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Abstract

In this work we show that the union of an axis-aligned cube and
rectangle in Rd whose intersection has even codimension does not con-
stitute a tile by translations in the special case where all sides of the
rectangle have length greater than one. This complements a result of
M. Kolountzakis who showed that in the odd codimension case, the
union tiles the space by translations.

Contents

1 Introduction 1

2 The case of odd codimension - Kolountzakis’s result 3

3 Notation 6

4 Outline of proof 11

5 Proofs 13
5.1 Attached copies . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Reduction to a n.o.s. . . . . . . . . . . . . . . . . . . . . . . . 14
5.3 Reduction to the case 0 +R is attached to 0. . . . . . . . . . 14
5.4 Properties of the surrounding . . . . . . . . . . . . . . . . . . 16
5.5 Getting the new n.o.s from the old. . . . . . . . . . . . . . . . 17

1 Introduction

A theorem of Stein [3] states that if a small axis-aligned rectangle is removed
from a corner of an axis-aligned cube in Rd, the resulting notched cube T tiles
Rd by translations; this means that there is a discrete set L of translation
vectors such that T +L = Rd and any two distinct translates of T intersect
only at the boundary. Kolountzakis gave in [1] a Fourier-analytic proof of the
fact; in the process, he discovered that the same result holds if one attaches
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Figure 1: A union of rectangles in dimension 2, codimension 2 and ”proof”
of non-tilership.

a rectangle on the corner1 of the original instead of removing it; the only
essential condition was that the codimension of the supporting subspace of
their intersection be odd.

It is easy to see in R2 that when this codimension is two, the resulting
T does not tile for general sidelenghts; the same holds in R3 as well for
codimension two. Therefore, it was natural to conjecture that it holds for
all dimensions and even codimensions.

Observe that even in dimension two, there has to be a condition on
the relative sizes of the two rectangles in order for their union not to tile
the plane. For example, if the two rectangles have equal sidelengths, they
definitely constitute a tile. Even if only one side of R is equal to the cor-
responding side of C, the resulting union is still a tile; see Figure 2. In all
other cases, it is not a tile. The proof is immediate: if one tries to surround
C completely with translates of T , one will immediately get a non-trivial
intersection; see Figure 1. This is the intuition we generalize to higher di-
mensions.

Our main result is the following

Theorem 1. Let C be the unit cube [0, 1]d ∈ Rd and R a rectangle [l1, r1]×
· · ·× [ld, rd] where ri− li > 1 for all i = 1 · · · d. Assume that the intersection
C ∩ R contains a common vertex of C and R and has even codimension.
Then T := C ∪R does not tile Rd by translations.

The notion of T tiling Rd by translations means that translates of T
cover Rd and the intersection of any two has Lebesgue measure zero. In

1This means that the rectangles will have at least one common vertex.
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Figure 2: This union tiles: the vertical sides of the two constituents are
equal.

our case, of course, since T is a piecewise linear object, intersections either
contain open subsets of Rd or are contained in a finite union of hyperplanes,
thus definitely having zero Lebesgue measure.

Using the assumption that all sides of R have length greater than one, we
can reduce the tiling to a local result, where we can argue combinatorially. So
far, we have not been able to adapt the argument to work in the general case,
but we believe that the methods can be made to work in the general case
by some modification of the reduction step from a tiling to a surrounding.

The rest of the paper is organized as follows: first, we give a sketch of
the proof of Kolountzakis’s result that in the odd codimension case T tiles
Rd by translations; we follow [1] in the exposition. Then, after introducing
some necessary notation, we outline the proof of Theorem 1 and we proceed
with the proofs in the last section.

2 The case of odd codimension - Kolountzakis’s
result

In this section, we will center the unit cube at 0 since it makes computing
the Fourier transforms more convenient. From the next section onwards,
the unit cube will be centered at

(
1
2 , · · · ,

1
2

)
.

The proof of the theorem below is based on the following lemma, which
can be proved using the Poisson summation formula:

Lemma 2. Let Λ = AZd be a lattice in Rd, Λ∗ = {x ∈ Rd : ∀λ ∈ Λ, 〈x, λ〉 ∈
Z} be the dual lattice, and χT the characteristic function of a Lebesgue
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measurable set T ⊂ Rd of finite volume m(T ). Then T tiles Rd with Λ as
the set of translations if and only if χ̂T vanishes on Λ∗ \ {0} and the volume
of Λ equals m(T ), the Lebesgue measure of T .

The proof of more general versions of the lemma where χT is replaced by
any L1 function (with the conclusion appropriately modified) can be found in
[1]. This observation allows us to reduce the question of tiling to identifying
lattices in the zero set of the Fourier transform of χT . Note that in general,
T may tile Rd but not by translations. In the case we consider here, however,
we will find a lattice tiling. Of course, in the even codimension case, we will
see that there is no tiling, lattice or not.

Theorem 3. Let C be the axis-aligned unit cube in Rd centered at 0 and
R =

∏d
j=1[1

2 −δj ,
1
2 ], where the δj can take any values as long as they satisfy

δ1 · · · δd 6= 1. Assume C ∩R has odd codimension. Then T = C ∪R tiles Rd

by translations.

Proof. To say that C∩R has odd codimension is equivalent to sgn(δ1 · · · δd) =
−1, i.e. an odd number of the δ’s are negative (to see this, start with
all δ’s positive, then successively multiply each δj by −1 and observe that
the codimension goes up by one at each step). In this case, we can write
χT = χC + χR almost everywhere where χR has the form

χR(x) = χC

(
x− (1− δ1)/2

|δ1|
, · · · , x− (1− δd)/2

|δd|

)
by the definition of R in the statement of the theorem. Taking Fourier
transforms and using the form given above, we get

χ̂T (ξ) =
d∏
j=1

sinπξj
πξj

− F (ξ)
d∏
j=1

sinπδjξj
πξj

(1)

where F (ξ) = eπiK(ξ) with K(ξ) =
∑d

j=1(δj − 1)ξj . To find a lattice whose
dual is in the zero set of the function defined above, start by defining that
dual as the set of ξ ∈ Rd that satisfy

ξ1 − δ1ξ2 = n1, (2)
· · ·

ξd − δdξ1 = nd

for some n1, · · · , nd ∈ Z. It is easy to see that this set is the lattice Λ∗ =
A−1Zd, where A is the following matrix:

A =


1 −δ2

1 −δ3

. . .
1 −δd

−δ1 1

 .
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Then we recover Λ = A>Zd. Note that vol(Λ) = det(A) = 1−δ1 · · · δd. This
is precisely the volume of the set T , so if we can show that χ̂T vanishes on
the lattice, we are done.

Start by summing the equations (2) to get K(ξ) = −(n1 + · · · + nd);
denote this value by K. If all the coordinates of ξ are non-zero we can
rewrite (1) as

χ̂T (ξ) =
1

πdξ1 · · · ξd

 d∏
j=1

sinπξj − (−1)K
d∏
j=1

sinπδjξj

 . (3)

Observe from (2) that2

sinπξj = (−1)nj sinπδj+1ξj+1,

from which we get χ̂T (ξ) = 0, since the factors in the two terms of (3)
match one by one.

Now suppose some coordinate of ξ, say ξ1, is zero. Arrange the coordi-
nates ξ1, · · · , ξd in a circle and let

I = {ξm, ξm+1, . . . , ξ1, . . . , ξk−1, ξk}

be an interval around ξ1 which is maximal with the property that all its
elements are 0. Then ξm−1 6= 0 and ξk+1 6= 0 and from (2) we get

ξm−1 − δmξm = nm and ξk − δk+1ξk+1 = nk. (4)

Thus nm and nk are both nonzero, so that ξm−1 and δk+1ξk+1 are both
non-zero integers and sinπξm−1 = sinπδk+1ξk+1 = 0. Therefore, both terms
in (1) vanish and so does χ̂T (ξ); this concludes the proof.

We should note here that a much more general criterion for tiling with
co-tilers that are not necessarily lattices is offered in [1], following the earlier
paper [2]. The handy expression in terms of the dual lattice is replaced by
the Fourier transform of a distribution

∑
a∈Λ δa for a discrete Λ ⊂ Rd of

bounded density.
Using these Fourier-theoretic criteria to prove that a given T is not a

tile is very difficult; even asking to prove lattice (non-) tiling requires to
consider an arbitrary lattice in the zero set of χT and show that it does
not have the correct volume. Proving non-tiling using such a method would
be interesting, especially since one would have to obtain first some sort of
control over the kind (relative volumes etc.) of lattices that can occur in
such a zero set.

The rest of the paper is devoted to proving Theorem (1); we begin with
some essential notation.

2Subscripts are reduced modulo d.
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3 Notation

The following notions will be used repeatedly in subsequent sections. Some-
times, along with the definition we give some basic properties that can be
trivially verified.

1. The coordinates of a vector v ∈ Rd are always denoted by v1, · · · , vd
and the members of the standard basis of Rd by ei, i = 1, · · · , d.

2. Boldface numbers such as 0 stand for vectors with all coordinates equal
to that number.

3. For a set S ⊂ Rd we write dim(S) for the largest dimension n in which
S contains a homeomorphic image of an open set of Rn.

4. In the sequel, a rectangle R in Rd will always refer to an axis-aligned
rectangle of full dimension, i.e. a set of the form

∏d
i=1[ai, bi] with

ai < bi for all i. Sometimes we use the notation [a, a] for the singleton
{a} when it appears in a product of intervals (see the notation for a
face below).

5. We will occasionally need to refer to the intervals whose product de-
fines the rectangle R above. The interval lying at the j−th position in
the definition of R is called the j−th factor of R. Much of the time,
we will not be able to write the j−th factor of a rectangle in its correct
position; in these cases we subscript the interval with the correct index
in order to avoid confusion. We also write Rj to denote [aj , bj ].

6. In the rectangle R := [v0
1, v

1
1]× · · · × [v0

d, v
1
d], the d− 1-face or facet f0

k

is, by definition, the closed set

f0
k := [v0

1, v
1
1]× · · · × {v0

k} × · · · × [v0
d, v

1
d]

and respectively

f1
k := [v0

1, v
1
1]× · · · × {v1

k} × · · · × [v0
d, v

1
d]

is the face f1
k ; of course the interval replaced by the singleton lies in

the k−th position.

7. More generally, any (d−s)−tuple of directions S ⊂ [d] (here and below,
[d] stands for {1, · · · , d}) and ordered set ε := {εi ∈ {0, 1}|i ∈ S}
determine a unique s−face of R

f εS :=
⋂
i∈S

f εii .
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Therefore f εS is derived from R by replacing each interval correspond-
ing to the position i in the direct product by the singleton v0

i or v1
i

according to whether εi equals 0 or 1. It is well-known and immedi-
ately seen by the above that the number of k-faces of a rectangle R in
Rd is precisely

2d−k
(
d

k

)
.

We sometimes equivalently write S for the set of direction vectors
{ei|i ∈ S} and write ε for the d − s-vector of zeros and ones corre-
sponding to the directions in S; so f{0,1}{1,2} may be written f

(0,1)
{e1,e2}.

8. When we have more than one rectangle, in order to distinguish between
faces of different rectangles, we subscribe the rectangle before the face;
for example, the facet of a rectangle R normal to e1 and containing 1
will be denoted by Rf

1
1 .

9. We define the positive and negative closed i-halfspaces H+
i and H−i

by

H+
i = {x ∈ Rd|xi ≥ 0}

H−i = {x ∈ Rd|xi ≤ 0}

10. A rectangle R := [v0
1, v

1
1]× · · · × [v0

d, v
1
d] can be written as the intersec-

tion

R =
(
v0

1e1 +H+
1

)
∩

(
v1

1e1 +H−1
)
∩

· · · ∩
(
v0
ded +H+

d

)
∩
(
v1
ded +H−d

)
,

of the i−slabs
(
v0
i ei +H+

i

)
∩
(
v1
i ei +H−i

)
bounded by the boundaries

of the corresponding halfspaces. In order to relieve some of the weight
of this notation, we write

RH
1
i := v1

i ei +H−1

RH
0
i := v0

i ei +H+
1

As the notation implies, RH
1
i has the face Rf

1
i at its boundary and

similarly RH
0
i has the face Rf

0
i at its boundary. The intersections of

various RH
ε
i give ’octants’ with lower-dimensional faces of R at their

corners.

11. Given two axis-aligned rectangles R, R′ in Rd, we say that R and R′

touch if they have a nonempty intersection of dimension at most d−1.
Given any s−face Rf

ε
S of R, we say that R′ partially covers Rf

ε
S if

Rf
ε
S ∩ R′ has dimension s, i.e. its s-interior is contained in R′. If R′

contains the entire face and not only a (s−dimensional) part of it, we
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Figure 3: The leftmost tile has R attached to f{1,0}{1,3} ; the rightmost one has
R covering that face but is not attached to it; it is attached to f1

1 .

say it fully covers the face. If R′ covers an s−face Rf
ε
S of R but no

face of dimension t > s, we say that R′ is attached to Rf
ε
S . If it fully

covers the face but no face of higher dimension, we say it is completely
attached to the face. See figure 3 for clarification.

It is easy to see (see lemma 4 below) that if R′ is partially or completely
attached to Rf

ε
S , this is then the unique s-face R′ covers and in fact

the rectangles R′ and R touch at an s-face of R′, more specifically the
face R′f ε

′
S ; here ε′ := (ε′1, · · · , ε′s), where ε′i+εi = 1. So if R′ is attached

to Rf
ε
S the following must be true:

R ∩R′ = Rf
ε
S ∩ R′f ε

′
S

12. A local picture of tiling by T is given by the notion of a non-overlapping
surrounding. Given rectangles R,R′ in Rd we say we have a non-
overlapping surrounding (from now on abbreviated as n.o.s) of R by
translates of R′ if the following hold: there is a finite set of d−vectors
L such that R ⊂ int(R ∪ (R′ + L)) and for distinct l1, l2 ∈ L, l1 + R′

and l2 +R′ intersect possibly only at their boundaries.

13. Let L + R be a surrounding of the cube and R1, R2 translates of R.
R2 is called a j-follower of R1 (and R1 a j-leader of R2) if R1f

0
j ∩R2 f

1
j
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Figure 4: The positive 1-tube of R2 is just R2 while the negative 1-tube
contains R1 as well. The 1-tube of R2 consists of all the rectangles in the
figure.

has dimension d − 1. The translates are called j-adjacent if one is a
follower of the other. This extends to an equivalence relation we call
j-connectedness so that R1, R2 are j-connected if either R1 = R2 or
there is a k ≥ 2 and a sequence of k translates R′1, · · · , R′k such that
R′1 = R1, R

′
k = R2 and R′j is adjacent to R′j+1 for j = 1, · · · , k − 1.

The equivalence class under j-connectedness of an l + R is called the
j-tube of l+R, written τj(l+R). We usually identify translates of R
in a particular surrounding with translation vectors and view τj(l) as
a subset of L.

One also considers the positive j-tube τ+
j (R1) of all consecutive follower-

leader chains starting with R1, and respectively the negative j-tube
τ−j (R1) of all consecutive follower-leader chains ending with R1. Thus
Rk is in the positive j-tube if there is a chain R1, · · · , Rk such that
Ri−1 is a follower of Ri (and not just adjacent). Note that it is not
true in general that τj(R1) = τ+

j (R1)∪ τ+
j (R1). For example, one can

take an R in R2, attach a translate R1 on top of R and slide it halfway
across, then attach an R2 at the exposed part of the bottom of R1,
which will then have a part of its top exposed and proceed similarly.
This will make an infinite tube in the vertical direction by our defini-
tion, while for any translate the vertical plus or minus tube will consist
of at most two translates. We will encounter this zigzag picture in the
proof of the main lemma. Refer to figure 4 for a typical situation.

14. Suppose S is a possibly empty subset of [d]. For ri > 1, we will en-
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counter the intervals I+
i = [0, ri] and I−i = [−ri, 0] very often. Define

I(S)i = I+
i if i /∈ S and I(S)i = I−i if i ∈ S. We will abuse notation

and write the rectangle R =
∏d
i=1 I(S)i as

∏
i∈S [−ri, 0]i×

∏
i/∈S [0, ri]i;

the subscript i under the interval indicates that the interval is in the
i−th position. We chose this notation so that the reader can immedi-
ately see the positive and negative constituents of R.

15. The following table defines quantities dependent on a symbol εi and a

rectangle R :=
∏
i∈S [−ri, 0]×

∏
i/∈S [0, ri]:

εi ε′i ε̇i ε̂i ε̄i
0 1 0 − 1
1 0 1 + ri + ri

16. For an s−face f of the unit cube C = [0, 1]d, f◦ denotes the s−dimensional
interior of f , or equivalently the interior of f in the supporting hyper-
plane. For ζ > 0, the interior ζ−fattening F ζf of a face f εS is defined
by ∏

i/∈S

(0, 1)i ×
∏
i∈S

(εiei + (−ζ, ζ))i ;

visually, it is a ζ−fattening of the interior but only in the directions
normal to the supporting hyperplane of the face. Note again here the
abuse of notation in the definition of the fattening.

For a general rectangle R, the ζ-fattening of a face is defined com-
pletely analogously.

17. Any s-face f := f εS defines 2d−s quadrants and respective compart-
ments. The quadrant Qδf , where δ = {δi ∈ {+,−}|i ∈ S}, is defined
by

Qδ :=
⋂
i∈S

(
εiei +Hδi

i

)
;

the compartment Cδ,ζf is defined by Qδf ∩F
ζ
f for some suitable small ζ.

For our purposes it will be enough to take ζ = 1
2 minz∈Z(z) where Z is

the set of all {ri− 1|i = 1, · · · , d}; recall that ri > 1 for all i. We then
drop the superscript ζ since it will not change throughout the paper.
One can also write the compartment Cδf as

Cδf =
∏
i/∈S

(0, 1)i ×
∏
i∈S

δ̂i · [0, ζ) (5)

where the obvious notation +[0, ζ) = [0, ζ), −[0, ζ) = (−ζ, 0] is used.

18. Of all compartments defined by a face f := f εS , the most important one
is the exterior compartment C ε̂f ; it is the only compartment that trans-
lates of R attached to the face can occupy. In figure 5, we highlight
the exterior compartments of the faces f1

1 and f{1,0}{1,2} ; it is obvious that
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Figure 5: The 2-cube and exterior compartments of some faces; here ζ = 1
8 .

the exterior compartments are precisely those occupied by rectangles
attached to the face. If an exterior compartment is fully occupied by a
translate attached to a higher-dimensional face (containing the given
one), one cannot attach a translate to that face.

4 Outline of proof

In this section we outline the steps we will execute to prove the lack of tiling
property. The data we are given are the unit cube C = [0, 1]d centered at
1
21, a set of directions S of even cardinality and a rectangle

R =
∏
i∈S

[−ri, 0]i ×
∏
i/∈S

[0, ri]i (6)

with all ri > 1. We assume T := R ∪ C tiles Rd by a set of translations
L′. Without loss of generality, L′ contains the zero vector. We show that
0+T cannot even be completely surrounded by translates of itself. A trivial
lemma shows that in any tiling of Rd by translates of T , the C-constituent
of T will only touch translates of R; this is because all ri are greater than
one, and if two translates of C touched, the corresponding translates of R
would intersect nontrivially. Therefore, the tiling gives for each translate of
C an n.o.s by a set of translates L of R; i.e. l ∈ L if and only if l+R touches
the given translate of C. The choice of the translate of C to consider is
irrelevant as any one will give a contradiction, so we look at 0 +C; all cube
faces from now on will belong to that translate. Note that in this n.o.s, the
translate 0 +R is attached to the even codimension face f0

[d]\S .
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Figure 6: C is surrounded by translates of R, where translates attached to
edges already cover the exterior compartments of vertices.

After that, we descend from Rd to R|S| by taking successive intersections
of the n.o.s with hyperplanes normal to the directions in [d] \ S. In the
resulting n.o.s the translate 0 + R (we will denote the |S′|−dimensional
intersections of C and R again by C and R to reduce notation) will be
attached to the vertex 0, a face of even codimension |S| − 0 = |S|.

Next, from that n.o.s we derive a new n.o.s with the following properties:

1. The vertex 0 still has the copy 0 +R attached to it.

2. Each translate attached to some k-face f fully occupies the exterior
compartments of precisely

(
k
l

)
l-subfaces and does not occupy any part

of the exterior compartment of any other face.

We then define two combinatorial quantities (basically enumerating the
number of k-faces with an attached translate) and use the two properties
stated above to derive a contradiction by showing that this number is zero
for k even, in particular k = |S|. Thus, the vertex 0 (compare figure 6) will
be covered by a translate of R attached to some higher dimensional face (a
1-face in the figure); equivalently, its exterior compartment will be already
occupied by an R attached to a higher-dimensional face.

Schematically, the following reductions will lead to the desired contra-
diction:

1. From a tiling L′ + T we isolate an n.o.s of C by translates of R.

2. By taking slices of the n.o.s along hyperplanes normal to directions in
[d] \ S we get an n.o.s in R|S| with the same properties as above and
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furthermore we have an attached translate of R at the vertex 0, which
is now an even codimension face of C.

3. From the given n.o.s we derive a new n.o.s by pushing the various
translates of R to remove redundant translates and make the number
of faces covered by each attached translate constant as a function of
the dimension of the face the translate is attached to.

5 Proofs

5.1 Attached copies

Here we prove the assertion in item 11 of the notation section about how
attached translates of R look and what they cover. The set S below is not
related to the S defining R.

Lemma 4. Let R = [v0
1, v

1
1]×· · ·× [v0

d, v
1
d] and R′ = [w0

1, w
1
1]×· · ·× [w0

d, w
1
d]

be rectangles in Rd and suppose R′ is partially or completely attached to the
s-face Rf

ε
S of R. Then for each eij ∈ S, if εj = 0 then w1

ij
= v0

ij
and if εj = 1

then w0
ij

= v1
ij

. Furthermore, the intersection R ∩R′ equals the intersection

Rf
ε
S ∩ R′f ε

′
S where as usual the vector ε′ comes from ε by switching the zeros

and ones in the coordinates (ε′j is defined by εj + ε′j = 1).

Proof. It is obvious that the intersection of R and R′ is a rectangle

R ∩R′ = [max(v0
1, w

0
1),min(v1

1, w
1
1)]× · · ·

×[max(v0
d, w

0
d),min(v1

d, w
1
d)]

To say that R′ is (perhaps partially) attached to Rf
ε
S means that the in-

tersection must have dimension s; therefore, exactly d − s factors in the
rectangle above must be singletons. However, the face Rf

ε
S is the rectangle

derived from R by replacing directions in S by singletons v0
ij

if ej = 0 and
v1
ij

if ej = 1. Since R ∩ R′ and Rf
ε
S must have s-dimensional intersection,

and precisely d − s factors in the rectangle representation of Rf
ε
S are sin-

gletons, exactly the same factors of R ∩R′ must be singletons (if there is a
position where one of the two, R∩R′ or Rf εS has a singleton while the other
does not, the number of singletons in their intersection goes above d−s and
therefore the intersection is less than s-dimensional). Obviously then, the
singletons in Rf

ε
S must be equal to the singletons in R ∩ R′. This gives us

the equations:

max(v0
ij , w

0
ij ) = min(v1

ij , w
1
ij ) = v

εj
ij
, eij ∈ S. (7)

This immediately implies, as v0
ij
6= v1

ij
and w0

ij
6= w1

ij
, that vεjij = w

ε′j
ij

as
the lemma demands. These equations immediately show that R∩R′ is also
contained in the face R′f ε

′
S .
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5.2 Reduction to a n.o.s.

The following trivial lemma will reduce the question of tiling to the question
of surrounding.

Lemma 5. Let C = [0, 1]d, S′ ⊂ [d] with even cardinality and

R =
∏
i∈S′

[−ri, 0]×
∏
i/∈S′

[0, ri];

assume T := R∪C tiles Rd by a set of translations L containing 0. Then 0+
C (denoted simply by C from now on) is completely surrounded by translates
of R.

Proof. Since L+ T is a tiling, C is surrounded by translates of T . Suppose
C ∩ (l + C) 6= ∅. Since C is the unit cube, this means that ||l||∞ ≤ 1. For
each factor Rj = [a, b] of R we have |Rj | > 1. Therefore, [a, b]∩([a, b]+ lj) =
[a + lj , b] if lj > 0 and [a, b + lj ] if lj < 0. In any case, since |lj | < 1 while
b − a > 1, we get that Rj ∩ (lj + Rj) is a proper interval for every j, and
therefore R ∩ (l + R) intersect nontrivially in Rd, contradicting the tiling
property.

Therefore, only translates of R possibly touch C.

By the definition of attachment, R is attached to the even codimension
face f ε[d]\S′ of C, with ε having all elements equal to zero. Together with
this R, the rest of the copies touching C constitute an n.o.s L′ +R of C for
some finite L′ ⊂ L.

5.3 Reduction to the case 0 + R is attached to 0.

Lemma 6. Suppose L + R is an n.o.s of C in Rd, as usual with R :=∏
k∈S [−rk, 0]k ×

∏
k∈[d]\S [0, rk]k. Also suppose i /∈ S. If L′ is the set of

l ∈ L such that l+R∩ (H+
i )◦ 6= ∅ and simultaneously l+R∩〈ei〉⊥ 6= ∅ then

L′ + πi(R) is an n.o.s of πi(C) (in an isomorphic copy of Rd−1, where πi is
the projection to the d− 1-dimensional subspace 〈ei〉⊥.

Figure 7 exemplifies most of the details found in the proof.

Proof. Consider the intersection of the n.o.s with 〈ei〉⊥. πi(C) is obviously
in this intersection. Define the set T to be those translates l+R that satisfy

((l +R) ∩H+
i )◦ 6= ∅

and additionally
(l +R) ∩ 〈ei〉⊥ 6= ∅.
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Figure 7: Going from dimension 3, codimension 2 to dimension 2, codimen-
sion 2.
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Denote the set of the above l by L. Note that 0 is one of those translation
vectors. Furthermore, for two l1, l2 ∈ L, the intersection

S :=
((

(l1 +R) ∩ 〈ei〉⊥
)
∩
(

(l2 +R) ∩ 〈ei〉⊥
))

is trivial in 〈ei〉⊥. For, suppose it was not. Both l1 +R and l2 +R have full
intersection with H+

i ; in fact, the first contains a set of the form(
(l1 +R) ∩ 〈ei〉⊥

)
× I

and respectively the second contains a(
(l2 +R) ∩ 〈ei〉⊥

)
× I ′

for small intervals I = [0, a] and I ′ = [0, b] depending again on l1i , l
2
i . If S

contained an open set in 〈ei〉⊥, this would mean that (l1 +R∩(l2 +R) would
contain S × [0,min(a, b)] and therefore an open set in Rd, contradicting the
nonoverlapping property.

Finally, it is obvious that πi(C) is covered by these translates (if there
was any gap, it would extend to a gap in Rd because the translates are
rectangles, and would contradict the surrounding property). The above says
that in Rd−1 ' 〈ei〉⊥, C ′ = [0, 1]d−1 is covered by nonoverlapping translates
of R′ =

∏
j∈S [−rj , 0]j ×

∏
j /∈S,j 6=i[0, rj ] that do not intesect nontrivially.

Thus we get an n.o.s in one dimension down, with one i /∈ S eliminated.

The above shows that we can reduce the tiling to one dimension lower
eliminating one i /∈ S. In fact, checking the proof above shows that we can
iterate this procedure, going in the same way from an n.o.s in Rd to an n.o.s
in R|S| by successively eliminating all i /∈ S. There, the resulting R is simply
R =

∏|S|
i=1[−ri, 0] and C = [0, 1]|S| so C ∩ R = {0}, which means we have

reduced the problem to the case of even dimension and 0 +R attached to 0.
Thus from now on d will be even, R =

∏d
i=1[−ri, 0], L will consist of

d−vectors, L+R will be an n.o.s of C = [0, 1]d and 0 +R will be attached
to 0. Finally, since S will not appear anymore in relation to R, we reserve
this symbol to describe faces as defined in item 7 of the notation section.

5.4 Properties of the surrounding

Here we list some properties of the surrounding that will be used both as a
’visual’ aide and in the proof proper in the result of the next section. The
following lemma describes the entries of the translation vectors of translates
attached to particular faces.

Lemma 7. Let l ∈ L so that l + R is attached to a face f εS for some S, ε.
Then
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1. 0 ≤ li ≤ 1 + ri for i = 1, · · · , d.

2. For i ∈ S, li = ε̇i.

3. For i /∈ S, 0 < li < ri + 1.

Proof. By definition, (l +R) ∩ C 6= ∅ and for this to hold, since C is in the
positive quadrant, one cannot slide R in a negative direction. If li < 0 for
some i, then l + R ⊂ (H−i )◦, while C ⊂ H+

i . Therefore, li ≥ 0 for all i,
giving the left hand inequality in 1.

The other inequality follows similarly: if li > 1 + ri for some i, then
l +R ⊂ (ei +H+

i )◦ while of course C ⊂ (ei +H−i ).
The second item follows direcly from lemma 4 by replacing R with l+R

and R′ by C and working out the equations. The third one follows from
that lemma as well since if either of the two extremes held, the translate
would be attached to a lower-dimensional face.

5.5 Getting the new n.o.s from the old.

In this section we describe how to slide translates in the n.o.s to get a sur-
rounding whose incidence combinatorics are immediately apparent. We start
with translates attached to facets and alter the surrounding one dimension
at a time.

Lemma 8. Suppose L + R is an n.o.s of C. Then there is L′ such that
L′ + R is an n.o.s of C and the following holds: for all l ∈ L′, if l + R is
attached to f εS, then li = ε̇i for i ∈ S, and li = 1 or li = ri for i /∈ S.

This condition gives a large number of implications described and proved
in the next lemma.

Proof. We describe the procedure to get L′ from L in an algorithmic format.
Each step is easily seen to accomplish its stated functions. After the first
iteration, all facets of C will have a single translate attached to them, all
lower-dimensional faces covered by translates attached to a facet will in fact
be completely covered by them (i.e. their exterior compartment of each
lower-dimensional face is either unoccupied or completely contained in a
unique translate attached to some face) and the configuration L + R will
still be an n.o.s. Subsequent iterations do the same for the lower-dimensional
faces. Below we give the pseudocode implementing the entire procedure.

Begin Modify
Input: R,L{Output is going to be the modified L.}
for k = d− 1 to 0 step −1 do
{Traverse through the k-faces of C, so |S| = d− k.}
for all f εS ⊂ C do

if there exists at least one translate l +R attached to f εS then
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{In the k = d− 1 case this is always true. We pick a random such
translate.}
for all j /∈ S do

if li ∈ (0, 1) then
for all l′ ∈ τi(l +R) do
l′ ← l′ + (1− li)ej {This is the sliding operation. No trans-
late attached to a higher-dimensional face is affected because
by the previous iterations such a translate would fully oc-
cupy the exterior compartment of the present face and there
would be no attached translates to it.}

end for
else if li ∈ (ri, 1 + ri) then

for all l′ ∈ τi(l +R) do
l′ ← l′ + (ri − li)ej

end for
else if li ∈ (1, ri) then
{In this case, the entire j-tube is empty; we opt to slide it
back and then append a new translate to cover the lower-
dimensional faces the original translate abandons.}
l← l + (1− li)ej{li becomes 1.}
l̂ ← l + (ri + 1)ei{l̂i = 1 + ri and is otherwise aligned with
l +R.}
L ← l̂ {Now we pulled l back and covered what was left un-
covered with a new translate l̂ + R. Nothing overlaps since if
l̂+R overlapped with anything, so would the original l+R.}

end if
end for

end if
end for

end for
return L
End

Now the returned L is our L′. Note that we opted to push translates with
li < 1 to li = 1 and pull translates with li > ri to li = ri. We could have
done the opposite resulting in li = 0, li = 1 + ri; this would not change
things since translates in the i−tube would come to cover the gaps left by
the displaced translate, but our choice of operation makes it clearer that we
do not introduce any gaps during the operation.

There are three points we want to prove:

1. L′ +R is an n.o.s.

2. Given l ∈ L′ attached to f εS , li = ε̇i for i ∈ S, while li = 1 or ri for
i /∈ S.
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3. 0 +R is still attached to 0.

To prove item 1 we need to show that sliding the tubes does not introduce
gaps; the nonoverlapping propery is obvious because we slide entire tubes
and these are by definition the only (nontrivial) blocks to sliding a translate.

Item 2 seems to be immediate by the way we chose our slidings. However,
we must guarantee that after we slide a translate to its ’correct’ position in
all directions, subsequent slidings of other faces of the same dimension or
lower dimension do not affect the translate (if this were to happen, we would
definitely lose the covering property along with destroying the nice form we
had obtained for our translation vector). To show this it suffices to prove
that in all cases where sliding occurs, the j-tube of the face consists only of
translates attached to faces of dimension equal to or lower than the given
one, and no l in the j-tube has already the j-th coordinate equal to 0, 1, rj
or 1 + rj . This last fact will follow immediately by a simple description of
the j-tube as a tree of ”zigzags” of leader-follower pairs. It also implies that
no translate l + R attached to a higher-dimensional face f εS is disturbed,
since all entries j /∈ S are either 1 or rj and all entries in S are either 0 or
1 + rj by the effects of a previous iteration.

We begin by providing the required description of the j-tube. Suppose
l + R is attached to f εS , j /∈ S and lj 6= 1 or rj . First suppose lj ∈ (0, 1).
Then the set of followers of l+R is empty, because any follower l1 +R must
satisfy l1j = lj−rj in order for l1+Rf

1
j to touch l1+Rf

0
j . Of course then l1j < 0

so (l1 +R) ∩C = ∅, a contradiction. Similarly, if lj ∈ (rj , 1 + rj), the set of
leaders is empty. Finally, if lj ∈ (1, rj), both τ±j (l) are empty so the entire
j-tube is empty.

So start with a l + R, lj ∈ (0, 1). There are only leaders and each
leader l1 + R satisfies l1j − rj = lj , so in particular l1j ∈ (rj , 1 + rj). Thus
the leader l1 + R has only followers, and each follower l2 + R must satisfy
l2j = l1j − rj = lj + rj − rj = lj . Thus we are back to the first case (although
not necessarily to the initial l+R) and we can iterate this to get the above
descriptions for all elements of τj(l). In particular, we see that no element
of τj(l) has l′j = 0, 1, rj or 1 + rj . In fact, every element in the j-tube of
l+R, l ∈ (0, 1) has either l′j = lj or l′j = lj + rj and if l ∈ (rj , 1 + rj), either
l′j = lj or l′j = lj − rj . This will be used in proving item 2 below.

Now we prove item 1. As mentioned above, nonoverlapping is trivially
established. At each sliding operation, we only affect the j-tube of a trans-
late with j−th entry say lj < 1, by sliding it forward by 1 − lj . Covering
is a local property so it is sufficient that this sliding operation does not
throw away anything the original j-tube covered in Cζ , the ζ−fattening of
C for some ζ < mink(1 − rk). In other words, we must have τj(l) ∩ Cζ =
((1− lj)ej + τj(l)) ∩ Cζ . Consider the set of rays

Y := {ρ+ tej |ρ ∈ 〈ej〉⊥ ∩ τj(l), t ∈ [lj − rj , lj + rj ]}. (8)
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Then Y ⊂ τjl by the fact that L + R is a covering (simply take a relevant
ρ and see how far the ray can extend in the two directions; use the fact
that lj 6= 1 or rj). Also since ζ is small, τj(l) ∩ Cζ = Y ∩ Cζ . Obviously
Y ∩ Cζ is the set of rays restricted to the interval (−ζ, 1 + ζ) but so is
((1− lj)ej + Y ) ∩ Cζ since ζ < minm(rm − 1). Thus

τj(l) ∩ Cζ = Y ∩ Cζ = (Y + (1− lj)ej) ∩ Cζ = ((1− lj)ej + τj(l)) ∩ Cζ

as we needed. The case lj ∈ (rj , 1 + rj) is completely analogous.
We continue with item 2. Start with k = d − 1, a facet f εk and an

attached l+R. For any j 6= k, the algorithm above obviously has the stated
effect on l + R; furthermore, if l′ ∈ τj(l), by the description of the values
of l′j above, l′j becomes either 0, 1, rj or 1 + rj according to the interval lj
belongs to and whether l′ is a leader or a follower in the tube. Furthermore,
since the new l + R has all entries j 6= k equal to 1 or rj , it fully covers
the (exterior compartment of) the facet. After proceeding to the next face
and other translates, the algorithm never modifies the previously modified
translates as other tubes that will be slided must contain only translates
with coordinates 6= 0, 1, rj , 1 + rj , so they cannot contain any of the above.

Dropping dimension, the same justification as above for relevant direc-
tions gives that slidings never push previously slided translates and of course
the effect of the sliding makes all relevant entries 1 or rj and does not affect
other entries. The details are easy to work out.

Finally, note that 0 +R remains attached to 0 simply because all entries
of the zero vector are already 0 so they did not belong to any j-tube of
any translate that was slided, and thus no modification was done on this
attached copy.

Now that we have the n.o.s with the properties we need, a contradiction
is easy to establish. We just need to justify the following list of implications.

Lemma 9. The following hold for the modified n.o.s L+R:

1. Each face of C has a unique translate of R fully occupying its exterior
compartment (not necessarily attached to the face).

2. Each translate l + R attached to a K-face fully occupies the exterior
compartments of precisely

(
K
k

)
k−subfaces; furthermore, it does not

cover any other face.

3. The combinatorial quantities MK
k and MK can be defined: MK is the

number of K−faces with an attached translate and MK
k is the num-

ber of (exterior compartments of) k-faces occupied by some translate
attached to a K−face.

4. MK
k = MK

(
K
k

)
.
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Proof. Consider any f := f εS with an attached translate l+R. The exterior
compartment of f can be written

∏
i/∈S [0, 1]×

∏
i∈S ε̂i · [0, ζ) where +[0, ζ) =

[0, ζ) and −[0, ζ) = (−ζ, 0]. Since for all i /∈ S, li = 1 or ri, it follows that
[0, 1] ⊂ (l + R)i. For i ∈ S, li = ε̇i so if εi = 0, (l + R)i = [−ri, 0] so
ε̂i[0, ζ) = (−ζ, 0] ⊂ (l+R)i and similarly for εi = 1. Thus C ε̂f ⊂ (l+R) and
thus the exterior compatment is covered by l +R and no other translate is
attached to the face (or there would be a nontrivial overlap between the two
translates, as the exterior compartment would be a subset of both).

Let K = d − |S| be the dimension of f . We show that of the 2K−k
(
K
k

)
k-subfaces of f εS , l+R covers completely the exterior compartments of

(
K
k

)
of them. Note that a k-subface f1 of f can be written as f ε

1

S1 for S ⊂ S1,
ε1|S = ε and d−|S1| = k and is precisely f1 =

∏
i/∈S1 [0, 1]×

∏
i∈S1{εi}. Thus

its exterior compartment is C ε̂1
f1 =

∏
i/∈S1 [0, 1] ×

∏
i∈S1 ε̂1 · [0, ζ) and l + R

contains this set precisely when for all i ∈ S1 \ S, ε̂i[0, ζ) ⊂ (li + [−ri, 0]) or
equivalently, li = ε̇i. Of course for each S1 containing S there is precisely
one selection of εi, i ∈ S1 \ S so that li agrees with ε̂i and for the rest of the
0− 1 vectors, (l+R)∩C ε̂1S1 = ∅. Thus l+R covers precisely one subface for
each S1 and no other, for a total of precisely

(
K
k

)
k-subfaces of f .

The fact that MK and MK
k can be well defined is now obvious. The

equation in item 4 is simply the obvious statement ”number of K-faces with
attached translates times number of k-subfaces covered by each translate
equals number of total k-subfaces covered” where we proved that ”number
of k-subfaces covered by each translate” equals

(
K
k

)
for every translate in

the paragraph above.

Theorem 10. With the above notation, M0 = 0; this gives a contradiction
since 0 +R is attached to the dimension 0 face 0.

Proof. The total number of k-faces is 2d−k
(
d
k

)
; the number of faces with

an attached copy equals the total number of faces minus the number of
ones whose exterior compartment is covered by a translate attached to some
higher-dimensional face. Therefore:

Mk = 2d−k
(
d

k

)
−

d−1∑
K=k+1

MK
k (9)

By point 4 in lemma 9, this equation becomes

Mk = 2d−k
(
d

k

)
−

d−1∑
K=k+1

MK

(
K

k

)
(10)

Now it is only a matter of a computation to show M0 = 0. Multiply the
above equation by (−1)d−k and sum from k = 0 to d−1. We get (remember
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d is even)

d−1∑
k=0

(−1)d−kMk =
d−1∑
k=0

(−2)d−k
(
d

k

)
−

d−1∑
k=0

(−1)d−k
d−1∑

K=k+1

MK

(
K

k

)

= (−2 + 1)d − 1−
d−1∑
k=0

d−1∑
K=1

(−1)d−kMK

(
K

k

)
1K>k

= −
d−1∑
K=1

d−1∑
k=0

(−1)d−kMK

(
K

k

)
1K>k

= −
d−1∑
K=1

MK(−1)d−K
d−1∑
k=0

(−1)K−k
(
K

k

)
1K>k

= −
d−1∑
K=1

MK(−1)d−K
K−1∑
k=0

(−1)K−k
(
K

k

)

= −
d−1∑
K=1

MK(−1)d−K(−1)

Thus if we relabel the last sum with k instead of K and notice the initial
index k = 1, we get from the very first and very last equations in the
computation above

d−1∑
k=0

(−1)d−kMk =
d−1∑
k=1

Mk(−1)d−k (11)

or equivalently
(−1)dM0 = 0 (12)

which implies M0 = 0 and completes the contradiction.
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