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ABSTRACT. In this work we perform some numerical experiments for the Wigner equation,
at relatively high frequencies and for models whose fields develop caustics, by using the particle
method and the particle-in-cell technique. The accuracy and the efficiency of the particle method
is investigated using either analytical solutions of the Wigner equation or FEM solutions of the
associated wave field.
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1.INTRODUCTION.

The parabolic wave equation (Schrödinger equation), is a paraxial approximation to the Helmholtz
equation, which has applications to many different wave propagation problems arising in science
and engineering. It seems to appear for first time in the work of Leontovich and Fock [FO] (see
also [Fl], [BB], [BK]) in the mid-1940’s, who applied the method to describe the propagation of
electromagnetic waves along the surface of the earth. Later, parabolic approximation method was
applied to many other fields, like in plasma physics, for the study of beam propagation [TAP2], in
seismology for understanding seismic waves in earth’s crust, in laser optics (”quasi-optical” equa-
tion method), and in the investigation of random waves [TAT1]. Another important field where
parabolic approximation has been established as a fundamental tool is underwater acoustics. At
the beginning the method was introduced by Tappert [TAP1] for modelling and computing low-
frequency, long-range propagation of sound waves in the ocean, but now the method is widely used
for computations to much higher frequencies.

The present work is related to the problem of paraxial propagation (Schrödinger equation) in
relatively high frequencies (or equivalently, after rescaling, for large Fresnel numbers). Our ap-
proach is based on the reformulation (via the Wigner transform) of the initial value problem for
the Schrödinger equation as an initial value problem for the (integro-differential) Wigner equation
in phase space. The Wigner transform has been introduced since 1932, as an alternative to non-
existing joint probability densities in quantum theory [WIG] (see also [TAT2]). It has not received
much attention in Applied Mathematics literature, until very recently when Markowich and his col-
laborators [GM], [GMMP] employed this equation for analyzing semiconductor devices and related
wave problems, and Papanicolaou [PR] who used the Wigner transform for investigating waves in
random media and rigorously deriving the related radiation transport equations. Concerning clas-
sical scattering theory, Perthame and his collaborators [BKP], [RP] applied the Wigner transform
to analyze the high frequency Helmholtz equation with a source term. It is however interesting to
note that the Wigner distribution (as it is usually referred in Physics and Engineering, especially
in signal processing) has been used in heuristic studies of classical waves since seventies. For exam-
ple, Tappert [TAP2] has used the Wigner distribution for performing diffractive ray tracing of laser
beams and he has proposed a ”quasiparticle” representation as a tool for the numerical treatment of
the problem. An interesting review on the ”quasiparticle view” of wave propagation until 1980 has
been presented by Marcuvitz [MA]. For later and rigorous mathematical developments, someone
should refer to Lions and Paul [LP] and Papanicolaou and Ryzhik [PR].

Very recently, Filippas and Makrakis [FM] have initiated the study of high-frequency asymptotics
near caustics, by employing an Airy-type approximation of the Wigner function as an approximate
solution of the Wigner equation near the Lagrangian manifold of geometrical optics. In the direction
of the numerical solution of the Wigner equation, when the rays of the corresponding geometrical
optics’ problem (WKB solution) develop caustics, a first attempt has been done by Kalligiannaki
[KAL] using the standard method of particles for some simple standard models (harmonic oscillator
and potential barrier). In the present work we perform some numerical experiments for the harmonic
and quartic oscillators using different formulations for initializing the standard particle method, and
also the so-called particle-in-cell technique for reducing the computational load.

The contents of the work are as follows. In Section 2 we present the basics of the parabolic
equation. In Section 3 we introduce the Wigner transform and its basic properties, and we derive
the Wigner equation for the Schrödinger equation. In Section 4 we present the particle method for
the transport and the Wigner equation. Finally, in Section 5 we perform numerical experiments
with the particle and the particle in cell methods for the harmonic and the quartic oscillator. The
numerical results of the particle method are well compared with a FEM solution for intermediate
frequencies. For very high frequencies the FEM solution seems to be inaccurate and it cannot be
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improved, and on the other hand, the particle solution needs a tremendous big number of particles
in order to be in reasonable agreement with the available analytical solution for the harmonic
oscillator. A similar situation appears in the case of the quartic oscillator for which an analytical
solution is not available.
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2.PARAXIAL APPROXIMATION.

2.1 Physical conditions.

The parabolic approximation method (more precisely, paraxial approximation), as is applied to
the long-range propagation of acoustic signals in the ocean, is based on the special propagation
features of sound channel mode of propagation (guided waves), which makes possible this phenom-
enon. Sound channel propagation takes place in a waveguide that is relatively thin in the vertical
direction, and greatly elongated horizontally, and which confines the acoustic waves within the
water column and prevents their interaction with the bottom.

Comparing the approximation under discussion with the other two basic approximating methods
in underwater acoustics, that is geometrical acoustics and normal-mode expansions, we can observe
its advantages. Geometrical acoustics methods need small wavelengths in order to have negligible
diffraction effects, and separation of variables methods are valid only in an exactly horizontally
stratified ocean. Though, parabolic approximation methods retain diffraction effects and are valid
for more realistic oceans, where horizontal variation of the refraction index is allowed.

The fact that the largest angles of interest in long range propagation are rather small sets the
stage of the parabolic approximation. In order to explain why long range propagation corresponds
essentially to small angles of propagation, we use the geometrical acoustics for a horizontally strat-
ified ocean, and we assume that all bottom interacting rays are attenuated rapidly enough, so that
they don’t contribute to long range propagation. Indeed, by Snell’s law, the maximum angle of
propagation, with respect to the horizontal direction, is given by

(2.1.1) θl = cos−1
( cmin
cmax

)
,

where cmin, cmax are the extreme values of the sound speed in the ocean. For the derivation of
(2.1.1) we consider the Hamiltonian

H(x, z, kx, kz) =
1
2
(k2 − η2(z)) , k2 = k2

x + k2
z ,

corresponding to the Helmholtz equation with refraction index η(z). The rays (characteristics)
emanating from x = z = 0, are found from the corresponding Hamiltonian system

(2.1.2)



dx

dt
= kx,

dz

dt
= kz

dkx
dt

= 0,
dkz
dt

= (η2(z)/2)′

x(0) = 0, z(0) = 0

kx(0) = kx0 , kz(0) = kz0 .

Solving this system we obtain
k2
z = k2

z0
− η2(0) + η2(z) ,

and (dz
dx

)2 =
k2
z

k2
x0

.

At the bottom depth z = zb, we want kz |z=zb
= 0, and noting that dz

dx = sinθ, θb = 0 we have

cosθl =
(
1 − sin2θl

)1/2 =
(
1 − ( kz0

k2(0)
)2)1/2

=
η(zb)
η(0)

=
c0
cmax

c0
cmin
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which gives us (2.1.1).
Moreover, if we put ∆c = cmax − cmin, where c0 is an average sound speed, then

cmin
cmax

= 1 − ∆c
cmax

,

and using

cos(θl) ≈ 1 − θ2
l

2
for small θl, we find

θl ≈ 2∆c
cmax

≈ 2∆c
c0

Typically, in the ocean c0 ≈ 1500m/sec and ∆c/c0 � 0.04, and therefore θl � 16o. This is
the reason that sometimes the parabolic equation we will derive in the sequel is called the 16o-
approximation in physics and engineering literature.

2.2 Derivation of the parabolic wave equation.
We proceed now to the derivation of the parabolic wave equation for realistic ocean environments,

which even though they may not be analytically solvable, are especially well adapted for numerical
computations.

We consider a fixed point source at x = y = 0, z = zs which radiates a spherical wave at fixed
frequency ω, and we assume that the refraction index of the ocean depends on all three spatial
coordinates, but not on time. We also assume that the density of the fluid is constant, and that
the volume attenuation is zero.

Then, the complex acoustic pressure satisfies the Helmholtz equation, which in cylindrical coor-
dinates (r, φ, z) is written in the form

(2.2.1) ∆p+ k2
0η

2(z, r, φ)p = −δ(�x) ,

where

∆p =
1
r

∂

∂r
(r
∂p

∂r
) +

∂2p

∂z2
+

1
r2
∂2p

∂φ2

is the Laplacian, and

δ(�x) =
1

2πr
δ(z − zs)δ(r) ,

is the Dirac function in cylindrical coordinates. Here k0 = ω
c0
, is the wavenumber, ω is the angular

acoustic frequency and η(z, r, φ) = c0/c(z, r, φ) is the refraction index, both corresponding to a
reference sound speed c0.

For solving equation (2.2.1) we must determine the boundary conditions on the surface z = 0
and the bottom of the ocean. As surface boundary condition is traditionally used the pressure
release condition p(z = 0, r, φ) = 0. The bottom boundary condition depends on the modeling
of the bottom. Generally waves that penetrate deep into the subbottom layers do not contribute
significantly to long range propagation and should be removed from the calculation. This effect is
sometimes modeled by complexifying the refraction index as η2(z, r, φ)+iv(z, r, φ), where v increase
rapidly for z much greater than the depth of the ocean and then cutting off the calculational
domain at a depth where the acoustic field has been reduced to a negligible amplitude. However,
such a modeling is not always consistent with the underlying continuum mechanics, and rigorous
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boundary conditions assuming fluid, elastic or poroelastic bottoms can be devised in the expense
of complication of the numerical treatment of the problem.

Moreover, radiation conditions of Sommerfeld type must be prescribed for r → ∞ to guarantee
uniqueness of the solution of the Helmholtz equation (cf. [GX], [XU]) and they will be built in the
asymptotic decomposition of the pressure field below (cf. eq. (2.2.2)).

For the case that we are assuming that all significant acoustic waves are propagating mostly in
the horizontal direction away from the source, the acoustic field may be represented as

(2.2.2) p(z, r, φ) = ψ(z, r, φ)H(1)
0 (k0r)

where H(1)
0 (k0r) is the Hankel function of zero order and first kind (outgoing radial solution of

the Helmholtz equation in cylindrical coordinates), and ψ is an envelope function that depends on
depth, range and azimuth. The above representation is expected to be a good approximation only
when k0r >> 1. For low frequencies this conditions holds in the far field of the point source, but
for higher frequencies the range of validity may be reduced. Also, since the representation (2.2.2)
is not expected to hold near the source, the source term at equation (2.2.1) will be omitted, and
we will consider the homogeneous Helmholtz equation

(2.2.3) ∆p+ k2
0η

2(z, r, φ)p(z, r, φ) = 0 .

In order to derive an equation for the envelope ψ we substitute (2.2.2) into (2.2.3). First we compute

∆(ψH(1)
0 (k0r)) =

=
∂2ψ

∂r2
H

(1)
0 (k0r) +

(
2∂(H(1)

0 (k0r))
∂r

+
1
r
H

(1)
0 (k0r)

)
∂ψ

∂r
+

+
∂2ψ

∂z2
H

(1)
0 (k0r) +

1
r2
∂2ψ

∂φ2
H

(1)
0 (k0r) +

1
r

∂(H(1)
0 (k0r))
∂r

ψ +
∂2

∂r2
(H(1)

0 (k0r))ψ .

Then, we have(
∆(ψH(1)

0 (k0r)) + k2
0η

2(ψH(1)
0 (k0r))

)
1

H
(1)
0 (k0r)

=

=
∂2ψ

∂r2
+

(
2

H
(1)
0 (k0r)

∂H
(1)
0 (k0r)
∂r

+
1
r

)
∂ψ

∂r
+
∂2ψ

∂z2
+

1
r2
∂2ψ

∂φ2
+

+

(
1
r

1

H
(1)
0 (k0r)

∂H
(1)
0 (k0r)
∂r

+
1

H
(1)
0 (k0r)

∂2H
(1)
0 (k0r)
∂r2

)
ψ + k2

0η
2ψ = 0 ,

which gives

(2.2.4)
∂2ψ

∂r2
+

(
2

H
(1)
0 (k0r)

∂H
(1)
0 (k0r)
∂r

+
1
r

)
∂ψ

∂r
+
∂2ψ

∂z2
+ +

1
r2
∂2ψ

∂φ2
+ k2

0

(
η2 − 1

)
ψ = 0 .

Now, for k0r >> 1, by the asymptotics of the Hankel function we have

H
(1)
0 (k0r) ∼

( 2
iπk0r

)1/2
eik0r ,
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and
∂H

(1)
0 (k0r)
∂r

=
(

2
iπk0r

)1/2

eik0r

(
− 1

2r
+ ik0

)
,

and thus
2

H
(1)
0 (k0r)

∂H
(1)
0 (k0r)
∂r

+
1
r

= 2ik0

(
1 +O

( 1
k2
0r

2

))
.

Consequently neglecting the terms of order 1/k2
0r

2, equation (2.2.4) reduces to

(2.2.5)
∂2ψ

∂r2
+ 2ik0

∂ψ

∂r
+
∂2ψ

∂z2
+

1
r2
∂2ψ

∂φ2
+ k2

0

(
η2 − 1

)
ψ = 0 .

If the main radial dependence of the acoustic field is eik0r for some k0, then the envelope function
ψ will vary slowly as a function of r in the wavelength scale, that is

∂ψ

∂r
<< k0ψ ,

and therefore we can neglect the term ∂2ψ
∂r2 in (2.2.5) with a small error. This leads to the desired

approximation, and the parabolic wave equation reads as follows

(2.2.6) 2ik0
∂ψ

∂r
+
∂2ψ

∂z2
+

1
r2
∂2ψ

∂φ2
+ k2

0

(
η2 − 1

)
ψ = 0 .

In the case that the variation of the ocean in azimuth is very gradual, we may omit the scattering
in the horizontal azimuthal direction, that is to neglect the term ∂2ψ/∂φ2 in (2.2.6), which means
that we consider ψ = ψ(r, z).

Then the parabolic equation becomes

(2.2.7) i
∂ψ(z, r)
∂r

+
1

2k0

∂2

∂z2
ψ(z, r) +

k0

2

(
η2(z, r) − 1

)
ψ(z, r) = 0 .

The last equation has the form of the standard Schrödinger equation

(2.2.8) iε∂tψε = − ε
2

2
∂2
zψε + V (z, t)ψε(z, t) ,

with the correspondence

(2.2.9) ε = 1/k0 , t = r , V (z, t) =
(
1 − η2

)
/2 ,

that is, the range r plays the role of time, and the potential may depend both on space z and time
t, which makes the problem quite different from the corresponding quantum mechanical scattering
equation.

Equation (2.2.7) is the most widely used parabolic wave equation in underwater acoustics. Other
approximations like wide-angle parabolic equation have been devised, which are capable of greater
propagation angles. In general, a whole hierarchy of paraxial equations can be derived by certain
asymptotic approximations of the symbol of the pseudodifferential operator arising in one-way
factorization of the Helmholtz equation (cf. [TAP1], [LEE]).

The initial data for equation (2.2.7) are modeled on the basis of a near source expansion of
the solution of the Helmholtz equation (2.2.1), see, e.g., [COL]. However, a systematic asymptotic
derivation of the initial conditions for (2.2.7) is still lacking.



FOR THE WIGNER EQUATION 9

2.3 Geometrical acoustics and parabolic approximation.
Observing that equation (2.2.7) is a wave-type equation, we can perform a geometrical acous-

tics approximation. Therefore, in order to ensure the validity of the parabolic approximation we
shall compare the geometrical acoustics approximation [BLP], [KO1], [KO2] of the parabolic wave
equation and that of the Helmholtz equation.

We assume that the ocean is horizontally stratified. Then, the index of refraction depends only
on depth, i.e. η = η(z). We also assume that the acoustic frequency is high enough so that we can
perform the geometrical acoustics approximation. The Hamiltonian for the Helmholtz equation is
given by

H(z, r, kz , kr) =
1
2
(k2 − η2(z)) , k = (kz , kr) ,

and the exact ray equations are given by the corresponding Hamiltonian system

dr

dt
= kr,

dkr
dt

= 0

dz

dt
= kz ,

dkz
dt

= (η2(z)/2)′ .

From this system it follows kr = constant, and

(2.3.1)
d2z

dr2
=

1
s2

d

dz
(
1
2
η2(z)) ,

where s := η(z) cos θ = constant is Snell’s invariant. The angle θ between the rays and the
horizontal direction r is given by tan θ = kz/kr.

In order to derive the corresponding rays for the parabolic wave equation (2.2.7), we ask for
solutions ψ(z, r) in the form

ψ(z, r) = A(z, r)eiΦ(z,r) .

Substituting this ansatz into the parabolic wave equation (2.2.7), we have

i

(
∂A(z, r)
∂r

+ iA(z, r)
∂Φ(z, r)
∂r

)
+

+
1

2k0

(
∂2A(z, r)
∂z2

+ 2i
∂A(z, r)
∂z

∂Φ(z, r)
∂z

+ iA(z, r)
∂2Φ(z, r)
∂z2

−A(z, r)
(
∂Φ(z, r)
∂z

)2
)

+

+
k0

2
(η2(z) − 1)A(z, r) = 0 .

Equating the real and imaginary parts of the last equation to zero, we obtain the system

(2.3.2)
∂A(z, r)
∂r

+
1
k0

∂A(z, r)
∂z

∂Φ(z, r)
∂z

+
1

2k0
A(z, r)

∂2Φ(z, r)
∂z2

= 0 ,

(2.3.3) A(z, r)
∂Φ(z, r)
∂r

+
1

2k0

∂2A(z, r)
∂z2

− 1
2k0

(
∂Φ(z, r)
∂z

)2

A(z, r) +
k0

2
(η2(z) − 1)A(z, r) = 0 .

Setting

θ(z, r) =
1
k0

∂Φ(z, r)
∂z

,
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the equations (2.3.2) and (2.3.3) are written in the form

(2.3.4)
∂A2(z, r)

∂r
+

∂

∂z

(
θ(z, r)A2(z, r)

)
= 0 ,

and

(2.3.5)
∂θ(z, r)
∂r

+ θ(z, r)
∂θ(z, r)
∂z

=
1

2k0
2

∂

∂z

(
1

A(z, r)
∂2A(z, r)
∂z2

)
+

∂

∂z

(
1
2
η2(z)

)
,

respectively.
In performing the geometrical acoustics approximation, we take the formal limit k0 → ∞ of

(2.3.5), which is approximated by

(2.3.6)
∂θ(z, r)
∂r

+ θ(z, r)
∂θ(z, r)
∂z

=
∂

∂z

(
1
2
η2(z)

)
.

Moreover, from (2.3.4) we see that the acoustic power A2(z, r) is invariantly transported along the
characteristic curves

(2.3.7)
dz

dr
= θ(z, r) .

Combining (2.3.6) and (2.3.7), we find the following equation for the rays of the parabolic wave
equation

(2.3.8)
dθ(z, r)
dr

=
d

dz

(
1
2
η2(z)

)
.

Comparing the ray equations (2.3.1) and (2.3.8), we note that ray equations for the parabolic
wave equation are the same as those for the Helmholtz equation with s = 1. But in order that
s ∼ 1 we need that η(z) ≈ 1 and θ << 1. This conclusion verifies that small angles of propagation
is a necessary condition for the parabolic approximation to be valid.

2.4. The high-frequency regime.
The parabolic equation (2.2.7) has been traditionally used for small frequencies on the basis of

a physical argument saying that the volume absorption of sound energy increases very fast with
frequency. More recently computations based on the parabolic equation have been used for higher
frequencies, in a somehow inconsistent way, but the numerical results seem to be reasonable. On
the other hand, the Helmholtz equation (2.2.1) and its approximation (2.2.7) are derived from first
principles of mechanics with no dissipation in the basic equations. Dissipation is usually introduced
a posteriori by complexifying the frequency, and this corresponds to a particular energy dissipation
mechanism that may be not compatible with the underlying continuum mechanics.

Assuming here that there is not any dissipation, we investigate the high frequency case (ε small),
thus attempting to reduce the range of validity of the numerical computation, and to perform
as much as possible ”near field” calculations, as the actual parameter entering the derivation of
(2.2.7) is k0r. Moreover, by rescaling the equation (2.2.7) it is always possible to introduce in
place of ε = 1/k0, the parameter ε = 1/F , F = k0Z

2/R being the Fresnel number, with R,Z the
characteristic horizontal and vertical distances of the wave field.
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3.The Wigner equation.

3.1 The Wigner transform. [PR],[LP]
For any smooth function ψ(x) rapidly decaying at infinity, that is ψ ∈ S(R), the Wigner trans-

form of ψ is a quadratic transform defined by

(3.1.1) W [ψ](x, k) = W (x, k) =
1
2π

∫
R

e−ikyψ(x+
y

2
)ψ(x− y

2
)dy

where ψ is the complex conjugate of ψ. The Wigner transform is a defined in phase space Rxk, it
is real, and it has many important properties, the most remarkable of them being the following.

First, the k-integral of W (x, k) is the energy density of ψ

(3.1.2)
∫

R

W (x, k)dk = |ψ(x)|2 .

In fact, we have∫
R

W (x, k)dk =
1
2π

∫
R

∫
R

e−ikyψ(x+
y

2
)ψ(x− y

2
)dydk =

=
∫

R

(
1
2π

∫
R

e−ikydk
)
ψ(x+

y

2
)ψ(x− y

2
)dy =

=
∫

R

δ(y)ψ(x +
y

2
)ψ(x− y

2
)dy = ψ(x)ψ(x) = |ψ(x)|2 .

Here δ is the δ-function, and we used the Fourier transform δ(y) = 1
2π

∫
R
e−ikydk.

Second, the first moment in k of W (x, k) is the energy flux

(3.1.3)
∫

R

kW (x, k)dk =
1
2i

(ψ(x)ψ′ (x) − ψ(x)ψ
′
(x)) = F(x) .

In fact, we have∫
R

kW (x, k)dk =
∫

R

(
1
2π

∫
R

ke−ikydk
)
ψ(x+

y

2
)ψ(x− y

2
)dy = −1

i

∫
R

δ
′
(y)ψ(x+

y

2
)ψ(x− y

2
)dy =

=
1
i

∫
R

δ(y)
(

1
2
ψ

′
(x+

y

2
)ψ(x− y

2
) − 1

2
ψ′(x− y

2
)ψ(x+

y

2
)
)
dy =

=
1
2i

(
ψ(x)ψ

′
(x) − ψ(x)ψ′ (x)

)
.

The x to k duality in phase space can be recognized using the alternative definition

(3.1.4) W (x, k) =
∫

R

eipxψ̂(−k − p

2
)ψ̂(−k +

p

2
)dp ,

where ψ̂(k) = 1
2π

∫
R
eikzψ(z)dz denotes the Fourier transform of ψ.
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In fact, the definitions (3.1) and (3.2) are equivalent, since we have

W (x, k) =
1
2π

∫
R

e−ikyψ(x+
y

2
)ψ(x− y

2
)dy =

1
2π

∫
R

e−iky
∫

R

e−iz(x+
y
2 )ψ̂(z)dz

∫
R

e−iw(x− y
2 )ψ̂(w)dwdy =

=
1
2π

∫
R

e−iky
∫

R

e−iz(x+
y
2 )ψ̂(z)dz

∫
R

eiw(x− y
2 )ψ̂(w)dwdy =

=
∫

R

∫
R

(
1
2π

∫
R

e−iy(k+
z
2 + w

2 )dy

)
e−i(z−w)xψ̂(z)ψ̂(w)dzdw =

=
∫

R

∫
R

δ(k +
z

2
+
w

2
)e−i(z−w)xψ̂(z)ψ̂(w)dzdw =

=2
∫

R

e−i2(k+z)xψ̂(z)ψ̂(−2k − z)dz =
∫

R

eipxψ̂(−k − p

2
)ψ̂(−k +

p

2
)dp =

=
∫

R

eipxψ̂(−k − p

2
)ψ̂(−k +

p

2
)dp .

In the case of high frequency wave propagation, the WKB method suggests solutions of the form

ψε(x, t) = eiS(x,t)/εA(x, t) , ε→ 0 ,

where S is a real-valued and smooth phase, and A is a real-valued smooth amplitude of compact
support. The Wigner distribution of ψε(x) is

W (x, k) =
1
2π

∫
R

e−ikyeiS(x+ y
2 )/εA(x+

y

2
)e−iS(x− y

2 )/εA(x− y

2
)dy ,

but W (x, k) does not converge as ε → 0. However, it can be shown that the rescaled version of
W (x, k),

W ε(x, k) =
1
ε
W (x,

k

ε
)

converges weakly as ε→ 0 [PR], [LP].
Indeed, proceeding formally, we rewrite W ε in the form

W ε(x, k) =
1
2π

∫
R

e−ikyA(x+
εy

2
)A(x− εy

2
)e

i
ε [S(x+ εy

2 )−S(x− εy
2 )]dy ,

and we expand in Taylor series about y = 0 both A and S. Then, we have

A(x+
εy

2
)A(x− εy

2
) =

(
A(x) +

ε

2
yA

′
(x) + . . .

)(
A(x) − ε

2
yA

′
(x) + . . .

)
= A(x)A(x) +O(ε) = |A(x)|2 +O(ε) ,

and

S(x+
εy

2
) − S(x− εy

2
) =

(
S(x) +

ε

2
yS

′
(x) +

ε2

4
S

′′
(x) + . . .

)
−
(
S(x) − ε

2
yS

′
(x) +

ε2

4
S

′′
(x) − . . .

)
=

= εyS
′
(x) +O(ε3) .
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Retaining only terms of order O(1) in A and O(y) in S, and integrating the expansion termwise
we obtain that W ε(x, k) ”converges” to

(3.1.5) W (x, k) = |A(x)|2 1
2π

∫
R

e−i(k−S
′
(x))ydy = |A(x)|2δ(k − S

′
(x)) ,

which is a Dirac measure, concentrated on the Lagrangian manifold k = S
′
(x), associated with

the phase of the WKB solution ψε [ARN1],[ARN2], and it is the correct weak limit [LP]. More
precisely, if Q is any test function in S(R2), then∫

R

∫
R

Q(x, k)W ε(x, k)dxdk →
∫

R

Q(x, S
′
(x))|A(x)|2dx .

The above observations suggest that the scaled Wigner transform

(3.1.6)
W ε(x, k) =

1
ε
W (x,

k

ε
) =

=
1
2π

∫
R

e−ikyψε(x+
εy

2
)ψ

ε
(x− εy

2
)dy ,

is the correct phase-space object for analyzing high frequency waves.

3.2 The Wigner equation for the Schrödinger equation.
We consider the following initial-value problem for the Schrödinger equation (cf. eq. (2.2.8)),

with time-independent potential (this corresponds to range-independent ocean sound speed)

(3.2.1)

 iε∂tψ
ε(x, t) = − ε

2

2
∂2
xψ

ε(x, t) + V (x)ψε(x, t)

ψε(x, 0) = ψε0(x, t) .

Let W ε(x, k, t) be the scaled Wigner distribution of ψε(x, t). In order to find the equation that
W ε(x, k, t) satisfies, we start with the identity

(3.2.2)

iε
(
∂tψ

ε(x+
ε

2
y, t)φε(x− ε

2
y, t) + ∂tφε(x− ε

2
y, t)ψε(x+

ε

2
y, t)

)
=

= − ε
2

2

(
φε(x− ε

2
y, t)∂2

xψ
ε(x+

ε

2
y, t) − ψε(x+

ε

2
y, t)∂2

xφ
ε(x− ε

2
y, t)

)
+

+
(
V (x+

ε

2
y) − V (x− ε

2
y)
)
ψε(x+

ε

2
y, t)φε(x− ε

2
y, t) .

If we put
vε(x, y, t) = ψε

(
x+

ε

2
y, t

)
φε
(
x− ε

2
y, t

)
then, we have

∂xv
ε = ∂xψ

ε(x+
ε

2
y, t)φε(x− ε

2
y, t) + ψε(x+

ε

2
y, t)∂xφε(x− ε

2
y, t) ,

and
∂y∂xv

ε =
ε

2
∂2
xψ

ε(x+
ε

2
y, t)φε(x− ε

2
y, t) − ε

2
∂xψ

ε(x+
ε

2
y, t)∂xφε(x− ε

2
y, t)

+
ε

2
∂xψ

ε(x+
ε

2
y, t)∂xψ

ε
(x− ε

2
y, t) − ε

2
ψε(x+

ε

2
y, t)∂2

xφ
ε(x− ε

2
y, t)

=
ε

2

(
∂2
xψ

ε(x+
ε

2
y, t)φε(x− ε

2
y, t) − ψε(x+

ε

2
y, t)∂2

xφ
ε(x− ε

2
y, t)

)
.
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Using the above two relations we rewrite (3.2.2) in terms of vε as follows

iε∂tv
ε = − ε

2

2
2
ε
∂y∂xv

ε +
(
V (x+

ε

2
y) − V (x− ε

2
y)
)
vε

= −ε∂y∂xvε +
(
V (x+

ε

2
y) − V (x− ε

2
y)
)
vε .

Multiplying the last equation by e−iky/2π, and integrating with respect to y we get

iε∂t

{
1
2π

∫
R

e−ikyvε(x, y, t)dy
}

= −ε∂x
{

1
2π

∫
R

e−iky∂yvε(x, y, t)dy
}

+
1
2π

∫
R

e−iky
(
V (x+

ε

2
y) − V (x− ε

2
y)
)
vε(x, y, t)dy .

By noting that

W ε(x, k, t) =
1
2π

∫
R

e−ikyvε(x, y, t)dy ,

the above equation is written in the form

iε∂tW
ε(x, k, t) = − ε

∂

∂x

{
1
2π

[
e−ikyvε

]+∞
−∞ + (ik)

1
2π

∫
R

e−ikyvε(x, y, t)dy
}

+

1
2π

∫
R

e−iky
(
V (x+

ε

2
y) − V (x− ε

2
y)
)
vε(x, y, t)dy .

Assuming now that ψε(x, t) decays fast enough as | x |→ ∞, we have

lim
|y|→+∞

(e−ikyvε) = 0 ,

and therefore W ε satisfies the equation

(3.2.3) ∂tW
ε(x, k, t) = −k∂xW ε(x, k, t) + I ,

where
I(x, k, t) =

1
iε

1
2π

∫
R

e−iky
(
V (x+

ε

2
y) − V (x− ε

2
y)
)
vε(x, y, t)dy .

Since W ε(x, k, t) is the Fourier transform of vε(x, y, t), we have

vε(x, y, t) =
∫

R

eiξyW ε(x, ξ, t)dξ ,

and we write I as follows

I =
1
iε

1
2π

∫
R

∫
R

e−ikyeiξyW ε(x, ξ, t)
(
V (x+

ε

2
y) − V (x− ε

2
y)
)
dξdy =

=
1
iε

1
2π

∫
R

W ε(x, ξ, t)
(∫

R

e−i(k−ξ)y
(
V (x+

ε

2
y) − V (x− ε

2
y)
)
dy

)
dξ .

Now we define Zε(x, k) by

(3.2.4) Zε(x, k) =
1
iε

1
2π

∫
R

e−iky
(
V (x+

ε

2
y) − V (x− ε

2
y)
)
dy ,
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and we rewrite I as the convolution

I = Zε(x, k) ∗k W ε(x, k, t) .

Therefore, equation (3.2.3) takes the form of the integrodifferential equation

(3.2.5) ∂tW
ε(x, k, t) + k∂xW

ε(x, k, t) − Zε(x, k) ∗k W ε(x, k, t) = 0

which is known as the Wigner equation.
The Wigner equation (3.2.5) can be written in an alternative form revealing the underlying

competition between the hyperbolic and dispersive character in this equation, depending on the
value of the frequency ε. Expanding in Taylor series the potential V we observe that for small ε
and fixed x, y we have

1
ε

(
V (x+

ε

2
y) − V (x− ε

2
y)
)

= yV
′
(x) +O(ε) .

Then, we write Zε(x, k) in the form

Zε(x, k) = − i

2π

∫
R

e−iky
[
V (x+ ε

2
y) − V (x− ε

2
y)

ε
+ yV

′
(x) − yV

′
(x)

]
dy ,

that is

(3.2.6a) Zε(x, k) = J(x, k) + Qε(x, k) ,

where

(3.2.6b) J(x, k) :=
(
− i

2π

∫
R

e−ikyydy
)
V

′
(x) = ∂k

(
1
2π

∫
R

e−ikydy
)
V

′
(x) = δ

′
(k)V

′
(x) ,

and

(3.2.6c) Qε(x, k) := − i

2π

∫
R

e−iky
[
V (x+ ε

2
y) − V (x− ε

2
y)

ε
− yV

′
(x)

]
dy .

Thus, using the formula
δ
′
(k) ∗k W ε(x, k, t) = ∂kW

ε(x, k, t) ,

the Wigner equation is written in the form

(3.2.7) ∂tW
ε(x, k, t) + k∂xW

ε(x, k, t) − V
′
(x)∂kW ε(x, k, t) = Qε(x, k) ∗k W ε(x, k, t) .

We observe that the differential operator in left hand side of (3.2.7) is independent of the small
parameter ε, while the convolution kernel Qε in the right hand side is of order O(ε2) for fixed x, k.
Therefore, the formal limit of the Wigner equation as ε→ 0 is the equation

(3.2.8) ∂tW (x, k, t) + k∂xW (x, k, t) − V
′
(x)∂kW (x, k, t) = 0 .

This equation is the standard Liouville equation of classical mechanics in phase space, and it is
called the limit Wigner equation.
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The initial data for the Wigner equation is the Wigner transform

(3.2.9) W ε(x, k, 0) = W ε
0 (x, k) = W ε[ψε0](x, k) ,

of the initial data ψε0(x) = ψε(x, t = 0). On the other hand, the initial data for the limit Wigner
equation are found by taking the limit of W ε(x, k, 0) as ε→ 0, and they have the form (cf. Section
3.1)

(3.2.10) W0(x, k) = |A0(x)|2δ(k − S
′
0(x)) .

The solution of (3.2.8) is given by

(3.2.11) W (x, k, t) = |A(x, t)|2δ(k − S
′
(x, t))

with S(x, t), A(x, t) solutions of the eikonal and transport equations, respectively,

(3.2.12a) St(x, t) +
1
2
|Sx(x, t)|2 + V (x) = 0 , S(x, t = 0) = S0(x) ,

and

(3.2.12b) (|A(x, t)|2)t + (|A(x, t)|Sx(x, t))x = 0 , |A(x, t = 0)|2 = |A0(x)|2 ,

In fact, differentiating (3.2.11), and using the formula

f(k)δ
′
(k − k0) = −f ′

(k0)δ(k − k0) + f(k0)δ
′
(k − k0) ,

we have

∂tW (x, k, t) = ∂t(|A(x, t)|2)δ(k − ∂xS(x, t)) − |A(x, t)|2∂x∂tS(x, t)δ
′
(k − ∂xS(x, t)) ,

∂xW (x, k, t) = ∂x(|A(x, t)|2)δ(k − ∂xS(x, t)) − ∂2
xS(x, t)|A(x, t)|2δ′(k − ∂xS(x, t)) ,

∂kW (x, k, t) = |A(x, t)|2δ′(k − ∂xS(x, t)) .

Then,

k∂xW (x, k, t) = k∂x(|A(x, t)|2)δ(k − ∂xS(x, t)) − k∂2
xS(x, t)|A(x, t)|2δ′(k − ∂xS(x, t)) =

= ∂xS(x, t))∂x(|A(x, t)|2)δ(k − ∂xS(x, t)) + ∂2
xS(x, t)|A(x, t)|2δ(k − ∂xS(x, t))

− ∂2
xS(x, t)∂xS(x, t)δ

′
(k − ∂xS(x, t)) ,

and therefore using (3.2.12a) and (3.2.12b) we have

∂tW (x, k, t) + k∂xW (x, k, t) − V
′
(x)∂kW (x, k, t) =

=
(
∂t(|A(x, t)|2) + ∂xS(x, t))∂x(|A(x, t)|2) + ∂2

xS(x, t)|A(x, t)|2
)
δ(k − ∂xS(x, t))−

− |A(x, t)|2
(
∂x∂tS(x, t) + ∂2

xS(x, t)∂xS(x, t) + V
′
(x)

)
δ
′
(k − ∂xS(x, t))

=
(
∂t(|A(x, t)|2) + ∂x(|A(x, t)|2∂xS(x, t))

)
δ(k − ∂xS(x, t))−

− |A(x, t)|2
(
∂x
(
∂tS(x, t) +

1
2
|∂xS(x, t)|2 + V (x)

))
δ
′
(k − ∂xS(x, t)) = 0 .
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It must be emphasized that for potentials of the form V (x) = ax2 + bx + c, a, b, c constants,
it easily follows that Qε ≡ 0, and therefore the Wigner equation coincides with the limit Wigner
equation. These potentials are usually referred as non-essential (or non-diffractive) potentials, since
the corresponding bicharacteristics are linear. In this case, only the hyperbolic character of the
Wigner equation is present, and no dispersion is coming into play.

The usual mathematical analysis of the Wigner equation (3.2.5) relies on semigroup theory in
Hilbert spaces, especially in L2, which is the natural framework of semiclassical mechanics [M].
But this context cannot used in the numerical analysis of the particle method, which needs Lp or
Wm,p estimates, and therefore the order of convergence is related to the regularity of the potential
V [AN].



18 NUMERICAL EXPERIMENTS WITH THE PARTICLE METHOD

4.THE PARTICLE METHOD.

4.1. The particle method for the transport equation. (Raviart [RAV])
A well-known method for solving initial value problems for transport equations of the form

(4.1.1)


∂u

∂t
+

n∑
i=1

∂

∂xi
(Aiu) +A0u = f , x ∈ R

n , t > 0

u(x, 0) = u0(x) ,

is the method of characteristics. Here u = u(x, t), Ai = Ai(x, t), f = f(x, t).
The characteristic curves associated with the first order differential operator ∂

∂t
+
∑n
i=1Ai

∂
∂xi

are given as the solutions of the following differential system

(4.1.2)


dX
dt

= a(X, t), X = (X1, . . . ,Xn) ,

X(s) = x, a = (a1, . . . , an) .

If the coefficients ai, 0 ≤ i ≤ n and the data u0, f are sufficiently smooth, the problem (4.1.1) has
a unique classical solution, given by

(4.1.3)
u(x, t) =u0(X(0;x, t))J(0; ,x, t)exp

(
−
∫ t

0

A0(X(s;x, t), s)ds
)

+∫ t

0

f(X(s;x, t), s)J(s;x, t)exp
(
−
∫ t

s

A0(X(σ;x, t)dσ
)
ds ,

where J(t;x, s) = det
(
∂Xi

∂xj
(t;x, s)

)
is the Jacobian determinant of the transformation

Φts(x) = X(t;x, s), for all s, t ∈ [0, T ] .

Under weaker regularity assumptions, the solution (4.1.3) can be considered as a weak solution of
problem (4.1.1).

In order to construct a particle method for approximating the solution of the problem (4.1.1),
it is enough to consider measure solutions (or even distributional solutions), which are defined as
follows.

Definition 4.1.1 A measure u ∈ M(Rn × [0, T ]) is called a measure solution of (4.1.1) if

〈u,L∗φ〉 = 〈f, φ〉 + 〈u0, φ(·, 0)〉 , ∀ φ ∈ C1
0 (Rn × [0, T ])

for u0 ∈ M(Rn), f ∈ M(Rn × [0, T ]) ,

where L∗ is the formal adjoint of the linear differential operator

Lv =
∂v

∂t
+

n∑
i=1

∂

∂xi
(Aiv) +A0v .

The first step of a particle method for approximating weak solutions of the problem (4.1.1) is to
approximate the initial condition u0 by a linear combination of Dirac measures,

(4.1.4) u0
h =

∑
j∈J

αjδ(x − xj) ,



FOR THE WIGNER EQUATION 19

for some set (xj , αj)j∈J of points xj ∈ R
n and weights αj ∈ R.

Consequently, the problem we have to solve (we consider the case of f = 0 for simplicity), is the
following

(4.1.5)


∂uh
∂t

+
n∑
i=1

∂

∂xi
(Aiuh) +A0uh = 0, x ∈ R

n, t > 0

uh(·, 0) = u0
h .

Let uh be a measure solution of the problem (4.1.5), given by

(4.1.6) uh =
∑
j∈J

αj(t)δ(x − Xj(t)) ,

where Xj(t) and αj(t) are solutions of the differential systems (j ∈ J)

(4.1.7)


d

dt
Xj(t) = a(Xj(t), t)

Xj(0) = xj ,

and

(4.1.8)


d

dt
αj(t) +A0(Xj(t), t)αj(t) = 0

αj(0) = α0
j ,

respectively. Hence for all t ∈ [0, T ], u(·, t) is a sum of Dirac masses whose trajectories in the (x, t)
space coincide with the characteristic curves passing through the points (xj , 0). Such a measure
solution uh is called a particle solution of (4.1.1).

The problem that comes up first, is how to choose u0
h that approximates u0. The simplest

procedure for this is the following. We cover R
n with a uniform mesh of meshsize h, for some small

h > 0. For all j = (j1, . . . , jn) ∈ Z
n, let Bj be the cell

Bj =
{
x ∈ R

n; (ji − 1
2
)h ≤ xi ≤ (ji +

1
2
)h, 1 ≤ i ≤ n

}
where xj = (jih)1≤i≤n is the center of Bj . Then, we set u0

h =
∑
j∈Zn αjδ(x − xj) where αj is an

approximation of
∫
Bj
u0dx, or equivalently αj = hnu0(xj).

In order to compute a numerical approximation of u(x, t) at a point (x, t), it is more useful
to associate with the measure uh(·, t) a continuous function uηh(·, t), which will approximate the
function u(·, t) for all t ∈ [0, T ]. For this we define

(4.1.9) uηh(x, t) =
∑
j∈Z

αj(t)ζη(x − Xj(t)) ,

where ζη(x) = 1
ηn ζ

(
x
η

)
, and ζ ∈ C0(Rn) ∩ L1(Rn) is a ”cut-off” function such that∫

Rn

ζ(x)dx = 1.
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The convergence of the above descripted procedure for small η is asserted by the following
theorem.

Theorem 4.1.1
Assume that
i) there exists an integer k ≥ 1 such that

1)
∫

Rn

ζ(x)dx = 1

2)
∫

Rn

xαζ(x)dx = 0, ∀α ∈ N
n with 1 ≤ |α| ≤ k − 1

3)
∫

Rn

|x|k|ζ(x)|dx < +∞

ii) ζ ∈Wm,∞(Rn) ∩Wm,1(Rn) for some integer m > n

iii) For the coefficients ai ∈ C0(Rn×[0, T ]), 0 ≤ i ≤ n, a1, . . . , an, a0+diva ∈ L∞(0, T ;W l,∞(Rn)), l =
max(k,m). Then, if u0 ∈ W l,p(Rn)), there exists a constant C = C(T ) > 0, such that for all
t ∈ [0, T ]

‖u(·, t) − uηh(·, t)‖Lp(Rn) ≤ C

{
ηk‖u0‖k,p,Rn +

(
h

η

)m
‖u0‖m,p,Rn

}
.�

If we replace the assumption (ii) by the assumption

iv) ζ has compact support and ζ ∈Wm,∞(Rn) for some integer m ≥ 1,

then, we have the following convergence theorem

Theorem 4.1.2
Under the assumptions (i),(iii),(iv), if u0 ∈ W l,p(Rn), there exists a constant C = C(T ) > 0,

such that

‖u(·, t) − uηh(·, t)‖Lp(Rn) ≤ C

{
ηk‖u0‖k,p,Rn + (1 +

h

η
)

n
q

(
h

η

)m
‖u0‖m,p,Rn

}
,

1
p

+
1
q

= 1 .�

The last theorem does not hold if ζ belongs only to L∞(Rn). But it can be slightly improved
for m = 0, 1, when ζ has compact support, it is piecewise smooth and it belongs to Wm,∞(Rn). In
this case, we have the following estimate

‖u(·, t) − uηh(·, t)‖L∞(Rn) ≤ C

{
ηk‖u0‖k,∞,Rn + (1 +

η

h
)n−1

(
h

η

)m+1

‖u0‖m+1,∞,Rn

}
.

From the above theorems it follows that h
η

must go to zero, as the parameters h and η go also
to zero, for the particle approximation to converge. Numerical computations with the particle
method for the transport equation and for a symmetric hyperbolic system have been performed by
MasGallic et.al. [MG],[MR],[MP].
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4.2 The particle method for the Wigner equation.
In this section, we apply the particle method for solving the Wigner equation (see Section 3.2).

Following the description of the previous section, we introduce the approximation

(4.2.1) W ε(x, k, t) =
N∑
j=1

aj(t)δ(x − xj(t))δ(k − kj(t)) , (x, k) ∈ [−a, a]x[−b, b] ,

where (xj(t) , kj(t)) is the position and the speed of j−particle at time t, and aj(t) is the weight
of the j− particle, into the Wigner equation

(4.2.2)
∂tW

ε(x, k, t) + k∂xW
ε(x, k, t) − V

′
(x)∂kW ε(x, k, t) = Qε(x, k) ∗W ε(x, k, t) ,

W ε(x,k, 0) = W ε
0 (x,k) .

Recall that

(4.2.3) Qε(x, k) =
−i
2π

∫
R

e−iky
[
V (x+ yε/2) − V (x− yε/2)

ε
− yV

′
(x)

]
dy .

Differentiating the particle solution (4.2.1), we have

∂tW
ε(x, k, t) =

N∑
j=1

[
ȧj(t)δ(x − xj(t))δ(k − kj(t))

− aj(t)
{
δ′(x− xj(t))ẋj(t)δ(k − kj(t)) + δ′(k − kj(t))k̇j(t)δ(x − xj(t))

}]
,

∂xW
ε(x, k, t) =

N∑
j=1

aj(t)δ′(x− xj(t))δ(k − kj(t)) ,

and

∂kW
ε(x, k, t) =

N∑
j=1

aj(t)δ′(k − kj(t))δ(x − xj(t)) .

Using the Hamiltonian system

ẋj(t) = kj(t) , k̇j(t) = −V ′(xj(t))

the left hand side of (4.2.2) is written in the form

(4.2.4) ∂tW
ε(x, k, t) + k∂xW

ε(x, k, t) − V ′(x)∂kW ε(x, k, t) =
N∑
j=1

ȧj(t)δ(x − xj(t))δ(k − kj(t)) ,

while the right hand side of (4.2.2) is written as follows

W ε(x, k, t) ∗Qε(x, k) =
∫
Qε(x, k − k′)W (x, k′, t)dk′

=
∫ ∫

Qε(x′, k − k′)ζδ(x− x′)W (x′, k′, t)dx′dk′ =
N∑
j=1

aj(t)Qε(xj(t), k − kj(t))ζδ(x− xj(t)) .

(4.2.5)
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Here, ζδ(x) is a real function such that ζδ(x) −→ δ(x), when δ → 0 .
Combining (4.2.1), (4.2.4) and (4.2.5), we have

N∑
j=1

ȧj(t)δ(x − xj(t))δ(k − kj(t)) =
N∑
j=1

aj(t)Qε(xj(t), k − kj(t))ζδ(x− xj(t)) .

Then, multiplying the last equation with the test functions φ
(x) , ψ
(k) which are localized around
x
 and k
, respectively, and integrating with respect to x and k, we obtain

N∑
j=1

ȧj(t)φ
(xj(t))ψ
(kj(t)) =
N∑
j=1

aj(t)
[ ∫

Qε(xj(t), k − kj(t))ψ
(k)dk
][ ∫

ζδ(x− xj(t))φ
(x)dx
]
,

which implies

ȧ
(t) =
N∑
j=1

aj(t)Qε(xj , k
 − kj)ζδ(x
 − xj)Iφl
Iψl

, � = 1...N .

where Iφ denotes the length of the support of the function φ.
Finally, in order to determine the initial values for the position xj(0) the speed kj(0) and the

weight of each particle aj(0), we use the particle representation (4.2.1) for W ε
0 ,

(4.2.8) W ε
0 (x, k) =

∑
j

aj(0)δ(x − xj(0))δ(k − kj(0)) .

Multiplying both members of the last equation by the test functions φ(x) , ψ(k), and integrating
with respect to x and k, we obtain

(4.2.9)
∫ ∫

W ε
0 (x, k)φ(x)ψ(k)dxdk ≈

N∑
j=1

aj(0)φ(xj(0))ψ(kj (0)) ,

N being the total number of particles. We approximate the above integral with a numerical inte-
gration rule, with L knots xl , l = 1...L in the x−direction, and M knots km ,m = 1...M in the
k−direction, we have

(4.2.10)
∫ ∫

W ε
0 (x, k)φ(x)ψ(k)dxdk ∼

L∑

=1

M∑
m=1

(∆x∆k)β
mW ε
0 (x
, km)φ(x
)ψ(km) .

Comparing the approximations (4.2.9) and (4.2.10), we obtain

N = LM

aj(0) = a0
j = (∆x∆k)β
mW ε

0 (x
, km)

xj(0) = x0
j = x


kj(0) = k0
j = km

with j=(m-1)L+� .
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Therefore, in order to construct the particle solution we must first solve the system

(4.2.6)
ẋj(t) = kj(t) , xj(0) = x0

j

k̇j(t) = −V ′(xj(t)) , kj(0) = k0
j ,

and

(4.2.7) ȧj(t) =
N∑
n=1

an(t)Qε(kj − kn)ζδ(xj − xn)Iφj
Iψj

, aj(0) = a0
j .

Here with (x
, km) again we denote the knots of the integration rule with weight β
m while h1 and
h2 is the discretization lengths in x and k.

In the special case of the quadratic potential V (x) = ax2 + bx+ c, it follows that ȧ(t) = 0, that
is aj(t) = aj(0).

Note finally that for the approximation of the Dirac mass we use the approximation sequence
ζδ(x) = 1

δ ζ(
x
δ ) with ζ ∈ C∞

0 such that
∫

R
ζ(x)dx = 1. In the numerical examples we will present

below, we use the following cut-off functions

a) ζ1(x) =
{

1
2 , x ∈ [−1, 1]
0, otherwise

b) ζ2(x) =
{

1 − |x|, x ∈ [−1, 1]
0, otherwise

c) ζ3(x) =
3 − 2x2

2
√

4π
exp(−x2)

These functions have the following moment properties∫
R

ζm(x)dx = 1

∫
R

xiζm(x)dx = 0 , m = 1, 2, 3 ,

with i=1 for m = 1, 2, and i=2 for m = 3 (cf Theorem 4.1.1).
A schematic description of the algorithm goes as follows:

a) Place the particles according to the selected integration rule.

b)Calculate a0
j , x

0
j , k

0
j , j = 1...N

c)Solve the system (4.2.6), (4.2.7) to find xTj = xj(T ), kTj = kj(T ), aj(T )

d)Calculate the sum W ε(x, k, T ) =
∑N
j=1 aj(T )ζδ(x− xTj )ζδ(k − kTj )
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5 NUMERICAL EXAMPLES.

5.1 Example 1: Harmonic oscillator.
In this section we investigate the behavior of the particle method for different values of parameters

like ε, the final time T, the number of particles N and the integration method that we use to compute
the initial positions and speeds of the particles, in the case of a quadratic potential. This is a
typical and interesting example, since in this case the Wigner equation coincides with the Liouville
equation, and the Wigner function is computed by transporting the initial Wigner function along
the bicharacteristics

5.1.1 Initial data and potential.
In our computations we use the cwith Gaussian amplitude a0(x) = exp(−λ2x2

2 ) and quadratic
phase S0(x) = µ2x2

2 (λ, µ positive constants). Applying the Wigner transform to Ψε
0(x) we compute

the initial Wigner function

(5.1.2) W ε
0 (x, k) =

1√
π

e−λ
2x2

λε
exp

(
− (k − µ2x)2

(λε)2
)
, (x, k) ∈ R

2
xk .

The potential has the form

(5.1.3) V (x) =
Ω2x2

2
,

Ω being a positive constant (the frequency of the harmonic oscillator). For this potential we can
solve explicitly the corresponding Hamiltonian system to find the bicharacteristics

(5.1.4)
x(q, p, t) = q cos(Ωt) +

p

Ω
sin(Ωt) ,

k(q, p, t) = −qΩ sin(Ωt) + p cos(Ωt) .

Solving for the initial position q and momentum p, and substituting into W ε
0 , we obtain the Wigner

function (see, e.g., Kalligiannaki [KAL])

(5.1.5) W ε(x, k, t) = W ε
0

(
x cos(Ωt) − k

Ω
sin(Ωt), xΩ sin(Ωt) + k cos(Ωt)

)
.

5.1.2 Integration methods.

a. Trapezoid method.
The simplest method to place the particles is the trapezoid method. Dividing the original box

into L smaller boxes in the direction of x and M boxes to the direction of k each with dimensions
∆x = 2a

L−1 , ∆k = 2b
M−1 we obtain LM knots

x
 = −a+ (�− 1)∆x , � = 1...L ,

km = −b+ (m− 1)∆k ,m = 1...M .

Each of the knots that belong to one of the smaller boxes has the same weight 1/4 so the knots
that belong to two boxes have a weight of 1/2 and those that belong to four boxes have a weight of

β
m =

{ 1/4, (�,m) = (1, 1), (1,M), (L, 1), (L,M)
1/2, (�,m) = (1, 2...M − 1), (L, 2...M − 1), (2...L − 1, 1), (2...L − 1,M)
1, otherwise
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Figure 1 Weights for the trapezoid method

The initial position and weight of the LM particles are given by

a0
j = (∆x∆k)β
mW ε

0 (x
, km)

x0
j = x


k0
j = km

with j=(m-1)L+�. This is the method with the lowest accuracy since it can integrate exactly
polynomials of first degree in respect of x and k.

b. Simpson method.
The second method we used is the Simpson method. Again we break the original box in the

same way to LM smaller boxes, placing nine knots in each of the smaller boxes. Four of the knots
are placed at the corners with a weight of 1/36, four knots are placed between the corners with a
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weight of 1/9 and finally one knot is placed in the center of the box with a weight of 4/9. The total
number of knots is L̃M̃ with L̃ = 2L− 1 and M̃ = 2M − 1. The position of the knots is given by

x
 = −a+ (�− 1)
∆x
2
, � = 1...L̃

km = −b+ (m− 1)
∆k
2
, m = 1...M̃

and their weight is given by

β
m = 1/36 for (�,m) = (1, 1), (1, M̃ ), (L̃, 1), (L̃, M̃)

β
m = 1/18 for � = 3, 5, ...L̃ − 2, m = 1,m = M̃

β
m = 1/9 for � = 2, 4, ...L̃ − 1, m = 1,m = M̃

β
m = 1/18 for m = 3, 5, ...M̃ − 2, � = 1, � = L̃

β
m = 1/9 for m = 2, 4, ...M̃ − 1, � = 1, � = L̃

β
m = 1/9 for � = 3, 5, ...L̃ − 2, m = 3, 5, ...M̃ − 2

β
m = 4/9 for � = 2, 4, ...L̃ − 1, m = 2, 4, ...M̃ − 1

β
m = 2/9 for � = 3, 5, ...L̃ − 2, m = 2, 4, ...M̃ − 1

β
m = 2/9 for � = 2, 4, ...L̃ − 1, m = 3, 5, ...M̃ − 2

The initial position and the weight of each particle is given by

a0
j = (∆x∆k)β
mW ε

0 (x
, km)

x0
j = x


k0
j = km

with j = (m− 1)L̃+ �. The Simpson method can integrate exactly polynomials of third degree in
respect of x and k.

c. Gauss-Legendre method.
The third method we used is the Gauss Legendre method of third degree. Again we break

the large box to L boxes in the direction of x and to M boxes in the direction of k but now
we place nine knots in the interior of each of the smaller boxes for a total number of knots of
3(L−1)3(M−1) = L̃M̃ . If the (�,m) box has coordinates [x
, x
+1]x[km, km+1] then the coordinates
of the particles that are initially inside it are given by

x0
j = x�+x�+1

2
− ∆x

2

√
3
5

, for î = 1

x0
j = x�+x�+1

2
, for î = 2

x0
j = x�+x�+1

2 + ∆x
2

√
3
5 , for î = 3

k0
j = km+km+1

2 − ∆k
2

√
3
5 , for i = 1

k0
j = km+km+1

2 , for i = 2

k0
j = km+km+1

2 + ∆k
2

√
3
5 , for i = 3
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Figure 2. Weights for the Simpson method

and their weights by

βi,̂i =

{ 64/324, (i, î) = (2, 2)
40/324, (i, î) = (1, 2), (2, 1), (2, 3), (3, 2)
25/324, (i, î) = (1, 1), (3, 3), (1, 3), (3, 1)

a0
j = (∆x∆k)βîiW

ε
0 (x0

j , k
0
j )

with
j = 9(L− 1)(m− 1) + 9(�− 1) + 3(i − 1) + î.

This method is the most accurate of those we used since it can integrate exactly polynomials of
fifth degree in respect of x and k.
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Figure 3 weights for the Gauss− Legendre method

5.1.3 Numerical results.
In this section we will compare the particle solution with the analytical solution of the Wigner

equation for different values of the physical and numerical parameters. For the implementation of
the method we used the following arithmetical values for our parameters a = 3.2, b = 10, δ = 0.2,
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λ = 1.5, µ = 1, Ω = π, and for the approximation of the Dirac mass we used the hut function.
In Figures 4-6 we show the variation of the L2 norm of the error wrt. time for the three integration

rules we used to initialize the particles. The number of particles is approximately 24300 and the
value of ε varies from 0.25 to 1 with a step of 0.25. We observe that the error has a periodical
behavior with a period of 1 which is equal to the period of the analytical solution. In Figures 7-9
we show the error for the three methods wrt. the number of particles for final time T=2 and for
ε = 0.1 , 0.25 , 0.4 , 1. We observe that the error falls initially as the number of particles decreases
to reach a minimum around 20.000 - 40.000 particles, depending on the integration rule, and it
then slowly starts to increase as the number of particles increases. Finally, as we expect, for a fixed
number of particles and a fixed final time, the error increases as ε→ 0 .

As we mentioned before the particle method requires a large number of calculations in order to
calculate the solution through W ε(x, k, T ) =

∑N
j a

0
jζ
δ(x − xTj )ζδ(k − kTj ) when N is large. The

number of calculations reduces using the fact that ζδ(x) has compact support around zero, so if we
want to calculate the solution at some points (xi, ki) instead of summing over all the particles we
only sum over those particles that satisfy |xi − xj | < δ and |ki − kj | < δ where δ is length of the
support of ζδ(x)
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5.1.4 Particle in cell (PIC) methods.
An alternative strategy to reduce the huge amount of calculations that are required in the particle

method is to apply the so-called the particle in cell method (P.I.C).
Regarding the computation of a0

j ,and xTj , k
T
j by solving the Hamiltonian the method is exactly

the same as the standard one. However instead of calculating the sum (4.2.1), we create a new
grid with dimX knots in the x−direction and dimK in the k−direction on which we are going to
calculate the solution, and then, the weight of each particle aj(t) = a0

j is distributed between the
four knots of the box containing the particle. More precisely, the weight is multiplied by a factor
of 1

δ2 , since the representation

W ε(x, k, t) =
∑
j

aj(t)ζδ(x− xj(t))ζδ(k − kj(t)) ,

implies

W ε(xi(t), ki(t), t) =
1
δ2
ai(t) .

If we denote by W (i, î) the approximation at the knot
(
− a+ (i− 1)∆x,−b+ (̂i− 1)∆k

)
,

i = 0...dimX + 1, î = 0...dimK + 1, and (i, î) the box [−a+ (i− 1)∆x,−a+ i∆x]x
[−b+ (̂i− 1)∆k,−b+ î∆k], then the j particle belongs to the box with

i =

[
x0
j + á

∆x

]
, î =

[
k0
j + b́

∆k

]
,

with
∆x =

2a
dimX − 1

, ∆k =
2b

dimK + 1
.

for the particles with |x0
j | ≤ á, |k0

j | ≤ b́ with á = a+∆x, b́ = b+∆k. This extension of the domain
has been done in order to include a part of the weight of the particles that lie in the boundary zone
outside [-a,a]x[-b,b]. The contributions of the j particle in each of the corners of its box are given
by the following equations

1
δ2
a0
j

ε3
∆x∆k

⇒W (i, î) , ε3 =
[
− a+ i∆x− x0

j

][
− b+ î∆k − k0

j

]
1
δ2
a0
j

ε4
∆x∆k

⇒W (i+ 1, î) , ε4 =
[
x0
j + a− (i− 1)∆x

][
− b+ î∆k − k0

j

]
1
δ2
a0
j

ε2
∆x∆k

⇒W (i, î+ 1) , ε2 =
[
− a+ i∆x− x0

j

][
k0
j + b− (̂i− 1)∆k

]
1
δ2
a0
j

ε1
∆x∆k

⇒ W (i+ 1, î+ 1) , ε1 =
[
x0
j + a− (i− 1)∆x

][
k0
j + b− (̂i− 1)∆k

]
After computing all the W (i, î), we can keep the values of i = 1...dimX , î = 1...dimK that
correspond to the original domain [-a,a]x[-b,b].

5.1.5 Numerical results for the PIC method.
In this paragraph we compare the numerical solution computed by using the PIC method with

the analytical solution. For the comparison of the PIC method with the standard particle method
we show the same quantities, and we use the same values for the parameters, a = 3.2, b = 10,
λ = 1.5, µ = 1, Ω = π and for ∆x = ∆k = 0.2.



FOR THE WIGNER EQUATION 31

In Figures 10-12 we show the error for the three PIC methods with respect to δ and ε = 1.
A simple way to determine the correct value of δ is to compare our initial data with the solution
computed by the P.I.C algorithm for final T = 0 since changes in δ only change the scaling of the
numerical solution. In both ways the minimum error is obtained for δ = ∆x = ∆k

In Figures 13-15 we show the error for the three methods wrt. time for ε = 0.25 , ε = 0.5 , ε =
0.75 , ε = 1. Again like the standard particle method the error shows a periodic behavior which
coincides with the period of the analytical solution. Finally, in Figures 16-18 we have the error over
the particle number for ε = 0.1 , 0.15 , 0.25 , 0.5 , 1. The error again falls to reach a minimum
at around 10.000 particles, and then increases slowly. Comparing the standard particle method
with PIC one, for the same final time T=2 and ε = 0.1, we see that the standard particle method
reaches a minimum L2 norm of error about 0.6 while the P.I.C has a minimum L2 norm of error
about 0.8 . Both methods attain their minimum error around 10.000 particles.

The P.I.C method greatly reduce the calculations needed for the simple particle method since
the weight of each particle contributes only to the four points of the box that include it.
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5.2 Example 2: Quartic oscillator.
In this section we apply the particle in cell method for solving the Winger equation for the case

of quartic potential V (x) = x4/4. Since the analytical solution of the Wigner equation is not known
in this case, we compute the amplitude | ψε | of the solution of Schrödinger equation derived by
k− integration of the Wigner function, with that derived by FEM computation.

5.2.1 The convolution term.
In the case of a quartic potential, the convolution term in the Wigner equation reduces to a

third-order dispersive (with respect to k), since the kernel Qε has the form

Qε(x, k) = −ε2xδ′′′(k)/4 .

Therefore in the particle approximation we have the term

∂3
kW

ε(x, k, t) =
N∑
j=1

aj(t)δ
′′′

(k − kj(t))δ(x − xj(t)) .

In the numerical computation, for the approximation of the third derivative of the Dirac function
we differerentiate the approximating sequence (cf Chertock and Levy [CHL]).

5.2.2 Numerical results for the quartic oscillator.
Recall that since for the quartic potential we do not know the analytical solution of the Wigner

equation, in order to examine the accuracy of the P.I.C method we compare the numerical results
for the energy density obtained by integrating with respect to k the P.I.C solution of the Wigner
equation, with the density computed by a finite element method code.

As in the first example we set λ = 1.5 and µ = 1. The solution was calculated on a normal
grid with ∆x = ∆k = 0.1 while the scaling factor δ of the particle weight was set equal with the
discritization length for the same reasons we saw in the first example. Finally for the placement of
the particles we used the trapezoid method since the results we took using each method had very
small differences.

In Figure 16 we show the PIC solution for T = 1 and ε = 1. The computational domain is
[-4,4]x[-4,4] and we use about 25.000 particles. In Figures 20-23 we compare the results of the
FEM and the PIC method for time T = 0.6 and about 57.000 particles, and for ε = 1, 0.5, 0.25, 0.1
respectively. In this case the computational domain is again [-4,4]x[-4,4]. In these four graphs we
observe that the two methods give almost the same results.

In Figures 24-29 we observe that for the same T=0.6 and for ε between 0.1 and 1 we can obtain
the same accuracy using much less particles. More specifically in Figures 24-26, we see that for
3600 particles and for ε = 1, 0.25, 0.1, respectively, the P.I.C solution shows an oscillatory behavior
especially near x = 0. These oscillations can be removed if we increase the number of particles.
For example, in Figures 27 and 28 we have the same cases as in Figures 24 and 25 for 10.000
particles, and in Figure 29 the same case as in Figure 26, but with 14.400 particles. Further
increase of the number of particles, increase the accuracy and the smoothness of the solution but
it also tremendously increases the computational time.

In the contrary to the case of harmonic oscillator, when we try to compute the P.I.C solution
for larger times, we see that the two methods start to show up large differences, as we can see, for
example, in Figures 30-32 where we compare the two methods for T=1 and for 57.600 particles and
ε = 1, 0.25, 0.1.
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HARMONIC OSCILLATOR. STANDARD PARTICLES.
VARIATION OF THE L2 NORM OF THE ERROR vs.

TIME (Figs. 4-6) and NUMBER OF PARTICLES (Figs. 7-9)
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Figure 4. Harmonic oscillator, trapezoid integration
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Figure 5. Harmonic oscillator, Simpson integration.
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Figure 6. Harmonic oscillator, Gauss− Legendre integration.
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Figure 7. Harmonic oscillator, trapezoid integration.
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Figure 8. Harmonic oscillator, Simpson integration.



FOR THE WIGNER EQUATION 41

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

e(
t=

2)

eps = 0.1 

eps = 0.25 

eps = 0.4 

eps = 1.0 

Figure 9. Harmonic oscillator, Gauss− Legendre integration.
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HARMONIC OSCILLATOR. PARTICLE-IN-CELL.
VARIATION OF THE L2 NORM OF THE ERROR vs.

PARAMETER δ (Figs. 10-12), TIME (Figs. 13-15) and NUMBER OF PARTICLES (Figs. 16-18).
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Figure 10. Harmonic oscillator, trapezoid integration.
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Figure 11. Harmonic oscillator, Simpson integration.



FOR THE WIGNER EQUATION 45

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

delta

L2
 n

or
m

 fo
r 

P
IC

 G
au

ss
−

Le
ge

nd
re

 m
et

ho
d 

fo
r 

T
=

2,
nu

m
be

r 
of

 p
ar

tic
le

s 
=

 1
08

00

Figure 12. Harmonic oscillator, Gauss− Legendre integration.
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Figure 13. Harmonic oscillator, trapezoid integration.
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Figure 14. Harmonic oscillator, Simpson integration.
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Figure 15. Harmonic oscillator, Gauss− Legendre integration.
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Figure 16. Harmonic oscillator, trapezoid integration.
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Figure 17. Harmonic oscillator, Simpson integration.
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Figure 18. Harmonic oscillator, Gauss− Legendre integration.
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QUARTIC OSCILLATOR.
VARIATION OF THE AMPLITUDE A =| ψε | vs. x

COMPARISON BETWEEN PIC/TRAPEZOID INTEGRATION (asterisks)
and FEM (continuous line) SOLUTIONS

N=57000 (Figs. 20-23), N=3600 (Figs. 24-26) and N=10000 (Figs. 27-29)
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Figure 19. Quartic oscillator (ε = 1.0 , t = 0.6, N = 57000).
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Figure 20. Quartic oscillator (ε = 1.0 , t = 0.6, N = 57000).
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Figure 21. Quartic oscillator (ε = 0.5 , t = 0.6, N = 57000).
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Figure 22. Quartic oscillator (ε = 0.25 , t = 0.6, N = 57000).
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Figure 23. Quartic oscillator (ε = 0.10 , t = 0.6, N = 57000).
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Figure 24. Quartic oscillator (ε = 1.0 , t = 0.6, N = 3600).
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Figure 25. Quartic oscillator (ε = 0.25 , t = 0.6, N = 3600).
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Figure 26. Quartic oscillator (ε = 0.10 , t = 0.6, N = 3600).
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Figure 27. Quartic oscillator (ε = 1.0 , t = 0.6, N = 10000).
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Figure 28. Quartic oscillator (ε = 0.25 , t = 0.6, N = 10000).



FOR THE WIGNER EQUATION 63

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

A
(x

,t=
0.

6)

Figure 29. Quartic oscillator (ε = 0.10 , t = 0.6, N = 10000).
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Figure 30. Quartic oscillator (ε = 1.0 , t = 1.0, N = 57000).
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Figure 31. Quartic oscillator (ε = 0.25 , t = 1.0, N = 57000).
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Figure 32. Quartic oscillator (ε = 0.10 , t = 1.0, N = 57000).


