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Abstract

In this thesis the results of P.W. Bates and J. Xun regarding the metastable
patterns for the Cahn-Hilliard equation are reviewed. The main tool that is
used for studying the dynamics of the patterns is the Invariant Manifold. The
Invariant manifold, which is firstly constructed and suggested by J. Carr and
R.L. Pego for studying the metastable patterns of the Reaction-Diffusion
equation, approximates the phase space of the solutions of the Reaction-
Diffusion equation. In the thesis the same results are proved for the Cahn-
Hilliard equation. More specifically, if a Cahn Hilliard solution at a fixed time
is close enough to an element of the Invariant Manifold, then afterward it
goes closer and remains close to the Invariant Manifold. For the proof of this
result, the eigenvalues of the integrated Cahn-Hilliard operator are estimated.
Additionally, a system of ODEs that describes the evolution in terms of the
Invariant Manifold is derived. Finally some results regarding the stochastic
Cahn-Hilliard equation are presented. All the results are obtained using the
integrated form of the Cahn-Hilliard equation. The reason is that it has the
useful property of self-adjointness of the tensor of integrated Cahn-Hilliard
which is used in the proof of the results regarding dynamics.






ITepiindm

Ye auth} TV gpyaoio napoustdlovton To anoteréopota twy P.W. Bates xot
J. Xun yio to yetagvoton| npdtuna oty ellowor Cahn-Hilliard. To xGpto
epYaAEl0 TOU YENOWOTOLE(TOL YLt TH UEAETY] TNG OUVOULXAS TWV TEOTUTIWY efval
7 avarrolwtn mtohhamidtnto. H avariolwtn molhamhdtnta, 1 omolo dnptove-
yHOnxe xou mpotdidnxe and toug J. Carr xou R.L. Pego yia tn pekétn twyv
uetaeuoToddy Teotinwy g eéiowong avtidpaong didyuong, mpooeyyilel To
YWeo gdoewy g egioworng avtidpaong dudyuong. XTnyv Tapoloa gpyacio T
Ol amotehéopata anodewviovta yioo Ty e€lowor, Cahn-Hilliard. 116 cuy-
xeEXPLEVY, €qv wa Ao g edioworne Cahn-Hilliard oe wiadedoyévr yeovixn
oTiypr efvon apxetd xovtd oe Eva onueio NG avaALOlWTNE TOAAATAOTNTOG, TOTE
amo EXEIVY) TN YROVIXTH CTLYUY| X0 UETS TORAUUEVEL XOVTE, GTNY AVUAAOIWTY TOA-
Aamhotnta. Lo Ty amddeln autol Tou anoTEAEGUATOC, EXTULMVTOL OL WOLOTIES
Tou TeEAeoTH| TN eéiowong Cahn-Hilliard otny oloxinpwtixy| Tou yopey. Eni-
Théov TopdyeTon Eva GOOTNUN CUVATWY BLaPoRIX®Y EEICWOEWY TOU TERLYPAPEL
T duvaxt, Tng elowong mhvew oty molharhotrta.  Téhog moapouctdlovTan
optoU€va anoTEAEGUATA OYETXE PE TN otoyaoTiT| e€lowor Cahn-Hilliard. O-
A0l TOL ATOTEAEGUOTA £Y0UV TApAYVEL UE YPNOT TNG OAOXANEWTIXHS LOPPHS TNS
e¢lowong Cahn-Hilliard. O Adyog eivan 1 adlonolnon tng WLOTNTAS TNG AUTO-
ovluylag Tou TeEheoTH TN ohoxAnpwTnhg Lopehc g elowang Cahn-Hilliard,
TOU YPTOWOTOLE(TOL OTIC ATMODEZELC.
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Chapter 1

Introduction

In this thesis the metastable patterns for the one-dimensional Cahn-Hilliard
differential equation are studied. More specifically the results of P. W. Bates
and J. Xun in [BX1, BX2] are reviewed. The goal is studying and under-
standing every aspect of their work. I have attempted to review these results
in a comprehensive and I hope interesting way.

In the rest of the introduction we have the opportunity of taking a first
look at this subject and at what we are going to do. Firstly the natural prob-
lem that is described by the Cahn-Hilliard equation is introduced. Secondly
the equation is defined. Thirdly an overview of the structure and chapters
of the thesis is given.

1.1 The Natural Problem

The natural problem which is described by the Cahn-Hilliard equation is the
evolution of metastable patterns. For a detailed introduction to them see
[GD]. The most famous metastable patterns phenomenon that the equa-
tion describes is the behaviour of a melted binary homogeneous alloy with
given concentrations of two components. When it is quenched rapidly to a
temperature between the melting temperatures of the two components, the
homogeneous alloy divides into two different concentration phases. The evo-
lution after the quench has two stages: the Separation, which is relatively



fast, and the Coarsening, which is extremely slow.

For a more detailed description of the alloy and the phases described, see
Figure 1.1. The components of the alloy are A and B with concentrations
C4 and Cg = 1 —C4 respectively. The melting temperatures of A, B are Ty,
Tg. Tp is the temperature that is quenched. Tj is valued between T4 and
Tp. The two phases are the solid and liquid phase. If we assume that X is
the concentration of the liquid phase, then we have the following equations.

Cp = CE(To)N+ C3(TH)(1—N\)
Cy = 1-Cp

. Now what we have to do is to investigate the dynamics of the two phases.
Equivalently we can investigate just the dynamics of one of the two phases
or of the layer points between them. Nevertheless, before we start thinking

about it, we should be familiar with the equation.

1.2 The Equation

One of the most celebrated models that describes the patterns mentioned in
the previous section is the Cahn-Hilliard equation. It is suggested by Cahn
and Hilliard (see [C, CH]). For a general reference on differential equations
see [KPDE, KFA]. The Cahn-Hilliard equation is defined as:

Uy = (— Uy + W (u))ge, =€ (0,1), t>0, (1.1)

where 0 < € << 1 is the interaction length and W(u) = 1/4(u? — 1)? the
potential.

The unknown function u is the rescaled concentration of one of the compo-
nents of the binary alloy and takes values between —1 and 1, the potential

with the boundary conditions:

Uy = Uggy =0, x € {0,1}, t>0. (1.2)
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Figure 1.1: A typical phase diagram of two components A and B

What is the reason for (1.2) boundary conditions? While u is the rescaled
concentration of one of the components and the fraction of it is fixed, there
must exist a constant —1 < M < 1 such that fol udr = M for all t > 0, or



equivalently

1
(/ udx); = 0
0
1
/utdx = 0
0

1
/ (—Pupy + W(W))pds = 0
0
1

/(—EQUxm—i—W”(u)ux)xdx = 0
0

[—ezumx+W”(u)ux}é =0

which is satisfied because of (1.2) boundary conditions.

Free Energy Functional

Before we close this section, we need to mention the free energy functional:

J(u) = /0 ((e2/2)u? + W (u))dz

It describes the free energy of the metastable patterns. Figure 1.2 shows that
the solution likes to be valued near 1 and —1 in order to has less energy. The
Cahn-Hilliard equation is derived from the free energy functional. Finally a
lot of results regarding the solutions of the Cahn-Hilliard equation have been
generated by it:

e Every solution u of the Cahn-hilliard equation approaches an equilib-
rium state as t — oo (see [EZ]).

e The limit of a Cahn-Hilliard solution u as t — oo is a local minimizer
of J in the world of fixed mass functions (see [H]).

e Let u be a Cahn-Hilliard solution. The J(u), as t function, is mono-

tonically decreasing (see [AA, CGS)).

4
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Figure 1.2: The graph of W (u)

1.3 Structure and Chapters of the Thesis

Before we start reading the main text let us have an overview of it.

In Chapter 2 some preliminaries are given, in order to provide us with
some tools needed for the investigation of the equation. The basic tool of this
thesis, which is the Invariant Manifold, is defined in this chapter. Neverthe-
less, firstly we define the first approximation manifold as a first step to the
final construction of the Invariant Manifold. Invariant Manifold is like phase
space of the solutions of the problem. Finally, the integrated Cahn-Hilliard

5



equation is defined. (In the rest of the thesis we work with the integrated
form because...) In this chapter we do not have important results about our
problem but we build the base for the next two chapters.

In Chapter 3 Theorem A and Theorem B are proved. Theorem A gives
estimations for the eigenvalues of the integrated Cahn-Hilliard operator. The
estimations of Theorem A are used for the proof of Theorem B, which pro-
vides a good description of the dynamics of the solutions of the equation.
Theorem B is based on the idea of Invariant Manifold. We will see that the
Invariant Manifold is not an invariant manifold, with the strict meaning of

the term but it is almost invariant.

And we finish with Chapter 4. In Chapter 3 the dynamics of the equation
have already been investigated. Nevertheless, we have no analytical approxi-
mations of the solutions. In Chapter 4 we derive an analytical approximation
of the ODEs system of the problem. This system sheds more light on the be-
haviour of the solutions. The thesis is closed with a reference to the dynamics
of the stochastic Cahn-Hilliard equation.



Chapter 2

Preliminaries

2.1 First Approximation Manifold

The basic idea used during this thesis is Invariant Manifold. Invariant Man-
ifold comes from works related with the Reaction-Diffusion (or Allen Cahn)
equation. It is used by G.Fusco, J.Hale [FH] and J.Carr, R.L.Pego [CP] for
results regarding Reaction Diffusion equation. P.W. Bates, J. Xun uses In-
variant Manifold in their work [BX1, BX2] regarding Cahn-Hilliard equation.
Invariant Manifold in both, Reaction-Diffusion and Cahn-Hilliard equation,
is an approximation of the phase space of solutions.

In order to reach the key idea of Invariant Manifold, we have to answer
the question: what is Reaction-Diffusion equation;

Definition 2.1.1 The Reaction-Diffusion Differential Equation is
Uy = EUyy — W (u), z€(0,1), t>0,

where € as in (1.1) .
With the boundary condition

u, =0, ze{0,1}, t>0.

Figure 2.1 helps us understanding the Reaction-Diffusion Equation.
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Figure 2.1: The graph of W' (u)

The elements of the Invariant Manifold, which are approximately com-
ponents of the phase space of the solutions of the Cahn-Hilliard equation,
are constructed in terms of solutions of the Reaction-Diffusion stationary
problem. Obviously Reaction-Diffusion stationary problem is a specific case
of the Cahn-Hilliard stationary problem. This is the main reason for the
compatibility of the Invariant Manifold in both equations.

Definition 2.1.2 The Reaction-Diffusion stationary problem is

Edpe — W (9) = 0 x€(=1/2—¢1/2+€),
¢ = 0 xef{-1/2,1/2},

where | > 0.

This ODE is autonomous which means that we don’t need to be concerned

about the domain of the solution ¢. Nevertheless we define the domain as



above for technical and practical convenience.
And now we just need evidence of the existence of the solutions of the
stationary problem. It is given by the next theorem.

Theorem 2.1.3 There ezists py > 0, such that if | > €/py, there exist

e a unique solution ¢(x,l,+) satisfying Definition 2.1.2
and ¢(z,1,+) > 0 for x| < 1/2, W"(6(0,1,+)) > 0,

e a unique solution ¢(x,l,—) satisfying Definition 2.1.2
and ¢(z,l,—) <0 for |x| < 1/2, W"(4(0,1,—)) > 0.

Proof

€2¢wx - W/(¢) =0
or 1
or

where « is a constant, or

e'¢p = 2(W(9) — a)

or

edp =22 (W(9) — )2

or
1 1

cg.  272(W(9) — )/
Integrating from x = —[/2 to x = /2 with respect to ¢

z=l/2 1 x=l/2 1
/gco @(M - /ggg 2L2(W (¢) — a)1/2 d¢
0

we obtain

or
1

2py /¢(0) 212(W () — a)

9

7240



where oo = W (¢(0))

The solution exists if and only if there exists a value for ¢(0) where W”(¢(0)) >
0 such that the last equation is satisfied.

According to the results of J. Carr, M. Gurtin and M. Slemrod [CGS] the last
integral tent to infinity as ¢(0) approaches —1 from above, and it is a mono-
tone function of ¢(0) for ¢(0) close to —1. Hence for py sufficiently small,
there exists a unique value for ¢(0) such that the last equation is satisfied.

In Figure 2.2 we can see an example of a solution provided by Theorem
2.1.3.

06

0.4

02

04

0B~

08 b 1 i

Figure 2.2: Simulation of a solution of 2.1.2. According to Theorem 2.1.3
this is the unique positive solution ¢(x,l,+) with parameters ¢ = 0.01 and
[ =0.316.
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The elements of the Invariant Manifold are constructed by piecing to-
gether solutions of the reaction diffusion stationary problem provided by
Theorem 2.1.3. The connecting points between different solutions are called
transition layers of the manifold. The term comes from the natural problem.
As we mentioned in the Introduction, the problem we are studying has two
phases. The points that are called transition layers are the points at which
the phase changes. The whole number of these points, as we will see later, is
the dimension of the manifold. The way that the solutions of the stationary
reaction diffusion problem are pieced together is as smooth as the solutions
of the problem that are pieced together. For an overview of this process we
can take a look at Figures 2.3, 2.4, 2.5 and 2.6 or above, where it is strictly
defined.

Let us start from the transition layer. Strictly the transition layers of a
N+1 dimensional manifold are valued in Q,, = {h € RN [0 < hy < --- <
hni1, €/po < (hj — hj—1)}, where py as in Theorem 2.1.3, hy := —h; and
hnyo :=2—hni

Before we define the Invariant Manifold we define something more general,
the first approximation Manifold. The first approximation manifold M; is
defined by the following rule:

Let x : R — [0,1] be C* (in order to have a manifold as smooth as
the solutions of the stationary reaction diffusion problem ¢ that are pieced
together) with y(z) =0 for x < —1 and x(x) =1 for y > 1.

Let mj = (hj_1 + h;)/2 for j =1,2,..., N + 2.

For given h € (), , we define

PO

T — hj>>¢(x —mj, h; — hj_q, (_1)j)

)o(x = mypr, hjn — hy, (=1)7F1),

where x € [m;,mj], 7 =1,2,..., N+ 1.

My = {u"|h€Q,}.

In Figure 2.7 we can see a simulation of a component of the first approx-

11



imation manifold.
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Figure 2.3: Construction of the first approximation manifold, step 1: ¢(x —
myg, hj - hjfla <_1)])
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Figure 2.4: Construction of the first approximation manifold, step 2: [1 —
X2 p(a — my, hy — by, (—1)7). Tt is smooth.

€

12



0gr

06

0.4r

02r

02F
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Figure 2.5: Construction of the first approximation manifold, step 3:
1 — X(x:hj)]gb(x — mj,h; — hj_1,(—1)7) like in Figure 2.4 with blue and
X(@)qﬁ(x — mji1, hjr1 — hy, (—1)771) with red. They are smooth.

1
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Figure 2.6: Construction of the first approximation manifold, step 4:
The sum of the two functions of Figure 2.5, [1 — X(I;hj)}gb(x —mj,hj —

hj—l; (—1)]) + X(x_hj )Qb(l' —Mji1, hj+1 - ]’Lj, (—]_>j+1). This is the way that

€

solutions of reaction diffusion problem are pieced together for constructing
the first approximate manifold. This way of piecing conserves smoothness.
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05}

Figure 2.7: Simulation of a component of the first approximation manifold
with e = 0.01, N=4 and h = (0.1250, 0.2800, 0.5370, 0.7770, 0.8830).

The first approximation manifold is a good step. Nevertheless, the bound-
ary conditions (1.2) have not been used for the construction of it. Unfor-
tunately before we involve the boundary conditions, we have to face some
propositions and some notation. After that section 2.3 is dedicated to the
Invariant Manifold, which involves the boundary conditions.

14



2.2 Notation and Useful Propositions

Basic notation
e For any function ¢(x), (z) := Iy o(y)dy

o LYP) = —Pyppn+ (W' (dy)), the integrated Cahn-Hilliard differential
operator

o LY(p) = ¢ — W'(¢), the bistable reaction diffusion differential op-

erator
. LC(@ = — 2P prr + (W”(uh)éx)x, this is £° linearized at u"
o ul:=0u"/Oh;, j=1,2,..N+1

o of = W(u'(my)), 57 =1 —[u"(my)|,
lj = hj — hj—la ri = E/Zj

e or) :=maxal(r), B(r) := max 3 (r),

[ :=minl;, r = maxr; = ¢/l

o X/ (x) = x(=
o ¢(x):=¢(x —myl;, (1))
The thesis is written by using the notation above. Below some important

prepositions.

Propositions

Proposition 2.2.1 Let ®(x) be the unique solution of

Ed,, —W/(®) = 0
d(0)=0

15



with
O(z) —» £1 as x — £oo

and Ki,01,09 be positive with K1 > 1 and such that min | ®(z) £ 1 |< §;/2
for every £x > eKj. Then there is a py = p1(K1,061,02) > 0 such that if
p < p1 and h € Q, we have

| uh () — B((x — hy)(=1Y7Y) |< 8y @ € [h; — ey, by + €K1

and
| Uh(ZE) — (—1)] ’< (52 x € [hj—l + EKl,hj — EKl] N [O, 1]

forj=1,2,... N +1.
Proof See Proposition 2.2 of [BX1]. |}
Proposition 2.2.2 For xz € [—1/2,1/2]
2¢i(z, 1, 1) = —sgn(x)d.(x, 1, £1) + 2w(x, [, £1)

where, for x #£ 0

|z
w(z, [, £1) = e 12 (r)é(|z|, 1, £1) Go(s,1,£1)2ds
1/2

and -
—e H2al ()

w(0,1, £1) = )

Proof See Proposition 2.8 of [BX1]. [

Proposition 2.2.3 The interval [hj—1 — €, hjt1 + €] contains the support of
u;‘ and

16



inlea x € ]j—l

iy (1= (0L ) (-5 = w)
! (¢ — ¢, vel
(1= )it € I

where w; as in Proposition 2.2.2 when we replace ¢(x,1,+) by ¢ (x,1, £).
Proof See Proposition 2.11 of [BX1]. |}

Proposition 2.2.4 There exists o such that for 0 < r < rg,
\w(z,l,£1)] < Ce'Be(r) forx € [—1/2 —€,1/2 + €
lw(z,l,+1)] < Cetag(r) forz € [—1/2—¢,1/2—€| and x € [—1/2+¢€,1/2+¢€].

Proof See Proposition 2.9 of [BX1]. |}

Proposition 2.2.5 Forx € [—1/2 —€,1/2 + €|

we (1, £1)] < Ce?r'B(r)
lwae (2,1, £1)| < Ce3B.(r).

Proof See Proposition 2.10 of [BX1]. |}

Proposition 2.2.6 There is a py > 0 such that if 0 < p < py and u" € M
with h € Q),, then we have

| LfaM(x) | <
I Lea" | < Ca(r)e_l

for some constant C' independent of r and u"

Proof See Proposition 2.2.6. |

17



Proposition 2.2.7 There is a py > 0 such that if 0 < p < py and u" € M
with h € §,, then we have

| %Ebuh(x) | < CB(T)E_Q, x € [0,1]
j

9 0 put| < 0Bt welo
j

for some constant C independent of r and u"
Proof See Proposition 2.2.7 |
Proposition 2.2.8 There exists ro > 0 such that, for 0 < r < rg,

-1 11—
(o, 1, +1)| < Ce_lﬁ(r), 1 1 x €| %l e,% + €,
Cela(r), ve[—5l—¢—5l+e U5l —€ 50 +¢,
Where w as in Proposition 2.2.2.
Proof See Lemma 7.9 of [CP]. |}

Proposition 2.2.9 There is a py > 0 such that if 0 < p < py and u" € M
with h € §,, then we have

£(uf)] < Cla™*t — o]
forx € I,

Proof See Theorem 3.5 of [CP]. |}

2.3 Invariant Manifold

Definition and explanation of the Invariant Manifold

First approximation manifold is a good step. Nevertheless we need to con-
sider the boundary conditions. According to (1.2) we have fol u(z) = M

18



where —1 < M < 1. Consequently we define the Invariant Manifold (or the
second approximate manifold according to the [BX1, BX2]).

M= {u" € M| /0 ul(z) = MY,

As opposed to the first approximate manifold, it decreases from N + 1 to
N-dimensional and can be parametrized it by (hq, he, ..., hy). In other words

we have the following expression

hnii = hnya(ha, ha, .o hy)

This is quite obvious to understand. If we order the first N layers the last
layer should go to a specific place in order to be satisfied the conservation
of mass. This claim is proved using the Implicit function theorem. More
strictly and detailed we have the following proposition.

Proposition 2.3.1 Let M(h) = fol uh(z)dx for h € Q,, then M(h) is a
smooth function of h and OM/Oh; = 2(—1)7T1 + O(e 1 B(r)).

Proof By Proposition 2.2.3, [hj_1 — €, hj1 + €] contains the support and in
I; we have

W= (=) (-l + ) (g T (- o)
= —[(1 =)ol + X + (@ = )]+ (1 = X)w? — 't

= —ul 4+ (1 — ' — '™

By Propositions 2.2.4 and 2.2.3, there exists a 7o > 0 such that if 0 < r < ro,
then

| ()| < CB(r)
Tj+1UL -1
| / (1= )l — P de] < CeB(r)

I
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for some constant C.

Thus
o 1
—M(h) = hd
o, (h) /0 ujdz
/u?dxjt/ u?dx
1 11Ul +1
— / [—u" + (1 — ) w? — ™) dx + / udx
I; I; 1Ulj+1
= /—ugdx—l—/[(1—Xj)wj—xjwj+1]dx+/ u?dz
Ij Ij Ij71UIj+1

_ / —ulds + O(e 1 5(r)

= u"(my) — u"(mjs1) + O(e ' B(r))
= (=1)(B(r;) = 1) = (=1)"(B(rjs1) — 1) + O ' B(r))
—1)"*1 +0(B(r)) + O(e ' B(r))

<

By Proposition 2.3.1 and the implicit function Theorem, if u" € M we can
think of hxyyq as a function of hy, hs, ..., hy. Furthermore,

0 9 Ohysr
g M0+ g =M () 5 =0,
or 5
8hN+1 o _%M(h’)
or .
Ohnyr _ —2(=1)" + O(e'8(r))
o, 21O )
or
et _(1)i=N 4 0@ 5(r) (2.1)
oh,
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While for the Invariant Manifold M, we are interested in, hy.1 is de-
pendent on hy, hy, ..., hy we denote u”* by u¢, where & = (&,&,....&n) =
(hl, h27 ceey hN)

Consequently we denote

o ous  oul oul  Ohn

I B¢, " oh, | Ohny Ol

while ! still means du”/Oh;.

Integrated Cahn-Hilliard Equation

We are going to slightly change the way we study this problem. What we
change is the Cahn-Hilliard equation. We convert our equation to an in-
tegrated form and consequently we mutually convert the elements of the
Invariant Manifold. Integrated Cahn Hilliard equation, which is equivalent
to Cahn-Hilliard is defined as follows:
Uiy = —€ Ugyyy + (W' (liy))z, x € (0,1), t>0,
u(0,t) =0, a(l,t)=M, t>0, (2.2)

fpe =0, z€{0,1}, t>0,

where @(z,t) = [ u(y, t)dy.

What we have to do is to study the dynamics of (2.2) in a neighbourhood
of M. For this we adopt the following coordinate system

i — (£,7) meaning @ = @° + 0

where (3, E5) =0 for j = 1,2,..., N
and v =0, =0at x =0,1,
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where Ef is defined by:

j
U_)J(:E) - U?($)+ﬁ?+1(I), J 1727 7N7
and
1, 1, 1 (N ]
Q;(z) = (—éx +37 —§:1:')wjm(0)+6(x — )Wz (1) + zw;(1)

substituting @ = ¢ + ¥ to the ICH, we get
N
D 5 + by = — €0y + D) + (WIS + 82))a (2.3)
j=1

Differentiating (;, E5) = 0 with respect to ¢, we get

<67E§>t = 0
(0, BSY + (0, (ES),) = 0

N
<6t7Ef>+<ﬁ7zEfj€j> = 0
j=1

or, (o, Ef) = —(0, 20 B) for i = 1,2, N.
Denote a;; = (i$, Bf) — (9, Ey;) for i,j = 1,2,..., N
where Ef] — (0/0¢;)E°.
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taking the inner product for : = 1,2, ..., N we have

N
O U+ 00 Ef) = (=€ (U0 + Tawes) + (W5 + T))a, EY)

j=1
N .
<Z agfj’ Ef) + @t? Ef) - <_€2(a§cmx + ﬁmtm) + (W,(ﬂi + 7736))9:7 E§>

O ase, B — Z = (@ g + Towaa) + (W@ +50))es EY)

N
Z@f EDE =Y (0BG = (= (@0 + Tuzee) + (W(T + T))as BY)

Z%@ By + Taae) + (W@ + 0,)), EE) (2.4)

This gives the motion of coordinate point on M
Denoting

fo= [ =W+ g

we can get the following equation

N
D US4 B = LU+ LD+ (f207)a- (2.5)
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Chapter 3
Dynamics

As mentioned at the start of the previous chapter, the basic tool used in the
study is Invariant Manifold. It is also known by [CP] that it approximates the
phase space of the solutions of Reaction-Diffusion (or Allen Cahn) equation.
So we need to prove that Invariant Manifold also approximates the phase
space of the solutions of the Cahn-Hilliard equation. This result is given by
the following Theorem.

Theorem 3.0.2 (Theorem B of [BX1]) Let @¢") + & be an orbit of the in-
tegrated Cahn-Hilliard equation starting outside the slow channel. If the
H? —norm of ©(0) is o(€”), then the H> — norm of v will decrease exponen-
tially until u(t) enters the slow channel. Then it will remain in the channel
while h € Q, and will follow the approximate manifold with speed O(e=/m).
Here c is less than W (£1) but close to it and r = €/l, therefore u will stay
in the slow channel for an exponentially long time.

Where the slow channel is defined by the following Definition

Definition 3.0.3 Let A.(0) = fol (€204, + W (u")02]dx. The slow channel is
defined to be the set

D ={0:a=a 4+, A(0) < be a?(r)},
where b is a positive number.
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In order to prove this important theorem we need one more theorem

Theorem 3.0.4 (Theorem A of [BX1]) There exists a positive number C
independent of € and p such that if h € Q, with p < po, then L¢ has exactly
N exponentially small ergenvalues 1,1, ..., N and all the other eigenvalues
UNi1, UNio, ... are valued with values less than —C'.

For technical convenience, the eigenvalues {1;}52, are defined to be 1, >

Yp >

3.1 Proof of Theorem A

The proof of Theorem A has two parts. In the first part it is proved that all
the eigenvalues except N are valued with values less than —C'. In the second

part it is proved that there are N eigenvalues that are exponentially small.

First part: All the eigenvalues except N are valued with
values less than —C'.
Lemma 3.1.1 There exists a py > 0 such that for 0 < p < pg, and if

u" € M with h € Q,, then 4, ¢}, ..., ¢, are linearly independent, where
{4}V are orthonormal eigenfunctions of

EY =W (M) = ple)p, 0<z<1
P =0, x=0,1

Proof If we suppose that 15,475, ..., ¥y, are not linearly independent, then

we can write them as
N+1

Z Cy; = 0.
=2

where C; are constants which are not all zero.
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Integrating from 0 to x, we get,

N+1

> G =C,
=2

where C' is constant.
In order to finish this proof we can follow two ways.

(1) In [BX1] it is proved with this argument:
If we take the inner product with 1, of ngl Ci; = C', we get

1
0= / by,
0

so C' = 0 which is a contradiction because 15,3, ..., n,1 are linearly inde-
pendent.

(2) Another argument for the same result:

is based on the fact that C' is an eigenfunction of our problem, with eigen-
value = —W"(u").

The functions of the set {9, 93, ..., ¥n41, C'} are linearly dependent which is
a contradiction because it is a subset of {11, 19, ...}. |

Lemma 3.1.2 Let X(e), i > N be an eigenvalue of the following problem

L°H=Xe)H, O<z<l1
H' =H=0, z=0,1.

Then for h € Q, with p sufficiently small
M) < —C <0,

where C' is constant independent of € and &.

Proof Applying the variational characterization of the eigenvalues for the
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problem
1
AN41 = maxmin fo [62H3x + W”(ug)Hg]dm
“ANi1 =
f

H fol H?dx

9

where
H={H:H0)=H()=0,(H,¢;)=0,i=1,2,...., N}
and
F={{o: Y, {o:}Y asetof N linearly independent functions}.
The inequality we want to show can be written as
~X(e) >C >0,
By the variational characterization, it can be written as

N EHE, + W (uf) H2)de
max min

i > C>0.
FoOH J, H?dx

In order to prove what we want, it suffices to find a component {¢;}Y,

in F such that

- JolPHZ, + W (uf)Hdx
min

e > C > 0.
H J, H?dx

The component with which we attempt to minimize it is defined using Lemma

3.1.1: ¢1 =y, ¢o = U5, ..., ¢y = Yy, Where 1; as in Lemma 3.1.1.
Jo | H, + W (uf) HR)da

T under H we are

Additionally, instead of minimizing

going to minimize it under the following set

T 1
W= (H H:/ h(z)dz, |h] = 1,/ h(z)dz = 0,
0 0

<H>¢1> > Oa <H7wl> = 07 1= 277N+ 1}
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Jo[2H2 AW (u$)H2)dx

So before calculate ming, we prove that

f H2dx
Ir 2172 i, €\ Lr2 Ir 2172 i, €\ 72
H %74 HZld H: +W H2\d
mi/n f() [6 xxT —il_ - (u ) x] xz — Hlil’l fO [6 xTx - - (u ) x] T (31>
H J, H?dx H o, H?dx

1
[2H2 +W" (ué)H2)dz
(e HeH} >H

First we prove that for every H € H there exists a H' € H' such that
S HZ AW (ué)H2]dx fo [€2HZ2 AW (ué)H!?]dx
fo H2dx Jo H?dx
Let H € H, then because H is two times differentiable h = H, is continuous

and consequently H = [ h(t)dt

:folhxdx

(H' i) + (H, W) = [Hilg
(hyi1) +(H, ;) = 0-0
(h,iy1)+0 = 0

there are two more conditions, ||k|| = 1 and (h,v) > 0. These conditions
determine a real valued constant C” such that
H' = C'H Obviously this fact does not influence the number given by
Jo & B2 AW" (uf) H2|da
) H2da
We have proved that

the type

Jol@HE + W) Y de _f [ HE, + W (u€) HEdo

miln s < min s
H J, H?dx H o H?dx

In the same way someone can prove and the opposite inequality. It is not
written because it is not necessary for the continuing of the proof.

Syl HZ AW (uf) HE]dx

TR is accomplished in the steps (I)-
0 T

Calculation of ming:
(V):
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1
(Ah,h) = / [2h2 + W (u®)h?]dx
0
= D ai
k=1

where . are the eigenvalues defined on the problem of Lemma 3.1.1 and

fg = —pg. 1t is known that py, po,..., uni1 are exponentially small and
that the rest of them are negative and bounded away from zero uniformly in

e and £ € €,,. This result is known by the [ABF].

Thus we can write

(Ah,h) > i+ -+ Gy g fing1 + g2 Z ai
k=N+2
N+1
= Ans2 D17 =D (fivsez — fix)az-
k=1

By Definition of H' we have || h ||= 1, so

(Ah,h) > finge — (inse — f1)ad
= fny2(l = af) + fai.

Let
6(€):=1—a; <1—aj,
then
(Ah,h) > fini20(€) + fnas
> fins20(€) — O(e/"),
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thus
(Ah,h) > Cd(e) — O(e™¢), (3.2)

where C' independent of € and £. This happens because, according to [ABF],
[ANto 18 posmve and bounded away from zero uniformly in € and £ € €2,.
(II)Let ¢ = fo x)dzx. Then

I h—= (=) 1P = (hh) = 2(h, by — n)+ || 1 — ¥y |
= <h> h> - 2<hv ¢1> + 2<ha@;1> + <¢1 - szla@bl - ¢1>
= <h7 h> - 2<h7 ¢1> + 2<h’7j}1> + <¢17¢1> - 2<¢17¢1> + <";17¢A}1>

1 1
= 1-2(h 20, | hdz+1— 24 dx + ¢?
(h, 1) + ¢1/0 x + ¢1/0 Yrdr + 9y

= 1—2(h, ) + 20,0 + 1 — 202 + ¢
= 201 — (h,vn)] — ¥,

thus ) )

Ih = (1 — ) |2 +47 = 2[1 = (h, )] = 26(e).
(ITT) Estimation of || H ||?

[ hioa
[ = a1 [ b= =

Gt b= (=) |
VG || A (0 — ) |
= 26(),

|H ()]

IN

VARVAN

thus

| H |[< 44(e). (3.3)
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(IV) (e) > Ke for some positive constant K:

1—a? S (1 —a?)

5 :1— —
(€) R

Let Q(k) := (k,,)? where k € L?. Then

T

maxQ(k) < max  Qk) = Q —)=1-7f
e/ S kd=0, |k =1 | 1 — || 1
Therefore
@ =Q(h) <1—?
or 1
JORS-2
thus
d(e) > Ke.

(V) Combining (3.1), (3.2) and (3.3)

o [EHZ, + W (uf) Hdx
e = iy
fo H2dx
Hew' || H |2
[Cé(e) — Oe=/)]
40(€)
C>0

v

v

We have already proved that all the eigenvalues except N are valued with

values less than —C.
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Second part: There are N eigenvalues that are expo-

nentially small.

In this part we prove that the first N eigenvalues are exponentially small. In
order to reach our goal, we approximate the first IV eigenfunctions of L¢. The
functions that approximate the first N eigenfunctions are Ef, 1<j3 <N
defined as follows:

U_)J(x) - U?(JZ’) +1~L§-L+1($), J = 1727 7N7
and
1, 1, 1. 1, ]
Q;(z) = (—ax + 52" = §:c)wjm(0) + 6(% — )Wz (1) + zw;(1)
with

E;=FEj;; =0 for x =0,1.

Before we prove this claim (that E; approximate the eigenvalues) in
Lemma 3.1.3 we need some calculations.
First of all we need to calculate the following term
o T auh

uy = y)dy
; ; ahi()

By Proposition 2.2.3 we have the following formula

(X, x el
(1 =)=+ w9) + X~ —ws*)
ul(x) = ¢ +xi(¢ — @it vel;  (34)
—(1- Xj‘*‘l)wj‘irl, z €1
L 0, otherwise
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Therefore it is easy to obtain
u(z) = —ul(z) + (1 — &)’ — Guwitt, z € I

Using Propositions 2.2.2, 2.2.4 and 2.2.5, we also obtain

(0, TS My

e, T € [j—l

w; = ¢ u(my;) —u(z) +e, r €Ul
ut(my) —u(mji) e, 2= myp

L 0, otherwise

Where e is an error estimated as
In [jfl

. / gyl )y,

mj—1

so by Proposition 2.2.4
le] < Ce™'B(r).

IIl Ij .
e= [ @ ey [ 0-g)eiay
so by Proposition 2.2.4
le] < C’e’lﬁ(r).

In Ij+1

T

e=Ce 'B(r) — / FH (y)w' 2 (y)dy,

mj+1
so by Proposition 2.2.4
le] < Ce'B(r).

For x > mj4a

T

e=Ce 'B(r) — / (1 =& (y)w'*(y)dy,

mjt2
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so by Proposition 2.2.4
le] < Ce'B(r).

Therefore
le] < Ce 'B(r) everywhere in [0,1]

(3.6)

So after the approaches of e in I;_y, I;, ;11 and I;; we know that w;

looks like Figure 3.1

181

16|

121

\barw! |

0.8

0.5

0.4

0.2

I:I 1 1 1 1
m_| h | m_{j+1} h {j+11
¥

Figure 3.1: Simulation of the w;
continuing we can take
w;(1)] < Ce™'B(r)
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@00 (0)], [@jea(1)] < CeB(r) (3.7)

Therefore
e, r < m;
Elx) =< u(my) —ul(z) +e, rel; Ul (3.8)
ut(my) —u(mjie) e, 2 =My

where e satisfies (3.6)
Now we are ready to take some rigorous results regarding the approxima-

tion of the eigenfunctions by F;

Lemma 3.1.3 Let Hy, Ho, ..., Hy be the orthonormal eigenfunctions of L¢
corresponding to the first N eigenvalues A\, Ao, ..., AN respectively. Let R;,
1 <@ < N satisfies the equation below

N
E; =Y CyH;+ R;, (R, Hj) =0.

j=1

Then if h € Q, with p sufficiently small, we have

(1)

IR < CeB(r),
IR < Ce®B(r),
IR || < CeTB(r).

(ii) Both (Cy;) and €(Cy;)~" are bounded uniformly with respect to € when €

15 enough small.

Proof proof of (i)
(1) By 3.8 in [; U I;11, we have

L°E; = L — Lu"

and

Lou™ = —(L°(u")) o
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As in the proof of Proposition 2.2.6
|Leu™| < Cea(r)
And also
|Loe| < CeB(r)

Finally we have
|LY| < Ce®B(r) (3.9)

(2) Applying L€ to the E; = Zjvzl Ci;H; + R; we obtain

N
L°E; = Y CyL°H;+ L°R;

Jj=1

N
- Z CZ'])\J‘H]' ‘|‘ LCR]'

J=1

Taking the inner product with R;, we get

(L°Ri, R))| = |(L°E;, R;) ZC N H;, R;)
= [(L°Ei, R;)|
SO
[(L°Ri, Ri)| < Ce™B(r)|| Ril|- (3.10)

by Lemma 3.1.2
AN>C>0,i>N

SO

[(L°R;, R;)| > C||Ri|”

Therefore from the last two inequalities we take

| R; ||< Ce®B(r). (3.11)
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(~L°R.R) = / (RN + W) (R da

v

e R =C | B |

By interpolation
IR P<n | BP0t ) R |2

€2

where n = &

Ql=

Substituting,
€ 2
—L°Ri,R) > — | B! |I? ==C || Ri ||?
(LRRY > SR 2O R
On the other hand, by (3.10) (3.11) we have

[(—L°R;, R;)| Ce°B(r)|| Rl
Ce 8(r)?

= Ce Pa(r),

<
<

thus

€2 . 2
EHR;/HQ < (L°R;, R;) + E—QCHRZ‘HQ

IN

Ce Pa(r) + 20(06_55(7‘))2

IN

2
Ce Pa(r) + 6—20671004(7")
= Ce alr)
Consequently
IRY|I* < Ce™Malr)

and
|Ri|]> < Ce a(r)

proof of (ii)
Let A = (a;;) a matrix such as A = CCT where C = C;; and C” the
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transpose of C'. We have three different cases: for |i — k| > 1, for i = k and
fori=Fk+1.
For |i — k| > 1

(E;, Ey)| < CeSa(r)

For k =1

(Ei, By) = (Bi, Ei)

_ /m¢+2 E?dx 1 0(673ﬁ(7,))
= [ )~ e + O 50)
by Proposition 2.2.1
(Ei, E;) > %[mi-i-? —mi] +O0(e°B(r))
> min (b1 = hy) + O(*B(r))
thus p
Ei, B;) > —
(i B =
For k=1i+1
(Ei Ex) = (Ei, Eint)
_ / - EiE; 1dx 4+ O(e *B(r))
B /7.%2 [u"(z) — u"(m)][u"(x) — u"(mis1)]dz + O(e7>B(r))

While x is valued in I;;; by Proposition 2.2.1 we have the following state-
ments:
[ fx > hiyy then the first factor of the integral [u”(z) — u”(m;)] is small.

Otherwise if z < h;y; then the second factor [u"(x) — u"(m;y1)] is small.
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In fact we can show that
<Ei7 E@'+1> = O(E)

as 7 — o0o. Consequently we have for p sufficiently small and i € €Q,, the
matrix A is diagonally dominant. Since

|Cis| <Il H; [I] B |

is bounded and
C*l — CTAfl

we can see that the elements of C' and eC' ™! are uniformly bounded as ¢ — 0

The proof of Theorem A is completed by the next lemma
Lemma 3.1.4 Let A\, Aa, ..., \x be the the first N eigenvalues of EVP. Then

Ni =0 °B(r), i=1,2,..,.N

Proof proof for i=1:
By the variational characterization of eigenvalue \;

1
)\1 — _/ [EQH{IQ + W”(uh)H{Q}
0

where || Hy ||= 1.

By Lemma 3.1.3 for some constants a;, b;, we have

N
H1 = Z[CLZEZ —f- bsz]7

=1

where €a;, eb; are uniformly bounded as € — 0.
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Let
N
Z = Z aiEZ-7
i=1
then we have
1
/ [2H[? + W"(uh)H{Q]dx
° 1 1
= ¢ / (H, — Z2)"dx + / W (u")(H, — Z)?dx
0 0

1
_'_/ [622//2+W//(uh)Z/2]dx
0

1 1
+2{¢ / (H, — 2)"Z"dx + / W"(u"(H, — Z) Z'dx}
0 0
= I+II+1II,

where
1 1
I = € / (Hy, — 2)"dx + / W (ulY(Hy — Z)?dx

0 0
1

II = + / (22" + W (u") 2" dx
’ 1 1

[ = 12 / (Hy — 2)'2"dx + / W (") (H, — Z) Z'dz}

0 0

By (3.9),
L°Z = O(e°A(r))

Consequently
LS(H, — Z) = M H, + O(e7°B(r))

1 1
2 H_Z////Zd W// h H_Z//Zd
¢ [ =2y zd+ [0V - 2)) zas
1
:)\1/ H\Zdx 4 O(e °B(r)),
0
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Integrating by parts we take

1 1
A1 / H,Zdx + O(e %B(r)) = —¢€ / (H, — 2)"Z"dx
0 0

— [ W' (H, - 2)Zdx

By 3.9 the second term is estimated as

1
11 = L°ZZd
A v
= O("B(r))
and by (3.10), (3.11)we take
I=0(cB(r)).

Therefore because
M=—1—-11—-1II

we have 1
A = 2)\1/ H\Zdx + O(e"B(r))
0
SO 1
M1 =2 / Hy Zdz) = O(e T8(r))
0
and
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1 1 N
/Hlde = /Hl(Hl—ZbiRi)d:c
0 0 i=1
N 1
— 1—2@-/ H, R;dx
i=1 0

= 1.

Thus
A= O0(T/B(r)).

3.2 Proof of Theorem B
Now we are ready to prove Theorem B.
Definition 3.2.1 Let v € C?[0,1], 0 =0 at x = 1,2,
o A (D)= [;[®02, + W' (u")5?dx,
o B.(0):= [;[®02, + 2]dx.
Under this definition we have the following lemma.
Lemma 3.2.2 Let v € C?[0,1], 9 =0 at z = 0,1,

191% < Be(v)
eloll. < (1+€)Be(v).
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Proof It is not so hard to see that for every x

o) = | /j@(t)dﬂ

< \/Oxrva(mdt

< |||

< B€<?~})1/2

thus

6(@)P < Bud)
max{[5(@)?} < B.()
fmax[5(x)[}2 < B.(3)

oL < B.)

We have already finished with the first inequality.

For the second inequality we assume that 02(z;) = ||0.||%. By the Roll
theorem and the boundary conditions v = 0 at x = 0,1 we know that there

exists xg # x1 such that 9,(zg) = 0 and consequently we have
%(x) < B(D).

We can assume that z; > xg, without lost of generality because otherwise
we can reflect the function around z = 1/2.

~ ~ )2
S (Evazx - va:)

< QD 02— ety s
=~ 2-2 | ~2
2€05,0, < €U5, + U

Integrating from xy to x; we get
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DO
)
(o]
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8

(o4
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QU
S
A\
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Sl ]
™
no
N
80
8
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S
SN—
+
s3]
80
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8
S~—
QL
S

T 1
/ 260, ()0, (x)dx < 2, () + 02(z)dx
0
[e07],. < B(®)
€0z(x1) — ez(wmo) < Be(0)
ev;(r1) < Be(0)

Consequently

oz (21)lI3 < Be(v)
|

Lemma 3.2.3 There is a pg > 0 such that if 0 < p < po and h € €, then
for any v € C? with o =0 at . = 0,1 and (0,E;) =0, 1 < j < N, there is
a constant C' such that

CA(v) > €B.(v)

Proof By Lemmas 3.1.2 and 3.1.4 we have

A(D) = —Z/\
7=1
N 00
> ST N(HL O v Y (H,,0)?
j=1 j=N+1
N 00
> (Avg1— M) Z )\N+1Z<Hjaf}>2
j=1 J=1
N
= (w1 — M) D (H;, 0) = Ay [|8]
7j=1
A
> 22



where H;, j =1,2,...,N as in Lemma 3.1.3

Suppose that...

Lemma 3.2.4 Let h € Q, where p small enough, u(t,x) = a* + 0 is such
that v satisfies (2.5) &(t) satisfies (2.4) . Additionally @ is so close to M
such that B.(0) < €'O(1), then

€] < Cle™B(r)B(0)"/? + € 2B.(0) + € *a(r)).
Proof by (2.5) and (2.4)
(=€ (W age + Tswae) + (W'(T + 02))a, E)

= (L0 + LD+ (fo0,), )
where )
fo= / (1 —7)W" (@S, + 70,)dr. (3.12)
0
By Proposition 2.2.6
(LS, E;)| < Cetal(r)

additionally

(L0, E;) = (0,L°E;)
o ~ a a b { ~ 8 a b { ~ c
= (7, o &cﬁ u®) + (0, o &cﬁ us) — (v, L°Q;)

consequently
and by Proposition 2.2.7
0 0

5 L] < C(r)

So
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(L, B;) < Ce*p(r) 0] (3.13)

thus
(LD, ;) < Ce*B(r)]|7]|0o (3.14)

By Lemma 3.2.2
(L0, E;) < Ce *B(r)B.(v)"*

if we assume that
€ 'B.(?) is bounded (3.15)

and by (3.12), (3.4) and integration by parts , we have

[((f202)z, Ei)| < Ce B (D)

Next we need to estimate the coefficient matrix (a;;) defined as in (2.4)

Q35 = <ﬁ§,Ez> — <67EU>
Let

77

we can rewrite ﬂf as

ftf = U_}i — wi+1 —+ -4 (—1)N7iU_)N + €Z'U}]i]+1,
where w; is defined as in (3.3)

w; = u; () + 7:ngJrl(iU)

and
e; = O(e1B(r)).
Therefore by the proof of Lemma 3.1.3 and because E; = w;(x) — Q;(x), we
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get

0, 7>i+1
by = O(e 'B(r)) + < O(e), j=i+1
(=1 || [[wil[O(e), j<i
also
0
| 8&10 |< Ce

and by the Poincare inequality

o < CB.(0)Y2.

So
(0, Eij)| < Ce‘lBg(ﬂ)l/Q.
|
Proof of Theorem B
First we need some estimations on A (7). We start with this term §-2 (— L0, )
10 e o 1, . . 1, ..
§§<—L 0,0) = —§<(L )¢, U) — §<L U, y)
1 1
- _§<<_€21~)xmzz + (W”(U’E)@I)I)t7 @> - §<L067 6t>
1 _ . 0 N . 1, ..
= —5(—e2vtmm + (W (1)) + (EW"(ug)%)x, vy — §(L 0, V)
= L+ (W) ) - 20,5
— 9 Uy ot U )Ug )5 U 9 U, Ut
1, . 1,0 I T
= —§<LCUM}> - §<(§W”(U£)%)za”> - §<L v, Uy)
o 1,0 . .
= — (L0, %) + <—§(aW”(uf)vx)x,v)
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where we have used selfadjoint structure (see [BF] ):
<Lc'l7t, ’17> - <77t7 Lc'17>

Now
N .
b= LOU— Y U5
j=1
N .
= Lot +0) - )Y i
j=1
N .
= Lo+ LD+ (foid)e — Y 105¢;,
j=1

where f5 as in (3.12).
Therefore
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where

(1) = —(L,L%)

(2) = —(L°, LT)

B) = (L ()

(4) = +Z<LC@,@§§>

) = Hog V" (W) D)

Then we estimate these terms
cr cr 1 c cr
(@1 < lIEeallleeat]| < ZlILeall + 12| (3.16)
In order to estimate (3), we expand (f0?2),
1
(f20%), = 2ﬁxﬂm/ (1 —7)W"(@s + 70, )dT
0
1
+02 / (1= m)W" (@S + 70,)(@, + T0se)dT
0
So under the assumption (3.15)

(3)]

IA

cH LA ~ cS 1 ~
CULDN1Palloo 1Bzl + IL D215 (< + [Pz )]

IN

1
§||Lci7||2 + C(e*B.(v)?)
||LC@\|||Q§|’|5j|

Ce 2| L0]||&]
1. o
§||LCU||+C€ NP

=
INIA

IN
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{7 ()¢, 0 |
Z €5 111715

< Ce! Z |51 Be(D)
j=1

—

(@)}

-

Il
| —

IA

because by Proposition 2.2.5 we know that || u§ |1 is bounded.

Using the approximations |(2), [(3)], [(4)| and |(5)], we get

10

c~ ~ 1 cx~ cl~ —1)¢ — ~
3o L) 5 [ LB P L9 [P +CeT gl + CeTBA(D) - (3.17)

so using Proposition 2.2.6

10

I . - T _ -
2815( LD, v) + 5 | L [|2P< Cle 2a®(r) + e H& 1P+ e *B2(9)]. (3.18)

Using Lemma 3.2.4 we can get
€512 < Cle™ B2 (r)Be(®) + € *B2(0) + ¢ *a®(r)]

Combining this inequality with (3.18), we get

10

52 (—L0,8) + 5 || 10 |P< Cle0?(r) + B2 3) + M 8(r) B(0)]

By Lemma 3.2.3, we have

EB.(0) <O || L9 ||*.
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Thus

10

5 (L0, 8) 4 5 | 15 [P< Cle®a? () + (P B) + B0 || L9 |

Using the assumption ¢"B.(0) = o(1) of Lemma 3.2.4, we get

10

5 e (— L%, 0) + %H L% |P< Ce3a(r) < CePa(r).

Using Lemma 3.1.2, we can get

0

EAE(@) +aA (D) < CePa(r),

where ]
a = §|>\N+1| > 0.
Integration gives
A (D(t) € A@(0))e”™ 4+ Ce?a®(r)(1 — e,
SO
Ac(9(t)) < max {A(9(0)), Ce°a’(r)}, (3.19)

Where C', a are positive constants, independent of ¢ and 2.
By Lemma 3.2.2 and 3.19, we write the inequality of Lemma 3.2.4 as

Cle” 6B(T)Ai/2 )+ € TAL(D) + € Pa(r)]

& (0
Cle *B(r)(Ac(©(0)V2e™ 72 4 e22a(r)) + e 1 AL0(0))e ™ + € 2al(r)],

VAN VAN

thus
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The slow channel is defined by the following inequality
A(9(0)) < Cea?(r).
Therefore from the last two inequalities we get
& < Cea(r) (3.20)

The proof of Theorem B follows from (3.19) and (3.20).
The slow channel as we know is defined by Definition 3.0.3 to be

D ={0:a=a 4+, A(0) < be a?(r)}.
Additionally if we define
I'={t:a=10u+9, ¢ T B(0) < C},

with some fixed 1, then we have the conclusion of Figure 3.2. If a solution
starts in ", then by (3.19) it will decay exponentially towards I' until u®
leaves the boundary of the Invariant Manifold. Additionally, if it enters the
I' then it will stay there and it can leave it only through the ends of the
channel.

Figure 3.2: The Invariant Manifold is in blue and I' and I” are in red and
green respectively. The arrows shows the motion of the solutions
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Chapter 4

System of ODEs

For any function ¢(z), ¢(z) := fol o(y)dy

4.1 The System of ODEs

We have already proven that the Invariant Manifold attracts the solutions
which are close to its neighbourhood called ”slow channel” (Theorem B).
Nevertheless, we have not investigated the evolution of the solution close to
the Invariant Manifold. Because v is negligibly small, what we have to find
is the behaviour of £ = (£, &, ...,&n). The answer to this question is given
rigorously by the following ODE system.

S 1 B

dt A& —&) (o’ = a') + O(ea)

I S S 1 i o

@ IG-ot T g g T

& - b 1 5 3

i e ey IO R
L _ 1 Nt _onN-1y L N N

dt 4(En —Eny) (@ ) + Lhmor — &) (c a) + O(ea)
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In order to take an easier view of this system, we can imagine hyy; as a
variable adding one more equation
dhy 1 1

i P (V2 — ™) + O(ea).

The derivation of this system is given in the next section. As we can see,
between two neighbour quantities of the same phase (§;_1,¢;) and (§;41,&;+2)
the bigger of them two out to pump quantity from the smaller. This happens
because of the sign of number o/*? — o/. The tempo of this process is
proportional to (a/*% — a?) /(&1 — &;).

Regarding the layer points, because they are between two different phases,
their movement depends on the pumping of both phases. That’s why in the
system every & is equal to the sum of two terms. An example is given in

Figure 4.1

4.2 Derivation of the ODE System

In this section we derive the system mentioned in the previous section. We

work with the integrated equation and with inner product, so:
N
Z a5 = <_€2(ﬂ§:axxm + Usgas) + (W’(ﬂfc + Uz))es Ef)
j=1

The key, in order to produce the system, is estimation of (—€2(@5,,, +Vrees) +
(W'(@ + 0y))a, EF) and of the matrix a;;. Afterwards we invert the matrix
a;; to ai_jl and we multiply with it both , right and left hand, sides of the
equation.

Approximation of (—e(@,,, + Vgras) + (W' (@5 + ))a, ES)

(=€ (Uae + Tawaa) + (W(EE + 02))a, Ef)
(Lot + LD+ (fo92) g, B) = L1 + Iy + I3
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[IR=h -

06 -

02+ =

04+ -

0B~ -

1 | | | | |
i1 wi 2 wi 3 i 4 wi &
X

Figure 4.1: In this Figure are the dynamics described by the system of ODEs.
The arrows are the velocities of &;s with measure |;|.

where

Il — <£C,E2>
IQ — <Lc”&—|—,El>
Iy = ((f20,)x, Ei)

Estimation of I;:
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(LU, B;)

= (- (ﬁbug)x,Eﬂ
(LoF, B,
(LPub u£+uz+1 Qiz)

by Proposition 2.2.3 we can take some results about u} + u$ 1

Xl x el
(1= x)(=¢, +w') + X' (=¢5 —w™)
u€ 4 uf — +X2z(¢z - d)H_l) + XZwH_la x e [l
PEIT) S - e (= (g )
X0 = w'™?) + XS (P = ¢, € Ly
\ _(1 - Xi+2)w +27 S -[i+2
or,
(X', r €l
(L =x)(=¢, +w') = X'¢5 + x5(¢" — '),  wel
Wy = (= (g — )
z+1<¢z+1 ¢i+2)’ T € Ii+1
\ _(1 - XH—Q) i+27 T € [i+2
or,
X', x €l
vt = 4 (= ) — (1 =X, — X'05" + xa(¢' — o), z el
i i+1 X +2 (1 _ Xi+1)¢i+1 z+1¢z+2 + Xz+1(¢i+1 _ ¢i+2)’ = [i-i-l
( z+2) z’—|—2, T € Ii+2
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or,

Y, x € Iy
(1 —xHw' + us, z € I
w4 w e Ly
(1= P2, z € Ly

'3 §
U+ Uiy =

Therefore we have

I = / Lo(u®)uSdr + (LPC, e)
IiUIi+1

where
[ —Qix + X', v €l
—Qiz + (1 — xHu', z €
e={ —Qi — Y wit?, zel
—Qir — (1 — X2, 2 € Iips
{ —Qizs elsewhere

miyo
/ Lo uSdr = / (ul, — W' (u®))uldw
IZ'UIZ'+1

mi

= [Gud = W)

m;

= o — az+2

by Proposition 2.2.9 |£%(u®)] < Cla®™! — of| for z € I;4

by (3.7) and Proposition 2.2.8, |e| < Ce™33(r).
Thus
h = o = 2 4 OB (r)a(r))

The new Estimation of I: By (3.14)
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(L0, Ei)| < Ce*B(r)Be(0)"/?
By Lemma 3.2.3
(L°D, E;)| < Ce™®B(r) A ()2
By Definition 3.0.3 of the slow channel "
(LT, E;)| < B2 Pa(r)(r)

Thus
I = O(e ¥a(r)B(r))

Estimation of I5:
By (3.15)
((fa02)e, Ei) < Ce ' B.(0)

By Proposition 3.2.3
<(f21792:)x7 E;) < 06_3146(@)
By Definition 3.0.3 of the slow channel '

06_3b6_5a2(r)
Cbe 3a?(r)

((f202), B3]
[((f202), Ei)|

IA A

Thus
Iy = O(e %a?(1))

Now it remains to estimate the matrix a;.

N .0
Qij = <U§7Ef> — (7, ¥E5>
J

Consequently, it suffices to estimate <&§, Ef) and (4, %Eﬂ
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estimation of (ﬂg, EF):
(U5, Ef) = (0; — Wiy + -+ + (=) Ty + ejiihy .y, B,
where by (3.6) and Figure 3.1
ej = Ohny1/Oh; — 1= 0(e ' 8(r))
Continuing we have

(a5, 1) =

6jﬂ}1§7+1’u_]i>
By (3.7) we know that |Q;(z)| < Ce3A(r)
(Wj — Wjp1 + -+ (1) Yoy + ejily . Qi(x))

<@ = Bjer + -+ ()N iy + egtlyg [l Qi) |l

< maxlw;— o+ - A (1) oy tesiy | max|w—m 4 (1) T oy el

IA

I ejtin e 11l s |

maz|e;iy., | |maz|w,|

<€ja}1i/+17 wi>

N

(U8, E5) = (j — w1 + -+ (= 1)N iy, @) + O(e )

or

(U5, B5) = (w0, ;) — (Wj1, @) + -+ -+ (= 1)V (@, ;) + O(e*B)
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And now what we have to do is to estimate (w;,w;) for every 1 <i,j < N.

for i = j by (3.5), (3.6)

1

| wide =i+ e+ 003
0
Similarly for i # j
1
/ /ll_Jﬂl_dex' = O(E)
0

finally

<a§ E§> _ (_1)i+j4lj+1 + O(E), 1> j
o O(e), i<

Estimation of (7, %Ef):
J

By Lemma 3.2.2 and Definition 3.0.3
@] = O(e ™2a)

or

Also || %Ef |= O(e~%/?) and

0

<?77 ¥E§> = O(e_4a).
j
And also o
0 = ) U+ 0(), iz
“ O(e), i< j.
or
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4(& — &) 0 0 .. 0

—4(& — &2) 4(& — &) 0 e 0
4(6 — &3) —4(&4 — &3) 4(&s — &) e 0
(—DN by —En) ()N P4y —En) ()N PA(hvg —Ev) -0 A(hnga —En)
+0(e)
or
e O 0
T w0
0 4(531752) 4(541753) o
@it =| L EE S o
4(£4—¢€3) ’
0 0 R (oveo)
Multiplying both terms of the equation with (a;;) we take the following
system
LS ST S
prli 4(52_51)(04 a’ )+ O(ea)
s _ 1 31 1 4 2
7 —4(52_51)(04 oz)+—4(£3_62)(a a’) + O(ea)
dés 1 4_ 2 1 5 3
prli 4(53_52)(04 a)+4<§4_§3)(0z a’) + O(ea)
v 1 vt 1 v
Ty L T vwwprss LR

We can either see hyy,; as a value or as a function of €. If hy.; is a value,
the system has N equations but N + 1 values.
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by Proposition 2.3.1 and differentiating fol u'(z)dxr = M we find
Ohn 41 N—j -1
TONHL (Wi 0
= (1) 0
and so differentiating hxy,q by time we find

N

T SV + OB

j=1
Using the system it turns out to be

dhnyr 1
dt 4(hnt1 —En)

(™% — o) 4+ O(e)

and finally we have the system

d 1

% - m(a3—al)+0(ea)

S T 1 -

ey LR o AR R G

a1 a2 1 5_ 3

T o L | TR

dfl — ; N+1 N-1 ; N+2 N

dt 4(5N_5N_1)(O‘ @ )+4(hN+1_€N)(a a”) +O(e)
dh 1
T T g e ol

We are thankful to P.W.Bates J.Xun for this elegant system.

Stochastic Cahn-Hilliard Equation

The Cahn-Hilliard equation is a very good model for describing the metastable
patterns. Nevertheless, it is an idealization of the natural problem. This hap-
pens because of the noise of thermal fluctuations (see [BMW]). If we add
an extra non-homogeneous stochastic term to the Cahn-Hilliard equation
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we obtain the following Stochastic-Cahn-Hilliard equation (or Cahn-Hilliard-
Cook), which considers noise (for a basic reference on stochastic differential
equations see [W]):

Uy = (—€Ugy + W (1))gw + 0, B, € (0,1), t>0,

where 0 < € << 1 is the interaction length, W(u) = 1/4(u*—1)? the potential
and B is a Q-Wiener process and accounts for the noise.
With the boundary conditions

Uy = Uger = 0, x €{0,1}, > 0.

The Q-Wiener process is defined by the following definition.

Definition 4.2.1 Let (H,<>) be a Hilbert space. The H-valued stochastic

process B is called Q- Wiener process if and only if:

e B(0) =0 (with probability 1), B has continuous paths.

The differences B(t1) — B(s1), B(ts) — B(ss) are independent for every
0<s) <t <89 <ty

B is Gaussian, meaning (< B(t1),hy >,...,< B(ty), hn, >) is a vector
valued Gaussian random variable for every h; € H, t; > 0.

E(B(t)) = 0, meaning E < B(t),h > is a vector valued Gaussian
random variable for every h € H, t > 0.

B has covariance operator ), meaning @) is a positive semidefinite sym-
metric operator, such that E < B(t),h >< B(s),g >= min{t,s} <
Qh, g > for every h,g € H, t,s > 0.

We can also convert Stochastic Cahn-Hilliard equation to an integrated
form

'at - _EQQImxw + (W,(ﬂx))x + Ba S (07 1)7 t> 07
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a(0,¢) =0, a(1,t) =M, t>0,
fige = 0, z€{0,1}, t>0,
where @(z,t) = [ u(y,t)dy.

The next step in order to obtain a solution is to integrate by time. As

opposed to deterministic integrals, the integral used is the Ito integral:

Definition 4.2.2 The [té integral of a stochastic process v(t) is defined by

the sum
n—1

t
/ vdB = lim > w(t)(B(trsr) — B(t),
where 0 =ty <ty < ... <t, =1t and tp1 —tx — 0 as n = oo.

Now the theoretical background is complete. Is it possible to derive a
system of Stochastic ODEs for the Stochastic-Cahn-Hilliard equation? The
answer is given by D.Antonopoulou, D.Blomker, G.Karali, in [ABK].
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Appendix A

Numerical Simulations

All the Figures of the thesis are made using the MathWorks Matlab technical
computing language. The m-code for simulating the Invariant Manifold, like
in Figures 2.7 4.1, is given in this appendix .

$parameter epsilon of the Cahn—Hilliard equation
epsilon=0.01;

%$step for the simulations

h=0.001;

input for the transition layers
u(l) is the value of u"h at x=0

du is the derivative of u"h at x=0

o° o o° o°

duu (i) is the derivative of u"h at x=h_1i

u(l)=0.9999999;

du=0;

u(2)=u(l)+duxh;
duu(l)=—70.651678;

duu (2)=70.6516786207036;
duu (3)=—70.65167862070;
duu (4)=70.651;

duu (5)=—70.65167862070;
$duu (6)=70.5516786207035;
$duu(7)=—70.6516786207036;
$duu (8)=70.5516786207036;
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for i=1:1:1/h+1
X (1)=h* (i—-1);
end

%$simulation of the Reaction—Diffusion equation using method of finite
%$elements. The step used is h.

k=1;

for i=2:1:1/h

if u(i—1)+*u(i)<O0
k=k+1;
hh (k—1)=x(1);
hh (k)=10;
u (i) =duu (k—1) +xh;
u(i—1)=0;

end

u(i+l)=—u(i—1)+2+u(i)+(h/epsilon) "2* (u(i) "3—u(i));

end

for i=1:1:1/h+1
ou(i)=u(i);

end

%$the manifold is the sum of two terms

$the first term
1=1;
i=0;
while i<1/h+1

i=i+1;

uu (i)=u(i);

if abs(x(i)—hh(l))<epsilon

while abs(x(i)—hh(1l))<epsilon
u(i)=—u(i-2)+2+u(i—1)+(h/epsilon) "2 (u(i—-1) "3—u(i—-1));

if mod(1l,2)==0
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uu(i)=(0.5—(0.5)*sin(0.5%x3.1416* (x(1)—hh (1)) /epsilon))*u(i);
end

if mod(1l,2)==1
uu(i)=(1—(0.5—(0.5) *sin (0.5%3.1416x (x (i)—hh (1)) /epsilon)))*u(i);

end
if i<1l/h+1
if i<l/h+1
if (abs(x(i+l)—hh(l))>epsilon || (x(i+l)—hh(l))==epsilon)
1=1+1;
end
end
end
i=i+1;
end
i=1i-1;

end
end

for i=1:1:1/h+1
u(i)=ou(i);

end

%$the second term
1=k—-1;
i=1/h+2;
while i>1
i=i-1;
uuu (i) =0;
if abs(x(i)—hh(l))<epsilon
while abs(x(i)—hh(1l))<epsilon
u(i)=—u(i+2)+2xu(i+1l)+ (h/epsilon) "2* (u(i+l) "3—u(i+1l));

if mod(1l,2)==0
uuu (1)=(0.5+(0.5) *sin(0.5x3.1416%* (x(1)—hh (1)) /epsilon))*u(i);
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end

if mod(1l,2)==1
uuu (1)=(1—(0.5+(0.5)*sin(0.5%3.1416* (x(1i)—hh (1)) /epsilon)))*u(i);

end
if i>1
if (abs(x(i—1)—hh(l))>epsilon || (x(i—1)—hh(1))==epsilon)
1=1-1;
if 1==
1=k;
end
end
end
i=i-1;
end
i=i+1;

end
end

$sum of the first and the second terms
for i=1/h+1:—1:1

u(i)=uuu (i)+uu(i);
end

plot (x,u)

$plot (x,u, 'r")

xlabel ('x")

ylabel ('u"h'")

set (gca, 'XTick', hh)

set (gca, 'XTickLabel',{'h_1','h 2", "h.3','h 4','h 5'})

sthe 1_{N+2}
11=2 (1—hh (k—1))
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The m-code for calculating the u/(hy,)

In the code given above duu(N+1), which approximates u/(hy.;), takes a
unique value. The reason is that duu(N+1) is dependent on duu(1), duu(2),
..,duu(N) because Iy;1 = 2(1 — hyy1). The method used in the following
code, for calculating duu(N+1), is bisection method.

$parameter epsilon of the Cahn—Hilliard equation
epsilon=0.01;

%$step for the simulations

h=0.001;

1=11;

%$Bisection method in the interval [a,b]
a=70;

b=70.6516786208;

e=10;

while abs(e)>0.001

m= (a+b) /2;

i=2;

u(l)=0;

u(2)=mxh+u (1) ;

while u(i)—u(i—-1)>0
u(i+l)=—u(i—-1)+2xu(i)+(h/epsilon) "2* (u(i) "3—u(i));
i=i+1;

end

e=2* (1—2)+h—1;
if e<0

a=m;
else

b=m;

end

end
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