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Περίληψη

Το κεντρικό θέμα της εργασίας είναι η μελέτη μεθόδων επιτάχυνσης μοριακών προ-
σομοιώσεων τύπου Kinetic Monte Carlo, σε προβλήματα Θεωρίας Υλικών και Χημικής
Μηχανικής. Η βασική μαθηματική και αλγοριθμική δυσκολία σε αυτά τα προβλήματα
προέρχεται τόσο από τον τεράστιο αριθμό σωματιδίων, όσο και από τους μακροσκοπι-
κούς χρόνους που πρέπει να προσομοιωθούν και στους οποίους παρατηρούνται ενδια-
φέρουσες μεσοσκοπικές και μακροσκοπικές μορφολογίες τεχνολογικού ενδιαφέροντος
όπως η συμπύκνωση νανοσωματιδίων, η δημιουργία προτύπων (patterns), και φαινόμενα
μετα-ευστάθειας διεπιφανειών.
Το πρώτο τμήμα της εργασίας επικεντρώνεται στην χρονική επιτάχυνση μεθόδων

Monte Carlo μέσω της πολύ πρόσφατα προταθείσας μεθόδου τ-leap απο τον Gillespie.
Μελετήσαμε για πρώτη φορά στην βιβλιογραφία την μέθοδο σε συστήματα που έχουν
αλλαγές φάσεις και δείξαμε τόσο αριθμητικά άλλα και αναλυτικά σε συγκεκριμένα πα-
ραδείγματα ότι η μέθοδος τ-leap είναι ιδιαίτερα ευαίσθητη στην επιλογή του χρονικού
παράθυρου που περιγράφεται από την παράμετρο τ και σε προβλήματα με αλλαγές φάσεις
μπορεί να δώσει λανθασμένες προβλέψεις.
Στο δεύτερο τμήμα της εργασίας αναπτύσσεται μια νεοτεριστική μέθοδος για την

παραλληλοποίηση αλγορίθμων Kinetic Monte Carlo. Η προτεινόμενη μέθοδος βασίζε-
ται στην ανάπτυξη μιας ιεραρχικής αναπαράστασης της γεννήτριας που αντιστοιχεί στον
αλγόριθμο, η οποία επιτρέπει την συστηματική και ισόρροπη διαμέριση (load balancing)
του υπολογιστικού έργου σε ανεξάρτητους υπολογιστικούς επεξεργαστές. Η μέθοδος
υλοποιήθηκε σε προβλήματα στατιστικής φυσικής τα οποία έχουν ακριβείς, αναλυτι-
κές λύσεις (πχ μοντέλο Ising σε μία και δύο διαστάσεις) που επέτρεψαν την αυστηρή
πιστοποίηση του αλγορίθμου.
Η επιτάχυνση σε σχέση με αντίστοιχους σειριακούς αλγορίθμους μπορεί να φτάσει

σε πάνω από τέσσερις τάξεις μεγέθους, σε υλοποιήσεις σε κάρτες γραφικών (GPU).
Κατά συνέπεια αναμένουμε ότι η νέα αυτή μέθοδος, που ονομάσαμε Fractional Step
Kinetic Monte Carlo (FS-KMC), να δώσει τη δυνατότητα για πρώτη φορά για προ-
σομοίωση μοριακών μοντέλων στην ετερογενή κατάλυση σε ρεαλιστικές διαστάσεις
αντιδραστήρα τάξης μεγέθους mm. Η μέθοδος FS-KMC επίσης επιτρέπει την παράλ-
ληλη προσομοίωση μοριακών συστημάτων με πολλαπλούς μικροσκοπικούς μηχανισμούς
πολλαπλών χρονικών κλιμάκων όπως πχ μοριακά συστήματα διάχυσης/αντίδρασης.
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Abstract

The main subject of this thesis is the study of molecular simulation accelerations
methods of Kinetic Monte Carlo type in Material Science and Chemical Engineer-
ing problems. The main mathematical and algorithmic difficulty in these problems
comes from the large number of particles as well as from the macroscopic times
that must be simulated and in which interesting mesoscopic and microscopic phe-
nomena take part like nanoparticles concentration, pattern formation and interface
metastability phenomena.

In the first part of the thesis we study the temporal acceleration of Monte Carlo
methods through the, lately proposed by Gillespie, τ -leap method. For the first
time in the bibliography we studied this method in phase transition systems and
we showed analytically and numerically in specific examples that this method is
particularly sensitive in the selection of time window described by the τ parameter.

In the second part a new method is developed for the parallelization of Kinetic
Monte Carlo algorithms. The proposed method is based on the development of
a hierarchical representation of the generator which allows a systematic and equal
work load balance into independent processing units. The algorithm is implemented
in statistical physics problems that have analytical solutions (e.g. Ising model in 1
and 2 dimensions) that allowed the rigorous certification of the algorithm.

The acceleration compared with equivalent serial algorithms can reach in over
four orders of magnitude, in implementations on graphics cards (GPU). Therefore
we expect that this new method, called Fractional Step Kinetic Monte Carlo (FS-
KMC), to give the opportunity, for the first time, of the simulation of molecular
models in heterogeneous catalysis under realistic reactor dimensions of magnitude
mm. The FS-KMC method also allows the parallel simulation of molecular systems
with multiple microscopic mechanisms of multiple time scales e.g. molecular systems
of diffusion/reaction.
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1 Introduction

The main purpose of this work is the presentation and study of models that describe many
body interacting particle systems. These models find applications in material science,
where the particles may be atoms of a magnetic material that interact under the presence
of an external field, or in chemistry where the particles may be molecules of different
species that react under specific chemical equations.

The models are divided in three categories and the criterion is the scale under which
they observe the physical system. The microscopic models include the biggest amount of
information because they observe the system in the atomistic level. The main disadvan-
tage is that the numerical simulation is extremely slow. In the limiting situation, where
the number of particles tends to infinity, we get deterministic models for observables such
as coverage. The solution of these models is much easier than the microscopic models but
a large amount of information is lost. In between of these two classes of models we find the
mesoscopic models. One part of these models is the same with the deterministic models
and the other part is a stochastic term that mimics the randomness of the microscopic
models. The difficulty in their simulation, as well as the quality of the information they
give us, is in between the two first.

We will present results from all the above models, but particular emphasis will give
to the first category. These models, as we will see in more details later, describe the
system through high dimensional Ordinary Differential Equations. A typical example is
the Master Equation

∂

∂t
P (σ, t) =

∑

σ′ 6=σ

a(σ, σ′)P (σ′, t)− a(σ′, σ)P (σ, t), (1)

where P (σ, t) is the probability density function that describe the probability of the system
to be at discrete state σ in time t [7]. The dimension of the above PDEs, that is equal
to the number of all possible states of the system, as well as the complexity of the right
hand side, make impossible not only the the analytical but also the numerical solution of
these.

One possible treatment is to construct a Continuous Time Markov Chain, a stochastic
process with specific properties, that for large enough times produces samples from the
probability distribution function (1). Having enough samples and applying appropriate
statistical methods we are able to reproduce P . One of the advantages of this approach
is that it is independent of the system’s dimension. Another advantage is that it gives us
information not only for the equilibrium of the system but for its dynamical evolution as
well. The main disadvantage is that we must have a lot of samples in order to study the
statistical properties of the system.

The Monte Carlo (MC) methods is a family of computational algorithms for the
simulation of stochastic systems. The first MC algorithm, the Metropolis algorithm, first
described in a 1953 paper by Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and
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Edward Teller, was cited in “Computing in Science and Engineering” as being among
the top 10 algorithms having the “greatest influence on the development and practice of
science and engineering in the 20th century” [19]. When we are interested not only in the
equilibrium states of the system but for its dynamic evolution as well, a subcategory of
the above methods is used, known as kinetic Monte Carlo (kMC).

Gillespie, in 1976, was the first that described an algorithm for the simulation of well
mixed chemical reaction systems [8]. This algorithm is known as the Gillespie algorithm
or Stochastic Simulation Algorithm (SSA). In order to describe the algorithm we have to
give some details on the model describing such systems. For a system being in state σ,
we define the rate, the probability per unit time, by which the system jumps from state
σ to state σ′. We will denote this function by a(σ, σ′) and its the same found in equation
(1). Starting from state σ we compute rσ′ = a(σ, σ′) for every σ′ in the set of all possible
states starting from σ and

Rσ′ =
∑

σ<σ′

rσ,

setting R0 =
∑

σ rσ. Here we assumed that the states of the system can be put in order,
which is true in our case since we stude systems with finite states. In order to find the
next state of the system we produce a random number distributed uniformly in [0, 1],
u ∼ U([0, 1]), and search for the state σ that satisfies

Rσ−1

R0

≤ u <
Rσ

R0

.

The time spent the system in state x is a random variable following exponential distribu-
tion with mean value 1

R0
.

Even though the Gillespie algorithm is exact its main disadvantage is that it is ex-
tremely slow for large systems. The problems are 1) to find the in which interval u belongs
and b) if R0 is large enough, the time spent by the system in every state may be relatively
small. This means that the algorithm needs a lot of steps in order to reach a final time
T >> 1.

One solution to the first problem is the algorithm developed by Bortz, Kalos and
Lebovitz and is know as the BKL algorithm (or N-fold) [2]. This algorithm sorts the
states in equivalent classes having the same rate creating this way less intervals and so
less search time. The problem still remains when the system has a lot of classes (e.g. in
the case of long range interaction systems).

The τ -leap algorithm, given by Gillespie, is a new algorithm proposed to give a solution
to the second problem [9]. It uses a deterministic time step τ , which must be larger than
the mean stochastic time increment 1

R0
. Then, in a way we will discuss in section 3.2,

the algorithm finds approximately the state of the system after time τ . The difference
with the other algorithms is that this is not an exact algorithm and in many cases the
constraints in the choice of τ are so stiff that the criterion τ > 1

R0
cannot be satisfied.

Many works followed the first article of Gillespie on τ -leap. Some of them deal with
the issue of the selection of τ and particularly with the adaptive fitting [14]. Interesting
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works have been done in the way of selecting the state of the system after time τ because
the classic algorithms many times leads to unaccepted state (e.g. negative concentrations
in chemical reaction models) [4]. Tiejun Li proved [23], by writing this method as a
classical Euler method, that as τ goes to zero the error of the method goes to zero. But
as mentioned before, τ should be larger than the mean stochastic time step and Li’s
result does not give us useful information in that sense. On the other hand Anderson et
al. showed that under a suitable rescaling of the system length scales, τ can be selected
in such a way such that not only convergence is satisfied but the demand τ > 1

R0
as well

[?].

During the past two decades, in step with the rapid growth of the computational
systems, big importance was given in the development of parallel algorithms for the sim-
ulation of these models. One first approach to the parallel treatment of Kinetic Monte
Carlo methods is to run every algorithm in a different processor, producing this way many
realizations of the same experiment and increasing the size of the statistical data. Al-
though this approach is extremely useful, it does not give a solution to the problem of
simulating a model for large times. In this case one must split the problem into smaller
parts, distribute these parts into several processors, solve the small problem locally and
then reproduce the solution by collecting the parts from every node.

Here we will present the most important parallel Kinetic Monte Carlo algorithms,
from Lubachevsky’s first idea until today. The algorithms will be explained on the Ising
model: on a lattice ΛN ⊂ N

2 we define a set of possible states Σ ⊂ {0, 1}N , where N is
the size of the lattice. The system goes from the state σ to the state σx with transition
rate c(x, σ), where σx(y) = σ(y), y 6= x and σx(x) = 1 − σ(x), and remains in this state
time amount that follows exponential distribution with mean

1

λ(σ)
=

1
∑

x∈ΛN
c(x, σ)

(2)

The transition from σ to σx is done with probability

p(σ, σx) =
c(x, σ)

λ(σ)
(3)

The difficulty in parallelizing this model is that the transition clock depends on the whole
lattice.

In 1987, Lubachevsky proposed an algorithm for the solution of this problem. The
idea is that the lattice is split into smaller parts and every processor simulates only one
part [18]. Every part is divided into boundary and interior cells. When an action is to
happen in the interior it executes instantly but when it is to happen in the boundary cells
then the processor must communicate with its neighbor processor and be sure they are
synchronized at the same time. This must be done in order to preserve causality in the
system. In this algorithm constant rates are assumed through the whole lattice in order
every processor to be in the same time window so that the synchronization waits to be as
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small as possible. In [16] this idea was efficiently implemented using the N-fold algorithm
as the kernel for every processor instead of the SSA.

A generalization, in the case of non constant rates, was proposed in [20] using the
idea of uniformization. A constant rate λ∗ = maxσ∈Σ λ(σ) is chosen and the system goes

from state σ to state σx with probability λ(σ)
λ∗

p(σ, σx) and stays at the same state with

probability 1 − λ(σ)
λ∗

. This approach introduces rejections to the algorithm reducing its
efficiency.

The above algorithms are known as asynchronous because every processor advances
its subsystem in a time horizon different than the other processors. The two subcategories
are the conservative and the optimistic algorithms. In the first category when a boundary
event is to be carried out the processor waits for its neighbors in order to be at the same
time, while in the other case the processor advances the system until a fixed time horizon
and then, after the communication, goes back in time and resolves any possible conflicts
(rollbacks). A more detailed description can be found in [20].

The other category of parallel algorithms is known as synchronous. In this case every
processor has some ghost cells in order to keep some of the information from its neighbors.
Then advances the system until a fixed time T, and after that they communicate in
order to keep the ghost cells informed [21]. These algorithms introduce errors due to
inconsistencies at the boundary cells but due to the flexibility in choosing T this error
can be as small as we want.

Here we propose a formulation under which the synchronous methods can be proved
that converge to the true solution. The idea comes from the Operator Splitting the-
ory that has been successfully applied to the solution of Partial Differential Equations
[13]. Our methodology relies on first developing a spatio-temporal decomposition for the
Markov operator underlying the Kinetic Monte Carlo algorithm, into a hierarchy of oper-
ators, corresponding to the processor architecture. Based on this operator decomposition,
we formulate Fractional Step Approximation schemes by employing the Trotter product
formula. The idea will be explained in more details in the last section and very promising
results will be presented [1].
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2 Models and applications

2.1 The Ising model

2.1.1 Description

The Ising type models are microscopic stochastic models defined on a periodic cubic d-
dimensional lattice of size |L| = N = nd, which we denote by L = {x ∈ Z

d; 0 ≤ xi ≤ n−1}.
At each lattice site x ∈ L an order parameter is allowed to take the values 0 and 1
describing vacant and occupied sites respectively. We refer to the order parameter as spin
[10]. A spin configuration σ is an element of the configuration space Σ = {0, 1}|L| and we
write σ = {σ(x) : x ∈ L}, denoting by σ(x) the spin at x. The energy H of the system,
evaluated at σ, is given by the Hamiltonian

H(σ) = −1

2

∑

x∈L

∑

y 6=x

J(x, y)σ(x)σ(y) +
∑

x∈L

hσ(x) (4)

where h is the external field and J is the inter-particle potential.

The stochastic process {σt}t≥0 is a continuous time jump Markov process on L∞(Σ,R)
with generator [15]

Lf(σ) =
∑

x∈L

c(x, σ)(f(σx)− f(σ)) (5)

for ay test function f ∈ L∞(Σ,R). See also appendix B for the relation between this
operator and the master equation [7]. Here c(x, σ) denotes the rate of a spin flip at x for
the configuration σ and σx signifies the configuration after a flip at x,

σx =

{

1− σ(x), if y = x
σ(y), if y 6= x

(6)

In this model we implement spin flip Arrhenius dynamics. Under this type of mech-
anism the simulation is driven based on the energy barrier a particle has to overcome in
flipping from one state to another site given by (9). The Arrhenius spin flip rate c(x, σ)
at lattice site x is given by

c(x, σ) =

{

cde
−βU(x), when σ(x) = 0

ca, when σ(x) = 1
(7)

with adsorption/desorption constants

ca = cd =
1

τ1
(8)

and τ1 denoting the characteristic time of the stochastic process. By β we denote the
quantity 1

kT
, where T is the temperature and k the Boltzmann constant. Here U is the
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total energy contribution from the particle interactions with the particle located at the
site x ∈ L

U(x) =
∑

y 6=x

J(x, y)σ(y)− h (9)

Another possible choice for the rates are the Glauber dynamics [5]. In this case the
rate is defined by

c(x, σ) =
e−βU(x)σ(x)

e−βU(x) + eβU(x)
=

1

2

(

1− σ(x) tanh(βU(x))
)

(10)

2.1.2 Canonical Gibbs measures and reversibility

The flip rates (7) and (10) have built in invariance of the Gibbs measure (see [10])

µ(dσ) =
1

Z
e−βH(σ)PN(dσ), (11)

since they satisfy the detailed balance condition [10],

c(x, σ)e−βH(σ) = c(x, σx)e−βH(σx) (12)

Here PN denotes the product prior distribution on L (the distribution for infinite
temperature),

PN(dσ) =
∏

x∈L

ρ(dσ(x)) =

(

1

2

)N

, (13)

and ρ(σ(x) = 0) = ρ(σ(x) = 1) = 1
2
. Here Z is the partition function,

Z =
∑

σ∈Σ

e−βH(σ) (14)

guaranteeing µ(Σ) = 1.

2.2 Nearest Neighbour Ising Model

In this case the inter-particle potential is defined as

J(x, y) = J(|x− y|) =
{

J0, when |x− y| = 1
0, otherwise

(15)

Then the Hamiltonian of the system is simplified into

H(σ) = −1

2

∑

x∈L

J0

(

σ(x− 1) + σ(x+ 1)
)

σ(x) +
∑

x∈L

hσ(x) (16)
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Figure 1: Comparison of the 1D exact solution for the mean magnetization for the Ising nearest
neighbour model with the solution obtained from the Fractional Step algorithm with ∆t = 1. Here
(b,J)=(2,1), N=1000, T=1000

2.2.1 Exact solutions

Exactly solvable models of statistical mechanics provide a test bed for sampling algorithms
applied to interacting particle systems. In [6] one can find the exact solutions for the mean
magnetization which is defined as

< m >=

∫

Σ

m(σ)µ(dσ) (17)

where m is the coverage or the magnetization of the lattice,

m(σ) =
1

N

∑

x∈L

σ(x). (18)

for a system with Hamiltonian,

H(σ) = −J

2

∑

x∈L

∑

y∈Nx

σ(y)σ(x)− h
∑

x∈L

σ(x), (19)

and σ ∈ {−1, 1}. You can see appendix A how to transform the Hamiltonian from {−1, 1}
to {0, 1}.

The mean magnetization for the one dimensional model is given by

m =
sinh(βh)

√

sinh2(βh) + e−4βh

(20)
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and for the two dimensional case, known as the Onsager solution, when h = 0

m =

{

0, β < βc
(

1− sinh−4(2βJ)
)1/8

, β > βc

(21)

where βc is the critical value for β in which phase transition occur and its value is given
by the solution of the equation

sinh(βcJ) = 1. (22)

In figures 1 and 2 we see the mean magnetization for the 1d and 2d model respectively.
Note that in the 1d model no phase transition effects take part, while in the 2d case for
β = βc you can observe the non smooth transition in the magnetization. However when
the range of the inner particle potential is increased phase transition is observed in the
1d model, as we will see later.
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Figure 2: Comparison of the 2d exact solution for the mean magnetization for the Ising nearest
neighbor model with the solution obtained from the Fractional Step algorithm with ∆t = 1. Here
(J,h)=(1,2), N=1002, T=100

Finally, in one dimension, the exact solution for the spatial autocorrelation function
(for free boundary conditions), defined by

G(x, y) = E

[(

σ(x)− Eσ(x)
)(

σ(y)− Eσ(y)
)]

= E[σ(x)σ(y)] (23)

is known for h = 0 and is given by [10]

G(x, y) = tanh(βJ)|x−y| (24)
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Although this formula is exact for free boundary conditions, it can be used for large
systems with periodic boundary conditions since the partition functions for these models
coincide (for more details on this see [10] §3.14).

Note that for T 6=∞ we have that tanh(βJ) < 1 and coth(βJ) > 1 thus log coth(βJ) >
0. Therefore, for y > 0 we can write

G(x, x+ y) = e−y log coth(βJ) (25)

showing that correlations decay exponentially.

2.3 The Curie Weiss model

2.3.1 Description

The Curie-Weiss model is a special case of the Ising model where the inter-particle po-
tential J(x, y) is constant and equal to J0

N
.

The microscopic Hamiltonian (4) can be written in terms of the new variable η = m(σ)
(see eq. (18)) as,

H(σ) = −1

2

∑

x∈L

σ(x)
J0
N

(

∑

y 6=x

σ(y)− σ(x)

)

+Nhη

= −J0
2

∑

x∈L

σ(x)
1

N
(Nη − σ(x)) +Nhη

= −J0
2

(

η
∑

x∈L

σ(x)− 1

N

∑

x∈L

σ2(x)

)

+Nhη

=
J0
2

(

Nη2 − 1

N

∑

x∈L

σ2(x)

)

+Nhη.

Since σ ∈ {0, 1}N , we get
∑

x∈L σ
2(x) =

∑

x∈L σ(x) = η and finally the coarse grained
Hamiltonian is given by

H̃(η) = Nη

(

J0
2
(η − 1

N
) + h

)

= NH̄(η). (26)

Now the spin flip rates (7) reads as,

c(x, σ) = (1− σ(x)) + σ(x)e−βŨ(η) (27)

where Ũ(η) = J0(η − 1
N
)− h.

We can rewrite the generator (5), in terms of the variable η, by introducing the test
function

f(σ) := g(F (σ)) = g(η), F (σ) =
1

N

∑

x∈L

σ(x) (28)
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for any test function g ∈ L∞(Σ,R). Then

F (σx) =
1

N

∑

y∈L

σx(y) =
1

N

(

∑

y∈L

σ(y) + 1− 2σ(x)

)

=

{

F (σ) + 1
N
, when σ(x) = 0

F (σ)− 1
N
, when σ(x) = 1

and

f(σx) = g(F (σx)) =

{

g(η + 1
N
), when σ(x) = 0

g(η − 1
N
), when σ(x) = 1

(29)

Then the second term in the sum in equation (4) becomes

f(σx)− f(σ) = g(η +
1

N
)(1− σ(x)) + g(η − 1

N
)(1− σ(x))− g(η)

=

(

g(η +
1

N
)− g(η)

)

(1− σ(x)) +

(

g(η − 1

N
)− g(η)

)

σ(x). (30)

Using these equations we can write the coarse grained generator

L̃g(η) = ca(η)

(

g(η +
1

N
)− g(η)

)

+ cd(η)

(

g(η − 1

N
)− g(η)

)

(31)

where ca(η) = N(1− η) and cd = ηNe−bŨ(η).

2.3.2 Invariant measure and asymptotics

Let µ̃ denote the invariant measure for the coarse grained dynamics. Then the detailed
balance for this measure dictates

cd(η)µ̃(η) = ca(η −
1

N
)µ̃(η − 1

N
) (32)

or

µ̃(η) = µ̃(η − 1

N
)
ca(η − 1

N
)

cd(η)
= ... = µ̃(0)

ηN
∏

i=1

ca(
i−1
N
)

cd(
i
N
)

(33)

By doing all the calculations we get

µ̃(η) =
1

Z̃
e−βH̃(η)P̃ (η) (34)

where

P̃ (η =
k

N
) =

(

N

k

)(

1

2

)N

=
N !

k!(N − k)!

(

1

2

)N

(35)
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and Z̃ is the partition function for the coarse grained measure. We can use Stirling’s
formula [3] to write

(

N

k

)

= elog (
N
k) = e−N(η log η+(1−η) log(1−η))+o(N) (36)

where k = ηN .Then equation (34) transforms into

µ̃(η) =
1

Z̃
e−N(βH̄(η)+η log η+(1−η) log(1−η))+o(N) (37)

2.3.3 Exact solutions

For this model, with Hamiltonian

H̃(σ) = − J̃

N − 1

∑

x∈L

∑

y 6=x

σ̃(x)σ̃(y)− h̃
∑

x∈L

σ̃(x) (38)

and σ(x) ∈ {−1, 1}, the mean magnetization as N →∞, is given by [6]

m̃ = tanh(2βJ̃m̃+ βh̃) (39)

or, solving for the external field

h̃ = −2J̃m̃+
1

2β
ln

1 + m̃

1− m̃
. (40)

In order to transform the above equation for our system, with Hamiltonian given by
(4) and σ(x) ∈ {0, 1}, we have to substitute J̃ = J/8, h̃ = J/4 − h/2 and m̃ = 2m − 1
(see appendix A for more information about this transformation). Then the external field
in terms of the coverage, is given by

h = Jm− 1

β
ln

m

1−m
. (41)

As mentioned in previous section, the Ising model with nearest neighbor interactions
has no phase transitions. In the C-W model the interactions cover the whole lattice. In
this case, for βJ > 4 phase transition occur. In figure (3) you can see how the mean
coverage looks like for different values of βJ .

2.4 The Chemical Reactions Model

2.4.1 Description

The time evolution of a spatially homogeneous mixture of chemically reacting molecules
is usually calculated by solving a set of coupled ordinary differential equations [8]. If there
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Figure 3: Mean coverage for the mean field Curie-Weiss model. You can observe phase transi-
tions for βJ > 4 (left). The results from the SSA algorithm are in good agreement with the exact
solution and the hysteresis phenomenon is clearly observed for b = 7, J = 1 N = 106(right).

are N chemically active molecular species present, there will be N differential equations
in the set. Another approach to the chemical kinetics of such systems is the stochastic
formulation. Here the reaction rates are viewed as reaction ”probabilities per unit time”
and the temporal behavior of the system takes the form of a Markovian random walk on
the N -dimensional space of the molecular populations of the N species.

The general problem may be formulated as follows: In a given volume V there are
molecules of N chemically active species Si and possibly species of inert molecules as
well. By Xi(t) we denote the current number of molecules of the chemical species Si, i =
1, ..., N at time t. Moreover these N species react through M chemical reactions Ri, each
characterized by a numerical reaction parameter ci. We will only examine reactions of
the following general types

∗ → reaction products (42a)

Si → reaction products (42b)

Si + Sj → reaction products (i 6= j) (42c)

2Si → reaction products (42d)

Si + Sj + Sk → reaction products (i 6= j 6= k) (42e)

Si + 2Sj → reaction products (i 6= j) (42f)

3Si → reaction products (42g)

The first reaction type denotes a spontaneous creation of one or more of the species Si.
The reaction products may contain none, one or more of the chemical species Si.

For every reaction we define the propensity function

ai(x)dt := the probability given X(t) = x that one Ri

18



reaction will occur somewhere inside V in the

next infinitesimal time interval [t, t+ dt], i = 1, ...,M (43)

where X(t) = (X1(t), ..., XN (t)). Also let us define the state-change vector νi, whose jth
component is defined by

νij = the change in the number of Sj molecules

produced by an Ri reaction (44)

and the matrix ν = (ν1, ...,νM ). The above definitions completely determine the chemical
model. For every reaction type in (42) the propensity function is

a(x) = c (45a)

a(x) = cXi (45b)

a(x) = cXiXj (45c)

a(x) = cXi(Xi − 1)/2 (45d)

a(x) = cXiXjXk (45e)

a(x) = cXiXj(Xj − 1)/2 (45f)

a(x) = cXiXj(Xj − 1)(Xj − 2)/6 (45g)

(45h)

where c is the reaction parameter.

Having these in mind we are interested in the following probability

P (x, t|x0, t0) = probability that X(t) will equal x (46)

given that X(t0) = x0 (47)

The above probability density function obeys the following differential equation, known
as chemical master equation

∂

∂t
P (x, t|x0, t0) =

M
∑

j=1

aj(x− νj)P (x− νj, t|x0, t0)− aj(x)P (x, t|x0, t0) (48)

with initial condition,

P (x, t0|x0, t0) = δ(x− x0) =

{

1, x = x0

0, x 6= x0
(49)

2.4.2 Example : The Schlögl model

The Schögl model is a simple autocatalytic, trimolecular reaction scheme. It is very
interesting because for specific values of the parameters exhibits bistability. Due to its
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simplicity it is widely used as a test problem. This model was first analyzed by Schlögl
in 1972 (see [11],[24]). The reactions are

A+ 2X
c1
⇄
c2

3X

B
c3
⇄
c4

X

We assume that the number of A and B molecules are maintained constant and we track
only the X molecules. Using eq. (45) we get the propensities vector,









a1(x)
a2(x)
a3(x)
a4(x)









=









c1ax(x− 1)/2
c2x(x− 1)(x− 2)/6

c3b
c4x









(50)

where a, b and x are the numbers of molecules of A, B and X respectively. The state
change matrix is

ν = [ 1 −1 1 −1 ] (51)

20



3 Temporal acceleration

In this section we will describe the algorithms we will use to solve the models of the
previous chapter. First we will see in detail the two basic algorithms for the solution of
the microscopic models, the Stochastic Simulation Algorithm (SSA) and the tau-leap ([9],
[4]). Then we will give a short description of the Euler-Maruyama scheme for the solution
of the SDE approximation of the above models. Finally the mean field approximation of
these will be examined. We will check the validity of these algorithms by comparing the
empirical histograms with the exact measures, obtained in the previous section.

3.1 Stochastic Simulation Algorithm (SSA)

For the master equation (48) define the quantity

a0(x) =
M
∑

j=1

aj(x) (52)

Then a0(x)dt is the probability that some reaction will occur in the next dt and ea0(x)dt

is the probability that a time dt will elapse without any reaction firing. Having this and
definition (43) it can be shown that that the next reaction density function

p(τ, j|x, dτ) := probability that, given X(t) = x the next reaction in Ω

will occur in the time interval [t+ τ, t+ τ + dτ ] and will

be an Rj reaction (53)

is equal to

p(τ, j|x, t) = aj(x)e
a0(x)τ . (54)

Algorithm 1 SSA

Require: T,x0

x = x0

while t ≤ T do
sample r from U([0, 1])
j ← min{k|∑k

i=1 ai(x) > ra0(x)}
x← x+ νj

sample dt from E(a0(x))
t← t+ dt

end while

As you can see, algorithm (1) is a very simple procedure. It requires only two samples
from continuous density functions (one from the uniform U and one from the exponential
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Figure 4: Comparison of the exact measure with the empirical histogram obtained with the SSA
algorithm for the Curie-Weiss model.

E). We will see later that sampling from continuous pdfs is much less expensive than that
of discrete. The only problem is that the mean time interval is given by < dt >= 1/a0(x),
which means that if the propensities functions are relatively large then the waiting times
will be small and the algorithm will need a lot of steps in order to reach T . This problem
comes the tau-leap method to overcome.

In figure (4) you can see the empirical histogram obtained with the above algorithm
in comparison with the exact measure (34) for the Curie-Weiss model. Also in figure (3)
you can see how the hysteresis effect is captured by SSA for βJ = 7 and N = 1000.

3.2 Tau-leap algorithm

Although SSA is an exact algorithm its big problem is that in some cases may be extremely
inefficient. As stated before if the propensities functions are large then the stochastic
time steps will be small and a large number of iterations will be needed in order to reach
a specific final time. The Tau-leap method is not exact; it uses a deterministic time
increment τ , which may change during the execution, and updates the system population
by approximating the execution number of every reaction.

Instead of updating the population at random time increments, as the SSA does,
we can think as follows [9] : choose a constant time increment τ and ask the question
”how many times every reaction fires during τ ?”. Then the population can be updated
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Figure 5: Comparison of the exact measure with the empirical histogram obtained with the
tau-leap algorithm for the Curie-Weiss model.

appropriately. In order to present this idea formally we have to introduce some new
definitions.

The functions that answers the above question is the following,

Kj(τ ;x, t) = the number of times that reaction Rj will fire

in the time interval [t, t+ τ ], given X(t) = x. (55)

Of course solving forKj is as difficult as solving the master equation. But if we incorporate
the next condition the above quantity can be approximated.

Leap condition Choose τ to be “small enough”, so that the propensity functions
will remain about “constant” during the time interval [t, t+ τ ].

Then it can be shown that the random variable (55) follows a Poisson distribution
with mean aj(x)τ .

Algorithm 2 tau-leap

Require: T,x0, τ
x = x0

while t ≤ T do
sample pj from P(aj(x)τ), j = 1, ...,M
p = (p1, ..., pM )T

x← x+ νp

t← t+ τ
end while

In order algorithm (2) to be more efficient than SSA, the time step τ must be chosen
large enough. As mentioned earlier, sampling from a continuous pdf is much more efficient
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than sampling from a discrete one. Some measurements done in matlab, showed that
sampling from the Poisson distribution is about 300 times slower than sampling from the
nomral distribution. This observation dictates that τ > τc = 300/a0(x), where 1/a0(x)
is the mean of the random time increment for the SSA.

This observation creates a conflict with the leap condition. If τ is very large then
the propensity functions may not be constant during the time interval [t, t + τ ], and the
tau-leap method is not valid any more.

The empirical histograms for the Curie-Weiss model, shown in figure (5), were created
for values of τ less than the critical value τc. Otherwise the leap condition is violated.

3.3 Invariant measure

In this section we will compare the invariant measure of τ -leap with the exact invariant
measure of the Curie-Weiss models. In every time step we pick two Poisson random
variables and take their difference. The first has mean value a1(x)τ and the second
a2(x)τ , where a1, a2 are the adsorption and desorption rates respectively. Their difference
follows a distribution, named Skellam [22],

fs(x;µ1, µ2) = e−(µ1+µ2)
(µ1

µ2

)x/2

I|x|(2
√

µ1µ2) (56)

where µ1 = a1(x)τ , µ2 = a2(x)τ and I|x| is the modified Bessel function of first kind [3].

Now we can compute the one step transition matrix, which depends on τ

Pτ (x, y) = P(X t+τ = y|X t = x) = fs(x; a1(x)τ, a2(x)τ) (57)

The invariant measure π, solves the linear system

π = Pτπ (58)

or
π̃ = lim

n→∞
P n
τ (59)

where π̃ has all rows the same and π is equal to one of its rows. The invariant measure
matrix was computed in Matlab. The matrix exponential is computed by diagonalization
and n is chosen such that

||π̃i − π̃j||∞ < tol (60)

where π̃i is the ith row of π̃ and tol a small parameter (we chose tol as the machine epsilon).
In our computation we take the difference of the first with last row. No difference was
observed if we take other pairs.

In figure 6 you can see a comparison between the two invariant measures. For this
parameters the mean value of the stochastic time increment is greater or equal to 0.001.
For this value of τ good agreement between the two pdfs is observed. But for larger τ the
left mode of the distribution is absent.
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Figure 6: Comparison of the exact invariant measure of the C-W model with the invariant
measure of τ -leap. Here b = 2.5, J = 2.04, h = 1 and N = 100.

3.4 Numerical Solution of SDEs

3.4.1 Fokker-Planck approximation of the Master equation

The general form of the Master equation

dP (x, t)

dt
=
∑

y 6=x

a(x, y)P (y, t)− a(y, x)P (x, t) (61)

can be approximated by a stochastic differential equation , known as the Fokker-Planck
equation. This non rigorous derivation was first given by Kramers and then improved by
Moyal and is known as the Kramer-Moyal expansion (see [7]).

In the above equation, we substitute u = x− y in the first term and u = y− x in the
second term. Defining

t(u, x) = a(x+ u, x)

and substituting in the Master equation, we get,

dP (x, t)

dt
=

∫

(

a(x, x− u)P (x− u, t)− a(x+ u, x)P (x, t) du
)

=

∫

(

t(u, x− u)P (x− u, t)− t(u, x)P (x, t) du
)
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Then we expand the first term in the integral in power series,

dP (x, t)

dt
=

∫ ∞
∑

n=1

−un

n!

∂n

∂un
(t(u, x)P (x, t)) du

=
∞
∑

n=1

−1n
n!

∫

un ∂n

∂xn
(t(u, x)P (x, t)) du

=
∞
∑

n=1

−1n
n!

∂n

∂xn
bn(x)P (x, t) (62)

where

bn(x) =

∫

unt(u, x) du =

∫

(y − x)na(y, x)dy

Note that the integral in the above equations can be substituted by sums in case the state
space is discrete. If we take only the first two terms in the above series, we obtain the
Fokker-Planck equation,

∂

∂t
P (x, t) = − ∂

∂x
[b1(x)P (x, t)] +

1

2

∂2

∂x2
[b2(x)P (x, t)] (63)

3.4.2 Equivalence of FPE and SDE

There in a connection between the Fokker-Planck equation, that describes the probability
distribution function of a stochastic process, and the Stochastic Differential Equation that
describes the individual paths of the same process. Consider the stochastic equation,

dX(t) = b1(X, t)dt+
√

b2(X, t)dW (t). (64)

In order to show the equivalence between these two equations we need the Ito’s formula
for change of variables. For an arbitrary function f of X(t), it states that,

df(X(t)) =
(

b1(X, t)f ′(X) +
1

2
b2(X, t)f ′′(X)

)

dt+
√

b2(X, t)f ′(X)dW (t) (65)

We now consider the time development of f ,

Edf(X(t))

dt
= E

df(X(t))

dt

=
d

dt
Ef(X(t))

= E[b1(X, t)fX(X) +
1

2
b2(X, t)fXX(X)]

Assuming that X(t) has probability density P (x, t), the above equation can be rewritten,

d

dt
Ef(X(t)) =

∫

f(X)
∂

∂t
P (X, t)dX

=

∫

(

b1(X, t)fX(X) +
1

2
b2(X, t)fXX(X)

)

P (X, t)dX
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By integrating by parts and discarding surface terms we get,

∫

f(X)
∂

∂t
P (X, t)dx =

∫

f(X)
(

− ∂

∂X
[b1(X)P (X, t)] +

1

2

∂2

∂X2
[b2(X)P (X, t)]

)

dX (66)

and since f was arbitrary,

∂

∂t
P (X, t) = − ∂

∂X
[b1(X)P (X, t)] +

1

2

∂2

∂X2
[b2(X)P (X, t)] (67)

which is the same as the FPE equation (63).

3.4.3 An example: Curie-Weiss approximation

As an example, consider the Curie-Weiss model by changing the variable η = xN so the
transition rates for the corresponding Master equation can be written as,

a(x, y) = δx,y+1ca(y) + δx,y−1cd(y). (68)

In this case the first two terms in the Kramer-Moyal expansion are

b1(x) =
∑

y

(y − x)a(y, x)

= (x+ 1− x)a(x+ 1, x) + (x+ 1− x)a(x− 1, x)

= ca(x)− cd(x)

and

b2(x) =
∑

y

(y − x)2a(y, x)

= (x+ 1− x)2a(x+ 1, x) + (x+ 1− x)2a(x− 1, x)

= ca(x) + cd(x)

Finally the corresponding SDE is,

dx(t) = (ca(x)− cd(x))dt+
√

ca(x) + cd(x)dW (t) (69)

3.4.4 Numerical Solution of SDEs

A general SDE can be written in integral form

X(t) = X0 +

∫ t

0

f(X(s))ds+

∫ t

0

g(X(s))dW (s), 0 ≤ t ≤ T (70)
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Figure 7: Comparison of the exact measure with the empirical measure of the SDE that ap-
proximates the Curie-Weiss model. For the numerical solution of the SDE the Euler-Maruyama
scheme is used.

where f, g are scalar functions and the initial condition X0 is a random variable. The
second integral is to be taken with respect to Brownian motion [12]. We can can also
write the previous equation in differential equation form,

dX(t) = f(X(t))dt+ g(X(t))dW (t), X(0) = X0 0 ≤ t ≤ T (71)

Let N be a positive integer, ∆t = T
N

the time time step and define tj = j∆t. Then
the Euler-Maruyama method takes the form

Xj = Xj−1 + f(Xj−1)∆t+ g(Xj−1)(W (tj)−W (tj−1)), j = 2, ..., N (72)

where Xj is the approximation of X(tj). As mentioned before W (t) is a Brownian motion
so the random variable W (t)−W (s) is normally distributed with mean zero and variance
t− s. Then we write the above difference W (tj)−W (tj−1) as

dWj = W (tj)−W (tj−1) =
√

(∆t)r, r ∼ N (0, 1) (73)

We can refine the above difference by considering a refinement of the interval [tj−1, tj ] =
[tj−1 = t0j−1, ..., t

M
j−1 = tj] where tij−1 = tj−1 + iδt, i = 0, ...,M and δt = ∆t

M
.

dWj = W (tj)−W (tj−1) =
M
∑

i=1

W (tij−1)−W (ti−1
j−1) =

√
δt

M
∑

i=1

ri, ri ∼ N (0, 1) (74)
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Figure 8: The continuous line is the solution of the ODE describing the mean field solution for
the Curie-Weiss model (parameters?). The dotted line is the mean solution of the SSA algorithm
over 100 realizations.

3.5 Mean Field approximation

In the Kramers-Moyal expansion (62) keeping only the first order term and following the
procedure described in the previous section, we get the ordinary differential equation,

dX(t) = b1(X, t)dt. (75)

In figure (8) you can see a comparison of the Curie-Weiss model and its mean field
approximation, which can be derived from equation (69) by neglecting the stochastic
term. For large values of N good approximation is observed.

Another example we can see is the Schlögl model described in the first section. We
can view this model as a jump process with rates

ca(x) = c1ax(x− 1) + c3b

cd(x) = c2x(x− 1)(x− 2) + c4x

and the ODE approximation is the same as in the Curie-Weiss model. However there is
no parameter we can send to infinity to obtain the deterministic limit. The difference
with the Curie Weiss model is that that the first is obtained directly from the microscopic
equations by doing appropriate approximations. In this case we have to artificially add a
volume parameter, analogous to the number of particles N in the C-W model.

The new rates in the stochastic model ĉi are related to the old rates by a factor of
V which depends on the number of reactants involved in the ith reaction [24]. Fore a
reaction involving m reactants, the relation will be ci = ĉi/V

m−1. Thus, the new birth
and death rates are written in terms of the old parameters as,

ĉa(x) =
ĉ1
V
ax(x− 1) + ĉ3V b

ĉd(x) =
ĉ2
V 2

x(x− 1)(x− 2) + ĉ4x

29



0 1 2 3 4 5

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

concentration

pr
ob

ab
ili

ty

 

 

V=40

V=80

V=120

V=200

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time

X
0

Figure 9: Probability distribution function for the Schlögl model for different values of V (left).
Comparison of the ODE approximation and the stochastic model for V = 104 (right). The
parameters are ĉ1 = 3, ĉ2 = 0.6, ĉ3 = 0.25, ĉ4 = 2.95, a = 1, b = 2

In figure (9) you can see the comparison of the pure jump process and its approxima-
tion. Looking on the left figure, we can observe that as V increases the probability of the
first mode become smaller and the valley between the two modes is steeper. This means
that the system gets trapped in one of the modes and the probability of jumping to the
other state is effectively zero.
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4 Hierarchical Fractional Step Parallelization Algo-

rithms

In this section, the new algorithm ”Hierarchical Parallelization Algorithm” will be pre-
sented. This method comes as a solution to the parallelization of kinetic Monte Carlo
algorithms. It is based on the tested idea of Operator Splitting, coming from the solution
of partial differential equations. First the theoretical derivation will be presented, then
some numerical results concerning the validation of the method and finally a presentation
and a conversation on some issues towards an optimized implementation.

4.1 Description

In order to allow the modeling of adsorption, desorption, diffusion and reactions mech-
anisms we consider the following mechanism at each configuration σ ∈ Σ : we denote
by,

σ(x,ω) = the new configuration which is a one step

update of σ at a neighborhood of each site x ∈ L (76)

Here ω ∈ Ωx, where Ωx is the index set of all possible configurations that corresponds to
an update at neighborhood of site x. For instance, in the case of a diffusion process, in a
single species system, Ωx = {y ∈ L : |x − y| = 1}. You can see table (1) for a complete
list of all models used here.

The transition rates of the Markov process for updating σ to σ(x, ω) are denoted by
c(x, ω; σ). The corresponding generator is

Lf(σ) =
∑

x∈L

∑

ω∈Ωx

c(x, ω; σ)(f(σ(x,ω))− f(σ)) (77)

The main idea behind the development of the Hierarchical Parallelization Algorithm
for KMC relies on decomposition of the lattice L into non-overlapping sets Ck, k =
1, ...,M so that,

L =
M
⋃

k=1

Ck, Ci ∩ Cj = ∅, i 6= j (78)

The nature of the above decomposition will be specified in the process. Our strategy on
developing a parallel algorithm involves the following inter dependent steps.

Step 1: Lattice decomposition given by (78)

Step 2: Generator decomposition of (77) based on (78)
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Model Σ Ωx c(x, ω;σ) σ(x,ω)

M1 {0, 1} {∅} c(x;σ) σx(y) =

{

1− σ(x), y = x
σ(y), y 6= x

M2 {1} {y ∈ L : |x− y| = 1} c(x, y;σ) σ(x,y)(z) =







σ(z), z 6= x, y
σ(x), z = y
σ(y), z = x

M3 {0, ..., k} {0, ..., k} c(x, k;σ), k ∈ Σ σ(x,k)(z) =

{

σ(z), z 6= x
k, z = y

M4 {0, ..., k}
{ω = (y, k, l) :

|y − x| = 1, y ∈ L, k, l ∈ Σ}
c(x, y, k, l;σ), k, l ∈ Σ σ(x,y,k,l)(z) =







σ(z), z 6= x, y
k, z = y
l, z = x

Table 1: Various information for different models. The abbreviations M1,M2,M3 and M4
stands for diffusion (single species), adsorption/desorption, multicomponent reactions and mul-
ticomponent reactions involving neighboring sites respectively.

Lf(σ) =
∑

x∈L

∑

ω∈Ωx

c(x, ω; σ)(f(σ(x,ω))− f(σ))

=
M
∑

k=1

∑

x∈Ck

∑

ω∈Ωx

c(x, ω; σ)(f(σ(x,ω))− f(σ))

:=
M
∑

k=1

Lkf(σ) (79)

Here the generators Lkf(σ), k = 1, ...,M, define the new Markov processes {σk
t }t≥0 on

the entire ΛN .

Remarks

Typically interactions are of nearest neighbor type, hence the update rates c(x, ω; σ)
depend on the configuration σ only through σ(x) and σ(y) where |x−y| = 1. Similarly the
new configuration σ(x,ω) may involve changes not only at σ(x), but also at σ(y), |x−y| = 1
(See examples 2-4). Thus the generator Lk in (79) would update at most the lattice sites
y ∈ C̄k := {z : |x− z| = 1, x ∈ Ck}.

Therefore, the processes {σk
t }t≥0 and {σk′

t }t≥0 corresponding to Lk and Lk′ respectively
are independent provided C̄k ∪ C̄k′ = ∅ and they also have independent initial data.

Step 3: Rearranging the operator sum into sums of independent processes.

Typically due to short range interactions, the processes {σk
t }t≥0 and {σk′

t }t≥0 are
independent provided |k− k′| > 1, Ck and Ck′ are not nearest neighbors. Hence they can
be simulated independently on separate processors.

Thus we want to group the sets {Ck}Mk=1 in such a way that in each grouping all
resulting all resulting processes are independent from each other and can be simulated
in parallel. For instance in figure (10) we can consider the groupings of all odd strips
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Figure 10: Typical decompositions of the 2D lattice ΛN , into coarse cells (right) and strips
(left).

O = {C2k−1 : k = 1, ..., M+1
2
} and even strips E = {C2k : k = 1, ..., M

2
} we rearrange

Lf(σ) as

Lf(σ) = LEf(σ) + LOf(σ)

:=

M
2
∑

k=1

L2kf(σ) +

M+1
2
∑

k=1

L2k−1f(σ) (80)

Due to short range interactions {σ2k
t }t≥0 and {σ2k′

t }t≥0, k 6= k′ are independent and
similarly the processes corresponding to odd indexed sets.

Step 4: Operator Splitting and communication

Based on the decomposition (80), we apply the Trotter formula as follows: first we
recall that the corresponding semigroup (see [17]) eLt to the operator (generator) L has
the following meaning,

< eLtµ0, f >= Eµ0f(σt) (81)

where µ0 is the initial data distribution for the process {σt}t≥0.

The Trotter product formula, formally (rigorously under suitably conditions on the
operators) gives,

eLt = lim
n→∞

[eL
E t

n eL
O t

n ]n (82)

The parallel scheme we propose here is based on the operator splitting approach
stemming from (82) : to reach time T we use n deterministic steps of length ∆t = T

n
,

where the solver corresponding to LE and LO are used in an alternating fashion.

The use of either LE and LO can be distributed on the processors in a parallel manner
due to Step 3.

Remarks

1. Similarly to the Lie approximation

eL∆t ≈ eL
E∆teL

O∆t (83)
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we may use the Strang splitting

eL∆t ≈ eL
E ∆t

2 eL
O∆teL

E ∆t
2 (84)

Spatial corrections and communications take place when we switch from the LE to
L0 and vice versa.

2. A key point in our method is that we do not rely on heuristic arguments for the
communication between processors. Instead our splitting scheme algorithm relies
on a Functional Analysis and Numerical Analysis perspective based on generators.
As a result we have a a lot of flexibility in the decompositions which are based on
selecting a convenient hierarchy {Lkf}Mk=1. However our algorithm is not exact but
approximate in ∆t.

3. Our hierarchy of generators and domains can have additional levels in a tree-like
structure, to account for hardware architecture such as multiple GPUs etc.

Figure 11: The domain for one processor with its ghost cells in the case of nearest neighbor
interactions.

4.1.1 Choice of ∆t

The choice of ∆t is crucial not only because it is related to the error but also because
it is related to the communication of the processors. On the one hand we must keep it
sufficient small, in order to have meaningful computations, and on the other hand we
must maximize its value so we can have less communication and so fast simulations.

As a first approach the choice is driven by the mean value of the stochastic δt. We
take this value for one cell and since the distribution of the particles is uniform on the
lattice this is approximately the mean jump time for every cell. Then we choose ∆t = f δ̄t,
where δ̄t is the mean of δt . Here the factor f has the meaning of the mean number of
jumps simulated on every cell.

34



In models were the particles concentration is not uniform (e.g. reaction models), this
method has no meaning, since every cell has different mean jump times. In this case we
have to decompose the domain again so every cell will have about the same mean jump
time. This technique is explained in the section about work load balance.

4.2 Test cases

4.2.1 Exact solution comparison

In figure (1) you can see the comparison of the exact solution (20) with the Operator
Splitting algorithm. Since this formula is obtained for T → ∞ and N → ∞ we chose
large values of these variables for the simulation, T = 1000 and N = 1000. Then we
average the mean magnetization in a single Markov chain that is already in equilibrium.
In this simulation ∆t is chosen to be equal to 1 and even for this large value you can see
good agreement with the reference solution.
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Figure 12: Comparison of the autocorrelation function with the exact simulation algorithm and
the solution obtained from the Operator Splitting algorithm with ∆t = 1.

4.2.2 Autocorrelation comparison

In this test we compute the autocorrelation function

γ(τ) =
E[(Xt+τ − µ)(Xt − µ)]

E[(Xt − µ)2]
(85)
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where µ = E[Xt] and Xt is the mean coverage. Then we compare this function for the
SSA and the Operator Splitting algorithm. This test gives us an estimate of the dynamics
of the algorithm. We compute 15 ·106 samples of one Markov chain and then we compute
the autocorrelation function. Finally we average over 500 different Markov chains in order
to cancel the noise effects. Note that in this simulation the lag (τ) is real time and not
number of samples. Again the results are in good agreement with the exact algorithm.
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Figure 13: Comparison of the probability distribution function with the exact simulation algo-
rithm and the solution obtained from the Operator Splitting algorithm with ∆t = 1 and ∆t = 0.01.

4.2.3 Probability distribution function comparison

In this final test we compare the experimental histogram, an approximation of the p.d.f.,
for the exact and the proposed algorithm. As you can see in figure (13) there is good
agreement between the two algorithms. By these test we verify that the algorithm pro-
duces samples that have the same mean and variance with the samples obtained from
SSA.

36



APPENDIX

A Hamiltonian transformation

Most solutions for the Ising model in bibliography, are provided for σ ∈ {−1, 1}. Here
we will present the transormation of the Hamiltonian from σ ∈ {−1, 1} to σ ∈ {0, 1}.
We will consider the case of finite range potential and we will denote by Nx the set of all
points in the latice that are considered neighboutrs of x.

Let σ̃ ∈ {−1, 1} and H̃ the coresponding Hamiltonian,

H̃ = −J̃
∑

x∈L

∑

y∈Nx

σ̃(y)σ̃(x)− h̃
∑

x∈L

σ̃(x) (86)

By substituting the relation

σ̃(x) = 2σ(x)− 1, σ ∈ {0, 1} (87)

we get

H̃ = −J̃
∑

x∈L

∑

y∈Nx

(2σ(y)− 1)(2σ(x)− 1)− h̃
∑

x∈L

(2σ(x)− 1) (88)

= −4J̃
∑

x∈L

∑

y∈Nx

σ(x)σ(y) + 2J̃
∑

x∈L

∑

y∈Nx

σ(y) + σ(x)− 2h̃
∑

x∈L

σ(x) + C (89)

= −4J̃
∑

x∈L

∑

y∈Nx

σ(x)σ(y)− (2h̃− 4J̃ |Nx|)
∑

x∈L

σ(x) + C (90)

B Duality between Master Equation and Generator

Some times it is more convenient to consider a different form of the Master equation

dP (x, t)

dt
=
∑

y 6=x

a(x, y)P (y, t)− a(y, x)P (x, t) (91)

where the probability density function is absent and is replaced by the mean value of an
observable.

Consider a test function f in R that takes values in the configuration space. Then

dE[f(x)]

dt
=

∑

x

f(x)
dP (x, t)

dt

=
∑

x

∑

y 6=x

f(x)a(x, y)P (y, t)−
∑

x

∑

y 6=x

f(x)a(y, x)P (x, t)
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Taking the first part of the right hand side,

∑

x

∑

y 6=x

f(x)a(x, y)P (y, t) =
∑

x

[

∑

y

f(x)a(x, y)P (y, t)

]

− f(x)a(x, x)P (x)

=
∑

x

∑

y

f(x)a(x, y)P (y, t)−
∑

x

f(x)a(x, x)P (x)

=
∑

y

∑

x

f(x)a(x, y)P (y, t)−
∑

x

f(x)a(x, x)P (x)

=
∑

x

∑

y

f(y)a(y, x)P (x, t)−
∑

x

f(x)a(x, x)P (x)

=
∑

x

∑

y 6=x

f(y)a(y, x)P (x, t)

Finally the above ode becomes,

dE[f(x)]

dt
=

∑

x

∑

y 6=x

a(y, x)(f(y)− f(x))P (x, t)

= E[
∑

y 6=x

a(y, x) (f(y)− f(x))].
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