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Abstract Transcendental numbers form a fascinating subject: so little is known about the nature of
analytic constants that more research is needed in this area. Even if one is interested only in numbers
related to the classical exponential function, likeπ andeπ, one finds that elliptic functions are required
to prove transcendence results and get a better understanding of the situation.

We first briefly recall some of the basic transcendence results related to the exponential function
(section 1). Next in section 2 we survey the main properties of elliptic functions that are involved in
transcendence theory.

We survey transcendence theory of values of elliptic functions in section 3, linear independence
in section 4 and algebraic independence in section 5. This splitting is somewhat artificial but conve-
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1 Exponential Function and Transcendance

We start with a very brief list of some of the main transcendence results concerning numbers related to
the exponential function. References are for instance [183,80,180,106,166,12,202,75].

Next we point out some properties of the exponential function, the elliptic analog of which we shall
later consider (§ 2.1).
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1.1 Short survey on the transcendence of numbers related to the exponential function

1.1.1 Hermite, Lindemann and Weierstraß

The first transcendence result for a number related to the exponential function is Hermite’s Theorem on
the transcendence ofe.

Theorem 1 (Hermite, 1873))The numbere is transcendental.

This means that for any non-zero polynomialP ∈ Z[X], the numberP (e) is not zero. We denote by
Q the set of algebraic numbers. Hence Hermite’s Theorem can be written:e 6∈ Q. A complex number
is calledtranscendentalif it is transcendental overQ, or overQ, this is the same. Also we shall say that
complex numbers arealgebraically independentif they are algebraically independent overQ, which is
the same as overQ.

The second result in chronological order is Lindemann’s Theorem on the transcendence ofπ.

Theorem 2 (Lindemann, 1882)The numberπ is transcendental.

The next result contains the transcendence of both numberse andπ:

Theorem 3 (Hermite-Lindemann, 1882)For α ∈ Q×
, any non-zero logarithmlogα ofα is transcen-

dental.

We denote byL theQ-vector space of logarithms of algebraic numbers:

L =
{
logα ; α ∈ Q×}

=
{
` ∈ C ; e` ∈ Q×}

= exp−1(Q×
).

Hence Theorem 3 meansL ∩Q = {0}. An equivalent statement is:

Theorem 4 (Hermite-Lindemann, 1882)For anyβ ∈ Q×
, the numbereβ is transcendental.

The first result of algebraic independence for the values of the exponential function goes back to
the end of XIXth century.

Theorem 5 (Lindemann-Weierstraß, 1885)Letβ1, . . . , βn beQ-linearly independent algebraic num-
bers. Then the numberseβ1 , . . . , eβn are algebraically independent.

Again, there is an equivalent way of stating Theorem 5: it amounts to a statement of linear indepen-
dence.

Theorem 6 (Lindemann-Weierstraß, 1885)Let γ1, . . . , γm be pairwise distinct algebraic numbers.
Then the numberseγ1 , . . . , eγm are linearly independent overQ.

It is not difficult to check that Theorem 6 is equivalent to Theorem 5 with the conclusion that
eβ1 , . . . , eβn are algebraically independent overQ; since it is equivalent to say thateβ1 , . . . , eβn are al-
gebraically independent overQ, one does not lose anything if one changes the conclusion of Theorem 6
by stating that the numberseγ1 , . . . , eγm are linearly independent overQ.
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1.1.2 Hilbert’s seventh problem, Gel’fond and Schneider

The solution of Hilbert’s seventh problem on the transcendence ofαβ has been obtained by Gel’fond
and Schneider in 1934 (see [80,180]).

Theorem 7 (Gel’fond-Schneider, 1934)For α andβ algebraic numbers withα 6= 0 andβ 6∈ Q and
for any choice oflogα 6= 0, the numberαβ = exp(β logα) is transcendental.

This means that the two algebraically independent functionsez andeβz cannot take algebraic values
at the pointlogα (A.O. Gel’fond) and also that the two algebraically independent functionsz and
αz = ez log α cannot take algebraic values at the pointm+ nβ with (m,n) ∈ Z2 (Th. Schneider).

Examples, quoted by D. Hilbert in 1900, of numbers whose transcendence follow from Theo-
rem 7 are2

√
2 andeπ (recall eiπ = −1). The transcendence ofeπ had been proved already in 1929

by A.O. Gel’fond.
Here is an equivalent statement to Gel’fond-Schneider Theorem 7:

Theorem 8 (Gel’fond-Schneider, 1934)Let logα1, logα2 be two non-zero logarithms of algebraic
numbers. Assume that the quotient(logα1)/(logα2) is irrational. Then this quotient is transcendental.

1.1.3 Linear independence of logarithms of algebraic numbers

The generalization of Theorem 8 to more than two logarithms, conjectured by A.O. Gel’fond [80], has
been proved by A. Baker in 1966. His results includes not only Gel’fond-Scheider’s Theorem 8 but also
Hermite-Lindemann’s Theorem 3.

Theorem 9 (Baker, 1966)Let logα1, . . . , logαn beQ–linearly independent logarithms of algebraic
numbers. Then the numbers1, logα1, . . . , logαn are linearly independent over the fieldQ.

1.1.4 The six exponentials Theorem and the four exponentials conjecture

The next result, which does not follow from any of the previously mentioned results, has been proved
independently in the 60’s by C.L. Siegel, A. Selberg, S. Lang and K. Ramachandra (see for instance
[106,165,166,207]; see also Problem 1 in [180] for the four exponentials conjecture).

Theorem 10 (Six exponentials Theorem)Letx1, . . . , xd beQ-linearly independent complex numbers
and lety1, . . . , y` beQ-linearly independent complex numbers. Assume`d > ` + d. Then one at least
of the`d numbers

exiyj , (1 ≤ i ≤ d, 1 ≤ j ≤ `)

is transcendental.

Notice that the conditioǹd > ` + d can be written (̀ ≥ 2 andd ≥ 3) or (̀ ≥ 3 andd ≥ 2); it
suffices to consider the case`d = 6 (hence the name of the result). Therefore Theorem 10 can be stated
in another equivalent form:

Theorem 11 (Six exponentials Theorem - logarithmic form)Let

M =

logα1 logα2 logα3

log β1 log β2 log β3


be a2 by 3 matrix whose entries are logarithms of algebraic numbers. Assume the three columns are
linearly independent overQ and the two rows are also linearly independent overQ. Then the matrix
M has rank2.
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It is expected that the conditiond` > d + ` in Theorem 10 is too restrictive and that the same
conclusion holds in cased = ` = 2. We state this conjecture in the logarithmic form:

Conjecture 12 (Four exponentials conjecture - logarithmic form)Let

M =

logα1 logα2

log β1 log β2


be a2 by 2 matrix whose entries are logarithms of algebraic numbers. Assume the two columns are
linearly independent overQ and the two rows are also linearly independent overQ. Then the matrixM
has rank2.

1.1.5 Algebraic independence

In 1949 A.O. Gel’fond extended his solution of Hilbert’s seventh problem to a result of algebraic inde-
pendence [80]. One of his theorems is that the two numbers2

3√2 and2
3√4 are algebraically independent.

His general statements can be seen as extensions of Theorem 10 into a result of algebraic independence
(in spite of the fact that the six exponentials Theorem 10 was stated and proved only several years later).
In his original work Gel’fond needed a stronger assumption, namely a measure of linear independence
of thexi’s as well as of theyj ’s. This assumption was removed in the early 70’s by R. Tijdeman (see
for instance [31,204,205,211]).

Theorem 13 Let x1, . . . , xd be Q-linearly independent complex numbers and lety1, . . . , y` be Q-
linearly independent complex numbers.
1. If d` ≥ 2(d+ `), then two at least of thed` numbers

exiyj , (1 ≤ i ≤ d, 1 ≤ j ≤ `)

are algebraically independent.
2. If d` ≥ d+ 2`, then two at least of thed`+ d numbers

xi, e
xiyj , (1 ≤ i ≤ d, 1 ≤ j ≤ `)

are algebraically independent.
3. If d` > d+ `, then two at least of thed`+ d+ ` numbers

xi, yj , e
xiyj , (1 ≤ i ≤ d, 1 ≤ j ≤ `)

are algebraically independent.
4. If d = ` = 2 and if the two numbersex1y1 andex1y2 are algebraic, then two at least of the6 numbers

x1, x2, y1, y2, ex2y1 , ex2y2

are algebraically independent.

From the last part of Theorem 13, takingx1 = y1 = iπ andx2 = y2 = 1, one deduces that at least
one of the two following statements is true:
(i) The numbereπ2

is transcendental.
(ii) The two numberse andπ are algebraically independent.

One expects that both statements are true.
If it were possible to prove that, under the assumptions of Theorem 13, two at least of the8 numbers

x1, x2, y1, y2, ex1y1 , ex1y2 , ex2y1 , ex2y2

are algebraically independent, one would deduce the algebraic independence or the two numbersπ and
eπ (takex1 = 1, x2 = i, y1 = π, y2 = iπ; see Corollary 48 below).

For results concerninglarge transcendence degree, see§ 5.3 below.
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1.2 The Exponential function

The exponential function
exp : C → C×

z 7→ ez

satisfies both a differential equation and an addition Theorem:

d

dz
ez = ez, ez1+z2 = ez1ez2 .

It is a homomorphism of the additive groupC of complex numbers onto the multiplicative groupC× of
nonzero complex numbers, with kernel

ker exp = 2iπZ,

hence it yields an isomorphism between the quotient additive groupC/2iπZ and the multiplicative
groupC×.

The groupC× is the group of complex points of the multiplicative groupGm; z 7→ ez is the
exponential function of the multiplicative groupGm. We shall replace this algebraic group by an elliptic
curve. We could replace it also by other commutative algebraic groups. For instance the exponential
function of the additive groupGa is

C → C
z 7→ z

Further examples are commutative linear algebraic groups (over an algebraically closed field, these are
nothing else than products of several copies of the additive and multiplicative group), Abelian varieties
and in full generality they are extensions of Abelian varieties by commutative linear algebraic groups.
See for instance [106,202,137].

2 Elliptic curves and elliptic functions

Among many references for this section are the books by S. Lang [112], K. Chandrasekharan [39] and
J. Silverman [184,185]. See also the book by M. Hindry and J. Silverman [87].

2.1 Basic concepts

An elliptic curve may be defined as

– a connected compact Lie group of dimension1,
– a complex torusC/Ω whereΩ is a lattice inC,
– a Riemann surface of genus1,
– a nonsingular cubic inP2(C),
– an algebraic group of dimension1, with underlying projective algebraic variety.

We shall use the Weierstraß form

E =
{
(u : x : y) ; y2u = 4x3 − g2xu

2 − g3u
3
}
⊂ P2.

Hereg2 andg3 are complex numbers, with the only assumptiong3
2 6= 27g2

3 , which means that the
discriminant of the polynomial4X3 − g2X − g3 does not vanish.

A parametrization of the complex pointsE(C) ofE is given by means ofWeierstraß elliptic function
℘, which satisfies the differential equation

℘′2 = 4℘3 − g2℘− g3, (1)
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has a double pole at the origin with principal part1/z2 and satisfies also an addition theorem

℘(z1 + z2) = −℘(z1)− ℘(z2) +
1
4
·
(
℘′(z1)− ℘′(z2)
℘(z1)− ℘(z2)

)2

.

The exponential map of the Lie groupE(C) is

expE : C → E(C)
z 7→

(
1 : ℘(z) : ℘′(z)

)
.

The kernel of this map is alattice in C (that means a discrete rank2 subgroup),

Ω = ker expE = {ω ∈ C ; ℘(z + ω) = ℘(z)} = Zω1 + Zω2.

HenceexpE induces an isomorphism between the quotient additive groupC/Ω andE(C). The elements
of Ω are theperiods of ℘. A pair (ω1, ω2) of fundamental periods is given by

ωi = 2
∫ ∞

ei

dt√
4t3 − g2t− g3

, (i = 1, 2)

where
4t3 − g2t− g3 = 4(t− e1)(t− e2)(t− e3).

Indeed, since℘′ is periodic and odd, it vanishes atω1/2, ω2/2 and(ω1 + ω2)/2, hence the values of℘
at these points are the three pairwise distinct complex numberse1, e2 ande3.

Conversely, given a latticeΩ, there is a unique Weierstraß elliptic function℘Ω whose period lattice
isΩ (see§ 2.5). We denote its invariants in the differential equation (1) byg2(Ω) andg3(Ω).

We shall be interested mainly (but not only) with elliptic curves which are defined over the field of
algebraic numbers: they have a Weierstraß equation with algebraicg2 andg3. However we shall also use
the Weierstraß elliptic function associated with the latticeλΩ whereλ ∈ C× may be transcendental;
the relations are

℘λΩ(λz) = λ−2℘Ω(z), g2(λΩ) = λ−4g2(Ω), g3(λΩ) = λ−6g3(Ω). (2)

The latticeΩ = Z + Zτ , whereτ is a complex number with positive imaginary part, has

g2(Z + Zτ) = 60G2(τ) and g3(Z + Zτ) = 140G3(τ),

whereGk(τ) are the Eisenstein series

Gk(τ) = τ2k
∑

(m,n)∈Z2\{(0,0)}

(m+ nτ)−2k. (3)

2.2 Morphisms between elliptic curves. The modular invariant

If Ω andΩ′ are two lattices inC and iff : C/Ω → C/Ω′ is an analytic homomorphism, then the map
C → C/Ω → C/Ω′ factors through a homothetyC → C given by someλ ∈ C such thatλΩ ⊂ Ω′:

C λ−−−−→ C
↓ ↓

C/Ω −−−−→
f

C/Ω′

If f 6= 0, thenλ ∈ C× andf is surjective.
Conversely, if there existsλ ∈ C such thatλΩ ⊂ Ω′, thenfλ(x+Ω) = λx+Ω′ defines an analytic

surjective homomorphismfλ : C/Ω → C/Ω′. In this caseλΩ is a subgroup of finite index inΩ′, hence
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the kernel offλ is finite and there existsµ ∈ C× with µΩ′ ⊂ Ω: the two elliptic curvesC/Ω andC/Ω′

areisogeneous.
If Ω andΩ∗ are two lattices,℘ and℘∗ the associated Weierstraß elliptic functions andg2, g3 the

invariants of℘, the following are equivalent:
(i) There is a square2× 2 matrix with rational coefficients which maps a basis ofΩ to a basis ofΩ∗.
(ii) There existsλ ∈ Q× such thatλΩ ⊂ Ω∗.
(iii) There existsλ ∈ Z \ {0} such thatλΩ ⊂ Ω∗.
(iv) The two functions℘ and℘∗ are algebraically dependent over the fieldQ(g2, g3).
(v) The two functions℘ and℘∗ are algebraically dependent overC.

The mapfλ is an isomorphism if and only ifλΩ = Ω′.
The number

j =
1728g3

2

g3
2 − 27g2

3

is themodular invariantof the elliptic curveE. Two elliptic curves overC are isomorphic if and only
if they have the same modular invariant.

Setτ = ω2/ω1, q = e2iπτ andJ(e2iπτ ) = j(τ). Then

J(q) = q−1

(
1 + 240

∞∑
m=1

m3 qm

1− qm

)3 ∞∏
n=1

(1− qn)−24

=
1
q

+ 744 + 196884 q + 21493760 q2 + · · ·

2.3 Endomorphisms of an elliptic curve; complex multiplication

LetΩ be a lattice inC. The set of analytic endomorphisms ofC/Ω is the subring

End(C/Ω) =
{
fλ ; λ ∈ C with λΩ ⊂ Ω

}
of C. We call it also the ring of endomorphisms of the associated elliptic curve, or of the corresponding
Weierstraß℘ function and we identify it with the subring{

λ ∈ C ; λΩ ⊂ Ω
}

of C. Thefield of endomorphismsis the quotient fieldEnd(C/Ω)⊗Z Q of this ring.
If λ ∈ C satisfiesλΩ ⊂ Ω, thenλ is either a rational integer or else an algebraic integer in an

imaginary quadratic field. In this case℘Ω(λz) is a rational function of℘Ω(z), such that the degree of
the numerator isλ2 if λ ∈ Z andN(λ) otherwise (whereN is the norm of the imaginary quadratic
field); the degree of the denominator isλ2 − 1 if λ ∈ Z andN(λ)− 1 otherwise.

Let E be the elliptic curve attached to the Weierstraß℘ function. The ring of endomorphisms
End(E) of E is eitherZ or else an order in an imaginary quadratic fieldk. The latter case arises if
and only if the quotientτ = ω2/ω1 of a pair of fundamental periods is a quadratic number; in this
case the field of endomorphisms ofE is k = Q(τ) and the curveE hascomplex multiplication. This
means also that the two functions℘(z) and℘(τz) are algebraically dependent. In this case, the value
j(τ) of the modular invariantj is an algebraic integer of degree the class numberh of the quadratic
field k = Q(τ).

Remark 14From Theorem 7 one deduces the transcendence of the number

eπ
√

163 = 262 537 412 640 768 743.999 999 999 999 2 . . . .

If we set

τ =
1 + i

√
163

2
, q = e2iπτ = −e−π

√
163



8

then the class numberh of the imaginary quadratic fieldQ(τ) is 1, we havej(τ) = −(640 320)3 and∣∣∣∣j(τ)− 1
q
− 744

∣∣∣∣ < 10−12.

Let℘ be a Weierstraß elliptic function with field of endomorphismsk. Hencek = Q if the associated
elliptic curve has no complex multiplication, whilek is an imaginary quadratic field otherwise, namely
k = Q(τ), whereτ is the quotient of two linearly independent periods of℘. Let u1, . . . , ud be nonzero
complex numbers. Then the functions℘(u1z), . . . , ℘(udz) are algebraically independent (overC or
overQ(g2, g3), this is equivalent) if and only if the numbersu1, . . . , ud are linearly independent over
k. This generalizes the fact that℘(z) and℘(τz) are algebraically dependent if and only if the elliptic
curve has complex multiplication. Much more general and deeper results of algebraic independence of
functions (exponential and elliptic functions, zeta functions,. . . ) have been proved by W.D. Brownawell
and K.K. Kubota [33].

If ℘ is a Weierstraß elliptic function with algebraic invariantsg2 andg3, if E is the associated elliptic
curve and ifk denotes its field of endomorphisms, then the set

LE = Ω ∪
{
u ∈ C \Ω ; ℘(u) ∈ Q}

is ak-vector subspace ofC: this is the set ofelliptic logarithms of algebraic points onE. It plays a role
with respect toE similar to the role ofL for the multiplicative groupGm.

Let k = Q(
√
−d) be an imaginary quadratic field with class numberh(d) = h. There areh non-

isomorphic elliptic curvesE1, . . . , Eh with ring of endomorphisms the ring of integers ofk. The num-
bersj(Ei) are conjugate algebraic integers of degreeh, each of them generates the Hilbert class field
H of k (maximal unramified Abelian extension ofk). The Galois group ofH/k is isomorphic to the
ideal class group of the ring of integers ofk.

Since the group of roots of units of an imaginary quadratic field is{−1,+1} except forQ(i) and
Q(%), where% = e2iπ/3, it follows that there are exactly two elliptic curves overQ (up to isomorphism)
having an automorphism group bigger than{−1,+1}. They correspond to Weierstraß elliptic functions
℘ for which there exists a complex numberλ 6= ±1 with λ2℘(λz) = ℘(z).

The first one hasg3 = 0 andj = 1728. A pair of fundamental periods of the elliptic curve

y2t = 4x3 − 4xt2.

is given by

ω1 =
∫ ∞

1

dt√
t3 − t

=
1
2
B(1/4, 1/2) =

Γ (1/4)2

23/2π1/2
and ω2 = iω1. (4)

The latticeZ[i] hasg2 = 4ω4
1 , hence∑
(m,n)∈Z2\{(0,0)}

(m+ ni)−4 =
Γ (1/4)8

26 · 3 · 5 · π2
·

The second one hasg2 = 0 andj = 0. A pair of fundamental periods of the elliptic curve

y2t = 4x3 − 4t3.

is

ω1 =
∫ ∞

1

dt√
t3 − 1

=
1
3
B(1/6, 1/2) =

Γ (1/3)3

24/3π
and ω2 = %ω1. (5)

The latticeZ[%] hasg3 = 4ω6
1 , hence∑

(m,n)∈Z2\{(0,0)}

(m+ n%)−6 =
Γ (1/3)18

28π6
·
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These two examples involve special values of Euler Gamma function

Γ (z) =
∫ ∞

0

e−ttz · dt
t

= e−γzz−1
∞∏

n=1

(
1 +

z

n

)−1

ez/n, (6)

while Euler Beta function is

B(a, b) =
Γ (a)Γ (b)
Γ (a+ b)

=
∫ 1

0

xa−1(1− x)b−1dx.

More generally, the formula of Chowla and Selberg (1966) [40] (see also [85,103,102,86,203] for
related results) expresses periods of elliptic curves with complex multiplication as products of Gamma
values:if k is an imaginary quadratic field andO an order ink, if E is an elliptic curve with complex
multiplication byO, then the corresponding latticeΩ determines a vector spaceΩ ⊗Z Q which is
invariant under the action ofk and thus has the formk · ω for someω ∈ C× defined up to elements in
k×. In particular ifO is the ring of integersZk of k, then

ω = α
√
π
∏

0<a<d
(a,d)=1

Γ (a/d)wε(a)/4h,

whereα is a nonzero algebraic number,w is the number of roots of unity ink, h is the class number of
k, ε is the Dirichlet character modulo the discriminantd of k.

2.4 Standard relations among Gamma values

Euler Gamma function satisfies the following relations
(Translation):

Γ (z + 1) = zΓ (z)

(Reflexion):

Γ (z)Γ (1− z) =
π

sin(πz)

(Multiplication): For any positive integern,

n−1∏
k=0

Γ

(
z +

k

n

)
= (2π)(n−1)/2n−nz+(1/2)Γ (nz).

D. Rohrlich conjectured that any multiplicative relation among Gamma values is a consequence of
these standard relations, while S. Lang was more optimistic (see for instance [212]).

Conjecture 15 (D. Rohrlich)Any multiplicative relation

πb/2
∏
a∈Q

Γ (a)ma ∈ Q

with b andma in Z is a consequence of the standard relations.

Conjecture 16 (S. Lang)Any algebraic dependence relation among the numbers(2π)−1/2Γ (a) with
a ∈ Q is in the ideal generated by the standard relations.
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2.5 Quasiperiods of elliptic curves and elliptic integrals of the second kind

LetΩ = Zω1 + Zω2 be a lattice inC. TheWeierstraß canonical productattached to this lattice is the
entire functionσΩ defined by

σΩ(z) = z
∏

ω∈Ω\{0}

(
1− z

ω

)
e

z
ω + z2

2ω2 ·

It has a simple zero at any point ofΩ.
Hence Weierstraß sigma function plays, for the latticeΩ, the role of the functione−γzΓ (−z)−1 for

the natural integersN = {0, 1, 2, . . . } (see the infinite product (6) for Euler Gamma function), and also
the role of the function

π−1 sin(πz) = z
∏
n∈Z

(
1− z

n

)
ez/n

for the setZ of rational integers.

The Weierstraß sigma functionσ associated with a lattice inC is an entire function oforder2:

lim sup
r→∞

1
log r

· log log sup
|z|=r

|σ(z)| = 2;

the productσ2℘ is also an entire function of order2 (this can be checked using infinite products, it is
easier to use the quasiperiodicity ofσ – see formula (7) below).

The logarithmic derivative of the sigma function isWeierstraß zeta functionζ = σ′/σ whose Lau-
rent expansion at the origin is

ζ(z) =
1
z

+
∑
k≥2

skz
2k−1,

where
sk = sk(Ω) =

∑
ω∈Ω
ω 6=0

ω−2k = ω−2k
2 Gk(τ)

for m ∈ Z,m > 2 (recall (3)).
The derivative ofζ is−℘. From

℘′′ = 6℘2 − (g2/2)

one deduces thatsk(Ω) is a homogenous polynomial inQ[g2, g3] of weight2k wheng2 has weight4
andg3 weight6.

As a side remark, we notice that for anyu ∈ C \Ω we have

Q(g2, g3) ⊂ Q
(
℘(u), ℘′(u), ℘′′(u)

)
.

Since its derivative is periodic, the functionζ is quasiperiodic: for eachω ∈ Ω there is aη = η(ω) such
that

ζ(z + ω) = ζ(z) + η.

These numbersη are thequasiperiodsof the elliptic curve. If(ω1, ω2) is a pair of fundamental periods
and if we setη1 = η(ω1) andη2 = η(ω2), then, for(a, b) ∈ Z2,

η(aω1 + bω2) = aη1 + bη2.

Coming back to the sigma function, one deduces

σ(z + ωi) = −σ(z) exp
(
ηi

(
z + (ωi/2)

))
(i = 1, 2). (7)
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The zeta function also satisfies an addition Theorem:

ζ(z1 + z2) = ζ(z1) + ζ(z2) +
1
2
· ℘

′(z1)− ℘′(z2)
℘(z1)− ℘(z2)

·

Legendre relation relating the periods and the quasiperiods

ω2η1 − ω1η2 = ±2iπ

can be obtained by integratingζ(z) on the boundary of a fundamental parallelogram.
In the case of complex multiplication, ifτ is the quotient of a pair of fundamental periods of℘, then

the functionζ(τz) is algebraic over the fieldQ
(
g2, g3, z, ℘(z), ζ(z)

)
.

Examples.For the curvey2t = 4x3 − 4xt2 the quasiperiods attached to the above mentioned pair of
fundamental periods (4) are

η1 =
π

ω1
=

(2π)3/2

Γ (1/4)2
, η2 = −iη1; (8)

it follows that the fieldsQ(ω1, ω2, η1, η2) andQ
(
π, Γ (1/4)

)
have the same algebraic closure overQ,

hence the same transcendence degree. For the curvey2t = 4x3 − 4t3 with periods (5) they are

η1 =
2π√
3ω1

=
27/3π2

31/2Γ (1/3)3
, η2 = %2η1. (9)

In this case the fieldsQ(ω1, ω2, η1, η2) andQ
(
π, Γ (1/3)

)
have the same algebraic closure overQ, hence

the same transcendence degree.

2.6 Elliptic integrals

Let
E = {(x : y : t) ∈ P2; y2t = 4x3 − g2xt

2 − g3t
3}

be an elliptic curve. The field of rational (meromorphic) functions onE overC is C(E) = C(℘, ℘′) =
C(x, y) wherex andy are related by the cubic equationy2 = 4x3 − g2x− g3. Under the isomorphism
C/Ω → E(C) given by(1 : ℘ : ℘′), the differential formdz is mapped todx/y. The holomorphic
differential forms onC/Ω areλdz with λ ∈ C.

The differential formdζ = ζ ′/ζ is mapped to−xdx/y. The differential forms of second kind on
E(C) areadz + bdζ + dχ, wherea andb are complex numbers andχ ∈ C(x, y) is a meromorphic
function onE .

Assume the elliptic curveE is defined overQ: the invariantsg2 andg3 are algebraic. We shall be
interested with differential forms which are defined overQ. Those of second kind areadz + bdζ + dχ,
wherea andb are algebraic numbers andχ ∈ Q(x, y).

An elliptic integral is an integral ∫
R(x, y)dx

whereR is a rational function ofx andy, whiley2 is a polynomial inx of degree3 or 4 without multiple
roots. One may transform this integral as follows: one reduces to an integral ofdx/

√
P (x) whereP is

a polynomial of3rd or 4th degree; in caseP has degree4 one replaces it with a degree3 polynomial
by sending one root to infinity; finally one reduces to a Weierstraß equation by means of a birational
transformation. The value of the integral is not modified.

For transcendence purposes, if the initial integral is defined overQ, then all these transformations
involve only algebraic numbers.
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3 Transcendence results of numbers related with elliptic functions

3.1 Elliptic analog of Lindemann’s Theorem on the transcendence ofπ and of Hermite-Lindemann
Theorem on the transcendence oflogα.

The first transcendence result on periods of elliptic functions was proved by C.L. Siegel [182] as early
as 1932.

Theorem 17 (Siegel, 1932)Let ℘ be a Weierstraß elliptic function with period latticeZω1 + Zω2.
Assume that the invariantsg2 andg3 of ℘ are algebraic. Then one at least of the two numbersω1, ω2 is
transcendental.

One main feature of Siegel’s proof is that he used Dirichlet’s box principle (the so-called Thue-
Siegel Lemma which occurs in his 1929 paper) to construct an auxiliary function. This idea turned out
to be critical for the solution of Hilbert’s seventh problem by Gel’fond and Schneider two years later.

In the case of complex multiplication, it follows from Theorem 17 thatany non-zero period of℘ is
transcendental.

From formulae (4) and (5) it follows as a consequence of Siegel’s 1932 result [182] that both num-
bersΓ (1/4)4/π andΓ (1/3)3/π are transcendental.

Other consequences of Siegel’s result concern the length of an arc of an ellipse [183,180]:

2
∫ b

−b

√
1 +

a2x2

b4 − b2x2
dx

as well as the perimeter of the lemniscate(x2 + y2)2 = 2a2(x2 − y2).
A further example [183] is the transcendence of values of hypergeometric series related to elliptic

integrals

K(z) =
∫ 1

0

dx√
(1− x2)(1− z2x2)

=
π

2
· 2F1

(
1/2, 1/2 ; 1

∣∣ z2
)
,

where2F1 denotes Gauss hypergeometric series

2F1

(
a, b ; c

∣∣ z) =
∞∑

n=0

(a)n(b)n

(c)n
· z

n

n!

with (a)n = a(a+ 1) · · · (a+ n− 1).
Further results on this topic were obtained by Th. Schneider [176] in 1934 and then in a joint work

by K. Mahler and J. Popken [164] in 1935 using Siegel’s method. These results were superseded by
Th. Schneider’s fundamental memoir [177] in 1936 where he proved a number of definitive results on
the subject, including:

Theorem 18 (Schneider, 1936)Assume that the invariantsg2 andg3 of ℘ are algebraic. Then for any
nonzero periodω of ℘, the numbersω andη(ω) are transcendental.

It follows from Theorem 18 that any non-zero period of an elliptic integral of the first or second
kind is transcendental:

Corollary 19 LetE be an elliptic curve overQ, p1 andp2 two algebraic points onE(Q),w a differential
form of first or second kind onE which is defined overQ, holomorphic atp1 and p2 and is not the
differential of a rational function. Letγ be a path onE of origin p1 and endp2. In casep1 = p2 one
assumes thatγ is not homologous to0. Then the number∫

γ

w

is transcendental.



13

Examples:Using Corollary 19 and formulae (8) and (9), one deduces that the numbers

Γ (1/4)4/π3 and Γ (1/3)3/π2

are transcendental.
The main results of Schneider’s 1936 paper [177] are as follows (see also [180]):

Theorem 20 (Schneider, 1936)
1. If ℘ is a Weierstraß elliptic function with algebraic invariantsg2, g3 and ifβ is a non-zero algebraic
number, thenβ is not a pole of℘ and℘(β) is transcendental.
More generally, ifa andb are two algebraic numbers with(a, b) 6= (0, 0), then for anyu ∈ C \ Ω one
at least of the two numbers℘(u), au+ bζ(u) is transcendental.
2. If ℘ and℘∗ are two algebraically independent elliptic functions with algebraic invariantsg2, g3, g∗2 ,
g∗3 , if t ∈ C is a pole neither of℘ nor of ℘∗, then one at least of the two numbers℘(t) and℘∗(t) is
transcendental.
3. If ℘ is a Weierstraß elliptic functions with algebraic invariantsg2, g3, for anyt ∈ C \Ω one at least
of the two numbers℘(t), et is transcendental.

It follows from Theorem 20.2 that the quotient of an elliptic integral of the first kind (between
algebraic points) by a nonzero period is either in the field of endomorphisms (hence a rational number,
or a quadratic number in the field of complex multiplication), or else a transcendental number.

Here is another important consequence of Theorem 20.2.

Corollary 21 (Schneider, 1936)Let τ ∈ H be a complex number in the upper half plane=m(τ) > 0
such thatj(τ) is algebraic. Thenτ is algebraic if and only ifτ is imaginary quadratic.

In this connection we quote Schneider’s second problem in [180], which is still open (see Wak-
abayashi’s papers [196–198]):

Open problem: Prove Corollary 21 without using elliptic functions.

Sketch of proof of Corollary 21 as a consequence of part 2 of Theorem 20.
Assume that bothτ ∈ H andj(τ) are algebraic. There exists an elliptic function with algebraic

invariantsg2, g3 and periodsω1, ω2 such that

τ =
ω2

ω1
and j(τ) =

1728g3
2

g3
2 − 27g2

3

·

Set℘∗(z) = τ2℘(τz). Then℘∗ is a Weierstraß function with algebraic invariantsg∗2 , g∗3 . For u =
ω1/2 the two numbers℘(u) and℘∗(u) are algebraic. Hence the two functions℘(z) and℘∗(z) are
algebraically dependent. It follows that the corresponding elliptic curve has non trivial endomorphisms,
thereforeτ is quadratic. ut

A quantitative refinement of Schneider’s Theorem on the transcendence ofj(τ) given by A. Faisant
and G. Philibert in 1984 [68] will be useful 10 years later in connection with Nesterenko’s result (see
§ 5). See also [69].

We shall not review the results related to Abelian integrals, we only quote the first result on this
topic, which involves the Jacobian of a Fermat curve: in 1941 Schneider [178] proved thatfor a andb
in Q with a, b anda+ b not inZ, the number

B(a, b) =
Γ (a)Γ (b)
Γ (a+ b)

is transcendental.We notice that in his 1932 paper [182], C.L. Siegel already announced partial results
on the values of the Euler Gamma function (see also [18]).
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Schneider’s above mentioned results deal with elliptic (and Abelian) integrals of the first or second
kind. His method can be extended to deal with elliptic (and Abelian) integrals of the third kind (this is
Schneider’s third problem in [180]).

As pointed out by J-P. Serre in 1979 [202], it follows from the quasiperiodicity of Weierstraß sigma
function (7) that the function

Fu(z) =
σ(z + u)
σ(z)σ(u)

e−zζ(u)

satisfies
Fu(z + ωi) = Fu(z)eηiu−ωiζ(u).

Theorem 22 Let u1 and u2 be two nonzero complex numbers. Assumeg2, g3, ℘(u1), ℘(u2), β are
algebraic andZu1 ∩Ω = {0}. Then the number

σ(u1 + u2)
σ(u1)σ(u2)

e

(
β−ζ(u1)

)
u2

is transcendental.

From the next corollary, one can deduce that nonzero periods of elliptic integrals of the third kind
are transcendental (see [201]).

Corollary 23 For any nonzero periodω and for anyu ∈ C \Ω the numbereωζ(u)−ηu+βω is transcen-
dental.

Further results on elliptic integrals are due to M. Laurent [113]. See also his papers [115–118].
Ya. M. Kholyavka wrote several papers devoted to the approximation of transcendental numbers

related with elliptic functions [101,100,99,98,97,96,94,95,93]
Quantitative estimates (measures of transcendence) related to the results of this section have been

derived by N.I. Fel’dman [70–74] — see also the papers by S. Lang [105], N.D. Nagaev [144], E. Reyssat
[168,169,171,172], M. Laurent [114], R. Tubbs [189], G. Diaz [58], N. Saradha [175], P. Grinspan [84].

3.2 Elliptic analogs to the six exponentials Theorem

Elliptic analogs of the six exponentials Theorem 10 have been considered by S. Lang [106] and K. Ra-
machandra [165] in the 1960’s.

Letd1 andd2,m be nonnegative integers withm > 0, letx1, . . . , xd1 be complex numbers which are
linearly independent overQ, lety1, . . . , ym be complex numbers which are linearly independent overQ
and letu1, . . . , ud2 be nonzero complex numbers. We consider Weierstraß elliptic functions℘1, . . . , ℘d2

and we denote byK0 the field generated overQ by their invariantsg2,k andg3,k (1 ≤ k ≤ d2). We
assume that thed2 functions℘1(u1z), . . . , ℘d2(ud2z) are algebraically independent. We denote byK1

the field generated overK0 by the numbersexp(xiyj), (1 ≤ i ≤ d1, 1 ≤ j ≤ m) together with the
numbers℘k(ukyj), (1 ≤ k ≤ d2, 1 ≤ j ≤ m). Next define

K2 = K1(y1, . . . , ym), K3 = K1

(
x1, . . . , xd1 , u1, . . . , ud2

)
,

and letK4 be the compositum ofK2 andK3:

K4 = K1

(
y1, . . . , ym, x1, . . . , xd1 , u1, . . . , ud2

)
.

The theorems of Hermite-Lindemann (Theorem 3), Gel’fond-Schneider (Theorem 7), the six exponen-
tials Theorem 10 and their elliptic analogs due to Schneider, Lang and Ramachandra can be stated as
follows.
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Theorem 24
1. Assume(d1 + d2)m > m+ d1 + 2d2. Then the fieldK1 has transcendence degree≥ 1 overQ.
2. Assume eitherd1 ≥ 1 andm ≥ 2, or d2 ≥ 1 andm ≥ 3. ThenK2 has transcendence degree≥ 1
overQ.
3. Assumed1 + d2 ≥ 2. ThenK3 has transcendence degree≥ 1 overQ.
4. Assumed1 + d2 ≥ 1. ThenK4 has transcendence degree≥ 1 overQ.

Parts 3 and 4 of Theorem 24 are consequences of Schneider-Lang criterion [106], which deals with
meromorphic functions satisfying differential equations, while parts 1 and 2 require a criterion which
involves no differential equations. Such criteria have been given by Schneider [179,180], Lang [106]
and Ramachandra [165,166] (see also [199] and [198]).

Theorem 24 includes also Theorem 20 apart from the caseb 6= 0 in part 1 of that statement. However
there are extensions of Theorem 24 which include results on Weierstraß zeta function (and also on
Weierstraß sigma function in connection with elliptic integrals of the third kind). See [201,113,115–
117,202,172,118].

Here is a corollary of Theorem 24.

Theorem 25 LetE be an elliptic curve having algebraic invariantsg2, g3 with complex multiplication.
Let

M =

u1 u2 u3

v1 v2 v3


be a2 × 3 matrix whose entries are elliptic logarithms of algebraic numbers:ui and vi are in LE .
Assume the three columns are linearly independent overEnd(E) and the two rows are also linearly
independent overEnd(E). Then the matrixM has rank2.

In the case where the curve has no complex multiplication, a similar statement holds for2 × 5
matrices. Also in the non CM case, one deduces from Theorem 24 that such3 × 4 matrices

(
uij

)
(where℘(uij) are algebraic numbers) have rank≥ 2.

There are further lower bounds going further than2 for the rank of matrices of larger sizes but we
shall not discuss this question here. We just mention the fact that higher dimensional considerations are
relevant to a problem discussed by B. Mazur on the density of rational points on varieties [209].

4 Linear independence of numbers related with elliptic functions

From Schneider’s Theorem 20 part 1, one deduces the linear independence over the field of algebraic
numbers of the three numbers1, ω andη, whenω is a nonzero period of a Weierstraß elliptic function
(with algebraic invariantsg2 andg3) andη = η(ω) is the associated quasiperiod of the corresponding
Weierstraß zeta function. However the Gel’fond-Schneider method in one variable alone does not yield
strong results of linear independence. Baker’s method is better suited for this purpose.

4.1 Linear independence of periods and quasiperiods

Baker’s method of proof for his Theorem 9 on linear independence of logarithms of algebraic numbers
has been used as early as 1969 and 1970 by A. Baker himself [11,9] when he proved the transcendence
of linear combinations with algebraic coefficients of the numbersω1, ω2, η1 andη2 associated with an
elliptic curve having algebraic invariantsg2 andg3. His method is effective: it provides quantitative
Diophantine estimates [10]

In 1971 J. Coates [42] proved the transcendence of linear combinations with algebraic coefficients
of ω1, ω2, η1, η2 and2iπ. Further, he proved in [41,43–45] that in the non-CM case, the three numbers
ω1, ω2 and2iπ areQ-linearly independent.

From this point of view the final result has been reached by D.W. Masser in 1975 [122,123].
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Theorem 26 (Masser, 1975))Let℘ be a Weierstraß elliptic function with algebraic invariantsg2 and
g3, denote byζ the corresponding Weierstraß zeta function, letω1, ω2 be a basis of the period lattice
of ℘ and letη1, η2 be the associated quasiperiods ofζ. Then the six numbers1, ω1, ω2, η1, η2 and2iπ
span aQ-vector space of dimension6 in the non CM case,4 in the CM case:

dimQ{1, ω1, ω2, η1, η2, 2iπ} = 2 + 2dimQ{ω1, ω2}.

The fact that the dimension is4 in the CM case means that there are two independent linear relations
among these6 numbers. One of them isω2 = τω1 with τ ∈ Q. The second one (see [123]; see also
[33]) can be written

C2τη2 −ACη1 + γω1 = 0

whereA+BX + CX2 is the minimal polynomial ofτ overZ andγ is an element inQ(g2, g3, τ).
In [123], D.W. Masser also gives quantitative estimates (measures of linear independence). In 1976,

R. Franklin and D.W. Masser [130] produce an extension involving a logarithm of an algebraic number.
Further results can be found in papers by P. Bundschuh [36], S. Lang [110] (see also his surveys

[107,108]), D.W. Masser [133,131], M. Anderson [4] and in the joint paper [5] by M. Anderson and
D.W. Masser.

4.2 Elliptic analog of Baker’s Theorem

The elliptic analog of Baker’s Theorem 9 on linear independence of logarithms was proved by D.W. Masser
in 1974 [122,123] in the CM case.

His proof yields also quantitative estimates (measures of linear independence of elliptic logarithms
of algebraic points on an elliptic curve). Such estimates have a number of applications: this was shown
by A.O. Gel’fond for usual logarithms of algebraic numbers [80] and further consequences of such
lower bounds in the case of elliptic curves for solving Diophantine equations (integer points on elliptic
curves) have been derived by S. Lang [111].

Lower bounds for linear combinations of elliptic logarithms in the CM case have been obtained by
several mathematicians including J. Coates [42], D.W. Masser [124,128,129], J. Coates and S. Lang
[46], M. Anderson [4]. The work of Yu Kunrui [218] yields similar estimates, but his method is not
Baker-Masser’s one: instead of using a generalization of Gel’fond’s solution to Hilbert’s seventh prob-
lem, Yu Kunrui uses a generalization in several variables of Schneider’s solution to the same problem.
Again, this method is restricted to the CM case.

The question of linear independence of elliptic logarithms in the non CM case has been settled
only in 1980 by D. Bertrand and D.W. Masser [28,29]. They found a new proof of Baker’s Theorem 9
using functions of several variables and they succeeded to extend this argument to the situation of
elliptic functions, either with or without complex multiplication. The criterion they use is the one that
Schneider established in 1949 [178] for his proof of the transcendence of Beta values. This criterion
(revisited by S. Lang in [106]) deals with Cartesian products. From the several variables point of view,
this is a rather degenerate situation; much deeper results are available, including Bombieri’s solution in
1970 of Nagata’s Conjecture [106,202], which involves HörmanderL2-estimates for analytic functions
of several variables. But so far these deeper results do not give further transcendence results in our
context.

Theorem 27 (D.W. Masser 1974 for the CM case, D. Bertrand and D.W. Masser 1980 for the
non CM case)Let ℘ be a Weierstraß elliptic function with algebraic invariantsg2, g3 and field of
endomorphismsk. Letu1, . . . , un bek-linearly independent complex numbers. Assume, for1 ≤ i ≤ n,
that eitherui ∈ Ω or else℘(ui) ∈ Q. Then the numbers1, u1, . . . , un are linearly independent over
the fieldQ.
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This means thatfor an elliptic curveE which is defined overQ, if u1, . . . , un are elements inLE

which are linearly independent over the field of endomorphisms ofE, then the numbers1, u1, . . . , un

are linearly independent overQ.
The method of Bertrand-Masser yields only weak Diophantine estimates (measures of linear inde-

pendence of logarithms).

4.3 Further results of linear independence

Theorem 26 deals only with periods and quasiperiods associated with one lattice, Theorem 27 deals
only with elliptic logarithms of algebraic points on one elliptic curve. A far reaching generalization of
both results has been achieved by G. Wüstholz in 1987 [215–217] when he succeeded to extend Baker’s
Theorem to Abelian varieties and integrals, and, more generally, to commutative algebraic groups. If we
restrict his general result to products of a commutative linear group, of copies of elliptic curves as well
as of extensions of elliptic curves by the additive or the multiplicative group, the resulting statement
settles the questions of linear independence of logarithms of algebraic numbers, of elliptic logarithms
of algebraic points, including periods, quasiperiods, elliptic integrals of the first, second or third kind.
This is a main step towards an answer to the questions of M. Kontsevich and D. Zagier on periods [104].

Wüstholz’s method can be extended to yield measures of linear independence of logarithms of
algebraic points on an algebraic group. The first effective such lower bound were given in 1989 in [162,
163]. As a special case, they provide the first measures of linear independence for elliptic logarithms
which is also valid in the non CM case. More generally, they give effective lower bounds for any
nonvanishing linear combination of logarithms of algebraic points on algebraic groups (including usual
logarithms, elliptic logarithms, elliptic integrals of any kind).

Refinements have been obtained by N. Hirata Kohno [88–91], S. David [54], N. Hirata Kohno and
S. David [56], M. Ably [2,3] andÉ. Gaudron [78,77,79] who uses the work of J-B. Bost [30] (slope
inequalities) involving Arakelov’s Theory. For instance, thanks to the recent work of David and Hirata-
Kohno on one hand, of Gaudron on the other, one knows that the above mentioned nonvanishing linear
combinations of logarithms of algebraic points are not Liouville numbers.

In the p-adic case there is a paper of G. Rémond and F. Urfels [167] dealing with two elliptic
logarithms. The general case ofn logarithms would also deserve to be dealt with.

Further applications to elliptic curves of the Baker-Masser-Wüstholz method have been derived by
D.W. Masser and G.Ẅustholz [142,143].

A survey on questions related to the isogeny Theorem is [154]. Other surveys dealing with the
questions ofsmall points, Bogomolov conjecture and the André-Oort conjecture are [48,55]. We do not
cover these aspects of the theory in the present paper. Other related topics which would deserve more
attention are the theory of height and theta functions as well as ultrametric questions.

Extensions of the above mentioned results to Abelian varieties have been considered by D.W. Masser
[124–129,132,134–136], S. Lang [109], J. Coates and S. Lang [46], D. Bertrand and Yu.V. Flicker [26],
Yu.V. Flicker [76], D. Bertrand [23,24]. For instance J. Wolfart and G. Wüstholz [213] have shown that
the only linear dependence relations with algebraic coefficients between the valuesB(a, b) of Euler
Beta function at points(a, b) ∈ Q2 are those which follow from the Deligne-Koblitz-Ogus relations
(see further references in [212]). They deduce also the transcendence of the values at algebraic points
of hypergeometric functions with rational parameters.

5 Algebraic independence of numbers related with elliptic functions

5.1 Small transcendence degree

We keep the notations and assumptions of section 3.2.
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The following extension of Theorem 24 to a result of algebraic independence containing Gel’fond’s
1949 results (see [80]) is a consequence of the works of many a mathematician, including A.O. Gel’fond
[80], A.A. S̆melev [186,187], R. Tijdeman, W.D. Brownawell [31], W.D. Brownawell and K.K. Kubota
[33], D.W. Masser and G. Ẅustholz [139]. Further references are given in [204,205].

Theorem 28
1. Assume(d1 + d2)m ≥ 2(m+ d1 + 2d2). Then the fieldK1 has transcendence degree≥ 2 overQ.
2. Assume(d1 + d2)m ≥ m+ 2(d1 + 2d2). ThenK2 has transcendence degree≥ 2 overQ.
3. Assume(d1 + d2)m ≥ 2m+ d1 + 2d2. ThenK3 has transcendence degree≥ 2 overQ.
4. Assume(d1 + d2)m > m+ d1 + 2d2. ThenK4 has transcendence degree≥ 2 overQ.

Quantitative estimates (measures of algebraic independence) exist (R. Tubbs [190], E.M. Jabbouri
[92], Yu.V. Nesterenko [145–147]).

Further related results are due to R. Tubbs [192,191,193,194,189,190],É.Reyssat [174], M. Toyoda
and T. Yasuda [188]. See also the measure of algebraic independence given by M. Ably in [1] and by
S.O. Shestakov [181].

A survey on results related with small transcendence degree is given in [205] (see also Chapter 13
of [153]).

Again, like for Theorem 24, there is an extension of Theorem 28 which includes results on Weier-
straß zeta function. Also results on functions of several variables are known, as well as results related
to Abelian functions [206].

5.2 Algebraic independence of periods and quasiperiods

Deep results have been achieved by G.V.Čudnovs′kiı̆ starting in the 1970’s [49,50,52,51,53]. He
succeeded to prove sharp results of algebraic independence (large transcendence degree) for values
of the exponential function, generalizing Gel’fond’s Theorem 13 (previous results in this direction
were extremely limited). Also he proved strong results of algebraic independence (small transcendence
degree) related with elliptic functions. We first describe the latter. Among his other contributions are
results dealing withG-functions (see [53]; see also Y. André’s work [6,7]).

One of G.V.Čudnovs′kiı̆ ’s most spectacular contributions [49,52,53] was obtained in 1976:

Theorem 29 (G.V.Čudnovs′ki ı̆, 1976)Let℘ be a Weierstraß elliptic function with invariantsg2, g3.
Let (ω1, ω2) be a basis of the lattice period of℘ andη1 = η(ω1), η2 = η(ω2) the associated quasiperi-
ods of the associated Weierstraß zeta function. Then two at least of the numbersg2, g3, ω1, ω2, η1, η2
are algebraically independent.

In the case whereg2 andg3 are algebraic the algebraic independence of two at least of the four
numbersω1, ω2, η1, η2 is also a consequence of the next result.

Theorem 30 (G.V.Čudnovs′ki ı̆, 1976)Assumeg2 andg3 are algebraic. Letω be a non-zero period of
℘, setη = η(ω) and letu be a complex number which is not a period such thatu andω areQ-linearly
independent:u 6∈ Qω ∪Ω. Assume℘(u) ∈ Q. Then the two numbers

ζ(u)− η

ω
u,

η

ω

are algebraically independent.

From either Theorem 29 or Theorem 30 one deduces:

Corollary 31 Letω be a nonzero period of℘ andη = η(ω). If g2 andg3 are algebraic, then the two
numbersπ/ω andη/ω are algebraically independent.
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The following consequence of Corollary 31 shows that in the CM case,Čudnovs′kiı̆’s results are
sharp:

Corollary 32 Assumeg2 andg3 are algebraic and the elliptic curve has complex multiplication. Letω
be a nonzero period of℘. Then the two numbersω andπ are algebraically independent.

As a consequence of formulae (4) and (5), one deduces:

Corollary 33 The numbersπ and Γ (1/4) are algebraically independent. Also the numbersπ and
Γ (1/3) are algebraically independent.

In connexion with these result let us quote a conjecture of S. Lang in 1971 [107].

Conjecture 34If j(τ) is algebraic withj′(τ) 6= 0, thenj′(τ) is transcendental.

Since

j′(τ) = 18
ω2

1

2iπ
· g2
g3
j(τ),

Conjecture 34 amounts to the transcendence ofω2/π. Hence Corollary 32 implies that Conjecture 34
is true at least in the CM case (see [20]):

Corollary 35 If τ ∈ H is quadratic andj′(τ) 6= 0, thenπ andj′(τ) are algebraic independent.

A quantitative refinement (measure of algebraic independence) of Corollary 32 due to G. Philibert
[156] turns out to be useful in connexion with Nesterenko’s work in 1996 (further references on this
topic are given in [208]).

A transcendence measures forΓ (1/4) has been obtained by P. Philippon [160,161] and S. Bruiltet
[35]:

Theorem 36 For P ∈ Z[X,Y ] with degreed and heightH,

log |P (π, Γ (1/4)| > −10326
(
(logH + d log(d+ 1)

)
d2
(
log(d+ 1)

)2
.

Corollary 37 The numberΓ (1/4) is not a Liouville number:∣∣∣∣Γ (1/4)− p

q

∣∣∣∣ > 1
q10330 ·

Further references related toČudnovs′kiı̆’s results are papers by D. Bertrand [17] and E. Reyssat’s
[170,173] (see also the Bourbaki lecture [200] and the book of E.B. Burger and R. Tubbs [38]).

We conclude this section by the following open problem, which simultaneously generalizes Theo-
rems 29 and 30 of G.V.̌Cudnovs′kiı̆.

Conjecture 38Let ℘ be a Weierstraß elliptic function with invariantsg2, g3, letω be a non-zero period
of ℘, setη = η(ω) and letu ∈ C \ {Qω ∪Ω}. Then two at least of the five numbers

g2, g3, ℘(u), ζ(u)− η

ω
u,

η

ω

are algebraically independent.

Čudnovs′kiı̆’s method has been extended by K.G. Vasil’ev [195] and P. Grinspan [84], who proved
that two at least of the three numbersπ, Γ (1/5) andΓ (2/5) are algebraically independent. Their proof
involves the Jacobian of the Fermat curveX5 + Y 5 = Z5, which is an Abelian variety of dimension2.
See also Pellarin’s paper [155].



20

5.3 Large transcendence degree

Another important (and earlier) contribution of G.V.Čudnovs′kiı̆ is that in 1974 he succeeded to apply
Gel’fond’s method in order to prove results on large transcendence degree (see references in [53,200]).
He first proved that three at least of the numbers

αβ , αβ2
, . . . , αβd−1

(10)

are algebraically independent ifα is a nonzero algebraic number,logα a nonzero logarithm ofα and
β an algebraic number of degreed ≥ 7. The same year, by a much more difficult proof, he succeded
to prove that there exist at leastn algebraically independent numbers in the set (10), provided that
d ≥ 2n − 1. This was a remarkable achievement since no such result providing a lower bound for
the transcendence degree was known. Later, thanks to the work of several mathematicians, especially
P. Philippon, the exponential lower bound ford was reduced to a polynomial bound, until G. Diaz [57]
obtained the best know results so far: the transcendence degree is at least[(d + 1)/2]. The cased = 5
had been settled by G.V.Čudnovs′kiı̆ who also obtained elliptic analogs (see [50,52,53,200,170]).

Also G.V. Čudnovs′kiı̆ [51] succeeded in 1980 to prove the Lindemann-Weierstraß Theorem 5
by means of his extension of the Gel’fond-Schneider’s method to large transcendence degree. This
method enabled P. Philippon [157–159] and G. Wüstholz [214] in 1982 to prove the elliptic analog of
Lindemann Weierstraß Theorem on the algebraic independence ofeα1 , . . . , eαn in the CM case:

Theorem 39 Let℘ be a Weierstraß elliptic function with algebraic invariantsg2, g3 and complex mul-
tiplication. Letα1, . . . , αm be algebraic numbers which are linearly independent over the field of en-
domorphisms ofE. Then the numbers℘(α1), . . . , ℘(αn) are algebraically independent.

The same conclusion should hold also in the non-CM case – so far only the algebraic independence
of at leastn/2 of these numbers is known.

Further results on large transcendence degree are due to D.W. Masser and G. Wüstholz [140,141]
W.D. Brownawell [32], W.D. Brownawell and R. Tubbs [34] (for a survey of this topic, see [205]; see
also [153] Chap. 14).

5.4 Modular functions

Ramanujan introduced the following functions

P (q) = 1− 24
∞∑

n=1

nqn

1− qn
, Q(q) = 1 + 240

∞∑
n=1

n3qn

1− qn
, R(q) = 1− 504

∞∑
n=1

n5qn

1− qn
·

They are special cases of Eisenstein series. Recall the Bernoulli numbers:

z

ez − 1
= 1− z

2
+

∞∑
k=1

(−1)k+1Bk
z2k

(2k)!
,

B1 = 1/6, B2 = 1/30, B3 = 1/42.

Fork ≥ 2 the Eisenstein series of weightk is (compare with (3))

E2k(z) = 1 + (−1)k 4k
Bk

∞∑
n=1

n2k−1zn

1− zn
·

The connection with Ramanujan’s notation is

P (z) = E2(z), Q(z) = E4(z), R(z) = E6(z).
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The discriminant∆ and the modular invariantJ are related to these functions by

∆ = 12−3(Q3 −R2) = q
∞∏

n=1

(1− qn)24 and J = Q3/∆.

Let q be a complex number,0 < |q| < 1. There existsτ in the upper half planeH such thatq = e2iπτ .
Select any twelfth root of∆(q) and setω = 2π∆(q)1/12. The invariantsg2 andg3 of the Weierstraß℘
function attached to the lattice(Z + Zτ)ω satisfyg3

2 − 27g2
3 = 1 and

P (q) = 3
ω

π
· ηπ, Q(q) =

3
4

(ω
π

)4

g2, R(q) =
27
8

(ω
π

)6

g3.

According to formulae (4) and (5), here are a few special values (see for instance [210]).
For τ = i, q = e−2π,

P (e−2π) =
3
π
, Q(e−2π) = 3

(ω1

π

)4

, R(e−2π) = 0 and ∆(e−2π) =
1
26

(ω1

π

)12

, (11)

with

ω1 =
Γ (1/4)2√

8π
= 2.6220575542 . . .

For τ = %, q = −e−π
√

3,

P (−e−π
√

3) =
2
√

3
π

, Q(−e−π
√

3) = 0, R(−e−π
√

3) =
27
2

(ω1

π

)6

, ∆(−e−π
√

3) = − 27
256

(ω1

π

)12

,

(12)
with

ω1 =
Γ (1/3)3

24/3π
= 2.428650648 . . .

5.5 Mahler-Manin problem onJ(q)

After Schneider’s Theorem (Corollary 21) on the transcendence of the values of the modular function
j(τ), the first results on Eisenstein series (cf.§ 5.6) go back to D. Bertrand’s 1977 paper [18]. See also
his papers [17,19,21,22] and his paper with M. Laurent on values of theta functions : [27].

The first transcendence proof using modular forms is due to a team from StÉtienne (K. Barŕe-
Sirieix, G. Diaz, F. Gramain and G. Philibert ) — hence the nicknamethéor̀eme st́ephanoisfor the next
result, from [15] (see also [81,82] and Chap. 2 of [153]), which answers a conjecture of K. Mahler in
the complex case and of Yu. V. Manin in thep-adic case (we state the result only in the complex case
— the paper [15] deals with both cases).

Theorem 40 (K. Barré, G. Diaz, F. Gramain, G. Philibert, 1996)Let q ∈ C, 0 < |q| < 1. If q is
algebraic, thenJ(q) is transcendental.

The solution of Manin’s problem has several consequences. It is a tool both for R. Greenberg in his
study of zeroes ofp-adicL functions, and for H. Hida, J. Tilouine and́E. Urban in their solution of the
main Conjecture for the Selmer group of the symmetric square of an elliptic curve with multiplicative
reduction atp.

The proof of Theorem 40 involves upper bounds for the growth of the coefficients of the modular
functionJ(q). Such estimates have been produced first by K. Mahler [121]. A refined estimate, due to
G. Philibert, for the coefficientsck(m) (which are nonnegative rational integers) in

(
zJ(z)

)k =
∞∑

m=0

ck(m)zm,
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is
ck(m) ≤ e4

√
km.

As pointed out by D. Bertrand [25], the upper bound

|c̃Nk(m)| ≤ CNm12N

(0 ≤ k ≤ N ,N ≥ 1,m ≥ 1, with an absolute constantC) for the coefficients in the Taylor development
at the origin of∆2NJk:

∆(z)2NJ(z)k =
∞∑

m=1

c̃Nk(m)zm

is sufficient for the proof of Theorem 40 and is an easy consequence of a Theorem of Hecke together
with the fact that∆2 and∆2J are parabolic modular forms of weight24.

Another auxiliary lemma used in the proof of Theorem 40 is an estimate for the degrees and height
of J(qn) in terms ofJ(q) (which is assumed to be algebraic) andn ≥ 1. There exists a symmetric
polynomialΦn ∈ Z[X,Y ], of degree

ψ(n) = n
∏
p|n

(
1 +

1
p

)
in each variable, such thatΦn

(
J(q), J(qn)

)
= 0. Again, K. Mahler [120,121] was the first to investigate

the coefficients of the polynomialΦn(X,Y ): he proved that its length (sum of the absolute values of
the coefficients) satisfies

L(Φn) ≤ ecn3/2

with an absolute constantc. In the special casen = 2m he improved his result

L(Φn) ≤ 257nn36n if n = 2m,

and claimed (see [120] p. 97) that if the sharper upper bound

L(Φn) ≤ 2Cn if n = 2m,

with a positive absolute constantC > 0, were true, he could prove Theorem 40. However in 1984
P. Cohen [47] produced asymptotic estimates which show that Mahler’s expectation was too optimistic:

lim
n=2m

m→∞

1
n log n

logL(Φn) = 9.

In fact she proved more precise results, without the conditionn = 2m, which imply for instance
logL(Φn) ∼ 6ψ(n) log n for n→∞.

Further related results are given in [61] (G. Diaz and G. Philibert) for thej-function and [138]
(D.W. Masser) for℘-function.

The proof of [15] can be adapted to yield quantitative estimates [13,14].
A Corollary to Theorem 40 on the transcendence ofJ(q) is the following mixed analog of the four

exponentials Conjecture 12:

Corollary 41 Let logα be a logarithm of a non-zero algebraic number. LetZω1 +Zω2 be a lattice with
algebraic invariantsg2, g3. Then the determinant∣∣∣∣∣∣

ω1 logα

ω2 2iπ

∣∣∣∣∣∣
does not vanish.
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The four exponentials conjecture for the product of an elliptic curve by the multiplicative group is
the following more general open problem:

Conjecture 42Let ℘ be a Weierstraß elliptic function with algebraic invariantsg2, g3. Let E be the
corresponding elliptic curve,u1 andu2 be two elements inLE andlogα1, logα2 be two logarithms of
algebraic numbers. Assume further that the two rows of the matrix

M =
(
u1 logα1

u2 logα2

)
are linearly independent overQ. Then the determinant ofM does not vanish.

Another special case of Conjecture 42, stronger than Corollary 41, is the next question of Yu. V.
Manin:

Conjecture 43 (Yu.V. Manin)Let logα1 andlogα2 be two non-zero logarithms of algebraic numbers
and letZω1 + Zω2 be a lattice with algebraic invariantsg2 andg3. Then

ω1

ω2
6= logα1

logα2
.

In this direction let us quote some of the open problems raised by G. Diaz [59,60].

Conjecture 44 (G. Diaz)
1. For anyz ∈ C with |z| = 1 andz 6= ±1, the numbere2iπz is transcendental.
2. If q is an algebraic number with0 < |q| < 1 such thatJ(q) ∈ [0, 1728], thenq ∈ R.
3. The functionJ is injective on the set of algebraic numbersα with 0 < |α| < 1.

Remark (G. Diaz). The third part 3 of Conjecture 44 implies the two first ones, it follows from the four
exponentials Conjecture 12, also it follows from the next Conjecture of D. Bertrand.

Conjecture 45 (D. Bertrand)If α1 andα2 are two multiplicatively independent algebraic numbers
in the domain{z ∈ C ; 0 < |z| < 1}, then the two numbersJ(α1) and J(α2) are algebraically
independent.

This Conjecture 45 implies the special case of the four exponentials Conjecture 12, where two of
the algebraic numbers are roots of unity and the two others have modulus6= 1.

5.6 Nesterenko’s Theorem

In 1976 [17], D. Bertrand pointed out that Schneider’s Theorem 20 implies:
For anyq ∈ C with 0 < |q| < 1, one at least of the two numbersQ(q), R(q) is transcendental.

Two years later [19], he noticed that G.V.Čudnovs′kiı̆’s Theorem 29 yields:
For any q ∈ C with 0 < |q| < 1, two at least of the numbersP (q), Q(q), R(q) are algebraically
independent.

The following result of Yu.V. Nesterenko [148,149] (see also [208,151,210,152] as well as Chap. 3
and 4 of [153]) goes one step further:

Theorem 46 (Nesterenko, 1996)For anyq ∈ C with 0 < |q| < 1, three at least of the four numbersq,
P (q),Q(q),R(q) are algebraically independent.
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Among the tools used by Nesterenko in his proof is the following result due to K. Mahler [119] (see
also Chap. 1 of [153]):

The functionsP ,Q,R are algebraically independent overC(q).
Also he uses the fact (see again Chap. 1 of [153]) that they satisfy a system of differential equations

for D = q d/dq:

12
DP

P
= P − Q

P
, 3

DQ

Q
= P − R

Q
, 2

DR

R
= P − Q2

R
·

One of the main steps in his original proof [149] is his following zero estimate:

Theorem 47 (Nesterenko’s zero estimate)LetL0 andL be positive integers,A ∈ C[z,X1, X2, X3] a
nonzero polynomial in four variables of degree≤ L0 in z and≤ L in each of the three other variables
X1, X2, X3. Then the multiplicity at the origine of the analytic functionA

(
z, P (z), Q(z), R(z)

)
is at

most2 · 1045L0L
3.

In the special case whereJ(q) is algebraic, P. Philippon [161] produced a simpler proof where this
zero estimate 47 is not used; in place of it he uses Philibert’s measure of algebraic independence for
ω/π andη/π (see [156] and§ 5.2 above).

Using (11) one deduces from Theorem 46

Corollary 48 The three numbersπ, eπ, Γ (1/4) are algebraically independent.

while using (12) one deduces

Corollary 49 The three numbersπ, eπ
√

3, Γ (1/3) are algebraically independent.

Consequences of Corollary 48 are the transcendence of the numbers

σZ[i](1/2) = 25/4π1/2eπ/8Γ (1/4)−2

and (P. Bundschuh [37])
∞∑

n=0

1
n2 + 1

=
1
2

+
π

2
· e

π + e−π

eπ − e−π
·

D. Duverney, K. and K. Nishioka, and I. Shiokawa [62,63,65,64,66,67] as well as D. Bertrand [25]
derived from Nesterenko’s Theorem 46 a number of interesting corollaries, including the following
ones.

Corollary 50 Rogers-Ramanujan continued fraction:

RR(α) = 1 +
α

1 +
α2

1 +
α3

1 + ...

is transcendental for any algebraicα with 0 < |α| < 1.

Corollary 51 Let (Fn)n≥0 be the Fibonacci sequence:F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2. Then the
number

∞∑
n=1

1
F 2

n

is transcendental.
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Jacobi Theta Series are defined by

θ2(q) = 2q1/4
∑
n≥0

qn(n+1) = 2q1/4
∞∏

n=1

(1− q4n)(1 + q2n),

θ3(q) =
∑
n∈Z

qn2
=

∞∏
n=1

(1− q2n)(1 + q2n−1)2,

θ4(q) = θ3(−q) =
∑
n∈Z

(−1)nqn2
=

∞∏
n=1

(1− q2n)(1− q2n−1)2.

Corollary 52 . Let i, j andk ∈ {2, 3, 4} with i 6= j. Let q ∈ C satisfy0 < |q| < 1. Then each of the
two fields

Q
(
q, θi(q), θj(q), Dθk(q)

)
and Q

(
q, θk(q), Dθk(q), D2θk(q)

)
has transcendence degree≥ 3 overQ.

As an example,for an algebraic numberq ∈ C with 0 < |q| < 1, the number

θ3(q) =
∑
n∈Z

qn2

is transcendental.The numberθ3(q) was explicitly considered by Liouville in his 1844 memoir (see
[153] p.30).

The proof of Yu.V. Nesterenko is effective and yields quantitative refinements (measures of alge-
braic independence): [150,161,83].

5.7 Further open problems

Among many open problems, we mention

– the algebraic independence of the three numbersπ, Γ (1/3), Γ (1/4).
– the algebraic independence of at least three numbers amongπ, Γ (1/5), Γ (2/5), eπ

√
5.

– the algebraic independence of the four numberse, π, eπ andΓ (1/4).

The main conjectures in this domain are due to S. Schanuel, A. Grothendieck, Y. André [8] and
C. Bertolin [16]. The proof of the algebraic independence ofπ andeπ requires elliptic and modular
functions. One may expect that higher dimensional objects (Abelian varieties, motives) should be in-
volved to go further. In this respect we conclude by alluding to the remarkable progress which have been
achieved recently in finite characteristic (after the works by Jing Yu, G.W. Anderson and D. Thakur,
L. Denis, W.D. Brownawell, J.F. Voloch, M. Papanikolas among others).
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