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Abstract

The simulation and modeling of complex physical systems often involves many components

because
1. the physical system itself has components of differing natures,
2. parallel computing strategies require many (somewhat independent) components, and

3. existing simulation software applies only to simpler geometrical shapes and physical

situations.

This dissertation focuses on elliptic partial differential equation (PDE) models as an
instance of the approach we are proposing, and discusses how PDE agent based networks

are applied to such multi-component applications. The network of PDE agents are used to
control the execution of existing solvers on sub-components,

mediate between sub-components, and

coordinate the execution of the ensemble.

Specifically a Collaborative PDE solving system is formulated (Chapter 2 and Appendix
A), analyzed (Chapters 3 and 4), implemented (Chapter 5 and Appendix B) and evaluated
(Chapter 6).
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Chapter 1

Introduction






1.1 General

There are three computational approaches to simulating large scientific problems. The first
and most common approach is to discretize the geometrical domain using grids or meshes to
create a large discrete problem. These grids or meshes are then partitioned to create a set of
inter-connected discrete problems. This is simple domain decomposition (also known as sub-
structuring) [49] and the coupling between components (discrete problems) is rather tight
as the mathematical model along interface points or elements is discretized into equations
that involve details from both neighboring components. The second and oldest approach is
Schwarz splitting [62] which decomposes the geometrical domain into components with a
small overlap. The mathematical models on each component can then be solved indepen-
dently in some way and the Schwarz alternating method is applied iteratively to compute the
global solution. Of course, some discretization method is applied to the solution process on
each individual component. The overlapping creates a serious complication in the Schwarz
method [40] even when the global problem has a simple geometry. The method has become
more feasible with the discovery of non-overlapping domain versions. The third and newest
approach is interface relazation [53] where the geometrical domain is decomposed into sub-
domains, each with its own mathematical model. Along the interfaces between sub-domains
one must satisfy interface conditions derived from the physical phenomena (e.g., continuity
of mass or temperature, conservation of momentum). The models on each sub-domain are
solved in the inner loop of the interface relaxation iteration method to compute the global
solution. These methods use one of a variety of “smoothing” formulas to reduce the error
in satisfying the interface conditions.

The goals of handling different physical models, using parallel computers and reusing
existing software all lead to the need for high flexibility and loose coupling between compo-
nents in the computation. These three approaches have similar goals but are quite different
in their generality and flexibility. The tight coupling of domain decomposition requires
that neighboring components have a lot of shared information about their discretizations.
Further, this approach is quite awkward when the models are different on neighboring com-
ponents. The mortar method creates specialized refinements of the models and meshes along
the interfaces to accommodate changes in models across interfaces. Overlapping Schwarz
methods are similarly constrained to a single physical model and also create a tight coupling
between neighboring sub-domains. The non-overlapping Schwarz methods are restricted to
a single mathematical model for neighboring sub-domains. The interface relaxation ap-
proach imposes no coupling conditions, except those inherent in the mathematical models,

and it provides maximum generality and flexibility.



The power of decomposing a PDE problem into a collection of PDE subproblems was
pointed out for the first time in [61]. It passed almost a century though before researchers in
the Scientific Computing/Numerical Analysis area utilize this idea, first in [44]. Since then
it has gained the interest of a still growing research community. The most appealing features
of this approach are to be appreciated in terms of its elegant mathematical model as well as
of its power as a new computational tool. The driving force of this new approach, which we
name Collaborative PDE solvers, is the simulating of multi-component and multi-physics
problems (see Section 1.2) where it applies in a natural way.

The main purpose of this thesis is to formulate, analyze, implement and evaluate the
general framework of a Collaborative PDE solving system that enjoys several very desirable
properties like fast convergence, wide applicability, increased adaptivity, high efficiency, in-
herent parallelism and software reuse by integrating advances in different scientific areas like
mathematical analysis, numerical analysis, approximation, scientific computing, distributed
computing and agent computing. A large part of this Thesis is devoted to the Interface
Relaxation methods that consist the core of the whole system.

Although the Collaborative PDE solving framework can be applied with great success to
any type of PDEs, we consider only the second order elliptic case. It is our believe that our
research efforts presented here can be rather easily extended to, at least, certain parabolic
PDEs (see section 7.3).

The basic idea that this Thesis builds on was proposed in a systematic way first by J.R.
Rice [53] in 1987. Two of his students [43, 22] have designed and implemented primitive
versions of our Collaborative environment. M. Mu also contributed to this idea [46, 45]. The
first two researchers that proposed and analyzed particular Interface Relaxation methods
were P.L. Lions [40] and A. Quarteroni [50, 49].

The rest of the Thesis is organized as follows. To complete the motivation of our The-
sis we briefly describe in Section 1.2 few multi-component and multi-physics problems.
In Section 1.3 we first describe the general PDE collaborative model we use throughout,
and introduce some basic terminology and definitions. We then give in Chapter 2, a brief
overview of a collection of interface relaxation mechanisms, which consist the core of the
system. Chapters 3 and 4 are dedicated to the theoretical and experimental study of three
such interface relaxers. In particular, we carry out their convergence analysis, and deter-
mine regions of convergence and “optimum” values for the relaxation parameters involved.
We also validate our theoretical results with extensive numerical data. Next we present
in Chapter 5 the implementation of the abstract computational model on a network of
heterogeneous workstations using Agent software technology. We also briefly present cer-

tain computational issues that are crucial for the full understanding of our collaborative



methodology. Chapter 6 contains preliminary results from a long set of numerical experi-
ments and focus on the practical implications of the Interface Relaxation schemes analyzed.
These results also show that our theory can be of significant practical use for solving more
general problems than those considered in theory. Most of the above Chapters end with
our conclusions associated with the material each one of them contains. In Chapter 7, we
derive our general conclusions, present several of our on-going research efforts and list some
additional open problems.

The brief abstracts that are included in the beginning of each of the following Chapters
and the three ppendices, contribute to the general view of our computational framework

and analysis.

1.2 Examples of Composite PDE problems

Many of the real world problems are composite in the sense that they consist of components
that have their own physical properties. Their coupling comes either due to the inherent
continuity (or jump) conditions or due to additional imposed conditions that represent
conservation or smoothness of other quantities. Below we briefly describe few of such
problems.

We start with the simplest composite problem known as Window Josephson Junction [7]
and depicted in Figure 1.1. It is a simple device of two different superconducting films (gray
regions in the figure) separated by a thin oxide layer that is thin enough in the middle area
to allow tunneling of electron pairs. Let €2;, be a region of the Josephson junction window
(associated with the middle area in the figure) which is imbedded in a global domain €2,
where Q4 = Q\ Qi is the idle region without superconductivity. The phase difference
u(z,y) of the order parameter in the superconducting films satisfies the semi-linear indefinite

sine-Gordon equation inside §2;, and is harmonic outside:

Viup, = sinupy in Qup, (1.2.1)
Vigy = 0 in Qou. (1.2.2)

The local solutions are subject to the interface and boundary constrains:

Uiy, = Ugyr 0N Oy (1.2.3)

1 Ou;y 1 Ouoyt
= 09); 1.2.4
L;, on Lou: On on " ( )

auout_
o —9 on o0 (1.2.5)
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Figure 1.1: A Window Josephson Junction

where in general L;, # Loy , and €, may consist of more than one disjoint subdomains if
several junction windows are used.

A more complicated example is the one whose partition, along with the physical and
mathematical description is presented in Figure 1.2 where a heat flow system consists of
five parts with seven interfaces. The radiation conditions allow heat to leave on the left and
the bottom while the temperatures U is zero on all the other boundaries. The mounting
regions have heat dissipated. The interface conditions are continuity of temperature U and
its derivative.

One might continue with many more examples of composite problems but we believe
that it is worth to mention one more that is of particular interest and show the necessity
of our proposed collaborative approach.

Aircraft design and simulations require coupling of several physical problems and com-
ponents at several levels. Specifically, at the highest level one needs to couple aeroelastic,
aerodynamic and aeroacoustic phenomena. Each one of these phenomena are obviously
governed by different mathematical models (Navier—Stokes, Euler, ... ) and each one of
them is practically a synthesis of other models. It is worth to mention that experts in
aeronautics have been trying to couple PDE problems for many years.

For example in the aeroacoustic case, a three-level zonal methodology is being developed.
In this methodology a Computational Fluid Dynamics model (Navier Stokes with viscous

and turbulence terms) is used for the near-field (the area around the airframe). Since in
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Figure 1.2: A heat flow problem

the intermediate region the speed of sound is not necessarily constant, and nonlinear effects
can be ignored, a linearised Euler solver is used for the mid-field, and a Kirchhoff/FWH for
the far-field [38]. Coupling methodologies of these models are being developed while the
placement of the boundaries between the various methods is being investigated.

Besides the aeroacoustic case described above, we mention as another example the cou-
pling of the structural dynamics solver and aerodynamics solver where people have realized
that the naive coupling they have been using for years is inadequate from both the effi-
ciency and accurate view points. So they have been very recently investigating new coupling
methodologies known as “loose aeroelastic coupling” and “tight aeroelastic coupling” which
are essential simplified Interface Relaxers [63].

To add to the whole picture, we mention the need of different type of grids, namely
sliding grids (following the plane movements), rotating grids (for the rotors) and static

grids (for the structural analysis of the fuselage).

1.3 The general definition of the collaborative elliptic PDE
framework

The method assumes that one can solve exactly any single PDE on any simple domain or,
more realistically, that given such a PDE problem, we can select a highly accurate solver for

it from a library. The interface relaxation method uses a library of “single, simple-domain,



exact” PDE solvers to solve composite PDE problems. It is an iterative method of the

classical type, based on relaxation, as follows:

1. Guess solution values (and derivatives if needed) on all sub-domain interfaces.

2. Solve all single PDEs ezactly and independently on all the sub-domains with these

values as boundary conditions.
3. Compare and improve the values on all interfaces using a relazer (discussed below).

4. Return to Step 2 until satisfactory accuracy is achieved.

The simplest relaxers do some sort of “smoothing” of values on the interfaces and averaging
is a good mental model for a relaxation formula.

The attraction of interface relaxation is threefold. First, it allows the accurate coupling
of independent models and the reuse of PDE software that handles single-phenomenon
models. Second, it uncouples the parallelism of the computation somewhat from that of
the machines used. Finally, it is intuitively consistent with a person’s view of the geometry
and physical models of a composite PDE problem.

Interface relaxation is an iteration scheme defined at the continuum (mathematical)
level; its convergence properties are a question of mathematical analysis, not of numerical
analysis. The convergence analysis of interface relaxation presents formidable mathematical
challenges; almost any question asked will be both hard and open. Even for the single-
PDE case — one global PDE or domain decomposition — work on convergence analysis has
appeared rarely, starting about 10 years ago [40] and then more recently in 1999 [49].

Given that theoretical analysis is intractable for the moment, we use experiments to
provide guidance and insight for interface relaxation. Numerous experiments done in recent
years indicate that interface relaxation converges for a wide variety of problems and relaxers.
The convergence is sometimes very fast, other times not. The results in [45] (and in the
references therein) show (for a single problem) that the rate of convergence is relatively
independent of the number of sub-domains and this was verified by experiments using up
to 500 sub-domains. There is reason to be hopeful that, as we better understand interface
relaxation, it can become a very useful method for solving composite PDEs. A crude form
of interface relaxation already in fairly widespread use simply involves “trading” current
values across interfaces without any relaxation. This method makes the most sense in time-
varying problems, but we are not aware of any attempts to analyze the effects of the errors

involved.



With the above picture in mind the general mathematical description of the Interface
Relaxation methods for second order elliptic PDE problems in R? can be viewed in the

following way. Denote the local PDEs by
Liu; = f; in Q; for i=1,...,p, (1.3.1)

and assume that €2; do not overlap and that the interface conditions are given in the implicit
form

G (u ;n—‘:j;uj, %;th) =0 on Ty;=( )9, (1.3.2)
where 77 denotes the normal direction and Ji, J> the jump quantities associated with u or
its derivative. We assume that G;; can be a function mapping on the interface or even a
functional. We also assume certain boundary conditions (not shown here) and the existence
of the solution of the PDE problems.

Note that the fact that the Interface Relaxation involves coupled sequences of continuous
approximations as well as discrete approximations leads to error analysis with unique char-
acteristics. The approximation analysis of the Interface Relaxation methods, defined by the
above two equations, essentially consist of two steps. First, we define a sequence of iterants
ugk) for each subdomain on the PDE level. Then, using a standard discretization method,

we solve each PDE problem locally to obtain the corresponding discrete solution Ui(lfl)i. The
(k)

convergence of u; ~ to u|o, = u; as k tends to infinity, is proved for a class of relaxers in [40]

for a weak norm. There exist also the well known estimates for the discretization error, like
k k k
U5 = u)] < C(ul®)ng (1.3.3)

(®)

i

(%)

where the constant C'(u; ') depends only on the smoothness of uik . These two imply that

lim lim U = u,. 1.3.4
k—00 h; —0 ihi ! ( )

Since, solution from the interface relaxation scheme is computed on a finite grid, we
have to study carefully the convergence of the following quantity: limy, o limg_, o Ui(,h)i.

In the study of the discrete iteration procedure, there exist convergence results as the
limy_, o0 ||Uz(1;l)l — Uyl = 0, where U, = denotes the limit of iterative relaxation procedure
using the corresponding discretization.

The above results, are necessary but not sufficient to prove convergence over both £ and
h; at any order. The equation

lim lim U} = lim lim U} = u; (1.3.5)

h;—0k—o00 v k—o0 h;—0
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holds only if we establish/prove strong and uniform convergence. Alternatively, one might

examine the term Uz‘*hi — uj. Such an error analysis for a model problem and a class of

interface relaxers is given in [45].



Chapter 2

Overview of Interface Relaxation
Methods

11



Abstract

A population of seven non-overlapping domain decomposition methods for solving elliptic
differential equations are viewed and formulated as iterated interface relaxation procedures.
A comprehensive review of the underlying mathematical ideas and the computational char-
acteristics is given. The existing theoretical results are also reviewed and high level descrip-
tions of the various algorithms are presented. The effectiveness of these methods on various
differential problems is investigated by presenting and discussing preliminary performance

evaluation data.
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2.1 Introduction

The various domain decomposition methods that have been recently developed for the
efficient solution of elliptic differential equations can be easily classified into two categories
—overlapping and non—-overlapping. Both approaches already have been used to effectively
model large scale, industrial, ill-conditioned problems. Nevertheless it is believed that
further theoretical and experimental analysis is required before such methods will become
practical and useful tools for non-experts.

Overlapping (Schwartz) schemes have received in the past a great deal of attention.
Articles that review and compare various such schemes [33] and survey the associated pre-
conditioning strategies [13, 9] have already appeared in the literature. It is relatively recent
that a number of studies have shown that non—overlapping schemes can compete well and
can possibly free the user from certain complications in their formulation and implementa-
tion. The comparison of the main characteristics of these two classes of methods and the
existence of equivalence relations between them have already received a great deal of study
8, 3, 11].

Interface relaxation methods are taking us a step beyond non-overlapping domain de-
composition [53]. In an effort to mimic the physics in the real world, they split a complicated
partial differential equation (PDE) that acts on a large and/or complex domain into a set of
PDE problems with different but simple, operators acting on different smaller and “easy”
subdomains. This Multi-PDE, Multi-domain system is properly coupled using smooth-
ing operators on the inter-domain boundaries. The present work reviews and evaluates a
class of interface relaxation methods for solving elliptic PDE problems. Although these
methods can be considered from the preconditioning viewpoint, here we follow Southwell’s
relaxation [64, 65] of the 1930’s — but at the PDE level instead of the linear algebra level
— to formulate them as iterated interface smoothing procedures. We believe that such a
formalism has certain theoretical and algorithmic advantages.

From the interface relaxation viewpoint these methods consist of partitioning the domain
on a set of non-overlapping subdomains and of imposing some boundary conditions on the
interface boundaries defined by this partition. Then, using initial guesses on the interfaces,
the set of the resulting PDE problems is solved. The solutions obtained do not satisfy the
interface boundary conditions and interface relaxation is applied to obtain new interface
boundary values, which satisfy the conditions better, and we solve the PDEs with these
new values. We repeat the above steps until convergence.

For our study we have collected most of the known interface relaxation methods and

proposed two new ones. Specifically, we consider the methods listed below in alphabetical
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order with respect to their acronyms. These acronyms are used in the sequel to refer to

associated methods.

AVE A simple method of averaging the solution and its normal derivative along the inter-

faces.
GEO A method based on a simple geometric contraction.
NEW A scheme based on Newton’s method to “correct” the interface values.
ROB An algorithm that uses Robin interface conditions for smoothing.
SCO A scheme that is based (but not formulated) on a Schur complement approach.

SHO A method based on the concept of the shooting method for solving Ordinary Differ-
ential Equations (ODEs).

SPO A method originated from the use of Steklov—Poincaré operator which involves alter-

nating boundary condition types.

To the best of our knowledge GEO and NEW has not been considered in any previous
studies. The analysis of the GEO method is presented in Chapter 4, while the analysis
of the NEW method is beyond of the scope of this thesis. We should point out that in
order to preserve some uniformity in our study we have not experimented with a class of
interesting interdomain smoothing methods which use a few modes of the expansion [12] of
certain interface operators (i.e., Lagrange multipliers [20, 21] or Steklov—Poincaré operators
[47, 48]). We will only briefly describe these techniques.

The rest of this Chapter is organized as follows. In Section 2, we present the general
framework for decomposing a multi-PDE problem into a collaborative pool of single-PDE
problems and discuss the implications on simulating complicated physical problems. The
interface relaxation methods we consider for this study are presented in Section 3, where
we give their formulation and list the known theoretical results. In Section 4, we present

our performance data and in Section 5 we summarize the contributions of our study.

2.2 Domain decomposition with iterated interface relaxation

Currently the domain decomposition world consists of two parts —overlapping and non-—
overlapping— both living in prosperity. Overlapping, known also as Schwartz, methods were
the first considered and have already proved themselves as very efficient numerical proce-

dures enjoying certain very desirable convergence properties. Nevertheless, it has been also



15

observed that they might have several serious drawbacks which will prohibit their use for
certain applications. For example, almost all of the many proposed domain decomposition
methods for solving wave propagation models (that consist of the Helmholtz equation cou-
pled with various absorbing or reflecting boundary conditions) are non—overlapping and of
interface relaxation type [1, 18, 34, 55].

Non—overlapping methods exhibit certain advantages compared to overlapping ones.

Specifically:

e They are not sensitive to jumps on the operator coefficients. Their convergence be-
havior and theoretical error estimates remain the same even if the differential operator
includes discontinuous coefficients provided that the jumps occur along the interface
lines [76].

e They have smaller communication overhead in a parallel implementation on dis-
tributed memory multiprocessor systems. Their communication overhead is propor-
tional to the length of the interface lines while it is proportional to the overlapping

area in the case of overlapping methods [22].

e The bookkeeping is rather easy for the decomposition and manipulations of the asso-
ciated data structures compared to the more complicated and costly bookkeeping of

the overlapping methods [22].

There are two principal viewpoints of non-overlapping methods, preconditioning and
interface relaxation. For an in depth and up-to-date survey of non-overlapping domain
decomposition methods considered and analyzed from the preconditioning viewpoint the
reader is referred to [74] and for a general formulation and analysis of interface relaxation
methods to [45]. We give a brief presentation of the interface relaxation method philosophy
and practice, in order to identify its main characteristics.

Interface relaxation is a step beyond non—overlapping domain decomposition; it follows
Southwell’s relaxation of the 1930’s — but at the PDE instead of the linear algebra level
— to formulate relaxation as iterated interface smoothing procedures. A complex physi-
cal phenomenon consists of a collection of simple parts with each one of them obeying a
single physical law locally and adjusting its interface conditions with neighbors. Interface
relaxation partitions the domain on a set of non—overlapping subdomains, imposes some
boundary conditions on the interface among subdomains lines. Given an initial guess, it
imitates the physics of the real world by solving the local problems exactly on each subdo-
main and relaxing boundary values to get better estimates of correct interface conditions.

This is illustrated in Figure 2.1 where the generic relaxation formula G;; (based on the
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Figure 2.1: The interface relaxation mechanism

current solutions U*? and UJN €% of the two local to the neighboring subdomains €2; and
(1) calculates successive approximations bf};-ew to the solution on the interface I'; ; between
them.

To formally describe this method we consider the differential problem
Du=finQ, Bu=con 0Q (2.2.1)

where D is an elliptic, non-linear in general, differential operator and B a condition operator
defined on the boundary 9 of an open domain Q € R%,d = 1,2, .... This domain is parti-
tioned into p open subdomains Q;,4 = 1,...,p such that Q = U’_,Q;\0Q and N_ Q; = 0.
For reasons related either to the physical characteristics of this problem or to the computing
resources available, one would like to replace (2.2.1) with the following system of loosely

coupled differential problems

Diju = f; in
(2.2.2)
Giju =0 on (02; N 8%)\89 Vi # i, Bju = ¢; on 9Q; N OS2
where ¢ = 1,...,p. These differential problems are coupled through the interface conditions

Giju = 0 and involve the restrictions D; and B; of the global differential and boundary
operators, D and B, respectively, on each subdomain with some of them possibly linear
and some others nonlinear. The functions f; and ¢; are similar restrictions of functions f

and c. The local interface operator G;; is associated with the interface relaxation method
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and different selections for the G;;’s lead to different relaxation schemes. In this study we

consider several interface relaxation methods that have the following characteristics:

e They first decompose the problem (2.2.1) at differential level and then discretize the
resulting differential subproblems (2.2.2).

e They have the versatility to use the most appropriate discretization scheme for each

subproblem.
e They do not overlap the subdomains ;.

e Using good relaxation parameters in G, they are fast enough so no preconditioning

is needed.

e They simplify the geometry and physics of the computation by considering the sub-
problems (2.2.2) instead of the global differential problem (2.2.1).

e They can utilize software parts technology by reusing existing “legacy” software parts

for solving the individual subproblems (2.2.2).
e They are general and robust.

There are several challenging questions concerning practical applications of such meth-
ods (e.g. find the most suitable relaxer for a particular problem of application, determine
what is the domain of applicability of each one of them, explain the interaction between
the mathematical iteration and the numerical solving method, select “good” or “optimal”
values for the relaxation parameters involved, ...). It is worth to point out that since all
the methods decompose and relax interface values at continuum level the convergence anal-
ysis of these methods need to be carried out at PDE (continuum) level and therefore is a

mathematical analysis and not a numerical analysis problem (see [45] for a discussion).

2.3 Interface relaxation methods

Due to the inherent abstraction, it is relatively easy to describe the various interface smooth-
ing methods at both the conceptual and algorithmic level. Next we present the seven
methods, give their high level algorithmic description and briefly present the known theo-
retical results. Detailed algorithms to define all schemes are given in the Appendix. For
simplicity in the presentation of algorithms, we consider only one-way (along the x—axis)
partition of the domain. Therefore each subdomain has two interface lines with the two

neighboring subdomains. The basic building block for our algorithms is the procedure u
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= solve_pde(ui,dui) which calculates the solution u of the local to a subdomain PDE
problem with Dirichlet, Neumann or Robin boundary conditions on the interface using as
the interface values ui and its gradient dui. The subscripts R and L denote left and right
subdomains or interfaces respectively and u; denotes the solution of the problem associated

with subdomain ;.

The Dirichlet/Neumann Averaging (AVE) Method

We start by presenting one of the simplest schemes which consists of two PDE solving sweeps
coupled with two smoothing interface relaxation steps. In the first sweep, the Dirichlet prob-
lem is solved on all subdomains. Then the relaxation procedure smoothes the derivatives
along all interfaces by estimating the normal derivative as a convex combination of the
previously computed normal derivatives of the two adjacent subdomains. These estimates
are then used as boundary conditions in the second PDE solving sweep where the Neumann
problem is solved on all subdomains. The second relaxation step follows and computes
estimates of the unknown function on the interfaces taking a convex combination of the
previously computed solutions on the adjacent subdomains. These estimates are to be
passed to the next iteration’s Dirichlet sweep. This method, which we classify as a two—step

method, can be algorithmically described by

e for k =0,1,2, ...

1 N e .
— u**+2) = solve_pde(ui) in each subdomain
Bu(k+%) au(“%)
dui = f—%— + (1 — B)—%-— on each interface

— ulk+1) = solve_pde(dui) in each subdomain

— ui= au%’”l) +(1-— a)ugﬁ'l) on each interface.

where «, 8 € (0,1) are relaxation parameters. There have been a few theoretical studies
on the convergence of the above scheme which are discussed in [46]. In particular in [75] a
convergence analysis of the method is carried out at a differential level using Hilbert space
techniques. In [77] the Galerkin finite element method and the hybrid mixed finite element
method are employed to give discrete versions of this method. Fourier analysis is used in
[60] to obtain sharp convergence results and to estimate optimum values for the relaxation

parameters involved for simple model problems.
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uw

Figure 2.2: Cross section perpendicular to the interface where ur, and ug have slopes St
and Sg at the interface point I. Changing the values of ur; and ug by a quantity m makes
these slopes equal in magnitude.

The Geometric (GEO) Contraction Based Method

GEO estimates the new solution for each subdomain by solving a Dirichlet problem and
is classified as an one—step method. The values on the interfaces are obtained by adding
to the old ones, a geometrically weighted combination of the normal boundary derivatives
of the adjacent subdomains. Specifically, we assume in Figure 2.2 that u;, and up are the
solutions of the PDE problems associated with the left and right subdomains, respectively,
of the interface point I. They are equal along I and we denote by St and Sg their slopes
at I. As it can be easily seen geometrically, m is the correction needed to be added to
uy, and up so as to match the normal derivatives at I. To calculate m we consider the
two right triangles JAB and CDI whose heights are given multiplying the corresponding
tangent with the base of the triangle, or equivalently multiplying the normal derivative with
the base. The bases wr, and wg are the widths assumed for the validity of the slope values;
these can be arbitrarily selected and play the role of the relaxation parameters. The new
interface values are now given by adding the weighted average of the heights to the old
interface values ur, and ug. One can intuitively view this as grabbing the function u at [
and stretching it up by m until its derivative becomes continuous. Numerical experiments
show that the convergence rate does not seem to depend much on the widths wy and wg.

In case that ur # ur, on I we simply use their average. GEOQO is given algorithmically by
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e fork =0,1,2, ...

i(k+1)

(k) , (k) (k) (k)
— ui up tup” _ _wpwg (3“L Oup

wrae (=5~ — —5&-) on each interface

— gletl) — Solve_pde(ui(k“)) in each subdomain

To the best of our knowledge this method has not been considered in any previous

studies.

The Newton’s (NEW) Method

Another new idea is to use discrete Newton’s method to update the values at the interface

according to the following procedure,

. . () (1)
. - (i)  (9) . ou ou
Step 0: For i = 1,2, guess up’, u;’ on interfaces and compute —f-, —L-.

Step 1: Consider finding for 7, and dr so that on all interfaces we have

W +6) — (W +65) =0
2 (2 gy~ 2 (D 4 5y =0
Step 2: Apply linearization to solve the equations approximately
W +6) — (u? +65) =0
) [L+ g (%) 6] - %) [+ o (%) 0] =0

Step 3: Approximate the unknown derivatives by differences

3u22) Bug)

8 (0u — Pz or —
Bur (a_xL> =2y = AL
oul® o)
0 (6u_R> e g,
= 0 "o —
dup \ O ORI
Step 4: Solve for g and dr,
5L—(5R:ug)—u(5) =0
u?®  u®
Apdp — Apdp = SR — 5L
ou'y) oul? ou ou
so the §, = 0r = § = [55 — —5L&-]/(AL — Ag). The values of %L and “5Z depend on

ur, and ug throughout the differential equations given above. In the spirit of the above

procedure, NEW can be described as follows
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o fork =234 ...

— Solve for corrections §;, = dgp = ¢ from the interface system as above:
* (u(Lk) + 5L> — (ugf) + (5R> =0
(k) (k)
* 6155 (ugc) +5L> - 6155; (u%c) —|—5R> =0

— wi® ) = ;%) 4+ § on each interface

— gletl) — Solve_pde(ui(k“)) in each subdomain

There is no general convergence analysis for this new single step scheme which does not
involve any relaxation parameters. Like most applications of Newton’s method, it should

converge very rapidly in some neighborhood of the true solution.

The Robin Relaxation (ROB) Method

An even simpler interface relaxation is the one based on Robin interface conditions to trans-
mit information across subdomain boundaries. It was first proposed in [39] and analyzed
later in [19, 32]. One solves the local PDE on the subdomains using Robin conditions on
the interface lines by matching a combination of Dirichlet and Neumann data from the

neighboring subdomains.

e for k =0,1,2, ...

— On each sub-domain solve:

x Lulkt) = f € Q with
(k)
* —% + Mkt = _811,_; + )\u(Lk) on subdomain’s left interface.

0!
(k)
(k+1) 0 . . .
* 3“8m + Ao+ = g—g + )\u%c) on subdomain’s right interface.

Here X is a relaxation parameter. The convergence of this method was analyzed in [39]
at the differential level, assuming arbitrary decompositions and using “energy” estimates.

The determination of effective choices for A was marked as “by large an open problem”.
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Variations of the above described method have appeared in the literature lately. Specifically
in [31] an ADI-based modification for accelerating the convergence of the ROB scheme is
proposed and analyzed. A modification of ROB that extents its applicability and frees it
from the cross—point trouble is formulated and analyzed in [17]. Another variation that uses
the tangential derivatives in addition to the normal derivative for smoothing is given in [68]

where optimal values for the relaxation parameters are obtained for a model problem.

The Schur complement (SCO) Method

Among the first interface relaxation procedures that captured the attention of researchers
is the one analyzed in [24] (see also the references therein). It alternates Dirichlet and

Neumann interface conditions in space and can be described by

e for k =0,1,2, ...

o uly =u,ulp= 01u§k) +(1—- 01)ugk)

. ugkﬂ) = solve_pde(ulyp,ulp)

o fori=2,..p-1

. 8u(k+1)
— duip = —51—
(k)

— uiR = Hluz(i)l + (1 — Hl)uz

- ugkﬂ) = solve_pde(uig,duir)
au(kj—l)
® upr = u, dupy, = ’éxl
. ul(,kﬂ) = solve_pde(uppr, dupr,)

Here 6 € (0,1) is a relaxation parameter. The convergence analysis at the differential
level, for the case of Helmholtz equation in two variables and 1-dimensional decompositions
at differential level, is given in [24] together with expressions that lead to optimum values
for 8. A method for dynamically determine, at each iteration, values for # for the spectral
collocation approximation of the differential problems is also given. To the best of our
knowledge, SCO is the only interface relaxation technique that has so far been successfully

extended and applied to fourth order elliptic problems [26].
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The Shooting (SHO) Method

This method is proposed in [36] where it is formulated primarily for 1-dimensional bound-
ary value problems. A convergence analysis was carried out and optimum values for the
relaxation parameters were obtained for model problems. The basic idea is to couple the

(k) (k)
problems on the subdomains by solving the defect equation D(uilF)) = 81(% — 8g§ =0on

the interfaces using a fixed point (Picard) iteration scheme to obtain new values.

e for k =0,1,2, ...

k1) _ a(k)|D(ui(k+1))|
T D@i®)—D(uitk+D))

— ui®t2) = i) — o+ D(4i(®)) on each interface

— al | on each interface

— ulk+2) = solve_pde(ui**+?)) in each subdomain

The Steklov—Poincaré operator (SPO) Method

This method was first mentioned in [37] but analyzed from the preconditioning viewpoint
only. It uses the Steklov—Poincaré operator to carry the procedure of smoothing the normal

derivatives at the interfaces, it is a two-step method described by the following algorithm

e for k =0,1,2, ...

— k) = solve_pde(ui) in each subdomain

8u(k+%) 8u(k+%)
dui = % B+ — 5% on each interface

k+1)

— ul = solve_pde0(dui) (Lu = 0) in each subdomain

— Ui = ui — % (ugﬂ) + ugcﬂ)) on each interface

No theoretical results, from the interface relaxation viewpoint, are available for SPO.
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2.3.1 Methods not considered

As mentioned in the introduction, powerful interface relaxation methods can be constructed
using spectral expansions of a trace operator. In this approach operators like Lagrange
multipliers or Steklov—Poincaré operator, which can be interpreted as the interface flux, are
solved to determine an improved value of the unknown function on the interface. Specifically,
in [47] and [48] an independent low dimensional set of interfacial basis functions are used
to meet interdomain continuity requirements on the solution. These functions are derived
locally in each subdomain by solving an eigenvalue problem of the Steklov—Poincaré operator
on the complementary region. An idea similar to the above approach is used in [20] and [21]
where a different set of basis functions is used to smooth across interfaces. It is shown that a
relatively small basis set for the Lagrange multipliers has certain significant advantages. In
particular trigonometric functions, orthogonal polynomials, and one-dimensional Lagrange
finite elements have been suggested as approximating basis set on the interface.

We have also investigated a new method which simply makes a least squares fit to ap-
proximately satisfy the overdetermined interface conditions at each iteration. This method
seems to be very much slower than any other interface relaxation method so we do not

present our data for it.

2.4 Numerical Experiments

An extensive and systematic performance evaluation study of all the interface relaxation
schemes presented above is under way for general two dimensional decompositions using the
SciAgents system (see Chapter 5). Parts of this study will be presented in Chapter 6. In
this section we present and discuss numerical performance data mainly for one dimensional
problems. These problems might be too simple to be of practical importance, but the exper-
imentation with them can be very illuminating for understanding the nature of the interface
relaxation methods. They might be useful to show the physical meaning and importance of
the various characteristics and parameters involved in the relaxers in particular for general
unstructured decompositions.

We consider the differential equation —u" + y?u = f in [0,1], where f is selected such
that u(z) = e*t*z(x —1)(x —.7) and we assume Dirichlet boundary conditions. All interface
relaxation schemes are implemented in a unified way using MATLAB on a SUN workstation.
The MATLAB code for the algorithms given in the Appendix can be obtained from our web

page!. Central differences are used to discretize the differential equation. The interval [0, 1]

"Mttp://www.cs.purdue.edu/homes/giwta/dom-dec/1_dim/matlab/index.html
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[ [[ 2nd iteration [[ 4th iteration [[ 6th iteration [[ 8th iteration [[ 10th iteration ||
[ [ error [ ép || error [ ¢y || error [ Jp || error [ ¢y || error | ¢ ||
AVE N=80 6.27E-1 11 4.89E-2 .33 7.53E-3 .48 4.56E-3 .58 4.3E-3 .64

N=160 6.24E-1 .11 4.57E-2 .33 4.23E-3 .48 1.25E-3 .58 1.0E-3 .64
GEO N=80 2.74E-0 .08 8.42E-1 .32 2.99E-1 .48 1.06E-1 .58 3.7TE-2 .64
N=160 2.74E-0 .08 8.40E-1 .32 2.99E-1 .48 1.06E-1 .58 3.7E-2 .64
NEW N=80 6.10E-0 .03 7.20E-1 .33 1.57E-1 .48 1.97E-1 .58 1.7E-1 .64
N=160 6.10E-0 .02 7.22E-1 .33 1.58E-1 .48 1.08E-1 .58 7.8E-2 .64
ROB N=80 5.43E-0 .15 3.21E-0 .36 1.96E-0 .50 1.23E-0 .59 7.9E-1 .64
N=160 5.45E-0 .15 3.24E-0 .36 2.00E-0 .50 1.27E-0 .59 8.1E-1 .64
SCO N=80 2.09E-0 .13 4.83E-1 .34 8.22E-2 .48 2.04E-2 .58 1.1E-2 .64
N=160 2.09E-0 .13 4.90E-1 .34 8.41E-2 .48 1.49E-2 .58 3.4E-3 .64
SHO N=80 5.40E-0 .04 3.82E-1 .33 1.12E-1 .48 6.96E-2 .58 4.5E-3 .64
N=160 5.40E-0 .04 3.83E-1 .33 1.13E-1 .48 6.79E-2 .58 3.9E-3 .64
SPO N=80 2.31E-0 .09 3.74E-1 .33 6.59E-2 .48 1.25E-2 .58 2.3E-3 .64
N=160 2.31E-0 .09 3.73E-1 .33 6.57TE-2 .48 1.26E-2 .58 2.6E-3 .64

Table 2.1: The convergence factor and the error for several iterations of seven relaxers in a
4 sub-domain uniform decomposition using a total of 80 or 160 grid points in [0,1].

is partitioned into subdomains with interface conditions taken to be continuous value and
derivative. Unless otherwise stated, we start all iterations from a zero initial guess and we
select the values for the various parameters involved in the relaxation scheme in a straight
forward and naive way. In particular we set « = f = 1/2 in AVE, w; = wgr = half the
length of the associated subdomain in GEO, A = 1/2 in ROB and SPO, and # = 1/2 in
SCO. We also set y2 = 20 for all data except Figure 2.8. We select this, not very common,
value of 2 in order to increase the experimental data (see the discussion of Figures 2.3-2.4)
that can be fitted into the plots (in particular in Figures 2.3 and 2.8) so a clear qualitative
comparison picture can be easily drawn.

We have verified, by experimentation, that the convergence rate of all methods is inde-
pendent of the local grid size. A very representative set of data is given in Table 2.1 where

we present the convergence factor

_ /I Dul®) — f s B
b, = D 7 for k=2,4,6,8 and 10 (2.4.1)

and the associated error norm || u®) — u || for all methods and for the cases of 80 and 160
equally distributed in [0, 1] discretization points. It is easily seen that ¢ does not depend
on the number of grids.

For the rest of the experiments we use 160 equally distributed grid points to discretize
the domain ©Q = (0, 1).

We start with Figure 2.3 where the convergence rate of all relaxers is presented for 2, 4, 5
and 8 subdomains. We plot the logarithm of the max—norm of the error (on the y—axis) of the

computed solution at the first 20 iterations versus the iteration number. For 8 subdomains
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SPO is the fastest and AVE the second slowest (not seen in Figure 2.3). Nevertheless
AVE is the fastest for 2 and 4 subdomains. NEW and SHO behave in a similar and
rather erratic way. We also plot in Figure 2.5 the convergence factor ¢y (formula (2.4.1))
versus k for 2,4,5 and 8 subdomains. AVE clearly diverge for 8 subdomains while the rest
of the methods exhibit the same pattern of convergence.

As it was previously mentioned, we decided to fix 42 = 20 for most of our experiments.
The main reason for this choice was the fact that at least two of the methods considered
(AVE and SPO) are expected to behave poorly for small values of y2. This is due to the fact
that during their Neumann sweep, they both need to solve on the internal subdomains the
Helmholtz operator with Neumann boundary conditions on both end points. In such a case
the PDE becomes singular as y? approximates zero. This is clearly reflected in Figure 2.4,
where we present the convergence rate data, as in Figure 2.3 but now for 42 = 1. Besides
the break down of AVE and SPO for more than two subdomains, it is also seen a general
decrease, relatively to the 42 = 20 case, on the rates of convergence.

We believe that the specific convergence pattern might give important information about
the convergence characteristics. To explore this, Figure 2.6 shows, for all relaxers and for
a uniform decomposition of € into 4 subdomains, the exact solution and the computed
solutions associated with the first three iterations. Three of the schemes (GEO, SHO and
SPO) approach the exact solution in a monotonic (or nearly so) and smooth way while the
rest do not seem to exhibit a specific pattern.

We next examine the convergence history of the two step schemes in more detail. The
plots associated with the two-step methods (AVE and SPO) in Figure 2.6 correspond
to their Dirichlet steps. In Figure 2.7 we present, in the same way, the history for their
Neumann steps as well. We therefore see that some methods (GEO, SPO) converge in a
monotonic and systematic way. This suggests that their convergence could be accelerated by
some extrapolation procedure. Other methods exhibit oscillatory convergence so averaging
might improve the convergence. Still others show no obvious patterns of convergence.

As it is obviously expected, and already seen in Figures 2.3 and 2.4, the convergence of
the interface relaxation depends on the differential operator. To obtain a preliminary idea
about this dependence we systematically vary the coefficient v?(= 103,102,101, 1, 10, 20,
30) in the operator and observe the convergence for a 4 subdomain uniform partition of Q.
Our data are presented in Figure 2.8 which uses the same axes as in Figure 2.3. As ~?
becomes larger there is a general trend for the convergence rate to become faster (AVE,
GEO, NEW, SCO, SHO) or to be nearly unchanged (ROB, SPO). Note that AVE and
SPO diverge for 42 < 1 while the data for the rest methods are split in two groups, one
for 42 = 10,20 and 30 and one for v = .1,.01 and .001 with the case of 2 = 1 in the later
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2 (+), 4 (*), 5 (x) and 8 (0) subdomains, for ¥2 = 20. On
the z-axis we have the iteration number and on the y—axis the logarithm of the max—norm
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versus iterations for all methods, for 2 (4), 4 (*), 5
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Figure 2.7: Convergence history of the two—step relaxers, AVE and SPO, during the
Neumann sweep.

group except for the ROB method.

Recall that all the data presented so far correspond to uniform partitions of the interval
[0,1]. We next test the effect of non—uniform partitions by moving the interface point
(denoted by ip) from .2 to .4,.6 and .8. In Figure 2.9, where we consider the four different
2 subdomain partitions, we clearly see that none of the schemes is very sensitive to this
change. Again the axes are as in Figure 2.3.

Recall that two (NEW, SHO) of the seven methods are parameter-free. The rest involve
parameters of various kind whose values were selected in a naive and straightforward way for
the experiments described above. In Figure 2.10 we systematically vary the values of these
parameters and present convergence plots for the 2 subdomain case with the interface point
at .8. In those two methods (AVE, GEO) with two parameters, their values are made equal
in this experiment. Note that for the GEO method, w;, = a * £;, and wr = a * £ where
L1, lr are the lengths of the left and right subdomain respectively and « takes the values
shown on the symbol legend. We see that the parameter choices have a strong affect on the
convergence behavior. The best parameter choices for Figure 2.10 are: AVE (o = = 0.3),
GEO (w;, = wgr = 0.6), ROB (A =0.9), SCO (# = 0.5) and SPO (p = 0.9). These data
show clearly that there is an important open question for these methods: How does one
choose optimal (or good) parameter values?

Among all the relaxation methods considered in this study only SCO appears to be
sensitive on the order the various subdomains are processed during the interface relaxation
process. We experimented with SCO as follows: Select a subdomain ¢ as the first for an
iteration and then process the others in sequence (left to right, wrapping around at the
right end of the interval). In Table 2.2 we present the number of iterations required by

this scheme to reduce the norm of the difference of two successive iterants below 1075 (i.e.
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Figure 2.8: The effect of the coefficient 2 on the convergence rate of the relaxation schemes
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lower right.
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Figure 2.9: The convergence of the relaxation schemes for non-uniform 2 subdomain de-

compositions. The interface point ip is placed at 0.2 (4), 0.4 (*), 0.6 (x) and 0.8 (o).
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relaxation methods for 72 = 1. The legends and parameter values used are given in the

lower right, the two parameters of AVE and GEO are both set equal to the value shown.
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Starting Subdomain 11213451678
Number of Iterations || 48 | 40 | 32 | 24 | 25 | 34 | 40 | 42

Table 2.2: Number of iterations k to achieve |[u*+D) —4®)|| < 10~° for various starting
subdomains in the SCO method.

1

log of error
log of error

0 50 100 150 0 50 100 150
iterations iterations

Figure 2.11: The history of convergence of four relaxation methods for —u” +sin(2rx)u = f
(on the left) and —u” + cos(2mz)u = g (on the right) in the case of 5 sub-domains of equal
size.

w1 —uF)|| o < 10~?) as a function of the starting subdomain g. Specifically, for Table 2.2
we use a uniform decomposition of 8 subdomains and we start the domain decomposition
scheme from subdomain g = 1,2,...,8. We see that the selection of the starting subdomain
significantly affects the rate of convergence of the SCO interface relaxation method.

Finally we test if the convergence of the methods depends on the definiteness of the
PDE operator. We decompose the domain uniformly into 5 sub-domains and consider the
following two differential equations, —u” + sin(27z)u = f and —u” + cos(27z)u = g, that
do not satisfy the ellipticity condition and appear (in a two dimensional form) in practical
applications. Only four methods (GEO, NEW, SCO, SHO) converge for these indefinite
problems. Figure 2.11 shows the convergence behavior of these methods for both problems.
We see that the convergence rate is comparable to that seen in Figure 2.3. The rest either
diverge or oscillate. Such behavior has been already noticed for some of the methods [19].
We are unable to formally explain why the SCO convergence stagnates at 1072. One
possibility is that the asymptotic error constant involved in this method [45] is greatly
affected by the particular form of these problems.

We should add that we have implemented most of the relaxation schemes presented

above for two dimensional problems using ELLPACK [54] assuming “skyline” domains
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Figure 2.12: The history of convergence of AVE (+ symbols), ROB (*) and SCO (x)
methods for —Awu + 10u = f (on the right) assuming the PDE domain and its partition
given on the left.

(a string of rectangles of different heights and widths ?). This leads to one dimensional
decompositions and we performed some selective experiments, all of these were in good
agreement with both the quantitative and qualitative conclusions we draw from the one
dimensional experiments presented above. The detailed presentation of our performance
study is beyond the scope of this Chapter. We will provide more experimental data later on,
in Chapter 6. Nevertheless, in the right plot of Figure 2.12 we give the history of convergence
of the AVE, SCO, and ROB methods for the differential equation —Au + 10u = f €
where f is selected such that u(z) = e?@ Yz (z — 1)(z — .7)y(y — .5). We assume Dirichlet
boundary conditions. The PDE domain and its one dimensional partition into 4 subdomains
Q= ﬂ;-lzlﬁi is depicted in left plot of Figure 2.12. The 5-point star ELLPACK discretization
module was used. The similarity of the convergence behavior of the three methods in one

dimension (Figure 2.8) and in two dimensions (Figure 2.12) is easily observed.

2.5 Conclusions

We present a wide class of non-overlapping domain decomposition, interface relaxation
methods for elliptic differential equations. A set of experiments are described which ex-
plore the convergence properties of these methods in several directions. The qualitative
conclusions are categorized in Figure 2.13. This figure also summarizes the existing math-

ematical and derived computational properties of the methods. It is seen that the speed of

2This ELLPACK code is also available from our web page.
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convergence of the interface relaxation methods can be of high, moderate or low, that the
iterates can approach the exact solution monotonically or not, and there can be two, one or
no relaxation parameters to accelerate the convergence. Some single or two step interface
relaxation methods use “history” (the new value on the interface is explicitly set to be the
old one plus a correction term), some do not. It is natural to expect that the rate of con-
vergence of all interface relaxation methods is affected, to some extend, by certain problem
parameters. Some of the most important of these parameters are the fineness of the mesh
or grid discretization of the domains (column “domain discretization” in Figure 2.13), the
particular method (finite element, finite difference . ..) used to discretize the PDE operators
(column “PDE discretization”) and the geometric characteristics (rectangular or not, holes,
wide angles . ..) of the domains (column “PDE domain”). The theory and the experimental
data available to explain all these cases and phenomena is very limited. In Figure 2.13, we
present our conclusions about the effect of these parameters drawn for either the existing
theoretical studies or from our preliminary experiments with various PDE problems.

The principal conclusions of the study presented in this Chapter are: (1) There are
many interface relaxation methods that seem to have the potential to work effectively. (2)
There is still much to be learned about their behavior and about how to choose among

them or to choose their parameters.



38

Effects of
2
8 g 5| =&
o u = N o~ o
= |82 & | 23| z| e|3|6%| 8| 8|, §|88
8155 & | 83| 8| 2| 9|58 |48 |48 4L |ag
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SPO | High| vyeg 1 Yes | np Low

Figure 2.13: Categorization of the properties of the seven interface relaxation methods. A
blank entry indicates an “average” evaluation (for numerical properties) or absence of a
property. Those evaluations considered to be positive are given in larger, bolder type.
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Abstract

Two simple interface relaxation techniques for solving elliptic differential equations are
considered. Their theoretical analysis at the differential level is carried out and “optimal”
relaxation parameters are obtained for one dimensional model problems. An experimental

numerical study is also presented.
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3.1 Introduction

Domain decomposition has proven an effective means of partitioning the task of solving
Differential Equation (DE) problems numerically. It is mainly an algebraic approach and
works by splitting the discrete DE domain into subdomains which can be coupled in many
ways. The well established additive and multiplicative Schwartz methods are examples of
typical domain decomposition approaches that have been analyzed extensively. Interface
Relaxation (IR) is a step beyond domain decomposition [53]. IR methods are defined and
analyzed at the continuous level, yet they can be implemented by traditional numerical
methods which can vary from subdomain to subdomain. They assume a splitting of the
domain into a set of non-overlapping subdomains and consider the associated DE problem
defined on them. These subproblems are coupled through relaxation mechanisms on the
interfaces. IR methods naturally apply to multi-physics problems when the DE may change
from one subdomain to another. For a general introduction to the IR methodology the
reader is refereed to [53, 45, 46].

A review study of a large collection of IR methods can be found in Chapter 2. The con-
vergence of these schemes depends, as expected, on the differential operator, the geometry
of the original domain, and in addition on the geometry of the subdomains chosen. This
makes the selection of “optimum” values for the relaxation parameters a hard and challeng-
ing problem. On the other hand, the local subdomain discretization scheme does not affect
the convergence properties of the IR schemes which gives these methods great versatility;
one can select the most appropriate discretization parameters or numerical method for the
differential problem defined on each subdomain.

The development of an automated and adaptive procedure that dynamically estimates
“good” relaxation parameters, using automatic differentiation techniques, for general dif-
ferential operators and arbitrarily shaped subdomains is under way [56]. Nevertheless, in
order for this parameter selection procedure to be effective, theoretical results for simple
model problems are needed that provide the required reasonably good initial guess for the
optimum values of the parameters and, more importantly, a better understanding of the
convergence mechanisms involved.

The main objective of this Chapter is to better understand IR methods for one dimen-
sional model problems where direct analysis can be made. In particular, we analytically
estimate values for the parameters involved in two recently proposed and analyzed IR meth-
ods. Namely we consider an averaging scheme [60, 75, 77] (denoted by AVE in the sequel)
and a Robin-type IR scheme [39] (denoted by ROB). Although both methods were con-

sidered in several previous studies more understanding is needed. Specifically excretions
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that relate their rate of convergence to the characteristics of the differential problem and
its partition in a clear way are needed.

We restrict ourselves to Helmholtz boundary value problems. In both schemes the error
involved on each interface can be given analytically in terms of the error in the previous
iteration. This leads us to a system of linear algebraic equations that represents the relation
between the errors on all interfaces in two consequent iterations. Then, we minimize the
spectral radius of the iteration matrix involved using a different approach for each method.
For the AVE scheme we minimize the area of the associated Gerschgorin discs (which is
equivalent of bounding the max norm of the iteration matrix) to derive, in Theorem 3.3.4, an
important relation between the size of the subdomains and the coefficient of the differential
equation that determines the domain of convergence of the method.

The iteration matrix associated with the ROB scheme is quite sparse, and so we were
able to make its spectral radius zero by selecting appropriate values for the relaxation pa-
rameters involved. In particular, Theorem 3.3.3 gives optimum values of the relaxation
parameters involved, which are proved to be independent both of the particular discretiza-
tion of the differential operator and its original domain.

The rest of this Chapter is organized as following. In the next section we formulate
the two Interface Relaxation methods whose theoretical convergence analysis is given in
Section 3. Section 4 presents numerical results from an experimental study which confirm
our theoretical results; they also show that these hold for more general problems, including

two dimensional ones.

3.2 Two interface relaxation methods
We consider the Helmholtz boundary value problem
Lu=—u"(z) + v (z)u(z) = f(z), z€Q=(a,b) (3.2.1)

with a,b € R, subject to boundary conditions on a and b which, for simplicity, are taken
to be homogeneous Dirichlet. Assume that €2 is decomposed into the p non-overlapping
subdomains ©; = (z;_1,2;), ¢ = 1,...,p with 9y = a, 2, = b and z; | < z; € Q for
1=1,...,p—1. We denote the size of a subdomain §2; by ¢; = z; — z; 1 and the restrictions
of L, f and « in Q; by L;, fi, i, respectively. We further assume that y(z) = +; for

x € Q;,1=1,...,p, where the ;’s are real constants.
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3.2.1 The ROB method.

The ROB scheme is defined, for the model problem under consideration, by the following

algorithm:
1. Define:
NG
gi = 1;1:1 + N\ uluj_)l
o=z e =1,...,p—1
. (k) ) )
i+1 du; (k)
ith= dw [ + i u; .
C . 0 . . .
2. Choose initial guesses uz( )(x) for the solutions on each subdomain €;,72 =1,2,..., p.
. . k
3. Define the sequence of subdomain solutions uE )(:Jc), k=1,2,... as follows:
k+1 . k+1 .
Llug ) — fi in Lpuz(, ) — fp in £,
(k+1)
(k+1) . du (k+1) _p
Uy =0 - —@ + Ap—1 up B =09p
T=xg =z, 1 T=Tp_1
du{F Y (k+1) 9 (k+1) _
— + A uy =01 | =0
p— =T T=Tp
k+1 .
Liug +1) = fl m Qi
(k+1)
du; (k+1) i
_ + )\~_1 U =gq; .
e T=Ti—1 ' ! T=Ti—1 Ji-1 t= 23 ces P L.
(k+1)
du; (k1) — i
dx + A u; R/
=1, T=x;

This scheme, first proposed in [39], is based on a simple relaxation technique that involves
the Robin interface conditions shown above. The DE problem is solved in each subdomain
where the boundary conditions are provided from the previously computed solution and
its outward normal derivative from the adjacent subdomains. The relazation parameter
Ai controls the influence of the value of the function and/or its normal derivative on the
smoothing Robin interface conditions.

This method was first analyzed in [39] where, through energy estimates, the convergence
of the method at differential level was established for arbitrary decompositions and elliptic
operators. Later in [19, 32], this method was further analyzed at discrete level in a finite
element framework. Several variations of this method have been also appeared. In [31] an
ADI based modification is considered and analyzed at discrete level for model problems and
decompositions. A second variation of ROB method that extends its applicability and frees

it from the cross—point trouble is formulated and analyzed in [17]. In [68] the addition of
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tangential derivatives in the smoothing procedure is proposed and analyzed and, recently, in
[78] a finite difference variation is presented and analyzed. In some of these studies optimal
values for the relaxation parameters have been obtained but only for model problems and
only assuming a discrete formulation of the method (i.e., first discretize and then decompose
the linear algebra problem). Therefore the determination of effective choices for A;’s in the

IR framework and for general domains and decompositions is, in general, an open problem.

3.2.2 The two step average AVE method.

The AVE [58, 60, 75, 77] IR method is a two-step iterative scheme described by the following
algorithm:

(0)

1. Choose initial guesses u; ' (z) for the solution on each subdomain €;,i =1,2,..., p.

2. Define the odd terms of the sequence of subdomain solutions ug%ﬂ)(az) as follows:

k) (2k)
% i+1 .
gz:ﬂl dll‘ +(1_13l) dr 71217"'717_1'
r=x; r=x;
fori=2,...,p—1
2k+1 . 2k+1 . 2k+1 .
Llug = fiin Liug = fiin Q; Lpuif, = fr in Qp
(2k+1) ) (2k+1)
(2k+1) _ du; i1 duy _ p—1
Uy v 0 iz =91 dz =9p-1
(2k+1) ’ (2k+1) reri A
duy“" 1 du; i (2k+1) _
1dw =401 dz =g Up = 0
T=T] r=x; T=Tp

3. Define the even terms of the sequence of subdomain solution uz(-2k+2) (z) as follows:
hi = «; MY +(1—«) ugiklﬂ) ,i=1,...,p—1.
r=x; T=T;
fori=2,...,p—1
L1u§2k+2) = f1in O Liu§2k+2) = f; in Lpu§,2k+2) = fpin Q,
u52k+2) = 0 uz(2k+2) _ hz::% uz()2k+2) _ hﬁj
T=x0 T=xi—1 T=Tp_1
u§2k+2) _ ! Z(2k+2) — hi u1(12k+2) —0
T=x1 T=T; T=xp

The relaxation parameters a; and (; are to smooth the function and its normal derivative
respectively and they both take values in (0, 1). In the first step (odd terms), the Neumann
problem is solved for each subdomain, using as estimates of the derivatives on the interface
a convex combination of the normal derivatives of the initial guess (or previously computed

solutions). Then a convex combination of the values of computed solutions on adjacent
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domains is computed and used as boundary values to solve the Dirichlet problem in the
second step (even terms). There are already several theoretical results concerning the AVE
method. In [77], two finite element approaches (a Galerkin and a hybrid mixed) have been
employed to analyze the convergence of the method at a discrete level setting both relaxation
parameters equal to 1/2. A convergence analysis of the method at the differential level using
Hilbert space techniques is given in [75]. A simple model problem with a two subdomain
decomposition is considered in [60] where Fourier analysis at the differential level is used to
obtain “good” values for the interface relaxation parameter /5, while o is set equal to 1/2.

It is worth pointing out the inherent parallelism in both the algorithms. In each one
the DE solver or interface task steps can be executed on different processing elements. The
only synchronization needed is a barrier at the end of each step and then only data on the
interfaces need to be communicated to the processors handling neighboring subdomains.
Note that parallelism and the number of subdomain are somewhat separate issues. One
can apply IR to a problem with k£ subdomains using one, k£ or any number of processors

in-between.

3.3 Selection of relaxation parameters

We start our analysis by stating the following simple lemma that can be easily verified.
Lemma 3.3.1. The solution of the boundary value problem

Lu =0 in (a,b), ci1u'(a)+ cou(a) =wv; and c3u'(b) + cyu(b) = vy
with constants ¢; € R, 1 =1,2,3,4 is given by

u(z) = [(—(e37 + )’ 4 (—e37 + ca)e 7)oy +
(—(=e1y + 2)e?@Y 4 (c1y + ¢2)e 7= vy (3.3.1)
[(e1y + ea)(—eay + ca)e 707 — (eay + ca) (—ery + )] o

Let us now introduce notation for the sequence of values of the solutions, their derivatives

(k)
and their errors at the interface points: uz(kj) = ugk)(xj), duz(-,kj) = % , ez(-k) (z) =
T=;
k k k k k
ug )(x) —u(x), eg’j) = ug’j) — u(z;) and deg,j) = dug,j) —u/(z5).

3.3.1 Optimum relaxation parameters for the ROB method

Consider the following differential problems associated with the error functions in each

subdomain which can be easily obtained from the ROB algorithm given in the previous
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section.

L165k+1) (I) =0, xz€fy,

(3.3.2)
egl’c[;rl) —0, de(k+1) Y g 1 _ deg’fl) + )\leé’fl)’
fore=2,....p—1,
Lie" ™V (z) =0, zeq,
—de Ekj}) + Xi-1 Z(IZJFP = _dez(']i)l,ifl + Ai—lfgg,iq’ (3.3.3)
k+1 k+1 k
dels ™+ nielst) = delf), ; + Niel?)
k—l—l
k+1 k+1 k k k+1 o
—de ( ) 1+ A1 e( pff = —deI(J,)Lp,l + >\p7161(37)17])717 ez(l,p ' =0,
Using (3.3.1) we observe that these error functions are given by
(bt1), \ —en(@—z0) 4 o=m(z—w0) (k) (k)
€ (z) = (=71 + A)e 18 — (y1 + Ap)enh (d621 + A€y ) ) (3.3.5)

fori=2,....,p—1,

(@) = (= + M) (=% + A)e 8 = (7 ) (i + hic)er ]

[(—(% + X)en @) 4 (—y; + Ai)e‘%(’”l"”)) (—deg_)l,i_l + i 1e§’“)1i 1) +  (3.3.6)
(= (i + Xim1) €100 4 (= + Aoy e Vi) (d€§+)1 i+ hiel) z)]

and

_e’Yp(wpfm) + e*'Yp(mpfw)

(k+1) (N _ _ .k (k)
P ($) B (_7p + Ap*l)e_’ype” - (')’p + Ap*l)e%zp ( depfl’pfl + ApilﬁP*l”’*l) ) (3'3'7)

From these we obtain

8%171—1—1) = Wn’:ﬁﬁ (deg 1) + >\152If1)>
5Z(IZJ:P = T [(%nz + Aim;) <—d52( )1 i1 T >\i71€gli)17i,1) + 2; (dsz(i)l’z- + Aieglfr)lyi)}
Egciﬂ) = dli [(%ni + A1) (dEz(i)Li + Aifgi)u) + 27 <_d5z(li)1,i—1 + >\i715£ﬁ)1,i—1)} ;
] = P T ( deyy i + Ap—lgz(ok—)l,p—l)

where

di = (v + Xdi)mi + i+ Nio)ni, i=2,...,p— 1,

£;

n; = et — el and m,; = el + e_%zi, 1=1,...,p.
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By differentiating equations (3.3.5)—(3.3.7) we obtain expressions similar to the above that

(k+1) o (k+1) dg(k;rl) (k+1)

relate d&tl,1 , cl&tm_1 yde;; 1=2,...,p—1, and dgp,p—l with associated values from the

iteration (k); these are

= e (el )

dﬁz(-,lzﬂ) = Z—: [('}’zmz + Aini) <d5gli)1,if1 - Ai—lgz(]i)l,iA) +2Xi-1 (dgz(i)l,i + )‘igz(i)l,iﬂ ’
dsgzﬂ) = 7 |:(')’zm7, + Xi—1ni) (dsgi)l,i + Aisgi)u) + 2X; (degﬁ)l’i_l - Ai,legﬁ)u_l)} :
dsl(,]f;ilz = % (dsgi)l,pfl — )\p,lsgi)l,pfl) .

Now we order the errors on the interface points to create a sequence of error vectors as

follows, for £k =0,1,2,..., we set

_ k) (k) _(k k k) (k) _(k k
k) = [dsgyl),55,1),65,1),dsgyl),dsgz,egﬂ,eéﬂ,dsgg,...,
k) (k) (k k k k k k 17
dgz(,i)’ 62(',2')’ 5z('+)1,z'v dgz('+)1,z" s dgz()—)l,p—l’ 5;5)—)1,1;—1’ 6;5,,,2_1, dﬁ;s;,;q

We obtain the following relation between the vectors of interface errors in the two consec-

utive iteration steps (k) and (k + 1)
eF ) = Me® . Kk =0,1,..., (3.3.8)

where the iteration matrix M € R*P=1)*4(=1) hag the form

r 0 Mo 0 0 0 0 0 y
Mo 1 0 0 M3 4 0 0 0
Ms1 0 0 Mz 0 0 0
0 0 Ma 3 0 0 Mag 0
0 0 Ms 3 0 0 Ms.6 0
M =
0 0 0 Myp_1)-22p-1)-3 0 0 Map—1)-2,2(p—1)
0 0 0 Myp_1)-12(p-1)-3 0 0 Map—1)-1,2(p-1)
L 0 0 0 0 0 Myp-1)2p-1)-1 0 -
(3.3.9)
The submatrices of M are as follows:
1 YiniAr yng

Myyg=——"-+—"—
oA | o\, omy

fori=2,...,p—1,

M 1| —(vini + Ami)  Aima(ving + Aimy)
2(i-1),2(i—1)-1 = 7
ey i | (i + Aing) - —yiXio1 (vimi + Ainy)
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v 1| vidi(vimi + Xicing)  vi(yama + Xioing)
2(2—1)+1,2(:—1)+2 = 7 )
(== = g, Xi(vimi + Aicimg) (v 4+ Aimimy)

2vi i 1 29 | AN =N
Myii-1)2i-1)4+2 = d_z MNAot At v Maiio1y1,26-1)-1 = E 1 Aot ’
1N\ — i— — i—
and
1 —Mmy Ap—1Mmp

My 1) 2p-1)-1 = ——————
(p=1):2(p—1) Wolp + A1 | yny, —ympAp

For the rest of the analysis in this section we use a methodology similar to the one

x2(p=1) of reduced

found in [35]. In the following lemma we construct a matrix M € R*?—1)
size which is spectrally equivalent to the iteration matrix M and whose special non-zero

structure lets us select optimum values for the relaxation parameters ;.

Lemma 3.3.2. The two matrices M and M have the same non-zero eigenvalues, i.e.,

o(M)\{0} = o(M)\{0} (3.3.10)
where
[0 1.2 0 0 0 0 0 7]
Myy 0 0 Mg 0 0 0
Mz1 0 0 May 0 0 0
0 0 Mz 0 0 Mae 0
0 0 Ms 3 0 0 M5 6 0
M =
0 0 0 Myp_1)-22pp-1)-3 0 0 Mo (p—1)=2,2(p-1)
0 0 0 Myp_1)-12(p-1)-3 0 . 0 Map—1)-1,2(p-1)
Lo 0 - 0 0 0 Msp_1)2(p—1)-1 0 .
(3.3.11)
The elements of M are defined as follows:
~ —yin1 + Ay
Mip=—"—"—7—"—,
yin1 + Aimg

fori=2,...,p—1,

~ i1 (ying + Aimg) — i (yimg 4+ Aing)
My 1) 26-1)-1 = 7 ;

i _Ailyima + Aicimg) — vilyimg + Xioing)
2(i—1)+1,2(i—1)+2 = 7 )
(]

y Lidio Ay
Ma(i1)2(i-1)+2 = %d.z 3 Ma(i—1)41,2(-1)-1 = Z; Z,
¢ (2
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and
T np + Ap—imy

M., =
2(p—1),2(p—1)-1 Yolop + Ap_ 11y

Proof: We define the non-singular matrix
Q = dzag( Qla Q,{a QZa an Ty Qp—la QZ’_l )a

where

-\ 1 0

_ 1 _ .
Qi:Qilz ) QZT:QZT: ) lzla"'ap_la
0 -1 - -1

and consider the similarity transformation matrix Q ' M Q whose submatrices are specified
by the following relations.

0 —vini+Aimy

Qr'Mi2Qf = %nintklml ’
CROES
fori=2,...,p—1,
_ | —(imi + Ximg) ’
Qi_leZ(ifl)Q(i*l)*lQi_l = d_ [t L) )
i | Aic1(ving + Ximg) — yi(vima + Aing) 0
Dy 0 -1
-T T ’)IZ
- M . - . —_
Q1 2(i—1),2( 1)+2Qz d; 0 2X,_1 ’
2y | 2\ 0
1 i '
Qi My 1)+1,26-1)-1Qi-1 = d_zz 1 0

0 —vi(yimi + Xi—ing) + Xi(ying + Xi—imy)

1
Q; "My +1,2(i—1 Q= — )
' EEDRLEDEEE T YiPi + Ai1m;

and
0= M 0 1 —my, 0
—1Map-1)2(p-1)-1&p-1 =
p—1772(p—1),2(p—1)—1'<p Yoty + Ap 17 | oy — om0

A simple comparison of the above relations with the elements of the matrix M and the fact
that there exists (Lemma 3.2 in [35]) a permutation matrix P such that

PTQTMQP =

)

0
0 M
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complete the proof of the lemma. O

We conclude this section with the main theorem that presents analytic expressions for
the relaxation parameters.
Theorem 3.3.3. Consider the model problem (1) and a non-overlapping decomposition of

Q into p subdomains Q; of length ¢;, i =1,...,p. If the parameters X\; involved in the ROB
interface relaxation method are selected as

Aot = e Ny = nlimithin) o, g g (3.3.12)

mp Yini+Aim;

then the spectral radius of the iteration matriz M is zero.

Proof. It can been seen (Lemma 3.2 in [35]) that if we set MQ(i_l)’Q(i_l)_l =0,i =

2,...,p, then we obtain that o(M) = 0. This leads to the following equations.

Ap—1my — Ypnp =0

and

Nic1(yimi + Ximg) — vi(vimi + i) =0, i=2,...,p— L (3.3.13)
To conclude the proof, we back solve for A;,7 =p —1,...,1 and use the previous Lemma.
O

3.3.2 “Optimum” relaxation parameters for the AVE method

Using the notation adopted in the previous section and the AVE algorithm given in Section
2 we easily see that the error functions involved satisfy the following differential equations:

For the odd steps the equation for the first subdomain is

L1652k+1) (I) =0x € Qy,

(3.3.14)
el =0, dey™V = udel?) + (1 - pr)dely),
for the ith interior subdomain, 7 = 2,...,p — 1, the equation is
Li€£2k+1)($) =0z €y,
Al =g de™ b (1= Bi)del), (3.3.15)
delF = Bidel) + (1 - Bi)del).,
and for the last subdomain the equation is
Lpel(,%ﬂ)(x) =0z €Q,,
k k k
deby V= ByadelM) (1= Byr)dely (3.3.16)
((2k+1) —0

p,p
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For the even steps the equation for the first subdomain is

L1652k+2) (I) =0x € Q,

(3.3.17)
e =0, e =l + (1 — )T,
for the ith interior subdomain, 7 = 2,...,p — 1, the equation is
Li652k+2) (ZE) =0z € Qy,
eﬁi’“j?) = aiqegﬁfil_)l +(1— ozi71)6£,2ik_+11), (3.3.18)
2k+2 2k+1 2k+1
Ez ) = aiez(,i '+ (1— Ofi)fz(+1,i )v
and for the last subdomain the equation is
Lpez(,ZkH) (z) =0z€Q,
(2k+2) . (2k+1) (2k+1) (2k+2) (3.3.19)
p,p—1 =CQp-1€p_1p21 + (1 - apfl)ep,pfl »  Epp =0.

The solutions to the Neumann problems (3.3.14)-(3.3.16) are given by (see Lemma 3.3.1)

e () = st (o) — e (Bidel®) 4 (1 - B)dey))
@) = Lo { (e @D = ) (B del) 4 (1= Bi)del) )
+ (nemen o emnleanin) (Bl + (1- gy ) ) i=2 -1

ez(,%ﬂ)(x) = L (—ew@r—2) 4 e=mlEp—2)) (5;)—1616

2k 2k
T rpmyp 1()—%,1)—1 + (1 - ,Bp_1)d6§),p)_1> .
The solutions to the Dirichlet problems (3.3.17)—(3.3.19) are given by

e§2k+2) (z) = L (e’Yl(.Z'—CEO) _ e—“n(a:—xo)) oqeffﬂ) +(1—a) (2k+1)

n; €21 )
(@) = - { (e — 1) (o aeD 4 (1 - e )Y +
(e’Yi(wfmi—l) — 6771'(113*:31‘71)) (aiez(_i_k"‘l) +(1— ai)ez(ikl‘;l)> } , i=2...,p—1
51(72k+2) (:L‘) = n_lp (e’Yp(fUp_fU) — e_’Yp(xp_x)) (ap,leffkf;})fl + (1 — ap,1)62?5j3)> .
If, for £ =0,1,..., we define the vectors
(k) — [0 (k) w 1" k) — [0 7 (k) ® 1"
e® = [, e, e, ] and de® = [de, ael, L aeP ] (3:3.20)

then we get from the above that

dek+1) — ppN ((2K) (3.3.22)
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where the Dirichlet and Neumann iteration matrices MP, MV € R®=D*(@-1) are tridiagonal

with elements

— oaam _ (l—oa)ny D _ apoinpm1 _ (—ap-1)my
11 n171 may2 p—1,p—1 Mp—17p—1 NpYp ’
D _ oing _ (I—aei)nigr - _
MZ,Z = M b= 2,...,p—2, (3.3.23)
2(l—qy . ..
MP :M 1=2,...,p—1
1,041 Mif1Yit1’ ’ ) )
D _ 20 .
Mz’+1,i = _mi’;i’ 1=1,...,p—2,
MN = Biun (1—B1)n272 MY _ Bp—1np—1vp—1 _ (1-Bp—1)mpp
L™ m m2 ’ p—1lp—1 — mp_1 mp )
N _ Bingvi _ (I=Bi)niv17vi41 .
M5 = e it , 1=2,...,p—2, (3.3.24)
N o _20=Bivit1 ;o 1
i,0+1 T mit1 ) =4,...,p )
N 28
MZ-H,Z-——N;_Z, 1=1,...,p— 2.

For p = 2 it is easy to see (make the roots of the characteristic polynomial of M or
N — maniy1 — minzy2 :
M*® be zero) that ap = ey Fmnars O 51 st manyr Are optimum values and
achieve immediate convergence. For p > 2 we have been unable to derive optimum values

for the relaxation parameters. Instead we obtain values for them that are optimum in the

max-norm (see Appendix C).

Theorem 3.3.4. Consider the iteration matric M = MNMP of the AVE method as-
sociated with the model problem (3.2.1) and a non-overlapping decomposition of Q into p
subdomains Q; of length £;,0 = 1,...,p with v; = v in i = 1,...,p. For the values the
relazation parameters given below the maz-norms of MY and MP are minimized and the
matriz M s a contraction mapping, with respect to the maz-norm.

— ning — MpMp—1
a1 = nins+mims’ Qp—1 = MpMp_1+Npnp_1’ (3325)

ai:%, 1=2,...,p—2 (3.3.26)
and
. o Mmy_1n
pr= mlgj—%zm’ Bp*l - mpflnfr‘i‘minpfl (3'3'27)
provided that £; > M, 1=1,...,p.
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Proof: To minimize the max-norm of the iteration matrix, it is sufficient to minimize

the quantity

_ g @iBiot
flai, Bis Bi—1, Biv1) = 4=+
2 ﬂz 1 mznz 1+mi— lnz) mi—1n; _’_B (827 mz+1n +mznz+1) mMin;41 +
m; mi;—1m; m;mi41

‘ ( ﬂz 1) + Qi (Mip1mi+minir1)—minit1 Bi(Mip1ni+miniy1)—mini4;

M Mi41 MM 41 (3'3‘29)
4(1 az)ﬁz«kl +
H—l
2 Qi (Mip1mi+minip1)—miniy1 (1 _ Bit1(Mitonit1+mitinigs)=—mip1nige (1 _
mi+1 mi;mi41 (1 B ) + Mi4+1Mi42 (]‘ al) +
4 =ai)(A=Biv1)

mimi41

One can determine values for oy, f;, B;—1 and B;11 that minimize f by an elementary
but very lengthy and tedious analysis which involves splitting the absolute values and con-
sidering several different cases. (This analysis is presented in Appendix C.) Here instead,

we give an indication why this theorem is true.

A ¥ — ming41 o | ming41 . — PQ* — mi;—1n;
Set o = o = M 1M+ pi=pi = My 1T +miniy Pi =B = M 1n+min;—1
. — 3* — Mi4+1Mi42 . .
and Biy1 = 811 = mnistme o+ Lhen the expressions in the absolute values of (3.3.29)

become zero and so we have

f(afaﬁfaﬁf—laﬁzﬁi—l) =

4 (mi—l-l(mi +m;i_1) n mi (M1 + Miy2) )
M 1M + M1 \ M= 11 + MN—1 M1 N2 + M 2N 41

Under the constraint that £; >

M we have that n; > 2, j=14—-1,4,1+1, and

therefore we have

4 (e (m .
Flat, B By, ) < <mz+1(mz +mi—1)  mi(mi + mz+2)> _ 1

2(m; +mit1) \ 2(m; +mi—1) 2(miv2 +mit1)

Continuing in the same way for the 1°¢,2"? (p —2)*" and (p — 1) rows of the iteration

matrix, we get optimum values for the relaxation parameters for all the interface points. O

3.4 Numerical experiments

The purpose of the numerical experiments performed in this study is two-fold. First to
verify and elucidate our theoretically determined relaxation parameter values on a class of
one dimensional problems and then to examine how effective these parameters values are
for two dimensional PDEs. All experiments reported here are performed in single precision

on SUN workstations.
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3.4.1 One dimensional case

We have implemented the two IR methods considered in this Chapter using MATLAB. All
MATLAB files we use to produce the one dimensional data in this section are available
through our web page.! Implementations of several other relaxation schemes also can be

found there. We use zero as initial guess and consider the following model problem:

Lu = —u"(z) + y*u(z) = f(z), z € (0,1), u(0) =0, u(l) =0, (3.4.1)
where the right hand side function f is selected such that the true solution u(z) is either
DP1 u(x) = cosh(2x — 1) — cosh(1.0), or
DP2 u(r) = e*Hz(z — 1)(z —.7).

In Table 3.1 we present the max norm of the error [[u*) — u||s and the computed

convergence factor

= {11060 — oo/ 1200 = flloos s =1,2,...

of the ROB method applied to the model problem (3.4.1) with 42 = 2 and solution DP1.
We assume that the domain is decomposed into p = 2,4, 10,20 domains of equal size. We
use the 5-point star difference approximation with two different global discretization steps
h = .01 and h = .005 to solve the DE. Similarly in Table 3.2 we consider the AVE method
and set 42 = 10. The rapid rate of convergence is easily observed as one moves down along
any column. Note that this convergence is not immediate (1 iteration) as our theory might
indicate. It can be shown [69] that this is mainly due to the particular block structure of
the Jordan form of the iteration matrices which may require from 1 to 2(p — 1) iteration
steps instead of one.

It can be also observed that, as the computed convergence factors indicate, the rate
of convergence of both methods does not seem to depend on the fineness of the domain
discretization. Nevertheless, the order h? finite difference discretization convergence rate
is preserved. The rate of convergence does depend, as expected, on both the number
of subdomains and the coefficient y2. Extensive numerical experiments (some of them
presented in Figure 3.3 below, and some others that are not included in this Chapter) show
that the rate of convergence increases as v? increases for both methods but much more
rapidly in the AVE case. The AVE method diverges for v> = 10 and p = 20. This is in
good agreement with the restriction ¢; > M, 1=1,...,p imposed by Theorem 3.3.4.
This restriction seems to be necessary as well as sufficient (see also our discussion below of

the figures).
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[ Il h=.01 Il h=.005
| iter || p=2 | p=4 | p=10 | p=20 || p=2 | p=4 | p=10 | p=20 |
2 3.08E-5 1.48E-1 2.74BE-1 3.87E-1 7.83E-6 1.48E-1 2.74BE-1 3.87E-1
(.2966) | (.2097) | (.2424) | (.1811) (.2966) | (.2092) | (.2421) | (.1809)
3 1.19E-5 7.18E-2 1.72E-1 3.00E-1 3.07E-6 7.18E-2 1.72E-1 3.00E-1
(.4447) | (.4635) | (.4409) | (.3723) (.4447) | (.4635) | (.4408) (.3721
4 1.19E-5 3.18E-2 1.42E-1 2.27E-1 3.07E-6 3.18E-2 1.42E-1 2.27E-1
(.5446) | (.5524) | (.5651) | (.5106) (.5446) | (.5524) | (.5651) | (.5105)
5 1.19E-5 1.41E-2 1.53E-1 1.75E-1 3.07E-6 1.41E-2 1.53E-1 1.75E-1
(.6150) | (.6167) | (.6425) | (.6063) (.6150) | (.6166) | (.6425) | (.6063)
8 1.19E-5 6.11E-5 7.25BE-2 1.64E-1 3.07E-6 1.52E-5 7.24BE-2 1.64E-1
(.7379) | (.7379) | (.7494) | (.7576) (.7379) | (.7379) | (.7494) | (.7576)
16 1.19E-5 6.14E-5 2.04E-3 7.43E-2 3.07E-6 1.52E-5 2.05E-3 7.41E-2
(.8590) | (.8590) | (.8590) | (.8658) (.8590) | (.8590) | (.8590) | (.8658)
20 1.19E-5 6.14E-5 2.13E-4 3.99E-2 3.07E-6 1.52E-5 5.28E-5 3.98E-2
(.8855) | (.8855) | (.8855) | (.8883) (.8855) | (.8855) | (.8855) | (.8883)
32 1.19E-5 6.14E-5 2.14E-4 2.23E-3 3.07E-6 1.52E-5 5.32E-5 2.18E-3
(.9268) | (.9268) | (.9268) | (.9268) (.9268) | (.9268) | (.9268) | (.9268)
36 1.19E-5 6.14E-5 2.14E-4 4.72E-4 3.07E-6 1.52E-5 5.32E-5 2.54E-4
(.9347) | (.9347) | (.9347) | (.9347) (.9347) | (.9347) | (.9347) | (.9347)

Table 3.1: The max norm of the error and the computed values of the convergence factor
of the ROB method applied to model problem (3.4.1)-DP1 (y2 = 2). In the first column
we have the iteration number, in the first row the discretization step-size and in the second
row the number of equal subdomains.

[ Il h=.01 Il h=.005 |
[iter [ p=2 [ p=4 [ p=10 ] p=20 [ p=2 [ p=4 [ p=10 ] p=20 |
2 1.39E-6 | 2.32E-4 | 1.43E-2 1.03E-1 3.48E-7 | 2.34E-4 | 1.43E-2 1.04E-1

(.0965) (.0965) (.0966) (.0966) (.0965) (.0965) (.0966) (.0966)
3 1.39E-6 | 5.23E-6 | 7.18E-3 2.23E-1 3.48E-7 | 3.71E-6 | 7.23E-3 2.25E-1
(.2103) (.2104) (.2097) (.2104) (.2103) (.2104) (.2097) (.2104)
4 1.39E-6 | 1.99E-6 | 4.38E-3 5.39E-1 3.48E-7 | 4.65E-7 | 4.62E-3 5.44E-1
(.3106) (.3106) (.3113) (.3419) (.3106) (.3106) (.3113) (.3423)
5 1.39E-6 | 2.04E-6 | 3.15BE-3 1.41E+0 3.48E-7 | 5.10BE-7 | 3.19E-3 1.43E40
(.3924) (.3924) (.3920) (.4934) (.3924) (.3924) (.3920) (.4945)
8 1.39E-6 | 2.04E-6 | 8.61E-4 4.22E+1 3.48E-7 | 5.09E-7 | 8.76E-4 4.32E+1
(.5573) (.5573) (.5574) (.9617) (.5573) (.5573) (.5574) (.9644)
16 1.39E-6 | 2.04E-6 | 2.93E-5 5.18E+5 3.48E-7 | 5.09E-7 | 2.65E-5 5.43E+5
(.7465) (.7465) (.7465) (1.830) (.7465) (.7465) (.7465) (1.770)
20 1.39E-6 | 2.04E-6 | 9.18E-6 1.68E+6 3.48E-7 | 5.09E-7 | 5.58E-6 6.19E+7
(.7915) (.7915) (.7915) (1.993) (.7915) (.7915) (.7915) (2.001)
32 1.39E-6 | 2.04E-6 | 7.44E-6 | 2.68E+14 3.48E-7 | 5.09E-7 | 1.86E-6 | 2.95E+14
(.8640) (.8640) (.8640) (2.487) (.8640) (.8640) (.8640) (2.491)
36 1.39E-6 | 2.04E-6 | 7.44E-6 | 4.41E+16 3.48E-7 | 5.09E-7 | 1.86E-6 | 6.29E+16
(.8781) (.8781) (.8812) (2.586) (.8781) (.8781) (.8749) (2.597)

Table 3.2: The max norm of the error and the computed values of the convergence factor
of the AVE method applied to model problem (3.4.1)-DP1 (y% = 10). In the first column
we have the iteration number, in the first row the discretization step-size and in the second
row the number of equal subdomains.
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In Figures 3.1, 3.2 and 3.3 we consider the model problem (3.4.1)-DP1, with a splitting
of the domain €2 into three subdomains. We present the contour plots of the experimentally
determined number of iterations required to reduce the max norm of the difference of two
successive iterants smaller than 10™° as a function of the various relaxation parameters
involved. The stars in these plots indicate the theoretically optimum relaxation parameters
computed by using the formulas (3.3.12) and (3.3.25) of the ROB and AVE methods
respectively. In all plots associated with the AVE method, we use 72 = 2. The Neumann
relaxation parameters 31 and (2 are computed by formula (3.3.27) while we systematically
vary the Dirichlet parameters a; and g in (0,1). For the ROB method, we set v = 2
while the relaxation parameters vary in a larger interval since there are no bounds for
them. For this method we see that there is a curve in the A; Ay plane with optimum values
for the relaxation parameters. The stars in the ROB plots represent the optimum values
computed using formula (3.3.12), which is located at the intersection of the above curve

and the solution of equation (3.3.13) for p = 3, i.e.,

)\1 (’yg’nQ + )\2m2) = ’)’2(’}’2777,2 + )\277,2).

We note that, at the points indicated by stars in all the following graphs, the experimen-
tally observed number of iterations were always in the range of 5 to 8. This confirms the
theoretical optimality of the parameter values. It is also interesting to observe that this
optimality seems to be independent of the uniformity of the decomposition and of changes
in the value of 42 in the subdomains.

In particular, in Figure 3.2, we have the same non-uniform decomposition as in the
bottom two plots in Figure 3.1, but here the coefficient of u in the DE is discontinuous at
the interface points. Specifically, in the first subdomain 42 = 2, in the second 2 = 10 and
in the third v? = 4. The right plot for AVE is made using, as before, Neumann relaxation
parameters (1, f2) computed by formula 3.3.27 and letting «; and as vary in (0, 1).

In general, the AVE method seems to converge faster than ROB but Theorem 3.3.4
imposes a restriction on its convergence region. In Figure 3.3 we experimentally verify
the results in Theorem 3.3.4 and we clearly see that the restriction on the size of the
subdomains imposed is not only sufficient but required too. The restriction y¢; > In(1++/2)
of Theorem 3.3.4 is, for the six cases in Figure 3.3, top row (y/p = 2.24, 1.19, .89 > .881)
and bottom (y/p = .913, 1.05, 1.17 > .881). The convergence region (the area where the
spectral radius of the iteration matrix is less than 1) shrinks as one either increases the
number of subdomains keeping 7? constant or decreases y? assuming a constant number

of subdomains. The imposed bound on the size of subdomains seems to be a sharp one

"Mttp://www.cs.purdue.edu/homes/giwta/dom-dec/1_dim/matlab/index.html
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Figure 3.1: Contour plots for case DP1 of the number of iterations required by the ROB (top
two plots) and AVE (bottom two plots) methods to make the max norm of the difference of
two successive iterants smaller than 1075 as a function of associated relaxation parameters.
We assume a uniform 3 subdomain partition in the graphs on the left and non-uniform
partition with 1 = .2 and x5 = .7 on the right (y? = 2). The stars point the theoretically
determined optimum values of the parameters.
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Figure 3.2: Contour plots for case DP1 of the number of iterations required by the ROB
(left) and the AVE (right) methods to make the max norm of the difference of two successive
iterants smaller than 1075 as a function of the associated relaxation parameters. We assume
a uniform 3 subdomain partition in the graph on the left and non-uniform partition with
x1 = .2 and xo = .7 on the right. Here the coefficient of u is 4> = 2 for the first subdomain,

2 = 10 for the second and ¥?> = 4 for the third subdomain. The stars represent the
theoretical optimum values.
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Figure 3.3: Contour plots for case DP1 of the upper bounds of the spectral radius for the
uniform case for the AVE method. In the top three plots 72 = 20 while the number of
subdomains is equal to 2 (left), 4 (middle) and 5 (right). In the bottom three figures we fix
the number of subdomains at p = 6 and 2 is equal to 30 (left), 40 (middle) and 80 (right).
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Figure 3.4: Convergence history for case DP2 with v2 = 20 and a 4 subdomain uniform
decomposition. The graph shows the true solution and the first three iterants for the ROB
(on the left plot) and the AVE (on the right) methods.

since in all our experiments we observe divergence every time we make ¢;7y slightly less than
In(1 + v/2) while we always obtained convergence otherwise.

To obtain additional information on the convergence behavior of the two methods we
now switch to the model problem (3.4.1)-DP2. The data for Figures 3.4 and 3.5 have
been extracted from Chapter 2 and are presented here for completeness. In Figure 3.4 we
set 72 = 20 and plot the true solution and the first three iterants. We observe that both
methods converge in a non-monotone way, but AVE follows a much smoother path.

In Figure 3.5 we consider the model problem (3.4.1)-DP2, with a two subdomain par-
tition. We set all relaxation parameters equal to .5 and experimentally measure the effect
that the size of ¥? and the location of the interface point have on the convergence rates for
the two methods. We plot the logarithm of the max norm of the error (on the y-axis) versus
the number of iterations (on the x-axis). The interface point is fixed at .5 for the two plots
on the left of the figure while v? = 20 for the two on the right. We observe that the AVE
method is significantly affected by both parameters while the ROB method converges in a

smoother but slower way.

3.4.2 Two dimensional case

We have implemented ? the AVE and ROB methods for two dimensional problems using
ELLPACK [54] assuming “skyline” domains (a string of rectangles of different heights and
widths). This leads to a one dimensional decomposition of two dimensional rectangles. The
detailed presentation of this two dimensional performance analysis is beyond the scope of

this section but, we give an example in Figure 3.6 of the convergence rate of the AVE, and

2See http://www.cs.purdue.edu/homes/giwta/dom-dec/1_dim/matlab/index.html
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Figure 3.5: The effect of the coefficient v? (left graph v? = 1,10, 20, 30) and of the location
of the interface point (right, z = .2, .4,.6,.8) on the convergence rates for the ROB (top)
and AVE (bottom) applied to case DP2. The y-axis is the max norm of the difference of
successive solutions and the z-axis is the number of iterations.

ROB methods. The Helmholtz differential equation is —Au + y?u = f € Q with Dirichlet
boundary conditions where f is selected such that u(z) = e¥@+tz(z — 1)(z — .7)y(y — .5).

The PDE domain and its one dimensional partition into 3 subdomains is as follows:

Q1 = (0,21) x (0,2), Q= (z1,22) x (0,.5), Q3= (22,1) x (0,1), Q=

where 0 < 771 < 92 < z3 < 1. We have numerically verified that either the discretization
scheme or the grid size has very little effect on the convergence rate of both the IR methods
considered. In all the experiments associated with the present study the 5-point star ELL-
PACK discretization module was used and the domain is discretized with a uniform grid in
both directions using h = .01.

The similarity of the convergence behavior between the one dimensional and the two
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dimensional problems is easily observed by comparing Figures 3.1 and 3.6. We performed
many other experiments (some of them are given in Chapter 6), all of these were in reason-
ably good agreement with both the quantitative and qualitative conclusions we draw from
the one dimensional experiments presented above, provided that the subdomain are not
very narrow in the y-direction. Specifically, it is apparent that the region of convergence
shrinks down as the subdomain become large in the y-direction. This is consistent with

the similar behavior observed or even proved in other conventional domain decomposition

studies like [10].
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Figure 3.6: Contour plots of number of iterations required for PDE problem defined in
3.4.2 by the ROB (top two plots) and AVE (bottom two plots) methods to make the max
norm of the difference of two successive iterants smaller than 10~° for the two dimensional
Dirichlet problem —Awu + 2u = f as a function of associated relaxation parameters. We

assume a uniform 3 subdomain partition in the graphs on the left and non-uniform partition
with £; = .2 and 22 = .7 on the right the PDE domain and its partition given on the left.
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Chapter 4

Analysis of a New Interface
Relaxation Method

63



Abstract

The new Interface Relaxation method is theoretically analyzed for one dimensional model
problems. The analysis is carried out at both continuous and discrete level. Regions of

convergence are determined and optimum parameters are obtained.
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4.1 Introduction

The main objective of this Chapter is to theoretically analyze the new Interface Relaxation
method, named GEO in Chapter 2, for solving elliptic differential equations. This method
is based on a simple geometric contraction mechanism and iterates to relax the values on the
interfaces by adding to the old ones a geometrically weighted combination of the normal
boundary derivatives of the adjacent subdomains. A variation of this method has been
also considered in [45] where a convergence analysis has been carried out and numerical
data are presented. Unfortunately, the rate of convergence of this variation of the method
strongly depends on the discretization parameter h and as such violates one of the main
principles of Interface Relaxation and converges so slow that needs preconditioning. In this
Chapter we analyze the GEO scheme and prove for one dimensional model problems that
the convergence is independent of h.

We consider the same model problem defined in 3.2.1. The following algorithm defines
the GEO iterative scheme:

1. Define:
L, ® wiwit! NORPNC)
gi= T e (—dd; ddl:l> B }i=1,---,p—1~
2. Choose initial guesses uz(-o) (x) for the solutions on each subdomain Q;, i =1,2,..., p.
3. Define the sequence of subdomain solutions ugk)(az), k=1,2,... as follows:
Lugkﬂ) =f in Lu,(,kH) =f in Q
E+1 k+1 -1
Ug ) -~ 0 U1(7 ) _ = 95—1
T=xg T=Tp_1
k+1 k+1
) g @ Ly
T=I1 T=Tp
Lugkﬂ) =f in
(k+1) -1
U; x:xi_l—g 1 i=2,...,p—1
k+1 ;
u =g
T=x;

The rest of this Chapter contains the convergence analysis at PDE level, similar to the
one contained in the previous Chapter, for the three subdomain case in Section 4.2. In
Section 4.3 we present an analysis for the three subdomain case with Laplace operator at
the discrete (finite difference) level, while in section 4.4 numerical experiments verify some

of the theoretical results.
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4.2 Convergence analysis at PDE level

The analysis at the PDE level is carried out as in the case of ROB and AVE methods and

therefore we will use the same notation as in Chapter 3.

The differential equations that are satisfied by the error functions, as they are defined in

the previous Chapter, can be easily obtained from the corresponding equations that define

the iterative relaxation scheme given in the previous section, and they can be written as

follows

L165k+1)($) =0, z€Q,

(k+1) (k1) (“+e(“ 2

€lp =0, €, =—5—+m ( dey 1 +d62,1) ;
fori=2,...,p—1,

Liengrl)(J?) =0, z€,,
RO (k)
k l i— + l i—
EE:}) = = -+ i1 ( deE )1 i1t dez( z) 1)

(k) (k)
(bt _ ity (—de(k.) 4 det®) ) ’

% 0 i+1,8

Lpez(,kH)(ac) =0, z€Q,
k) (k)
=0, e = St gy (—defy, +dgl)

w! ,w7,+1

where p; = ot >0,i=1,.
According to 3. 3l1, the error functlons are given by
- ey (— (k) (k)
k+1 671(1: IO) —e 71(1: IO) 61,1 + 62’1 k k
eg )(x) = o p— 5 + p1 (—deg’l) + deg’l)) ,

fori=2,...,p—1,
€£k+1)( ) — I:e’Yifi _ e—’w&']_l
(k)l,i—1+ (k )
2

(evi(wi—w)_e—%(wi—w)) fiz L+ pi 1( dﬁz 1,i— 1+d€zz 1)>+

(erilz=miza) — e=vile—zizn)) <7(k)+6(k) + pi ( de(k) + degi)l Z))}

and

6;E)If—l—l) (IL‘) _

e1p(@p—z) _ o= (Tp—1) <e(k) + e(k)

eYolo — e=olp

(4.2.1)

(4.2.2)

(4.2.3)

(4.2.4)

(4.2.5)

—1,p—1 p—1 k k
ettt (-l L))

(4.2.6)



67

Differentiating the above functions, we get the following expressions for the derivatives

on the interface points,

(k) (k)
k+1 el fe—71l1 €11 F€y k k
deg,l ) = 71 1 12 2,1 +p1 _deg’l) +d65,1 ,

el _e—71101

) - e (S (< ) ) +
evili E’Z*%‘Zi El(,ki)—'_;l(i)l,i + pi <_d6£,kl) + dez('i)l,i)> ; 1=2,p—1
degﬁﬂ) = eyiliif)z—'yili Egﬁ)l’ifl;fgﬁ)*l + pi-1 <_d€z(li)1,i—1 + deg’?—l)) +
e s (S (a4 ) ) ) =2
dez(vlf;—lf = Je;ﬁi;ﬁ:ﬁ;{% (6;(,'“_)1,1,_12+61(,',?,_1 + Pp—1 <_d61()k—)1,p—1 + deg()l,c;q)) :

For simplicity, in the rest of this Chapter, we set p = 3. This analysis seems to be
extended easily for an arbitrary number of subdomains, similarly to the analysis of AVE

and ROB . Also, we define the error vectors by ordering the individual errors and their

derivatives on the interface points, for £ =0,1,2,..., as follows
Ky (k) (k) (k) 5 (k) , (k) , (k) , (k)]T
—(k) = Eg,l)v 65,1)’ 6%72), 6:(’,,2)’ deg,l)’ deg,l)’ deg,Z)v deg,z) .

The relation that holds between the error vectors of two successive iterations, (k) and (k+1),
can be written as
eF ) = Me® . Kk =0,1,..., (4.2.7)

where the iteration matrix M € R3*® has the form

1/2 1/2 0 0 —p1 o1 0 0
1/2 1/2 0 0 —p1 o1 0 0
0 0 1/2 1/2 0 0 —po o2
o 0 0 1/2 1/2 0 0 —po o2
M = A1v1/2 A1v1/2 0 0 —p1A1m p1A1IML 0 0 ’ (428)
—Asy2/2 —Azv2/2  Bava/2 Bava/2 p1A272 —p1A2v2  —p2Bav2 p2Bav2
—Bav2/2 —Ba2v2/2 Agya/2 Asva/2 p1Bay2 —p1B2va —p2Aav2 p2A2v2
0 0 —Agzv3/2  —Azv3/2 0 0 p2A373 —p2A373
: L —1(n.p. R 1 s
with 4; = tanh™"(;¢;) and B; = SR (T fori=1,2.

The following Lemma proves that the iteration matrix has the same spectral radius with

a simpler matrix of reduced size 2 x 2.

Lemma 4.2.1. The non-identically zero eigenvalues of matriz M (4.2.8) are equal to the
non-identically zero eigenvalues of matriz M, where

a7 = | LA +724y) p2y2B2

4.2.9
p1v2B2 1 — pa(y12A42 + v343) ( )
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Proof. Using basic properties of the determinants we obtain the following equalities.

det(M — )Jg) =
Y 0 0 0 0 0 0 0
1/2 1—2A 0 0 —p1 o1 0 0
0 0 Y 0 0 0 0 0
det 0 0 1/2 1=2A 0 0 —p2 P2 _
A1v1/2 Ay 0 0 —p1A1v1 — A p1A1IYL 0 0 -
—Agy2/2  —Azys Bavy2/2 Bay2 p1A272 —p1Azy2 — A —p2B2v2/2 p2Bav2/2
—Bay2/2 —Bay2 Agy2/2 Bavy2 p1Bavy2 —p1Bav2 —p2Aoy2/2 = A p2A2v2/2
0 0 —Azv3/2  —Azys 0 0 p2A3vs —p2A373 — A
1—A 0 —p1 p1 0 0
0 1—-—A 0 0 —p2 P2
\2det Aim 0 —p1A1y1 — A p1Aim 0 0
—Azya  Baye prA272 —p1Azy2 — X —p2Baya/2 p2Bay2/2
—Byy2 B2y p1Baye —p1B272 —p2A2y2/2 — X p2Azy2/2
0 —A373 0 0 p2A3Y3 —p2Azys — A
—p1tAim1 —A+1  p1Aim —1 0 0
— et p1A272 —p1Azy2 — A —p2B2y2/2 p2B272/2
p1Ba2 —p1B272 —p2A272/2 = A+ 1 p2Axy2/2—1
0 0 p2A373 —p2A3vs — A
—p1(A1y1 + Aoy2) —A+1 0 p2B2v2/2 0
_ >\4d6t p1A27y2 —-A —p2Bay2/2 0
p1Bay2 0 —p2(A272/2+ Azy3) —A+1 0
0 0 p2A373 -A

= Ndet(M — \I). O

Theorem 4.2.2. Consider the model problem 3.2.1 and a non-overlapping decomposition of
Q into three subdomains §; of length ¢;, 1 = 1,2,3. The GEQO interface relaxation method
converges to the solution of the original problem, if and only if its relazation parameters
satisfy the following inequalities:

2—p1Cy
203 — p1(C1Ca — 73 B3)’

2
0<pr<—=, 0<p2<?2
Ci

where C; = v;A; + Vir14iyr1,1=1,2.

Proof : For the convergence of the method, we’ll show that the spectral radius of the
iteration matrix is less than one. According to the previous Lemma, this is equivalent to

proving that the spectral radius of M is less than one. But,
det(M — \Iy) = 0 & X2 — X\(Dy + Dy) + D1 Dy — p1p273 B2 = 0,

where D; = 1—p;C;, © = 1,2. The roots of the above polynomial are given by the analytical

expression

o Dy + Dy £ /(D1 — D)2 + 4p1p2(y2B2)?
1,2 = :
’ 2

To determine the region of convergence, we force the inequality |A1|, |[A2] < 1 and solve with

(4.2.10)

respect to p1, p2. We notice that the same conditions would have been obtained if we had
applied the Schur-Cohn algorithm [27].
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0 2/C, 4/C,

Figure 4.1: Region of convergence for the relaxation parameters of the GEO method

It is clear that the quantity under the square root is positive which means that A, Ao € R.
The inequality A2 < 1 leads to the fact that p;, p2 > 0, which holds true. Also,

Ao > =1 =44 p1C + paCo < £1/(C1 — C2)2 + 4p1 p2 (72 B2)?

which forces —4 + p1C} + p2Cy < 0. This holds if

4—p1Cy

4
(,01,p2)€R1:{((I),y)E]R2‘ z< —, y< G

o 1. (4.2.11)

Taking p;, ¢+ = 1,2 in the above set, it is sufficient to solve only the inequality

—4 4 p1C) + paCy < —\/(Cy — C2)% + 4p1 pa (72 B2)?
which is equivalent to the one below
4 — 2,0101 — 2p202 + ,01,02(0102 — ")/%B%) > 0.

This is true for

9 2 —xzCy !
202 — (II(0102 — ")/%B%) '

p
(p1,p2) ERy ={(z,y) €R’| z< 5, y<

4.2.12
o (12.12)

We conclude the proof by combining the regions in 4.2.11 and 4.2.12 (see Figure 4.1) and
the fact that p; >0, 1=1,2. O
Working for the corresponding Laplace PDE problem in the same way as above, we

derive the region of convergence of the GEO method. Specifically, we give the following
corollary.
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Corollary 4.2.3. If we replace in the model problem and its decomposition considered in
Theorem 4.2.2 the Helmholtz operator with the Laplace one, the region of convergence is
given by

2—pI
2F2 - ,01(F1F2 - 1/6%)

2
0<pr <=, 0<pr <2
Iy

bttt = 1,2,

, where T'; = Tl

Finally, we would like to mention that the analysis for the 2 domain case, for both
Laplace and Helhmoltz operators, is quite simple and the region of convergence of the
method under consideration and the optimum values for the relaxation parameters derived,

are given in a simpler form in the following corollary.

Corollary 4.2.4. Assume that we have a two subdomain partition of the domain Q. Then
for the Laplace operator, the relazation method converges if and only if 0 < p1 < 20145, while
the optimum value, p1 = ¢1€s, makes the method to converge immediately. The region of
convergence for the Helmholtz case is the interval (0,2/(yitanh™ (y141) +yatanh™ (2ls))),
while for p1 = 1/(yitanh = (y1£1) + yotanh (y2£3)) the method converges immediately.
With both operators, the immediate convergence is meant as explained in Section 3.4.

4.3 Convergence analysis at discrete level

In this section we give the analysis at the discrete (Linear Algebra) level. We consider
the Laplace version of the model problem 3.2.1 and split €2 into three domains ;, ¢ =
1,2,3. We denote the interface points as Iy and Is and we discretize each subdomain
using n; + 1, ¢ = 1,2,3 uniformly distributed points. To discretize the Laplace operator

we use the standard 3-point star discretization scheme. Denoting by Iy = a, I3 = b and

h; = Iz'*llifl

. 1 = 1,2,3, we define the discretization points in ; as :chi) = I;,_1 + h;j; with

ji =0,...,n; for s = 1,2,3. For an approximation of the derivatives on the interface points

we use Taylor series expansion to obtain

du _ 1/3 . . 1 * 9

R (2u(:1: ) — 2u(z* — h) + 2u($ 2h)> + O(h?),
and d 1 3 1

u * * * 2

T h < 2u(m ) + 2u(z* + h) 2u(:z: + )) + O(h?)

In this section, we denote as eg-f’k) = uz(kh)z (:chi)) — Uj p, (:chi)) the error on point :E;:) at the

k" iteration, and define the iteration error vectors as

T
Ky — [.(Lk) (1K) (Lk) (2,k) (2k) (2k) (3,k) (3,k) (3:k)
ek = [61 T o Y Y 2 B Y I 7 MY & PR e I
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where wu; 5, the discrete solution of the original problem in subdomain €2;. Considering all

the above, we derive the following relation that holds between the error vectors of iterations
(k) and (k 4+ 1)

eF ) = Me® | Kk =0,1,..., (4.3.1)
where the matrix M is
M =T"!N, (4.3.2)
and
Tz("l_l) 0 0 0 0 Ony—2,ny-3 0 0 0 0
0 I 0 0 0 0 Ny 0 0
T= 0 o z{"2TH o 0 , N = 0 0 Ony-3mg—5 O 0 ,
0 0 0 I 0 0 0 0 No 0
0 0 0 o "3V 0 0 0 0 Ong—2,ng-3

and T = tridiag{—1,2,—1} € R"*", Iy is the identity matrix of dimension two, N; €

R**6 § = 1,2, while Op,m € R™™ with all its elements equal to 0 and

a; b; ¢ di e fi

| a b o di e f;
Ni = a; b; ¢ di e fi |’

ai bi ¢ di e f;

with a; = —pi/(2hi), bi = 2pi/hi, C; = 1/2 — 3pi/(2hi), di = 1/2 — 3pi/(2hi+1), e, —
2pi/hiv1, fi=—pi/hiz1, i=1,2.

Lemma 4.3.1. The first and the last column of the inverse matriz of TZ(n) are equal to the
following wvectors correspondingly,

[l/n""a(n_l)/n]T’ [(n—l)/n,...,l/n]T.
Proof: The above formulas for the vectors are well known and readily derived using
elementary analysis of difference equations. O

Lemma 4.3.2. The matriz M, defined above, is spectrally equivalent, in the spirit of Lemma
4.2.1, to M, where

1-— p1F1 ’PL_; 0 0
. 0 0 £ lb
M == 1-,01F1 L 02 noz ; (433)
n9 2
0 0 fpl_z 1-— ,02F2

and I';, 1 = 1,2, as defined in previous section.
Proof. Using properties of the determinant, we can see that,

Nii Nip
N1 Nopo

det(M — )‘In1+n2+n3+1) — )\n1+n2+n3711det
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where
aigi — A big; cigi d;g; €igi figi
a;h; bihi — X cih; dih; eih; fih
a; b C; — )\ d e .
Ni; = ' ' ' ' ' fi , i=1,2
’ a; bi ¢ di—A € fi
aihit1  bihit1  cihiyr dihiyr eihipr — A fihiga
aigit1 bigi+1  Cigir1  digit1 €igi+1 figiv1 — A
=2 _om—1
and g; = ”ni , h; = 2= and
[ 0 0 0 0 0 0 i
0 0 0 0 0 0
0 0 0 0 0 0
Nio—
1,2 0 0 0 0 0 0 ’
a1/n2 b1/n2 C1/n2 d1/n2 61/n2 f1/n2
| 2@1/”2 2b1/n2 261/1’7,2 2d1/n2 261/712 2f1/n2 i
[ 2@1/”2 2b1/n2 261/1’7,2 2d1/n2 261/712 2f1/n2 T
ai/ny  bi/ne  ci/ne difne ei/ny  fi/ne
Ny 0 0 0 0 0 0
21 = 0 0 0 0 0 0
0 0 0 0 0 0
|0 0 0 0 0 0
Also,
det(M — >\In1+n2+n3+l) =
[ 3-2-x §-2 et fi 0 0 0 0 i
iy 5= -X e N 0 0 0 0
0 0 Y 0 az by 1 po 1 _p2
T R G T L N 1
\P1Hn2tns =T g 0 0 0 =X 53 % n Tl ns 30
et 1 2p 1 2e1 21y 0 0 0
n lin n lon n n
2 1n2 2 2n2 2 2
L _ _r er 1 0 Y 0 0
2no Ling 2ng Lonsg no no L P 1 po
0 0 0 0 ax by 1% — % A R
L 0 0 0 0 a b2 3 fz—; 3 fz—g - A _
l—piTi—X f1 0 2 0
0 . az/n2 0 fz—; 17£§F2
— \nitn2+nz—>5 0 0 —A 0 0 0 —
=A det 0 0 0 —-x 0 0 =
17:;;{‘1 f1/n2 0 é - 0
0 0 0 as i% 1—pala — A

Amtnetna=3ger(Af — \I,). O

Theorem 4.3.3. Consider the model problem 3.2.1 and a non-overlapping decomposition
of Q into three subdomains ; of length ¢;, i = 1,2,3. Consider also the discretization
described at the beginning of the section. The convergence of GEQ interface relazation
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method is independent of h;, 1 = 1,2,3 and the region of convergence is the same as in

Corollary 4.2.3, therefore
2—piI

0<py <2 )
P25 2o, — p1(T1s — 1/2)

2
0 R
<pl<1—\17

Lit+t; .
where I'; = Miﬂl, 1=1,2.
Proof. According to the previous Lemma, it is sufficient to prove that the spectral radius

of M is less than one . But
1—pi0p — A ,% 0 0
det(M — \I) = det A/OM A A =
0 0 ,’1—2 1—polg — A
X 0 ~X/na py 0 0
Y 0 + det| X o X/na = 0.
0 Z—; 1—poly — A

ha 2

(1 —,01F1 —)\)det |: 8 221 my A
Therefore, to compute the non-identically zero eigenvalues we have to solve the equation
PL P2

(I=piT1 = A)(1 = pol's = A) — =
hang hong

which is equivalent to
2 P1pP2
A" = A2 =iy = pol'2) + (1 = piT1)(1 = pal'a) = =5~ = 0.
2

It is clear that the coefficients of the above polynomial are independent of h; and n;, and
depend only on the decomposition of 2. Working in the same way as in theorem 4.2.2, we

prove that the region of convergence is
2—pI

2
0 - 0 2 .
SPST PSS SN, T T, 1)
The above theorem proves that limg_, ., g(k“) = 0 which means that ug,kh)l — Ui, AS
k — oo. Since p(M) < 1 there exists a natural norm |[||.]|| in RS et DX mit1) | guch
that ¢* = [||M]|| < 1. Then, if we denote by
k k 1 k 1 k) (1 k) [ (2 k) [ (2 k) [ (2
W) = [ul) @) 0l @)l @), ), @) 6, @), ), @),
k) (3)y (k) (3 K 3 7
uf), @) ufl), @)l @]
un = Juin @) w #), o @0), a2, w05, (252,
3 3 3) 17
sy (057), sy (257), g ()|
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and

IS
Il
| —
=
8

E
=
8
N
=
8
3
=
8
o
=
)

we have that
k+1 k * k
18— al)] < [1e® )]+ [llua — ull] < ||| + e H? <

(@O + e H?,

where H = max<;<3{h;}. Note that, ¢* is independent of h;,n;,7 = 1,2, 3 while ¢, depends
only on the smoothness of .
Finally, we would like to present the results for the trivial two-domain case for both

Laplace and Helmholtz PDE operators.

Corollary 4.3.4. The region of convergence and the optimum value of the relazation pa-
rameter is as in the section 4.2 for the two-domain case with Laplace PDE operator. For the
corresponding Helmholtz PDE problem the region of convergence is the interval (0, ﬁ),

while the optimum value is equal to (A* + B*)~!, where A* = ﬁ(?) + sinhlm=2)0) _

sinh(nlﬁl)
4751115};(1&171(;:911))91)) and B* = ﬁ(?) + sﬁ?ﬁg&;ﬁgfz) — 4sms}ilr(1§ln(il;912))92)) and 0; satisfies the equation

2cosh(;) = 2 + fy?h%, i = 1,2. In both cases using the optimum value for the relaxation
parameter, leads to immediate convergence(in the sense of Corollary 4.2.4) to the solution
of the initial problem.

4.4 Numerical Experiments

To experimentally verify the above given theoretical results, and in particular of the two
theorems, we give in Figure 4.2 the numerically determined number of required iterations
and in Figure 4.3 the theoretically estimated values of the spectral radius for the model
problem (3.4.1)-DP1 considered in section 3.4 by assuming a splitting into three subdomains.

Specifically, in Figure 4.2 we present the contour plots of the experimentally determined
number of iterations required to reduce the max norm of the difference of two successive
iterants below 107> as a function of the various relaxation parameters involved. The stars
in these plots indicate the case where p; = C%-’ 1 = 1,2 which seems to be a reasonable
choice for “good” values since they zero the centers of the Gerschgorin disks of matrix 4.2.9
while they keep the spectral radius less than one. We mention that for those “optimum”
values convergence was achieved in about 6 iterations for all cases. In the graph on the
left we have set y? = 4 assume a uniform partition of 2 and systematically vary the values

for the relaxation parameters. For the graph in the middle, we keep y? the same, but the
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Figure 4.2: Contour plots for DP1 of the number of iterations required by the GEO method
to reduce the max norm of the difference of two successive iterants below 10~ as a function
of the associated relaxation parameters. We assume a uniform three subdomain partition
in the graph on the left, non-uniform partition with z; = .2 and 29 = .7 on the middle and
the right graph. 72 = 4 for the left and middle graphs, while on the right the coefficient
of u is 42 = 2 for the first subdomain, 4> = 10 for the second and v? = 4 for the third
subdomain on the same partition as in the middle graph.

partition is a non-uniform one, with interface points set at x; = .2 and 2o = .7. For the
right graph, we keep the partition as in middle graph, and set the coefficient of u is v? = 2
for the first subdomain, 42 = 10 for the second and 7? = 4 for the third subdomain.

In Figure 4.3 we plot the contours of the theoretically determined upper bound of the
spectral radius of the GEO method for the configurations considered in Figure 4.3 above.

Specifically, we plot max |\1|, |[A2] with the A;’s given in equation 4.2.10.

04 04 04

03 03 03

01 01 01

03 0.4

Figure 4.3: Contour plots for DP1 of the upper bound of the spectral radius for the GEO
method. In the left graph the partition is uniform and 4% = 4. In the middle graph we keep
72 = 4 and the interface points are at 1 = .2 and x5 = .7. In the right one the partition
is the same as in the middle, while the coefficient of u is y? = 2 for the first subdomain,
72 = 10 for the second and v = 4 for the third subdomain.

One can clearly see the matching of the theoretical with the experimental data. We also
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see that the variations on the subdomain splitting and the different v’s do not drastically
change the region of convergence. It is also seen that the values of p’s used need to have at

least two correct significant digits to achieve reasonably fast convergence.



Chapter 5

Implementation and
Computational Model Issues
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Abstract

The implementation of a Collaborative PDE system, named SciAgent, for truly heteroge-
neous distributed computer systems is briefly presented. In particular the architecture and

the main software components are described and the Agent technology used is introduced.
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5.1 Introduction

Given the fact that the proposed collaborative PDE methodology is relatively new we argue
the necessity of an implementation (denoted by SciAgents in the sequel) that is general
enough to prove its concept and exploit its characteristics and in particular the convergence
properties of the various Interface Relaxation methods. A first naive of such a prototype
implementation [42] goes back to 1991. It was solely based on core TCP/IP routines to
implement the collaboration among the co-workers. It did not use software parts technology
but rather developed from scratch one local solvers and implemented just one relaxer (AVE
with all parameters set to .5). The second primitive implementation [22] differs from the
first one mainly on the fact that it exploited, based on plain KQML messages, the Agent
approach (to be presented next) to integrate the ELLPACK PSE. Both were very unstable,
were used through text based user interfaces, did not complied with standard technology and
were very limited for our purposes. Nevertheless, the later implementation have provided
us with a good starting point.

A complete description of our implementation and the functionality of SciAgents is
beyond the scope of this dissertation. The reader is referred to [5] and the Appendix B for
some details. Instead, a high level architectural view of our SciAgent system is presented in
Figure 5.1 and in the rest of this Chapter we will briefly comment only on those components
and implementation issues that are closely related to the rest of the Thesis. Specifically, in
Section 5.2 we present the incorporation of the legacy PDE Problem Solving Environment
(PSE) integration through Agents and present the inherent parallelism, and in Section 5.3
we discuss the implementation of the relaxation mechanisms and we list the additional
numerical libraries incorporated. In other words Section 5.2 concerns with the Wrapper and
the Agent Support components in Figure 5.1 and section 5.3 with the Interface Relazation
Mechanisms and Numerical Libraries components. The Graphical User Interface (GUI) of
the SciAgents PSFE is described in appendix B while the Run Time Support is not so relevant

to this Thesis and is not presented.

5.2 Software reuse and Agent computing

For the SciAgent implementation we need to transform the physical problem into a network
of collaborative solvers and relaxers. This network for the composite problem depicted
in Figure 1.2 is graphically depicted in Figure 5.2 where the local solvers are depicted
with parallelepiped and the computing procedures that relax the interface values (named

mediators in the sequel) with rectangular boxes.
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Numerical
Libraries

Figure 5.1: The components of the SciAgent system

Specifically, Solver 1 is associated with the heat radiation region, Solvers 2 and 3 with
the heat producing regions and Solvers 4 and 5 with the mounting regions. So, one has built
such a system as the above then needs to map it onto a collection of networked computer and
finally needs to control the execution of its components according to the iteration workflow.
SciAgents have done these using the Agent technology and in particular the Bond' Agent
system [5].

Agent computing is a step beyond object oriented computing and may provide an answer
to the increased complexity of the software systems. Different groups have radically different
views of what software agents are [23] and what applications could benefit from the agent
technology. Our view of an agent is described in [4] and its primary functions are: planning,
scheduling and control, management of local resources, use-level resource management.
To the best of our knowledge there are no other systematic attempts to bring the Agent
technology to the Numerical Analysis/Scientific Computing area besides those mentioned
in [53].

Details of the actual implementation of the network of PDE solvers are provided in [67,

5]. Here we outline the component agents and their functionality. The basic functionality

"http://bond.cs.purdue.edu
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Figure 5.2: The network of solvers and mediators for the composite problem depicted in
Figure 1.2

of individual agents involved in a network of PDE solvers is presented in the SciAgents
system [22]. Thus we were able to identify with relative ease the functions expected from
each agent and write new strategies in Java. The actual design and implementation of the
network of PDE solving agents took a couple of months.

Three types of agents are involved: one PDECoordinator agent, several PDESolver and
PDEMediator agents. The PDECoordinator is respounsible with the control of the entire
application, a PDEMediator arbitrates between the two solvers sharing a boundary between
two domains, and a PDESolver is a wrapper for the legacy application.

Almost all execution agents have been built by properly wrapping existing legacy codes.
These wrappers act as an interface layer generating agents out of monolithic codes. They
are relatively inexpensive to build. Mediator agents needed to be created from scratch but
their complexity is minimal comparing to the overall problem. They are usually build on
top of existing interpolation libraries. It is worth to mention here that the whole SciAgents
system which involves more than 1.5 million lines of mainly C and Fortran code contains
less than two thousand lines of “wrapping” and “mediator” code.

It is rather difficult to install legacy software on a new system and in our implementation

we assume that the software is already installed and the paths to executables on all systems



82

are known. The operation of the network of agents is presented next.

A PDECoordinator agent is started by means of a GUIL Once started, the agent reads
and parses a problem description file and writes the information into its model. This input
file contains information about the number of solvers and mediators, the characteristics of
the interfaces, the initial guesses on the interfaces, the relaxation methods and the names
of the machines that will be used to solve the global problem. The next step is the creation
and the configuration of PDESolver and PDEMediator agents. Since the agents are alive, the
PDECoordinator uses their addresses to setup the communication among them. Then the
coordinator waits for messages from the mediators, regarding the status of the convergence
to the solution of the problem, or from the user. The messages from the user are to change
the values of specific variables of the input file, such as the convergence tolerance, or to
force the execution to stop.

The PDESolver agent is created, configured and started by the PDECoordinator. Its
model contains addresses of the legacy programs used to solve the problem locally, paths
the input/output files, addresses of the visualization programs, etc. In the first state, the
PDESolver starts-up the Pelltool which compiles the .e file that describes the local PDE
problem, and creates the executable that will be used later on by the ExecuteTool. These
tools and file designations are all part of the PELLPACK system [28]. In the next state,
the solver extracts the points on the interfaces from the file that contains the mesh/grid
points, and writes them into a file. Then the solver notifies the mediators that the files are
ready. The PDESolver agent remains idle until being notified by the mediators that the list
with all the points and their initial guesses are stored in a file at a specific location. Then
the solver uses these files of points and initial guesses to run the ExecuteTool to solve the
problem. When the execution is finished, the solver sends a message to the mediators that
new values are computed, and then waits for their response. Depending on the message
from the mediators, the solver will solve the problem again, remain idle waiting for the
other solvers to reach convergence, or plot the local solution. The PDECoordinator is able
to terminate the PDESolver by sending an appropriate message.

The mediator agent, PDEMediator, is created and configured by the coordinator agent.
The mediator agent has a complete description of the interface, the relaxation method used,
the solvers to collaborate with, the location of the input/output files, the location of the
legacy programs, the tolerance used to decide convergence, and the initial guess function.
This information is provided by the coordinator agent. After being started, the mediator
waits for the boundary points from the two neighboring solvers. In the next state, the
mediator combines the two point lists and then uses the initial guess to compute values at

these points. Afterwards, the mediator sends a message to the two solvers that the files
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with the points and their values are ready. The mediator remains idle, waiting for new
values from the two solvers. When it receives new values it moves to the next state, reads
the new data and compares them with current data. Then the mediator agent uses the
relaxation method to calculate the new values for the boundary conditions. If convergence
is reached on this interface then the mediator sends messages to the solvers and informs
the PDECoordinator about the local convergence so it will be able to decide on global
convergence. A message from the coordinator will cause the mediator to (1) finish, in case
of global convergence or (2) wait for new data from the two solvers. In the latter case the

procedure is repeated until convergence.

5.3 Additional software components

Besides building the components mentioned in the previous section additional software
is needed. In particular SciAgents require strong interpolation support, procedures for
estimating initial guesses, mechanisms for determining “good” values for the relaxation

parameters and criteria to control the iterative procedure.

Q,

Figure 5.3: Two subdomains (©; and 2) meeting at un-matching grids on their interface
Fl,g.

Since in SciAgents the grids/meshes do not necessarily match on the interface (see
Figure 5.3 for an example) we have implemented the following procedure:

1. The mediator sends * points to 9 and X points to £2; and requests the k& “closest”

points and values.
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2. The solvers respond to this request.

3. The mediator constructs an interpolant to obtain values from the top side of *’s and

from the bottom side of x’s.
4. The mediator proceeds with the relaxation.

For our SciAgent implementation interpolation is done using the ELLPACK’s intrigued
functions.

During our experimentation with the SciAgent system we have realized that special
attention is needed for the estimation of the initial guesses on the interfaces. We have
observed that the Neumman and the mixed boundary conditions are sensitive to their initial
guesses. Although we were able to provide converging initial guesses for all the problems
we have solved so far using naive methods we believe that as the PDE problems get more
complicated better initial guesses will be needed.

We have equipped our SciAgent system with default values for the relaxation parameters.
In the same partitioning cases we have implemented naive procedures to estimate “good”
values for this parameters. These procedures (described in some detail in Chapter 6) are
based on naive ways to utilize the theoretically estimated optimum parameters obtained in
Chapters 3 and 4. An alternative way that seems to work for any problem and decomposition
is proposed in section 7.3.

Finally, we should mark that software reuse was not problem free and additional code
had to be written. As an example, we mention the fact that ELLPACK assigns the corner
discretization points on the boundary, to boundary segments in an arbitrary way. This has

no effect on the local solvers but complicates significantly the relaxation mechanisms.
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Abstract

An experimental study of the behaviour of two Interface Relaxation methods is presented.
Three linear and one non-linear elliptic two-dimensional PDE problems are considered cou-
pled with both cartesian and general decompositions. Some of the general characteristics
and the effectiveness of both the Interface Relaxation methods and the collaborative PDE
solving framework explained in Chapter 5 are shown. In particular, certain very desirable

properties are clearly observed.
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6.1 Introduction

Numerical experiments concerning the various Interface Relaxation procedures have been
already presented at the end of Chapters 2 and 3. The main purpose of the experiments in
Chapter 2 was to get a first idea on the behavior of several Interface Relaxation methods
on model one-dimensional problems, while the numerical data in Chapter 3 was to confirm
and elucidate the theoretical results obtained for model problems and to investigate if those
results were also valid for more general problems. Furthermore, most of the presented
numerical data were for one-dimensional problems.

We have implemented ' AVE and ROB in the SciAgents framework, described in
Chapter 5, for general two-dimensional decompositions of linear and non—linear Elliptic
PDE problems. This implementation of the interface relaxers and the one considered for
two-dimensional problems in Section 3.4 differ mainly on the fact that the first exploits
the parallelism inherent in the Interface Relaxation methods using the Agents computing
paradigm over a network of heterogeneous workstations. A comprehensive experimental
study of all known interface relaxation schemes based on our SciAgent implementation
is under way. Here we present the numerical study of typical PDE problems previously
considered in other Interface Relaxation studies [53].

In all experiments we have calculated an initial guess for the solution by using the ap-
propriate interpolant on each interface segment. For initial guesses of the normal derivatives
we simply impose the correct sign (direction), by setting them equal to the unit outward
normal vector. To calculate the required by the mediators derivatives on the interfaces the
associated build-in to ELLPACK procedure was used as it is described in Chapter 5.

All experiments presented in this Chapter were run in parallel using single precision
arithmetic on SUN workstations connected through an ethernet line. Each subdomain was
assigned to a different machine and all the interfaces were assigned to an additional machine.

The rest of this Chapter includes the definition of the population of the PDE problems

in Section 6.2 and the sections that follow present numerical data for these PDE problems.

6.2 The PDE Problems Considered

For the experimental analysis we consider four similar domains, two on the left and two
on the right of Figure 6.1 together with the associated boundary conditions and with the

decompositions on each one of them as follows:

'See http://www.cs.purdue.edu/homes/giwta/dom-dec/1_dim/matlab/index.html
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Figure 6.1: Two domains, O/ and Q!I, on the left and two Q1 and Q'Y on the right,
with the associated boundary conditions, their decompositions and the numbering of these
subdomains and their interface segments.

Q! is the domain on the left of the figure, and it consists of the eight rectangular subdomains

shown with dotted lines.

QI is the one on the left of the figure, and it consists of the four subdomains shown with

solid lines.
QI g the domain on the right of the figure, and it consists of the four rectangular subdo-

mains shown with dotted lines.

QY is the one on the right of the figure, and it consists of the four subdomains shown with

solid lines.

Figure 6.1 also defines the numbering of the subdomains.

We can now define the four PDE problems we consider in this Chapter as follows:
PDE1
—Au+y2u=f; on Q i=0,...,7 with

W =3exp(z+y), =10, =16, 73 =20, (6.2.1)
i = 2(sin((z +y)m) +4), 15 =15, 75 =25, 7 = 5exp(*Y)

The f;’s have been selected so that the true solution is 22 4+ y?. We use second order

accurate local discretization schemes.
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PDE2

~Au+rPu=f; on QI i=0,1,2,3 with
M =Sexp(z+y),72=16,73 =25 and (6.2.2)
ya = sin((z + y)m) + 5 exp(FY) + 4

The right hand sides (f;’s) have been selected so that the true solution is z? + y2.

PDE3
Au+0.2u+60(x2 +y2+2) =0, on QY
Au+04u=0, on QY and QLY (6.2.3)
Au—10(%+54) +03u=0 on QY

PDE4

Au+0.2u (1 + 5855) +60(z® +3y2 +2) =0, on QfY,
Au+0.4u =0, on QY and QLY (6.2.4)

2 2
G (1 +100) 5% + (5o 9% +3) 5 +0.3u=0, on Y

For each one of these four decompositions we denote the interface segments by I gl,sz,
where d denote the corresponding decomposition, and s, se the indices of the two subdo-
mains which are adjacent to this particular interface. For example, by 12173, we denote the
interface that lays between the subdomains Q) and Qf of the Q! (Figure 6.1).

The above PDE problems are selected so that one might compare the effect of
e the size of the domains (as moving from domain Q! to Q")

e the type of the decomposition (by comparing results associated with domains Qf, Q/!7

to the ones associated with domains Q7 Q")
e the nonlinearity (by considering PDE4)

Furthermore, we note that one might consider the decompositions of subdomains ' and

QT a5 “cartesian approximations” to the ones of subdomains Q7 and QY

respectively and
as such they might be used to calculate “good” relaxation parameters for the non-cartesian

decompositions (see Section 6.4).
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Interface | ROB relaxation | AVE relaxation
segment parameter parameters
a; Bi
1 3.162 0.626 0.374
2 4.000 0.442 0.559
3 4.472 0.472 0.528
4 3.164 0.627 0.375
5 3.873 0.508 0.492
6 5.000 0.444 0.556
7 3.873 0.721 0.179
8 5.000 0.437 0.564
9 4.734 0.398 0.600
10 4.734 0.448 0.552

Table 6.1: The theoretically determined “optimal” values of the interface relaxation param-
eters used to obtain the data associated with the dotted-dashed lines in Figures 6.2-6.5.

6.3 PDEI1l: A Linear PDE with a Cartesian Decomposition

For the results in this section we discretize each of the subdomains using rectangular meshes
with common discretization parameter , = 0.1. Note that for this discretization the subdo-
main grids match on the interfaces. Then the local PDE operators were discretized using the
ELLPACK’ s [54] 5-point-star module, which is an O(h?) finite difference scheme, on all sub-
domains. This resulted into linear systems with N = 441,441,861, 441,231,231, 451,451, 2051
equations and unknowns on subdomains 0,1,...,7 respectively. All these systems were
solved using the ELLPACK’s Gauss Elimination module for banded matrices.

To calculate values for the relaxation parameters we tried to utilize our one-dimensional
theoretical results presented in Chapter 3. For that we collapse appropriate rows or columns
of rectangles by considering them as lines and their interface lines as interface points. For ex-
ample to obtain the relaxation parameters on the interface segments I[{A, I i7 and [ {,5, 15{77
we consider the one-dimensional decomposition [0,2],[2,3] and [3,8], and on the segments
I(il, 1{72 and 121,3 the [0,2],[2,4],[4,8] and [8,10] while for the segments Ii5, 15176
the [0,2],[2,4] and [4,8] and finally for the segment 121,6 we consider the decomposi-
tion [0,2],[2,3]. Furthermore, the ;’s involved in the theoretical expressions of the one-
dimensional analysis of Chapter 3 we set equal to the average of the coefficient of u; in each
subdomain. The new one-dimensional PDE problems are first scaled to [0, 1] by multiplying
the v;’s with the square of the length of the interval and then the optimum parameters are
computed using the formulas obtained in Chapter 3. The values estimated for PDE1 by

using the above procedure are given in Table 6.1.
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To examine the basic convergence properties we first plot the following two measures:
k k—1
S = 10g||uz(- ) uz( )||1, (6.3.1)

E =log [ul® — t]| . (6.3.2)

The subscript ¢ denotes, in 6.3.1 the interface segment and in 6.3.2 the subdomain as
these are depicted in Figure 6.1. The superscripts denote, as usual, the iteration, u; is the
(k)

restriction of the true solution w in €2; and u,; " is the computed, at the k iteration, solution
of the problem in subdomain .

Both Figures 6.2 and 6.3 clearly show that the estimated by the above procedure values
of the relaxation parameters for the ROB scheme are really close to “optimum” and result
in convergence that is significant faster than the one associated with \; = 2 or 4. In the
AVE case though as seen from Figures 6.4 and 6.5 the theoretical determined relaxation
parameters do not show such optimality . Nevertheless, it is seen that the rate of conver-
gence, depicted by the slopes of the convergence lines, does not differ significantly in the
case of the experimentally “best” relaxation parameters.

By comparing Figures 6.3 and 6.5 one sees that “optimum” ROB seems to be faster
that “optimum” AVE while both schemes seem to be rather effective, achieving 3 significant
digits in less that 4 iterations and 5 digits in about 10 iterations.

We conclude this section by investigating the effect of the particular PDE discretiza-
tion scheme one might use to solve the individual PDE subproblems. For this we plot in
Figure 6.6 the history of convergence for the ROB scheme applied to PDE1 using three
different discretization modules from ELLPACK. Specifically, we have performed three ex-
periments, one (depicted by dash-dotted lines in the graphs), using the finite element module
on all subdomains, another using the 5-point-star finite difference module (solid lines) and
another using the collocation module (dotted lines). Note that the finite element and the
finite difference schemes are of order O(h?) while the collocation is of order O(h*). For all
methods we used h = .10. These lead to linear systems of significant difference on size and
mathematical properties. For example, the collocation matrix has 1764, 1764, 3444, 1764,
924, 924, 1804, 8364 equations and unknowns, the finite element has 304, 306, 601, 306,
167, 167, 319, 1463 and the finite difference has 399, 418, 818, 399, 218, 227, 450, 2000 in
subproblems 2 = 0, ..., 7 respectively. It is very clearly seen that the convergence behaviour
of the Interface Relaxation method is identical to all three cases indicating the natural ex-
pectation one might have drawn from the formulation and the preliminary analysis of the

previous chapters.
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Figure 6.2: Reduction of the L; norm of the difference of two successive iterants on each
interface using the ROB scheme for PDE1. Solid lines, dotted lines and circles denote data
using A; =1, Ay, =2 and \; =4 for 2 =0,...,8 respectively. The dash-dotted lines denote
data using the theoretically determined optimum values for A;’s shown in Table 6.1.
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Interface | ROB relaxation | AVE relaxation
segment parameter parameters
A a; Bi

1 5.2248 0.5695 | 0.4305

2 4.2360 0.5557 | 0.4443

3 4.4721 0.5419 | 0.4581

4 5.0000 0.4721 | 0.5279

5 5.0003 0.4444 | 0.5556

Table 6.2: The theoretically determined “optimal” values of the interface relaxation param-
eters used to obtain the data associated with the dotted-dashed lines in Figures 6.7-6.10.

6.4 PDE2 and PDE3: Two Linear PDEs with General De-
compositions

We now move into PDE2 which was solved using the same configuration as the one described
for PDE1 above with only the following two differences:

First we discretize the domain Q! using triangular elements with A = 0.1 on all sub-
domains. On this we used the ELLPACK’s Finite Element discretization module which is
also an O(h?) scheme.

Secondly to estimate the “optimal” values for the relaxation parameters we use the “ap-
proximate” cartesian decomposition associated with ; by utilizing our one-dimensional
theoretical results in the following way: First we map the interface segments of the general
decomposition that are not straight lines parallel to x- or y-axis to their “closest” inter-
face lines on the “approximate” decomposition. This map can be done using geometry
or computational geometry tools and procedures coupled with appropriate objective func-
tions. Here we have done it using a straightforward naive way. Specifically, we use the
corresponding PDE operators on each subdomain and for interface Ié 711 the one-dimensional
partitioning [0,2][2,10], for interfaces Iéf?, and IZH3 the decomposition [0,2][2,8], for interface
IIH2 the decomposition [0,3], while for interface I&IZ we just took the average of the values
from interfaces Ié ,11 and Ié ,13 The values determined by the above procedure are shown in
Table 6.2.

Similarly as for PDE1 we present in Figures 6.7-6.8 the convergence histories of the
norms of the successive iterants and the relative errors for PDE2 during the first 20 iterations
for both the ROB and AVE schemes and different values for the parameters A\. We first note
that by comparing Figures 6.2-6.5 with 6.7-6.10 one sees that both the rate of convergence
and the effectiveness of the parameters of the Interface Relaxation methods are very similar
for both the PDE1 and PDE2 regardless of the fact that these two problems differ on many
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| ROB relaxation
Single Domain A=1 A=2 A = opt
Lo Lo Lo Lo Lo Lo Lo Lo
Qél .1550E-02 | .7472E-03 | .4242E-02 | .1630E-02 | .3792E-02 | .1634E-02 | .3425E-02 | .1661E-02
Q{I .8455E-04 | .7321E-04 | .1449E-03 | .7212E-04 | .1281E-03 | .7041E-04 | .1008E-03 | .6789E-04
Qél 1186E-03 | .1307E-03 | .2269E-03 | .1249E-03 | .2143E-03 | .1228E-03 | .1989E-03 | .1218E-03
QLT | 1161E-03 | .1093E-03 | .2193E-03 | .1123E-03 | .1899E-03 | .1076E-03 | .1869E-03 | .1085E-03

Table 6.3: The values of the relative error for PDE2 in the L, and Lo norms of the
computed solutions in each subdomain by using the ELLPACK’s Finite Element module on
each single subdomain (in the second and third columns) and by using the ROB interface
relaxation method with different relaxation parameters (in the subsequent columns).

parameters (e.g. different decomposition, different type and number of subdomains). We
also note that different local PDE discretizations were also used. Furthermore, the common
horizontal leveling of the lines in Figures 6.8 and 6.10 represents the PDE discretization
error which, in contrast to the PDE1 case, is due to the geometry of the non-rectangular
subdomains for PDE2. Both methods converge very fast achieving the discretization error
level in about 5 iterations.

To examine the effect of the ROB (similar results, not presented here, were obtained
for AVE ) Interface Relaxation procedure on the accuracy of the computed solution for
PDE2 we give in Table 6.3 the two norms of the relative errors of the computed solutions
obtained by two different ways. Specifically, in the second and third column we list the errors
obtained by first imposing Dirichlet boundary conditions with exact right hand sides on all
interfaces and then solving the individual uncoupled PDE subproblems defined on each
subdomain by using the Finite Element discretization with h = .10 on each one of them.
In the subsequent columns we give the same errors obtained by the experiment with which
we obtained the data in Figure 6.8. As is seen the relaxation slightly reduces the accuracy
indicating that the constant involved in the convergence rate of ROB is significantly small.

To investigate the effect of the space discretization parameter h on the rate of conver-
gence we present in Figures 6.11 and 6.12 the history of the norm of the successive iterants
and the norms of the relative errors, respectively, for PDE2 using the ROB scheme with
Ai=4fori=1,...,p— 1. The dotted lines represent data with h = .20 and the solid lines
data with A = .10. It is seen that even though we approximately double the number of
elements this has virtually no effect on the convergence.

To conclude the presentation of our experimental data for PDE2 we plot in Figure 6.13
the contours of the computed solution after the first four iterations.

We switch now to PDE3 and present in Figure 6.14 the reduction of the norm of the
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Figure 6.7: Reduction of the L; norm of the difference of two successive iterants on each
interface using the ROB scheme for PDE2. Solid lines, dotted lines and circles denote data
using A; = 1, A; =2 and \; =4 for ¢ =0,...,4 respectively. The dash-dotted lines denote
data using the theoretically determined optimum values for A;’s shown in Table 6.2.
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Figure 6.8: Reduction of the Ly, norm of the relative errors in each subdomain using the
ROB scheme for PDE2. Solid lines, dotted lines and circles denote data using \; = 1,
Ai=2and \; =4 fori =0,...,3 respectively. The dash-dotted lines denote data using the
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Figure 6.9: Reduction of the L; norm of the difference of two successive iterants on each
interface using the AVE scheme for PDE2. The solid lines, denote data using «; = 0.5,
for 4 = 0,...,4 and the dash-dotted lines denote data using the theoretically determined
optimum values for the «;’s and (;’s as these are shown in Table 6.2.
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Figure 6.13: Contour plots of the first 4 iterants (u*,k = 1,2,3,4) of PDE2 computed by
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successive iterants of the ROB scheme for the different values of the A;’s. The configura-
tion used to obtain these data was the same as the one for PDE2. The “optimum” values
determined from the theoretical analysis were Ay = 0.640536, Ay = 0.6510, Ao = 0.66155,
A3 = 0.921287 and A4 = 1.08033. As is clearly seen these values lead to the fastest conver-
gence. In addition, by comparing the slopes of the lines in Figures 6.7 and 6.14, we see that
the rate of convergence for the two problems PDE2 and PDE3 that differ both on the size
of the subdomains and the PDE operators applied on each one of them, is approximately
the same. Finally, we also see the effectiveness of the scheme, in the sense that it offers full

accuracy in less than 20 iterations.

1

log((u®*2 - u®y)

s Interface I:Jvl -af Interface

IIV
0,2

v
3 Interface |2,3

Figure 6.14: Reduction of the L; norm of the difference of two successive iterants on each
interface using the ROB scheme for PDE3. Solid lines, dotted lines and circles denote data
using A; =1, Ay =2 and \; =4 for 2 =0,...,4 respectively. The dash-dotted lines denote
data using the theoretically determined optimum values for A;’s shown in Table 6.2.
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Figure 6.15: Space discretization for the PDE4 using cartesian grids on subdomains Qév and
QY and triangular elements on subdomains QY and QY with discretization respectively
with A = .1 in both cases

6.5 PDE4: A Non-Linear PDE with General Decomposition

For the experiments in this section we have discretized subdomains Q5Y and QI using
rectangular elements, and subdomains Q!" and ng using triangular elements as it is shown
in Figure 6.15. In all four subdomain discretizations we have used h = 0.1. We have
linearized the PDE operators in 6.2.4 using the Newton’s method and the resulting linearized
PDESs were discretized using the Ellpack’s 5-point-star module for subdomains Qév and ng
and the finite element module for subdomains Q" and QY. This way subdomains 0,1,2
and 3 resulted in 400, 570, 400, and 433 linear equations (and unknowns) respectively.
These linear systems were solved using the Gauss Elimination module for banded matrices.

In Figure 6.16 we plot in three dimensions the computed by the ROB scheme solution
after iterations 1, 2, 3 and 25 and in Figure 6.17 the convergence history in terms of the
difference of successive iterants with 4 different set of values of the relaxation parameters.
The ones represented by the dash-dotted lines are for the “optimum” values determined by
using the “approximate” cartesian partition (defined by /) and the associated procedure
used for PDE2 and described in section 6.4. These values were Ay = 0.5338, A1 = 0.5977,
A2 = 0.6615, A3 = 1.0357 and Ay = 1.0474. It is seen in Figure 6.17 that these values lead to
divergence. This is explained from the fact that the differential operators in the subdomains
are far away from the Helmholtz model problem we have analyzed theoretically. Other than
that the scheme seems to converge fast enough, offering two correct decimal digits in about

5 iterations.
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1,2,3,25) of PDE4 computed by the ROB scheme using \; =4 for i =0,...,4
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Figure 6.17: Reduction of the L; norm of the difference of two successive iterants on each
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Abstract

The general conclusions drawn from this Thesis are presented. A list of further research

directions are also presented and several on-going research efforts are briefly described.
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7.1 Conclusions

We propose a methodology for building a powerful simulation engine for composite PDE
problems of elliptic type by properly combining existing models and software components.
Our approach enjoys the following properties:

Problem simplification. It dramatically simplifies the complexity of the physical
problem by (1) considering subproblems that involve simpler local physical rules acting
on simpler geometries, and (2) providing a convenient abstraction of the modeling and
solution processes while simultaneously providing a modeling practice that yields a closer
representation of the physical world.

Reduction in software development time. It drastically reduces the time to develop
a simulation engine by permitting the heavy reuse of legacy scientific software. Note that the
basic (software) build-in blocks of a system are typically already existing problem solving
environments.

Parallelism and scalability. It allows heterogeneous distributed resources to be har-
nessed by using a naturally parallel and highly scalable approach. The network of collabora-
tive solvers is easily mapped onto a wide variety of distributed high performance computing
architectures. Challenging parallelization issues like data partitioning, assignment and load
balancing are easier handled on the level of physics rather than on the level of computational
abstractions.

Cooperability and adaptivity. Due to natural problem partitioning, collaboration of
groups of modelers is naturally promoted and also simplifiable at each stage of the modeling
process. Each modeler can select the particular component of the physical artifact that fits
his expertise, build his own local model and adapt any of the local parameters involved, in
a dynamic manner, at any stage of the computation. The only information he needs to give
his neighbors, for collaboration, is the information on relaxation at the interfaces.

Numerical efficiency. It increases the efficiency of the overall numerical scheme by
allowing one to use the most appropriate numerical method for each particular subproblem.

This Thesis focuses on the Interface Relaxation methods that consist the core of the
system. Their methodology appears to be an attractive alternative to the traditional domain
decomposition approach in particular when modeling multiphysics/mul- tidomain problems
are considered. Nevertheless, their theoretical analysis appears to be challenging and already
radically different analysis techniques have appeared in the literature ranging from numerical
linear algebra to finite element and furthermore to continuous Banach spaces.

For the theoretical analysis in this Thesis we have restricted ourselves to the Helmholtz

equation in one- and two-dimensions. Specifically, we have proved the convergence of three
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Interface Relaxation methods at continuous level and one at discrete level. We have con-
sidered 1-dimensional domain partitions in an arbitrary number of subdomains of different
sizes. In all cases we have shown that the rate of convergence is independent of all the
parameters of the local PDE solvers. Specifically, the convergence does not depend on the
local space discretization step h, or the local PDE discretization scheme. This is true even
for the GEO method, a variation of which [45] has been shown to have convergence de-
pended on h. In contrary, in our formulation and analysis of GEO , even at discrete - finite
difference - level, we have proved its independence of h. For all the three methods analyzed
we were able to determine regions of convergence. For the ROB and AVE methods we have
obtained “optimum” values for the relaxation parameters in the sense that they minimize
the spectral radius of the iteration matrix. All theoretical results have been confirmed with
extensive numerical data. Additional experiments show that these results hold for more
general problems and show certain characteristics of the methods. Specifically, we have
observed that:

e The AVE method seems to converge faster in most cases. Nevertheless, its Neumann

step reduces its robustness.

e The ROB method is the most robust and converges for all of the problems we have
tried. This is in agreement with the fact that this method converges for any positive

value of its parameters.

e The GEO appears to be more sensitive to its parameters than the other two in
the sense that small variations to the values of these parameters lead either to large

increase of the number of iterations needed for convergence or even to divergence.

Most of the methods converge fast enough so they do not require preconditioning. In
fact the “global” precondition takes, in the Interface Relaxation era, a new notion as being
raised to solely the PDE level discarding, thus, the particular matrices and other data
structures. This way, preconditioners are easy to be computed, in a natural straightforward
way, by means of “easy” approximations of the local PDE subproblems and might further
accelerate the convergence.

It is important to make clear that the proposed collaborating method is not to replace
existing numerical methods and/or software but to provide the general framework, the
necessary theoretical results and the practical tools to build on top of them by properly in-
tegrating them into a common distributed solving environment and to effectively orchestrate

them in a simple and effective way.
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The task of designing, analyzing, implementing and evaluating Collaborative PDE
solvers is obviously not accomplished. Several interesting, both mathematically and com-
putationally, problems are still open. The general directions that we envision the future
research will focus are listed in Section 7.2. In Section 7.3 we briefly describe specific

research task that we hope to accomplish in the near future.

7.2 General Future Research Directions

We believe that research for collaboration in the PDE solving procedure will attract an
increasing number of researchers in the future. In particular we expect results soon in the

following research areas.

Theoretical analysis at PDE level: As mentioned previously in this Thesis Interface
Relaxation is an iteration defined at the continuum (mathematical) level; its con-
vergence properties are mainly a question of mathematical analysis, not of numerical
analysis. Nevertheless, a generic analysis similar to more than one century old Schwarz
splitting result for overlapping domain partitioning is still lacking. The only study so
far that has its flavor is the one by P.-L. Lions [40] associated with the ROB scheme
which definitely needs to be extended for other relaxers. At any rate, recent advances
in the theory of PDEs will be required. As an example we state the new technique
presented in [66] which we believe will prove itself a powerful theoretical tool for the
analysis of Interface Relaxation for general linear and nonlinear PDE problems. This
kind of analysis is based on a new line of reasoning that will provide new intuition

about the dynamics of Interface Relaxation.

More space dimensions: In principle, all of the Interface Relaxation methods considered
can be extended to more than two dimensions. Nevertheless, the convergence analysis
of all of them is expected to be more complicated and the implementation of some of
them will be much more difficult than of others. For example one should expect that
the implementation of the AVE method will be easily extensible to three dimensions
while it seems to us that additional work is needed for the proper implementation of
the SHO method. Finally, for all the methods the interpolation problems involved will
be much more challenging since it will require generic two-dimensional interpolants of

particular characteristics in accuracy and in preservation of shape.

Jump conditions on the interfaces: Many physical problems, (e.g. alloy solidification [14])
involve interfaces where jump conditions of various kinds are imposed. It seems that

both the general framework and our implementation of the relaxation procedures can
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be extended for such problems easily. It also seems that the analysis (at least for
model problem cases) is also easily extendable. Recent studies for linear [15] and

nonlinear problems [73] in this direction are very encouraging.

Interpolation and un-matching grids: To implement the mediators (see Sections 5.2
and 5.3) in the case where the grid or meshes of two neighboring subdomains do not
match on their interface one needs to specify how the intrepolant will be constructed
so it accomplishes the accuracy requirements and on which “closest” (see Section 5.3)
points will be defined on. This task is more crucial for three-dimensional PDE prob-
lems. We have evidence that the recent theoretical results and software developed by
Ron and C. DeBoor [16] will provide a strong background to solve this problem that

definitely requires investigation.

General PDE problems and advanced relaxers: As the composite PDE problem gets
more complicated and difficult the need of more advanced relaxers is increasing. In
fact, recently many mathematicians from different research disciplines try to properly
couple PDE problems of different type. Some of such advanced relaxers are listed
in Section 2.3. An excellent and up-to-date source of other such relaxers for general
PDE problems could be the recent book [49] regardless of the fact that it formulates

and analyzes these relaxers from the domain decomposition viewpoint.

For the implementation viewpoint we expect more work on:

Integration of legacy PDE solvers: So far the SciAgents system contains as lega- cy
solvers for the subdomain problems only the ELLPACK modules. Nevertheless, it
has been designed as an open architecture and we believe that it clearly defines an

interface that allows the easy incorporation of other external legacy solvers too.

Systematic performance evaluation of relaxers: Using Interface Relaxation o- ne faces
several crucial questions (e.g., which relaxation scheme to select for a given problem?
Where to place the interfaces?, etc). These questions remain for most of the practical
problems unanswered. Therefore a systematic performance evaluation study that uses
a knowledge based system like the one in [72] is needed to help us extract practical

knowledge.

Further exploitation the Agent technology: SciAgents could benefit more from agent
computing. Specifically, one might decide to allow selected agents to travel through
the network. This does not seem to be feasible for the PDESolver agents (due to

their large state) but it might be the appropriate choice for the PDEMediator agents.
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Furthermore software agents might add capabilities for automatic adaptation and

speculative computing to SciAgents.

7.3 On-going Research Efforts

In this final section we present those problems that we have clearly identified, we have made
some preliminary investigations through this thesis and we believe that are both important

and tractable.

Estimating Interface Relaxation Parameters in the General Case

As clearly seen in the previous Chapters most of Interface Relaxation schemes involve relax-
ation parameters that can significantly improve the convergence properties of the various
Interface Relaxation methods if their values are properly chosen. These parameters depend
on many components (PDE operator, PDE domain, splitting, ...) of the original problem.
This, unfortunately makes the selection of “optimum” values for the relaxation parameters
a hard and challenging problem.

Several papers have been devoted in theoretically obtaining optimum values for the
interface relaxation parameters [75, 77]. Nevertheless the analysis is done for model prob-
lems and subdomain splittings and although they provide important information fail to
assist a non-expert user to select values for those parameters for problems with moderate
complexion. When this complication is increased even experts can not effectively select
parameters.

The main objective of one of our future studies will be to provide an adaptive heuristic
mechanism for automatically selecting “good” relaxation parameters for general differential
equations and domain decompositions. This proposed mechanism uses Automatic Differen-
tiation (AD) and utilizes the existing analytically estimated values [56].

Specifically, as it has been already observed [58, 24] the value of the relaxation parame-
ters plays a crucial role in the convergence of the various interface relaxation methods. Fine
tuning of these parameters can greatly improve the rate of convergence while a bad choice
might lead to unacceptable slow convergence or even divergence. They depend on both the
eigenvalues of the differential operator and the geometric and decomposition parameters of
the domain. We next present a framework to adaptively adjust the values of the relaxation
parameters «; and f; of the averaging interface relaxation method (AVE) towards its opti-
mal value. The methodology of the proposed scheme is general enough to treat complicated
(possibly non-linear) differential operator and arbitrary domain decompositions in one, two

or three dimensions, has already been applied with success to the successive over-relaxation
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(SOR) iterative method [29] and can be readily applied to virtually any interface relaxation
methods.
Consider the particular interface I'; ; € R% d = 0,1,2 between subdomains ©; and Q.

The interface relaxation equations on I'; ; are given by

ou () 0 ()\ 9P (2)
l A . 7 _ J J .
u'(z) = Biy ( 5 5 + 5 el (7.3.1)

where a% represents the outward normal derivative to I'; ; and

u(z) = oy j (uz(-%H)(:Jc) - u§-2k+1)(x)) + u§-2k+1)(x) , el (7.3.2)

We are interested in investigating how different values of the relaxation parameters affect
the quality of the iterants u(x) and u’(x). We can achieve that by computing the derivative
of a certain quantity, that reflects the quality of the iterants, with respect to these relaxation
parameters and use it to update their values. We can consider two such quantities: the Lo
norm of the residual » =|| Du(z) — f(z) || on the interface I'; ; or the size of the Gerschgorin
disc associated with that particular interface as considered in the Chapters 2-4. We should
mark that the first choice might not work for interfaces where there are discontinuities and
the second one assumes that the iteration matrix M [57] has been obtained.

We first concentrate on the first option. Assuming that we are able to compute the

sensitivity of the residual with respect to «;; as its partial derivative r, = 32’_"_ after
5]

performing the Neumann (7.3.1) relaxation then we can use a secant method to update the
value of the relaxation parameter in the next iteration. Specifically, we obtain the following

simple adaptive formula

(k+1) _ (k) . (k) af) =™V
_ 2] %)
o=l g o (7.3.3)

while the equivalent formula associated with the Dirichlet step (7.3.2)

) _ gt By =Bl
2] 2]
B B

can be derived similarly. Obviously there is no way to analytically calculate r, since there
is no closed form for r, as a function of the «; ;’s and f3; ;’s, available. Nevertheless such
function is given in a form of an algorithm while relaxing each interface. Therefore a
possible solution is to use automatic differentiation [51] to obtain “good” values for the

relaxation parameters. In the automatic differentiation framework one applies a process
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that generates code which uses lookup tables and mechanically applies the chain rule to
compute the derivative of a function given in a form of a computer program. Among
the various software infrastructures that exploit the automatic differentiation idea we have
select the ADIFOR package [2] for our implementation.

To move to our second option we consider the Gerschgorin disk associated with the
tth interface and try to simultaneously minimize its area and move its center as closely to
the origin as possible. This can be done by minimizing the sum of the absolute value of
the elements in the sth row of the iteration matrix M with respect to o and 5. Thus we
can use automatic differentiation to calculate the Jacobian matrix and solve the associated

equations for the optimum values of the relaxation parameters.

Reaction Diffusion Equations

Work on domain decomposition type methods so far has focused on elliptic problems. How-

ever, time dependent PDEs have the following attractions:

e They avoid most of the problems concerning the convergence of the iterated relaxation
methods.

e All real world problems are time dependent anyway.

Primitive interface relaxation schema for time dependent PDEs have been proposed
several decades ago (e.g. [52]). They are known as time marching methods and their
analysis is very similar to ODEs (implicit methods allow one to use elliptic solvers).

To the best of our knowledge, the Interface Relaxation idea has not yet been applied to
time depended PDE problems. This is in contrast to the well established Schwartz methods
which have been widely used. In particular recently a Wavefront Relaxation procedure [25]
has been analyzed and very effectively applied for reaction diffusion problems.

Our interface relaxation framework, considered for the elliptic case in this thesis, can
be naturally extended for composite reaction diffusion equations through such a Wavefront
Relaxation procedure too. For this we start with a domain defined as the union of a set
of subdomains, i.e. Q@ = (JV_; Q;) x [0,T), and consider the composite reaction diffusion

equation on the above domain €2,

% = Liu on Q;x[0,T), for i=1,...,p (7.3.5)

u=u, on Qi1=1...,pat t=0
Bu=wu, on 0 (7.3.6)

fu_:fu+ on L, for i,7=1,...,p with i # j,
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where B is the boundary operator representing Dirichlet, Neumann or mixed boundary
conditions and where u, and w;, are given functions representing the initial and boundary
values of the problem respectively. I';; = 0€;()0f; denotes the interface between sub-
domains 2; and €2;, v and wu, represent the solution on the left and on the right of the
interface respectively, I is a given interface condition operator and L; is a space differential
operator which for simplicity we set to

S

2
Liu(z,t) = Zz; {cf(w,t)%;?’ﬂ} + fi(u) (7.3.7)
where z = (z1,...,2), z; E Rfori=1,...,s.

In the case that a unique solution u to the above problem exists (this obviously depends
on certain continuity, smoothness and boundness conditions) we are interested in deriving
a procedure that, by solving the individual PDEs defined by each one of the reaction
diffusion equations in 7.3.5 subject to some interface conditions I, generates a sequence of
local solutions with each one of them converging to the restriction of the global solution
u on the associated subdomain. Such a procedure can be easily defined by the following
iterative scheme whose (k + 1)st iteration is defined for ¢ = 1,...,p by the following set of

reaction diffusion problems

P (k+1)
ugt = LqukH) on ; x[0,T), (7.3.8)
ugkﬂ) =u, on §;, at t=0,
By — JONT:  for i — e
u, =1u, on \[ij for j=1,...,p with i # j,
fuz(-kﬂ) = fugk) on I; for j=1,...,p with ¢ # 7,

The convergence analysis and the implementation of the above scheme seems to be
feasible and is under way. Note that this scheme allows, under certain consistency and
stability conditions [6], different time steps on different subdomains in a natural and easy

way.

The Biharmonic Equations

An interesting extension of the Interface Relaxation idea that we are currently working on,
is its application to fourth order PDE problems. To the best of our knowledge the only
Interface Relaxation scheme for fourth order elliptic problems is one based on SCO. The
formulation, the preliminary analysis of the one-dimensional case and the implementation

of this scheme was presented in [26]. As an alternative, one might consider to relax the
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interfaces using an extension of ROB which seems to be one of the most promising schemes
for the second order problems. Let us consider the Biharmonic clamped rod model problem
define by

E = f fo’r reN= (—a, b), (739)
du du
u(—a) = u(b) = I . =0 - =0.

Assume now that  is split into 2y = (—a,0) and Q9 = (0,b) and define the equivalent to
(7.3.9) problem as follows

d* d*
COffor 1€, L =Ff for z€, (7.3.10)
dz dz
d d
v(—a) =L -0, wh) =22 =o,
dz T=—a dz r=b
dv dw
v(0) =w(0), —| =—| ,
dz|,_g dx |,
(7.3.11)
Bo| | b dw
d$2 =0 a d$2 x:O’ d:L‘3 =0 a d:L‘3 =0

From the above one might derive several ROB based Interface Relaxation schemes
by properly combining the last four conditions (7.3.11) on the interface (z = 0) into two
conditions. One possibility is to group the values of the functions and the its first derivative
in one condition and group the second and third derivatives in the second condition. This
leads to the following Interface Relaxation method for the clamped rod model problem
(7.3.9).

d4o(k+1)
T = f fO'f' Tr € Ql, (7312)
k+1
g = B2 2o
X
do(k+1) duw'®)
! - + kD) = Zx + aw®)(0), (7.3.13)
=0 =0
d3y(k+1) \ d2p(k+1) Bk , )
dz? + dz? - da3 dz? ’
=0 T= =0 =0
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dt (k+1)
U;T = f for z €Qy, (7.3.14)
duwk+1)
E+Dp) = = =
r=
duwF+1) dv®)
——— | 4+ 2a®D0) = — + x0®)(0), (7.3.15)
dx 0 dx 0
BBkt Ald2uxk+1) d3v(k) , d2v(k)
© da? + dz? T da® dz? ’
=0 =0 =0 =0

where A and )\ are the relaxation parameters. A preliminary convergence analysis of the
above scheme for one-dimensional model problems has been already carried out but it
remains to be extended for more general problems and decompositions. It also remains to

be determined if it is preferable to use any of the other possible ROB schemes.

Developing Initial Guesses

All the Interface Relaxation schemes presented require an initial guess of the solution on the
interfaces to start with. One might decide to start the iterations with a zero initial guess or
use a naive way of extending the given boundary values. This latter approach has been used
for all the experiments presented in Chapters 2, 3 and 4. Nevertheless, we expect that for
many problems with discontinuities or for three—dimensional problems a more reasonable
initial guess will be needed. Such a guess can be obtained by various approximation methods
that extend the boundary conditions into the interior of the domain using either a blending
technique [54], a Monte Carlo method or a wavelet approach [30]. In any case, better initial

guesses provide faster solutions and more robust computations.

Applications

The Collaborative PDE solving framework has been proposed to solve important and com-
plex multi-physics, multi-component practical problems. In particular there are currently
two on-going projects that heavily use the proposed framework and parts of the software
components of our implementation which was presented in Chapter 5. These are the Gas-
Turbin® project [41], and the project on Collaborative Air Pollution Models [59, 70, 71].
Preliminary software system designs, theoretical analysis and experimental studies for both

the above two projects are so far very encouraging.

"Mttp://www.cs.purdue.edu/research/cse/gasturbn/
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Algorithm 1: The Dirichlet/Neumann Averaging (AVE) Method

dul®® dugikl) )
g9i = B dlx +(1—=8:) . ,i=1,...,p—1.
Luf™ = fin Q| Lul*™ = fin @, Luf™*) = fin Q,
(2k+1) (2k+1)
2k+1 d du .
’U,g ) — =0 dx =9 11 ’ 7’:27' ap_l pdz :95—1
r=xq T=x;_1 =z, 1
FCLE S du 2R+ ; _—
uldz =gi I =9 Ug(; ) 3 0
r=r1 r=x; T=zp
hi = a; ul*tY + (1 —a;) ulk ,i=1,...,p—1.
T=T; r=x;
Luf™™ = fin Qi | Lu®™™® = f in Q; Lug*™ = fin Q,
e I =T}, i=2,...,p—1 | u* =
r=xq T=r;_1 T=Tp_1
ug2k+2) — hi u£2k+2) — hi: U1(72k+2) -0
r=x1 T=x; T=Tp

Algorithm 2: The Geometric (GEO) Contraction Based Method

e (|
3 t i\ T T

gi = : ,i=1,...,p—1.

r=z;

Lungrl) =f in & Lungrl) =fin Q

Lu;k“) =f in Q
k1 k+1 i . k+1 —1
ug ) 0 ug ) :gi_l1 , 1=2,...,p—1 uz(, ) =gb
r=xq T=T;_1 T=Tp_1
N T T R Y
r=x1 r=x;
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Algorithm 3: The Newton’s (NEW) Method

dul(,k) dul(,k’l) )
) dz I
P o=z, 2=z,
Q; = u(_k)‘ — u(_k—l)‘
2 rT=x; z rT=x;
t=1,...,p—1
(k) (k—1)
Uit Cdui
da da
i+1 _ r=a; r=2;
N () N e )
itllp—n; i+l |a—ay )
i i
(k) k
i+l (k) i1, (k) _duin +d"l(' ) )
A EE | PR N P dz dz
k) o—zs o=z,
hi = uf _ i
¢ v r=z; + O‘;Jrl*az
i1=1,...
(k) (k)
i —al:u(k)| _High duy
it e, T %% ma; dz dz
; k) — e=c;
hl,+1 = ’u( - - 2
3 41 =; + a;+1—a§ )
k+1 . k+1 . k+1 .
Lug+):f1n§21 Lug+):f1nﬂi Lu;+):f1n§2p
k41 k41 i . k41
u§+) =0 u§+) =hi_, , i=2,...,p—1 uz()+) =hy
r=x0 r=r;_1 =, 1
k+1 k+1 i k+1
ung) hi uEJr) =h; u1(3+) 0
=1 r=x; r=xp

Algorithm 4: The Robin Relaxation (ROB) Method

i dul (k)
T=x; T R _
i a® o i=1,...,p—1
9 = T 7ds tAiu;
r=z; T=Tq
Lugk"_l) =f in O Lu](,k'H) =f in Q,
(k+1)
(k+1) _ du (k+1) _
Uy =0 ——4 + Ap—1 up = 9271
r=xq T=zp_1 T=Tp_1
(k+1)
d k+1 k+1
u{im +)\1u§+) 2911 u;‘f‘) =0
p— T=x] T=zp
Lugk"_l) =f in &
(k+1) .
du; k+1
B + Xi1 ug i =g .
r=z;_1 r=x;_1 222,...,p—1.
(k+1) .
dui k+1
—= + X u" Y =9i
r=x;

T=x;

,p— 1.



Algorithm 5: The Schur complement (SCO) Method

Forace {1,...,p}

] 0 ;6
1 —
i—=1 = 6,1 ’U,Z(EJIFI) +(1—91‘71) ugk) 1=2,...,c—1
r=Ti;_1 rT=r;_1
. du(.k)
i+1
9i = —
. W (D) .
Lu**V = f in @, Y =ni, M =g
T=Ti—1 r=x;
he_1 =0c—1 uﬁkjil) + (1 —6c-1) U£k)
T=Te—q T=Te—q
he=6euly| (-6 ul|
Lu£k+l) =f in Q. , u£k+l) = hi,l , u£k+l)
T=T._1 =T,
hi = r=x; r=x;
0 , tL=Dp
, (et
gi-1 = —o—
T=Tioq
(k+1) . .
k41 . dui 1 k+1 i
Lug""):f in Q; e =gi_1 , uE )7_ h;

T=wi_q

i =1,

/
:hc
t=c+1,...

.,c—1
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Lugkﬂ) =f in
ugk+1)

ungrl)

Lugk"_l) =fin
ugkﬂ) =0

r=x0

ugk'+1)

=hl

T=x]

Lo ™ =0 in Q,
o =0
T=xg
PNCESY
e = gt
r=x1
it

Algorithm 6: The Shooting (SHO) Method

(k—2) (k—2)
(k—1) _ du; duiyy )
D; - dz ~ ~ d=z
—2;
(k—1) (k—1)
(k) _ du; _ duiy
Di - dz dx
r=z; P
k) k=D pk)| t=1,...,p— 1
i T p®ED _p
i _ (k) (k) (k)
9i = u; —o; ' D;
r=x;
Q1 | L ngrl) =fin Q Lug”l) =f in Q,
(k+1) _ i1 _ (k+1) _ p—1
i =977 , 1=2,...,p—1| u =gb
T=T;_1 T=Tp_1
k41 i k41
el Ly T
r=x; r=xp

Lugk"_l) =fin €

Algorithm 7: The Steklov-Poincaré operator (SPO) Method

Luf™ = fin Q,
uz(k+1) =hi, , i=2,...,p—1 u}()k+1) —n_,
e T=Tp—1
uz(k+1) =h! u}()k+1) —0
T T=Tp
k (k+1)
g L[ duigs i=1,..,p-1
’ ‘ 2 dil: dx ’ 3ty .
T=T; r=z;
L¢l(k+1) 0in L¢I()k+1) —0inQ,
ag" Y ; . g kD)
dx =9i-1 1=2,...,p—1 Zm :95—1
T=T; 1 x:zp71
(k+1) _
do; i bt B
e =g oy =0
T=T T=rp
S ET Y o N el ) INE ST RS
2 T=T4 T=x;
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B.1 SciAgents GUI(SAtool)

The implementation in the computer of the mathematical methods for solving PDEs is a task
that requires a lot of time and effort even simple model problems. Specially, when someone
has to write/debug code that handles the descritization of the PDE domain and operator.
This task becomes more difficult, almost impossible, when multi-component problems are
to be considered. Thus existing software(e.g., libraries, executables etc.) should be used to
reduce the complexity of the implementation of such large programs. Usually these programs
require a lot of data in such details that their input files are long and most of the times
unreadable even by their frequent users. Graphical User Interfaces are applied to facilitate
the use of these programs. Their main task is to provide the user easier ways to set the
input data correctly, execute the right program calling the proper functions and finally to
interpret the output data.

SciAgents is a program that solves two-dimensional multi-PDE problems. Because of the
complexity of composite PDE problems, it takes almost the same time to (1) define the
input data of the problem, (2) specify the computing power that will be used to solve
the problem in parallel and (3) to actually compute the solution. It takes a lot of time
and effort to operate SciAgents manually. SciAgents is based on PELLPACK, uses
three interface relaxation methods to handle the interfaces, and is operationable on a local
network of workstations.

Some of the questions that come up when dealing with such problems are: How is the
convergence to the solution of the PDE affected by the particular relazation method? How
to select optimum/good parameters of each particular method? How to determine initial
guesses on the interfaces? etc. These are very important issues and, since there are no
theoretical results, we need to experiment a lot to empirically understand them first. In
addition to this, we can use SciAgents to verify the results that come from a theoretical
analysis of a relaxation method for model problems.

From the above, it is clear that the necessity to built a GUI for SciAgents, was of great
importance. Let us name this GUI SAtool. The SAtool design philosophy is similar to
Pelltool(the GUI of PELLPACK), and in many cases it uses some of the individual tools
either as they appear in Pelltool or extended/modified. SAtool is presented in the form
of the a brief user’s guide and its implementation is not presented here.

Introductory Window
The introductory window (Figure B.1) pops up when the user types SAtool. This command
panel allows the user to start defining a new multi-PDE problem, load an existing one, or

Quit. The About SA button provides information for the SciAgents, while the Help provides
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ABOUT SA
Help

Figure B.1: The initial window that appears typing SAtool

information about SAtool using hypertext files. Clicking on the Load or New File buttons
starts the SAsession (Figure B.2).

B.2 SciAgents Session

The SAsession window (Figure B.2) organizes the effort that one needs to go through
in order to specify the multi-PDE problem for the SA infrastructure. The Quit, Save,
Save as, Print are essentially the same as in Pelltool (with only few extensions added)
and are already fully functional (except from Print). The Reset button clears up the
interconnectivity of the SciAgents network of machines. Also starts up the httpd daemon
and the SciAgents-server of default or user defined machines. The Help button provide
information about the The SAsession window and the functionalities of each button.
The Clear button clears the editor, on the right part of the window and the whole definition
of an existing problem.

The session editor shown on the right is an emacs-type editor and can be used to
manually generate the SciAgents input file that is currently needed. Using this file requires
the user to declare the number of solvers, i.e. subdomains of the general domain of the
PDE and the number of the mediators which is the number of the interfaces. Then for
each of the mediators one provides the following information: its ¢d number, the number of
solvers that it has to collaborate and exchange data the id number of that interface (related
with the specific mediator) for each subdomain, and the particular relazation scheme each
mediator uses. The tolerance needed for the convergence criteria is given next, and then the
coordinates of the starting and the ending point of the interface are given with the value
of the solutions on those taken from either boundary conditions (for interface points on the
original boundary) or initial guess otherwise. Then machine names are declared. First of
all is the machine for displaying the various outputs, then the one for the global control.
Next are the machines where solvers will run (each one might run on a different machine),
and, finally, are the machines where the mediators will run. A first version of the input

file is generated by the Boundary, Interface and BC Editor (see below), and contains
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SciAgents Session

Click here to edi
3 solvers
2 mediators
0

030140 0,05000000 -0,34000000 0,11000000  0,00000000 -0,34000000 -0,55000
1

120240 0,06000000 0,11000000  0,11000000  0,00000000  0,11000000 -0,55000
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pamela
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larka
hellinas

mamnla
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Hachines Definition
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i
Slet Intrf || Slct Subd
ct Intr ct Su — -

Figure B.2: SAsession window
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information on how interfaces and solvers are matched together. The rest information can
be added either manually by the user or using the corresponding buttons.

Clicking the geometry button, (Figure B.3), raises Boundary, Interface and BC
Editor. This tool (described below) assists the user in drawing the domain of the composite
problem.

The canvas on the lower left is used to display a sketch of the composite articraft as
shown in Figure B.5. This might be used for a successive view of the global domain which
makes the selection of one or a set of subdomains or interfaces much easier. The selection
mechanism is provided by the buttons Slct Subd and Slct Intrf and applies to any of
the Mediator, Solvers, Output, PlayBack and Analyze data buttons whose actions are
described below. Right now clicking on the canvas one can view an enlarged image of the

global domain.

B.3 The Boundary and Interface Specification Editor.

This editor (Figure B.4), is an interactive, graphical editor and it is raised by clicking on

the icon shown in Figure B.3, from the SciAgents Session window. It is used to define the

Figure B.3: Icon that invokes the Boundary, Interface and BC Editor

outer boundary of the domain of the PDE problem, the interfaces (which may come from
the physics of the problem or not) and to specify the conditions that apply to the outer
boundary and to the interfaces. In addition it is used to define the subdomains that the PDE
problem decomposition. It also produces textual descriptions, one for of each subdomain,
and stores them in separate files, that can be used later when Pelltool is used to solve each
subproblem. Finally, the editor creates an image (Figure B.5) of the decomposed and saved
domain and passes it to the SciAgents Session where it is displayed in the canvas area at
the lowest left.

The editor itself consists of a command panel and a drawing window below it. If the
SciAgents Session editor contains the specification of a previously defined problem (which
the whole domain and the subdomains already defined) then the drawing window is used
to display and modify the domain of a previously defined problem. (This facility is under

construction). If no domain is defined, then the drawing window contains only an empty
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Figure B.4: Domain, Interface and BC Editor
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Figure B.5: Drawing Area image that is saved in the canvas of SciAgents Session window.

grid. In the command panel there are buttons that allow the user to define and manipulate
the domain and the subdomains of the PDE problem and to set conditions on each piece of
both the boundary and the interfaces. The buttons on the command panel can be activated
by clicking on them with the left mouse button, while the middle button has no affect and
the right one provides help messages for each operation. In the drawing window there are
two working modes. Some of the operations, operate in the edit mode and the rest operate
in the command mode. Operations like Add CP operates on the control points that can be
selected by clicking on them with the left mouse button. A boundary component is selected
by clicking on one of its pieces or on one of its control points with any of the mouse buttons.
If an operation switches the mode into the edit mode, clicking on the right mouse button
switches to the command mode.

Descriptions for some of the buttons:

Quit: Quits the editor. If the domain created is not saved, it asks the user to save it or
not.

Save: Saves the textual representation of each subdomain displayed in the editor. Each

subdomain is stored in a file named ‘subdomainN.e’, where N is the order number of the
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subdomain. If the subdomains were already defined and/or stored in files, they are over-
written. It also writes the contents of the drawing area to a file, named input.sa (the input
to SA file).

Clear Boundary: Clears the drawing window, by deleting both the outer boundary and
the interfaces if there are any.

Define Subdomain: Defines the subdomains of the problem. It uses the already drawn
pieces of the outer boundary and/or the interface pieces. In the simplest case where there
is only one subdomain (i.e., the PDE domain) this is defined automatically. A subdomain
is defined by selecting sequentially boundary and/or interface pieces in a clockwise order.
In the edit mode of Define Subdomain button the left mouse button determines the first
piece of the subdomain, the right mouse button determines the last piece and the middle
mouse button is used to specify the rest pieces of the subdomain. When the last piece is
selected, the definition of the subdomain is completed and the current mode is switched
into command mode. This button is used each time a new subdomain is defined.

Help: Provides information about the buttons of the editor and their functionality using
hypertext files.

New Boundary: Defines the outer boundary component. The control points must be
defined sequentially and in clockwise order. In the edit mode of ‘New Boundary’ the left
mouse button must be used to define the first control point of the boundary component. In
addition it defines control points of the current boundary piece. The middle mouse button
complete the current boundary piece by defining its endpoint. The shape of the new piece
is completely defined by its control points and the selected interpolation scheme. The right
mouse button completes the boundary component and exits the edit mode. It completes
the last piece of the boundary by closing it but does not define a control point. After that
a default boundary condition U = true(z,y) is assigned to every edge of the boundary.
New Rectangle: Provides an easy way to define a rectangular outer domain, whose range
is set using the Set Range.

Delete Component: Deletes the selected boundary component. Now it deletes the outer
boundary and the interfaces if there are any.

Show Piece #: Displays the piece numbers of the outer boundary.

New Interface: Defines a new interface piece. It must begin and end on beginning/ending
points of existing pieces (either boundary pieces or previously defined interfaces pieces). An
interface component may consist of many pieces. The edit mode of New Interface is very
similar to the edit mode of New Boundary. The left mouse button must be used to specify
among all the existing control points, the beginning point of the current interface. Also it

can be used to define control points of the current piece of the interface. The middle mouse
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button completes the current interface piece by defining its endpoint (i.e., define one more
control point in the interior of the outer domain). The shape of the new piece is completely
defined by its control points and the selected interpolation scheme. The right mouse button
completes the interface component and exits the edit mode. It completes the last piece
of the current interface by selecting an existing control point. Note that the first and the
last points of the interface component do not define more control points since they are
already defined. After completing the current component, a default interface condition U
= rinterface(z,y) is assigned to every edge of the interface. This operation must be selected
each time a new interface is defined.

Delete Interface: Deletes the selected interface component. All the interface components
that are built based on points of the selected interface, are also deleted.

Show Interface #: Displays the piece numbers of the interface components. The number
is globally determined over all interfaces.

Set Conditions: Specifies the interface conditions (that come from the physics of the PDE
problem) associated with each piece of the selected interface component. To specify that
a boundary piece is an interface component use the Set Conditions button 2 rows below
this one.

Show Control Point: Displays the control points of the boundary /interface pieces in the
drawing window. This is helpful when adding, deleting, moving control points.

Add CP: Adds control point to the drawn pieces. To add a new control point after an exist-
ing control point, select the existing one (i.e., click on it with the left/middle mouse button)
and without releasing the button, drag the cursor to the new point’s location. Release the
mouse button. The affected pieces are redrawn. If the selected point is a beginning/ending
point and it is selected by the left mouse button, then the new point is added to the left
boundary/interface piece of the selected point and is the new beginning/ending point. If the
selection is made by the middle mouse button, then the new point is added to the right piece
of the selected point and the beginning/ending point remains at the same location. Many
control points can be added to various pieces before exiting the edit mode. To complete
the operation and switch to command mode, click on the right mouse button. Currently
the selected point can not be a beginning/ending point since interface pieces might need to
be moved.

Delete CP: Deletes control points of the drawn pieces. To delete a control point click on it
with the left /middle mouse button. If the selected control point is a beginning/ending point
and if the point selection is done with the left mouse button, then the the new begin/end
point is the previous (but not begin point) of the left piece. If the selection is done with

the middle mouse button then the new begin/end point is the next (but not endpoint) of



139

the right piece. To complete the operation and switch to command mode, click on the right
mouse button. Currently this operation should not be used to control points near begin/end
points.

Move CP: Moves control points of drawn pieces. To move a control point select it (using
left /middle mouse button) and, without releasing the button, drag the cursor to the point’s
new location. To complete the operation and switch to command mode, click on the right
mouse button. Currently the selected point can not be a beginning/ending point since
interface pieces might need to be moved.

Bernstein: Uses Bernstein polynomial interpolation of the control points to define curved
pieces.

Cubic Spline: Uses the cubic Spline interpolation of the control points to define curved
pieces.

Set Conditions: Specifies the boundary and interface conditions associated with each
piece of the selected boundary/interface component. When this operation is selected, the
Boundary /Interface Conditions Specification Editor displays the current number and con-
dition of each piece of the selected component. The pieces are numbered in the order they
are created. To see this numbering select the Show Piece/Interface # before selecting
Set Conditions. To modify the condition for one of the pieces, erase the current one and
enter the new expression in its place. To modify all the conditions, select clear to delete
the current conditions and enter the new. To save the new conditions, select Continue
and select Cancel to quit the Boundary/Interface Conditions Specification Editor without
saving the new conditions.

Set Lines: Sets the number of the grid lines in the X and Y directions. The lines of the
grid are simply a guide for placing control points at correct locations and not part of the
discretization of the domain. To change the number of the lines, place the cursor in the
rectangle that contains the current numbers, erase them and enter the number of lines.
Select Continue to save and quit, click on Cancel to quit without saving.

Set Range: Sets the range of the drawing area for the X and Y directions. The four
numbers, separated by spaces, should be erased before the new values are entered. The
first and the second numbers specify the minimum and maximum in X direction and the
third and the forth numbers specify the minimum and maximum in the Y direction. Select
Continue to save and quit and click on Cancel to quit without saving.

Mouse Position: Displays the coordinates of the mouse cursor. Functional only when the
cursor is in the drawing area.

To define a domain and decompose it to several subdomains, follow the following procedure:



140

o (Clear the drawing window, if an old domain definition exists.
e Specify the range of the drawing area, using Set Range.
e Specify the number of grid lines in each direction, using Set Lines.

e Select Show Control Points operation, if any of the outer boundary or the interfaces

are curved pieces.

e Define the outer boundary of the PDE problem using the

New Boundary or the New Rectangular operations.
e Define the interfaces using New Interface.
e Define the conditions for each component using the Set Condition operation.
e Use Define Subdomain to specify the subdomains of the decomposed PDE problem.

e Save the subdomains in their files and post an image of the drawing area in the canvas

on the lower left part of SciAgents Session tool.

We might want to investigate the possibility to provide a second way to create the main
domain of the problem. One could create the subdomains separately and then move them,
by clicking with the left button of the mouse inside them, to the desired position. They

would have to match and create the main domain.

B.4 The Mediator Editor.

This editor (Figure B.6) allows the user to specify (1) the machine that will handle the
selected (by Slct Intrf button) mediators, (2) the relaxation method that will be used,
and (3) the value of the parameter(s) of the selected method. The user can edit the inputs of
all dialog boxes and can either select one of the existing relaxation schemes or select CUSTOM
to pop-up an editor for specifying a new scheme. Two relaxations methods are already ready
to be specified through the editor. The AVE and the three variations of Default defined by
T. Drashansky in his Ph.D. The Help button again provide information on the utilities of
this Editor, using hypertext files.

B.5 The Solver Editor.

For each subdomain we need to specify the PDE equation, the type of discretization

(grid/mesh), the PDE discretization scheme and the method to solve the linear algebraic
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Figure B.6: Mediator Editor

system. This specification is made by clicking on the Solvers button in the SAsession win-
dow, after the id number of the solver(s) has been selected through the Slct Subd button.
Clicking on the Solvers raises a small pull down menu and the user selects how to proceed.
First of all has to select the type of discretization, either FEM or FDM, and then click on
Equation to define the PDE equation. This will be done through the SciAgent enhanced
version of Pelltool that will be started for the selected solvers. Having defined the equation
and the boundary for a subdomain, the corresponding .e file will contain default specifica-
tions for discretization, indexing, solution and output segments. If the user wish to modify
one or more of these specifications, she/he has to select each subdomain separately (using
the S1lct Subd button) and the click on the Disc/Index/Sol/0ut button on the Solvers
pull down menu. The Pelltool session will come up with the selected subdomain’s .e file
so one can proceed with the required modifications. To save the modified .e file the user
has to click onth Save button of the Pelltool’s Session. To define the mesh discretization

scheme, the user has to work each .e file individually since the mesh/grid depends strongly
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Figure B.7: Machines Specification Editor

on the geometry of each subdomain. Therefore first click on Slct Subd button to select a
subdomain and then click on Disc/Index/Sol/0ut button. The Pelltool will come up with
the corresponding .e file and now the user can go on as usual. At this state some output
files must be defined for the boundary points and the values of the function on these points,
and this can be done automatically be clicking on the Agent button on the command panel
of the Pelltool’s Session. The machines can be specified when on clicks on the Machines
Definition button. An editor comes up like in Figure B.7 and the user has to fill in the

boxes with the machine names chosen from the Local Access Network.

B.6 The Run Tool.

The global execution of SciAgents starts when all definitions and specifications are com-
pleted, and the user clicks on the Run icon. This raises a window similar to Pellpack’s
ExecuteTool. When the actual execution starts an Execution Trace window pops-up which
selectively displays the execution procedure graphically (Figure B.8). Appropriate colors
are used to indicate what the agents are actually doing (computing or waiting for data).
This window can also provide the values of the convergence criteria and iteration numbers,
list the messages being sent and allow the user to pause or stop the execution and modify

certain parameters.
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Figure B.8: Supervising Execution Graph

B.7 The PlayBK Tool.

The PlayBk button raises the Execution and Communication Info window. It contains a
graph (similar to the one described in the Run tool above) of the main domain with its
subdomains and two time diagrams, one for the mediators and the other for the solvers.
The graph, illustrated in Figure B.8, shows if a solver is working or waiting to receive
new data for its interfaces. Colors are used to provide this information to the user, for
example, a subdomain is colored green when its solver is working and red when its solver is
waiting. Other time diagrams like the ones in Figure B.9 might be added. There is a great
possibility to use ParaGraph (a graphical display system for visualizing the behavior and
the performance of parallel programs on message-passing multicomputer architectures) to

process and visualize the execution trace information.

B.8 The Output Display.

The Output Spec and the Analyze DATA buttons raise Pellpack’s Output Specification
Editor and Analyze data editors with which one can specify views the various data after
the computation is complete. Right now the user can plot an image of the function (or the
first derivatives) on the global domain, running the script (written in Perl) preplot (the
whole path for that script is /p/pses/sciagents/src/front _end/scri- pts/preplot) to
process and manipulate the .out and .mesh files of each solver and the files that contains

the boundary points on the interfaces. This script also copies from the script directory 3
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Figure B.9: Execution Trace Diagrams

MATLARB files (plotu.m plotux.m plotuy.m) that can be used to make the plot of either

the function or its derivatives.

B.9 The Selection Buttons.

The two buttons Slct Subd and Slct Intrf at the bottom of the SAsession Window
have similar functionality. If one clicks on Slct Subd a dialog box comes up, like in Figure
B.10, and the user needs to define the number of the subdomains that will apply other
functionalities of the GUI. For the case of subdomains, these functionalities can be the
Solver Editor, the Qutput Specification Editor, the Analyze Data Editor and the PlayBack
tool The numbers of the selected interfaces is specified in the dialog box raised by clicking
on the Slct Intrf button, where the user then can apply the Mediator Editor and the
PlayBack tool.

I getinfo-popup
I Enter Information

0,1, |

Enter number of selected interfaces

Figure B.10: Select Interface/Subdomain Dialog Box
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C.1 Minimize the max-norm of M?

The max-norm of MP? is given by

MP = max f;
1M |oo 1gigp—1f“
where
_ |oaami  (1—ai1)ns 2(1—ay)
fl(al) | nim may2 + mavy2
N 204 a;n; _ (I—ai)niq 2(1—ay) i —9 _9 C1.1
file) mivi T m;Y; Mi41%i41 Mit1vie’ oo P ’ (C.1.1)
_ 201 Qp—1Mp—1 (lfap—l)mp
fp—l(ap—l) - Mp—1Yp—1 Mmp—17p—1 NpYp

Considering the fact that y; = ~,i =1,...,p, as in Theorem 3.3.4, the formulas (C.1.1) can
be simplified as

_ |aam (1-ai)ns 2(1—a1)
filoan) = |90 — =0 Ty
2a; in 1—a;)n; 2(1-a; o
filon) = 220 4 |oum _ (odmin |y 2001 - — g p -2, (C.1.2)
_ 2ap-1 Qp_1Mp—1 (I—ap—1)m
fp—l(ap—l) B m;ﬂp—17 + I;’lp—f’)’ o 7fp’)’ .
We present the analysis for the general case (i.e., for f;,4 =2,...,p—2). The minimum

for fi and f,_1 is obtained in the same way.

The function f; obtains its minimum value (see Figure C.1) at o or of*, where o is

. . . . 2061' 2(17041') . * m; :
the intersection point of the lines iy and ST and is equal to o = M while
Kk o . . . xk ming41
a;* is the root of the quantity in the absolute value, and is equal to of* = TR

Substituting o} and o;* in f; we get the following equalities

_ 4+ |n, — ni_|_1|
y(mi +mig1)

fi(eg) (C.1.3)

and 2( )

*% ng +n; 1

filei™) = ) Z. H—. N
y(mipini + mingi1)

Next, we compare the values in (C.1.3) and (C.1.4) and prove that f;(a;*) is the minimum.

(C.1.4)

To do so, we show that the quantity y(f;(a*) — fi(c))) is negative under the assumption

n; >2,9=1,...,p—1. It is easy to see that

f.* _ ’Y(f(a**) _ f(a*)) _ 2(mi+l - mi)(ni+1 - nl) - |ni+1 - ni|(mi+lni + mini+l)
= i i = .
' ' ' (mi + mip1)(miyini +miniy)
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Figure C.1: The components of the sum of the absolute values of the elements of the i

row of matrix MP.

We derive 2 cases with respect to the difference in the absolute value and we have that
(niy1 — i) (Mmip1(ni +2) + mi(niz1 —2)), ni > niga,

— (ni+1 — nz) (mi+1(ni - 2) + mi(niﬂ + 2)) , N < Mgl

In the first branch, where n; > n;41, the quantity in the second parenthesis is positive under
the assumption that n; > 2 and therefore f; is negative, while in the second branch the
first parenthesis is positive and the second one is negative assuming that n;;, > 2.
,p—1 (the only constrain of Theorem 3.3.4),
we prove that f;(a*

C.2 Minimize the max-norm of M%

Hence, under the constrain n; > 2,7 = 1,.
) < fi(a}), which makes «* to be the minimum of the function f;.

The max-norm of MV is given by
MmN = max g;
|| ||oo 1y lgza

)

where
(1-B1)n272 + 2(1;521)72

g1(B1) = 51;;1171 _ o

20 Bi)virr 2,...,p—2,

(R — 2Bivi Binivi  (1=Bi)nit17it1
gz(ﬁz) = m + Py it mitr
_ 2Bp—17p-1 Bp—1np—17p—1 (1-Bp—1)np7p

9p-1(Bp-1) = mp_1 + mp 1 - my

(C.2.1)
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Working in the same way as in previous section, we prove that the 8;,1 = 1,...,p —1
as defined in (3.3.27) and (3.3.28) are the optimum values, in the sense that they minimize

the max-norm of matrix M.
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