + ejũ

h
N+1, Qi(x)〉

+〈ejũhN+1, w̄i〉

By (3.7) we know that |Qi(x)| ≤ Cε−3β(r)

〈w̄j − w̄j+1 + · · ·+ (−1)N−jw̄N + ejũ
h
N+1, Qi(x)〉

≤‖ w̄j − w̄j+1 + · · ·+ (−1)N−jw̄N + ejũ
h
N+1 ‖‖ Qi(x) ‖

≤ max|w̄j−w̄j+1+· · ·+(−1)N−jw̄N+ejũ
h
N+1|max|w̄j−w̄j+1+· · ·+(−1)N−jw̄N+ejũ

h
N+1|

〈ejũhN+1, w̄i〉 ≤ ‖ ejũhN+1 ‖‖ w̄i ‖
≤ max|ejũhN+1|max|w̄i|

〈ũξj , E
ξ
i 〉 = 〈w̄j − w̄j+1 + · · ·+ (−1)N−jw̄N , w̄i〉+O(ε−4β)

or

〈ũξj , E
ξ
i 〉 = 〈w̄j, w̄i〉 − 〈w̄j+1, w̄i〉+ · · ·+ (−1)N−j〈w̄N , w̄i〉+O(ε−4β)
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And now what we have to do is to estimate 〈w̄j, w̄i〉 for every 1 ≤ i, j ≤ N .

for i = j by (3.5), (3.6)∫ 1

0

w̄2
jdx = 4lj+1 + Cjε+O(β)

Similarly for i 6= j ∫ 1

0

w̄iw̄jdx = O(ε).

finally

〈ũξj , E
ξ
i 〉 =

{
(−1)i+j4lj+1 +O(ε), i ≥ j

O(ε), i < j.

Estimation of 〈ṽ, ∂
∂ξj
Eξ
i 〉:

By Lemma 3.2.2 and Definition 3.0.3

|ũ| = O(ε−7/2α)

or

‖ ũ ‖= O(ε−7/2α)

Also ‖ ∂
∂ξj
Eξ
i ‖= O(ε−1/2) and

〈ṽ, ∂
∂ξj

Eξ
i 〉 = O(ε−4α).

And also

αij =

{
(−1)i+j4lj+1 +O(ε), i ≥ j

O(ε), i < j.

or

(aij) =
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
4(ξ2 − ξ1) 0 0 · · · 0

−4(ξ3 − ξ2) 4(ξ3 − ξ2) 0 · · · 0

4(ξ4 − ξ3) −4(ξ4 − ξ3) 4(ξ4 − ξ3) · · · 0

· · · · · · · · · . . .
...

(−1)N−14(hN+1 − ξN) (−1)N−24(hN+1 − ξN) (−1)N−34(hN+1 − ξN) · · · 4(hN+1 − ξN)


+O(ε)

or

(aij)
−1 =



1
4(ξ2−ξ1) 0 0 · · · 0

1
4(ξ2−ξ1)

1
4(ξ3−ξ2) 0 · · · 0

0 1
4(ξ3−ξ2)

1
4(ξ4−ξ3) · · · 0

· · · 0 1
4(ξ4−ξ3) · · ·

...

· · · · · · · · · . . . 0

0 0 0 · · · 1
4(hN+1−ξN )


+O(ε)

Multiplying both terms of the equation with (aij) we take the following

system

dξ1
dt

=
1

4(ξ2 − ξ1)
(α3 − α1) +O(εα)

dξ2
dt

=
1

4(ξ2 − ξ1)
(α3 − α1) +

1

4(ξ3 − ξ2)
(α4 − α2) +O(εα)

dξ3
dt

=
1

4(ξ3 − ξ2)
(α4 − α2) +

1

4(ξ4 − ξ3)
(α5 − α3) +O(εα)

...
dξN
dt

=
1

4(ξN − ξN−1)
(αN+1 − αN−1) +

1

4(hN+1 − ξN)
(αN+2 − αN) +O(εα)

We can either see hN+1 as a value or as a function of ξ. If hN+1 is a value,

the system has N equations but N + 1 values.
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by Proposition 2.3.1 and differentiating
∫ 1

0
uh(x)dx = M we find

∂hN+1

∂hj
= (−1)N−j +O(ε−1β)

and so differentiating hN+1 by time we find

dhN+1

dt
=

N∑
j=1

[(−1)N−j +O(ε−1β)]ξ̇j.

Using the system it turns out to be

dhN+1

dt
=

1

4(hN+1 − ξN)
(αN+2 − αN) +O(εα)

and finally we have the system

dξ1
dt

=
1

4(ξ2 − ξ1)
(α3 − α1) +O(εα)

dξ2
dt

=
1

4(ξ2 − ξ1)
(α3 − α1) +

1

4(ξ3 − ξ2)
(α4 − α2) +O(εα)

dξ3
dt

=
1

4(ξ3 − ξ2)
(α4 − α2) +

1

4(ξ4 − ξ3)
(α5 − α3) +O(εα)

...
dξN
dt

=
1

4(ξN − ξN−1)
(αN+1 − αN−1) +

1

4(hN+1 − ξN)
(αN+2 − αN) +O(εα)

dhN+1

dt
=

1

4(hN+1 − ξN)
(αN+2 − αN) +O(εα).

We are thankful to P.W.Bates J.Xun for this elegant system.

Stochastic Cahn-Hilliard Equation

The Cahn-Hilliard equation is a very good model for describing the metastable

patterns. Nevertheless, it is an idealization of the natural problem. This hap-

pens because of the noise of thermal fluctuations (see [BMW]). If we add

an extra non-homogeneous stochastic term to the Cahn-Hilliard equation
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we obtain the following Stochastic-Cahn-Hilliard equation (or Cahn-Hilliard-

Cook), which considers noise (for a basic reference on stochastic differential

equations see [W]):

ut = (−ε2uxx +W ′(u))xx + ∂xḂ, x ∈ (0, 1), t > 0,

where 0 < ε << 1 is the interaction length, W (u) = 1/4(u2−1)2 the potential

and B is a Q-Wiener process and accounts for the noise.

With the boundary conditions

ux = uxxx = 0, x ∈ {0, 1}, t > 0.

The Q-Wiener process is defined by the following definition.

Definition 4.2.1 Let (H,<>) be a Hilbert space. The H-valued stochastic

process B is called Q-Wiener process if and only if:

� B(0) = 0 (with probability 1), B has continuous paths.

� The differences B(t1)−B(s1), B(t2)−B(s2) are independent for every

0 ≤ s1 < t1 ≤ s2 < t2.

� B is Gaussian, meaning (< B(t1), h1 >, ..., < B(tn), hn >) is a vector

valued Gaussian random variable for every hi ∈ H, ti ≥ 0.

� E(B(t)) = 0, meaning E < B(t), h > is a vector valued Gaussian

random variable for every h ∈ H, t ≥ 0.

� B has covariance operator Q, meaning Q is a positive semidefinite sym-

metric operator, such that E < B(t), h >< B(s), g >= min{t, s} <
Qh, g > for every h, g ∈ H, t, s ≥ 0.

We can also convert Stochastic Cahn-Hilliard equation to an integrated

form

ũt = −ε2ũxxxx + (W ′(ũx))x + Ḃ, x ∈ (0, 1), t > 0,
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ũ(0, t) = 0, ũ(1, t) = M, t > 0,

ũxx = 0, x ∈ {0, 1}, t > 0,

where ũ(x, t) =
∫ x
0
u(y, t)dy.

The next step in order to obtain a solution is to integrate by time. As

opposed to deterministic integrals, the integral used is the Itô integral:

Definition 4.2.2 The Itô integral of a stochastic process v(t) is defined by

the sum ∫ t

0

vdB = lim
n→∞

n−1∑
k=0

v(tk)(B(tk+1)−B(tk)),

where 0 = t0 < t2 < ... < tn = t and tk+1 − tk → 0 as n→∞.

Now the theoretical background is complete. Is it possible to derive a

system of Stochastic ODEs for the Stochastic-Cahn-Hilliard equation? The

answer is given by D.Antonopoulou, D.Blomker, G.Karali, in [ABK].
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Appendix A

Numerical Simulations

All the Figures of the thesis are made using the MathWorks Matlab technical

computing language. The m-code for simulating the Invariant Manifold, like

in Figures 2.7 4.1, is given in this appendix .

%parameter epsilon of the Cahn−Hilliard equation

epsilon=0.01;

%step for the simulations

h=0.001;

%input for the transition layers

% u(1) is the value of uˆh at x=0

% du is the derivative of uˆh at x=0

% duu(i) is the derivative of uˆh at x=h i

u(1)=0.9999999;

du=0;

u(2)=u(1)+du*h;

duu(1)=−70.651678;
duu(2)=70.6516786207036;

duu(3)=−70.65167862070;
duu(4)=70.651;

duu(5)=−70.65167862070;
%duu(6)=70.5516786207035;

%duu(7)=−70.6516786207036;
%duu(8)=70.5516786207036;
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for i=1:1:1/h+1

x(i)=h*(i−1);
end

%simulation of the Reaction−Diffusion equation using method of finite

%elements. The step used is h.

k=1;

for i=2:1:1/h

if u(i−1)*u(i)<0
k=k+1;

hh(k−1)=x(i);
hh(k)=10;

u(i)=duu(k−1)*h;
u(i−1)=0;

end

u(i+1)=−u(i−1)+2*u(i)+(h/epsilon)ˆ2*(u(i)ˆ3−u(i));
end

for i=1:1:1/h+1

ou(i)=u(i);

end

%the manifold is the sum of two terms

%the first term

l=1;

i=0;

while i<1/h+1

i=i+1;

uu(i)=u(i);

if abs(x(i)−hh(l))<epsilon
while abs(x(i)−hh(l))<epsilon

u(i)=−u(i−2)+2*u(i−1)+(h/epsilon)ˆ2*(u(i−1)ˆ3−u(i−1));

if mod(l,2)==0
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uu(i)=(0.5−(0.5)*sin(0.5*3.1416*(x(i)−hh(l))/epsilon))*u(i);
end

if mod(l,2)==1

uu(i)=(1−(0.5−(0.5)*sin(0.5*3.1416*(x(i)−hh(l))/epsilon)))*u(i);
end

if i<1/h+1

if i<1/h+1

if (abs(x(i+1)−hh(l))>epsilon | | (x(i+1)−hh(l))==epsilon)
l=l+1;

end

end

end

i=i+1;

end

i=i−1;
end

end

for i=1:1:1/h+1

u(i)=ou(i);

end

%the second term

l=k−1;
i=1/h+2;

while i>1

i=i−1;
uuu(i)=0;

if abs(x(i)−hh(l))<epsilon
while abs(x(i)−hh(l))<epsilon

u(i)=−u(i+2)+2*u(i+1)+(h/epsilon)ˆ2*(u(i+1)ˆ3−u(i+1));

if mod(l,2)==0

uuu(i)=(0.5+(0.5)*sin(0.5*3.1416*(x(i)−hh(l))/epsilon))*u(i);
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end

if mod(l,2)==1

uuu(i)=(1−(0.5+(0.5)*sin(0.5*3.1416*(x(i)−hh(l))/epsilon)))*u(i);
end

if i>1

if (abs(x(i−1)−hh(l))>epsilon | | (x(i−1)−hh(l))==epsilon)
l=l−1;
if l==0

l=k;

end

end

end

i=i−1;

end

i=i+1;

end

end

%sum of the first and the second terms

for i=1/h+1:−1:1
u(i)=uuu(i)+uu(i);

end

plot(x,u)

%plot(x,u,'r')

xlabel('x')

ylabel('uˆh')

set(gca,'XTick',hh)

set(gca,'XTickLabel',{'h 1','h 2','h 3','h 4','h 5'})

%the l {N+2}
ll=2*(1−hh(k−1))
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The m-code for calculating the uhx(hN+1)

In the code given above duu(N+1), which approximates uhx(hN+1), takes a

unique value. The reason is that duu(N+1) is dependent on duu(1), duu(2),

...,duu(N) because lN+1 = 2(1 − hN+1). The method used in the following

code, for calculating duu(N+1), is bisection method.

%parameter epsilon of the Cahn−Hilliard equation

epsilon=0.01;

%step for the simulations

h=0.001;

l=ll;

%Bisection method in the interval [a,b]

a=70;

b=70.6516786208;

e=10;

while abs(e)>0.001

m=(a+b)/2;

i=2;

u(1)=0;

u(2)=m*h+u(1);

while u(i)−u(i−1)>0
u(i+1)=−u(i−1)+2*u(i)+(h/epsilon)ˆ2*(u(i)ˆ3−u(i));
i=i+1;

end

e=2*(i−2)*h−l;
if e<0

a=m;

else

b=m;

end

end
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