ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΤΟ 14ο ΠΡΟΒΛΗΜΑ ΤΟΥ ΗΙΛΒΕΡΤ ΚΑΙ Η ΕΙΚΑΣΙΑ ΤΟΥ ΝΑΓΑΤΑ

ΜΑΓΔΑ ΛΑΔΑ
Η παρούσα μεταπτυχιακή έργασία κατατέθηκε στο Τμήμα Μαθηματικών του Πανεπιστημίου Κρήτης τον Φεβρουάριο του 2005. Επιβλέπουν καθηγητής ήταν ο Α. Κουβιδάκης.
Την επιτυχή αξιολόγηση αποσύρθηκαν απ' Ι. Αναγνώστη, Α. Κουβιδάκης και Δ. Νταχή.
Περιεχόμενα

1 Εισαγωγή 7
 1.1 Το 14-ο πρόβλημα του Hilbert 7
 1.2 Ομάδες για τις οποίες το 14-ο πρόβλημα του Hilbert ισχύει . 8

2 Προερχόμενα στοιχεία 11
 2.1 Επίπεδες Καμπύλες 11
 2.1.1 Το Θεώρημα του Bezout 14
 2.2 Επιφάνειες Riemann 15
 2.2.1 Συναρτήσεις σε επιφάνειες Riemann 16
 2.2.2 Απεικόνισης μεταξύ επιφάνειες Riemann 18
 2.3 Οικολόγιση σε επιφάνειες Riemann 19
 2.3.1 Η ομάδα ομολογίας μιας επιφάνειας Riemann 20
 2.4 Διαρρέες σε επιφάνειες Riemann 23
 2.4.1 Διαρρέες τομής 24
 2.4.2 Γραμμική καθολομία διαρρέες 26
 2.4.3 Γραμμικά συστήματα διαρρέες 27
 2.5 Η Ισαμοδιονή μιας επιφάνειας Riemann 28
 2.5.1 Η απεικόνιση Abel-Jacobi 30
 2.5.2 Το συμμετρικό γνώμενο 33

3 Το 14-ο πρόβλημα του Hilbert 35
 3.1 Το αντιπαράδειγμα του Nagata - Αλγεβρικό μέρος 35
 3.2 Το αντιπαράδειγμα του Nagata - Γεωμετρικό μέρος 52

4 Η εικοσια του Nagata 61
 4.1 Εισαγωγή 61
 4.2 Το αποτελέσματα του G. Xu 62
 4.3 Επισκόπηση σχετικών αποτελεσμάτων 70
 4.3.1 Αναμετάδοση διάστασης γραμμικών συστημάτων 70
 4.3.2 Ο αριθμός των επιπλέον τομών 72
4.3.3 Το Αριθμητικό και το Γεωμετρικό Γένος 73
4.3.4 (-1)-χωρίλες και η κάρυα Ελλάδα 74
Κεφάλαιο 1

Εισαγωγή

1.1 Το 14-ο πρόβλημα του Hilbert

Τέτοιο $S = k[x_1, x_2, \ldots, x_n]$ ο πολυώνυμος διακτύλιος (k-άλγεβρα) η μεταβλητών πάνω από ένα σύμα k και έστω G μια υπομάζα της γενικής γραμμικής ομάδας $GL_n(k)$. Η ομάδα G δρα επί των στοιχείων του διακτύλιου S με τον εξής τρόπο: σε κάθε στοιχείο $g = (g_{ij})_{1 \leq i,j \leq n} \in G$ αντιστοιχεί ένα k-γραμμικός μετασχηματισμός σ_g στο x_1, x_2, \ldots, x_n, όπου

$$
\sigma_g(x_i) = \sum_{j=1}^{n} g_{ij} x_j, \quad 1 \leq i \leq n.
$$

Ορίζουμε τη δράση του g επί του τυχόν στοιχείου f του S ως ακολούθως:

$$
g(f) := f(\sigma_g(x_1), \sigma_g(x_2), \ldots, \sigma_g(x_n)).
$$

Συμβολίζουμε S^G το σύνολο των στοιχείων του S που μένουν αναλλοίωτα ως προς τη δράση της G. Είναι διαπιστώνεται ότι S^G αποτελεί μια k-υποάλγεβρα του S. Στη συνέχεια, διατυπώνουμε το 14ο πρόβλημα του Hilbert:

Έστω ότι το k είναι ένα σώμα, η G μια υπομάζα της $GL_n(k)$ η οποία δρα επί των στοιχείων του πολυώνυμου διακτύλιου $S = k[x_1, x_2, \ldots, x_n]$ όπως παραπάνω, και S^G το σύνολο των στοιχείων του S που μένουν αναλλοίωτα ως προς τη δράση της G. Είναι ο διακτύλιος S^G πεπερασμένο παραγμένος ως k-άλγεβρα; Δηλ. υπάρχουν περασμένα το πλήθος στοιχεία του διακτύλιου S^G τέτοια ώστε κάθε στοιχείο του S^G να γράφεται ως πολυώνυμος συνδυασμός των παραπάνω στοιχείων με συντελεστές από το σώμα k.

Το παραπάνω ερώτημα έχει θετική απάντηση στην περίπτωση όταν την ομάδα G είναι πεπερασμένη ή $G = SL_n(k)$ ή $G = GL_n(k)$, βλ. το παράρτημα 1.2.
Ομώς το 1958, ο Nagata βρέχει ένα αντιπαράθεμα για το 14ο πρόβλημα του Hilbert, [βλ. [N1], [N2]]. Το κεφάλαιο 3 αναφέρεται σε αυτό. Το αντιπαράθεμα, το οποίο παρουσιάζουμε στην παράγραφο 3.1, βασίζεται σε μια ολογράφου-γεωμετρική πρόταση σχετική με την ύπαρξη επίπεδων κομματιών οι οποίες έχουν σε διακήματα σημεία του επίπεδου καθορισμένο βαθμό διάμετρου. Παρουσιάζουμε αυτή την πρόταση στην παράγραφο 3.2. Με αφορμή την τελευταία πρόταση, ο Nagata έθεσε το ερώτημα του κατά πόσον αυτή ισχύει υπό κάποιες γενικότερες συνθήκες αναφερόμενος σε μια εικόνα που έμεινε γνωστή ως η εικόνα του Nagata και η οποία παραμένει ακόμη και επί των ημερών μας ύπαρξη. Αναφερόμαστε σε αυτή την εικόνα στο κεφάλαιο 4, όπου παρουσιάζουμε ένα πρόσφατο σχετικό αποτέλεσμα του G. Xu, [βλ. [X]]. Επίσης, κάνουμε ένα επικοινωνία άλλων αποτελεσμάτων σχετιζόμενων με αυτήν. Τέλος, στο εισαγωγικό κεφάλαιο 2 παρουσιάζουμε ορισμένα προσωπικικά στοιχεία της θεωρίας των ολογραφικών κομματιών, με έμφαση στην Ισχυρισμή μιας ομαλής κομματιών και στη μελέτη των επίπεδων κομματιών, βασιζόμενοι στις βιβλία [M2] και [U].

1.2 Ομάδες για τις οποίες το 14-ο πρόβλημα του Hilbert ισχύει

Ένα χαρακτηριστικό τον παράδειγμα ομάδας G, για την οποία η απάντηση στο 14ο πρόβλημα του Hilbert είναι θετική, δίδεται όταν η G είναι η διά η συμμετρική ομάδα S_n. Η S_n μπορεί να θαυμαστεί με την υποκατάσταση της $GL_n(k)$ (όπου k είναι ένα οποιοδήποτε σώμα) που αποτελείται από τα ύπαρξεις που προέλθουν από το μοναδιαίο $n \times n$ πίνακα μεταβλητών με όλες τις δυνατές τροπάδες τις γραμμές του. Αυτή η υποκατάσταση της $GL_n(k)$ δρα επί του πολυλογισμικού δακτυλίου $S = k[x_1, x_2, \ldots, x_n]$ προσαλήνθηκε τη μετάθεση των x_1, x_2, \ldots, x_n κατά όλες τις δυνατές τροπάδες. Είναι προφανές, ότι το σύνολο S^n αποτελείται από όλα τα συμμετρικά πολυλογισμικά και είναι γνωστό ότι το σύνολο των συμμετρικών πολυλογισμικών παρέχεται, ως k-άλγεβρα, από τα στοιχεία συμμετρικά πολυλογισμών. Άρα, σε αυτή την περίπτωση, το S^n είναι όντως πεπερασμένο παραγωγή.

Γενικότερα, το 14ο πρόβλημα του Hilbert έχει θετική απάντηση στις περιπτώσεις όπου η G είναι πεπερασμένη ή $G = SL_n(k)$ ή $G = GL_n(k)$ και η χαρακτηριστική του σώματος k είναι μηδενική. Είχαμε δηλαδή το εξής:

Θεώρημα 1.2.1. Έστω k ένα σώμα χαρακτηριστικής μηδενικής και όστο G μια υποσύναξη της $GL_n(k)$ η οποία είναι είτε πεπερασμένη είτε η $SL_n(k)$ είτε αλογολησμένη η $GL_n(k)$. Τότε το σύνολο των στοιχείων του $k[x_1, x_2, \ldots, x_n]$ που μένουν αναλόγως ως προς τη δράση της G είναι πεπερασμένα παραγώγονο ως k-άλγεβρα.

Πριν προχωρήσουμε στην απάντηση του παραπάνω θεώρηματος, υπενθυμίζουμε
1.2. ΟΜΑΔΕΣ ΓΙΑ ΤΙΣ ΟΠΟΙΕΣ ΤΟ 14-Ο ΠΡΟΒΛΗΜΑ ΤΟΥ HILBERT ΕΧΕΤΕΙ

ότι ένας δακτύλιος \(R \) ενομάζεται δακτύλιος τής \(Noether \) όταν κάθε διαδίκες του είναι πεπερασμένα παραγόμενο και αναφέρουμε το παρακάτω θεώρημα που είναι γνωστό ως Θεώρημα Βάσης τού Hilbert.

Θεώρημα 1.2.2 (Θεώρημα Βάσης τού Hilbert). Αν \(R \) είναι δακτύλιος τής \(Noether \), τότε και ο πολυωνυμικός δακτύλιος \(R[x] \) είναι δακτύλιος τής \(Noether \).

Η απόδειξη του θεώρηματος 1.2.1 βασίζεται χρησιμοποιώντας το παρακάτω λήμμα:

Λήμμα 1.2.1. Αν ισχύουν οι υποθέσεις του θεώρηματος 1.2.1 και το \(S^0 \) είναι το σύνολο των στοιχείων του πολυωνυμικού δακτύλου \(S = k[x_1, x_2, \ldots, x_n] \) του \(k \) μένου αναλογικό σε προς τη δράση της \(\mathcal{G} \), τότε υπάρχει ένας ομοιορρισμός από \(S^0 \)-modules \(\phi : S \rightarrow S^0 \) που διατηρεί τους βαθμούς και παρέχει τα στοιχεία του \(S^0 \) στον αντίο τους.

Απόδειξη. Στην περίπτωση κατά την οποία η \(\mathcal{G} \) είναι πεπερασμένη η απόδειξη είναι απλή. Εάν \(\gamma \) το πλήθος των στοιχείων της \(\mathcal{G} \). Αφού η χαρακτηριστική του \(\mathcal{G} \) \(k \) είναι μηδενική, \(\gamma = \gamma \cdot 1_k \), όπου \(1_k \) συμβολίζει το μονοδιάιο στοιχείο του \(k \). Παρά το \(\gamma \) μηδενικό στοιχείο του \(k \), κάθε ένας αντίστοιχος του \(1_k/\gamma \in k \). Συνεπώς μπορούμε να ορίσουμε την απεικόνιση \(\phi : S \rightarrow S^0 \) μέσω του τύπου

\[
\phi(f) = (1_k/\gamma) \sum_{g \in \mathcal{G}} g(f).
\]

Εύκολα διαπιστώνουμε ότι η απεικόνιση \(\phi \) είναι τις επιθυμητές ιδιότητες.

Στις περιπτώσεις όπου \(\mathcal{G} \) είναι \(SL_n(k) \) ή \(GL_n(k) \) η απεικόνιση \(\phi \) κατασκευάζεται με ανάλογο τρόπο, αντικαθιστώντας το άθροισμα με το αλόγολωμο ως προς το μέτρο Haar.

Τώρα είμαστε σε θέση να αποδείξουμε το θεώρημα 1.2.1.

Απόδειξη. Εστίαν \(X \) το σύνολο όλων των ομοιογένειων πολυωνυμικών του \(S^0 \)-βαθμού \(m \) της θείας \(m \) των διαδίκες του \(S \) που παράγονται από τα στοιχεία του \(X \). Σημειώνουμε εκτός \(m \) είναι εξ αρχής ομοιογένειο διαδίκες του \(S \). Αφού ο \(S \) είναι δακτύλιος τής \(Noether \), βλ. Θεώρημα Βάσης τού Hilbert, το διαδίκες \(m \) έχει ένα πεπερασμένο σύνολο γεννητόρων οι οποίοι μπορούν να επιλέγονται από τα στοιχεία του συνόλου \(X \). Πράγματι, έστω \(H_1, H_2, \ldots, H_t \in S \) γεννήτροι του \(m \). Κάθε \(H_i \) είναι τους πολυωνυμά \(H_i \) γράφεται ως πεπερασμένο άθροισμα της μορφής \(\sum_j h_j F_j \), με \(h_j \in S \) και \(F_j \in X \). Αν \(F_1, F_2, \ldots, F_s \) είναι οι πολυωνυμά του \(X \) που εμφανίζονται στις εκφράσεις των \(H_i \), \(i = 1, \ldots, t \), τότε εύκολα βλέπουμε ότι το \(\{ F_1, F_2, \ldots, F_s \} \) αποτελεί ένα σύνολο γεννητόρων του διαδίκου \(m \).

Θα δείξουμε τώρα ότι τα πολυωνύμα \(F_i, i = 1, \ldots, s \), παράγονται τον \(S^0 \) ως \(k \)-αλγέβρα. Εστία\(R \) η \(k \)-αλγέβρα του \(S \) που παράγεται από τα \(F_1, F_2, \ldots, F_s \).
Προφανώς, \(R \subset S^G \). Έστω τώρα \(F \) ένα ομογενές πολυώνυμο του \(S^G \), δηλ. \(F \in \mathcal{X} \). Δείχνουμε ότι \(F \in R \) με επαγωγή ως προς το βαθμό του \(F \).

Αν \(\deg F = 0 \), τότε \(F \in k \subset R \), όποτε \(F \in R \). Έστω τώρα ότι \(\deg F > 0 \) και ότι το \(\xi \) αναφέρονται στην ως \(F \) ομογενή πολυώνυμο του \(S^G \) βαθμού \(\gamma \) μικρότερο από \(\deg F \). Τότε \(F \in \mathcal{X} \subset m \) και επομένως, το ομογενές πολυώνυμο \(F \) μπορεί να γράφεται ως

\[
F = \sum_{i=1}^{s} Q_i F_i,
\]

όπου τα \(Q_i, i = 1, \ldots, s \), είναι ομογενείς πολυώνυμα του \(S \) βαθμού \(\deg Q_i = \deg F - \deg F_i \). Πράγματι, αφού το \(m \) μας παράγει, ως ιδεώδες το \(S \), από τα \(F_1, F_2, \ldots, F_s \), υπάρχουν πολυώνυμα \(P_1, P_2, \ldots, P_s \in S \), τέτοια ώστε το \(F \) να γράφεται ως \(F = \sum_{i=1}^{s} P_i F_i \). Τότε, αφού το \(F \) είναι ομογενές πολυώνυμο, μπορούμε να επιλέξουμε το \(Q_i \) να είναι η ομογενής συνιστώσα του \(P_i \) βαθμού \(\deg F - \deg F_i \). Σημείωσε ότι όλοι οι άλλοι όροι του αποτελέσματος απαλλάσσονται.

Τα \(F, F_i, i = 1, \ldots, s \), είναι πολυώνυμα του \(S^G \). Έτσι αν \(\phi \) είναι η αντίστοιχη του λήμματος 1.2.1, έχουμε

\[
\phi(F) = \phi\left(\sum_{i=1}^{s} Q_i F_i\right) \implies F = \sum_{i=1}^{s} \phi(Q_i) F_i,
\]

και αφού \(\deg \phi(Q_i) = \deg Q_i < \deg F \), έχουμε από την επαγωγική υπόθεση ότι \(\phi(Q_i) \in R, i = 1, \ldots, s \) και επομένως \(F \in R \).

Έστω τώρα τυχόν \(F \in S^G \). Το \(F \) γράφεται ως \(F = f_0 + f_1 + \ldots + f_n \) για κάθε τον διαφορτωτικό αριθμό \(n \), όπου το \(f_j, j = 1, \ldots, n \), είναι ομογενές πολυώνυμα βαθμού \(j \). Τότε

\[
\phi(F) = \phi(f_0 + f_1 + \ldots + f_n) \implies F = \phi(f_0) + \phi(f_1) + \ldots + \phi(f_n),
\]

όπου τα \(\phi(f_j), j = 1, \ldots, n \), είναι ομογενείς πολυώνυμα του \(S^G \). Άρα, σύμφωνα με τα προηγούμενα \(\phi(f_j) \in R \), για κάθε \(j = 1, \ldots, n \), οπότε \(F \in R \).
Κεφάλαιο 2
Προκαταρτικά στοιχεία

2.1 Επίπεδες Καμπύλες

Ορισμός 2.1.1. Μια επίπεδη καμπύλη (ή μια καμπύλη του προβολικού επιπέδου \(P^2\)) \(C\) είναι η ένωση του συνόλου των θέσεων μηδενικού των ανάγκασεων παραγόντων ενός ομογενούς πολυκυμάτου \(F(X, Y, Z)\) με μηδενικά συντελεστές, λαμβανομένη ως φύση της πολλαπλάσιας της στην οποία οι ανάγκαιοι παράγοντες εμφανίζονται στην ανάλυση του \(F(X, Y, Z)\). Όνομαζουμε βαθμό της καμπύλης \(C\) (συμβολίζοντας το με \(\deg C\)) τον βαθμό του πολυκυμάτου \(F(X, Y, Z)\).

Σημείωση 2.1.1. Δύο ομογενείς πολυκυμάτων με μηδενικά συντελεστές ορίζουν την ιδία καμπύλη εάν και μόνο εάν το ένα ισούται με το γνώμονα μίας μηδενικής στοιχείας επί το άλλο.

Ορισμός 2.1.2. Λέμε ότι μια επίπεδη καμπύλη είναι ανάγκης όταν το πολυκύμα, μέσα του οποίου ορίζεται, είναι ανάγκης.

Το πλήθος των ομογενών μονοκυμάτων βαθμού \(d\) τριών μεταβλητών είναι \(\binom{d+2}{2}\). Επομένως, το σύνολο των ομογενών πολυκυμάτων τριών μεταβλητών βαθμού \(d\), μαζί με το μηδενικό πολυκύμα, αποτελούν έναν διανυσματικό χώρο διάστασης \(N+1\), όπου \(N = \binom{d+2}{2} - 1 = \frac{(d+1)(d+2)}{2}\). Από την παραπάνω σημείωση \(2.1.1\) μπορούμε να συμπεράνουμε ότι το σύνολο των επίπεδων καμπύλων βαθμού \(d\) είναι η προβολικοποίηση του διανυσματικού χώρου των ομογενών πολυκυμάτων βαθμού \(d\), συντακτά στην έναν προβολικό χώρο διάστασης \(N\).

Εάν έχει \(P\) ένα σημείο του προβολικού επιπέδου και είστε \(C\) μια επίπεδη καμπύλη που ορίζεται ως το σύνολο των θέσεων μηδενικού ενός πολυκυμάτου \(F(X, Y, Z)\). Λέμε ότι \(C\) διέρχεται από το σημείο \(P\) όταν το \(P\) είναι θέση μηδενικού του πολυκυμάτου \(F(X, Y, Z)\). Λέμε ότι η καμπύλη \(C\) διέρχεται από το σημείο \(P\) με πολλαπλάσια παλαιάστατο \(m\) (ή μεγαλύτερη ή ίσης του \(m\)) όταν όλες οι μερικές παράγοντες του \(F(X, Y, Z)\) τάξεως μέχρι \(m - 1\) μηδενίζονται στο σημείο
ΚΕΦΑΛΑΙΟ 2. ΠΡΟΚΑΤΑΡΤΙΚΑ ΣΤΟΙΧΕΙΑ

12

(Σε αυτή την περίπτωση, γράφουμε: \(\text{mult}_P C \geq m \)). Δείξτε ότι \(C \) διέρχεται από το σημείο \(P \) με πολλαπλότητα ακριβώς \(m \) όταν όλες οι μερικές παράγωγοι του \(F(X,Y,Z) \) τάξεως \(m - 1 \) μηδενίζονται στο σημείο \(P \) και, ταυτόχρονα, υπάρχει τουλάχιστον μια μερική παράγωγος του \(F \) τάξεως \(m \) που δεν μηδενίζεται στο \(P \). (Σε αυτή την περίπτωση, γράφουμε: \(\text{mult}_P C = m \)). Επομένως, η συνάρτηση \(\text{mult}_P C \geq m \) εποχή: \(\binom{m+1}{2} = \frac{m(m+1)}{2} \) (δηλαδή όταν το τόλμη των μερικών παράγωγος του \(F(X,Y,Z) \) μέχρι τάξεως \(m \) ανεξάρτητα - όπως αποδεικνύεται - γραμμικές συνάρτησες στους συντελεστές του πολυώνυμου \(F(X,Y,Z) \).

Ως εκ τούτου το σύνολο των επίπεδων καμπύλων βαθμού \(d \), οι οποίες διέρχονται από διαδεδομένο σημείο του προβολικού επίπεδου με πολλαπλότητα τουλάχιστον \(m \), αποτελεί έναν προβολικό υπόγειο του \(\mathbb{P}^N \), όπου \(N = \frac{d(d+3)}{2} \). Αυτός ένας είναι ο μηδενικός, στην περίπτωση κατά την οποία \(d \leq m - 1 \), είναι είδος: (προβολικό) διάσταση

\[
\frac{d(d+3)}{2} - \frac{m(m+1)}{2} = d^2 + 3d - m^2 - m.
\]

Όμως για περισσότερα τον \(d \) σημεία \(P_1, \ldots, P_r \) του προβολικού επίπεδου, οι συνάρτησες \(\text{mult}_P C \geq m_i \), \(i = 1, \ldots, r \), επιλύουν \(\binom{m_i+1}{2} \) γραμμικές συνάρτησες στους συντελεστές του \(F(X,Y,Z) \) για καθένα σημείο \(P_i \), αλλά ενδέχεται να είναι εξαρτημένες. Επομένως, το σύνολο των επίπεδων καμπύλων βαθμού \(d \) που διέρχονται από διαδεδομένα σημεία \(P_1, \ldots, P_r \) με πολλαπλότητα τουλάχιστον \(m_1, \ldots, m_r \), αντιστοιχά, αποτελεί έναν προβολικό υπόγειο του \(\mathbb{P}^N \), όπου \(N = \frac{d(d+3)}{2} \), διάστασης

\[
\geq \frac{d(d+3)}{2} - \sum_{i=1}^{r} \frac{m_i(m_i+1)}{2}.
\]

Σημειώνουμε ότι το κενό σύνολο έχει διάσταση \(-1\).

Ορισμός 2.1.3. Εστώ \(C \) μια επίπεδη καμπύλη. Ένα σημείο \(P \) της \(C \) ονομάζεται κανόνα το σημείο \(C \) όταν \(\text{mult}_P C \geq 2 \). Ένα σημείο της \(C \) που δεν είναι διάξον ονομάζεται αμελέ το σημείο της \(C \). Μια καμπύλη που έχει διάξονα σημεία ονομάζεται καμπύλη με διάξονα. Μια καμπύλη που δεν έχει διάξονα σημεία ονομάζεται λέω.

Θεωρούμε μια ανάγκη επίπεδης καμπύλης \(C \) βαθμού \(d \), ορίζοντας ως το σύνολο των θέσεων μηδενικού ενός πολυώνυμου \(F(X,Y,Z) \). Θα δώσουμε μια τουπολογική περίγραφη της \(C \) γύρω από έναν σημείο της \(P \). Εξετάζουμε αρχικά την περίπτωση κατά την οποία το \(P \) είναι αμελέ σημείο της \(C \). Χωρίς βλάβη της γενικότερης, μπορούμε να υποθέσουμε ότι το \(P \) είναι το σημείο \([1,0,0] \) \(\in \mathbb{P}^2 \) (σε περίπτωση που δεν είναι, μπορούμε να μεταφέρουμε το \(P \) στο \([0,0,1] \) με έναν προβολικό μετασχηματισμό). Θεωρούμε \(y = \frac{Y}{X}, \ z = \frac{Z}{X} \) και:

\[
f(y,z) = \frac{1}{X^d} F(X,Y,Z).
\]
2.1. ΕΠΙΠΕΔΕΣ ΚΑΜΠΥΛΕΣ

Μέσω της ταραττούσας αντιστάστασης, το σημείο \([1,0,0]\) αντιστοιχεί στο σημείο \((y,z) = (0,0)\) το οποίο είναι θέση μηδενικού τελικού πολυώνυμου \(f(y,z)\). Άφορά το \([1,0,0]\) είναι ασεβές σημείο της \(C\), τουλάχιστον ακόμα από τις μερικές παραγώγους του \(F(X,Y,Z)\) δεν μηδενίζεται στο \(P\). Οι σχέσεις που συνδέουν τις μερικές παραγώγους του πολυώνυμου \(F(X,Y,Z)\) με τις μερικές παραγώγους του \(f(y,z)\) είναι οι εξής:

\[
\frac{\partial F}{\partial X} = \frac{\partial}{\partial X} \left(X^d f(y,z) \right) = dX^{d-1}f(y,z) - X^{d-2} \left(Y \frac{\partial f}{\partial y} + Z \frac{\partial f}{\partial z} \right)
\]

\[
\frac{\partial F}{\partial Y} = X^{d-1} \frac{\partial f}{\partial y} \quad \text{και} \quad \frac{\partial F}{\partial Z} = X^{d-1} \frac{\partial f}{\partial z}.
\]

Από τις παρατηρώσεις που έχουμε θεωρήσει ότι τουλάχιστον μία από τις μερικές παραγώγους \(\frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\) δεν μηδενίζεται στο σημείο \((0,0)\). Αν, για παράδειγμα, \(\frac{\partial f}{\partial y}(0,0) \neq 0\), από το θεώρημα της αντιστάστασης οι συνάρτησης μπορούμε να βρούμε μια τοπικά συχνάλυση δενομισθιού:

\[
y = \sum_{n=1}^{\infty} a_n z^n,
\]

τέτοια ώστε το σημείο \((\sum_{n=1}^{\infty} a_n z^n, z)\) να είναι λύση της εξίσωσης \(f(y,z) = 0\). Επομένως, η χαμηλή γρίφα από το \((0,0)\) παραμετρίζεται από την

\[
z \mapsto \left(\sum_{n=1}^{\infty} a_n z^n, z \right).
\]

Ως εκ τούτου, μπορούμε να θεωρήσουμε το \(z\) ως τοπολογικό παράμετρο. Στην περίπτωση όταν την οποία \(\frac{\partial f}{\partial z} \neq 0\), μπορούμε κατ’ αναλογία να θεωρήσουμε το \(y\) ως τοπολογικό παράμετρο. Σύμφωνα με τα παρατηρώσεις, μια λεία επίπεδη χαμηλή είναι τοπολογικά ισομερής με το σύνολο των μηγαλοφών αριθμών \(\mathbb{C}\).

Σημείωση 2.1.2. Αν η ταραττούσα συνάδεται ότι μια λεία επίπεδη χαμηλή είναι μια συμπτωματική επιφάνεια Riemann, βλ. παράγραφο 2.2. Αν το βοηθημα της χαμηλής είναι ίσος με \(d\), τότε το γένος \(g\) της χαμηλής σχηματίζεται με \(g = \frac{(d-1)(d-2)}{2}\).

Εστάτωσε ότι η \(P = [1,0,0]\) είναι διάδοχον σημείο της χαμηλής \(C\). Θεωρήσουμε και τάση την αντιστάθεια αποκατασκευασμένο πολυώνυμο \(f(y,z)\). Το πολυώνυμο \(f(y,z)\) είναι ανάγλυφο, αλλά μπορούμε χρησιμοποιώντας τυπικές δυναμικές να το παραγωγοποιήσουμε γύρω από το σημείο \((0,0)\) ως εξής:

\[
f(y,z) = \prod_{j=1}^{k} g_j(y,z).
\]
Για κάθε \(j = 1, \ldots, k \), το σύνολο των \((y, z)\) για τα οποία \(g_j(y, z) = 0 \), λέγεται κλάδος της χαμηλότερης καμπύλης \(f(y, z) = 0 \) γύρω από το σημείο \((0, 0)\). Ο κάθε κλάδος δεν είναι πλέον καμπύλη, αλλά αναπαριστά τμήμα της χαμηλότερης καμπύλης \(f(y, z) = 0 \) σε μια περιοχή του \((0,0)\). Αποδεικνύεται ότι μπορούμε να εισαγάγουμε μια τοπική παράμετρο \(s \), την οποία γύρω από το σημείο \((0,0)\) ο κλάδος \(g_j(y, z) = 0 \) να δίνεται από τις

\[
\begin{align*}
y &= s^{m_j} \\
z &= h_j(s),
\end{align*}
\]

όπου \(m_j \) είναι φυσικός αριθμός και \(h_j(s) \) σε σχέση Laurens με προς \(s \), που έχει πεπερασμένο πλήθος όρων με αφρητικό χαρακτήρα.

2.1.1 Το Θεώρημα του Bezout

Θεωρούμε δύο ανάγκες χαμηλές \(C, D \) που ορίζονται από τα πολυώνυμα \(F(X,Y,Z) \) και \(G(X,Y,Z) \), βαθμού \(m \) και \(n \) αντίστοιχα. Τα σημεία τομής των χαμηλών \(C, D \) είναι \(m \) κύκλωσεις του συστήματος

\[
\begin{align*}
F(X,Y,Z) &= 0 \\
G(X,Y,Z) &= 0.
\end{align*}
\]

Εστώ \(P \) ένα σημείο τομής των \(C, D \). Για λόγους απλούστευσης και χωρίς βλάβη της γενικότητας μπορούμε να υποθέσουμε ότι \(P \) είναι το \([1, 0, 0] \). Θέτουμε \(y = \frac{Y}{X}, z = \frac{Z}{X} \) και

\[
\begin{align*}
f(y, z) &= \frac{1}{X^m}F(X,Y,Z), \\
g(y, z) &= \frac{1}{X^n}G(X,Y,Z).
\end{align*}
\]

Εστώ ότι η χαμηλή \(f(y, z) = 0 \) έχει \(k \) κλάδους στο σημείο \((0, 0)\) και κάθε κλάδος παραμετρίζεται από τις

\[
\begin{align*}
y &= s^{m_j} \\
z &= h_j(s)
\end{align*}
\]

Αντικαθιστώντας τα παραπάνω στα πολυώνυμα \(g(y, z) \) έχουμε

\[
g(s^{m_j}, h_j(s)) = c s^{l_j} + \text{όροι βαθμού μεγαλύτερου από} \ l_j \ \text{ως} \ s.
\]

Ο φυσικός αριθμός \(l_j \), συνεπάγεται πολλαπλάσια τομής του \(j \)-ου κλάδου της χαμηλής \(f(y, z) = 0 \) και τής \(g(y, z) = 0 \) στο σημείο \((0, 0)\). Έτσι, ορίζομε την πολλαπλάσια τομής των \(C, D \) στο σημείο \([1, 0, 0]\), ως το ύψος των πολλαπλασιών τομής των κλάδων \(f(y, z) = 0 \) και τής \(g(y, z) = 0 \) στο σημείο \((0, 0)\).

Ένα βασικό θεώρημα που αφορά στο πλήθος των σημείων τομής δύο χαμηλών τομής προβαλλόμενο επιπέδου είναι το Θεώρημα του Bezout το οποίο παραθέτουμε χωρίς αποδείξη.
2.2 ΕΠΙΦΑΝΕΙΕΣ RIEemann

ΘΕΩΡΗΜΑ 2.1.1 (ΘΕΩΡΗΜΑ ΤΟΥ BEzOUT). Εστω ότι οι C, D είναι δύο καμπύλες του προβολικού επιπέδου βαθμών n και n αντίστοιχα. Αν οι C, D δεν έχουν κοινές συμπλέκτες (δηλαδή τα πολυώνυμα, μέσω των οποίων ορίζονται, δεν έχουν κοινός παράγοντες), τότε το πλήθος των σημείων τομής τους, αν μετρήσουμε το καθένα τόσος φορές όσες και πολλαπλάσια τομής των C, D σε αυτό, ισοδύναμε με n.

2.2 Επιφάνειες RieMANN

Μια επιφάνεια Riemann είναι ένα μονοδιάστατο συνεπτικό μηγαθικό πολύτπυμα. Οι λείες επιπέδες μηγαθικάς ολογραμμικής καμπύλες είναι επιφάνειες Riemann. Δινούμε σχετικά τόσο ορισμός των έννοιων που μας χρειάζονται για να ορίσουμε τις επιφάνειες Riemann. Εστω X ένας συνεπτικός τοπολογικός χώρος διάστασης 1.

ΟΡΙΣΜΟΣ 2.2.1. Ένας μηγαθικός χάρτης, ή στοιχείο χάρτης, στον X είναι ένας ομοιομορφισμός φ : U → V, όπου το U είναι ένα ανοιχτό υποσύνολο του X και το V είναι ένα ανοιχτό υποσύνολο του μηγαθικού επιπέδου C. Δύο χάρτες φ1 : U1 → V1 και φ2 : U2 → V2 λέγονται συμβατικοί, όταν είναι U1 ∩ U2 = ∅.

φ2 o φ1⁻¹ : φ1(U1 ∩ U2) → φ2(U1 ∩ U2)

eίναι οδέομορφη.

ΟΡΙΣΜΟΣ 2.2.2. Ένας μηγαθικός όλος, ή στοιχείο όλος, Α στο X, είναι μια σύλλογη A = {φα : Uα → Vα} από άνευ δύο συμβατικός χάρτες, τέτοιες ώστε X = ∪α Uα. Δύο όλοις A1 και A2 είναι ισοδύναμοι, αν κάθε χάρτης του A1 είναι συμβατός με κάθε χάρτη του A2.

Επομένως, δύο όλοις είναι ισοδύναμοι αν και μόνο αν η ένωσή τους είναι και πάλι ένας μηγαθικός όλος. Κάθε όλος περιέχεται σε έναν μονοθήκη μεγαθιστικό (maximal) όλο και συνεπώς δύο όλοις είναι ισοδύναμοι αν και μόνο αν περιέχονται στον ίδιο μεγαθιστικό όλο.

ΟΡΙΣΜΟΣ 2.2.3. Μια μηγαθική δομή στο X είναι ένας μεγαθιστικός όλος στο X.

Ερημίαστε τώρα στον ορισμό της (συμπαγούς) επιφάνειας Riemann.

ΟΡΙΣΜΟΣ 2.2.4. Μια (συμπαγής) επιφάνεια Riemann X, είναι ένας συμπαγής συνεπτικός τοπολογικός χώρος Hausdorff διάστασης 1, με αριθμητική βάση για την τοπολογία του, εφαρμοσμένος με μια μηγαθική δομή.

Η βασική τοπολογική συναλλαγματικός μικρός (συμπαγός) επιφάνειας Riemann είναι το γένος της.
2.2.1 Συναρτήσεις σε επιφάνειες Riemann

Εστώ X μια επιφάνεια Riemann. Τιποθετούμε ότι το p ένα σημείο της X και το W ένα ανοιχτό υποσύνολο του X με p ∈ W.

Ορισμός 2.2.5. Εστώ f μια μιγαδική συνάρτηση ορισμένη στο W. Λέμε ότι η f είναι αλόγωρη στο σημείο p όταν υπάρχει χάρτης φ: U → V με p ∈ U, τέτοιος ώστε η απεικόνιση f ◦ φ⁻¹: φ(U) → C να είναι αλόγωρη στο φ(p). Ακόμη, λέμε ότι η f είναι αλόγωρη στο ανοικτό σύνολο W του X όταν είναι αλόγωρη σε κάθε σημείο του W.

Ορισμός 2.2.6. Εστώ f μια συνάρτηση ορισμένη και αλόγωρη στο W \ {p}.

Λέμε ότι η συνάρτηση f έχει επισυνώδεις ιδίωμα (αντ. πόλο, αντ. αυτοδίων ιδίωμα) στο σημείο p όταν υπάρχει ένας χάρτης φ: U → V με p ∈ U, τέτοιος ώστε η συνάρτηση f ◦ φ⁻¹: φ(U) → C να έχει επισυνώδεις ιδίωμα (αντ. πόλο, αντ. αυτοδίων ιδίωμα) στο σημείο φ(p).

Ορισμός 2.2.7. Μια μιγαδική συνάρτηση f ορισμένη σε μια επιφάνεια Riemann X λέγεται μερόμορφη στο σημείο p ∈ X αν είτε είναι αλόγωρη είτε έχει επισυνώδεις ιδίωμα είτε πόλο στο p. Λέμε ότι η f είναι μερόμορφη σε ένα ανοιχτό υποσύνολο W του X όταν είναι μερόμορφη σε κάθε σημείο του X.

Το σύνολο όλων των μερόμορφων συναρτήσεων σε ένα ανοιχτό υποσύνολο W μιας επιφάνειας Riemann X το συμβολίζουμε ως M(W).

Ορισμός 2.2.8. Εστώ μια συνάρτηση f ορισμένη και αλόγωρη στο W \ {p}.

Εστώ ακόμη ένας χάρτης φ: U → V με p ∈ U. Ονομάζουμε σειρά Laurent της f γύρω από τo p ως προς τον χάρτη φ, τη σειρά Laurent της συνάρτησης f ◦ φ⁻¹ γύρω από το σημείο φ(p).

Στην περίπτωση των μιγαδικών συναρτήσεων μιας μιγαδικής μεταβλητής μπορούμε να πάρουμε πληροφορίες για το είδος του διάκριτου που παρουσιάζει μια συνάρτηση σε κάθε σημείο από τη μορφή της σειράς Laurent, που συγκεκριμένα, από τον ελάχιστο αξίολο (αν αυτός υπάρχει) για τον οποίο ο αντίστοιχος συντελεστής της σειράς Laurent είναι μη μηδενικός. Στην περίπτωση των επιφανειών Riemann η σειρά Laurent μιας συνάρτησης γύρω από ένα σημείο εξαρτάται από την επιλογή του χάρτη γύρω από το σημείο. Όμως, αποδεικνύεται ότι ο ελάχιστος αξίολος (αν αυτός υπάρχει), για τον οποίο ο αντίστοιχος συντελεστής στη σειρά Laurent είναι μη μηδενικός, είναι ανεξάρτητος από την επιλογή του χάρτη. Έγινε το εξής:

Ασήμα 2.2.1. Εστώ μια συνάρτηση f ορισμένη στο W \ {p} και αλόγωρη στον αυτό. Τότε, η f έχει επισυνώδεις (αντ. πόλο, αντ. αυτοδίων ιδίωμα) στο σημείο
2.2. ΕΠΙΦΑΝΕΙΕΣ ΡΙΕΜΑΝΝ

p αν και μόνο αν η σειρά Laurent της \(f \) γύρω από το \(p \), ως \(p \) προς οποιονδήποτε χώρο, δεν έχει αρνητικούς συντελεστές (αντ. έχει τετερασμένο - άλλα όχι μηδενικό - πλήθος αρνητικών συντελεστών, αντ. έχει άτερο πλήθος αρνητικών συντελεστών).

Έστω \(\alpha \) ότι μια συνάρτηση \(f \) είναι μερόμορφη στο σημείο \(p \in X \).

Ορισμός 2.2.9. Τον εξάρτημα \(f \), για τον οποίο ο αντίστοιχος συντελεστής της σειράς Laurent της συνάρτησης \(f \) γύρω από το σημείο \(p \), ως \(p \) προς έναν χάρτη, είναι μη μηδενικός, συμπλήρωσε τάξη της \(f \) στο \(p \) και τον συμπλήρωσε \(\text{ord}_p \ f \).

Στο οξύλευκο λήμμα προκύπτει άμεσα από τον τελευταίο ορισμό και το λήμμα 2.2.1.

Αίτημα 2.2.2. Έστω ότι η συνάρτηση \(f \) είναι μερόμορφη στο σημείο \(p \). Τότε \(f \) είναι άλογο μόρφη στο σημείο \(p \) και \(\text{ord}_p \ f \geq 0 \). Σε αυτή την περίπτωση, \(f \) είναι θέση μηδενισμού της \(f \) και \(\text{ord}_p \ f \geq 0 \). Επίσης, \(f \) έχει πάλι στο σημείο \(p \) και \(\text{ord}_p \ f < 0 \).

Χρησιμοποιούμε επίσης την παρακάτω ορισμό:

Ορισμός 2.2.10. Δείκτε ότι το σημείο \(p \) είναι θέση μηδενισμού της συνάρτησης \(f \) τάξης \(n \) όταν \(\text{ord}_p \ f = n \geq 1 \). Δείκτε ότι το σημείο \(p \) είναι πάλι της συνάρτησης \(f \) τάξης \(n \) όταν \(\text{ord}_p \ f = -n < 0 \).

Αναφέρουμε χωρίς απόδειξη κάποιες διάταξες της συνάρτησης \(\text{ord}_p \).

Αίτημα 2.2.3. Εάν \(f, g \) είναι δύο μερόμορφες συναρτήσεις στο σημείο \(p \), τότε,

1. \(\text{ord}_p (fg) = \text{ord}_p f + \text{ord}_p g \),
2. \(\text{ord}_p \left(\frac{f}{g} \right) = \text{ord}_p f - \text{ord}_p g \).

Πολλά από τα θεoreματα που ισχύουν για τις μη μηδενικές συναρτήσεις μιας μη μηδενικής μεταβλητής μεταφέρονται, μείον χαρτών, και σε συναρτήσεις ορισμένες σε επιφάνειες Riemann.

Τείμημα 2.2.1. Έστω \(f \) μια συνάρτηση ορισμένη σε ένα ανοιχτό και συνεκτικό υποσύνολο \(W \) μιας επιφάνειας Riemann \(X \), στο οποίο είναι μερόμορφη. Αν \(f \) δεν είναι ταυτικό μηδέν στο \(W \), τότε το υποσύνολο το \(W \) που αποτελείται από τις θέσεις μηδενισμού και των πάλικων της \(f \) είναι διακριτό.

Λόγω της συμπάνθευσης των επιφάνειών Riemann, έχουμε το οξύλευκο πόρισμα:

Πόρισμα 2.2.1. Έστω \(X \) μια επιφάνεια Riemann. Αν μια μη μηδενική συνάρτηση \(f \) είναι μερόμορφη σε όλη τη \(X \), τότε τόσο το πλήθος των θέσεων μηδενισμού όσο και το πλήθος των πάλικων της \(f \) είναι τετερασμένα.
Το επόμενο θεώρημα εννοεί πάρσημα της αρχής του μεγίστου και της συμπάγειας της επιφάνειας Riemann.

Θεώρημα 2.2.2. Εστώ X μια επιφάνεια Riemann. Αν μια συνάρτηση f είναι αλόγωρη σε όλη τη X, τότε η f είναι σταθερή συνάρτηση.

2.2.2 Απεικονίσεις μεταξύ επιφανειών Riemann

Ορισμός 2.2.11. Μια απεικόνιση $F: X \rightarrow Y$ μεταξύ δύο επιφανειών Riemann X και Y είναι αλόγωρη στο σημείο $p \in X$ αν υπάρχουν χάρτες $\phi_1: U_1 \rightarrow V_1$ στη X και $\phi_2: U_2 \rightarrow V_2$ στη Y με $F(p) \in U_2$, τέτοια ώστε η απεικόνιση $\phi_2 \circ F \circ \phi_1^{-1}$ να είναι αλόγωρη στο σημείο $\phi_1(p)$. Λέμε ότι η απεικόνιση F είναι αλόγωρη στο συνόλο $W \subset X$ όταν η F είναι αλόγωρη σε κάθε σημείο του συνόλου W.

Οι αλόγωρες απεικόνισες μεταξύ επιφανειών Riemann έχουν, τοπικά, μια πολύ ειδική μορφή. Συγκεκριμένα έχουμε το εξής:

Θεώρημα 2.2.3. Ας υποθέσουμε ότι οι X, Y είναι δύο επιφάνειες Riemann, η $F: X \rightarrow Y$ μια μη σταθερή αλόγωρη απεικόνιση και p ένα σημείο της X. Τότε υπάρχει μοναδικός ακέραιος αριθμός $m \geq 1$ με την ακόλουθη ιδιότητα: Για κάθε χάρτη $\phi_2: U_2 \rightarrow V_2$ στην Y, με $F(p) \in U_2$ και $\phi_2(F(p)) = 0$, υπάρχει χάρτης $\phi_1: U_1 \rightarrow V_1$ στη X, με $p \in U_1$ και $\phi_1(p) = 0$, τέτοιος ώστε

$$(\phi_2 \circ F \circ \phi_1^{-1})(z) = z^m \text{ για κάθε } z \in \phi_1(U_1).$$

Ορισμός 2.2.12. Τον μοναδικό ακέραιο αριθμό m ο οποίος πληροί τις συνθήκες του παραπάνω θεώρηματος, ονομάζουμε πολλαπλάσιο της απεικόνισης F στο σημείο p και του συμβολίζουμε ως $\text{mult}_p F$.

Εστώ X μια επιφάνεια Riemann. Υπάρχει μια 1-1 αντιστοιχία μεταξύ του συνόλου $M(X)$, των μερόμορφων απεικονίσεων στη X και των συνόλου των αλόγωρων απεικονίσεων $F: X \rightarrow C_\infty$, όπου C_∞ συμβολίζουμε το συνόλο μοναδικό επίπεδο, που δεν είναι τοπικά ίσες με ένα. Αυτή κατασκευάζεται αντιστοιχίας σε μία $f \in M(X)$ την απεικόνιση

$$F(x) = \begin{cases} f(x) \in C, & \text{αν το } x \text{ δεν είναι πόλος της } f \\ \infty, & \text{αν το } x \text{ είναι πόλος της } f. \end{cases}$$

Θα έχουμε τότε το εξής:

Λήμμα 2.2.4. Εστώ f μια μερόμορφη συνάρτηση στην επιφάνεια Riemann X και $F: X \rightarrow C_\infty$ η αντίστοιχη αλόγωρη απεικόνιση στο σύμπαγες μοναδικό επίπεδο.
2.3 ΟΛΟΚΛΗΡΩΣΗ ΣΕ ΕΠΙΦΑΝΕΙΕΣ RIEMANN

1. An to σημείο \(p \in X \) είναι θέση μηδενισμού της \(f \), τότε \(\text{mult}_p F = \text{ord}_p f \).

2. An to σημείο \(p \in X \) είναι πόλος της \(f \), τότε \(\text{mult}_p F = -\text{ord}_p f \).

3. An to σημείο \(p \in X \) δεν είναι ούτε θέση μηδενισμού ούτε πόλος της \(f \), τότε \(\text{mult}_p F = \text{ord}_p(f - f(p)) \).

Η παρακάτω πρόταση μας παρέχει μια βασική διάταξη των ολόμορφων απεικονίσεων μεταξύ επιφανειών Riemann.

Πρόταση 2.2.1. Εστί \(F : X \to Y \) μια μη σταθερή ολόμορφη απεικόνιση με ταξί δύο επιφανειών Riemann \(X \) και \(Y \). Τότε, για κάθε σημείο \(y \in Y \), το άθρωσμα

\[
\sum_{p \in F^{-1}(y)} \text{mult}_p F
\]

είναι σταθερό.

Σημειώνουμε ότι, το παραπάνω άθρωσμα είναι πεπερασμένο. Το τελευταίο προκύπτει από το λήμμα 2.2.4 και το γεγονός ότι μια μερόμορφη συνάρτηση σε μια επιφάνεια Riemann έχει πεπερασμένου τυχόν πόλοι και θέσεις μηδενισμού.

Ορισμός 2.2.13. Το άθρωσμα της παραπάνω πρότασης το ονομάζουμε βαθμό της συνάρτησης \(F \).

Τέλος, με χρήση των παραπάνω, μπορεί να αποδεχθείτε τη ακόλουθη βασική πρόταση:

Πρόταση 2.2.2. Εστί \(f \) μια μερόμορφη συνάρτηση σε μια επιφάνεια Riemann \(X \). Τότε,

\[
\sum_{p \in X} \text{ord}_p f = 0.
\]

2.3 Ολοκλήρωση σε επιφάνειες Riemann

Ορισμός 2.3.1. Ένα μονοπάτι \(\gamma \) σε μια επιφάνεια Riemann \(X \) είναι μια συνεχής και κατά τιμή τα ομαλή απεικόνιση \(\gamma : [a, b] \to X \), όπου το \([a, b]\) είναι ένα κλειστό διάστημα της πραγματικής ειδικής. Τα σημεία \(\gamma(a), \gamma(b) \) συναντάται: άκρα (ή ληνετα σημεία) του μονοπατιού \(\gamma \). Συχνά, το \(\gamma(a) \) συναντάται αρχικά και το \(\gamma(b) \) συναντάται τελικά σημεία του \(\gamma \). Ένα μονοπάτι \(\gamma \) καλείται κλειστό όταν \(\gamma(a) = \gamma(b) \).

Εστί \(\gamma \) ένα μονοπάτι σε μια επιφάνεια Riemann και \(\gamma \) \(f \) μια μερόμορφη συνάρτηση που είναι ολόμορφη κατά μήκος του μονοπατιού. Ο ορισμός του ολοκλήρωσης \(\int_a^b f \) με χρήση χαρτών και αναγωγή στην ολοκλήρωση μαθηματικών
KEFALÁIO 2. ΠΡΟΚΑΤΑΡΤΙΚΑ ΣΤΟΙΧΕΙΑ

συμπεριφερείται μίας μεταβλητής προσαρμοστεί στην συμβατότητα αλλαγής χαρτών.
Επομένως, ολοκληρώματα όπως το παραπάνω δεν μπορούν να οριστούν. Τα αντι-
στοιχία του μορφών μπορούμε να ολοκληρώσουμε κατά μήκος μονοποτών σε μια επιφά-
νεια Riemann είναι οι C^∞ 1-μορφές. Για την μελέτη μας θα περιγραφούμε σε μια
ειδικότερη σειρά μορφών, τις ολομορφίες 1-μορφές.

Ορισμός 2.3.2. 1. Μια ολόμορφη 1-μορφή σε ένα αναχωρίστικο σύνολο $V \subseteq \mathbb{C}$ είναι
μία έκφραση της μορφής $\omega = f(z)dz$, όπου f είναι ολόμορφη συνάρτηση στο V.
2. Μια ολόμορφη 1-μορφή σε μια επιφάνεια Riemann X είναι μια αντιστοιχία σε
χάρτη $\phi_i : U_i \rightarrow V_i \subseteq \mathbb{C}$ της X μιας ολόμορφης 1-μορφής $\omega_i = f_i(z)dz_i$ στο $V_i \subseteq \mathbb{C}$ που
κανονίζει την έξοδα συνάρτηση συμβατότητας: Αν οι $\phi_i : U_i \rightarrow V_i$, $i = 1,2$
είναι δύο χάρτες με μια κενή τομή και $T = \phi_1 \circ \phi_2^{-1}$ η αντίστοιχη
αλλαγή χαρτών, τότε $T^*(\omega_i) = \omega_2$, δηλ. $f_1 \circ (\phi_1 \circ \phi_2^{-1})(z_2)(\phi_1 \circ \phi_2^{-1})'(z_2) = f_2(z_2)$.

Η παραπάνω συνάρτηση συμβατότητας για τις ολόμορφες 1-μορφές αντιστοιχεί
στην νόμων αλλαγής μεταβλητής στα ολοκληρώματα, πράγμα που συμπεράνει την
συμβατότητα του ορισμού των ολοκληρώματος της 1-μορφής κατά μήκος ένος
μονοποτών με χαρτή χαρτών. Έχουμε το παρακάτω βασικό και πολύ διάσημο
θεώρημα που αφορά στις ολόμορφες μορφές μιας επιφάνειας Riemann γένους g.

Θεώρημα 2.3.1. Το σύνολο των ολόμορφων μορφών σε μια επιφάνεια Riemann X
γένους g είναι ένας διανυσματικός χώρος διάστασης g, τον οποίο εφεξής
θα συμβολίζουμε ως $\Omega^1(X)$.

Ορισμός 2.3.3. Μια αλυσίδα σε μια επιφάνεια Riemann είναι ένα πεπερασμένο
τυπικό άδρονήμα της μορφής $\sum_i n_i \gamma_i$, όπου τα γ_i είναι
μονοποτά στη X και τα n_i ακέραιοι αριθμοί.

Το σύνολο όλων των αλυσιδιών σε μια επιφάνεια Riemann X, αποτελεί μια ελεύ-
θερη αξελωνική ομάδα, την οποία συμβολίζουμε με $Ch(X)$, με βάση το σύνολο των
μονοποτών στη X. Έστω τώρα ω μια ολόμορφη 1-μορφή σε μια επιφάνεια
Riemann X. Διαθέτεις μιας αλυσιδιών $\Gamma = \sum_i n_i \gamma_i$ στη X, μπορούμε να επεκτείνουμε
την έννοια των ολοκληρώματος της ω πάνω στη Γ ως εξής:

$$\int_{\Gamma} \omega = n_i \sum \int_{\gamma_i} \omega.$$

2.3.1 Η ομάδα ομολογίας μιας επιφάνειας Riemann

Έστω X μια επιφάνεια Riemann και $\gamma : [a, b] \rightarrow X$, $\delta : [a, b] \rightarrow X$ δύο μονοπότα στη X με $\gamma(a) = \delta(a)$ και $\gamma(b) = \delta(b)$ (με τα γ και δ να έχουν τα ίδια όρια).
2.3. ΟΛΟΚΛΗΡΩΣΗ ΣΕ ΕΠΙΦΑΝΕΙΕΣ Riemann

Διασφάλιστα, λέμε ότι τα μονοπάτια \(γ \) και \(δ \) είναι ομοτοπικά, όταν το ένα μπορεί να προανύξει από συνεχή παραμόρφωση το άλλο. Πιο αμφιβολά,

Ορισμός 2.3.4. Δύο μονοπάτια \(γ : [a, b] \rightarrow X \) και \(δ : [a, b] \rightarrow X \) σε μια επιφάνεια Riemann \(X \), με άκρες \(γ(a) = δ(a) = p \) και \(γ(b) = δ(b) = q \), είναι ομοτοπικά, όταν υπάρχει μια συνεχής απεικόνιση \(Τ : [a, b] \times [0, 1] \rightarrow X \), τέτοια ώστε, για κάθε \(s \in [0, 1] \) η απεικόνιση \(γ_s : [a, b] \rightarrow X \) που ορίζεται ως \(γ_s(t) = Τ(t, s), t \in [a, b] \), να είναι ένα μονοπάτι στη \(X \), με αρχικό σημείο το \(p \) και τελικό το \(q \), και \(γ_0 = γ, γ_1 = δ \). Μια τέτοια απεικόνιση \(Τ \) καλείται ομοτοπία.

Η έννοια της ομοτοπίας ορίζεται μια σχέση ισοπονίας στο σύνολο όλων των μονοπατιών με σταθεροποιημένη άκρα σε μια επιφάνεια Riemann. Οι αντίστοιχες χώσεις ισοποπικής ενωμένες καλούνται χώσεις ομοτοπίας.

Ορισμός 2.3.5. Έστω \(X \) μια επιφάνεια Riemann και \(ζ \) ένα σημείο της \(X \). Το σύνολο των χώσεων ομοτοπίας των μονοπατιών στη \(X \) με αρχικό και τελικό σημείο το \(ζ \), ονομάζεται Θεμελιώδης Ομάδα της \(X \) βασιζόμενη στο σημείο \(ζ \) και συμβολίζεται ως \(\pi_1(X,ζ) \).

Σημειώνουμε ότι η Θεμελιώδης Ομάδα μιας επιφάνειας Riemann \(X \), όπως αυτή ορίστηκε παραπάνω, είναι πράγματι ομώς με πράξη την πρόσθεση των χώσεων ομοτοπίας που επάγονται με τον προσαρμογικό τρόπο από την πρόσθεση των μονοπατιών. Επίσης, αποδεικνύεται ότι οι ομώς \(\pi_1(X,ζ) \) και \(\pi_1(X,q) \) είναι ανισομορφικές! Άρα μπορούμε να μιλάμε για τη Θεμελιώδη Ομάδα μιας επιφάνειας Riemann χωρίς να ανοιχτοποιήσουμε σε κάποιο συγκεκριμένο σημείο της \(X \). Το παρακάτω θεώρημα είναι συνέπεια του θεώρηματος του Stokes.

Πρόταση 2.3.1. Έστω ότι \(γ, δ \) είναι δύο ομοτοπικά μονοπάτια σε μια επιφάνεια Riemann \(X \) και \(ζ \) μια κλειστή μερόμορφη 1-μορφή στη \(X \). Τότε

\[
\int_{γ} ω = \int_{δ} ω.
\]

Με βάση το παραπάνω, για κάθε ολόμορφη 1-μορφή \(ω \) επάγεται μια καλή οριζόμενη απεικόνιση \(ϕ_ω = \int_γ ω : \pi_1(X,p) \rightarrow \mathbb{C} \) που ορίζεται ως εξής:

\[
ϕ_ω([γ]) = \int_{γ} ω, \text{ για κάθε } [γ] \in \pi_1(X,p).
\]

Επιπλέον, εύκολα βλέπουμε ότι η \(ϕ_ω \) είναι ομομορφισμός ομάδων. Συμβολίζουμε τώρα ως \([π_1, π_1]\) τη μεταβλεπτική υποσυμμόρφωση της \(π_1(X,p) \). Αν \(ker ϕ_ω \) είναι ο πολύγωνος του ομομορφισμού \(ϕ_ω \), η ομάδα πιθανών \(π_1(X,p) / ker ϕ_ω \) είναι οβελικοποιημένη, διότι
ΚΕΦΑΛΑΙΟ 2. ΠΡΟΚΑΤΑΡΤΙΚΑ ΣΤΟΙΧΕΙΑ

22

η C είναι αξέχαστη. Επομένως, η μεταβλητή υποσύνολο tής π1(X, p) περιέχεται στον πυρήνα του ψω, δηλαδή [π1, π1] ⊆ ker ψω. Το τελευταίο σημαίνει ότι ο
ομομορφισμός ψω επάγει έναν καλό ορισμένο ομομορφισμό υποσυνόλων, τον οποίο συμβολίζουμε και ψω: C

φω : π1(X, p)/[π1, π1] → C

Ορισμός 2.3.6. Η υποσύνολο περιλαμβάνουν π1(X, p)/[π1, π1] ονομάζεται πρώτη υποσύνολο ομολογίας της επιφάνειας Riemann X και συμβολίζεται ως H1(X).

Στη συνέχεια δίνουμε έναν πιο γεωμετρικό ορισμό της πρώτης υποσύνολος ομολογίας μιας επιφάνειας Riemann, ο οποίος αποδεικνύεται ότι είναι συνδεδεμένος με τον παραπάνω. Θεωρούμε την υποσύνολο Ch(X), που αποτελείται από όλες τις αλυσίδες στην επιφάνεια Riemann X. Σε κάθε αλυσίδα ι = Σi ni gi μπορούμε να αντιστοιχίσουμε ένα πεπερασμένο τυπικό άθροισμα σημείων της X. Αυτό γίνεται, αρχικά, αντιστοιχίζοντας σε κάθε μονοτεινό γι την τυπική διάφορα των άχρηστων του και, στη συνέχεια, επακριβώς γραμμικά. Με αυτόν τον τρόπο ορίζεται ένας ομομορφισμός υποσυνόλων από την υποσύνολο αλυσίδων Ch(X) στην εξωτερική αξέχαστη υποσύνολο με βάση τη συνέχεια της X. Ο πυρήνας αυτού του ομομορφισμού αποτελείται από τις αλυσίδες Σi ni gi, στις οποίες το τελευταίο σημείο κάθε μονοτεινού γι, συμπίπτει με το αρχικό σημείο κάποιου μονοτεινού γi (μη αποδεικνυόμενο του ενδεχομένου να έχουμε i = j). Συμβολίζουμε αυτόν τον πυρήνα ως ClCh(X) και τον ομομορφισμό σύνολο των κλειστών αλυσίδων στη X. Είναι προφανές ότι το σύνορο ενός κλειστού ατόμων συνεπτικόχως χωρίω D στη X, είναι μια κλειστή αλυσίδα. Μια τέτοια κλειστή αλυσίδα ονομάζεται συνοριακή αλυσίδα. Συμβολίζουμε με BoCh(X) την υποσύνολο της ClCh(X) που περιέγραφε από όλες τις συνοριακές αλυσίδες στη X.

Ορισμός 2.3.7. Η υποσύνολο ClCh(X)/BoCh(X) ονομάζεται πρώτη υποσύνολο ομολογίας της επιφάνειας Riemann X και συμβολίζεται ως H1(X).

Αποδεικνύεται ότι οι υποσύνολο ClCh(X)/BoCh(X) και π1(X, p)/[π1, π1] είναι ισομορφικά. Άρα οι ορισμοί 2.3.6 και 2.3.7 είναι συνδεδεμένοι. Ο εν λόγω ισομορφισμός είναι ο εξής:

Φ : π1(X, p)/[π1, π1] → ClCh(X)/BoCh(X)

με Φ([γ] + [π1, π1]) = [γ] + BoCh(X), όπου ως [γ] συμβολίζουμε την κλειστή ομοτοπία ενός μονοτεινού γ με αρχικό και τελικό σημείο το p.

'Εστω τώρα ω μια κλειστή μερόμορφη 1-μορφή στην επιφάνεια Riemann X. Θεωρούμε την απεικόνισση

φω : ClCh(X) → C
2.4 Διαιρέτες σε επιφάνειες Riemann

Ορισμός 2.4.1. Ένας διαιρέτης D σε μια επιφάνεια Riemann X είναι μια απεικόνιση $D : X \rightarrow \mathbb{Z}$, όπου \mathbb{Z} είναι το σύνολο των οριζονταίων αριθμών, για την οποία ισχύει: $D(p) \neq 0$ μόνο για τετεροσχέδιο τοπικά σημεία $p \in X$.

$\phi_{\omega} (\partial D) = \int_{\partial D} \omega = 0$.

Επομένως, το σύνολο των συνοριακών αλυσίδων $BoCh(X)$ περιέχεται στον πυρήνα του ϕ_{ω}. Ο ϕ_{ω} επίσης έναν χωδό οριζόντιο ομομορφισμό, τον οποίο συμβολίζουμε και πάλι ως ϕ_{ω},

$\phi_{\omega} : H_1(X) \rightarrow \mathbb{C}$.

Ο ομομορφισμός ϕ_{ω} λέγεται περίοδος του ω και μπορούμε να θεωρούμε ως πεδίο ορισμού το έτος την αξιόλογοτατή της θεμελιώδους αλυσίδας της X, επειδή την αλυσίδα πηδάων $Cich(X)/BoCh(X)$. Σύμφωνα με την παραπάνω ο είναι μια ολόμορφη 1-ορισμός σε μια επιφάνεια Riemann και η γ μια κλείστη αλυσίδα στη X, μπορούμε να ορίσουμε το αλυσίδο ω πάνω στην κλάση ομολογίας της αλυσίδας γ ως συσχετίζοντας:

$\int_{\gamma} \omega = \phi_{\omega} (\gamma) = \int_{\gamma} \omega$.

Ο τελευταίος ορισμός είναι χαλάς, με την έννοια του ότι δεν εξαρτάται από την επιλογή του αντιπροσώπου της κλάσης ομολογίας της αλυσίδας γ.

Στην περίπτωση όταν η επιφάνεια Riemann X ερευνάται που $g > 0$, η πρώτη ομάδα ομολογίας της X είναι μια ελεύθερη αξιόλογη ομάδα βαθμίδας $2g$. Μπορούμε να περιγράψουμε τόσο γενικής όσο και κεντρικής της $H_1(X)$ χρησιμοποιώντας μια αναποτελεσματική της X ως πολύγωνο με $4g$ πλευρές ταυτοποιούμενες με κατάλληλο τρόπο. Θεωρούμε ένα πολύγωνο P_g με $4g$ πλευρές a_i, b_i, a_i', b_i', $i = 1, \ldots, g$. Προσαρμοστούμε τις πλευρές a_i', b_i', $i = 1, \ldots, g$, κατά την αρκετά ευθυλογισμένη φορά και τις πλευρές a_i, b_i κατά την αρκετά ευθυλογισμένη φορά όπως στο παραπάνω σχήμα. Η επιφάνεια Riemann X προκύπτει αν ταύτισμα της πλευράς a_i με την a_i' και της πλευράς b_i με την b_i', για κάθε $i = 1, \ldots, g$, σύμφωνα με τις διαθεσιμές διευθύνσεις. Επίσης, σύμφωνα με την παραπάνω ταυτίση, όλες οι καταστάσεις του πολύγωνου P_g θα ταυτίζονται με ένα σημείο στην επιφάνεια Riemann X. Επομένως, οι a_i, b_i θεωρούμες ως χαρτίδες στη X, είναι χαρτίδες μονοπάτια. Αυτά τα μονοπάτια, θεωρούμες ως χαρτίδες αλυσίδες στη X, παράγουν την πρώτη ομάδα ομολογίας $H_1(X)$ της X.

2.4 Διαιρέτες σε επιφάνειες Riemann
Το σύνολο των διαιρητών στην \(X \) ονομάζεται μια ομάδα με πράξη της την πρόσθεση απεικονίσεων, την οποία συμβολίζουμε ως \(\text{Div}(X) \). Ένας διαιρήτης \(D \in \text{Div}(X) \) μπορεί να παρασταθεί ως ένα τυπικό αδρονισμό της μορφής

\[
D = \sum_{p \in X} D(p) \cdot p.
\]

Ορισμός 2.4.2. Ο βαθμός ενός διαιρήτη \(D \in \text{Div}(X) \), είναι το αδρονισμό των τμών του \(D \). Τον αριθμό αυτό συμβολίζουμε ως \(\deg D \). Έχουμε δηλαδή

\[
\deg D = \sum_{p \in X} D(p).
\]

Σημειώνουμε ότι το παραπάνω αδρονισμό είναι πεπερασμένο, εξ' ορισμού του \(D \). Επίσης εύκολα βλέπουμε ότι η συνάρτηση \(\deg : \text{Div}(X) \rightarrow \mathbb{Z} \), που αντιστοιχεί σε κάθε διαιρήτη \(D \in \text{Div}(X) \) το βαθμό του, είναι ομομορφικός ομαδών με πυρήνα το το σύνολο των διαιρητών βαθμού μηδέν, το οποίο συμβολίζουμε ως \(\text{Div}^0(X) \).

Είστω \(f \) μια μερόμορφη συνάρτηση στην επιφάνεια Riemann \(X \).

Ορισμός 2.4.3. Ο διαιρήτης της \(f \), τον οποίο συμβολίζουμε ως \((f) \), είναι \((f) := \sum_{p \in X} \text{ord}_p f \cdot p \).

Κάθε διαιρήτης της παραπάνω μορφής λέγεται κύρως και το σύνολο όλων των κύρων διαιρητών στην επιφάνεια Riemann \(X \), συμβολίζεται ως \(\text{PDiv}(X) \).

Λήμμα 2.4.1. Είστω \(f \) μια μερόμορφη συνάρτηση σε μια επιφάνεια Riemann \(X \). Τότε \(\deg(f) = 0 \).

Με συνέπεια τρόπο ορίζουμε τον διαιρήτη μιας ολόμορφης 1-μορφής σε μια επιφάνεια Riemann \(X \). Είστω \(\omega \) μια ολόμορφη 1-μορφή στην επιφάνεια Riemann.

Ορισμός 2.4.4. Ο διαιρήτης της \(\omega \), τον οποίο συμβολίζουμε με \((\omega) \), είναι \((\omega) := \sum_{p \in X} \text{ord}_p \omega \cdot p \).

2.4.1 Διαιρήτες τομής

Είστω \(C \) μια λεία προβολική καμπύλη. Οι λείες προβολικές καμπύλες είναι επιφάνειες Riemann ολόμορφες εμμετροποιημένες σε κάποιον προβολικό χώρο \(\mathbb{P}^n \). Συμβολίζουμε \(\omega(x_0, x_1, \ldots, x_n) \) τις ομογενείς συντεταγμένες στο \(\mathbb{P}^n \). Είστω \(G(x_0, x_2, \ldots, x_n) \) ένας ομογενείς πολυώνυμο που δεν είναι ταυτικά μηδέν στην \(C \).
2.4. ΔΙΑΡΕΤΕΣ ΣΕ ΕΠΙΦΑΝΕΙΕΣ Riemann

Θεωρούμε να ορίσουμε ένα διαφέρειτές G στην C που να σχετίζεται με τα σημεία της χαμηλής της με την καμπύλη που ορίζεται από το πολυώνυμο $G(x_0, x_1, \ldots, x_n)$. Δηλαδή τα σημεία της C στα οποία μπορεί να περάσει η $G(0, x_1, \ldots, x_n)$. Φυσικά θα πρέπει να λάβουμε υπόψη ότι τις πολλαπλότητες τομής στα εν λόγω σημεία.

Εστώ p σημείο της καμπύλης C στο οποίο το πολυώνυμο $G(x_0, x_1, \ldots, x_n)$ μπορεί να περάσει. Επιλέγουμε ένα ομογενές πολυώνυμο $G'(x_0, x_1, \ldots, x_n)$, βασισμένο στη $G(x_0, x_1, \ldots, x_n)$, ώστε να μπορεί να περάσει από το σημείο p και να συντομεύει το $G(x_0, x_1, \ldots, x_n)$. Συνεπώς, για κάθε σημείο p στην C, ο αντίστοιχο πολυώνυμο $G''(x_0, x_1, \ldots, x_n)$, όπου $G''(x_0, x_1, \ldots, x_n) = x_d^d$, θεωρούμε το πτώσιμο $f = \frac{G''}{G}$ το οποίο ορίζει μια μερομορφή συνάρτηση στην C που μπορεί να περάσει από το σημείο p.

Δηλαδή, δεν έχουμε απορίες από την επιλογή του πολυώνυμου $G'(x_0, x_1, \ldots, x_n)$. Αποδείξει. Ας επιλέξουμε ένα διαφεροτο πολυώνυμο $G''(x_0, x_1, \ldots, x_n)$. Το πολυώνυμο $G''(x_0, x_1, \ldots, x_n)$, και $G''(x_0, x_1, \ldots, x_n)$ έχουν τον ίδιο βαθμό, όπου το πτώσιμο $\frac{G''}{G}$ ορίζεται μια μερομορφή συνάρτηση στην καμπύλη C, την οποία συμβολίζουμε ως h. Από τη συμβολολογία ως g, η μερομορφή συνάρτηση που ορίζεται από το πτώσιμο $\frac{G''}{G}$. Τότε $g = f \cdot h$, οπότε

$$\text{ord}_p g = \text{ord}_p f + \text{ord}_p h,$$

για κάθε σημείο $p \in C$. Όμως η τάξη της h είναι μηδέν σε κάθε σημείο της C. Άρα $\text{ord}_p g = \text{ord}_p f$, για κάθε $p \in C$.

Ορισμός 2.4.5. Ο διαφέρετής (G), όπως παραπάνω, ονομάζεται διαφέρετής τομής του G στην C.

Σημείωση 2.4.1. Έστω ότι C είναι μια κενή επίπεδη καμπύλη και D μια επίπεδη καμπύλη που ορίζεται ως το σύνολο των έναξ μηδενιστώ κατανομής πολυωνύμων $F(X, Y, Z)$. Τοποθετούμε ότι οι καμπύλες C, D σύνθετοι στα σημεία P_1, \ldots, P_n με πολλαπλότητες τομής m_1, \ldots, m_n αντίστοιχα, όπου αυτές ορίζονται στην παράγραφο 2.1.1. Ο διαφέρετής που ορίζεται πάνω στην C από τα σημεία της τομής της με την καμπύλη D, δηλαδή ο διαφέρετής $\sum_{j=1}^k m_j P_j$, είναι ο διαφέρετής τομής του F στην C.

Ορισμός 2.4.6. Αν το πολυώνυμο G είναι πρώτου βαθμού, ο διαφέρετής τομής (G) ονομάζεται διαφέρετής υποβασισμένου.

Οι διαφέρετες τομής σχετίζονται με τους κόρων διαφέρετες ως εξής:
Λήμμα 2.4.3. Αν \(G_1(x_0, x_1, \ldots, x_n), G_2(x_0, x_1, \ldots, x_n) \) είναι δύο ομογενείς πολυώνυμα τού ίδιου βαθμού, τότε ο διαφορές της μερόμορφης συνάρτησης \(f \) που ορίζεται από το πλάκο \(\frac{G_1}{G_2} \) είναι η διαφορά των αντίστοιχων διαφορών τομών των δύο πολυώνυμων, δηλαδή \((f) = (G_1) - (G_2) \).

Απόδειξη. Έστω \(p \) τυχόν σημείο της χαμηλής \(C \). Θεωρούμε ένα πολυώνυμο \(H(x_0, x_1, \ldots, x_n) \), βαθμό ίσο με τον βαθμό των πολυώνυμων \(G_1(x_1, x_2, \ldots, x_n) \) και \(G_2(x_1, x_2, \ldots, x_n) \), που δε μηδενίζεται στο σημείο \(p \). Στη συνέχεια γράφουμε τη συνάρτηση \(f \) ως εξής:
\[
 f = \frac{G_1}{H} \frac{H}{G_2}.
\]
Από αυτό έπειτα ότι:
\[
 \text{ord}_p f = \text{ord}_p \left(\frac{G_1}{H} \right) - \text{ord}_p \left(\frac{H}{G_2} \right) = (G_1)(p) - (G_2)(p).
\]

2.4.2 Γραμμική ισοδυναμία διαφημών

Όρισμα 2.4.7. Δυο διαφημές \(D_1, D_2 \) σε μια επιφάνεια Riemann \(X \), λέγονται γραμμικά ισοδυναμικά αν η διαφορά τους είναι ο διαφημής μιας μερόμορφης συνάρτησης ορισμένης στη \(X \). Συμβολικά γράφουμε \(D_1 \sim D_2 \).

Εύκολα βλέπουμε ότι η γραμμική ισοδυναμία διαφημών αποτελεί μια σχέση ισοδυναμίας στο σύνολο \(\text{Div}(X) \) όλων των διαφημών σε μια επιφάνεια Riemann \(X \).

Σημείωση 2.4.2. Γραμμικά ισοδυναμικά διαφημές έχουν τον ίδιο βαθμό. Αυτό συμβαίνει, διότι ο βαθμός ένας κάθε διαφημή είναι μηδέν. Αν \(D_1 = (f) + D_2 \), όπου \(D_1, D_2 \in \text{Div}(X) \) και \(f \) είναι μια μερόμορφη συνάρτηση στη \(X \), τότε
\[
 \deg D_1 = \deg(f) + \deg D_2
\]
όπου \(\deg D_1 = \deg D_2 \).

Ορίζουμε τώρα τον βαθμό μιας λείας προβολικής χαμηλής, ο οποίος στην περίπτωση των λείων επιπέδων χαμηλών είναι ισοδυναμικός με αυτόν που δίσουμε στην παράγραφο 2.1.

Ορισμός 2.4.8. Εστώ \(C \) μια λεία προβολική χαμηλή. Ο βαθμός της \(C \), τον οποίο συμβολίζουμε ως \(\deg C \), είναι ο βαθμός ενός τυχόν διαφημής υπερπετίπου στην \(C \).

Ο παραπάνω ορισμός είναι καθόλου, διότι όλοι οι διαφημές υπερπετίπου σε μια χαμηλή \(C \) έχουν τον ίδιο βαθμό. Το τελευταίο προσθέτει από το λήμμα 2.4.3 και τη σημείωση 2.4.2
2.4. ΔΙΑΙΡΕΤΕΣ ΣΕ ΕΠΙΦΑΝΕΙΕΣ RIEMANN

Από το λήμμα 2.4.3 μπορούμε επίσης να συμπεράνουμε το ακόλουθο: αν η \(C \) είναι μια λεια επίπεδη χαμηλή και οι \(D, D' \) δύο επίπεδες χαμηλές διαφορές από τα πολυώνυμα \(G(X, Y, Z) \) και \(G'(X, Y, Z) \), αντίστοιχα, τότε ο διαφημός που ορίζεται πάνω στην \(C \) από τα σημεία της τομής της με τη \(D \) (που, όπως είδαμε στην παρατήρηση 2.4.1, είναι ο διαφημός τομής του \(G \) στην \(C \)) είναι γραμμικά εισφόρος εισόδου του ορισμού \(D' \), δηλαδή τον διαφημό τομής του \(G' \) στην \(C \).

2.4.3 Γραμμικά συστήματα διαφημών

Στο σύνολο \(\text{Div}(X) \) των διαφημών μιας επιφάνειας Riemann \(X \), ορίζουμε σχέση μερικής διάταξης με τον παρακάτω τρόπο. Έστω \(D \in \text{Div}(X) \). Γράφουμε \(D \geq 0 \), όταν \(D(p) \geq 0 \), για κάθε \(p \in X \). Γράφουμε \(D > 0 \), όταν \(D \geq 0 \) και \(D \neq 0 \). Επίσης, όταν \(D_1, D_2 \in \text{Div}(X) \), γράφουμε \(D_1 \geq D_2 \) στην περίπτωση κατά την οποία \(D_1 - D_2 \geq 0 \) (και ανώλυγα για το \(> \)). Παρόμοια ορίζουμε και τις σχέσεις \(\leq \) και \(< \) για διαφημών. Έστω τώρα \(D \) ένας διαφημός σε μια επιφάνεια Riemann \(X \). Θέτουμε:

\[
\mathcal{L}(D) = \{ f \in M(X) / (f) \geq -D \}.
\]

Εύκολα βλέπουμε ότι \(\mathcal{L}(D) \) είναι ένας μεγαλύτερος διανυσματικός χώρος.

Περιγράφουμε τώρα τη μορφή των συναρτήσεων που περιέχονται στον \(\mathcal{L}(D) \). Έστω ένα σημείο \(p \) της \(X \) και μια συνάρτηση \(f \in \mathcal{L}(D) \). Αν \(D(p) = n > 0 \), από τον ορισμό του χώρου \(\mathcal{L}(D) \), έχουμε \(\text{ord}_p f \geq -n \), που σημαίνει ότι το σημείο \(p \) μπορεί να είναι πόλο της συνάρτησης \(f \) τάξης το πολύ \(n \). Αν \(D(p) = -n < 0 \), τότε \(\text{ord}_p f \geq n \), δηλαδή το σημείο \(p \) είναι βία της \(f \) τάξης \(n \) στο \(X \). Επίσης για τον μηδενικό διαφημό \(\text{έχουμε} \ L(0) = \{ \text{σταθερές συναρτήσεις στη} \ X \} \cong \mathbb{C} \).

Αίτημα 2.4.4. Έστω \(D \) διαφημός σε μια επιφάνεια Riemann \(X \), με \(\deg D < 0 \). Τότε \(\mathcal{L}(D) = \{0\} \).

Απόδειξη. Τυπικά, έχουμε \(\mu \) μη διεθνούς συνάρτηση \(f \in \mathcal{L}(D) \). Θεωρούμε τον διαφημό \(E = (f) + D \). Τότε, αφού \(f \in \mathcal{L}(D) \), έχουμε \((f) \geq -D \), αφού \(E \geq 0 \). Επομένως, ο βαθμός του διαφημού \(E \) είναι μη αρνητικός. Όμως, αφού \(\deg(f) = 0 \), έχουμε \(\deg E = \deg D < 0 \), όπως και \(E = 0 \).

Ορισμός 2.4.9. Έστω \(D \) ένας διαφημός σε μια επιφάνεια Riemann \(X \). Το πλήρες γραμμικό σύστημα του \(D \), το οποίο ορίζουμε ως \(\{D\} \), είναι το σύνολο όλων των \(\mu \) αρνητικών διαφημών, στη \(X \), που είναι γραμμικά εισόδου με τον \(D \):

\[
\{D\} = \{E \in \text{Div}(X) / E \sim D \text{ και } E \geq 0 \}.
\]

Τυπικά, έχουμε \(\{D\} \), ότι \(V \) είναι μια μεγαλύτερη διανυσματική χώρος, η προβολικοστιγμή \(\Pi(V) \) του \(V \) είναι το σύνολο των μονοδιάστατων υπόχωρων του
KEFALAI0 2. PROKATARTIKA STOIKEIA

V. An o diakoniasmatoikos χώρος V échei diástasi $n+1$, h prōbolikopoihētē tou $P(V)$ érgetai se 1 – ισ. autostochic me to megadikó prōbolikó χώρο P^n, einai díphalh éna prōbolikós χώροs (prōbolikés) diástasi n. Deiχnoume sth synégeia óti, an D einai éna diarëtico sē me epifaneiaan Riemann X, to plýres graφmikó swstima tou D einai h prōbolikopoihētē tou diakoniasmatoikó χώρou $L(D)$.

Theoroume thn prōbolikopoihētē $P(L(D))$ tou $L(D)$ kai oríçoume mia apieikh-

\[\phi : P(L(D)) \rightarrow |D|, \]

steléontas ton monodíasastiko upákhoro tou $L(D)$ o otopios parágetai apo th swmárftrh f, se ton diarêth $(f) + D \in |D|$. Symoueme óti th apieikhē ϕ einai kawlì orismenì, diá oti an epilēzoume mia álλh synárftrh g pou parágetai ton idio upákhoro me th f, tóte $g = \Lambda f$ gia káti $\lambda \in \mathbb{C}$, ór∫ $\phi(g) = \phi(f)$.

Lήmμα 2.4.5. H apieikhē ϕ ópou autē oristikhe parapánw, einai mia $1 - 1$ autostochi.

Aπódeixh. Aρχē deîghnoume óti ϕ einai ep. tou $|D|$. E洸w kai 'n oias diarëtico $E \in |D|$. Tòte, afíou oi diarêtes D kai E einai graφmikà isohdynamikà, upárxei mia meghourh synárftrh f sth X, tétoia ówste $E = (f) + D$. Epiosúnes, afíou $E \geq 0$, échoume $(f) \geq -D$, dhladh $f \in L(D)$. Theoroume tóra thn upákhoro

\[< f >, < g > \]

diapladi thn upákhoro pou parágetai apo th swmárftrh f. Einai prōfoanēs óti ϕ eikóna autē tou $< f >$, mésta thn apieikhē ϕ, einai o diarêth E. 'Ara, prágmati, ϕ einai ep. Leitourh gia ϕ einai $1 - 1$. 'Estw $< f >, < g >$ diakoniasmaito

upákhori tou $L(D)$, tétoia ówste $\phi(< f >) = \phi(< g >)$. Tòte

\[(f) + D = (g) + D \Rightarrow (f) = (g) \Rightarrow \left(\frac{f}{g} \right) = 0. \]

To telus toon sthnei : óti th swmárftrh $\frac{f}{g}$ dein échei oúte pálo mou oúte meghenià sth X, epoménavos $\frac{f}{g} = \lambda, \lambda \in \mathbb{C}$. 'Ara ois synárftrhes f, g parágon tou idio upákhoro tou $L(D)$, dhladih $< f > = < g >$. □

2.5 H Iakωbíanh miás epiránias Riemann

Estw X miás epiránias Riemann. Sthn parakathth 2.3.1 edhóme óti to aλλωρι- renhmia miás aλδιμορfhs 1-morfhs w páno sto thn klásth aλδιμορfhs miás aλδιμορfhs aλλωσιδhs γ einai kawlì orismenì. Yπανθυμημονοùme óti ws $\Omega^1(X)$ symbolízoyme toon diakoniasmatoikó χώρο tou aλδιμορfwn 1-morfwn sthn epiránia Riemann X. Estw $[\gamma] \in H_1(X)$. Theoroume thn apieikhē

\[\int_{[\gamma]} : \Omega^1(X) \rightarrow \mathbb{C} \]
2.5. Η ΙΑΚΩΒΙΑΝΗ ΜΙΑΣ ΕΠΙΦΑΝΕΙΑΣ RIEemann

που απεικονίζει κάθε ω ∈ Ω¹(Λ) στο αλκαλήμα της πάλη στην κλάση ομολογιών της γ. Η παραπάνω απεικόνιση είναι ένα γραμμικό συναρτήσιμο δέξ.

Ορισμός 2.5.1. Ένα γραμμικό συναρτήσιμο δέξ λ : Ω¹(Λ) → C συναρτάται περιοδικά, αν είναι της μορφής \(\int_{\gamma} \lambda \), για κάθε διαμέτρο \(\gamma \in H_1(\Lambda) \). Το υποσύνολο του \(\Omega^1(\Lambda)^* \) που αποτελείται από όλες τις περιόδικες το συμβολίζουμε ως \(\Lambda \).

Στην περίπτωση όταν η επιφάνεια Riemann \(\Lambda \) υφίσταται γένος \(g > 0 \), το \(\Lambda \) αποτελεί μια ελεύθερη αξελονική υποσύνολο του δυαδικού χώρου \(\Omega^1(\Lambda)^* \). Αν \(\gamma_1, \ldots, \gamma_g \) είναι οι γεννητόρες της \(H_1(\Lambda) \), τότε οι γεννητόρες του \(\Lambda \) είναι \(\int_{\gamma_1}, \ldots, \int_{\gamma_g} \).

Διορθώνει τώρα τον ορισμό της Ιακωβιανής μιας επιφάνειας Riemann.

Ορισμός 2.5.2. Η ομάδα τελίκων \(\Omega^1(\Lambda)^*/\Lambda \) συναρτάται Ιακωβιανή της επιφάνειας Riemann \(\Lambda \) και συμβολίζεται \(J(\Lambda) \).

Ταυτίζοντας κατάλληλα του διανυσματικού χώρου \(\Omega^1(\Lambda)^* \) με το \(C^g \), μπορούμε να διασώσουμε μια πιο κανονιστή περιγραφή για την Ιακωβιανή μιας επιφάνειας Riemann \(\Lambda \) γένος \(g > 0 \). Εστιά \(\omega_1, \ldots, \omega_g \) μια βάση του \(\Omega^1(\Lambda)^* \). Τότε τα συναρτήσιμα \(\lambda_1, \ldots, \lambda_g \) με

\[
\lambda_i(\omega) = \lambda_i(c_{i1} \omega_1 + \cdots + c_{ig} \omega_g) = c_i, \ \omega \in \Omega^1(\Lambda),
\]

gια κάθε \(i = 1, \ldots, g \), αποτελούν μια βάση του \(\Omega^1(\Lambda)^* \). Επομένως, αν το \(\lambda \) είναι ένα στοιχείο του \(\Omega^1(\Lambda)^* \), τότε γράφεται ως

\[
\lambda = \lambda_1(\omega_1) \lambda_2 + \cdots + \lambda(g) \lambda_g.
\]

Επομένως, μπορούμε να ταυτίσουμε κάθε συναρτήσιμο \(\lambda \in \Omega^1(\Lambda)^* \) με το ανάπτυγμα των διανυσμάτων \((\lambda(\omega_1), \ldots, \lambda(\omega_g)) \). Με αυτόν τον τρόπο ταυτίζουμε το \(\Omega^1(\Lambda) \) με το \(C^g \).

Εστιά τώρα \(\gamma_1, \ldots, \gamma_g \) μια βάση της \(H_1(\Lambda) \). Τότε, τα αντίστοιχα συναρτήσιμα \(\int_{\gamma_1}, \ldots, \int_{\gamma_g} \) που αποτελούν βάση του \(\Lambda \), ταυτίζονται, σύμφωνα με τα παραπάνω, με τα διανύσματα

\[
\pi_i = \left(\int_{\gamma_1} \omega_1, \ldots, \int_{\gamma_g} \omega_g \right)^T, \ i = 1, \ldots, 2g.
\]

Αποδεικνύεται τώρα ότι τα διασώστημα \(\pi_1, \ldots, \pi_{2g} \) είναι γραμμικά ανεξάρτητα πάνω από το σύνολο των προγομμάτων αριθμών \(R \). Ταυτίζοντας το \(\Omega^1(\Lambda)^* \) με το \(C \), το \(\Lambda \) ταυτίζεται με το σύνολο \(\{ \sum_{j=1}^{2g} n_j \pi_j | n_j \in \mathbb{Z} \} \subset C^g \), το οποίο θα συμβολίζουμε και πάλι με \(\Lambda \). Αργότερα τα διασώστημα \(\pi_1, \ldots, \pi_{2g} \) είναι γραμμικά ανεξάρτητα πάνω από το \(R \), το σύνολο \(\Lambda \) είναι ένα μεγαλύτερο ιδέα. Επομένως, το τελίκο \(C^g/\Lambda \) είναι ένας μηγαλύτερος τόρος διάστασης \(g \). Σύμφωνα με τα προηγούμενα, ο παραλλαγός προσδοκά για την Ιακωβιανή μιας επιφάνειας Riemann είναι ισοδύναμος με τον ορισμό 2.5.2.
Ορισμός 2.5.3. Υποθέτουμε ότι η X είναι μια επιφάνεια Riemann γένους $g > 0$ και το $Λ$ όπως παρατόνω. Ο γ-διάστατος τόρος $C^g/Λ$ ονομάζεται Ισακβιανή της X και συμβολίζεται ως $J(X)$.

Σημείωση 2.5.1. Στην περίπτωση όταν η επιφάνεια Riemann X έχει γένος $g = 0$, η Ισακβιανή της X είναι η τετριμμένη $J(X) = \{0\}$, διότι εν προαναφερόμενο το χέρι το $\Omega^1(X)$ είναι τετριμμένο.

2.5.1 Η απεικόνιση Abel-Jacobi

Η Ισακβιανή $J(X)$ μιας επιφάνειας Riemann X συνδέεται με τη X μέσω μιας απεικόνισης, γνωστής ως απεικόνιση Abel-Jacobi, της οποίας η χαρακτηριστική περιγράφει παρακάτω. Σταθεροποιούμε ένα σημείο p_0 στη X. Τότε, για κάθε σημείο $p \in X$, επιλέγουμε ένα μονοτόπο γ_p στη X, με αρχικό σημείο το p_0 και τελικό το p. Ως γ_p μια απεικόνιση

$$A : X \rightarrow \Omega^1(X)^*$$

στελνοντας κάθε σημείο $p \in X$ στο συναρτησιακό

$$A(p) : \Omega^1(X) \rightarrow \mathbb{C}$$

με

$$A(p)(\omega) = \int_{\gamma_p} \omega, \; \gamma \text{ κάθε } \omega \in \Omega^1(X).$$

Η απεικόνιση A που χαρακτηριστικά με τον παραπάνω τρόπο δεν είναι χαλά αρμόδια, διότι εξαρτάται από την επιλογή του μονοτόπου γ_p. Πράγματι, ο γ'_p είναι ένα άλλο μονοτόπο στη X, με αρχικό σημείο το p_0 και τελικό το p, η νέα τιμή $\Lambda(p)$ του $\Lambda(p)$ σε μια αλάμορφη 1-μορφή ω διαφέρει από την προηγούμενη κατά το συναρτησιακό $\int_{\gamma_p - \gamma'_p} \omega$. Ως Λ, ένα τέτοιο συναρτησιακό είναι στοιχείο της υπομαζέας του $\Omega^1(X)^*$ που αποτελείται από όλες τις περιοχές Λ. Επομένως η απεικόνιση

$$A : X \rightarrow \frac{\Omega^1(X)^*}{\Lambda} = J(X)$$

είναι χαλά αρμόδια. Ως $\Omega^1(X)^*/\Lambda$ την τελευταία απεικόνιση απεικόνιση Abel-Jacobi και σημειώνουμε ότι εξαρτάται από το αρχικό σημείο p_0 που σταθεροποιήσαμε.

Θεωρούμε την Ισακβιανή της επιφάνειας Riemann X ως τον γ-διάστατο τόρο C^g/Λ, όπου στην προηγούμενη παράγραφο, όπου g είναι το γένος της X, μπορούμε να θεωρήσουμε την απεικόνιση Abel-Jacobi ως μια απεικόνιση

$$A : X \rightarrow \frac{C^g}{\Lambda}$$
2.5. Η ΙΑΚΩΒΙΑΝΗ ΜΙΑΣ ΕΠΙΦΑΝΕΙΑΣ Riemann

με τύπο

\[
A(p) = \left(\int_{p_0}^{p} \omega_1, \ldots, \int_{p_0}^{p} \omega_g\right)^T \mod \Lambda,
\]

όπου τα \(\omega_1, \ldots, \omega_g\) αποτελούν βάση του \(\Omega^1(X)\).

Μπορούμε να επεκτείνουμε την απεικόνιση Abel-Jacobi από τη \(X\) στην ομάδα \(\text{Div}(X)\) των διαφορές στη \(X\). Αν \(D = \sum_{p \in X} n_p p\) (όπου \(n_p = D(p), p \in X\)) είναι ένας διαφόρτης στη \(X\) αφού

\[
A(D) = A(\sum_{p \in X} n_p p) = \sum_{p \in X} n_p A(p).
\]

Τελευταία είναι ότι το παραπάνω σήμα έχει πεπερασμένο διότι μένο πεπερασμένου πλήθους \(n_p\) είναι μη μετρητικά. Με αυτόν τον τρόπο κατασκευάζουμε έναν ομοιομορφισμό ομάδων του οποίου ονομάζουμε, επίσης, απεικόνιση Abel-Jacobi και συμβόλωσιμες επίσης ως \(A\):

\[
A: \text{Div}(X) \to \mathcal{J}(X).
\]

Θεωρώντας την \(\mathcal{J}(X)\) ως την ομάδα περιλήψεων \(\mathbb{C}/\Lambda\), όπως προηγούμενως, ο τύπος του ομοιομορφισμού \(A\) είναι:

\[
A(D) = \left(\sum_{i=1}^{k} \left(n_{p_i} \int_{p_0}^{p_i} \omega_1, \ldots, \int_{p_0}^{p_i} \omega_g\right)\right)^T \mod \Lambda,
\]

όπου \(p_1, \ldots, p_k\) είναι τα σημεία της \(X\), για τα οποία \(n_{p_i} \neq 0\). Είναι προφανές ότι ο ομοιομορφισμός \(A\) εξαρτάται από το σημείο \(p_0\).

Θεωρούμε τώρα τον περιορισμό της απεικόνισης Abel-Jacobi στο υποσύνολο \(\text{Div}^d(X)\) της \(\text{Div}(X)\) που αποτελείται από όλους τους διαφόρτες στη \(X\) βαθμού \(d\):

\[
A_d : \text{Div}^d(X) \to \mathcal{J}(X).
\]

Ονομάζουμε την απεικόνιση \(A_d\) πεικόνιση Abel-Jacobi βαθμού \(d\). Στην περίπτωση όταν το οποίο είχουμε \(d = 0\), το σύνολο \(\text{Div}^0(X)\) αποτελεί μια υποομάδα της ομάδας όλων των διαφορές \(\text{Div}(X)\) και την απεικόνιση

\[
A_0 : \text{Div}^0(X) \to \mathcal{J}(X)
\]

έναν ομοιομορφισμό ομάδων. Επίσης, σε αυτή την περίπτωση, έχουμε το παραπάνω βασικό λήμμα.

Αίτημα 2.5.1. Η απεικόνιση Abel-Jacobi βαθμού μηδενίου είναι ανεξάρτητη από την επιλογή του σημείου \(p_0\), βάσει του οποίου ορίστηκε.

Απόδειξη. Επειδή όταν στη θεωρία έχουμε ένα διαφορετικό σημείο \(p_0\) της \(X\) και ότι αφοσιώνουμε την απεικόνιση Abel-Jacobi βάσει του \(p_0\), έστω οπθόμη \(\gamma\), ένα μονοτάτο
KEFALAIÓ 2. ΠΡΟΚΑΤΑΡΤΙΚΑ ΣΤΟΙΧΕΙΑ

με αρχικό σημείο το \(p'_0 \) και τέλος σημείο το \(p_0 \). Θεωρούμε ένα διαφέρετ\(D = \sum_{i=1}^{k} n_{p_i} p_i \) στη \(X \), με \(\deg(D) = 0 \), δηλαδή \(\sum_{i=1}^{k} n_{p_i} = 0 \). Τότε, η τιμή της απεικόνισης Abel-Jacobi που ορίζει το βάση του σημείου \(p'_0 \) διαφέρει από την τιμή της απεικόνισης Abel-Jacobi που ορίζει το βάση του σημείου \(p_0 \) κατά το διάσταμα

\[
\left(\sum_{i=1}^{k} \left(n_{p_i} \int_{p'_0}^{p_0} \omega_1 \right) \right), \ldots, \left(\sum_{i=1}^{k} \left(n_{p_i} \int_{p'_0}^{p_0} \omega_g \right) \right) \mod \Lambda = \]

\[
\left(\int_{p'_0}^{p_0} \omega_1 \right) \sum_{i=1}^{k} n_{p_i}, \ldots, \left(\int_{p'_0}^{p_0} \omega_g \right) \sum_{i=1}^{k} n_{p_i} \mod \Lambda = \]

\((0, \ldots, 0) \mod \Lambda,

όπου τα \(\omega_1, \ldots, \omega_g \) αποτελούν βάση του \(\Omega^1(X) \).

Η επισκέψιμη έστω ότι ο διαφέρετ\((f) \) μιας μερόμορφης συνάρτησης \(f \) σε μια επιφάνεια Riemann \(X \) εχει βαθμο \(g \). Το αντίστροφο, γενικά, δεν στηρίζει. Το παραπάνω βασικό θεώρημα, η απόδειξή του οποίου είναι δύσκολη, δίνει το ακριβές χρήσιμο.

Θεώρημα 2.5.1. Εστω \(X \) μια επιφάνεια Riemann γένους \(g > 0 \) και

\[A_0 : \text{Div}^0(S) \to \mathcal{J}(X) \]

η απεικόνιση Abel-Jacobi βαθμο \(g \). Εστω ακόμη \(D \) ένας διαφέρετ\(D \) στη \(X \) βαθμο \(g \). Τότε \(D \) είναι ο διαφέρετ\(D \) μιας μερόμορφης συνάρτησης και μόνο αν \(A_0(D) = 0 \in \mathcal{J}(X) \).

Πόρισμα 2.5.1. Εστω \(X \) μια επιφάνεια Riemann γένους \(g > 0 \) και \(f \) \(\text{Div}^d(X) \to \mathcal{J}(X) \)

η απεικόνιση Abel-Jacobi βαθμο \(d \). Εστω ακόμη \(D \in \text{Div}^d(X) \). Τότε το σύνολο \(A_d^{-1}(A_0(D)) \) ισούται με το σύνολο των διαφερ\(D \) μιας γραμμικά ισοδύναμοι με τον \(D \).

Απόδειξη. Εστω \(E \in A_d^{-1}(A_0(D)) \). Τότε \(E \) \(\text{Div}^d(X) \to \mathcal{J}(X) \)

\[A_d(E) = A_d(D) \Leftrightarrow A_0(E - D) = 0, \]

όπου \(A_0 \) είναι η απεικόνιση Abel-Jacobi βαθμο \(g \). Τότε, έχουμε \(E - D \) \(f \) \(\Rightarrow E \sim D \), \(\Leftrightarrow \)

\(E - D = (f) \Leftrightarrow E \sim D \), \(\Leftrightarrow \)

όπου \(f \) είναι μια μερόμορφη συνάρτηση στη \(X \).
2.5. Η ΙΑΚΩΒΙΑΝΗ ΜΙΑΣ ΕΠΙΦΑΝΕΙΑΣ ΡΙΕΜΑΝΝ

Το τελευταίο που χρειάζόμαστε για να χαρακτηρίσουμε τα στοιχεία της Ιακωβιανής μιας επιφάνειας Riemann X, σε σχέση με την διά της X, είναι το παρακάτω θεώρημα το οποίο δίνουμε χωρίς απόδειξη.

Θεώρημα 2.5.2 (Θεώρημα Αντιστροφής του Jacobi). Εστώ X μια επιφάνεια Riemann γένους g > 0. Η απεικόνιση Abel-Jacobi \(A_0 : \text{Div}^0(X) \to J(X) \) είναι επι.

Συνδυάζοντας το τελευταίο θεώρημα με το λήμμα 2.5.1, συμπεραίνουμε ότι μπορούμε να θεωρήσουμε τα στοιχεία της Ιακωβιανής μιας επιφάνειας Riemann X, ως κάθετες γραμμικές ισοδύναμες διαιρετών βαθμού μικρότερου από την X. Επιπλέον, αν d είναι ένας ισχυρός αριθμός, τότε το σύνολο των διαιρετών βαθμού d στη X, όπως έχουμε ήδη δείξει, εργάζεται σε 1-1 αντιστοιχία με το \(\text{Div}^0(X) \) Άρα, τελικά, αν d είναι ένας ισχυρός αριθμός, μπορούμε να θεωρήσουμε τα στοιχεία της Ιακωβιανής μιας επιφάνειας Riemann X, ως κάθετες γραμμικές ισοδύναμες διαιρετών βαθμού d στη X.

2.5.2 Το συμμετρικό γνώμονο

Εστώ X μια επιφάνεια Riemann. Ορίζουμε το \(d \)-αστικό συμμετρικό γνώμονο της X, το οποίο συμβολίζουμε ως \(X^{(d)} \), ως το σύνολο πηλίκων

\[
X^{(d)} = \frac{X \times d}{S_d},
\]

όπου \(S_d \) είναι η συμμετρική ομάδα που δρα με ισχυρολογικό τρόπο επί των στοιχείων του \(X^{(d)} \). Σύμφωνα με τον παραπάνω ορισμό, το σύνολο των \(X^{(d)} \), είναι μια διαιρετική \(d \)-άδες στιγμή της επιφάνειας Riemann X, το οποίο συμβολίζουμε ως \(\mathcal{P}_1 + \cdots + \mathcal{P}_d \). Εξακολουθούμε να το συμμετρικό γνώμονο της X, έχοντας σε 1-1 αντιστοιχία με το σύνολο των \(d \)-άδες στιγμών της X. Αποδεικνύονται ότι: το συμμετρικό γνώμονο μιας επιφάνειας Riemann έχει τη δομή ενός (λεκτο) αλγεβρικού πολυπτυχιομετρικού.

Θεωρούμε τώρα τον περιφρονό της απεικόνισης Abel-Jacobi βαθμού d στο συμμετρικό γνώμονο της X. Την απεικόνιση όπως έπαιξε την σημασία και τώρα απεικόνιση Abel-Jacobi βαθμού d και την συμβολίζουμε ως \(u_d \).

\[
u_d : X^{(d)} \to J(X).
\]

Διατυπώνοντας το στοιχείο \(d \)-αστικού συμμετρικού, έχουμε την ακολουθία:

Πράξεις 2.5.1. Αν \(D \) είναι ένας θετικός διαιρέτης βαθμού d στη X, τότε \(A_0^{-1}(A_d(D)) = |D| \).

Απόδειξη: Σύμφωνα με την πράξη 2.5.1, το σύνολο \(u_d^{-1}(u_d(D)) \) αποτελείται από όλους τους διαιρέτες στη X που είναι γραμμικά ισοδύναμα με το D. Επομένως
το $u_d^{-1}(u_d(D))$ αποτελείται από όλους τους θετικούς διαφημές στη X, οι οποίοι είναι γραμμικά συσχεδιασμένοι με τον D, δηλαδή είναι τα τελέσες γραμμικά σώματα $|D|$ του διαφημή D. \[\square\]

Τέλος, δίνουμε χαρτί απόδειξη του παραπάνω θεώρημα που είναι γνωστό ως Ισχυρό Θεώρημα Αντισυμβολής του Jacobi.

Θεώρημα 2.5.3. Έστω X μια επιμέρους Riemann ρέννη $g > 0$. Η απεικόνιση Αbel-Jacobi $u_d : X^{(d)} \rightarrow J(X)$, βαθμού d, είναι επί οποιον $d \geq g$ και εν γένει εμφάνιση όταν $d \leq g$. Επομένως, όταν $d = g$, η απεικόνιση Αbel-Jacobi βαθμού g είναι επί και εν γένει εμφάνιση.

Σημείωση 2.5.2. Με βάση το παραπάνω θεώρημα έχουμε το εξής: Έστω d ένας θετικός αριθμός με $d \geq g$. Τότε το σύνολο τελίκων $X^{(d)}/\sim$, όπου \sim συμβολίζουμε τη γραμμική συσχεδιασμό διαφημες, είναι ένας g-διαστάσεως αλγεβρικός τόρος (η ισοδύναμη της X), ονομαζόμενος - μέχρι συμφωνίας - από την επιλογή του d.
3.1 Το αντιπαράδειγμα του Nagata - Αλγεβρικό μέρος

Προ προχωρήσουμε στην κατασκευή του αντιπαράδειγματος του Nagata, ορίζουμε και διευκρινίζουμε μια φιλοδοξία που θα χρησιμοποιήσουμε κατ' επανάληψη στην συνέχεια. Εστώ \(P_1, P_2, \ldots, P_r \) (διαφορετικά) σημεία του πραγματικού επιπέδου \(\mathbb{R}^2 \). Συμβάλλουμε ως \(P_1 + \cdots + P_r \) την μη διατεταγμένη \(r \)-άδα των παραλληλες σημείων.

To σύνολο του παράμετρα αυτά τα σημεία είναι το \(r \)-αστικό συμμετρικό, γνώμονα του \(\mathbb{R}^2 \), για το οποίο υπενθυμίζουμε ότι \(\text{ορίζεται ως εξής:} \)

\[
\text{Sym}^r \mathbb{R}^2 = (\mathbb{R}^2)^r / S_r,
\]

όπου η \(S_r \) είναι η συμμετρική ομάδα των \(r \) συμμετρικών του δρα και τον χημικολογικό πράγμα του γνώμονα \((\mathbb{R}^2)^r \). Όπως αναφέραμε και στο προηγούμενο κεφάλαιο, το \(\text{Sym}^r \mathbb{R}^2 \) είναι και αυτό μια αλγεβρική επιλογή (με διάμετρα κατά μήκος των διαγώνιων). Εστώ \(U_r \) το κατά Zariski ανοικτό υποσύνολο του \(\text{Sym}^r \mathbb{R}^2 \) που \(\text{ορίζεται ως το συμπλήρωμα των διαγώνιων} \). Έχουμε διαλέξει τα σημεία \(P_1, P_2, \ldots, P_r \) διαφορετικά μεταξύ τους, παρατηρούμε ότι το αντίστοιχο σημείο \(P_1 + \cdots + P_r \) \(\text{ανήκει} \) στο \(U_r \). Θα λέμε ότι τα σημεία \(P_1, P_2, \ldots, P_r \)

είναι γενικά σημεία του επιπέδου \(\mathbb{R}^2 \) ή σημεία του επιπέδου ευρυκόμενα σε γενική θέση (ας προς χάριτο διάταξη) αν το αντίστοιχο σημείο \(P_1 + \cdots + P_r \) \(\text{ανήκει} \) σε ένα υποσύνολο \(A_r \) του \(U_r \) της μορφής \(A_r = \text{κατά Zariski ανοικτό} \) \(\text{εκτός από αφιέρωση} \) πλήθος κλειστών, κάθε σημείου του οποίου \(\text{ακολουθεί} \) την παραλληλες διάταξη. Το συμπλήρωμα ενός συμπλήρωμα της παραλληλες μορφής είναι ένα \(\eta \)-έτος υποσύνολο του \(U_r \). Σημειώνουμε, τελικά, ότι ακριβέστερα θα ήταν να λέγαμε ότι μια συμπεριφορμένη διάταξη \(\text{ακολουθείται} \) από το γενικό σημείο του επιπέδου αν
κάποιο υποσύνολο του \(U \), της παραπάνω μορφής \(A \), κάθε σημείο του οποίου χωνεύει την παραπάνω διάταξη. Ως τούτο, η παραπάνω ορολογία έχει επικράτησε.

Τοποθέτουμε ότι: \(a_{ij}, \ i = 1, 2, 3, \ j = 1, \ldots, r \) είναι αλγεβρικά ανεξάρτητοι αριθμοί πάνω από το \(\mathbb{Q} \) και ορίζουμε τα σημεία \(P_i = [a_{1i}, a_{2i}, a_{3i}] \in \mathbb{P}^2 \), \(i = 1, \ldots, r \) του προβολικού επιπέδου. Θα δείξουμε ότι τα σημεία αυτά είναι γενικά σημεία του επιπέδου. Ας το δείξουμε πρώτα για \(r = 1 \). Εάν \(a_1, a_2, a_3 \) είναι αλγεβρικά ανεξάρτητοι αριθμοί πάνω από το \(\mathbb{Q} \) και \(P = [a_1, a_2, a_3] \in \mathbb{P}^2 \), τότε το συμπλήρωμα του συνόλου αυτών των σημείων είναι τα σημεία του προβολικού επιπέδου, όπως οι παραπάνω στοιχεία των οποίων είναι αλγεβρικά εξημερωμένα τριάδες αριθμών. Με άλλα λόγια, αντιστοιχούν σε ευθείες του \(\mathbb{C}^3 \) που διέρχονται από την αρχή των αξόνων και κάθε σημείο τους αντιστοιχεί σε μια τριάδα αριθμών αλγεβρικά εξημερωμένων.

Μαζί τέτοιες τριάδες αριθμών ανήκουν σε μια από τις αριθμητικές (υπερ)επιφάνειες του \(\mathbb{C}^3 \) που ορίζονται από τις εξισώσεις των τριών μεταβλητών με γρήγορα συντελεστές. Αν επιλέγουμε πρώτα ότι \(a_1, a_2, a_3 \) είναι αριθμοί των οποίων δεν έχουν \(-\varepsilon \) κοινό λογαριασμό, τότε \(a_1, a_2, a_3 \) είναι σύνολο από αυτές τις επιφάνειες, ώστε υπάρχει σημείο του που δεν ανήκει σε καμία από τις παραπάνω επιφάνειες. Πράγματι, και σε αυτήν την περίπτωση κάθε επιφάνεια τέμνει την ευθεία σε τετραφαίνοντα πλάθος σημείων και, επεξεργάζεται πλάθος τους είναι αριθμητικά, και τα σημεία τοιχή τους με την ευθεία θα είναι αριθμητικά. Ας εξετάσουμε τώρα το πλάθος των ευθειών που διέρχονται από την αρχή των αξόνων και που ανήκουν σε κάποια από τις παραπάνω επιφάνειες. Σημειώνουμε ότι: χάσι χώσι ιδεώθα θα ανήκει σε κάποια αναγκαστικά συναπόκριση της επιφάνειας που διέρχεται από την αρχή των αξόνων. Επεξεργάζεται πλάθος των επιφάνειας είναι αριθμητικά, το πλάθος των αναγκαστικών συναπόκρισεων τους είναι και αυτό αριθμητικά. Θεωρούμε το επίπεδο \(z = 1 \). Οι ευθείες οι διερχόμενες από την αρχή των αξόνων αντιστοιχούν στα σημεία αυτών του επιπέδου, με εξαίρεση τις ευθείες στο άσπρο. Από την άλλη πλευρά, οι παραπάνω αναγκαστικές συναπόκρισεις τέμνουν το επίπεδο σε αριθμητικά πλάθος καμπύλων. Επομένως, χάσι ευθεία που περνάει από κάποιο σημείο του επιπέδου που είναι στο συμπλήρωμα αυτών των καμπύλων δεν ανήκει σε κάποια επιφάνεια. Σημειώνουμε τώρα, ότι τα σημεία του παραπάνω επιπέδου αντιστοιχούν στα σημεία του προβολικού χώρου που απαρτίζουν ένα από τα τρία βασικά κατά Zariski αναδικτικά υποσυνόλων του \(\mathbb{P}^2 \). Επομένως, χάσι σημείο αυτών των κατά Zariski αναδικτικών υποσυνόλων, με εξαίρεση ενός αριθμητικά πλάθος κλείστων υποσυνόλων (που αντιστοιχούν στις παραπάνω καμπύλες) εκτροπολίζει κάποια τριάδα αριθμών αλγεβρικά ανεξάρτητη πάνω από το \(\mathbb{Q} \).

Σκοπεύοντας, τώρα την απόδειξη για την περίπτωση κατά την οποία θεωρούμε συσχετικά πλάθος σημεία. Ως αριθμοί \(a_{ij}, \ i = 1, 2, 3, \ j = 1, \ldots, r \) είναι αλγεβρικά εξημερωμένοι αν ανήκουν σε κάποια από τις αριθμητικές υπερεπιφάνειες
3.1. ΤΟ ΑΝΤΙΠΑΡΑΔΕΙΓΜΑ ΤΟΥ ΝΑΓΑΤΑ - ΑΛΓΕΒΡΙΚΟ ΜΕΡΟΣ

του C^3_r που ορίζονται από εξισώσεις με ρητούς συντελεστές. Σε κάθε συνιστώσα C του C^3_r θεωρούμε το επίπεδο $z = 1$. Το γνώμενο A αυτών των επιπέδων είναι ένα υποσύνολο διάστασης $2r$, το σημείο του οποίου αντιστοιχεί σε ένα από τα βασικά κατά Zariski ανοικτά υποσύνολα του γνώμενου $(P^2)^r$. Τα σημεία P_1, \ldots, P_r που δεν ικανοποιούν την ζητούμενη συνθήκη είναι αυτά τα οποία για κάθε παράδειγμα τους τα αντίστοιχα σύνολα των συντελεστών τους είναι αλγεβρικά ξεχωριστά αριθμοί. Κάθε μια από τις διαφορετικές παραστάσεις μιας r-άδαις σημείων του προβολικού χώρου αντιστοιχεί σε ένα γραμμικό υπόσχέρο του C^3_r διάστασης r. Επομένως, αυτοί οι γραμμικοί υπόσχεροι θα πρέπει να μην ανήκουν σε κομηλί από τις παραστάσεις υπερπεριφάνειες. Όταν και στην περιπτώση κατά την οποία $r = 1$, βλέπουμε ότι για τα σημεία του A, τα οποία δεν ανήκουν στην τομή του A με τις ανάλογες συνιστώσες των παραστάσεων υπερπεριφάνειών που διέρχονται από την αρχή των εξόδων, ικανοποιούν την ζητούμενη συνθήκη. Επομένως, υπάρχει στο διασταυρωμένο γνώμενο ένα κατά Zariski ανοικτό υποσύνολο, με εξίσους αριθμητικό πλήθος χειριστών υποσύνολα, κάθε σημείο του οποίου ικανοποιεί την ζητούμενη συνθήκη. Εάν μια αυτού του συνόλου στο συμμετρικό γνώμενο είναι σύνολο της διας μορφής, διότι η αντιστοιχή απεξιόνηση είναι ανοικτή και χλειστή εναντίων απεξιόνησης. Έτσι φαίνεται στο συμπέρασμα που θέλουμε.

Στην παράγραφο 3.2 θα αποδείξουμε την παραστάση πρόταση, βλ. θεώρημα 3.2.2.

(*) Εστω r ένας φυσικός αριθμός ο οποίος είναι τέλος τετράγωνο (όπως $r = s^2$, όπου $s \in \mathbb{N}$) και, επάνω, $r > 9$. Εστω ότι τα P_1, P_2, \ldots, P_r είναι σημεία του προβολικού επιπέδου ευρυκλάμβως σε γενική θέση. Αν μια καμπύλη του επιπέδου βαθμού d διέρχεται από αυτά με πολλαπλότητα τουλάχιστον $m > 0$, τότε $d > \sqrt{r}m$.

Σε ό,τι ακολουθεί, υποθέτουμε ότι τα σημεία P_1, P_2, \ldots, P_r, όπου $r = s^2$ και $r > 9$, είναι γενικά σημεία του επιπέδου ως προς ομιλίες τις προαναφερθείσες διάταξες. Αυτό είναι δυνατό διότι η τομή δύο κατά Zariski ανοικτών υποσύνολων (με εξίσους αριθμητικό πλήθος χειριστών υποσύνολα) είναι πάντα της διας μορφής. Εστω p_j το ομιλούντες πρώτο ιδεώδες του P_j, $j = 1, \ldots, r$, στον πολυκατοικικό δομικό $C[x, y, z]$. Για κάθε $m \in \mathbb{N}$ (όπου με \mathbb{N} συμβολίζουμε το σύνολο των θετικών αριθμών), θέτουμε $P_m = \prod_{j=1}^r P_j^m$. Πρόταση 3.1.1. Για κάθε φυσικό αριθμό m, υπάρχει φυσικός αριθμός n, τέτοιος ώστε να ικανοποιεί $P_m^n \neq P_m$. Απόδειξη. Για κάθε $m \in \mathbb{N}$ το ιδεώδες P_m αποτελείται από τα πολυκυκλικά του
Διατυπώνομε τον παραδείγματος. Είναι ότι τα \(a_{ij}, i = 1, 2, 3, j = 1, \ldots, r \), είναι αλγεβρικά ανεξάρτητα στο σύνολο πάνω από το \(\mathbb{Q} \). Τότε τα σημεία \(P_j = (a_{1j}, a_{2j}, a_{3j}) \) είναι σημεία του προβολικού επίπεδου ευρουσόμενα σε γενική θέση. Είναι \(V^* \) ο διανυσματικός χώρος διάστασης \(r \) πάνω από
3.1. ΤΟ ΑΝΤΙΠΑΡΑΔΕΙΓΜΑ ΤΟΥ ΝΑΓΑΤΑ - ΑΛΓΕΒΡΙΚΟ ΜΕΡΟΣ

το \(C \) και \(\bar{V} \), το διανυσματικό υπόγεφρο του \(V^* \) που είναι κάθετος στα δια-
νύσματα \((a_1, a_2, \ldots, a_r) \), \(i = 1, 2, 3 \). Η διάσταση του \(V \) είναι \(r = 3 \). Έστω
\(S = \mathbb{C}[x_1, x_2, y_1, y_2, y_3] \) ο παλιολογικός διακόσμος \(2g \) μεταβλητών πάνω από
\(\mathbb{C} \) και \(\bar{V} \) τη υπομίσθη της \(\text{GL}_2(\mathbb{C}) \) που αποτελείται από τούς πίνακες της

| \(g = \begin{pmatrix}
 c_1 & 0 & \cdots & 0 & c_1b_1 & 0 & \cdots & 0 \\
 0 & c_2 & \cdots & 0 & 0 & c_2b_2 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & c_r & 0 & \cdots & 0 & c_rb_r \\
 0 & 0 & \cdots & 0 & c_1 & \cdots & 0 \\
 0 & 0 & \cdots & 0 & 0 & c_2 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
 0 & 0 & \cdots & 0 & 0 & \cdots & c_r \\
 \end{pmatrix} |

με \(c_1, c_2, \ldots, c_r \in \mathbb{C} \), τέτοια \(\bar{V} \), \(\bar{V} \), \(c_1c_2 \cdots c_r = 1 \) και \((b_1, b_2, \ldots, b_r) \in \mathbb{C} \). Ο
αντίστοιχος \(\mathbb{C} \)-γραμμικός μετασχηματισμός των \(x_1, x_2, y_1, y_2, y_3 \) είναι \(\sigma_g \)
με
\[
\sigma_g(x_j) = c_j(x_j + b_jy_j), \quad j = 1, \ldots, r
\]
και
\[
\sigma_g(y_j) = c_jy_j, \quad j = 1, \ldots, r.
\]

Θεώρημα 3.1.1. Το σύνολο \(S^g \) των στοιχείων του \(S \) που μένουν αναλογικά ως
προς τη δράση της \(G \) δεν είναι τετερασμένο παραγόμενο ως \(\mathbb{C} \)-άλγεβρα.

Η απόδειξη του παραπάνω θεώρηματος στηρίζεται σε μια σειρά από προτάσεις και λήμματα.
Εισάγομε τον παρακάτω συμβολισμό (όπου \(y_1 \cdots y_k \cdots y_r = y_1 \cdots y_{k-1}y_{k+1} \cdots y_r \)):

\[
 t = y_1y_2 \cdots y_r, \\
 u_j = t/y_j = y_1 \cdots y_j \cdots y_r, \quad j = 1, 2, \ldots, r, \\
 v_j = x_ju_j = x_jy_1 \cdots y_j \cdots y_r, \quad j = 1, 2, \ldots, r, \\
 w_i = \sum_{j=1}^{r} a_{ij}v_j, \quad i = 1, 2, 3.
\]

Στην συνέχεια, θα χρησιμοποιήσουμε σχετικά την έξης γνωστή πρότυπη. Έστω
\(k \subseteq F \) επίκτηση σωματών με \(\text{tr.deg}_kF = n \). Αν υπάρχουν \(a_1, \ldots, a_n \in F \) με
\(F = k(a_1, \ldots, a_n) \) τότε τα \(a_1, \ldots, a_n \) είναι μια υποβαθμική βάση του \(F \) πάνω από
\(k \) και συνεπώς είναι αλγεβρικά ανεξάρτητα πάνω από \(k \). Αρχίζουμε με
το αμφισβητούμε

Γνώμη 3.1.1. Έστω \(1 \leq i_1 < i_2 < \cdots < i_r \leq r \). Τότε

1. \(\mathbb{C}(x_1, x_2, y_1, y_2, y_3) = \mathbb{C}(w_1, w_2, w_3, x_1, x_2, y_1, y_2, y_3) \) και επο-
 μένως τα \(w_1, w_2, w_3 \) είναι αλγεβρικά ανεξάρτητα πάνω από \(\mathbb{C} \).
2. Τα \(v_1, \ldots, v_r \) είναι αλγεβρικά ανεξάρτητα πάνω από το \(\mathbb{C} \).

3. \(C(w_1, w_2, w_3, v_1, \ldots, v_{r-3}) = C(v_1, \ldots, v_r) \).

Απάντηση. Για το 1). Εστώ \(F = \mathbb{C}(x_1, \ldots, x_r, y_1, \ldots, y_r) \). Χωρίς βαθμίδα της γενικότερης μορφής να υπολογίσουμε ότι \(i_1 = 4, \ldots, i_{r-3} = r \). Ο εγγελειμός \(F \supseteq C(w_1, w_2, w_3, x_1, \ldots, x_r, y_1, \ldots, y_r) \) είναι προβληματικής. Για τον αντίστροφο εγγελειμό παρατηρούμε ότι αν

\[
A = \begin{pmatrix}
α_{11} & α_{12} & α_{13} \\
α_{21} & α_{22} & α_{23} \\
α_{31} & α_{32} & α_{33}
\end{pmatrix},
\]

τότε

\[
A \begin{pmatrix} u_1x_1 \\ u_2x_2 \\ u_3x_3 \end{pmatrix} = \begin{pmatrix} w_1 - \sum_{j=4}^{r} α_{1j}v_j \\ w_2 - \sum_{j=4}^{r} α_{2j}v_j \\ w_3 - \sum_{j=4}^{r} α_{3j}v_j \end{pmatrix}.
\]

Το \(α_{ij} \) είναι αλγεβρικά ανεξάρτητα πάνω από το \(\mathbb{Q} \) και επομένως η αρίθμηση του πίνακα \(A \) είναι μη μικρού. Άρα

\[
\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} u_1x_1 \\ u_2x_2 \\ u_3x_3 \end{pmatrix} = A^{-1} \begin{pmatrix} w_1 - \sum_{j=4}^{r} α_{1j}v_j \\ w_2 - \sum_{j=4}^{r} α_{2j}v_j \\ w_3 - \sum_{j=4}^{r} α_{3j}v_j \end{pmatrix}.
\]

Επομένως, \(u_1x_1 \in C[w_1, w_2, w_3, x_4, \ldots, x_r, y_1, \ldots, y_r] \) και αφού

\[
1/u_i = \frac{1}{y_1 \cdots y_j \cdots y_r} \in C(w_1, w_2, w_3, x_4, \ldots, x_r, y_1, \ldots, y_r)
\]

έχουμε και:

\[
x_i = (1/u_i)u_1x_1 \in C(w_1, w_2, w_3, x_4, \ldots, x_r, y_1, \ldots, y_r), \text{ για } i = 1, 2, 3.
\]

Συνεπώς έχουμε και τον αντίστροφο εγγελειμό

\[
F \subseteq C(w_1, w_2, w_3, x_4, \ldots, x_r, y_1, \ldots, y_r).
\]

Σημειώνουμε εδώ ότι από την τελευταία ισότητα συνάγουμε ότι οι γενικοί \(w_1, w_2, w_3, x_4, \ldots, x_r, y_1, \ldots, y_r \) του \(F \) πάνω από το \(\mathbb{C} \) είναι αλγεβρικά ανεξάρτητα στοιχεία πάνω από το \(\mathbb{C} \), διότι \(\text{tr.deg}_\mathbb{C}F = 2r \). Συνεπώς και το \(w_1, w_2, w_3 \) είναι αλγεβρικά ανεξάρτητα πάνω από το \(\mathbb{C} \).

Γιά το 2). Εστώ ότι \(\sum_j b_jv_j^{i_1} \cdots v_j^{i_r} = 0 \), όπου \(v_j = x_jy_1 \cdots y_j \cdots y_r, j = 1, \ldots, r \). Τότε \(b_j = 0 \), διότι \(v_j^{i_1} \cdots v_j^{i_r} \) είναι ο μονοαδικός όρος του αλγεβρικού πολynomίου που περιέχει το \(x_j^{i_1} \cdots x_j^{i_r} \).

Γιά το 3). Η απάντηση εδώ είναι ανάλογη εκείνη του 1). \(\Box \)

Πρόταση 3.1.2. \(S^\alpha = S \cap C(w_1, w_2, w_3, t) \).
3.1. ΤΟ ΑΝΤΙΠΑΡΑΔΕΙΓΜΑ ΤΟΥ ΝΑΓΑΤΑ - ΑΛΓΕΒΡΙΚΟ ΜΕΡΟΣ

Απόδειξη. Επεξεργάζεστε με φυσικολογικό τρόπο τη δράση της ομάδας G επί των στοιχείων του σύμπαντος κλασμάτων $F = \mathbb{C}(x_1, \ldots, x_r, y_1, \ldots, y_r)$ του S και συμβολίζομε το F^G το υπόσχομα του F που μένει αναλλοίωτο κάθετο από τη δράση της G. Τότε $S^G = S \cap F^G$. Αρχίζει απλά να δείξουμε ότι: $F^G = \mathbb{C}(w_1, w_2, w_3, t)$.

Επειδή H η υποομάδα της G που αποτελείται από έκπληκτικά στοιχεία της G, για τα οποία έχουμε $c_1 = 1$, $i = 1, \ldots, r$. Έπειτα, όπως $h \in H$, έχουμε

$$
\sigma_h(w_i) = \sigma_h\left(\sum_{j=1}^{r} \alpha_{ij} x_j \frac{t}{y_j}\right) = \sum_{j=1}^{r} \alpha_{ij} \left(x_j + b_j y_j\right) \frac{t}{y_j}
= \sum_{j=1}^{r} \alpha_{ij} x_j \frac{t}{y_j} + \sum_{j=1}^{r} \alpha_{ij} b_j = \sum_{j=1}^{r} \alpha_{ij} x_j \frac{t}{y_j}
= w_i, \ (i = 1, 2, 3),
$$

διότι το διάνυσμα $(b_1, b_2, \ldots, b_r) \in V^*$ είναι κάθετο στο διάνυσμα $(\alpha_{11}, \ldots, \alpha_{1r})$, όπου $\sum_{j=1}^{r} \alpha_{ij} b_j = 0$, $i = 1, 2, 3$. Επίσης έχουμε $\sigma_h(x_j) = x_j + b_j y_j$ και $\sigma_h(y_j) = y_j$, $j = 1, \ldots, r$. Επομένως, αν F^H είναι το υπόσχομα του $F = \mathbb{C}(w_1, w_2, w_3, x_1, \ldots, x_r, y_1, \ldots, y_r)$ (βλ. λήμμα 3.1.1) που μένει αναλλοίωτο από τη δράση της H, έχουμε

$$
F^H = \mathbb{C}(w_1, w_2, w_3, y_1, \ldots, y_r),
$$

και αφού η H είναι υποομάδα της G, το F^G είναι υπόσχομα του F^H, οπότε

$$
F^G \subseteq \mathbb{C}(w_1, w_2, w_3, y_1, \ldots, y_r).
$$

Εξήλθου, επειδή $t = y_1 y_2 \cdots y_r$, έχουμε

$$
\mathbb{C}(w_1, w_2, w_3, y_1, \ldots, y_r) = \mathbb{C}(w_1, w_2, w_3, t, y_2, \ldots, y_r).
$$

Αρκεί τελικά

$$
F^G \subseteq \mathbb{C}(w_1, w_2, w_3, t, y_2, \ldots, y_r) \subseteq F.
$$

Αρχίζει λοιπόν να δείξουμε ότι το υπόσχομα του $\mathbb{C}(w_1, w_2, w_3, t, y_2, \ldots, y_r)$ που μένει αναλλοίωτο από τη δράση της G είναι το $\mathbb{C}(w_1, w_2, w_3, t)$. Έτσι $g \in G$.

Τότε,

$$
\sigma_g(t) = \sigma_g(y_1 y_2 \cdots y_r) = c_1 c_2 \cdots c_r y_1 y_2 \cdots y_r = t,
$$

$$
\sigma_g(w_i) = \sigma_g\left(\sum_{j=1}^{r} \alpha_{ij} x_j \frac{t}{y_j}\right) = \sum_{j=1}^{r} \alpha_{ij} \left(c_j (x_j + b_j y_j)\right) \frac{t}{c_j y_j}
= \sum_{j=1}^{r} \alpha_{ij} x_j \frac{t}{y_j} = w_i, \ (i = 1, 2, 3),
$$

$$
\sigma_g(y_j) = c_j y_j, \ (j = 1, \ldots, r).
$$

Αρκεί το υπόσχομα του $\mathbb{C}(w_1, w_2, w_3, t, y_2, \ldots, y_r)$ που μένει αναλλοίωτο κάθετο από τη δράση της G είναι το $\mathbb{C}(w_1, w_2, w_3, t)$, επομένως $F^G = \mathbb{C}(w_1, w_2, w_3, t)$. \square
Από το λήμμα 3.1.1 συμπεραίνουμε ότι τα \(w_1, w_2, w_3 \) είναι αλγεβρικά ανεξάρτητα μέσα από το \(\mathbb{C} \) και επομένως μπορούμε να θεωρήσουμε τον διαστόλο \(\mathbb{C}[w_1, w_2, w_3] \) ως τον διαστόλο των ομογενών συλλογικών του προβλήματος επιπέδου \(\mathbb{P}^2 \). Ωστόσο, \(P_j \subseteq \mathbb{C}[w_1, w_2, w_3] \) το ομογενές πρώτο διεύθυνο συμμετρία \(P_j = (\alpha_{1j}, \alpha_{2j}, \alpha_{3j}) \), \(j = 1, \ldots, r \). Για κάθε θεωρούμε αριθμό \(n \), έχουμε \(\mathbb{P}_n = \bigcap_{j=1}^r P_j^n \).

Πρόταση 3.1.3. Το \(S^G \) είναι το σύνολο των σταυρίων της μορφής \(\sum \alpha_n t^{-n} \) (πεπερασμένο αδριασμα) με \(\alpha_n \in \mathbb{C}[w_1, w_2, w_3] \) και \(an > 0 \), \(\alpha_n \in \mathbb{P}_n \).

Για την απόδειξη της πρότασης θα χρειαστούν τα παρακάτω λήμματα.

Λήμμα 3.1.2. Κάθε σταυρίο του \(S^G \) γράφεται στη μορφή \(\sum \alpha_n t^{-n} \) (πεπερασμένο αδριασμα), όπου \(\alpha_n \in \mathbb{C}[w_1, w_2, w_3] \).

Απόδειξη. Όπως είδαμε στην απόδειξη του λήμματος 3.1.1,
\[u_i x_i \in \mathbb{C}[w_1, w_2, w_3, x_4, \ldots, x_r, y_1, \ldots, y_r], \]

Αρχίζουμε
\[x_i = u_i x_i - \frac{1}{u_i} \]
\[= u_i x_i \cdot \frac{1}{y_1} \cdots \frac{1}{y_{i-1}} \frac{1}{y_{i+1}} \cdots \frac{1}{y_r} \]
\[\in \mathbb{C}[w_1, w_2, w_3, x_4, \ldots, x_r, y_1, \ldots, y_r, \frac{1}{y_1}, \ldots, \frac{1}{y_r}], \quad i = 1, 2, 3. \]

Επομένως,
\[\mathbb{C}[x_1, \ldots, x_r, y_1, \ldots, y_r] \subseteq \mathbb{C}[w_1, w_2, w_3, x_4, \ldots, x_r, y_1, \ldots, y_r, 1/y_1, \ldots, 1/y_r], \]

οπότε
\[\mathbb{C}[x_1, \ldots, x_r, y_1, \ldots, y_r] \cap \mathbb{C}(w_1, w_2, w_3, t) \subseteq \]
\[\mathbb{C}[w_1, w_2, w_3, x_4, \ldots, x_r, y_1, \ldots, y_r, 1/y_1, \ldots, 1/y_3] \cap \mathbb{C}(w_1, w_2, w_3, y_1, \ldots, y_r) = \]
\[\mathbb{C}[w_1, w_2, w_3, y_1, \ldots, y_r, 1/y_1, \ldots, 1/y_r]. \]

Κατά συμπέλεια,
\[S^G \subseteq \mathbb{C}[w_1, w_2, w_3, y_1, \ldots, y_r, 1/y_1, \ldots, 1/y_r] \]

οπότε
\[S^G \cap \mathbb{C}(w_1, w_2, w_3, t) \subseteq \mathbb{C}[w_1, w_2, w_3, y_1, \ldots, y_r, 1/y_1, \ldots, 1/y_3] \cap \mathbb{C}(w_1, w_2, w_3, t) \]
\[= \mathbb{C}[w_1, w_2, w_3, t, 1/t] \]

και, ως εξ ούτου,
\[S^G \subseteq \mathbb{C}[w_1, w_2, w_3][t, 1/t]. \]

□
3.1. ΤΟ ΑΝΤΙΠΑΡΑΔΕΙΓΜΑ ΤΟΥ NAGATA - ΑΛΓΕΒΡΙΚΟ ΜΕΡΟΣ

Για τέτοια $R_j = \mathbb{C}[x_1, \ldots, x_r, y_1, \ldots, y_r]$, η τυχαίοτητά του διακύμα
ων $\mathbb{C}[x_1, \ldots, x_r, y_1, \ldots, y_r]$ αφορά το πρώτο διακύμα του που παράγεται από
η y_j, $j = 1, 2, \ldots, r$. Στο σύμφωνα με τις παραπάνω $\mathbb{C}[x_1, \ldots, x_r, y_1, \ldots, y_r]$ του τοπικού διακύμα $\mathbb{C}[x_1, \ldots, x_r, y_1, \ldots, y_r]|_{(y_j)}$ ορίζεται: Φυσικολογικά με διαφορική εκτίμηση V_j η εξίσωση: αν $\frac{f}{g} \in \mathbb{C}(x_1, \ldots, x_r, y_1, \ldots, y_r)$, τότε υπάρχει συνομιλία ορίζων κ, λ, τέτοια ώστε $\frac{f}{g} = \frac{f_1}{g_1}$, όπου $f_1, g_1 \in \mathbb{C}[x_1, \ldots, x_r, y_1, \ldots, y_r]$ και $MK\Delta(f_1, y_j) = MK\Delta(g_1, y_j) = 1$. Η εκτίμηση V_j ορίζεται ως εξίσωση: $V_j(\frac{f}{g}) = k - \lambda$ και ο διακύμα ολοκλήρωσης της V_j είναι ο R_j. Συμβολογίζουμε το m_j το μέγεθος των διακυμάτων R_j, δηλ. το συνόλο των συνκέισεων $\frac{f}{g} \in \mathbb{C}(x_1, \ldots, x_r, y_1, \ldots, y_r)$ με $V_j(\frac{f}{g}) \geq 1$.

Αξίωμα 3.1.3. Υποθέτουμε ότι $z_j = \alpha_3 w_1 - \alpha_1 w_3$, $\bar{z}_j = \alpha_3 w_2 - \alpha_2 w_3$ είναι οι γενικότερες του διακύμα της p_j που είναι το διακύμα της σημείως $P_j = [\alpha_1, \alpha_2, \alpha_3]$, όπως θα ακολουθήσει:

1. $\mathbb{C}[z_j, \bar{z}_j, w_3] = \mathbb{C}[w_1, w_2, w_3]$.
2. $V_j(z_j) = V_j(\bar{z}_j) = 1$, $V_j(w_k) = 1 - \delta_{jk}$. $V_j(w_3) = 0$.
3. Αν $f(w_1, w_2, w_3) \in \mathbb{C}[w_1, w_2, w_3]$, τότε

$$f(w_1, w_2, w_3) + m_j = R(w_3) + m_j,$$

για κάποιο πολυώνυμο $R(w_3) \in \mathbb{C}[w_3]$.

Απόδειξη. Για το 1). Η ισότητα αυτή είναι προφανής από τον όρισμα των z_j, \bar{z}_j, διότι $\alpha_3 \neq 0$ λόγω της αλγεβρικής ανεξαρτησίας των α_i πάνω από το \mathbb{Q}.

Για το 2). Υποθέτουμε την εκτίμηση V_j στο z_j, \bar{z}_j. Έχουμε

$$z_j = \alpha_3 w_1 - \alpha_1 w_3 = \alpha_3 \sum_{k=1}^{r} \alpha_{1k} x_k y_{1} \cdots \hat{y}_k \cdots y_r - \alpha_1 \sum_{k=1}^{r} \alpha_{3k} x_k y_{1} \cdots \hat{y}_k \cdots y_r,$$

όπου $y_{1} \cdots \hat{y}_k \cdots y_r = y_{1} y_{k-1} y_k y_{k+1} \cdots y_r$. Άρα

$$z_j = \alpha_3 \alpha_1 x_j y_{1} \cdots \hat{y}_j \cdots y_r + \alpha_3 \sum_{k=1}^{r} \alpha_{1k} x_k y_{1} \cdots \hat{y}_k \cdots y_r,$$

$$- \alpha_1 \alpha_3 x_j y_{1} \cdots \hat{y}_j \cdots y_r + \alpha_1 \sum_{k=1}^{r} \alpha_{3k} x_k y_{1} \cdots \hat{y}_k \cdots y_r,$$

$$= y_j \sum_{k=1}^{r} (\alpha_3 \alpha_{1k} - \alpha_1 \alpha_{3k}) x_k y_{1} \cdots \hat{y}_k \cdots y_r.$$

Ομοίως έχουμε

$$\bar{z}_j = y_j \sum_{k=1}^{r} (\alpha_3 \alpha_{2k} - \alpha_2 \alpha_{3k}) x_k y_{1} \cdots \hat{y}_j \cdots y_r.$$
και επομένως $V_j(z_j) = V_j(\bar{z}_j) = 1$.

Επίσης, $V_j(v_k) = 1 - \delta_{jk}$ διότι $v_k = x_k y_1 \cdots y_k \cdots y_n$.

Τέλος, $w_i = \sum_{k=1}^m \alpha_{ik} v_k$ χαμηλό, όχι γενικά, $w_i + m_j = \alpha_{ij} v_j + m_j \neq m_j$, διότι $\alpha_{ij} \neq 0$. Αρα $V_j(w_i) \leq 1$. Από την άλλη, εναλ προ-

γενέσα $w_i \in R_j$, απότε $V_j(w_i) = 0$.

Για το 3). Λόγω του 1) μπορούμε να γράψουμε το F στην μορφή

$$f(w_1, w_2, w_3) = g(z_j, \bar{z}_j, w_3) = g_1(z_j, \bar{z}_j, w_3) z_j + g_2(\bar{z}_j, w_3) \bar{z}_j + R(w_3).$$

Από το 2) συμπεραίνουμε ότι $F(w_1, w_2, w_3) + m_j = R(w_3) + m_j$. \hfill \Box

Λήμμα 3.1.4. Αν $f \in C[w_1, w_2, w_3]$ και $n \in \mathbb{N}$, τότε $V_j(f) \geq n$ αν και μόνο αν $f \in p^n$.

Απόδειξη. Εστώ n είναι ένας φυσικός αριθμός. Το ιδεώδες p^n_j παράγεται από τα στοιχεία

$$z^n_j, z^{n-1}_j, \ldots, z_j, z^{-1}_j, z^{-n}_j.$$ Εστω, αν $f \in p^n$, τότε υπάρχουν ολοκλήρωμα $f_i \in C[w_1, w_2, w_3]$, $i = 0, \ldots, n$, έτσι ώστε το f να γράφεται ως $f = \sum_{i=0}^n f_i z_j^i z_j^{-i}$. Αρα

$$V_j(f) = V_j\left(\sum_{i=0}^n f_i z_j^i z_j^{-i}\right) \geq \min_i \{V_j(f_i z_j^i z_j^{-i})\}$$

$$= \min_i \{V_j(f_i) + V_j(z_j^i) + V_j(z_j^{-i})\}$$

$$= \min_i \{V_j(f_i) + i V_j(z_j) + (n - i)V_j(\bar{z}_j)\} = \min_i \{V_j(f_i) + i + n - i\}$$

$$= \min_i \{V_j(f_i) + n\} \geq n.$$

Χάριν ευκολίας και χρήση διάθη της γενικότερης αποδεικνύουμε το αντίστροφο στην περίπτωση όταν το i-στο $j = 1$, εφαρμόζοντας επανάληψη ως προς n. Για $n = 1$, έστω $f \in C[w_1, w_2, w_3]$ με $V_1(f) \geq 1$. Από το λήμμα 3.1.3 έχουμε ότι $C[w_1, w_2, w_3] = C[z_1, z_2, w_3]$ και ώστε

$$f = g_1 z_1 + g_2 \bar{z}_1 + R(w_3),$$

με $g_1, g_2 \in C[w_1, w_2, w_3]$ και $R(w_3) \in C[w_3]$. Άρα, κατανύωμε ότι $R = 0$.

Το πολυκώνδυμο R είναι στις μορφές $R(w_3) = \sum c_i w_3^i$, $c_i \in C$. Αφού $V_1(f) \geq 1$, το y_1 διαιρεί το f στον διαστόλο R_1. Επίσης, το y_1 διαιρεί τα z_1, \bar{z}_1, οπότε τελικά το y_1 διαιρεί το R στον R_1. Επομένως,

$$R(w_3) + m_1 = m_1,$$

όπου m_1 είναι το μέγιστο ιδεώδες του R_1. Όμως
3.1. ΤΟ ΑΝΤΙΠΑΡΑΔΕΙΓΜΑ ΤΟΥ NAGATA - ΑΛΓΕΒΡΙΚΟ ΜΕΡΟΣ

\[w_3 + m_1 = (\alpha_{31} x_1 y_2 \cdots y_r + y_1 \sum_{k=2}^{r} \alpha_{3k} x_k y_2 \cdots y_r) + m_1 \]
\[= \alpha_{31} x_1 y_2 \cdots y_r + m_1 \quad \Rightarrow \]
\[R(w_3) + m_1 = \sum_{l} c_l \alpha_{31} x_{l1} y_{l2} \cdots y_{lr} + m_1 = \sum_{l} c_l \alpha_{31} v_l^1 + m_1. \]

Αρχικά έχουμε
\[\sum_{l} c_l \alpha_{31} x_{l1} y_{l2} \cdots y_{lr} + m_1 = m_1 \]

και επομένως
\[\sum_{l} c_l \alpha_{31} x_{l1} y_{l2} \cdots y_{lr} = y_1 f(x_1, \ldots, x_r, y_1, \ldots, y_r) \]
\[= g(x_1, \ldots, x_r, y_1, \ldots, y_r), \quad \text{όπου } (g, y_1) = 1. \]

Για να ισχύει το τελευταίο θα πρέπει: \(y_1 \mid \sum_{l} c_l \alpha_{31} x_{l1} y_{l2} \cdots y_{lr} \) που συνεπάγεται ότι \(\sum_{l} c_l \alpha_{31} x_{l1} y_{l2} \cdots y_{lr} \) πρέπει να είναι το μηδενικό πολυώνυμο. Επομένως,
\[c_l \alpha_{31} = 0, \quad \forall l \quad \Rightarrow \quad c_l = 0, \quad \forall l \quad \Rightarrow \quad R = 0 \]

(το \(\alpha_{31} \) είναι μη μηδενικό λόγω της αλγεβρικής ανεξαρτησίας των \(\alpha_{ij} \) πάνω από το \(Q \)). Συνεπώς
\[f = z_1 P + \bar{z}_1 \bar{P}, \quad P, \bar{P} \in C[w_1, w_2, w_3] \Rightarrow f \in p_1. \]

Αρχικά για \(n = 1 \) το ζητούμενο ισχύει.

Υποθέτουμε τώρα ότι αυτό ισχύει για ψηφιακάς μικρότερους ή ίσους από \(n - 1 \).

Ωστόσο, είδαμε στα προηγούμενα,
\[z_1 = y_1 \sum_{k=2}^{r} (\alpha_{31} \alpha_{1k} - \alpha_{11} \alpha_{3k}) x_k y_2 \cdots \hat{y}_k \cdots y_r, \]
\[\bar{z}_1 = y_1 \sum_{k=2}^{r} (\alpha_{31} \alpha_{2k} - \alpha_{21} \alpha_{3k}) x_k y_2 \cdots \hat{y}_k \cdots y_r. \]

Θέτουμε
\[\alpha_k = \alpha_{31} \alpha_{1k} - \alpha_{11} \alpha_{3k}, \quad k = 2, \ldots, r, \]
\[\bar{\alpha}_k = \alpha_{31} \alpha_{2k} - \alpha_{21} \alpha_{3k}, \quad k = 2, \ldots, r. \]

Επομένως,
\[z_1 = y_1 \sum_{k=2}^{r} \alpha_k x_k y_2 \cdots \hat{y}_k \cdots y_r = y_1 \sum_{k=2}^{r} \alpha_k v_k, \]
\[\bar{z}_1 = y_1 \sum_{k=2}^{r} \bar{\alpha}_k x_k y_2 \cdots \hat{y}_k \cdots y_r = y_1 \sum_{k=2}^{r} \bar{\alpha}_k v_k. \]
Θέσουμε

\[Z_1 = \frac{z_1}{y_1} = \sum_{k=2}^{r} \alpha_k \frac{v_k}{y_1}, \]
\[\hat{Z}_1 = \frac{\hat{z}_1}{y_1} = \sum_{k=2}^{r} \alpha_k \frac{\hat{v}_k}{y_1}. \]

Επομένως, υπάρχουν πολυώνυμα \(f_0, f_1, \ldots, f_{n-1} \in \mathbb{C}[w_1, w_2, w_3] \), τέτοια ώστε το \(f \) να γράφεται ως

\[f = f_0 z_1^{n-1} + f_1 z_1^{n-2} \hat{z}_1 + \cdots + f_{n-1} \hat{z}_1^{n-1}. \]

Για κάθε \(i = 0, 1, \ldots, n-1 \) υπάρχουν πολυώνυμα \(P_i, \hat{P}_i \in \mathbb{C}[w_1, w_2, w_3] \) και \(R_i \in \mathbb{C}[w_1] \), τέτοια ώστε το \(f_i \) να γράφεται ως

\[f_i = z_1 P_i + \hat{z}_1 \hat{P}_i + R_i \]

(από το λήμμα 3.1.3). Κατά συνέπεια,

\[f = (z_1 P_0 + \hat{z}_1 \hat{P}_0 + R_0) z_1^{n-1} + (z_1 P_1 + \hat{z}_1 \hat{P}_1 + R_1) z_1^{n-2} \hat{z}_1 + \cdots \]
\[+ (z_1 P_{n-1} + \hat{z}_1 \hat{P}_{n-1} + R_{n-1}) \hat{z}_1^{n-1} \]

και

\[f = g + R_0(z_3) z_1^{n-1} + R_1(z_3) z_1^{n-2} \hat{z}_1 + \cdots + R_{n-1}(z_3) \hat{z}_1^{n-1}, \] οπού \(g \in p_1^n \).

Θα δεξιούμε ότι \(R_0 = R_1 = \cdots = R_{n-1} = 0 \). Άφοβα \(V_1(f) \geq n \), το \(y_1^n \) διαρκεί το \(f \) στον δακτύλιο \(R_1 \) και επειδή \(g \in p_1^n \), το \(y_1^n \) διαρκεί και το \(g \). Επομένως, το \(y_1^n \) διαρκεί το \(R_0 z_1^{n-1} + R_1 z_1^{n-2} \hat{z}_1 + \cdots + R_{n-1} \hat{z}_1^{n-1} \) στον \(R_1 \). Όμως

\[R_0 z_1^{n-1} + R_1 z_1^{n-2} \hat{z}_1 + \cdots + R_{n-1} \hat{z}_1^{n-1} = R_0 y_1^n Z_1^{n-1} + R_1 y_1^n Z_1^{n-2} \hat{Z}_1 + \cdots + R_{n-1} y_1^n \hat{Z}_1^{n-1} = y_1^n (R_0 Z_1^{n-1} + R_1 Z_1^{n-2} \hat{Z}_1 + \cdots + R_{n-1} \hat{Z}_1^{n-1}) \]

όπου το \(y_1 \) διαρκεί το \(R_0 Z_1^{n-1} + R_1 Z_1^{n-2} \hat{Z}_1 + \cdots + R_{n-1} \hat{Z}_1^{n-1} \) στον δακτύλιο \(R_1 \).

Επομένως,

\[R_0(w_3) Z_1^{n-1} + R_1(w_3) Z_1^{n-2} \hat{Z}_1 + \cdots + R_{n-1}(w_3) \hat{Z}_1^{n-1} + m_1 = m_1. \]

Γράφουμε τα πολυώνυμα \(R_i(w_3) \), \(i = 0, 1, \ldots, n-1 \) στην μορφή \(R_i(w_3) = \sum_i c_i w_3^i \). Όπως είδαμε παραπάνω, έχουμε

\[R_i(w_3) + m_1 = \sum_i c_i a_1^i v_1^i + m_1 = \sum_i C_i v_1^i + m_1, \]
3.1. ΤΟ ΑΝΤΙΠΑΡΑΔΕΙΓΜΑ ΤΟΥ NAGATA - ΑΛΓΕΒΡΙΚΟ ΜΕΡΟΣ

όπου $C_{il} = c_{il}a_{i1}$. Συνεπώς,

$$R_0(w_3)Z_1^n - 1 + R_1(w_3)Z_1^{n-2}Z_1 + \cdots + R_{n-1}(w_3)Z_1 + m_1 = m_1 \implies$$

$$\sum_l C_{il}v_l Z_1^{n-1} + \sum_l C_{il}v_l Z_1^{n-2}Z_1 + \cdots + \sum_l C_{il}v_l Z_1 + m_1 = m_1$$

και άρα

$$\sum_l C_{il}v_l Z_1^{n-1} + \sum_l C_{il}v_l Z_1^{n-2}Z_1 + \cdots + \sum_l C_{il}v_l Z_1^{n-1} = 0,$$

διότι το πολυώνυμο δεν περιέχει το y_1. Πολλαπλασιάζοντας με το y_1^{n-1} συμπεραίνουμε ότι:

$$\sum_l C_{il}v_l z_1^{n-1} + \sum_l C_{il}v_l z_1^{n-2}z_1 + \cdots + \sum_l C_{il}v_l z_1^{n-1} = 0.$$

Από το λήμμα 3.1.1 έχουμε ότι, αν w_1, w_2, w_3, v_1 είναι ολογεβρικά ανεξάρτητα πάνω από το C, Επίσης, από τον ορισμό των z_1, z_2 έχουμε ότι:

$$C(z_1, z_2, w_3, v_1) = C(w_1, w_2, w_3, v_1).$$

Συνεπώς, τα z_1, z_2, v_1 είναι ολογεβρικά ανεξάρτητα πάνω από το σώμα C και άρα θα πρέπει $C_{il} = 0$, $i = 0, \ldots, n - 1$, $\forall l$. Αρκεί $C_{il} = c_{il}a_{i1}$ και $a_{i1} \neq 0$ συμπεραίνουμε ότι $c_{il} = 0$, $i = 0, \ldots, n - 1$, $\forall l$ και επομένως, $R_i = 0$, $i = 0, \ldots, n - 1$. □

Αίμμα 3.1.5. Αν $\alpha_0 \in C[w_1, w_2, w_3]$, τότε $V_j(\sum_0 {\alpha_n}^l) = \min_n \{V_j(\alpha_n l^n)\}$ (όπου το α ήρθε από α_0).

Αποδείξη. Αρχίζουμε με άρχοντα m_0, n_0 με $m_0 \neq n_0$, είσαι ότι έχουμε:

$$V_j(\alpha_n, m_0) = V_j(\alpha_m, n_0) = \min_n \{V_j(\alpha_n l^n)\} = s_0$$

όπως

$$V_j(\alpha_m l^{m_0} + \alpha_n l^{n_0}) = s_0.$$

Είναι λογικός m_0, n_0 όπως πορωτόχως. Τότε

$$V_j(\alpha_m l^{m_0}) = s_0 \implies V_j(\alpha_m) - m_0 = s_0 \implies V_j(\alpha_m) = m_0 + s_0$$

και ομοίως

$$V_j(\alpha_n) = n_0 + s_0.$$

Από το λήμμα 3.1.4 συμπεραίνουμε ότι $\alpha_0 \in p_j^{m_0 + s_0} \setminus p_j^{m_0 + s_0 + 1} \alpha_0 \in p_j^{n_0 + s_0} \setminus p_j^{n_0 + s_0 + 1}$ α_0 $\alpha_0 = \sum_{k+\lambda=m_0+s_0} g_{k+\lambda} z_1^{\kappa} z_2^{\lambda}$, $g_{k+\lambda} \in C[w_1, w_2, w_3]$
κΕΦΑΛΑΙΟ 3. ΤΟ 14-Ο ΠΡΟΒΛΗΜΑ ΤΟΥ HILBERT

με \(\min_{\kappa, \lambda} \{ V_j(g_{\kappa \lambda}) \} = 0 \) (διότι αν \(\min_{\kappa, \lambda} \{ V_j(g_{\kappa \lambda}) \} \geq 1 \), τότε \(V_j(g_{\kappa \lambda}) \geq 1 \), \(\forall \kappa, \lambda \)

εποτέ

\[V_j(g_{\kappa \lambda} z_j^\alpha z_j^\beta) \geq 1 + \kappa + \lambda = 1 + m_0 + s_0, \quad \forall \kappa, \lambda \]

και:

\[V_j(\alpha_{m_0}) \geq 1 + m_0 + s_0, \]

που είναι άτυπο διότι - σύμφωνα με το λήμμα 3.1.4 - \(\alpha_{m_0} \in \mathcal{P}_j^{m_0+s_0+1} \). Ως

\[\alpha_{m_0} = \sum_{\mu + \nu = m_0 + s_0} h_{\mu \nu} z_j^\mu z_j^\nu, \quad h_{\mu \nu} \in \mathbb{C}[w_1, w_2, w_3] \]

με \(\min_{\mu, \nu} \{ V_j(h_{\mu \nu}) \} = 0 \), εποτέ

\[\alpha_{m_0} t^{-m_0} + \alpha_{m_0} t^{-n_0} = t^{n_0} (\alpha_{m_0} t^{-(m_0+s_0)} + \alpha_{m_0} t^{-(n_0+s_0)}) \]

\[= t^{n_0} \left(\sum_{\kappa + \lambda = m_0 + s_0} g_{\kappa \lambda} z_j^\kappa z_j^\lambda t^{-(\kappa + \lambda)} + \sum_{\mu + \nu = n_0 + s_0} h_{\mu \nu} z_j^\mu z_j^n t^{-(\mu + \nu)} \right) \]

\[= t^{n_0} \left(\sum_{\kappa + \lambda = m_0 + s_0} g_{\kappa \lambda} \left(\frac{z_j}{t} \right) \kappa \left(\frac{z_j}{t} \right) \lambda + \sum_{\mu + \nu = n_0 + s_0} h_{\mu \nu} \left(\frac{z_j}{t} \right) \mu \left(\frac{z_j}{t} \right) \nu \right). \]

Θέτουμε

\[F\left(\frac{z_j}{t}, \frac{z_j}{t} \right) = \sum_{\kappa + \lambda = m_0 + s_0} g_{\kappa \lambda} \left(\frac{z_j}{t} \right) \kappa \left(\frac{z_j}{t} \right) \lambda + \sum_{\mu + \nu = n_0 + s_0} h_{\mu \nu} \left(\frac{z_j}{t} \right) \mu \left(\frac{z_j}{t} \right) \nu. \]

Αρχει να δείξουμε ότι \(V_j(F\left(\frac{z_j}{t}, \frac{z_j}{t} \right)) = 0 \).

Υποθέτουμε ότι ο τελευταίος δεν είναι, δηλαδή ότι \(V_j(F\left(\frac{z_j}{t}, \frac{z_j}{t} \right)) \geq 1 \) και θα εργάστουμε σε αυτό. Θα εργάσουμε τότε ότι:

\[F\left(\frac{z_j}{t}, \frac{z_j}{t} \right) = m_j = m_j, \]

δηλαδή

\[\sum_{\kappa + \lambda = m_0 + s_0} g_{\kappa \lambda} \left(\frac{z_j}{t} \right) \kappa \left(\frac{z_j}{t} \right) \lambda + \sum_{\mu + \nu = n_0 + s_0} h_{\mu \nu} \left(\frac{z_j}{t} \right) \mu \left(\frac{z_j}{t} \right) \nu + m_j = m_j. \quad (3.1) \]

Υποθέτουμε ότι \(V_j(z_j) = V_j(z_j) = V_j(t) = 1 \) και \(\text{ότι} \) \(V_j\left(\frac{z_j}{t} \right) = V_j\left(\frac{z_j}{t} \right) = 0 \).

Εποτέ, \(V_j(g_{\kappa \lambda}) \geq 0, \quad V_j(h_{\mu \nu}) \geq 0 \) και:

\[\min_{\kappa, \lambda} \{ V_j(g_{\kappa \lambda}) \} = 0, \quad \min_{\mu, \nu} \{ V_j(h_{\mu \nu}) \} = 0. \]

Από το λήμμα 3.1.3 ύστερα \(g_{\kappa \lambda} + m_j = R_{\kappa \lambda}(w_3) + m_j \). Αν \(R_{\kappa \lambda}(w_3) = \sum_{l} \epsilon_{\kappa \lambda \ell} w_3^\ell \)

τότε, όπως είδαμε στην απάντηση του λήμματος 3.1.4, έχουμε

\[g_{\kappa \lambda} + m_j = R_{\kappa \lambda}(w_3) + m_j = \sum_{l} \epsilon_{\kappa \lambda \ell} v_j^\ell + m_j = \sum_{l} C_{\kappa \lambda \ell} v_j^\ell + m_j, \]
3.1. ΤΟ ΑΝΤΙΠΑΡΑΔΕΙΓΜΑ ΤΟΥ ΝΑΓΑΤΑ - ΑΛΓΕΒΡΙΚΟ ΜΕΡΟΣ

όταν $C_M = c_M a^i_j$. Το $\min_{\lambda\in\mathbb{N}} \{V_j(g_{\alpha\lambda})\} = 0$ συνιστά με το ότι για κάθε κ_0, λ_0, l_0 έχουμε $C_{\kappa_0,\lambda_0,l_0} \neq 0$. Πράγματι, αν $C_M = 0$ για κάθε κ, λ, l τότε $R_{\alpha\lambda}(w) + m_l = m_j$ για κάθε κ, λ και επιμένεις $V_j(g_{\alpha\lambda}) \geq 1$ για κάθε κ, λ. Από την άλλη, αν για κάθε κ_0, λ_0, l_0 έχουμε $C_{\kappa_0,\lambda_0,l_0} \neq 0$, τότε $R_{\alpha\lambda}(w) + m_l = m_j$ και επιμένεις $V_j(g_{\alpha\lambda}) = 0$. Πράγματι, διαφορετικά θα είχαμε $\sum C_{\kappa_0,\lambda_0,l_0} v_j^l + m_j = m_j$ και ώρα $y_j \mid \sum C_{\kappa_0,\lambda_0,l_0} v_j^l = 0$, διάστη δεν περιέχει το y_j. Όμως $\min_{\lambda\in\mathbb{N}} \{V_j(g_{\alpha\lambda})\} = 0$, διότι το v_j είναι αλγεβρικά ανεξάρτητο πάνω από το C (ξ. λήμμα 3.1.1), πράγματι άποιο από την υπόθεση. Όμως εκφραστάμε όταν: $h_{\mu\nu} + m_j = S_{\mu\nu}(w) + m_j$ ή

$$h_{\mu\nu} + m_j = S_{\mu\nu}(w) + m_j = \sum_m d_{\mu\nu m} a^m_{\beta\gamma} v^m_{\beta\gamma} + m_j = \sum_m D_{\mu\nu m} v^m_{\beta\gamma} + m_j,$$

όταν $D_{\mu\nu m} = d_{\mu\nu m} a^m_{\beta\gamma}$ και $D_{\mu\nu m} m_0 \neq 0$ για κάθε μ_0, ν_0, m_0. Από τα παραπάνω, η εξίσωση 3.1 γίνεται:

$$\sum_{l, \kappa + \lambda = m_0 + s_0} C_{\kappa,\lambda} v_j^l \sum_{\nu} (\frac{1}{\lambda})^\nu v^\nu_{\alpha\beta} + \sum_{m, \mu + \nu = m_0 + s_0} D_{\mu\nu m} v^m_{\beta\gamma} (\frac{1}{\mu})^\nu = 0 \quad (3.2)$$

Ισχυρίζονται τα όταν όταν z_j, z_j, v_j, l, είναι αλγεβρικά ανεξάρτητα πάνω από το C. Πράγματι, από το λήμμα 3.1.1 είχαμε όταν $w_1, w_2, w_3, x, y_1, \ldots, y_r$ είναι αλγεβρικά ανεξάρτητα πάνω από το C. Από τον ορισμό των z_j, z_j συμπεραίνουμε όταν $z_j, z_j, w_3, x, y_1, \ldots, y_r$ είναι αλγεβρικά ανεξάρτητα πάνω από το C. Το παραπάνω χαρακτηρίζει τη γενικότερη, όταν $j \neq r$. Επεκτά δη $y_r = \frac{1}{y_1 y_2 \cdots y_{r-1}}$, τα $z_j, z_j, w_3, x, y_1, \ldots, y_{r-1}$ είναι αλγεβρικά ανεξάρτητα πάνω από το C. Επίσης, επεκτά δη $x_1 = \frac{y}{y_1}$ και τα $z_j, z_j, w_3, x, y_1, \ldots, y_{r-1}$ είναι αλγεβρικά ανεξάρτητα πάνω από το C και επομένως το ιδίο ισχύει και για τα z_j, z_j, v_j, l. Συνέπεια, η τελευταία σχέση 3.2 δίδει $C_M = 0$, για κάθε κ, λ, l, το $D_{\mu\nu m} = 0$ για κάθε μ, ν, l (που διδάσκουμε όταν $m_0 \neq m_0$). Ετσι φτάνουμε στο ότι και το λήμμα αποδεικνύεται.

Εφαρμόστε το σημείο της πρότασης 3.1.3.

Αποδείξη: Επιπλέον ένα στοιχείο της μορφής $\sum a^l_n t^{-n}$ (πεπερασμένο ανθρώπινο), με $a_n \in C[w_1, w_2, w_3]$ και ύστερα $n > 0$, $a_n \in P_n$. Προσανατολιστείς, $\sum a^l_n t^{-n} \in C(w_1, w_2, w_3, l)$. Επίπεδα, παρατηρήσεις όταν $\sum a^l_n t^{-n} \in C[x_1, \ldots, x_r, y_1, \ldots, y_r]$, διότι $n > 0$, τότε $a_n \in P_n$ και $a_n \in p^n_j$, $\forall j = 1, \ldots, r$. Άρα για κάθε j το y_j^n διαφέρει το a_n στον διακτύλιο $C[x_1, \ldots, x_r, y_1, \ldots, y_r]$ και, ως εκ του προτύπου, το t^n διαφέρει το a_n στον διακτύλιο $C[x_1, \ldots, x_r, y_1, \ldots, y_r]$. Επομένως...
\[a_n t^{-n} \in \mathbb{C}[x_1, \ldots, x_r, y_1, \ldots, y_r], \forall n, \]

όπως

\[\sum a_n t^{-n} \in \mathbb{C}(w_1, w_2, w_3, l) \cap \mathbb{C}[x_1, \ldots, x_r, y_1, \ldots, y_r] = S^g. \]

Επομένως, οποιεσδήποτε ό,τι το σύνολο όλων των συναρτήσεων της μορφής \(\sum a_n t^{-n} \) (πεπερασμένο άθροισμα), \(a_n \in \mathbb{C}[w_1, w_2, w_3] \), \(\forall a_n \in \mathbb{P}_n \) όταν \(n > 0 \), ενώ εποικόλο το \(S^g \).

Αντίστροψα, ακολουθούμε ένα στοιχείο \(s \in S^g \). Τότε από το κόμμα 3.1.2 έχουμε \(s = \sum a_n t^{-n} \) (πεπερασμένο άθροισμα) \(a_n \in \mathbb{C}[w_1, w_2, w_3] \). Για κάθε \(j = 1, \ldots, r \), έχουμε \(V_j(s) \geq 0 \), δηλαδή \(s \in \mathbb{C}[x_1, \ldots, x_r, y_1, \ldots, y_r] \). Άρα

\[V_j(\sum a_n t^{-n}) \geq 0, \quad j = 1, \ldots, r. \]

Ομοιοί, λόγω του κόμματος 3.1.5,

\[V_j(\sum a_n t^{-n}) = \min_n \{V_j(a_n t^{-n})\}. \]

Άρα για κάθε \(j = 1, \ldots, r \) έχουμε

\[\min_n \{V_j(a_n t^{-n})\} \geq 0 \implies V_j(a_n t^{-n}) \geq 0, \forall n \]

\[\implies V_j(a_n) - n \geq 0, \forall n \implies V_j(a_n) \geq n, \forall n. \]

Επομένως, αν \(n > 0 \), σύμφωνα με τα παραπάνω και το κόμμα 3.1.4, έχουμε \(a_n \in P^n \), \(\forall j = 1, \ldots, r \), όπως και \(a_n \in \mathbb{P}_n \).

Πρόταση 3.1.4. Εστία \(D \) μια ακέραια περιοχή και \(\ds B_1, B_2, \ldots, B_{m+1} \) ακολουθία ακόλουθων της \(D \), τέτοια ώστε \(B_{i+1} \subset B_i \), \(i = 1, 2, \ldots, m+1, \) \(B_i \cap B_j \subset B_{i+j} \), \(i, j = 1, 2, \ldots \). Έστω \(l \) ένα υπερβαστικό τόσο στοιχείο από την \(D \) και \(\ds D^* \) το σύνολο των στοιχείων της μορφής \(\sum b_l l^{-j} \) (πεπερασμένο άθροισμα), \(b_l \in D \) και \(a_n \in D \) και \(j > 0 \), \(b_j \in B_j \). Τότε το \(D^* \) αποτελεί ακέραια περιοχή. Ακόλουθα, αν \(\ds D^* \) είναι πεπερασμένα παραγώγη τόσο από την \(D \), τότε ισχύει πεπερασμένα άθροισμα του \(D \), τέτοιος ώστε \(B_m = B_{m+1} \), για κάθε πεπερασμένο αριθμό \(l \).

Απόδειξη. Έστω \(d_1, d_2 \in D^* \). Τότε \(d_1, d_2 \) γράφονται ιστ. \(d_1 = \sum_j b_j l^{-j} \) και \(d_2 = \sum_j b_j^2 l^{-j} \), \(b_j, b_j^2 \in D \) (και \(a_n \in D \) και \(a_n \in D \) και \(j > 0 \), \(b_j, b_j^2 \in B_j \)). Εξήλθαμε, \(d_1, d_2, d_1, d_2 \in D^* \). Πράγματι, είναι προφανές ότι:

\[d_1 - d_2 = \sum_j (b_j^1 - b_j^2) l^{-j} \in D^* \]

και για το γράφοντα

\[d_1 d_2 = \sum_{i,j} b_j^1 b_j^2 l^{-(i+j)} \]
3.1. ΤΟ ΑΝΤΙΠΑΡΑΔΕΙΓΜΑ ΤΟΥ ΝΑΓΑΤΑ - ΛΑΓΕΒΡΙΚΟ ΜΕΡΟΣ

αρχεία να ελέγχουμε ότι αν $i + j > 0$, τότε $b_1^i b_2^j \in B_{i+j}$. Εστώ λοιπόν i, j με $i + j > 0$. Τότε:

(i) αν $i, j > 0$, τότε $b_1^i \in B_i$ και $b_2^j \in B_j$. Επομένως $b_1^i b_2^j \in B_i B_j \subset B_{i+j}$, όρα $b_1^i b_2^j \in B_{i+j}$ και:

(ii) αν $i > 0$, $j < 0$, τότε $b_1^i \in B_i$, όρα $b_1^i b_2^{-j} \in B_i$ και αφού $i + j < i$, έχουμε $B_i \subset B_{i+j}$, όρα $b_1^i b_2^{-j} \in B_{i+j}$.

Από τα παραπάνω συμπεραίνουμε ότι το σύνολο D^* είναι ένας διαστίλος και μάλιστα υποδιαστίλος του $D[t, 1/t]$. Ο $D[t, 1/t]$ είναι οιακή περιοχή, διότι η D είναι οιακή περιοχή, όρα και ο D^* είναι οιακή περιοχή. Σημειώνουμε ότι $t \in D^*$, ενώ $t^{-1} \in D^* \iff B_i = D, \forall i$. Έχουμε λοιπόν ότι οι εγκλεισμοί $D \subset D[t] \subset D^* \subset D[t, 1/t]$.

Τοποθέτουμε τώρα ότι η οιακή περιοχή D^* είναι πεπερασμένα παραγόμενη τάκτως από την D και ότι a_1, a_2, \ldots, a_n είναι γενικότερα της δηλ. $D^* = D[a_1, a_2, \ldots, a_n]$. Κάθε ένα από τα a_i γράφεται ως $a_i = \sum_j b_i^j t^{-j}$, οπότε υπάρχει ένας γραμμικός αριθμός s, τέτοιος ώστε η D^* να παράγεται πάνω από την D από το t και από στοιχεία της μορφής $b_i t^{-j}$, με $b_j \in B_j$, $0 \leq j \leq s$, δηλ. $D^* = D[t, d_1 t^{-1}, \ldots, b_s t^{-s}]$ με $b_j \in B_j$, $0 \leq j \leq s$. Εστώ t γραμμικός γραμμικός αριθμός και a_n στοιχείο του B_n. Τότε το $b_s t^{-n}$ είναι στοιχείο της D^*, οπότε γράφεται ως αδρομιά στοιχεία της μορφής $t^n a_1 (t^{-1}) a_2 (t^{-2}) a_3 (t^{-3}) \cdots a_s (t^{-s})$, με $n_i \geq 0$, $i = 0, \ldots, s$ και $a_1 \in B^{s_1}_1$, $i = 1, \ldots, s$. Επίσης, λόγω της υπερβολικότητας του t πάνω από την D, θα πρέπει:

$$1 n_1 + 2 n_2 + \ldots + s n_s = n + n_0 \geq n.$$

Αρκεί $b_n \in \sum B^{(s_1)}_1 B^{(s_2)}_2 \cdots B^{(s_s)}_s$, όπου η αδρομιά γίνεται πάνω από κάτι από n_1, n_2, \ldots, n_s με $1 n_1 + 2 n_2 + \ldots + s n_s \geq n$. Θεωρούμε τώρα την περίπτωση όταν $n \geq ss!$. Τότε,

$$1 n_1 + 2 n_2 + \ldots + s n_s \geq ss!$$

όρα, υπάρχει $t \in \{1, 2, \ldots, s\}$, τέτοιο $\text{όπως } t n_t \geq ss!$. Συνεπώς,

$$B^{(s_1)}_1 B^{(s_2)}_2 \cdots B^{(s_s)}_s = B^{(s_1)}_1 B^{(s_2)}_2 \cdots B^{(s_{t-1})}_t B^{(s_t)}_t \cdots B^{(s_{t+1})}_{t+1} \cdots B^{(s_s)}_s \subset B_s B^{s-s}_{n-s}.$$

Πράγματι,

$$B^{(s_t)}_t = B_1 B_2 \cdots B_t \subset B_1 t + \ldots + t = B_1,$$

και:

$$B^{(s_{t-1})}_1 B^{(s_t)}_t \cdots B^{(s_{t+1})}_{t+1} \cdots B^{(s_s)}_s \subset B_1 n_1 \cdots B_{t-1} n_{t-1} B_{t-1} (s(t)) B_{t-1} n_{t+1} \cdots B_{s-s} \subset B_{1} + 2 n_2 + \ldots + s n_s \subset B_{n-s}!$$

δηλ. $1 n_1 + 2 n_2 + \ldots + s n_s - s! \geq n - s!$ και η συσχετική B_1, B_2, \ldots είναι γραμμικά.

Άρα έχουμε δείξει ότι αν $n \geq ss!$ και $b_n \in B_n$, τότε $b_n \in B_s B_{n-s}$, δηλαδή αν
KEΦΑΛΑΙΟ 3. ΤΟ 14-Ο ΠΡΟΒΛΗΜΑ ΤΟΥ HILBERT

\[n \geq ss! , \text{tòte } B_n \subset B_sB_{m-s} . \text{ Έστω ότι } n \text{ είναι ένα τυχαίο πολλαπλάσιο του } ss!, \text{ δηλαδή } n = ss! , \text{ } l \in \mathbb{N} . \text{ Τότε } n \geq ss! \text{ όρα σύμφωνα με τα προηγούμενα έχουμε}
\]

\[
B_{ss!} = B_sB_{ss!-ss!} = B_sB_sB_{ss!-ss!-ss!} = \cdots = B_{ss!}^{(l-1)}B_{ss!-[s(l-1)]ss!} = B_{ss!}^{(l-1)}B_{ss!}.
\]

Όμως

\[
B_{ss!}^{(l-1)} = (B_{ss!})^{l-1} \subset B_{ss!}^{l-1}
\]

όρα,

\[
B_{ss!}^{(l-1)}B_{ss!} \subset B_{ss!}^{l-1}B_{ss!} = B_{ss!}^l.
\]

Επομένως \(B_{ss!} \subset B_s^l \) χαί, ως εκ τούτου, \(B_{ss!} = B_s^l \) (ο αντίστροφος εγκάθεσις ισχύει από την υπόθεση μας), χάτι που αποδεικνύει το λήμμα θέτοντας \(m = ss! . \)

Ολοκληρώμαστε αυτή την παράγραφο με την απόδειξη του θεώρηματος 3.1.1.

Απόδειξη. Για την ακολουθία των ιδεών \(P_m \) της οσέραν ικανοποιημένης \(D = C[w_1, w_2, w_3] \) που εφαρμόζει στην αρχή της παραγράφου, ισχύουν τα εξής:
i) \(P_{l+1} \subset P_l , \text{ } l = 1, 2, \ldots \) και: ii) \(P_lP_j \subset P_{l+j} , \text{ } i, j = 1, 2, \ldots \)

Από την πρόταση 3.1.3 συνεποιούμε ότι το \(S^D \) επιλέγεται με το \(D^* \) της πρότασης 3.1.4. Αν λοιπόν το \(S^D \) ήταν πεπερασμένα παραγομένο πάνω από το \(C \), τότε θα ήταν πεπερασμένα παραγομένο και πάνω από την ακάτερα περιοχή \(C[w_1, w_2, w_3] \) (\(C \subset C[w_1, w_2, w_3] \subset S^D \)), οπότε σύμφωνα με την πρόταση 3.1.4 θα υπάρχει ικανός αριθμός \(m \), τέτοιος ώστε να ισχύει \(P_{sl} = P_{ml} \), για κάθε \(l \in \mathbb{N} \). Όμως αυτό δε μπορεί να ισχύει λόγω της πρότασης 3.1.1. Άρα το \(S^D \) δεν είναι πεπερασμένα παραγομένα με \(C \)-άλγεβρα.

3.2 Το αντιπαράδειγμα του Nagata - Γεωμετρικό μέρος

Στην παράγραφο αυτή θα αποδεικνύσουμε την επιφύλαξη της πρότασης (i) της παραγράφου 3.1. Χάρη αυτόν τον λόγο, θα αποδεικνύσουμε πρώτα την ανικανότητα της πρότασης με το ακανόντερο αριθμητικό \(d \geq m \sqrt{r} \), [3]. Θεώρημα 3.2.1. Η πρόταση αυτή βρίσκεται στην εργασία [CK]. Η απόδειξη για την ακανόντερη αριθμητική, που βρίσκεται στην εργασία [N2], είναι τεχνικά πολύ δύσκολη και δίδεται στο θεώρημα 3.2.2. Αρχικούμε με κάποια λήμματα.

Αίτημα 3.2.1. Έστω \(X \) μια επιφάνεια Riemann γένους \(g > 0 \) και \(\varepsilon \) το \(L_0 \) ένα στοιχείο της Ιπποβάτης \(J(X) \) της \(X \). Τότε, για κάθε φυσικό αριθμό \(k \), υπάρχουν

3.2 ΤΟ ΑΝΤΙΠΑΡΑΔΕΙΓΜΑ ΤΟΥ ΝΑΓΑΤΑ - ΓΕΩΜΕΤΡΙΚΟ ΜΕΡΟΣ 53

ακριβώς \(k^{2g} \) σημεία της \(\mathcal{J}(X) \), ας πούμε τα \(L_1, \ldots, L_{k^{2g}} \), τέτοια ώστε να ικανοποιήσουν οι κάθε \(l_i = L_0 \), για κάθε \(i = 1, \ldots, k^{2g} \).

Αποδείξη. Όπως είλαμε, η Ιακωβιανή της \(X \) είναι η συμβολόπεδη περιφέρεια \(\mathcal{J}(X) = C^9 / \Lambda \), όπου \(\Lambda = \left\{ \sum_{j=1}^{2g} n_j \pi_j : j = 1, \ldots, 2g \right\} \) και τα \(\pi_j \), \(j = 1, \ldots, 2g \), είναι 2γ Βεζουτικά αναμετρητά διανύσματα. Έστω \(k \) ένας τυχόν φυσικός αριθμός.

Θεωρούμε πρώτα την περίπτωση όπου \(L_0 = 0 + \Lambda \in \mathcal{J}(X) \). Αναζητούμε το πλήθος των σημείων \(L = x + \Lambda \), για τα οποία \(k(x + \Lambda) = 0 + \Lambda \). Προφανώς,

\[
\begin{align*}
kx \in \Lambda \iff kx &= n_1 \pi_1 + \cdots + n_{2g} \pi_{2g}, \quad n_1, \ldots, n_{2g} \in \mathbb{Z} \\
x &= \frac{n_1}{k} \pi_1 + \cdots + \frac{n_{2g}}{k} \pi_{2g}, \quad n_1, \ldots, n_{2g} \in \mathbb{Z}.
\end{align*}
\]

Επομένως, αν λάβουμε υπ’ οίλον και τη γραμμική ανεξαρτησία των \(\pi_1, \ldots, \pi_{2g} \), όπως τις διαφορετικές στοιχεία της Ιακωβιανής της \(X \) που ορίζουν την εξίσωση \(k(x + \Lambda) = 0 + \Lambda \) είναι τα στοιχεία της μορφής \(\left(\frac{n_1}{k} \pi_1 + \cdots + \frac{n_{2g}}{k} \pi_{2g} \right) + \Lambda \), όπου \(n_j \in \{1, \ldots, k\} \) για κάθε \(j = 1, \ldots, 2g \). Άρα το πλήθος των λύσεων της εξίσωσης \(kL = 0 \) στην \(\mathcal{J}(X) \) είναι ακριβώς \(k^{2g} \).

Έστω τώρα τυχόν σημείο \(L_0 \in \mathcal{J}(X) \) και \(L_1, \ldots, L_{k^{2g}} \) τα στοιχεία της Ιακωβιανής της \(X \) για τα οποία \(kL_0 = 0 \). Τότε τα \(L_i' = L_i + \frac{1}{k} L_0 \), \(i = 1, \ldots, k^{2g} \) είναι όλες οι διαφορετικές λύσεις της εξίσωσης \(kL = 0 \) στην \(\mathcal{J}(X) \). \(\square \)

Αίτημα 3.2.2. Έστω \(r = s^2 \), όπου \(s \) είναι φυσικός αριθμός με \(s \geq 3 \). Έστω \(M \) μια λεία ανάλογη καμπύλη βαθμού \(s \) και \(Q_1, \ldots, Q_r \) σημεία στην \(M \) σε γεωμ. θέση. Αν μια καμπύλη \(N \) βαθμού \(r \) διέρχεται από αυτά τα σημεία \(Q_1, \ldots, Q_r \), με πολλαπλάσια τουλάχιστον \(m \) τότε \(N \) είναι ίση με τη \(mM \).

Αποδείξη. Την προσέγγισε ότι: \(N \neq mM \) και θα δείξουμε έτσι. Γράψουμε την καμπύλη \(N \) ως \(N = \alpha M + C \), όπου \(\alpha \) είναι ένας μη αρνητικός ακέραιος αριθμός με \(\alpha < m \) (από την υπόθεση) και \(C \) είναι καμπύλη βαθμού \(s(m - \alpha) \) > 0 που δεν περιέχει την \(M \). Το πλήθος των σημείων τομής των καμπύλων \(C \) και \(M \) (μετά την κάθε \(\alpha \)), \(C \) είναι ακριβώς \(s^2(m - \alpha) = r(m - \alpha) \), βα. το Θεώρημα του Bezout 2.1.1. Η καμπύλη \(C \) τέμνει την \(M \) στα σημεία \(Q_1, \ldots, Q_r \), και διέρχεται από κάθε \(\alpha \) από αυτά με πολλαπλάσια τουλάχιστον \(m - \alpha \). Άρα τα σημεία τομής των \(C \) και \(M \) είναι ακριβώς \(Q_1, \ldots, Q_r \). Επομένως, αν θέσουμε \(D = Q_1 + \cdots + Q_r \), ο διαφέρει τομής που ορίζεται πάνω στην καμπύλη \(M \) από την τομή της με την καμπύλη \(C \) είναι \(\alpha (m - \alpha)D \).

Έστω \(H \) ένα τυχόν υπερισχύον του προβακλούς επιπέδου και έστω \(D_0 \) ο διαφέρει τομής που ορίζεται πάνω στην καμπύλη \(M \) από την τομή της με το \(s(m - \alpha)\)-πολλαπλάσιο του \(H \). Αυτός αντιστοιχεί, μέσω της κατανόησης Abel-Jacobi βαθμού \(s^2(m - \alpha) \) σε ένα (χαρακτηριστικό!) σημείο \(L_0 \) της Ιακωβιανής.
Σχήμα 3.1:

Ο διαφέροντα $(m - \alpha)D$ είναι γραμμικά ασμάλωμα με τον D_0, οπότε μέσα της παρατήρησης Abel-Jacobi ο διαφέροντα $(m - \alpha)D$ αντιστοιχεί στο δ στοιχείο L_0 στην Ισακία ονομαζόμενη της M. Έτσι $p = [(s - 1)(s - 2)]/2$ το γένος της M. Αφού $s \geq 3$, το γένος της M είναι άκτικο.

Υποθέσουμε ότι υπάρχουν τετερωμένα τα πλήθος σημεία $L = L_i, i = 1, 2, \ldots, (m - \alpha)^2$, της Ισακίας της βαθμού r με $(m - \alpha)L = L_0$ [3], λήμμα 3.2.1. Θεωρούμε τώρα τη σπείρα χωρίς Ισακία Abel-Jacobi βαθμού r, $w_r : M^{(r)} \rightarrow \mathcal{J}(M)$. Σύμφωνα με την παρατήρηση, ο διαφέροντα D αντίστοιχεί σε μία από τις w_r πάνω από κάποιο από τα στοιχεία $L_i, i = 1, 2, \ldots, (m - \alpha)^2$, γεγονός που αντίστοιχεί στη γενικότερη των Q_1, \ldots, Q_r. Έτσι γράφουμε σε ἀστικα.

Ετσι Δ το υποσύνολο του $S^{(r)}$ που αποτελείται από τις διαγωνίους του $S^{(r)}$, δηλαδή τα στοιχεία της μορφής $P_1 + \cdots + P_r$ για τα οποία $P_i = P_j$ για κάθε i, j με $i \neq j$. Θέτουμε $U_r = S^{(r)} \setminus \Delta$.

Όταν ήδη έχουμε δεί, οι επίπεδες καμπύλες βαθμού d, έρχονται σε ένα πλαϊνό αντιστοιχία με τα στοιχεία του \mathbb{P}^N, $N = \binom{d+2}{d} - 1$, μέσα της $C \mapsto [C]$, όπου το $[C] \in \mathbb{P}^N$ έχει ως συντεταγμένες τους συντεταγμένες τους ομοιογόνους πολυόροφου που ορίζει την καμπύλη $[C]$. Συμβολίζουμε ως $X_{d,m}$ το υποσύνολο του $\mathbb{P}^N \times U_r$ που αποτελείται από ξ, $\xi \in \mathbb{P}^N \times \mathbb{P}^N \times \delta$, όπου C είναι μια επίπεδη καμπύλη που διάρκει από τα σημεία P_1, \ldots, P_r, με πολλαπλότητα τουλάχιστον m, δηλαδή

$$X_{d,m} = \{(\xi, P_1 + \cdots + P_r) / \deg C = d, \ \text{mult} C \geq m, \ i = 1, \ldots, r \} \subset \mathbb{P}^N \times U_r.$$
3.2 ΤΟ ΑΝΤΙΠΑΡΑΔΕΓΜΑ ΤΟΥ ΝΑΓΑΤΑ - ΓΕΩΜΕΤΡΙΚΟ ΜΕΡΟΣ

Από τον τρόπο ορισμού του, αποδεικνύεται ότι το $X_{d,m}$ είναι ένα αλγεβρικό πολυπλάσιο. Θεωρούμε την προβολή

$$\pi : X_{d,m} \rightarrow U_r.$$

Τότε είχε η εξής πρόταση:

Πρόταση 3.2.1. Η συνάρτηση δ που ορίζεται στο U_r ως $\delta(P) = \dim_{\pi} \pi^{-1}(P)$, για κάθε $P = P_1 + \cdots + P_r \in U_r$, είναι άνω ημισυνεχής ως προς την Z-τοπολογία.

Σημείωση 3.2.1. Η παραπάνω πρόταση είναι ειδική περίπτωση τής εξής πρότασης: Εστώ X μια αλγεβρική πολυπλάσια και $\phi : X \rightarrow \mathbb{P}^n$ μια απεικόνιση στον προβολικό χώρο. Υποθέτουμε ότι για κάθε $Q \in X$ η ίνα $X_Q = \phi^{-1}(\phi(Q))$ είναι μια ορατή πολυπλάσια. Τότε η συνάρτηση $\mu : X \rightarrow \mathbb{N}$ με $\mu(Q) = \dim_{\phi(Q)}$ είναι άνω ημισυνεχής στην X ως προς την Z-τοπολογία.

Θεώρημα 3.2.1. Εστώ $r = s^2$, όπου s είναι φυσικός αριθμός με $s \geq 3$. Εστώ ότι τα P_1, \ldots, P_r είναι σημεία του προβολικού επιπέδου \mathbb{P}^2 ευρυκόμενα σε γενική βάση. Αν μια καμπύλη C βαθμού d διέρχεται από αυτά με πολλαπλάσια, τότε $d \geq sm$.

Αποδείξη: Τοποθετήσαμε ότι για το γενικό σημείο $P = P_1 + \cdots + P_r$ του U_r υπάρχει καμπύλη C βαθμού d με $d < sm$ που διέρχεται από τα σημεία P_1, \ldots, P_r με πολλαπλάσια πολύκροτσα m. Αυτό σημαίνει ότι υπάρχει ένα κατά Zariski οικογένεια υποσύνολο A του U_r και B_1, B_2, \ldots καθετού υποσύνολο του U_r, έτσι ώστε για κάθε $P = P_1 + \cdots + P_r \in A \setminus (\bigcup_j B_j)$ να ισχύει $\delta(P) \geq 0$. Θα δείξουμε ότι $\delta(x) \geq 0$, $\forall x \in U_r$.

Εστώ ότι υπάρχει $x_0 \in U_r$ τέσσερα ώστε $\delta(x_0) = -1$, δηλ. ότι η ίνα πάνω από το σημείο x_0 είναι το κενό σύνολο. Τότε αυτό η συνάρτηση δ είναι άνω ημισυνεχής (βλ. πρόταση 3.2.1) ώστε να υπάρχει ανοιχτή περιοχή V_{x_0} του x_0, τέσσερα ώστε να ισχύει:

$$\delta(x) \leq \delta(x_0) = \delta(x) = -1, \forall x \in V_{x_0}.$$

Όμως αυτό είναι οπότε, δηλ. το σύνολο $A \setminus (\bigcup_j B_j)$ είναι πυκνό στο U_r, πράγμα που σημαίνει ότι έχει μια κενή τομή με το V_{x_0}. Αρα πράγματι: $\delta(x) \geq 0, \forall x \in U_r$.

Θεωρούμε τώρα σημεία Q_1, \ldots, Q_r, όπως στο λήμμα 3.2.2. Σύμφωνα με τα παραπάνω έχουμε

$$\delta(Q_1 + \cdots + Q_r) \geq 0,$$

όπως υπάρχει καμπύλη C βαθμού $d < sm$ που διέρχεται από τα σημεία Q_1, \ldots, Q_r με πολλαπλάσια τουλάχιστον m. Γράφουμε το d ως $d = sm - \alpha$, $\alpha \geq 1$ και θεωρούμε την καμπύλη $C^* = C + \alpha L$, όπου L συμβολίζουμε μια τύχα ευθεία. Τότε η C^* είναι ένα καμπύλη βαθμού sm που διέρχεται από τα σημεία Q_1, \ldots, Q_r.

με πολλαπλότητα τουλάχιστον m. Σύμφωνα με το λήμμα 3.2.2, έχουμε $C^* = mM$.
Ομως το τελευταίο είναι ακόμα, διότι η καμπύλη M είναι ανάγκη, ενώ η C^* περιέχει την ευθεία L.

Θεώρημα 3.2.2. Εστώ $r = s^2$, όπου o s είναι φυσικός αριθμός με $s > 3$. Εστο ότι τα P_1, \ldots, P_r είναι σημεία του προβολικού επιπέδου P^2 ετεροκύρκυνα σε γενική βάση. Αν μια καμπύλη C βαθμού d διέρχεται από αυτά με πολλαπλότητα τουλάχιστον m, τότε $d > sm$.

Απόδειξη. Υποθέτουμε ότι υπάρχει καμπύλη C βαθμού $d = sm$ που διέρχεται από τα γενικά σημεία του προβολικού επιπέδου P_1, \ldots, P_r με πολλαπλότητα τουλάχιστον m. Τότε, λόγω της πρότασης 3.2.1, για οποιοδήποτε s σημεία του προβολικού επιπέδου υπάρχει: καμπύλη βαθμού sm που διέρχεται από αυτά με πολλαπλότητα τουλάχιστον m. Ξεκινάμε με την περίπτωση όπου o s είναι περίτοιχος. Θεωρούμε $s' = (s + 1)/2$. Στην περίπτωση όπου o s είναι άρτιος εργαζόμαστε ανάλογα.

Σχήμα 3.2:

Θεωρούμε μια λεία καμπύλη $C_{s'}$ βαθμού s' και P_1, \ldots, P_s σημεία στη $C_{s'}$ σε γενική βάση. Έστω $C_{s'}$ μια λεία καμπύλη βαθμού s' που διέρχεται από τα σημεία P_1, \ldots, P_s και τέμνει τη $C_{s'}$ εγκάρσια. Σημειώνουμε ότι μια καμπύλη με τις διατάξεις της $C_{s'}$ υπάρχει διότι η (προβολική) διάσταση του γραμμικού χώρου
3.2 ΤΟ ΑΝΤΙΠΑΡΑΔΕΙΓΜΑ ΤΟΥ NAGATA - ΓΕΩΜΕΤΡΙΚΟ ΜΕΡΟΣ 57

tων επίπεδων χαμηλών βαθμού s' είναι ίση με

$$\left(\frac{s' + 2}{2}\right) - 1 = \frac{s'(s' + 3)}{2},$$

όπως η (προβλεπόμενη) διάσταση του γραμμικού χώρου των επίπεδων χαμηλών βαθμού s' που διερχομαι από τα σημεία P_1, \ldots, P_s είναι τουλάχιστον

$$\frac{s'(s' + 3)}{2} - s = \frac{(s' - 2)(s' + 1)}{2} > 0$$

($s \geq 5$, φαίνεται όταν $s' \geq 3$). Θεωρούμε επίσης με δείκτη χαμηλή C_s βαθμού s η οποία τείνει τις C_s^0, C_s' ενιαίως. Επιλέγουμε σημεία Q_1, \ldots, Q_{r-s} πάνω στη C_s, έτσι ώστε Q_1, \ldots, Q_{r-s} να είναι κάτω από τα σημεία τομής των C_s, C_s' και ο $Q_{r-s+1}, \ldots, Q_{r-s}$ να είναι κάτω από τα σημεία τομής των $C_s^0, C_s'^0$. Σύμφωνα με την αρχή μιας υπόθεσης, υπάρχει καμπύλη E βαθμού s που διερχόμαι από τα σημεία $P_1, \ldots, P_s, Q_1, \ldots, Q_{r-s}$ με πολλαπλάσια τουλάχιστον m. Θε δείχνουμε ότι E περιέχει τις C_s. Ας υποθέσουμε ότι αυτό δεν ισχύει. Τότε οι $E, C_s' \gamma$ τείνονται σε ms' $= s(s+1)m/2$ σημεία (Θεώρημα του Bezout 2.1.1). Παρατηρούμε ότι τα σημεία $P_1, \ldots, P_s, Q_1, \ldots, Q_{r-s}$ είναι σημεία τομής των E, C_s' με πολλαπλάσιο τομής στο κάθε E. Το πλήθος των παραπάνω σημείων, αν μετρήσουμε το κάθε E τότε θα υπάρχει ακριβώς ότι το πολλαπλάσιο τομής σε αυτά ήταν ίσο με

$$ms + m\left(\frac{s-1}{2}\right) = s(s+1)m/2.$$

Αρα τα σημεία τομής των E, C_s' είναι ακριβώς τα $P_1, \ldots, P_s, Q_1, \ldots, Q_{r-s}$ με πολλαπλάτσια τομής στο κάθε E από αυτά με m και ο διαφορές που ορίζονται πάνω στη C_s' από αυτά είναι οι $\sum_{i=1}^{s} mP_i + \sum_{i=1}^{r-s} mQ_i = mD$, όπου $D = \sum_{i=1}^{s} P_i + \sum_{i=1}^{r-s} Q_i$. Θεωρούμε πλήθος H του προβλεπόμενου επίπεδου και υποθέτουμε ότι ο D_0 είναι ο διαφορές που ορίζονται πάνω στη C_s' από τα σημεία τομής της m. Όταν οι διαφορές D_0, mD είναι γραμμικά ισόδυνα, αρα ο C_s είναι δείκτης L_0 της Ισωπολίας της C_s'. Έτσι $p = (s-1)(s-2)/2$, δηλ. το γένος της καμπύλης C_s'. Σημειώνουμε ότι αυτό είναι $p \geq 4$, το γένος της C_s' είναι γνωστό θετικό. Συμβολισμός ως $L_1, i = 1, 2, \ldots, m^2p$ τα σημεία της $J_{s(s+1)/2}(C_s')$, για τα οποία $mL_i = L_0$. Αν η

$$u_{s(s+1)/2} : C_{s(s+1)/2} \longrightarrow J_{s(s+1)/2}(C_s')$$

είναι η απεικόνιση Abel-Jacobi βαθμού $s(s+1)/2$, ο διαφορές D ανήκει σε μια κάθε $u_{s(s+1)/2}$ πάνω από κάτω οποια από τα $L_i, i = 1, 2, \ldots, m^{2p}$, δηλαδή έχουμε πεπερασμένο πλήθος επιλογών για την κλάση του διαφορές $m(\sum_{i=1}^{s} P_i + \sum_{i=1}^{r-s} Q_i)$ και αυτό έχουμε πεπερασμένο πλήθος επιλογών για τα σημεία $Q_i, i = 1, \ldots, (r-s)/2 (καθότι τα $Q_1, Q_{(r-s)/2}$ επιλέγονταν ανάμεσα στα σημεία τομής των
Κεφάλαιο 3. Το 14-ο Πρόβλημα του Hilbert

\(C_s, C'_s\), έχουμε τελικά πεπερασμένο πλήθος ευλογιών για την κλάση του διαφέρει \(P_1 + \cdots + P_s\). Το τελευταίο είναι ότι οι \(P_1, \ldots, P_s\) είναι γενικά συνεχάτες της καμπύλης \(C_s\). Εάν η καμπύλη \(E\) περιέχει την \(C_s\). Θετούμε ότι \(E' = E - C_s\).

Η καμπύλη \(E'\) έχει βαθμό \(sm - s'\) διερχόμενη από τα σημεία \(P_i, i = 1, \ldots, s\) με πολλαπλότητα τουλάχιστον \(m - 1\) και από τα σημεία \(Q_{\frac{s+1}{m}} \cdots, Q_{s-s}\) με πολλαπλότητα τουλάχιστον \(m\). Θα δείξουμε ότι η καμπύλη \(E'\) περιέχει την \(C'_s\).

Εστώ ότι \(E'\) δεν περιέχει τη \(C'_s\). Τότε το πλήθος των σημείων τομής της \(E', C'_s\) είναι \(s'(sm - s')\). Παρατηρούμε ότι τα σημεία \(P_1, \ldots, P_s\) είναι σημεία τομής των \(E', C'_s\) με πολλαπλότητα τομής (τουλάχιστον \(m - 1\) το κάθε ένα και \(s' = (sm - s')\). Αν \(E'\) περιέχει τη \(C'_s\), θα υπάρχει το σημείο \(s'\) τομής της \(E', C'_s\) με πολλαπλότητα τομής τουλάχιστον \(m\) το κάθε ένα. Άρα,

\[
s'(sm - s') \geq (m - 1)s + \frac{m - s}{2} \implies
\]
\[
ss'm - s'^2 \geq ss'm - s \implies s'^2 - s \leq 0 \implies
\]
\[
\left(\frac{s + 1}{2}\right)^2 - s \leq 0 \implies (s - 1)^2 \leq 0 \implies s = 1,
\]

που είναι ότι \(s \geq 4\) εμφανίζεις. Αρα η καμπύλη \(E'\) περιέχει τη \(C'_s\). Θετούμε \(E = E' - C'_s\). Τότε η καμπύλη \(E\) έχει βαθμό \(sm - 2s'\) διερχόμενη από τα σημεία \(P_1, \ldots, P_s\) με πολλαπλότητα τουλάχιστον \(m - 2\) και από τα σημεία \(Q_{s+1}, \ldots, Q_{s-s}\) με πολλαπλότητα τουλάχιστον \(m - 1\).

Στη συνέχεια, θεωρούμε μια ακόμη πιο ειδική θέση τη σημείων του προβλημάτος επιπέδου. Εστώ ότι \(t P_1, \ldots, P_s\) είναι σημεία της καμπύλης \(C_r\), ευρίσκομε σε γενική θέση. Θεωρούμε δύο καμπύλες \(C'_s\) και \(C''_s\) βαθμού \(s'\) που διέρχονται από τα \(P_1, \ldots, P_s\). Επιπρόσθετα, υποθέτουμε ότι τα \(Q_1, \ldots, Q_{s-s}\) είναι σημεία της \(C_r\), τέτοια ώστε τα σημεία τομής \(C_s, C'_s\) να είναι τα \(P_1, \ldots, P_s, Q_1, \ldots, Q_{s-s}\) (με πολλαπλότητα τομής \(1\) το κάθε ένα και, επίσης, τα σημεία τομής \(C_s, C'_s\) να είναι τα \(P_1, \ldots, P_s, Q_1, \ldots, Q_{s-s}\) με πολλαπλότητα τομής \(1\) το κάθε ένα).

Από την υπόθεση της καμπύλης \(E\) που είδαμε στα παραπάνω συνάγεται ότι υπάρχει μιας καμπύλης \(E'\) βαθμού \(sm - 2s'\) διερχόμενης από τα σημεία \(P_1, \ldots, P_s\) με πολλαπλότητα τουλάχιστον \(m - 2\) και από τα σημεία \(Q_1, \ldots, Q_{s-s}\) με πολλαπλότητα τουλάχιστον \(m - 1\).

Θα δείξουμε ότι η υπόθεση της καμπύλης \(E'\) οδηγεί σε όποτε, με επακόλουθο στοι μ. Αν \(m = 1\), τότε προσανατολίζουμε εισαφένται σε όποτε. Αν \(m > 1\), υποθέτουμε ότι \(τ = \frac{\text{οποιοσδήποτε γραμμικό αριθμό γνήσιοι μικρότερο από \(m\)}\) και \(\text{δεν υπάρχει καμπύλη με τις διάστασες της \(E'\)). \(τ\) \(τ\) υπάρχει καμπύλη \(E'\) διερχόμενη από τα σημεία \(P_1, \ldots, P_s\) με πολλαπλότητα τουλάχιστον \(m - 2\) και από τα σημεία \(Q_1, \ldots, Q_{s-s}\) με πολλαπλότητα τουλάχιστον \(m - 1\). Θα δείξουμε ότι τότε \(m\) δεν περιέχει την \(C_s\) με τη συμπερασμάτως \(E'\). \(τ\) \(τ\) υπάρχει καμπύλη \(C_s\). \(τ\) \(τ\) υπάρχει καμπύλη \(C_s\). Τότε το πλήθος των σημείων τομής \(C_s, E'\) είναι \(s'(sm - 2s') = s^2m - s^2 - s \implies \text{Θεώρημα του Bezout} \).
3.2 ΤΟ ΑΝΤΙΠΑΡΑΔΕΙΓΜΑ ΤΟΥ ΝΑΓΑΤΑ - ΓΕΩΜΕΤΡΙΚΟ ΜΕΡΟΣ

2.1.1) Παρατηρούμε ότι τα σημεία \(P_1^*, \ldots, P_s^* \) είναι σημεία τομής των \(C_m, E^* \) με πολλαπλότητα τομής \(m - 2 \) κάθε ένα και ότι τα σημεία \(Q_1^*, \ldots, Q_{r-s}^* \) είναι επίσης σημεία τομής των \(C_m, E^* \) με πολλαπλότητα τομής \(m - 1 \). Αρα τα σημεία τομής των κομπολών \(C_m, E^* \) είναι ακριβώς τα \(P_1^*, \ldots, P_s^* \) με πολλαπλότητα τομής \(m - 2 \) και τα \(Q_1^*, \ldots, Q_{r-s}^* \) με πολλαπλότητα τομής \(m - 1 \). Ο διαφάνης που ορίζεται πάνω στην κομπολή \(C_m \) από τα παραπάνω σημεία είναι: \(D_1 = \sum_{i=1}^{s} (m - 2)P_i^* + \sum_{i=1}^{r-s} (m - 1)Q_i^* \). Θεορούμε την κομπολή \(C_m + C_m' \). Ο διαφάνης που ορίζεται πάνω στη \(C_m \) από τα σημεία τομής της με την κομπολή \(C_m + C_m' \) είναι: \(D_2 = \sum_{i=1}^{s} 2P_i^* + \sum_{i=1}^{r-s} Q_i^* \). Στη συνέχεια θεορούμε την κομπολή \(E^* + C_m + C_m' \). Ο διαφάνης που ορίζεται πάνω στην κομπολή \(C_m \) από τα σημεία τομής της με την \(E^* + C_m + C_m' \) είναι: \(D = D_1 + D_2 = m(\sum_{i=1}^{s} P_i^* + \sum_{i=1}^{r-s} Q_i^*) \). Με την απεικόνιση της Αβελ-Ζακοβι το ροής να διεξάγουμε ότι έχουμε πεπερασμένες επιλογές για την χώση του διαφάνη \(\sum_{i=1}^{s} P_i^* \) (έχουμε χρησιμοποιήσει το διά στοιχεία για τον διαφάνη \(m(\sum_{i=1}^{s} P_i + \sum_{i=1}^{r-s} Q_i) \), πράγματι όμοιο, διότι τα \(P_1^*, \ldots, P_s^* \) είναι γενικά σημεία της \(C_m \). Αρα \(E^* \) περιέχει την κομπολή \(C_m \). Οπότε υπάρχει μια κομπολή βαθμού \(sm - 2s' - s = s(m - 1) - 2s' \), εν προκειμένω \(E^* - C_m \), η οποία διαφέρει από τα σημεία \(P_1^*, \ldots, P_s^* \) με πολλαπλότητα τουλάχιστον \((m - 1) - 2 \) και από τα σημεία \(Q_1^*, \ldots, Q_{r-s}^* \) με πολλαπλότητα τουλάχιστον \((m - 1) - 1 \). Όμως, λόγω της επαγωγικής υπόθεσης, το τελευταίο είναι άτοκο. Αρα, περιθώρια, για \(s \geq 4 \), δεν υπάρχει κομπολή βαθμού \(sm \) διερχόμενη από \(r = s^2 \) γενικά σημεία του προβόλου επιπέδου με πολλαπλότητα τουλάχιστον \(m \) στο κάθε ένα. Συνεπώς δεν υπάρχει κομπολή βαθμού γνήσια μικρότεροι του \(sm \) διερχόμενη από \(r \) γενικά σημεία του \(P^2 \), διότι αν \(C \) ήταν μια τέτοια κομπολή με βαθμό \(d \), τότε η κομπολή \(C' = C + (sm - d)L \) όπου \(L \) τυχόντα ευθεία, θα ήταν κομπολή βαθμού \(sm \) διερχόμενη από τα \(r \) γενικά σημεία του \(P^2 \) με πολλαπλότητα τουλάχιστον \(m \). □
Κεφάλαιο 4

Η εικασία του Nagata

4.1 Εισαγωγή

Με αφορμή το θεώρημα 3.2.2 ο Nagata διευκόλυνε στην εργασία του [N2] την παρασκόπα εικασία, που είναι γνωστή ως η εικασία του Nagata.

Εικασία 4.1.1 (Nagata). Εστω ότι τα P_1, \ldots, P_r είναι σημεία του προβληματικού επιπέδου \mathbb{P}^2 ευροκομένα σε γενική θέση, όπου $r \geq 10$. Αν μια καμπύλη C βαθμού d διέρχεται από αυτά με πολλαπλάσια m, τότε $d > \sqrt{r} \cdot m$.

Η παραπάνω εικασία παραμένει άλλη μέχρι των ημερών μας. Ένα από τα πρόβλημα αποτελεί μας σχεδιάζει με την εικασία του Nagata είναι αυτό που απεδείχθη από Geog Xu στην εργασία του [X], το οποίο παρουσιάζουμε παρακάτω, βλ. παράγραφο 4.2. Πρώτα όμως διδομόμε για κάθε μια από τις περιπτώσεις $r = 1, \ldots, 9$, ώστε παραβιάζει στο οποίο καθήκοντα $d \leq \sqrt{r} \cdot m$.

1. $r = 1$: Επιλέγουμε μια ευθεία που περνά από το P_1. Τότε $d = 1$, $m = 1$ και $1 = \sqrt{1} \cdot 1$.

2. $r = 2$: Επιλέγουμε την ευθεία που περνά από τα P_1, P_2. Τότε $d = 1$, $m = 1$ και $1 < \sqrt{2} \cdot 1$.

3. $r = 3$: Επιλέγουμε τρεις ευθείες που περνάνε από τα τρία ζεύγη σημείων P_1, P_2, P_3. Τότε $d = 3$, $m = 2$ και $3 < \sqrt{3} \cdot 2$.

4. $r = 4$: Επιλέγουμε μια καμπύλη βαθμού 2 (καμπύλη 2) που περνά από τα 4 σημεία. Μια τέτοια καμπύλη υπάρχει, διότι $\frac{2(2+3)}{2} = 5 \geq 4$. Τότε $d = 2$, $m = 1$ και $2 = \sqrt{4} \cdot 1$.

5. $r = 5$: Επιλέγουμε μια καμπύλη βαθμού 2 (καμπύλη 2) που περνά από τα 5 σημεία. Μια τέτοια καμπύλη υπάρχει, διότι $\frac{2(2+3)}{2} = 5 \geq 5$. Τότε $d = 2$, $m = 1$ και $2 < \sqrt{5} \cdot 1$.
6. \(r = 6 \): Ανά 5 σημεία επιλέγουμε μια καμπύλη βαθμού 2 (κυκλική καμπύλη) που περνά από αυτά (όταν στην περίπτωση \(r = 5 \)). Έχουμε με αυτό τον τρόπο 6 επιλογές καμπυλών. Η ένωση τους είναι μια καμπύλη βαθμού 12 = \(2 \times 6 \) που περνά από κάθε ένα από τα σημεία με πολλαπλότητα 5. Επομένως \(d = 12 \), \(m = 5 \) και \(12 < \sqrt{6} \cdot 5 \).

7. \(r = 7 \): Για κάθε σημείο επιλέγουμε μια καμπύλη βαθμού 3 (κυκλική καμπύλη) που έχει: σε αυτό το σημείο πολλαπλότητα 2 και επίσης έχει στα υπόλοιπα 6 σημεία. Μα τέτοια καμπύλη υπάρχει διότι \(\frac{3(3+3)}{2} = 9 \geq 3 + 6 = 9 \). Βάσει αυτού διαδέουμε 7 επιλογές καμπυλών. Η ένωσή τους είναι μια καμπύλη βαθμού 21 = \(3 \times 7 \) που περνά από κάθε ένα από τα σημεία με πολλαπλότητα 8. Επομένως, \(d = 21 \), \(m = 8 \) και \(21 < \sqrt{7} \cdot 8 \).

8. \(r = 8 \): Για κάθε σημείο επιλέγουμε μια καμπύλη βαθμού 6 που έχει: σε αυτό το σημείο πολλαπλότητα 3 και επίσης έχει στα υπόλοιπα 7 σημεία πολλαπλότητα 2. Μα τέτοια καμπύλη υπάρχει διότι \(\frac{6(6+3)}{2} = 27 \geq 6 + 7 \times 3 = 27 \). Έχουμε με αυτό τον τρόπο 8 επιλογές καμπυλών. Η ένωσή τους είναι μια καμπύλη βαθμού 48 = \(6 \times 8 \) που περνά από κάθε ένα από τα σημεία με πολλαπλότητα 17. Επομένως \(d = 48 \), \(m = 17 \) και \(48 < \sqrt{8} \cdot 17 \).

9. \(r = 9 \): Επιλέγουμε μια καμπύλη βαθμού 3 (κυκλική καμπύλη) που περνά από τα 9 σημεία. Τότε \(d = 3 \), \(m = 1 \) και \(3 = \sqrt{9} \cdot 1 \).

4.2 Τα αποτελέσματα του G. Xu

Εργάσιμη τάση στα αποτελέσματα του Geng Xu. Σε ό,τι ασχολείται τα \(m_1, \ldots, m_r \), είναι σταθεροποιημένοι μη αρνητικοί ακέραιοι αριθμοί.

Απόκλιση 4.2.1. Εστώ ότι τα \(P_1, \ldots, P_r \) είναι σημεία του προβολικού επιπέδου \(\mathbb{P}^2 \) ευρισκόμενα σε γενική θέση και η \(C \) μια ανάγκη καμπύλη βαθμού \(d \) που διέρχεται από αυτά με πολλαπλότητας (ακριβώς) \(m_1, \ldots, m_r \), αντίστοιχα. Τότε

\[
d^2 \geq \sum_{i=1}^{r} m_i^2 - m_q\]

για οποιοδήποτε \(q \in \{1, \ldots, r\} \), για το συνολικό ακέραιο \(m_q > 0 \).

Απόδειξη. Υποθέτουμε ότι υπάρχει μια ανάγκη καμπύλη \(C \) βαθμού \(d \), με \(d^2 < \sum_{i=1}^{r} m_i^2 - m_q \), για κάποιο \(q \in \{1, \ldots, r\} \), για το συνολικό \(m_q > 0 \), η οποία διέρχεται από τα γενικά σημεία \(P_1, \ldots, P_r \) του προβολικού επιπέδου με πολλαπλότητες ακριβώς \(m_1, \ldots, m_r \), αντίστοιχα. Εστώ \(m_1 = (m_1, \ldots, m_r) \). Θέτουμε

\[
X_{d,m_1} = \{ ([C], Q_1 + \cdots + Q_r) \mid \deg C = d, \ \text{mult}_Q C \geq m_i, \ i = 1, \ldots, r \} \subseteq \mathbb{P}^N \times U_r,
\]
4.2 ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΤΟΥ G. XU

όπου \(U_r = \text{Sym}^r C\). Θεωρούμε την προβολή \(\pi_2 : X_{d,m_i} \rightarrow U_r \). Αυτή είναι μια αναλυτική απεικόνιση έχοντας προβολικά υπόγραμμα του \(\mathbb{P}^N \) ως πεδίο της. Σημειώνουμε ότι: στον ορισμό του συνόλου \(X_{d,m_i} \), έχουμε επιλέξει \(\text{mult}_q C \geq m_i \), και όχι \(\text{mult}_q C = m_i \), διότι η πρώτη σχέση εκφράζει αφερέγγυα και το σύνολο μηδενικών κάτω στοιχείων πολυανιμού, πράγμα που σημαίνει ότι: σε ινες είναι προβολικά υπόγραμμα του \(\mathbb{P}^N \) (διαφορετικά θα ήταν κάτω κατά Zariski-αναφορά υποσύνολα εντός αυτών). Λόγω της αρχής των αυτών υπόθεσεων και των λήμματος 3.2.1, η \(\pi_2 \) είναι "επι". Έτσι \(A \) μια αναλυτική γεωμετρία του \(\mathbb{C} \) γύρω από το μηδέν. Έτσι α μια αναλυτική απεικόνιση \(\alpha : A \rightarrow U_r \) με \(\alpha(t) = P(t) = P_1(t) + \cdots + P_r(t) \in U_r \), τέτοιος ώστε να ισχύει: \(\alpha(0) = P(0) = P_1 + \cdots + P_r \). Τότε υπάρχει μια αναλυτική απεικόνιση \(\beta : A \rightarrow X_{d,m_i} \), με \(\pi_2 \circ \beta = \alpha \) τέτοιος ώστε να ισχύει: \(\beta(0) = ([C], P_1 + \cdots + P_r) \). Στη συνέχεια θεωρούμε την προβολή \(\pi_1 : X_{d,m_i} \rightarrow \mathbb{P}^N \) και θετούμε \(\gamma = \pi_1 \circ \beta \). Για κάθε \(t \in A \) το \(\gamma(t) = [C(t)] \in \mathbb{P}^N \) είναι μια καμπύλη (πιο συγκεκριμένα, μια κλάση καμπυλών) βαθμού \(d \) που διέρχεται από τα \(P_1(t), \ldots, P_r(t) \) με πυκνότητα τουλάχιστον \(m_1, \ldots, m_r \), αντίστοιχα, και \(\gamma(0) = [C] \). Τα παραπάνω συναφίζονται στο ακόλουθο διάγραμμα:

\[
\begin{array}{ccc}
\mathbb{P}^N & \xrightarrow{\pi_1} & X_{d,m_i} \subset \mathbb{P}^N \times U_r \\
\downarrow{\gamma} & & \downarrow{\pi_2} \\
\mathbb{C} \geq A & \xrightarrow{\beta} & U_r
\end{array}
\]

Στην παραπάνω οικογένεια \(\gamma : A \rightarrow \mathbb{P}^N \) απαρτιζόμενη από κλάσεις καμπυλών βαθμού \(d \) αντίστοιχη μια οικογένεια από (πραγματικές) καμπύλες, η οποία κατασκευάζεται ως ακολούθως: Συμβολίζουμε ως \(a_{ijk} \), \(i+j+k = d \) τις αμοιβαίες συντεταγμένες του \(\mathbb{P}^N \) και ως \(X, Y, Z \) τις αμοιβαίες συντεταγμένες του \(\mathbb{P}^2 \). Στο \(\mathbb{P}^N \times \mathbb{P}^2 \) θεωρούμε την αλγεβρική πολυπλούτρο \(C_d \) που αντιστοιχεί σε κάθε σημείο μηδενικού του πολυανιμού \(\mathbb{F}_d(a_{ijk}, X, Y, Z) = \sum_{i+j+k=d} a_{ijk} X^i Y^j Z^k \).

Έχουμε το εξής διάγραμμα:

\[
\begin{array}{ccc}
\mathbb{P}^N \times \mathbb{P}^2 & \xrightarrow{\pi_1} & \mathbb{P}^2 \\
\downarrow{\pi_2} & & \\
\mathbb{P}^N
\end{array}
\]

Με τον παραπάνω συμβολισμό, η απεικόνιση \(\gamma : A \rightarrow \mathbb{P}^N \) είναι της μορφής \(\gamma(t) = [a_{ijk}(t)]_{i+j+k=d} \). Τότε τα σημεία μηδενικού του πολυανιμού \(F_1(X, Y, Z) := \)
\[\sum_{i+j+k=d} a_{ijk}(t) X^i Y^j Z^k \] αντιστοιχών σε μια αλγεβρική πολυλογίτη \(C_d(t) \) η οποία είναι το διπλανομένο των απεικονίσεων \(\pi_1 \) και \(\gamma \), δηλ. ορίζεται ως το σύνολο

\[C_d(t) = \{(t, p), \ t \in A, \ p \in C_d \ \text{με} \ \gamma(t) = \pi_1(t)\}. \]

Υποθέτουμε, επομένως, το διάγραμμα

\[\begin{array}{ccc}
C_d(t) & \xrightarrow{\gamma} & C_d \\
\pi_1 & \xrightarrow{\gamma} & \pi_1 \\
A & \xrightarrow{\gamma} & \mathbb{P}^N
\end{array} \tag{4.3} \]

Η αυτοκάθετη αυτοκάθετη \(\pi_1 \) είναι ακριβώς αυτή που αντιστοιχίζεται στην αυτοκάθετη \(\gamma : A \rightarrow \mathbb{P}^N \) της αποτριγωμένης από κάθε σταθμό καμπύλων βαθμού \(d \). Πράγματι, \(\gamma \) είναι \(C(t_0) \) της απεικόνισης \(\pi_1 \) πάνω από το σύμπερα \(t_0 \in A \) είναι η καμπύλη που αριθμείται από το πολυκώνιο \(F_{t_0}(X, Y, Z) = \sum_{i+j+k=d} a_{ijk}(t_0) X^i Y^j Z^k \), απότε είναι η καμπύλη που αντιστοιχίζεται στο σύμπερα \(\gamma(t_0) = [a_{ijk}(t_0)]_{i+j+k=d} \) του \(\mathbb{P}^N \).

Τα σύμπερα \(P_i, \ldots, P_r \) είναι γενικά, απότε μπορούμε να υπολογίζουμε ότι \(Z \)-συντεταγμένη στο κάθε \(t_0 \) από τα \(P_i(t_0) \) είναι μη μηδενική. Έτσι

\[P_i(t) = [c_i(t), d_i(t), 1] = (c_i(t), d_i(t), 1), i = 1, \ldots, r, \]

όπου μέσω της () συμβάζει με την αφικτική (συμφερόμενη) παράσταση των σχημάτων. Συμβάζει με \(\alpha(t) \) τότε γίνεται από το σύμπερα \(P_i(0) + \cdots + P_r(t) \) της \(U_r \) με οποιοδήποτε \(C^2 \) στην αρχική (συμφερόμενη) μορφή της απεικόνισης \(\alpha : A \rightarrow C^2r \) είναι \(\eta \)

\[\alpha(t) = (c_1(t), d_1(t), \ldots, c_r(t), d_r(t)). \]

Θετούμε \(x = \frac{X}{2} \) και \(y = \frac{Y}{2} \). Τότε το πολυκώνιο \(F_t(X, Y, Z) \) της καμπύλης \(C(t), t \in A \), αντιστοιχίζεται σε αφικτικές (συμφερόμενες) συντεταγμένες στο πολυκώνιο \(f_t(x, y) := F_t(x, y, 1) \), το οποίο, χωρίζοντας στο σύμπερα \(P_i \), εκφράζεται σε ανάπτυγμα του Ταύλος ως εξής:

\[f_t(x, y) = \sum_{k+l \geq m_i} a^t_{kl}(t)(x - c_i(t))^k(y - d_i(t))^l. \]

Επομένως,

\[\left. \frac{df_t}{dt} \right|_{t=0} (x, y) = \sum_{k+l \geq m_i} \left. \frac{d}{dt} a^t_{kl}(t) \right|_{t=0} \left(x - c_i(0) \right)^k(y - d_i(0))^l \]

\[= \sum_{k+l \geq m_i} \sum_{k \geq 1} a^t_{kl}(0)(x - c_i(0))^k(y - d_i(0))^l \]

\[= \sum_{k+l \geq m_i} \sum_{k \geq 1} a^t_{kl}(0)(x - c_i(0))^k(l(y - d_i(0))^{l-1}. \]
4.2 ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΤΟΥ G. XU

Έστω \(D \) η καμπύλη που ορίζεται από την εξίσωση \(\frac{df_t}{dt} \bigg|_{t=0} (X, Y, Z) = 0 \) δηλ. από την εξίσωση \(\sum_{i+j+k=d} \frac{d\varphi_{k,j}}{dt} |_{t=0} X^i Y^j Z^k = 0 \). Με κατάλληλη επιλογή της απεικόνισης α μπορούμε να πετύχουμε το βαθμό της \(D \) να είναι: \(\deg(D) = d \) και επιπρόσθετα, \(\text{mult}_i D \geq m_i \), για κάθε \(i \neq q \) και \(\text{mult}_p D = m_q - 1 \), ως εξής:

Αφού η καμπύλη \(C(0) = C \) διέρχεται από το σημείο \(P_q(0) = P_q \) με πολλαπλάσια \(m_q \neq 0 \), υπάρχουν \(k_q, l_q \) με \(k_q + l_q = m_q \), έτσι ώστε να έχουμε \(c_{kq, lq} \neq 0 \).

Αν \(k_q \neq 0 \), επιλέγουμε την απεικόνιση \(a \) κατά τρόπο ώστε \(\frac{d\varphi_{k,j}}{dt} |_{t=0} = 0 \) για κάθε \(i \neq q \), \(\frac{d\varphi_{k,j}}{dt} |_{t=0} = c \neq 0 \) και \(\frac{d\varphi_{k,j}}{dt} |_{t=0} = 0 \), για κάθε \(i = 1, \ldots, r \). Μεικτή επιλογή που χοντροθετεί τις παραπάνω προσδοκήσεις είναι η

\[\alpha(t) = (c_1(0) + t^2, d_1(0) + t^2, \ldots, c_q(0) + ct, d_q(0) + t^2, \ldots, c_r(0) + t^2, d_r(0) + t^2) \]

Κοντά στο \(P_q \) έχουμε

\[\left. \frac{df_t}{dt} \right|_{t=0} (x, y) = - c \sum_{k+l=m_q} c_{k,l} q_k(x-c_q(0))^{k-1}(y-d_q(0))^l \]

\[+ \sum_{k+l=m_q} \left. \frac{d\varphi_{k,j}}{dt} \right|_{t=0} (x-c_q(0))^{k-1}(y-d_q(0))^l \]

και αφού \(c_{kq, lq} \neq 0 \), έχουμε \(\text{mult}_p D = m_q - 1 \). Κατ’ αναλογίαν, κοντά στο \(P_i \), \(i \neq q \) έχουμε

\[\left. \frac{df_t}{dt} \right|_{t=0} (x, y) = \sum_{k+l=m_i} \left. \frac{d\varphi_{k,j}}{dt} \right|_{t=0} (x-c_i(0))^{k-1}(y-d_i(0))^l \]

Αρχά \(\text{mult}_p D \geq m_i \) για κάθε \(i \neq q \).

Αν \(k_q = 0 \), επιλέγουμε, με συνάλλαξη τρόπο όπως παραπάνω, την απεικόνιση \(a \) έτσι ώστε \(\frac{d\varphi_{k,j}}{dt} |_{t=0} = 0 \) για κάθε \(i \neq q \), \(\frac{d\varphi_{k,j}}{dt} |_{t=0} = d \neq 0 \) και \(\frac{d\varphi_{k,j}}{dt} |_{t=0} = 0 \) για κάθε \(i = 1, \ldots, r \). Τότε, \(\left. \frac{df_t}{dt} \right|_{t=0} (x, y) = - d \sum_{k+l=m_q} c_{k,l} q_k(y-d_q(0))^{m_q-1} \]

\[- d \sum_{k+l=m_q} \left. \frac{d\varphi_{k,j}}{dt} \right|_{t=0} (x-c_q(0))^{k-1}(y-d_q(0))^l \]

\[+ \sum_{k+l=m_q} \left. \frac{d\varphi_{k,j}}{dt} \right|_{t=0} (x-c_q(0))^{k-1}(y-d_q(0))^l \]

και αφού \(c_{0m_q} \neq 0 \), έχουμε ότι \(\text{mult}_p D = m_q - 1 \). Επίσης, κοντά στο \(P_i \), \(i \neq q \) έχουμε

\[\left. \frac{df_t}{dt} \right|_{t=0} (x, y) = \sum_{k+l=m_i} \left. \frac{d\varphi_{k,j}}{dt} \right|_{t=0} (x-c_i(0))^{k-1}(y-d_i(0))^l \]
Αρχίζοντας με την ιδέα ότι η Δ είναι μια καμπύλη βαθμού δ, η οποία διερχόταν από το σημείο \(P_q \) με πολλαπλότητα \(\text{mult}_{P_i} \Delta \geq m_i \) για κάθε \(i \neq q \). Εάν η καμπύλη Δ περιείχε την \(C \), τότε \(\text{mult}_{P_i} \Delta \geq m_q \) που είναι άστοπο. Εξάλλου η \(C \) είναι ανάγκη, αφού δεν μπορεί να περιείχε την \(D \). Επομένως οι καμπύλες \(C, D \) δεν έχουν κοινές συνιστώσες, και, σύμφωνα με το θεώρημα του Τζίλτον-Βεζου, το πλήθος των σημείων τομής αυτών (με καθένα ξεχωρισμένο μετρούμενο τόσοι φορές όσες και η πολλαπλότητα τομής σε αυτή) είναι \(\deg C \cdot \deg D = d^2 \). Ομως \(\deg P_i, i \neq q \), είναι σημεία τομής των \(C, D \) με πολλαπλότητα τομής τουλάχιστον \(m_i^2 \) και το \(P_q \) είναι σημείο τομής των \(C, D \) με πολλαπλότητα τομής τουλάχιστον \(m_q(q-1) \). Άρα θα πρέπει να είχαμε \(d^2 \geq \sum_{i \neq q} m_i^2 + m_q(q-1) = \sum_{i=1}^{r} m_i^2 - m_q \), ιδίως όταν \(\deg C \) και \(\deg D \) περιείχαν μετρούμενη τομή. Έτσι λοιπόν, \(\deg C \cdot \deg D \geq m_q \).

Ας υποθέσουμε ότι \(P_1, \ldots, P_r \) είναι γενικά σημεία του προβολικού επιπέδου. Μια ισχυρή συνθήκη που εξασφαλίζει την ύπαρξη καμπύλης \(C \) βαθμού \(d \) διερχόμενη από αυτά με πολλαπλότητες \(m_1, \ldots, m_r \), αντίστοιχα, είναι η

\[
\left(\frac{d + 2}{d} \right) > \frac{\sum_{i=1}^{r} m_i(m_i + 1)}{2}. \quad (*)
\]

Από την άλλη μεριά, αν \(P_1, \ldots, P_r \) είναι τυχόντα γενικά σημεία του προβολικού επιπέδου, υπάρχει ικανοποιητική \(C \), τέτοια ώστε να συμπεράνουμε τις περιστάσεις

\[
\deg(2C) = d = 4, \quad \text{mult}(2C) = m_i = 4, \quad i = 1, \ldots, 5,
\]

και

\[
\left(\frac{d + 2}{d} \right) = \sum_{i=1}^{5} \frac{m_i(m_i + 1)}{2} = 15.
\]

Αν ομώς περιοριστούμε σε ανάγκες καμπύλες και το πλήθος των σημείων είναι το πολύ 7, τότε η συνθήκη \((*)\) χαμηλτά και αναγκαία. Έχουμε δηλαδή την εξής:

Πρόταση 4.2.1. Εστώ ότι \(P_1, \ldots, P_r \), \(r \leq 7 \), είναι γενικά σημεία του προβολικού επιπέδου και \(C \) μια ανάγκη καμπύλη βαθμού \(d \) που διερχόταν από αυτά με πολλαπλότητες \(m_1, \ldots, m_r \), αντίστοιχα. Τότε,

\[
\left(\frac{d + 2}{d} \right) > \frac{\sum_{i=1}^{r} m_i(m_i + 1)}{2}.
\]

Απόδειξη. Υποθέσουμε ότι \(m_1 > 0 \).

(i) Έστω \(d > 3 \). Αφού \(r \leq 7 \), έχουμε \(\left(\frac{d+2}{d} \right) > \frac{2(2+1)}{2} + \sum_{i=2}^{7} \frac{1(1+1)}{2} \). Αρα υπάρχει καμπύλη \(C_1 \), τέτοια ώστε να ισχύουν οι σύνθεσες \(\deg C_1 =
3, \(\text{mult}_P C_1 = 2 \) και \(\text{mult}_P C_i = 1, \ i > 1 \). Αφού η \(C \) είναι ανάγκη με βαθμού \(d \geq 3 \) δεν έχει κοινές συναντώσεις με την κυβική καμπύλη \(C_1 \) και επομένως, σύμφωνα με το θεώρημα του Bezout, το πλήθος των σημείων ταμής των \(C, C_1 \) είναι ίσο με \(\text{deg}(C) \cdot \text{deg}(C_1) = 3d \). Τα σημεία \(P_1, P_2, \ldots, P_r \) είναι σημεία ταμής των \(C, C_1 \) με πολλαπλάσια ταμής του κάθε \(2m_i, 2m_{i+1}, \ldots, m_r \). Αρα έχουμε \(3d \geq 2m_1 + \sum_{i=2}^r m_i \).

Εξήλθω, σύμφωνα με το λήμμα 4.2.1, \(d^2 \geq \sum_{i=1}^r m_i^2 - m_1 \), οπότε

\[
(d(d+3)) = d^2 + 3d \geq \sum_{i=1}^r m_i^2 - m_1 + 2m_1 + \sum_{i=2}^r m_i = \sum_{i=1}^r m_i(m_i + 1).
\]

Επομένως,

\[
\left(\frac{d+2}{d}\right) = \frac{d(d+3)}{2} + 1 > \sum_{i=1}^r \frac{m_i(m_i+1)}{2}.
\]

(ii) Έτσι \(d = 3 \). Τότε θα πρέπει να έχουμε αναγκαστικά \(m_i \leq 2, \ i = 1, \ldots, r \).

Διαφορετικά, μια ευθεία διερχόμενη από το \(P_i \) και από κάθενο άλλο σημείο της καμπύλης θα έπεινε την \(C \) σε περισσότερα από τρία σημεία, πράγμα που αντιβαθιά το θεώρημα του Bezout. Επίσης, \(m_i = 2 \) το πολυ για ένα σημείο, διότι αν \(m_i = 2 = m_j, \ i \neq j \), τότε η ευθεία που περνάει από τα \(P_i, P_j \) θα έπεινε πάλι την \(C \) σε περισσότερα από τρία σημεία. Επομένως οι μεγαλύτερες τιμές που μπορούν να έχουν τα \(m_i, i = 1, \ldots, r \) είναι \((m_1, \ldots, m_r) = (2, 1, 1, \ldots, 1) \). Συνεπώς η μέγιστη τιμή του \(\sum_{i=1}^r \frac{m_i(m_i+1)}{2} \) είναι 9, δηλαδή μικρότερη του \((3+2)^2 = 10 \).

(iii) Έτσι \(d = 2 \). Τότε θα πρέπει να έχουμε αναγκαστικά \(m_i \leq 1 \). Λόγω του λήμματος 4.2.1 οι μεγαλύτερες τιμές που μπορούν να λάβουν τα \(m_i, i = 1, \ldots, r \) είναι \((m_1, \ldots, m_r) = (1, 1, 1, 1, 0, 0) \), οπότε μπορούμε εύχολα να ελέγξουμε ότι το συμπέρασμα του λήμματος ισχύει και σε αυτή την περίπτωση.

\[\square\]

Θεώρημα 4.2.1 (Geng Xu). Έτσι όταν τα \(P_1, \ldots, P_r \) είναι γενικά σημεία του προβολικού επιπέδου και η \(C \) μια ανάγκη καμπύλη βαθμού \(d \) διερχόμενη από αυτά με πολλαπλάσια τα \(m_1, \ldots, m_r \), αντίστοιχα. Τότε ισχύουν τα ακόλουθα

\[(a) \ d \geq \sqrt{r \sum_{i=1}^r m_i}, \]
\[(b) \ d + \frac{1}{2\sqrt{r}} > \frac{1}{r} \sum_{i=1}^r m_i, \text{ αν } r \geq 2.\]
Απόδειξη. Τυποθετούμε ότι: 0 < \(m_1 \leq m_2 \leq \ldots \leq m_t \) και ότι \(m_i = 0 \), \(i = t + 1, \ldots, r \), με \(t \leq r \). Η περίπτωση κατά την οποία \(t = 1 \) είναι προφανής, διότι εξακολουθεί ότι: \(d > m_1 \). Εξέτασουμε την περίπτωση όταν \(t \geq 2 \). Στη συνέχεια θα χρησιμοποιήσουμε κατ' επανάληψη ότι:

\[
t \sum_{i=1}^{t} m_i^2 \geq \left(\sum_{i=1}^{t} m_i \right)^2.
\]

Πρόκειται, όταν \(t = 2 \), τότε προφανώς η παραπάνω ονομαστήρια εκφράζει. Τυποθετούμε ότι εκφράζει όταν \(t = k \). Τότε,

\[
(k + 1) \sum_{i=1}^{k+1} m_i^2 = k(m_1^2 + \cdots + m_k^2) + m_{k+1}^2 + \cdots + m_{k+1}^2 + (k + 1)m_{k+1}^2
\]

\[
\geq (m_1 + \cdots + m_k)^2 + m_{k+1}^2 + \cdots + m_{k+1}^2 + (k + 1)m_{k+1}^2
\]

\[
= (m_1 + \cdots + m_k + m_{k+1})^2 + m_{k+1}^2 + \cdots + m_{k+1}^2 + km_{k+1}^2
\]

\[-2m_1 m_{k+1} - \cdots - 2m_k m_{k+1}
\]

\[
= (m_1 + \cdots + m_k + m_{k+1})^2 + (m_1 - m_{k+1})^2 + \cdots
\]

\[+(m_k - m_{k+1})^2
\]

\[
\geq (m_1 + \cdots + m_k + m_{k+1})^2.
\]

(α) Από το λήμμα 4.2.1 έχουμε \(d^2 \geq \sum_{i=1}^{t} m_i^2 - m_q \), για κάθε \(q \leq t \). Επομένως,

\[
td^2 \geq t \sum_{i=1}^{t} m_i^2 - \sum_{i=1}^{t} m_i \geq \left(\sum_{i=1}^{t} m_i \right)^2 - \sum_{i=1}^{t} m_i
\]

\[
= \left(\sum_{i=1}^{t} m_i \right)^2 \left(1 - \frac{1}{\sum_{i=1}^{t} m_i} \right)
\]

\[
\geq \left(1 - \frac{1}{t} \right) \left(\sum_{i=1}^{t} m_i \right)^2,
\]

οπότε

\[
d \geq \sqrt{t-1} \sum_{i=1}^{t} m_i \geq \sqrt{r-1} \sum_{i=1}^{r} m_i.
\]

Σημειώνουμε ότι: \(\sqrt{t-1} \geq \sqrt{r-1} \), διότι \(2 \leq t \leq r \). Πρόκειται,

\[
\frac{\sqrt{t-1}}{t} \geq \frac{\sqrt{r-1}}{r} \iff r^2(t-1) \geq t^2(r-1) \iff
\]

\[
rt(r-t) \geq (r-t)(r+t) \iff rt \geq r + t \iff t \geq r,
\]

ήτοι ότι το οποίο εκφράζει.

(β) (i) Επομένως: \(r \geq 4 \) και \(2 \leq t \leq r - 2 \). Τότε,

\[
(t-2)(t-(r-2)) \leq 0 \implies t^2 - tr + 2r - 4 \leq 0 \implies
\]

\[
t(r-t) \geq 2r - 4 \geq r \implies t(r-t) \geq r.
\]
4.2 ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΤΟΥ G. XU

Επομένως
\[(r - t)(\sum_{i=1}^{t} m_i^2) \geq (r - t)tm_1^2 \geq rm_1\]

και
\[r(\sum_{i=1}^{t} m_i^2 - m_1) \geq t \sum_{i=1}^{t} m_i^2 \geq (\sum_{i=1}^{t} m_i)^2.\]

Επιπρόσθετα, από το λήμμα 4.2.1, έχουμε \[d^2 \geq \sum_{i=1}^{r} m_i^2 - m_1.\] Άρα
\[rd^2 \geq r(\sum_{i=1}^{r} m_i^2 - m_1) \geq (\sum_{i=1}^{r} m_i)^2 \implies \]
\[d \geq \frac{1}{\sqrt{r}} \sum_{i=1}^{r} m_i \implies d + \frac{1}{2\sqrt{r} - 1} > \frac{1}{\sqrt{r}} \sum_{i=1}^{r} m_i.\]

(ii) Θεωρούμε την περίπτωση όταν \(t = r - 1\). Τότε η ανικότητα \((r - t) \sum_{i=1}^{r-1} m_i^2 \geq m_1\) ισχύει πάλι, με μόνη εξαίρεση την περίπτωση κατά την οποία έχουμε \(m_1 = \cdots = m_r = 1\). Πράγματι, αν \(m_{i_0} \geq 1\) για κάποιο \(i_0 \in \{1, \ldots, r - 1\}\), τότε \(m_{i_0}^2 \geq 2m_{i_0} \geq 2m_1\), οπότε
\[(r - (r - 1)) \sum_{i=1}^{r-1} m_i^2 = m_1^2 + \cdots + m_{i_0}^2 + \cdots + m_{r-1}^2 \]
\[\geq m_1 + \cdots + 2m_{i_0} + \cdots + m_1 = m_1.\]

Η συνέχεια της απόδειξης σε αυτή την περίπτωση είναι όπως στην (i).
Αν \(m_1 = \cdots = m_{r-1} = 1\), τότε από το λήμμα 4.2.1 έχουμε \(d^2 \geq r - 2\), οπότε
\[d + \frac{1}{2\sqrt{r} - 1} \geq \sqrt{r - 2} + \frac{1}{2\sqrt{r} - 1}.\]
Για \(r = 2\) είναι πραγματές ότι \(d + \frac{1}{\sqrt{r}} > \frac{r-1}{\sqrt{r}} = \frac{1}{\sqrt{r}} \sum_{i=1}^{r} m_i\). Δείχνουμε ότι αν \(r \geq 3\), τότε \(\sqrt{r - 2} + \frac{1}{2\sqrt{r} - 1} > \frac{r-1}{\sqrt{r}}\).
\[\sqrt{r - 2} + \frac{1}{2\sqrt{r} - 1} > \frac{r - 1}{\sqrt{r}} \iff \]
\[2\sqrt{r(r - 1)(r - 2)} + \sqrt{r} > 2(r - 1)\sqrt{r - 1} \iff \]
\[4r(r - 1)(r - 2) + r + 4r\sqrt{(r - 1)(r - 2)} > 4(r - 1)^3 \iff \]
\[4r\sqrt{(r - 1)(r - 2)} > 3r - 4 \iff \]
\[16r^2(r - 1)(r - 2) > 9r^2 + 16 - 24r \iff \]
\[16r^4 - 3 \cdot 16r^3 + 23r^2 + 24r - 16 > 0.\]
Άρα, πράγματι, αν \(r \geq 3\), τότε \(16r^4 - 3 \cdot 16r^3 \geq 0\) και \(23r^2 + 24r > 16\), οπότε \(16r^4 - 3 \cdot 16r^3 + 23r^2 + 24r - 16 > 0\). Άρα σε κάθε περίπτωση
\[d + \frac{1}{2\sqrt{r} - 1} > \frac{r - 1}{\sqrt{r}} = \frac{1}{\sqrt{r}} \sum_{i=1}^{r} m_i.\]
(iii) Τέλος, εξετάζουμε την περίπτωση όπου \(t = r \). Από το λήμμα 4.2.1 έχουμε

\[
d^2 \geq \sum_{i=1}^{r} m_i^2 - m_1 \geq (r-1)m_1^2 \implies d \geq \sqrt{r-1} m_1.\]

Αρχικά,

\[
\left(\sum_{i=1}^{r} m_i \right)^2 \leq \sum_{i=1}^{r} m_i^2 \leq d^2 + m_1 < (d + \frac{m_1}{2d})^2 \leq (d + \frac{1}{2\sqrt{r-1}})^2 \implies
\]

\[
d + \frac{1}{2\sqrt{r-1}} > \frac{1}{\sqrt{r}} \sum_{i=1}^{r} m_i.
\]

Πόρισμα 4.2.1. Εστω ότι τα \(P_1, \ldots, P_r \) είναι γενικά σημεία του προβολικού επιπέδου και η \(C \) μια ανάγκη καμπύλη βαθμού \(d \) διερχόμενη από αυτά με πολλαπλάσια \(m \). Τότε ισχύουν τα ακόλουθα:

(a) \(d \geq \sqrt{r-1} m \),

(b) \(d > \sqrt{r} m - \frac{1}{\sqrt{r-1}} \), αν \(r \geq 2 \).

4.3 Επισκόπηση σχετικών αποτελεσμάτων

Σε αυτή την παράγραφο θα παρουσιάσουμε μια εικάσια των Hirschowitz και Harbourne, την οποία ονομάζουμε ισχυρή Εικάσια, η οποία είναι γενικότερη από αυτή του Nagata, υπό την έννοια τού ότι, αν η ισχυρή Εικάσια αποδειχθεί αληθής, τότε και η εικάσια του Nagata θα είναι επίσης αληθής. Τα στοιχεία αυτών της παραγράφου αντλήθηκαν από τα άρθρα [C] και [M1].

4.3.1 Αναμενόμενη διάσταση γραμμικών συστημάτων

Όπως είδαμε στο κεφάλαιο 2, το σύνολο των επιπέδων χαμηλού βαθμού \(d \) που διέρχονται από διαθέτουν σημεία \(P_1, \ldots, P_r \) του προβολικού επιπέδου \(\mathbb{P}^2 \) με πολλαπλάσια τουλάχιστον \(m_1, \ldots, m_r \), αντίστοιχα, αποτελεί έναν προβολικό χώρο, τον οποίο θα συμβολίζουμε ως

\[
L_d \left(\sum_{i=1}^{r} m_i P_i \right).
\]

Είναι σκόπιμο όπως το παραπάνω είναι ένα γραμμικό σύστημα επιπέδων χαμηλών. Είδαμε, επίσης, ότι η διάσταση του γραμμικού χώρου όλων των επιπέδων χαμηλού βαθμού \(d \) είναι \(\frac{d(d+3)}{2} \) και ότι η συνδήθη του αυτού να διερχόταν με επιπέδη τα ισχυρά σε \(m \) επάγει \(\frac{m(m+1)}{2} \) γραμμικές εξισώσεις.
4.3. ΕΠΙΣΚΟΠΗΣΗ ΧΕΣΤΙΚΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

στοιχείων συντελεστών του ημιεγγενούς πολυακρών μέσω του οποίου ορίζεται. Στη
συνέχεια ορίζουμε την φαντασματική (virtual) διάσταση του γραμμικού συστήματος
\[L_d \left(- \sum_{i=1}^{r} m_i P_i \right) \] ως τον ακέραιο αριθμό

\[v_d \left(- \sum_{i=1}^{r} m_i P_i \right) := \frac{d(d + 3)}{2} - \sum_{i=1}^{r} \frac{m_i(m_i + 1)}{2} \]

και την αναμενόμενη (expected) διάσταση του ίδιου γραμμικού συστήματος ως τον

\[e_d \left(- \sum_{i=1}^{r} m_i P_i \right) := \max\{-1, v_d\}. \]

Χρησιμοποιώντας αυτούς τοις συμβολισμούς παρατηρούμε ότι ισχύει η εξής ανισότητα:

\[\dim L_d \left(- \sum_{i=1}^{r} m_i P_i \right) \geq e_d \left(- \sum_{i=1}^{r} m_i P_i \right) \]

Το πρόταση που τίθεται είναι, κάθε από τοις συνθήκες η διάσταση ενός γραμμικού συστήματος συμπίπτει με την αναμενόμενη διάσταση του. Η απόνταση εξαρτάται κατά αρκετά από τη θέση των σημείων στο προβολικό επίπεδο, ακόμη και στην ανταλλακτική σύσταση ή και όταν όλες οι πολλαπλάσιες είναι ίσες με ένα.

Παράδειγμα 4.3.1. Έστω ότι οι \(C, D \) είναι δύο επίπεδες καμπύλες τρίτου βαθμού που τέμνονται σε εννέα διαφορετικά σημεία \(P_1, \ldots, P_9 \). Σημειώνουμε ότι από το θεώρημα του Bezier δύο καμπύλες τρίτου βαθμού, που δεν έχουν κοινές συντασσόμενες, τέμνονται αναγκαστικά σε εννέα σημεία, αν μετρήσουμε το καθένα τόσος φορές όσες και η πολλαπλάσια συμμετέχει σε αυτά, και γενικά, μπορούμε να επιλέξουμε κατάλληλα τις δύο καμπύλες ώστε να τέμνονται στο κάθε σημείο με πολλαπλάσια. Θεωρούμε το γραμμικό σύστημα \(L_{9} \left(- \sum_{i=1}^{9} P_i \right) \) των επίπεδων καμπύλων βαθμού 3 που διέρχονται από τα \(P_1, \ldots, P_9 \) με πολλαπλάσια \(\text{ένα} \). Αφού έχουμε γηρί δύο τέτοιες καμπύλες, τότε τις \(C, D \), η διάσταση του συστήματος είναι τοπική. Όμως η γραμμική διάσταση είναι ίσης ένας. Όμως η φαντασματική διάσταση είναι:

\[v_d \left(- \sum_{i=1}^{9} P_i \right) = 9 - 9 = 0. \]

Επομένως, σε αυτή την περίπτωση, η πραγματική διάσταση του συστήματος είναι γνήσια μεγαλύτερη από την αναμενόμενη.

Το σημείο στο προηγούμενο παράδειγμα επιλέχθηκε εκεί όπου η σημεία τομής δύο καμπύλων. Η θέση τους δηλωθεί στο προβολικό επίπεδο είναι, κατά κόμη τρόπο, "ειδική". Στην περίπτωση αυτής οι σημείος ταυτόσημης πολλαπλάσιες είναι ίσης ίσης με ένα και ισχύει το εξής:
Θεώρημα 4.3.1. Επειδή όταν τα \(P_1, \ldots, P_r \) είναι σημεία του προβολικού επιπέδου σε γενική θέση, \(r \) η διάσταση του γραμμικού συστήματος \(L_d(- \sum_{i=1}^r P_i) \) είναι \(r \) με την αναμενόμενη διάσταση του.

Σε αυτό το συστήμα \(L_d(- \sum_{i=1}^r m_i P_i) \) είναι ειδικό αν δεν έχει την αναμενόμενη διάσταση. Διαφορετικά, θα λέμε ότι το σύστημα είναι μη ειδικό. Σύμφωνα με το παραπάνω θεώρημα, αν όλες οι πολλαπλάσια \(m_i \) είναι ακόμα και τα σημεία \(P_i \) μπροστά σε γενική θέση, τότε το αντιστοιχο γραμμικό σύστημα είναι μη ειδικό. Από την άλλη όπλα, αν οι πολλαπλάσια είναι μεγαλύτερες από ένα, υπάρχουν γραμμικά συστήματα του ειδικής ακόμα και όταν τα σημεία μπροστά σε γενική θέση, όπως βλέπουμε στο ακολούθο παράδειγμα.

Παράδειγμα 4.3.2. Επειδή όταν τα \(P_1, \ldots, P_5 \) είναι πέντε σημεία του προβολικού επιπέδου ευρύσκομενα σε γενική θέση, η γραμμική διάσταση του γραμμικού συστήματος των επίπεδων καμπύλων βαθμού δύο, οι οποίες διέρχονται από τα \(P_1, \ldots, P_5 \) με πολλαπλάσια \(m_i \), είναι \(\mu \), επειδή σύμφωνα με το θεώρημα 4.3.1, \(\dim L_d(- \sum_{i=1}^5 m_i P_i) = 0 \). Το τελευταίο σημειώνει ότι υπάρχει μοναδική καμπύλη \(C \) δευτέρου βαθμού διερχόμενη από τα \(P_1, \ldots, P_5 \). Επομένως, \(F(X, Y, Z) \), το δευτεροβάθμιο πολυώνυμο μέσω του οποίου ορίζεται η εν λόγω καμπύλη \(C \). Θέτουμε \(G(X, Y, Z) = \mu^2(X, Y, Z) \). Τότε το πολυώνυμο \(G(X, Y, Z) \) έχει δευτέρο τέταρτο και η καμπύλη \(2C \) που ορίζεται από τη συνέλευση των θέσεων μηδενικού του \(G(X, Y, Z) \) διέρχεται από τα σημεία \(P_1, \ldots, P_5 \) με πολλαπλάσια \(\mu \). Επομένως, το γραμμικό σύστημα \(L_d(- \sum_{i=1}^5 m_i P_i) \) είναι μη ειδικό. Όμως η αναμενόμενη διάσταση του είναι

\[
e_4(- \sum_{i=1}^5 2P_i) = 14 - 15 = -1.
\]

Αρα το σύστημα \(L_d(- \sum_{i=1}^5 m_i P_i) \) είναι ειδικό, παράτητοι τα σημεία \(P_1, \ldots, P_5 \) μπροστά σε γενική θέση.

4.3.2 Ο αριθμός των επιπέδων τομών

Ας υποθέσουμε ότι τα \(P_1, \ldots, P_r \) είναι σημεία του προβολικού επιπέδου. Θεωρούμε τα γραμμικά συστήματα \(L_d(- \sum_{i=1}^r m_i P_i), L_c(- \sum_{i=1}^r n_i P_i) \) και δύο επίπεδα καμπύλες \(C, D \) τέτοιες ώστε \(C \in L_d(- \sum_{i=1}^r m_i P_i) \) και \(D \in L_c(- \sum_{i=1}^r n_i P_i) \). Για κάθε \(i = 1, \ldots, r \) η πολλαπλάσια τομή της \(C, D \) στο σύνολο \(P_i \) είναι μεγαλύτερη ή ίση από το γνώριμο \(m_i n_i \). Δηλαδή οι καμπύλες \(C, D \) τέμνονται σε πολλαπλάσια \(\sum_{i=1}^r m_i n_i \) σημεία, μεταφέροντας τα καθένα τότες φορές όπως και η πολλαπλάσια τομή σε αυτό. Από το θεώρημα του Bezout, στην περίπτωση όταν οι \(C, D \) δεν έχουν κοινές συνιστώσες, ο αριθμός των τομών τους είναι \(de \).
4.3. ΕΠΙΣΚΟΠΗΣΗ ΣΧΕΤΙΚΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

φυσικολογικό λογικά, να ορίσουμε τον αριθμό των επιπέδων τομών των C, D, ως τον ακέραιο αριθμό

$$(C, D) = de - \sum_{i=1}^{r} m_i n_i.$$

Η παραπάνω ποσότητα δεν εξαρτάται από την επιλογή των καμπύλων C, D, αλλά μόνο από τον αριθμό τους και την παλαιολογία με την οποία διερχόνται από κάθενα από τα σημεία P_1, \ldots, P_r, δηλαδή μόνο από τα γραμμικά συστήματα στα οποία αυτές ανήκουν.

Σημείωση 4.3.1. Η απεικόνιση

$$(-,-) : \{(C, D) \mid C \in \mathcal{L}_d(-\sum_{i=1}^{r} m_i P_i), \ D \in \mathcal{L}_e(-\sum_{i=1}^{r} n_i P_i)\} \longrightarrow \mathbb{Z},$$

όπου $d, e, m_i, n_i \in \mathbb{N}$, είναι 2-διαγραμμική.

Σημείωση 4.3.2. Αν ο αριθμός των επιπέδων τομών δύο καμπύλων C, D είναι αρνητικός, τότε, λόγω του θεωρήματος του Bezout, οι C, D διαθέτουν κάποια κομικό συντόμη.

4.3.3 Το Αριθμητικό και το Γεωμετρικό Γένος

Στο πρώτο κεφάλαιο ορίσθηκε το γένος g με τα λειτουργικά καμπύλης βαθμών d ως

$$g = \frac{(d-1)(d-2)}{2}.$$

Είτε τώρα μια ανάγκη επιπέδης καμπύλης C που έχει διαδέχθει σημεία τα P_1, \ldots, P_r. Σημειώσαμε ότι το πλήθος των διαδέχονται σημείων και της επιπέδης καμπύλης είναι πάντα πεπερασμένο. Ονομάζουμε γεωμετρικό γένος τῆς καμπύλης C, το γένος τῆς λειτουργίας (επιφάνειας Riemann) που προκύπτει ύστερα από τη διάλυση των διαμόρφων της C. Αποδεικνύεται ότι αν C έχει βαθμό d, τότε το γεωμετρικό τῆς γένος είναι: ίσο με

$$g(C) = \frac{(d-1)(d-2)}{2} - \delta,$$

όπου η δ είναι ένας αρνητικός ακέραιος αριθμός που εξαρτάται από το είδους των διαμόρφων της καμπύλης. Για διαδέχονται σημεία με σταθερή παλαιολογία, η ελάχιστη τιμή του δ επιτυγχάνεται όταν το διάδρομο είναι σύνθετος. Συγκεκριμένα, αν C έχει μόνο συνήθη διαμόρφωμα στα σημεία P_1, \ldots, P_r με παλαιολογίες m_1, \ldots, m_r αντίστοιχα, δηλαδή αν έχουν στα καθενά από τα P_r η C αποτελείται από m κλάδους με διαφορετικές ευαρμονίες, τότε έχουμε

$$\delta = \sum_{i=1}^{r} m_i (m_i - 1).$$
4.3.4 (-1)-καμπύλες και η κύρια Εικαστικά

Σε ο, τ οις καμπύλες για γένος μιας καμπύλης $C \in L_d(-\sum_{i=1}^r m_i P_i)$ θα ενυποκειται σε αριθμητικό γένος. Θεωρούμε μια καμπύλη $C \in L_d(-\sum_{i=1}^r m_i P_i)$. Ονομάζουμε αριθμό αυτοσυμμετοχής της C των αριθμών των επιπέδων τομών

$$\langle C^2 \rangle = \langle C, C \rangle = d^2 - \sum_{i=1}^r m_i^2.$$

Παρατηρούμε ότι ο αριθμός αυτοσυμμετοχής μιας καμπύλης μπορεί να είναι αριθμητικός. Διακρίνεται ένα κτηριακό παραθέτεστα.

Παράδειγμα 4.3.3. Θεωρούμε δύο σημεία του προβολού επιπέδου P_1, P_2 και μια ευθεία C που διέρχεται από αυτά (υπάρχει μοναδική). Τότε, $\langle C^2 \rangle = 1 - 2 = -1$.

Παράδειγμα 4.3.4. Θεωρούμε πέντε σημεία του προβολού επιπέδου P_1, \ldots, P_5 και μια δευτεροβάθμια καμπύλη C που διέρχεται από αυτά (υπάρχει μοναδική). Τότε, $\langle C^2 \rangle = 4 - 5 = -1$.

Οι καμπύλες των δύο τέλευτων παραδείγματών έχουν ακόμη και άλλη συμμετοχή, πέρα από το ότι ο αριθμός αυτοσυμμετοχής τους είναι -1. Το γένος τους είναι:
4.3. ΕΠΙΣΚΟΠΗ ΣΧΕΤΙΚΩΝ ΑΠΟТЕΛΕΣΜΑΤΩΝ

μηδέν. Ανάγκης επίπεδες καμπύλες με αυτές τις διάταξεις αναφέρονται: (−1)-καμπύλες. Στη συνέχεια μελετάμε τον τρόπο με τον οποίο συνδέονται οι (−1)-καμπύλες με τα ειδικά σύστημα.

Στο παράδειγμα 4.3.2, είδαμε την περίπτωση μιας καμπύλης C, πέτυχας ότι η διαλύσα αυτής, δηλαδή η καμπύλη 2C, δεν αναφέρεται να υπάρχει (διότι η αναμεμομένη διάσταση του συστήματος είναι αρνητική). Στα παραπάνω παραδείγματα είδαμε, επίσης, ότι η καμπύλη C είναι μια (−1)-καμπύλη. Αυτό είναι ένα γενικότερο φαινόμενο: αν πάρουμε μια ανάγκη καμπύλης E σε ένα σύστημα \(L_d(-\sum_{i=1}^{r} m_i P_i) \) το οποίο αναφέροντας να είναι μη κενό (δηλ. να είχε μη αρνητική αναμεμομένη διάσταση) όλα η διαλύσα της 2C δεν αναφέρεται να υπάρχει, δηλαδή το σύστημα \(L_{2d}(-\sum_{i=1}^{r} 2m_i P_i) \) έχει αρνητική αναμεμομένη διάσταση, τότε μπορεί να αποδειχτεί ότι η E είναι μια (−1)-καμπύλη. Πράγματι, ένας εύκολος υπολογισμός μας δίνει τις ακόλουθες επιτύχεις:

\[
v_d(-\sum_{i=1}^{r} m_i P_i) = < E^2 > + p(E) + 1, \quad p(2E) = < E^2 > - 2p(E) - 1.
\]

Αφού το σύστημα \(L_d(-\sum_{i=1}^{r} m_i P_i) \) είναι μη κενό θα πρέπει να έχουμε

\[
v_d(-\sum_{i=1}^{r} m_i P_i) \geq 0.
\]

Εξήλλθω, αφού το \(L_{2d}(-\sum_{i=1}^{r} 2m_i P_i) \) έχει αρνητική αναμεμομένη διάσταση θα πρέπει

\[
v_{2d}(-\sum_{i=1}^{r} 2m_i P_i) \leq -1.
\]

Συνεπώς θα έχουμε

\[
< E^2 > - p(E) + 1 \geq 0 \quad \Rightarrow \quad < E^2 > - p(E) \geq -1,
\]

\[
4 < E^2 > - p(2E) + 1 \leq -1 \quad \Rightarrow \quad < E^2 > - p(E) \leq -1 - \frac{p(E)}{3}.
\]

Δηλαδή, η E να είναι μια (−1)-καμπύλη.

Θα διαμείνει ένα παράδειγμα που μπορούμε να χαρακτηρίσουμε ειδικά γραμμικά σύστημα χρησιμοποιώντας (−1)-καμπύλες. Ας υποθέσουμε ότι τα \(P_1, \ldots, P_r \) είναι σημεία του επιπέδου. Θα διαμείνει ένα γραμμικό σύστημα \(L_d(-\sum_{i=1}^{r} m_i P_i) \), τέτοιο σύστημα μια (και επιμόδους και κάθε) καμπύλης \(C \in L_d(-\sum_{i=1}^{r} m_i P_i) \) να έχει αρνητική αρχή επιπέδου ταμών με μια ανάγκη (−1)-καμπύλη \(E \in L_e(-\sum_{i=1}^{r} n_i P_i) \), για κάποιοι \(e, n_1, \ldots, n_r \). Δηλαδή, \((C, E) = -N, \quad N \geq 1 \), για κάθε καμπύλη \(C \in L_d(-\sum_{i=1}^{r} m_i P_i) \). Σύμφωνα με την παρατήρηση 4.3.2 και αφού η E είναι ανάγκη, η καμπύλη C περιέχει την E ως συστήματα. Ωστόσο, μπορούμε να
Theorem 4.3. Let V be a vector space, E a k-dimensional projective embedding of V, and C a curve in E. Then C is a component of a k-dimensional projective embedding of V if and only if C is a component of a k-dimensional projective embedding of V.

The proof follows from the fact that a k-dimensional projective embedding of V is a pencil of k-dimensional projective embeddings of V.

H 4.2. Eikasia. [Hirschowitz-Harbourne] (και) P_i, ..., P_r είναι r σημεία του \mathcal{P} και E είναι $\mathcal{L}(-\sum_{i=1}^{r} m_i P_i)$.

Για κάθε καμπύλη $C \in \mathcal{L}$, $C = E \in \mathcal{L}_{d-e}(-\sum_{i=1}^{r} (m_i - n_i)P_i)$.

Πάντα, αν $N \geq 2$, ο αριθμός επιπέδων τομών της C (και κάθε καμπύλης του συστήματος $\mathcal{L}_{d-e}(-\sum_{i=1}^{r} (m_i - n_i)P_i)$) και της E είναι $(C', E) = -N + 1 > 0$.

Επαναλήφθηκε την παραπάνω διαδικασία N-φορές, καταλήγοντας σε ένα γραμμικό σύστημα $\mathcal{L}_{d-Ne}(-\sum_{i=1}^{r} (m_i - Nn_i)P_i)$, τέτοιο ώστε για κάθε καμπύλη $D \in \mathcal{L}_{d-Ne}(-\sum_{i=1}^{r} (m_i - Nn_i)P_i)$ έχουμε $(D, E) = 0$.

Επιπρόσθετα, κάθε συστήμα επακόλουθου γραμμικού συστήματος $\mathcal{L}_{d}(-\sum_{i=1}^{r} m_i P_i)$ περιέχει το N πολλαπλάσιο της καμπύλης E. Επιπρόσθετα υπάρχει μια 1-1 αντιστοιχία ανάμεσα στους συστήματος $\mathcal{L}_{d-Ne}(-\sum_{i=1}^{r} (m_i - Nn_i)P_i)$ με αυτά του αρχικού συστήματος $\mathcal{L}_{d}(-\sum_{i=1}^{r} m_i P_i)$ ή η οποία δίδεται από την απεικόνιση $D \rightarrow D + NE$.

Συνεπώς,

$$
\dim \mathcal{L}_{d}(-\sum_{i=1}^{r} m_i P_i) = \dim \mathcal{L}_{d-Ne}(-\sum_{i=1}^{r} (m_i - Nn_i)P_i)
\geq v_{d-Ne}(-\sum_{i=1}^{r} (m_i - Nn_i)P_i)
= v_d(-\sum_{i=1}^{r} m_i P_i) + \frac{N(N-1)}{2} > v_d(-\sum_{i=1}^{r} m_i P_i)
$$

όταν $N \geq 2$. Αρκετό ένα γραμμικό σύστημα $\mathcal{L}_{d}(-\sum_{i=1}^{r} m_i P_i)$ είναι ειδικό.

Τώρα αντιστρέφοντας την παραπάνω διαδικασία μπορούμε να χαρακτηρίσουμε ειδικά γραμμικά συστήματα. Θεωρούμε ένα μη κενό γραμμικό σύστημα \mathcal{L} και μια ανάγκη (-1)-καμπύλη E, τέτοια ώστε να ισχύει $(C, E) = 0$ για κάθε καμπύλη $C \in \mathcal{L}$. Το σύστημα $\mathcal{L} + NE$ είναι ειδικό για κάθε $N \geq 2$. Επιπρόσθετα, όλα τα μέγιστα τύπου γνωστά παραδείγματα ειδικών γραμμικών συστημάτων μπορούν να προκύψουν με την παραπάνω διαδικασία. H χώρα Eikasia είναι ότι οποιοδήποτε ειδικο γραμμικό σύστημα μπορεί πράγματι να προκύψει με αυτόν τρόπο.

H χώρα Eikasia. [Hirschowitz-Harbourne] Εστω ότι τα P_1, \ldots, P_r είναι r σημεία του προβληματικού επιπέδου ευρισκόμενα σε γεωμετρία θέσης. Το γραμμικό σύστημα $\mathcal{L} = \mathcal{L}_{d}(-\sum_{i=1}^{r} m_i P_i)$ είναι ειδικό αν και μόνο αν υπάρχει μια (-1)-καμπύλη E τέτοια ώστε

$$(C, E) = -N, \quad N \geq 2,$$

για κάθε καμπύλη $C \in \mathcal{L}$.

H χώρα Eikasia παραμένει αειμεταλλή. Πρόσθετα, η έρευνα έχει επικεντρωθεί στις ειδικές περιπτώσεις όπου όλες οι πολλαπλάσιες είναι ίσες.
4.3. ΕΠΙΣΚΟΠΗ ΣΧΕΤΙΚΩΝ ΑΠΟТЕΛΕΣΜΑΤΩΝ

στα γραμμικά σύστημα $L_d(-\sum_{i=1}^{r} mP_i)$ των επίπεδων χαμηλών βαθμού d
που διέρχονται από r γενικά σημεία του προβολευμάτικου επίπεδου με πολλαπλάσια τουλάχιστον m. Η κύρια Εικοστή έχει αποδειχθεί ότι: αληθεύει όταν $r \leq 9$ ή όταν $m \leq 12$, από τους Castelnuovo, Nagata, Gimigliano, Harbourne και Hirschowitz, Ciliberto, Miranda, αντίστοιχα. Επίσης, έχει αποδειχθεί ότι στην περίπτωση κατά την οποία $m_1 = \cdots m_r = m$, τα γραμμικά σύστημα $L_d(-\sum_{i=1}^{r} mP_i)$ περίεχουν (-1)-χαμηλές μόνον όταν $r = 2, 3, 5, 6, 7, 8$. Από το τέλευτο άρθρο έγινε ότι: αν η κύρια Εικοστή είναι αληθής, τότε κάθε γραμμικό σύστημα $L_d(-\sum_{i=1}^{r} mP_i)$, με $r \geq 9$, θα είναι μη ειδικό. Με βάση αυτό αποδεικνύεται η παρακάτω πρόταση.

Πρόταση 4.3.1. Η κύρια εικοστή συνεπάγεται την εικοστή του Nagata.

Αποδείξη. Ας υποθέσουμε ότι: τα P_1, \ldots, P_r, $r \geq 10$, είναι γενικά σημεία του επιπέδου και ότι C είναι μια χαμηλή χαμηλή d που διέρχεται από αυτή με πολλαπλάσια m. Από το θεώρημα 3.2.2 γνωρίζουμε ότι η εικοστή του Nagata ισχύει όταν r είναι τέλειο τετράγωνο. Την αποδείξεως χρειάζομαι ώρα. Και στην περίπτωση που r δεν είναι τέλειο τετράγωνο. Εστώ A μια ανάγκης συνιστώσας της C. Τότε A αντίστοιχη σε ένα γραμμικό σύστημα το οποίο είναι μη ειδικό (από την κύρια εικοστή). Συνεπώς η διάσταση του, η οποία είναι ≥ 0 (διότι περιέχει την χαμηλή A), ισούται με την πολυανακόλουθη διάσταση του και η οποία επιμένει θα είναι ≥ 0. Συνεπώς,

$$< A^2 > - p(A) + 1 \geq 0$$

και

$$< A^2 > \geq p(A) - 1 \geq -1.$$

Ισχυρίζομαι ώρα ότι: $< A^2 > \neq -1$. Προήγηκα, αν $< A^2 > = -1$, τότε από την παραπάνω αναγκάζομαι συνήθως ότι $p(A) = 0$ και επομένως το A θα ήταν μια (-1)-χαμηλή, πράγμα όπου δεν είναι $r \geq 10$. Συνεπώς, για κάθε ανάγκης συνιστώσα A_i της C, έχουμε ότι: $< A_i^2 > \geq 0$ και, ως εκ τούτου,

$$< C^2 > = d^2 - rm^2 \geq 0.$$

Επομένως $d \geq \sqrt{r} m$ και αφού το r δεν είναι τέλειο τετράγωνο έχουμε ότι: $d > \sqrt{r} m$.

Η κύρια τεχνική που ακολουθούν οι ερευνητές για να ελέγξουν πότε ένα γραμμικό σύστημα έχει την ανομοιογενή διάσταση είναι η εξής: Εστώ ότι: θέλουμε να μελετήσουμε το γραμμικό σύστημα των επίπεδων χαμηλών βαθμού d που διέρχονται από r γενικά σημεία του προβολευμάτικου επίπεδου P_1, \ldots, P_r με πολλαπλάσια m_1, \ldots, m_r, αντίστοιχα. Θεωρήστε το σύστημα $L = L_d(-\sum_{i=1}^{r} mP_i)$. Αν θεωρήσουμε ότι: τα P_1, \ldots, P_r διέρχονται από μια ανεξάρτητη υπερεπιφάνεια, τότε η διάσταση του
αντίστοιχου γραφικού συστήματος είναι μεγαλύτερη ή ίση από τη διάστασή του L στην περίπτωση που τα σημεία P_1, \ldots, P_r είναι γενικά. Από την άλλη μεριά, η ειδική θέση των σημείων διευκολύνει την υπολογισμό της διάστασής. Επομένως, αν καταλήγουμε να βρούμε μια ειδική θέση των P_1, \ldots, P_r, έτσι ώστε η διάστασή του L να ταυτίζεται με την αναμενόμενη διάστασή του, τότε και για τα γενικά σημεία, η πραγματική διάστασή του αντίστοιχου συστήματος θα ταυτίζεται με την αναμενόμενη, οπότε θα είναι μη ειδική.
D. Eisenbud: *Commutative Algebra with a view toward Algebraic Geometry*, Springer-Verlag, 1994

