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Abstract Transcendental numbers form a fascinating subject: so little is known about the nature of
analytic constants that more research is needed in this area. Even if one is interested only in numbers
related to the classical exponential function, likande™, one finds that elliptic functions are required

to prove transcendence results and get a better understanding of the situation.

We first briefly recall some of the basic transcendence results related to the exponential function
(section 1). Next in section 2 we survey the main properties of elliptic functions that are involved in
transcendence theory.

We survey transcendence theory of values of elliptic functions in section 3, linear independence
in section 4 and algebraic independence in section 5. This splitting is somewhat artificial but conve-
nient. Also we restrict ourselves to elliptic functions, even when many results are only special cases of
statements valid for abelian functions. A number of related topics are not considered here (e.g. heights,
p-adic theory, theta functions, diophantine geometry on elliptic curves,...).
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1 Exponential Function and Transcendance

We start with a very brief list of some of the main transcendence results concerning numbers related to
the exponential function. References are for instance [183, 80,180, 106,166,12,202, 75].

Next we point out some properties of the exponential function, the elliptic analog of which we shall
later consider{2.1).
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1.1 Short survey on the transcendence of numbers related to the exponential function
1.1.1 Hermite, Lindemann and Weierstraf3

The first transcendence result for a number related to the exponential function is Hermite’s Theorem on
the transcendence ef

Theorem 1 (Hermite, 1873))The numbee is transcendental.

This means that for any non-zero polynomfak Z[X], the numbetP(e) is not zero. We denote by
Q the set of algebraic numbers. Hence Hermite’s Theorem can be weitg@. A complex number
is calledtranscendentaif it is transcendental ove®, or overQ, this is the same. Also we shall say that
complex numbers arglgebraically independerit they are algebraically independent ov@rwhich is

the same as ovép.
The second result in chronological order is Lindemann’s Theorem on the transcendence of

Theorem 2 (Lindemann, 1882)The numbetr is transcendental.
The next result contains the transcendence of both nunatserdr:

Theorem 3 (Hermite-Lindemann, 1882)For o € Q" any non-zero logarithrtvg a of « is transcen-
dental.

We denote by the Q-vector space of logarithms of algebraic numbers:
L= {loga; e G@X} = {86 C; e G@X} :expfl(@x).
Hence Theorem 3 measn Q = {0}. An equivalent statement is:

Theorem 4 (Hermite-Lindemann, 1882)For any g € Q”, the numbee” is transcendental.

The first result of algebraic independence for the values of the exponential function goes back to
the end of XIXth century.

Theorem 5 (Lindemann-Weierstraf3, 1885).etj3,, ..., 5, beQ-linearly independent algebraic num-
bers. Then the numbee§: , . .., ¢’ are algebraically independent.

Again, there is an equivalent way of stating Theorem 5: it amounts to a statement of linear indepen-
dence.

Theorem 6 (Lindemann-Weierstral3, 1885) et,...,v,, be pairwise distinct algebraic numbers.
Then the numbers, ... e¥ are linearly independent ovép.

It is not difficult to check that Theorem 6 is equivalent to Theorem 5 with the conclusion that
e’ ..., P are algebraically independent ov@r since it is equivalent to say thaf', . .., %~ are al-
gebraically independent ov€l, one does not lose anything if one changes the conclusion of Theorem 6
by stating that the numbees:, ..., e’ are linearly independent ove.



1.1.2 Hilbert’s seventh problem, Gel'fond and Schneider

The solution of Hilbert's seventh problem on the transcendenee’ dfas been obtained by Gel'fond
and Schneider in 1934 (see [80,180]).

Theorem 7 (Gel'fond-Schneider, 1934Jor « and 3 algebraic numbers witlx £ 0 and 8 ¢ Q and
for any choice ofog a # 0, the numbern® = exp(Blog «) is transcendental.

This means that the two algebraically independent functié@sde’> cannot take algebraic values
at the pointlog o (A.O. Gel'fond) and also that the two algebraically independent functioaad
o® = e*1°8 @ cannot take algebraic values at the poeint- n3 with (m,n) € Z? (Th. Schneider).
Examples, quoted by D. Hilbert in 1900, of numbers whose transcendence follow from Theo-
rem 7 are2V2 ande™ (recalle’™ = —1). The transcendence ef had been proved already in 1929
by A.O. Gel'fond.
Here is an equivalent statement to Gel'fond-Schneider Theorem 7:

Theorem 8 (Gel'fond-Schneider, 1934} et log a4, log as be two non-zero logarithms of algebraic
numbers. Assume that the quotiéliot; o1 ) /(log o) is irrational. Then this quotient is transcendental.

1.1.3 Linear independence of logarithms of algebraic numbers

The generalization of Theorem 8 to more than two logarithms, conjectured by A.O. Gel'fond [80], has
been proved by A. Baker in 1966. His results includes not only Gel'fond-Scheider’s Theorem 8 but also
Hermite-Lindemann’s Theorem 3.

Theorem 9 (Baker, 1966)Let log oy, ..., log a,, be Q-linearly independent logarithms of algebraic
numbers. Then the numberdog as, . . ., log o, are linearly independent over the fieldl

1.1.4 The six exponentials Theorem and the four exponentials conjecture

The next result, which does not follow from any of the previously mentioned results, has been proved
independently in the 60's by C.L. Siegel, A. Selberg, S. Lang and K. Ramachandra (see for instance
[106,165,166,207]; see also Problem 1 in [180] for the four exponentials conjecture).

Theorem 10 (Six exponentials Theoremletz, ...,z beQ-linearly independent complex numbers
and lety, ..., y, beQ-linearly independent complex numbers. Assiéthe ¢ + d. Then one at least
of the/d numbers

e”¥i, (1<i<d, 1<;j<¥)

is transcendental.

Notice that the conditiodd > ¢ 4+ d can be written{ > 2 andd > 3) or (¢ > 3 andd > 2); it
suffices to consider the caé@ = 6 (hence the name of the result). Therefore Theorem 10 can be stated
in another equivalent form:

Theorem 11 (Six exponentials Theorem - logarithmic form)Let
log a1 log s log ag
M =
log 1 log B2 log B3
be a2 by 3 matrix whose entries are logarithms of algebraic numbers. Assume the three columns are

linearly independent ove® and the two rows are also linearly independent o@erThen the matrix
M has rank2.



It is expected that the conditiofY > d + ¢ in Theorem 10 is too restrictive and that the same
conclusion holds in casé= ¢ = 2. We state this conjecture in the logarithmic form:

Conjecture 12 (Four exponentials conjecture - logarithmic fobr@)

log a1 log ap
M =
log 31 log 32

be a2 by 2 matrix whose entries are logarithms of algebraic numbers. Assume the two columns are
linearly independent ovep and the two rows are also linearly independent d¥efrhen the matrix(/
has rank.

1.1.5 Algebraic independence

In 1949 A.O. Gel'fond extended his solution of Hilbert's seventh problem to a result of algebraic inde-
pendence [80]. One of his theorems is that the two nunib¥étsand2 V2 are algebraically independent.

His general statements can be seen as extensions of Theorem 10 into a result of algebraic independence
(in spite of the fact that the six exponentials Theorem 10 was stated and proved only several years later).
In his original work Gel'fond needed a stronger assumption, namely a measure of linear independence
of thez;’s as well as of thgy;’s. This assumption was removed in the early 70's by R. Tijdeman (see

for instance [31,204,205,211])).

Theorem 13 Let z4,...,24 be Q-linearly independent complex numbers and get.. .y, be Q-
linearly independent complex numbers.
1.1fd¢ > 2(d + ¢), then two at least of thé/ numbers
emili (1<i<d, 1<j<¥)
are algebraically independent.
2.1fd¢ > d + 2¢, then two at least of thél + d numbers
z;, €¥iYi, (1<i<d, 1<j<0)
are algebraically independent.
3. Ifd¢ > d + ¢, then two at least of thél + d + ¢ numbers
zi, yj, €7, (1<i<d, 1<j <)
are algebraically independent.
4.1fd = ¢ = 2 and if the two numbers**¥* ande*'¥2 are algebraic, then two at least of tilenumbers
1, T2, Y1, Y2, exzyla er2y?

are algebraically independent.

From the last part of Theorem 13, taking = y; = iw andz, = yo = 1, one deduces that at least
one of the two following statements is true:
() The numbee™ is transcendental.
(ii) The two numbers andr are algebraically independent.

One expects that both statements are true.

If it were possible to prove that, under the assumptions of Theorem 13, two at leas8ofuhders

Z1, T2, Y1, Y2, e$1y17 e$1y27 612y17 e*2y?

are algebraically independent, one would deduce the algebraic independence or the two ruanbers
e™ (takex; = 1,z =1, y; = 7, yo = 4w, See Corollary 48 below).
For results concerninigrrge transcendence degresees 5.3 below.



1.2 The Exponential function

The exponential function
exp: C — C*

z — e*
satisfies both a differential equation and an addition Theorem:
.
dz

It is a homomorphism of the additive gro@pof complex numbers onto the multiplicative groGp of
nonzero complex numbers, with kernel

e, eF1teze — o272

ker exp = 2i7Z,

hence it yields an isomorphism between the quotient additive gtgtapnZ and the multiplicative
groupC*.

The groupC* is the group of complex points of the multiplicative groGp,; = — e is the
exponential function of the multiplicative grot@,,. We shall replace this algebraic group by an elliptic
curve. We could replace it also by other commutative algebraic groups. For instance the exponential
function of the additive grouf,, is

C—-C

Z =z

Further examples are commutative linear algebraic groups (over an algebraically closed field, these are
nothing else than products of several copies of the additive and multiplicative group), Abelian varieties
and in full generality they are extensions of Abelian varieties by commutative linear algebraic groups.
See for instance [106,202, 137].

2 Elliptic curves and elliptic functions

Among many references for this section are the books by S. Lang [112], K. Chandrasekharan [39] and
J. Silverman [184,185]. See also the book by M. Hindry and J. Silverman [87].

2.1 Basic concepts

An elliptic curve may be defined as

a connected compact Lie group of dimension

a complex toru€/ 2 where(2 is a lattice inC,

a Riemann surface of gentis

a nonsingular cubic iz (C),

an algebraic group of dimensidnwith underlying projective algebraic variety.

We shall use the Weierstraf3 form
E= {(u Sx oY) yiu = 43 — gozu® —9311,3} C Ps.

Here g, andgs; are complex numbers, with the only assumptign# 27¢%, which means that the
discriminant of the polynomialX® — g, X — g3 does not vanish.

A parametrization of the complex poinEg C) of E is given by means diVeierstral3 elliptic function
p, which satisfies the differential equation

0% =40 — g2 — g3, 1)



has a double pole at the origin with principal paft? and satisfies also an addition theorem

p(zl + 2;2) = —p(zl) — @(22) + 1 . (@/(21) — @/(22)>2 |
4\ p(z1) — p(22)
The exponential map of the Lie grod(C) is
expp : C — E(C)

2z (1:p(2) : 0/ (2)).
The kernel of this map is lattice in C (that means a discrete raglsubgroup),
2 =kerexpy ={w € C; p(z+w) = p(2)} = Zw; + Zw,.

Henceexp; induces an isomorphism between the quotient additive giyupandE(C). The elements
of 2 are theperiods of . A pair (wy,w2) of fundamental periods is given by

%:2/ S — (i=1,2)
ei VAP —gat — g3
where )
4t3 — ggt — g3 = 4(t — 81)(t — 62)(t — 63).
Indeed, sincey is periodic and odd, it vanishesat /2, w,/2 and(w; + ws)/2, hence the values gf
at these points are the three pairwise distinct complex nunahees andes.

Conversely, given a lattic®, there is a unique Weierstral? elliptic functipp whose period lattice
is (2 (see§ 2.5). We denote its invariants in the differential equation (1y4y2) andgs(£2).

We shall be interested mainly (but not only) with elliptic curves which are defined over the field of
algebraic numbers: they have a Weierstral3 equation with algebraiag;. However we shall also use
the Weierstral3 elliptic function associated with the latticée where\ € C* may be transcendental;
the relations are

pan(Az) = A %p0a(2), 92(A2) = A 1g2(92), g3(A2) = A"0g3(92). 2)
The latticef? = Z + Zr, wherer is a complex number with positive imaginary part, has
92(Z + 7Z1) = 60G5(T) and g¢3(Z+ Z7) = 140G5(7),
whereGy, (1) are the Eisenstein series

Gp(r) =7 Z (m 4 n7) "2k, 3)
(m,n)€Z2\{(0,0)}

2.2 Morphisms between elliptic curves. The modular invariant

If 2 and(?’ are two lattices irC and if f : C/£2 — C/{2’ is an analytic homomorphism, then the map
C — C/2 — C/ 2 factors through a homothety — C given by some\ € C such that\? C 2’:

c 2. C

!
C/2 —— /2

If f=£0,then) € C* andf is surjective.
Conversely, if there exists € C such that\2 C 2/, thenf,(z + 2) = Az + 2’ defines an analytic
surjective homomorphisif, : C/2 — C/£2’. In this case\(? is a subgroup of finite index if?’, hence



the kernel off, is finite and there existg € C* with 2’ C 2: the two elliptic curve /2 andC/’
areisogeneous

If 2 and* are two latticesp andp* the associated Weierstral elliptic functions gndgs the
invariants ofyp, the following are equivalent:
(i) There is a squar2 x 2 matrix with rational coefficients which maps a basigbfo a basis of2*.
(i) There exists\ € Q* such that\2 C 2*.
(iii) There exists\ € Z \ {0} such that\f2 C £2*.
(iv) The two functionsp andp* are algebraically dependent over the fi€lf-, g3).
(v) The two functiongo andp* are algebraically dependent ov@r

The mapf, is an isomorphism if and only X2 = (2’.

The number

1728g§’
G T

is themodular invariantof the elliptic curveE. Two elliptic curves ovefC are isomorphic if and only
if they have the same modular invariant.
Setr = wy/wy, ¢ = €™ andJ(e?™) = j(7). Then

o0 qm 3
_ -1 3 n\—24
J(q) =q <1+240n;m1_qm> [Ta-e

n=1

1
= = 4744+ 196884 ¢ + 21493760 ¢* + - - -
q

2.3 Endomorphisms of an elliptic curve; complex multiplication

Let {2 be a lattice inC. The set of analytic endomorphisms@f (2 is the subring
End(C/02) = {fr; A€ C with A2 C 2}

of C. We call it also the ring of endomorphisms of the associated elliptic curve, or of the corresponding
Weierstraly function and we identify it with the subring

{xeC ;M2 cn}

of C. Thefield of endomorphismss the quotient fieldEnd(C/$2) ®z Q of this ring.

If A € C satisfiesAf2 C (2, then\ is either a rational integer or else an algebraic integer in an
imaginary quadratic field. In this cage,(\z) is a rational function ob,(z), such that the degree of
the numerator is\? if A\ € Z and N()\) otherwise (whereV is the norm of the imaginary quadratic
field); the degree of the denominatoni$— 1 if A € Z andN()\) — 1 otherwise.

Let E be the elliptic curve attached to the Weierstgaffunction. The ring of endomorphisms
End(FE) of E is eitherZ or else an order in an imaginary quadratic fiéldThe latter case arises if
and only if the quotient = w9 /w; of a pair of fundamental periods is a quadratic number; in this
case the field of endomorphisms Bfis k = Q(7) and the curveE hascomplex multiplicationThis
means also that the two functiop$z) andp(7z) are algebraically dependent. In this case, the value
j(7) of the modular invariang is an algebraic integer of degree the class nunibef the quadratic
fieldk = Q(7).

Remark 14From Theorem 7 one deduces the transcendence of the number
e™V163 — 262 537 412 640 768 743.999 999 999 999 2. . ..

If we set
1+12v/163 .
S + 22 , — p2imT _ _ —7wV163



then the class numbérof the imaginary quadratic fiel@(7) is 1, we havej(r) = —(640 320)® and
‘j(T) - % - 744‘ <1072

Let p be a Weierstral? elliptic function with field of endomorphigmblencek = Q if the associated
elliptic curve has no complex multiplication, whikeis an imaginary quadratic field otherwise, namely
k = Q(r), wherer is the quotient of two linearly independent periodgootet v, ..., us be nonzero
complex numbers. Then the functiop$u,z), ..., p(uqz) are algebraically independent (ov&ror
overQ(g2, g3), this is equivalent) if and only if the numbets, ..., uy are linearly independent over
k. This generalizes the fact thatz) andp(72) are algebraically dependent if and only if the elliptic
curve has complex multiplication. Much more general and deeper results of algebraic independence of
functions (exponential and elliptic functions, zeta functions,. . .) have been proved by W.D. Brownawell
and K.K. Kubota [33].

If pis aWeierstral3 elliptic function with algebraic invariapgsandgs, if E is the associated elliptic
curve and ifk denotes its field of endomorphisms, then the set

Lp=02U{ueC\2; pu)cQ}

is ak-vector subspace d@: this is the set oélliptic logarithms of algebraic points oA. It plays a role
with respect taZ similar to the role of for the multiplicative groug,,,.

Let k = Q(v/—d) be an imaginary quadratic field with class numhé#) = h. There are: non-
isomorphic elliptic curves’y, . . ., E;, with ring of endomorphisms the ring of integerstofThe num-
bersj(E;) are conjugate algebraic integers of degteeach of them generates the Hilbert class field
H of k (maximal unramified Abelian extension &J. The Galois group of/k is isomorphic to the
ideal class group of the ring of integers/of

Since the group of roots of units of an imaginary quadratic fielg-i$, +1} except forQ(:) and
Q(0), wheregp = ¢%'7/3 it follows that there are exactly two elliptic curves o@(up to isomorphism)
having an automorphism group bigger thanl, +1}. They correspond to Weierstral3 elliptic functions
o for which there exists a complex numbets +1 with \2p(\2) = p(2).

The first one hags; = 0 andj = 1728. A pair of fundamental periods of the elliptic curve

Y2t = 4o — dat?.

is given by
o odt 1 _I(1/4)? .

The latticeZ][i] hasgs = 4w}, hence
N r(1/4)8
4 _
Z (m + ni) =% 5.5 .2
(m,n)€Z2\{(0,0)}
The second one hag = 0 andj = 0. A pair of fundamental periods of the elliptic curve

vt = 423 — 43,

is
I e _I(1/3)3 B
wy = /1 N gB(l/G, 1/2) = 51/3 and  wgp = pw;. (5)
The latticeZ[o] hasgs = 4w¢, hence
e I'(1/3)8
g o= T

(m;n)€22\{(0,0)}



These two examples involve special values of Euler Gamma function

I'(z)= /OOO et % =e 777! ﬁ (1 + %)_1 e/, (6)

while Euler Beta function is

I(a)I(b)

B(a,b) = Tatb) = /0 22711 — 2) L.

More generally, the formula of Chowla and Selberg (1966) [40] (see also [85,103,102,86,203] for
related results) expresses periods of elliptic curves with complex multiplication as products of Gamma
values:if k£ is an imaginary quadratic field an@ an order ink, if E is an elliptic curve with complex
multiplication by ©, then the corresponding lattic® determines a vector spade ®z Q which is
invariant under the action of and thus has the forrh - w for somew € C* defined up to elements in

k*. In particular if O is the ring of integer&;, of k, then

w=aT H I(a/d)ve@)/4h

0<a<d
(a,d)=1

wherea is a nonzero algebraic number, is the number of roots of unity it & is the class number of
k, € is the Dirichlet character modulo the discriminadibf .
2.4 Standard relations among Gamma values

Euler Gamma function satisfies the following relations
(Translation):

I'(z+1)=2I(2)

(Reflexion):

™

PP -2) = sin(mz)

(Multiplication): For any positive integet,
n—1 k
H r (z + ) = (2m) (/2 (/D P (),
n
k=0

D. Rohrlich conjectured that any multiplicative relation among Gamma values is a consequence of
these standard relations, while S. Lang was more optimistic (see for instance [212]).

Conjecture 15 (D. Rohrlichiny multiplicative relation
7_‘_b/2 H F(a)ma c @
acQ

with b andm, in Z is a consequence of the standard relations.

Conjecture 16 (S. Lang)ny algebraic dependence relation among the numi@ers/21"(a) with
a € Qs in the ideal generated by the standard relations.
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2.5 Quasiperiods of elliptic curves and elliptic integrals of the second kind

Let 2 = Zw, + Zw+ be a lattice inC. TheWeierstrald canonical producattached to this lattice is the
entire functions(, defined by

zZ 22
oa(z) =2 H (1—5)@5“‘2&.

weN2\{0}

It has a simple zero at any point 6f
Hence Weierstral? sigma function plays, for the lattizehe role of the functiom =7 I"(—z)~* for
the natural integer = {0, 1, 2, ... } (see the infinite product (6) for Euler Gamma function), and also

the role of the function
—1 s < z/n
7 sin(wz) = 2 |e| ( e

for the setZ of rational integers.

The Weierstral3 sigma functienassociated with a lattice i is an entire function obrder 2:

1
lim sup Toor -loglog sup |o(z)] = 2;

r—00 g |z|=r

the productr2p is also an entire function of ordér(this can be checked using infinite products, it is
easier to use the quasiperiodicityof see formula (7) below).
The logarithmic derivative of the sigma functionM¢eierstrald zeta functiofi = ¢’ /o whose Lau-

rent expansion at the origin is
_ 1 § 2k—1
C(Z) - p + Skz 9

where
sp=s5(02) = Z w2k = WG (T)

wen
w#0

form € Z, m > 2 (recall (3)).
The derivative of] is —p. From

p" = 6p> — (92/2)

one deduces that,(2) is a homogenous polynomial i@[g2, g3] of weight2k wheng, has weightt
andgs; weight6.
As a side remark, we notice that for amye C \ 2 we have

Q(g2,93) € Q(p(u), ¢ (u), 9" (u)).

Since its derivative is periodic, the functigris quasiperiodicfor eachw € (2 there is a) = n(w) such
that

((z+w) =((2) +.

These numbers are thequasiperiodsof the elliptic curve. If(w;,w-) is a pair of fundamental periods
and if we set); = n(w;) andn, = n(w.), then, for(a, b) € Z2,

n(awy + bwe) = any + bns.

Coming back to the sigma function, one deduces

o(z+w;) =—0(z) exp(r]i (z+ (wz/Z))) (i=1,2). @
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The zeta function also satisfies an addition Theorem:
' (21) — ' (22)
p(21) — p(22)

Legendre relation relating the periods and the quasiperiods

(o + 22) = (1) + () 5

wom — w1 = £2im

can be obtained by integratirgg~) on the boundary of a fundamental parallelogram.
In the case of complex multiplication,4fis the quotient of a pair of fundamental periods:pthen
the function((7z) is algebraic over the fiel@ (g2, g3, 2, p(2),((2)).
ExamplesFor the curvey®t = 42% — 4xt? the quasiperiods attached to the above mentioned pair of
fundamental periods (4) are

T 27)3/2 .
m=—= l(ﬂ(l)/zl)z’ T2 = =13 8)

w1
it follows that the fieldsQ(w1, w2, 71, 72) and@(w, F(1/4)) have the same algebraic closure o@er
hence the same transcendence degree. For the gttrvedz® — 4¢3 with periods (5) they are

2 27/372

— — _ 2
m= N 31/2F(1/3)3, N2 = 0N 9)

In this case the field®(w1, wa, 71, 72) and(@(w, F(1/3)) have the same algebraic closure oRehence
the same transcendence degree.

2.6 Elliptic integrals

Let
E={(x:y:t) €Pyy’t = 42> — gout® — g5t3}

be an elliptic curve. The field of rational (meromorphic) functions€amverC is C(€£) = C(p, ¢’) =
C(z,y) wherex andy are related by the cubic equatigh = 422 — gox — g3. Under the isomorphism
C/2 — E(C)given by(1 : p : ¢'), the differential formdz is mapped taixz/y. The holomorphic
differential forms onC/ (2 are\dz with A € C.

The differential formd¢ = ¢’/¢ is mapped to-xdz/y. The differential forms of second kind on
E(C) areadz + bd¢ + dy, wherea andb are complex numbers and € C(z,y) is a meromorphic
function on€.

Assume the elliptic curvé is defined overQ: the invariantsy, andgs are algebraic. We shall be
interested with differential forms which are defined o@efThose of second kind arelz + bd(¢ + dy,
wherea andb are algebraic numbers ande Q(z, y).

An elliptic integral is an integral

/R(Jj, y)dx

whereR is a rational function of andy, while y? is a polynomial inz of degrees or 4 without multiple
roots. One may transform this integral as follows: one reduces to an integkaf of P(x) whereP is
a polynomial of3rd or 4th degree; in cas® has degred one replaces it with a degr&gpolynomial
by sending one root to infinity; finally one reduces to a Weierstral3 equation by means of a birational
transformation. The value of the integral is not modified.

For transcendence purposes, if the initial integral is defined @yénen all these transformations
involve only algebraic numbers.



12

3 Transcendence results of numbers related with elliptic functions

3.1 Elliptic analog of Lindemann’s Theorem on the transcendeneeaoid of Hermite-Lindemann
Theorem on the transcendencd@f «.

The first transcendence result on periods of elliptic functions was proved by C.L. Siegel [182] as early
as 1932.

Theorem 17 (Siegel, 1932)et o be a Weierstral elliptic function with period latti¢gs; + Zw,.
Assume that the invariants and g5 of p are algebraic. Then one at least of the two numbersu, is
transcendental.

One main feature of Siegel’s proof is that he used Dirichlet’s box principle (the so-called Thue-
Siegel Lemma which occurs in his 1929 paper) to construct an auxiliary function. This idea turned out
to be critical for the solution of Hilbert's seventh problem by Gel'fond and Schneider two years later.

In the case of complex multiplication, it follows from Theorem 17 tiay non-zero period g is
transcendental.

From formulae (4) and (5) it follows as a consequence of Siegel’'s 1932 result [182] that both num-
bersI’(1/4)*/m andI'(1/3)3 /= are transcendental.

Other consequences of Siegel’s result concern the length of an arc of an ellipse [183, 180]:

b 2,2
a“x
2/_}}\/1—1—71)47&9:2 dz

as well as the perimeter of the lemniscaté + 32)? = 2a%(z? — y?).
A further example [183] is the transcendence of values of hypergeometric series related to elliptic
integrals

1 dx
k(=) = /0 VA1 222

:g- 2Py (172,172 1] 2%),

where, F; denotes Gauss hypergeometric series

L (a)n(b)y 2"
QFl(a, b; C’Z)_Z()(c)(n)n'
n=0
with (a), = ala+1)---(a+n—1).

Further results on this topic were obtained by Th. Schneider [176] in 1934 and then in a joint work
by K. Mahler and J. Popken [164] in 1935 using Siegel’s method. These results were superseded by
Th. Schneider’s fundamental memoir [177] in 1936 where he proved a number of definitive results on
the subject, including:

Theorem 18 (Schneider, 1936Assume that the invariants andgs of o are algebraic. Then for any
nonzero periodv of g, the numbersy andn(w) are transcendental.

It follows from Theorem 18 that any non-zero period of an elliptic integral of the first or second
kind is transcendental:
Corollary 19 Let& be an elliptic curve ove®, p; andp, two algebraic points 08 (Q), w a differential
form of first or second kind of which is defined ove®, holomorphic atp; andp, and is not the
differential of a rational function. Let be a path or¢ of origin p; and endp,. In casep; = ps one
assumes that is not homologous t06. Then the number

[

is transcendental.
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Examples:Using Corollary 19 and formulae (8) and (9), one deduces that the numbers
ra/4)*/=* and I1(1/3)%/x*

are transcendental.
The main results of Schneider's 1936 paper [177] are as follows (see also [180]):

Theorem 20 (Schneider, 1936)

1.If p is a Weierstral} elliptic function with algebraic invarianjs, gs and if 3 is a non-zero algebraic
number, therg is not a pole ofp and () is transcendental.

More generally, ifa andb are two algebraic numbers witfu, b) # (0, 0), then for anyu € C\ 2 one
at least of the two numbegs(u), au + b{(u) is transcendental.

2.1f p and p* are two algebraically independent elliptic functions with algebraic invariantss, gs,
g3, if t € Cis a pole neither ofo nor of p*, then one at least of the two number&) and p*(t) is
transcendental.

3.1f p is a WeierstraB elliptic functions with algebraic invariants gs, for anyt € C\ {2 one at least
of the two numberg(t), ! is transcendental.

It follows from Theorem 20.2 that the quotient of an elliptic integral of the first kind (between
algebraic points) by a nonzero period is either in the field of endomorphisms (hence a rational number,
or a quadratic number in the field of complex multiplication), or else a transcendental number.

Here is another important consequence of Theorem 20.2.

Corollary 21 (Schneider, 1936)LetT € H be a complex number in the upper half plade:(7) > 0
such thatj(r) is algebraic. Then is algebraic if and only ifr is imaginary quadratic.

In this connection we quote Schneider’s second problem in [180], which is still open (see Wak-
abayashi’s papers [196-198]):

Open problem: Prove Corollary 21 without using elliptic functions.

Sketch of proof of Corollary 21 as a consequence of part 2 of Theorem 20.
Assume that both € H andj(r) are algebraic. There exists an elliptic function with algebraic
invariantsgs, g3 and periodsu, wo such that

1728g3
T=22 and j(r)= 5—2_.
w1 g5 — 2793

Setp*(z) = 72p(r2). Thenp* is a Weierstral? function with algebraic invariants g5. Foru =
w1/2 the two numbersp(u) and p*(u) are algebraic. Hence the two functiopéz) and p*(z) are
algebraically dependent. It follows that the corresponding elliptic curve has non trivial endomorphisms,
thereforer is quadratic. O

A quantitative refinement of Schneider's Theorem on the transcenderi¢e) gfiven by A. Faisant
and G. Philibert in 1984 [68] will be useful 10 years later in connection with Nesterenko’s result (see
§ 5). See also [69].

We shall not review the results related to Abelian integrals, we only quote the first result on this
topic, which involves the Jacobian of a Fermat curve: in 1941 Schneider [178] provddrthand b

in Q witha, banda + b not inZ, the number
_ I'(a)I'(b)
B(a,b) = Tatb)

is transcendental\We notice that in his 1932 paper [182], C.L. Siegel already announced partial results
on the values of the Euler Gamma function (see also [18]).
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Schneider’s above mentioned results deal with elliptic (and Abelian) integrals of the first or second
kind. His method can be extended to deal with elliptic (and Abelian) integrals of the third kind (this is
Schneider’s third problem in [180]).

As pointed out by J-P. Serre in 1979 [202], it follows from the quasiperiodicity of Weierstrald sigma
function (7) that the function

_ ot e
Fu(z) = U(z)o(u)e
satisfies
F.(z+w;) = Fu(z)e"*“_“’iq“).

Theorem 22 Let u; andus be two nonzero complex numbers. Assumeys, p(uy), p(us), G are
algebraic andZu; N 2 = {0}. Then the number

o(uy + ug) 6(ﬁ7((u1))u2
o(uy)o(usg)

is transcendental.

From the next corollary, one can deduce that nonzero periods of elliptic integrals of the third kind
are transcendental (see [201]).

Corollary 23 For any nonzero period and for anyu € C \ £2 the numbep~¢(®)—1u+5 is transcen-
dental.

Further results on elliptic integrals are due to M. Laurent [113]. See also his papers [115-118].

Ya. M. Kholyavka wrote several papers devoted to the approximation of transcendental numbers
related with elliptic functions [101, 100,99, 98,97,96,94,95, 93]

Quantitative estimates (measures of transcendence) related to the results of this section have been
derived by N.I. Fel'dman [70-74] — see also the papers by S. Lang [105], N.D. Nagaev [144], E. Reyssat
[168,169,171,172], M. Laurent[114], R. Tubbs [189], G. Diaz [58], N. Saradha [175], P. Grinspan [84].

3.2 Elliptic analogs to the six exponentials Theorem

Elliptic analogs of the six exponentials Theorem 10 have been considered by S. Lang [106] and K. Ra-
machandra [165] in the 1960's.

Letd; andds, m be nonnegative integers with > 0, letzy, . .., z4, be complex numbers which are
linearly independent ove, lety, . . ., y,, be complex numbers which are linearly independent Qver
and letuy, . . ., uq, be nonzero complex numbers. We consider Weierstral3 elliptic fungtigns. , o,
and we denote by, the field generated ovép by their invariantsys , andgs , (1 < k < ds). We
assume that thé, functionsp, (u12), . . ., p4, (14, 2) are algebraically independent. We denotefy
the field generated ovek, by the numbersxp(z;y;), (1 < i < dq, 1 < j < m) together with the
numberspy (ury;), (1 < k < da, 1 < j < m). Next define

K2 - Kl(yla'“vy’m)a K3 = Kl(ﬂfl,-- <y Ty u17"'7ud2)7
and letK, be the compositum oK, and K3:
K4 - Kl(y17"'ayma T1yeeeyTdy, U1,...,Ud2).

The theorems of Hermite-Lindemann (Theorem 3), Gel'fond-Schneider (Theorem 7), the six exponen-
tials Theorem 10 and their elliptic analogs due to Schneider, Lang and Ramachandra can be stated as
follows.
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Theorem 24

1. Assuméd; + d2)m > m + d; + 2ds. Then the field<; has transcendence degreel overQ.

2. Assume eithetl; > 1 andm > 2, 0ord, > 1 andm > 3. ThenK, has transcendence degreel
overQ.

3. Assumel; + ds > 2. ThenK3 has transcendence degreel overQ.

4. Assumel; + dy > 1. ThenK, has transcendence degreel overQ.

Parts 3 and 4 of Theorem 24 are consequences of Schneider-Lang criterion [106], which deals with
meromorphic functions satisfying differential equations, while parts 1 and 2 require a criterion which
involves no differential equations. Such criteria have been given by Schneider [179,180], Lang [106]
and Ramachandra [165, 166] (see also [199] and [198]).

Theorem 24 includes also Theorem 20 apart from theicase in part 1 of that statement. However
there are extensions of Theorem 24 which include results on Weierstrall zeta function (and also on
Weierstrafd sigma function in connection with elliptic integrals of the third kind). See [201,113,115-
117,202,172,118].

Here is a corollary of Theorem 24.

Theorem 25 Let E be an elliptic curve having algebraic invariangs, g with complex multiplication.
Let

U1 U2 U3

M =

U1 U2 U3
be a2 x 3 matrix whose entries are elliptic logarithms of algebraic numbersand v; are in Lg.
Assume the three columns are linearly independent Bvel( E) and the two rows are also linearly
independent ovetnd(E). Then the matrix/ has rank2.

In the case where the curve has no complex multiplication, a similar statement holis<fér
matrices. Also in the non CM case, one deduces from Theorem 24 tha3such matrices(u,;j)
(wheregp(u;;) are algebraic numbers) have rank.

There are further lower bounds going further tigfor the rank of matrices of larger sizes but we
shall not discuss this question here. We just mention the fact that higher dimensional considerations are
relevant to a problem discussed by B. Mazur on the density of rational points on varieties [209].

4 Linear independence of numbers related with elliptic functions

From Schneider's Theorem 20 part 1, one deduces the linear independence over the field of algebraic
numbers of the three numbersw andr, whenw is a nonzero period of a Weierstral} elliptic function

(with algebraic invariantg, andgs) andn = n(w) is the associated quasiperiod of the corresponding
Weierstral3 zeta function. However the Gel'fond-Schneider method in one variable alone does not yield
strong results of linear independence. Baker’'s method is better suited for this purpose.

4.1 Linear independence of periods and quasiperiods

Baker's method of proof for his Theorem 9 on linear independence of logarithms of algebraic numbers
has been used as early as 1969 and 1970 by A. Baker himself [11,9] when he proved the transcendence
of linear combinations with algebraic coefficients of the numhgrsvs, 71 andn, associated with an

elliptic curve having algebraic invariangs and gs. His method is effective: it provides quantitative
Diophantine estimates [10]

In 1971 J. Coates [42] proved the transcendence of linear combinations with algebraic coefficients
ofwi, wo, 11, m2 @and2iw. Further, he proved in [41,43-45] that in the non-CM case, the three numbers
w1, wy and2ir areQ-linearly independent.

From this point of view the final result has been reached by D.W. Masser in 1975 [122,123].
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Theorem 26 (Masser, 1975))et o be a Weierstral3 elliptic function with algebraic invariantsand
g3, denote by the corresponding Weierstral3 zeta function,uetw, be a basis of the period lattice
of p and letn, 7o be the associated quasiperiods¢ofThen the six numbefs wy, wa, 11, 2 @and2iw
span aQ-vector space of dimensia@nin the non CM casel in the CM case:

dim@{l,w17w27n17n2, 2ir} =2+ 2dim@{w1,w2}.

The fact that the dimension4sin the CM case means that there are two independent linear relations
among thes® numbers. One of them is, = 7w; with 7 € Q. The second one (see [123]; see also
[33]) can be written

C?rny — ACny 4+ w1 =0

whereA + BX + CX? is the minimal polynomial of overZ and- is an element ifQ)(g2, g3, 7).
In [123], D.W. Masser also gives quantitative estimates (measures of linear independence). In 1976,
R. Franklin and D.W. Masser [130] produce an extension involving a logarithm of an algebraic number.
Further results can be found in papers by P. Bundschuh [36], S. Lang [110] (see also his surveys
[107,108]), D.W. Masser [133,131], M. Anderson [4] and in the joint paper [5] by M. Anderson and
D.W. Masser.

4.2 Elliptic analog of Baker's Theorem

The elliptic analog of Baker’s Theorem 9 on linear independence of logarithms was proved by D.W. Masser
in 1974 [122,123] in the CM case.

His proof yields also quantitative estimates (measures of linear independence of elliptic logarithms
of algebraic points on an elliptic curve). Such estimates have a number of applications: this was shown
by A.O. Gel'fond for usual logarithms of algebraic numbers [80] and further consequences of such
lower bounds in the case of elliptic curves for solving Diophantine equations (integer points on elliptic
curves) have been derived by S. Lang [111].

Lower bounds for linear combinations of elliptic logarithms in the CM case have been obtained by
several mathematicians including J. Coates [42], D.W. Masser [124,128,129], J. Coates and S. Lang
[46], M. Anderson [4]. The work of Yu Kunrui [218] yields similar estimates, but his method is not
Baker-Masser’s one: instead of using a generalization of Gel'fond’s solution to Hilbert's seventh prob-
lem, Yu Kunrui uses a generalization in several variables of Schneider’s solution to the same problem.
Again, this method is restricted to the CM case.

The question of linear independence of elliptic logarithms in the non CM case has been settled
only in 1980 by D. Bertrand and D.W. Masser [28,29]. They found a new proof of Baker's Theorem 9
using functions of several variables and they succeeded to extend this argument to the situation of
elliptic functions, either with or without complex multiplication. The criterion they use is the one that
Schneider established in 1949 [178] for his proof of the transcendence of Beta values. This criterion
(revisited by S. Lang in [106]) deals with Cartesian products. From the several variables point of view,
this is a rather degenerate situation; much deeper results are available, including Bombieri's solution in
1970 of Nagata’s Conjecture [106, 202], which involvesridanderl.?-estimates for analytic functions
of several variables. But so far these deeper results do not give further transcendence results in our
context.

Theorem 27 (D.W. Masser 1974 for the CM case, D. Bertrand and D.W. Masser 1980 for the
non CM case)Let o be a Weierstral3 elliptic function with algebraic invarians, g; and field of
endomorphisms. Letu,, ..., u, bek-linearly independent complex numbers. Assumel fori < n,
that eitheru; ¢ £2 or elsep(u;) € Q. Then the numbers, u4, . ..,u, are linearly independent over
the fieldQ.
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This means thafior an elliptic curveE which is defined ove®, if u,, ..., u, are elements iy
which are linearly independent over the field of endomorphisnis, dfien the numbers, uq, ..., u,
are linearly independent ovép.

The method of Bertrand-Masser yields only weak Diophantine estimates (measures of linear inde-
pendence of logarithms).

4.3 Further results of linear independence

Theorem 26 deals only with periods and quasiperiods associated with one lattice, Theorem 27 deals
only with elliptic logarithms of algebraic points on one elliptic curve. A far reaching generalization of
both results has been achieved by Qidtholz in 1987 [215-217] when he succeeded to extend Baker's
Theorem to Abelian varieties and integrals, and, more generally, to commutative algebraic groups. If we
restrict his general result to products of a commutative linear group, of copies of elliptic curves as well
as of extensions of elliptic curves by the additive or the multiplicative group, the resulting statement
settles the questions of linear independence of logarithms of algebraic numbers, of elliptic logarithms
of algebraic points, including periods, quasiperiods, elliptic integrals of the first, second or third kind.
This is a main step towards an answer to the questions of M. Kontsevich and D. Zagier on periods [104].

Wistholz's method can be extended to yield measures of linear independence of logarithms of
algebraic points on an algebraic group. The first effective such lower bound were given in 1989 in [162,
163]. As a special case, they provide the first measures of linear independence for elliptic logarithms
which is also valid in the non CM case. More generally, they give effective lower bounds for any
nonvanishing linear combination of logarithms of algebraic points on algebraic groups (including usual
logarithms, elliptic logarithms, elliptic integrals of any kind).

Refinements have been obtained by N. Hirata Kohno [88-91], S. David [54], N. Hirata Kohno and
S. David [56], M. Ably [2,3] ancE. Gaudron [78,77,79] who uses the work of J-B. Bost [30] (slope
inequalities) involving Arakelov’s Theory. For instance, thanks to the recent work of David and Hirata-
Kohno on one hand, of Gaudron on the other, one knows that the above mentioned nonvanishing linear
combinations of logarithms of algebraic points are not Liouville numbers.

In the p-adic case there is a paper of GerRond and F. Urfels [167] dealing with two elliptic
logarithms. The general caserofogarithms would also deserve to be dealt with.

Further applications to elliptic curves of the Baker-Massérstolz method have been derived by
D.W. Masser and G.\iistholz [142,143].

A survey on questions related to the isogeny Theorem is [154]. Other surveys dealing with the
guestions oémall points Bogomolov conjecture and the Aridort conjecture are [48,55]. We do not
cover these aspects of the theory in the present paper. Other related topics which would deserve more
attention are the theory of height and theta functions as well as ultrametric questions.

Extensions of the above mentioned results to Abelian varieties have been considered by D.W. Masser
[124-129,132,134-136], S. Lang [109], J. Coates and S. Lang [46], D. Bertrand and Yu.V. Flicker [26],
Yu.V. Flicker [76], D. Bertrand [23, 24]. For instance J. Wolfart and Gidfthiolz [213] have shown that
the only linear dependence relations with algebraic coefficients between the ¥lugs of Euler
Beta function at pointga,b) € Q? are those which follow from the Deligne-Koblitz-Ogus relations
(see further references in [212]). They deduce also the transcendence of the values at algebraic points
of hypergeometric functions with rational parameters.

5 Algebraic independence of numbers related with elliptic functions
5.1 Small transcendence degree

We keep the notations and assumptions of section 3.2.
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The following extension of Theorem 24 to a result of algebraic independence containing Gel'fond’s
1949 results (see [80]) is a consequence of the works of many a mathematician, including A.O. Gel'fond
[80], A.A. Smelev [186,187], R. Tijdeman, W.D. Brownawell [31], W.D. Brownawell and K.K. Kubota
[33], D.W. Masser and G. \istholz [139]. Further references are given in [204,205].

Theorem 28

1.Assuméd; + d2)m > 2(m + dy + 2dz). Then the field<; has transcendence degree2 overQ.
2.Assuméd; + do)m > m + 2(d; + 2ds). ThenK, has transcendence degree2 overQ.

3. Assuméd; + d2)m > 2m + di + 2ds. ThenK; has transcendence degree2 overQ.

4. Assuméd; + do)m > m + dy + 2d2. ThenK, has transcendence degree2 overQ.

Quantitative estimates (measures of algebraic independence) exist (R. Tubbs [190], E.M. Jabbouri
[92], Yu.V. Nesterenko [145-147]). i

Further related results are due to R. Tubbs [192,191,193,194, 189F1B@}yssat [174], M. Toyoda
and T. Yasuda [188]. See also the measure of algebraic independence given by M. Ably in [1] and by
S.0. Shestakov [181].

A survey on results related with small transcendence degree is given in [205] (see also Chapter 13
of [153]).

Again, like for Theorem 24, there is an extension of Theorem 28 which includes results on Weier-
strafd zeta function. Also results on functions of several variables are known, as well as results related
to Abelian functions [206].

5.2 Algebraic independence of periods and quasiperiods

Deep results have been achieved by @ udnovskit starting in the 1970’s [49,50,52,51,53]. He
succeeded to prove sharp results of algebraic independence (large transcendence degree) for values
of the exponential function, generalizing Gel'fond’s Theorem 13 (previous results in this direction
were extremely limited). Also he proved strong results of algebraic independence (small transcendence
degree) related with elliptic functions. We first describe the latter. Among his other contributions are
results dealing witltz-functions (see [53]; see also Y. Arés work [6, 7]).

One of G.V.Cudnov&kil 's most spectacular contributions [49,52,53] was obtained in 1976:

Theorem 29 (G.V.CudnovskiT, 1976)Let o be a WeierstraR elliptic function with invarianis, gs.
Let (w1, wo) be a basis of the lattice period gfandrn; = n(w1), n2 = n(w2) the associated quasiperi-
ods of the associated Weierstral3 zeta function. Then two at least of the numbesswy, ws, 11, 72
are algebraically independent.

In the case wherg, and g3 are algebraic the algebraic independence of two at least of the four
numbersoy, ws, 11, 12 IS also a consequence of the next result.

Theorem 30 (G.\AéudnovskiT, 1976)Assumey, and g3 are algebraic. Letv be a non-zero period of
p, setn = n(w) and letu be a complex number which is not a period such thahdw are Q-linearly
independenty ¢ Quw U 2. Assumey(u) € Q. Then the two numbers

Cw) —Lu, 1

are algebraically independent.

From either Theorem 29 or Theorem 30 one deduces:

Corollary 31 Letw be a nonzero period gf andn = n(w). If go and g5 are algebraic, then the two
numbersr/w andn/w are algebraically independent.
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The following consequence of Corollary 31 shows that in the CM dasdnovékil's results are
sharp:

Corollary 32 Assumey, andgs are algebraic and the elliptic curve has complex multiplication. d.et
be a nonzero period gf. Then the two numbets andr are algebraically independent.

As a consequence of formulae (4) and (5), one deduces:

Corollary 33 The numbersr and I'(1/4) are algebraically independent. Also the numbersnd
I'(1/3) are algebraically independent.

In connexion with these result let us quote a conjecture of S. Lang in 1971 [107].
Conjecture 34If j(7) is algebraic withj’(7) # 0, thenj’(7) is transcendental.

Since

2
i = ISﬂ- 92
7'(r) =185, i),
Conjecture 34 amounts to the transcendence?gfr. Hence Corollary 32 implies that Conjecture 34
is true at least in the CM case (see [20]):

Corollary 35 If 7 € H is quadratic andj’(7) # 0, thenm andj’(7) are algebraic independent.

A quantitative refinement (measure of algebraic independence) of Corollary 32 due to G. Philibert
[156] turns out to be useful in connexion with Nesterenko’s work in 1996 (further references on this
topic are given in [208]).

A transcendence measures 10f1/4) has been obtained by P. Philippon [160,161] and S. Bruiltet
[35]:

Theorem 36 For P € Z[X, Y] with degreed and heightH,
log | P(m, I'(1/4)| > —10**°((log H + dlog(d + 1))d* (log(d + 1))2.
Corollary 37 The numbet’(1/4) is not a Liouville number:
p 1
o =51 G

Further references related @udnovskii's results are papers by D. Bertrand [17] and E. Reyssat’s
[170,173] (see also the Bourbaki lecture [200] and the book of E.B. Burger and R. Tubbs [38]).

We conclude this section by the following open problem, which simultaneously generalizes Theo-
rems 29 and 30 of G.\Cudnov&kil.

Conjecture 38Let p be a Weierstral3 elliptic function with invarianjs, g3, letw be a non-zero period
of p, setn = n(w) and letu € C\ {Quw U 2}. Then two at least of the five numbers

n n
92, 93, p(u)7 <(U) - —u, -
w w
are algebraically independent.

Cudnovskit's method has been extended by K.G. Vasil'ev [195] and P. Grinspan [84], who proved
that two at least of the three numbersl"(1/5) andI’(2/5) are algebraically independent. Their proof
involves the Jacobian of the Fermat cu¥eé + Y° = Z5, which is an Abelian variety of dimensich
See also Pellarin’s paper [155].
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5.3 Large transcendence degree

Another important (and earlier) contribution of G®udnovkiT is that in 1974 he succeeded to apply
Gel'fond’s method in order to prove results on large transcendence degree (see references in [53,200]).
He first proved that three at least of the numbers

aﬂ,a52,...,aﬁd71 (20)

are algebraically independentdfis a nonzero algebraic numbésg o a nonzero logarithm of and

(3 an algebraic number of degrde> 7. The same year, by a much more difficult proof, he succeded

to prove that there exist at leastalgebraically independent numbers in the set (10), provided that

d > 2™ — 1. This was a remarkable achievement since no such result providing a lower bound for
the transcendence degree was known. Later, thanks to the work of several mathematicians, especially
P. Philippon, the exponential lower bound tbwas reduced to a polynomial bound, until G. Diaz [57]
obtained the best know results so far: the transcendence degree is §tdleas}/2]. The casel = 5

had been settled by G.Zudnovékii who also obtained elliptic analogs (see [50,52,53,200, 170]).

Also G.V. Cudnovékil [51] succeeded in 1980 to prove the Lindemann-Weierstral? Theorem 5
by means of his extension of the Gel'fond-Schneider’'s method to large transcendence degree. This
method enabled P. Philippon [157-159] and Qidtholz [214] in 1982 to prove the elliptic analog of
Lindemann Weierstral Theorem on the algebraic independenrée,of . , e~ in the CM case:

Theorem 39 Letp be a Weierstral? elliptic function with algebraic invariants g; and complex mul-
tiplication. Letaq, . .., a,, be algebraic numbers which are linearly independent over the field of en-
domorphisms off. Then the numbers(«a,), . .., p(ay,) are algebraically independent.

The same conclusion should hold also in the non-CM case — so far only the algebraic independence
of at leastu/2 of these numbers is known.

Further results on large transcendence degree are due to D.W. Masser aiigtGol?[140,141]
W.D. Brownawell [32], W.D. Brownawell and R. Tubbs [34] (for a survey of this topic, see [205]; see
also [153] Chap. 14).
5.4 Modular functions

Ramanujan introduced the following functions
& n > 5,.n
nq n-q
Plgg=1-24 ) R(q) =1—-504
9) n; i 9) ;::1 T
They are special cases of Eisenstein series. Recall the Bernoulli numbers:

+ Z k+lBk JAYR
k=1 )

- 2k

[\D\N

By =1/6, By=1/30, Bs=1/42.
For k > 2 the Eisenstein series of weighis (compare with (3))

o0 —
k4k n2k 1Zn

For(z) =1+ (-1 .
() =1+ (-1 g 3

The connection with Ramanujan’s notation is

P(z) = Ba(z), Q(z) = Ea(2), R(2) = Eq(2).
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The discriminantd and the modular invariant are related to these functions by

A=1273(Q* - R*) =g¢ ﬁ(l —¢M* and J=Q*/A.

n=1

Let ¢ be a complex numbed, < |¢| < 1. There exists in the upper half plan( such thaty = 27,
Select any twelfth root ofA(¢) and setv = 27 A(q)'/'2. The invariantsj, andgs of the Weierstrafg
function attached to the lattid& + Zr)w satisfygs — 27¢3 = 1 and

3 /w

P(q) = 3% g, Qa) = (;)492, R(q) = %7 (%)693-

According to formulae (4) and (5), here are a few special values (see for instance [210]).
Forr =i,q = e 27,

—27 7% —2mT\ __ ﬂ 4 —2mT\ __ —27 7i ﬂ 12
P ==, Qe )_3(7T) . R(Ee?)=0 and A(e )_26(W) . (11)
with (1/4y?
I'(1/4
= = 2.6220575542 ...
“i VvV 8m

Forr =p,q = —e V3,

_—77\/5_2\/3 _—7V3\ _ _—wﬁ_ﬁﬂe’ _—7T3__277ﬂ12
P(=e )= ﬂ_,Q(e ) =0, R(-e )_Q(W)7A(e )= 256(71’) ’
(12)
with (1/3)°
I'(1/3
w1 = a5, 2.428650648 . ..

5.5 Mahler-Manin problem ot (q)

After Schneider’s Theorem (Corollary 21) on the transcendence of the values of the modular function
j(7), the first results on Eisenstein series {c$.6) go back to D. Bertrand's 1977 paper [18]. See also
his papers [17,19,21,22] and his paper with M. Laurent on values of theta functions : [27].

The first transcendence proof using modular forms is due to a team frdetiedine (K. Bare-
Sirieix, G. Diaz, F. Gramain and G. Philibert ) — hence the nickn#t@ereme stphanoidor the next
result, from [15] (see also [81,82] and Chap. 2 of [153]), which answers a conjecture of K. Mahler in
the complex case and of Yu. V. Manin in theadic case (we state the result only in the complex case
— the paper [15] deals with both cases).

Theorem 40 (K. Barré, G. Diaz, F. Gramain, G. Philibert, 1996)Letq € C,0 < |g| < 1. If g is
algebraic, then/(q) is transcendental.

The solution of Manin’s problem has several consequences. It is a tool both for R. Greenberg in his
study of zeroes gf-adic L functions, and for H. Hida, J. Tilouine adl Urban in their solution of the
main Conjecture for the Selmer group of the symmetric square of an elliptic curve with multiplicative
reduction ap.

The proof of Theorem 40 involves upper bounds for the growth of the coefficients of the modular
function J(q). Such estimates have been produced first by K. Mahler [121]. A refined estimate, due to
G. Philibert, for the coefficients, (m) (which are nonnegative rational integers) in

oo

(zJ(z))k = Z ck(m)z™,

m=0
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is
cr(m) < etvhm,

As pointed out by D. Bertrand [25], the upper bound
|6Nk (m)| S CNm12N

(0 <k < N,N >1,m > 1, with an absolute constat) for the coefficients in the Taylor development
at the origin ofA2N J*:

A2 NJ(2)k = Z eng(m)z™
m=1

is sufficient for the proof of Theorem 40 and is an easy consequence of a Theorem of Hecke together
with the fact thatA? and A%.J are parabolic modular forms of weight.

Another auxiliary lemma used in the proof of Theorem 40 is an estimate for the degrees and height
of J(¢™) in terms of J(¢) (which is assumed to be algebraic) amd> 1. There exists a symmetric
polynomial®,, € Z[X,Y], of degree

Yn)=n]] <1+;>

in each variable, such thét, (J(¢), J(¢")) = 0. Again, K. Mahler [120, 121] was the first to investigate
the coefficients of the polynomidl,, (X, Y): he proved that its length (sum of the absolute values of

the coefficients) satisfies

L(®,) < e”

with an absolute constant In the special case = 2™ he improved his result
L(®,) < 25Tp36n if n=2m,
and claimed (see [120] p. 97) that if the sharper upper bound
L($,) <2  ifn=27,

with a positive absolute constaat > 0, were true, he could prove Theorem 40. However in 1984
P. Cohen [47] produced asymptotic estimates which show that Mahler’'s expectation was too optimistic:

;{% nlogn log L(®,,) = 9.
In fact she proved more precise results, without the conditioa 2™, which imply for instance
log L(®,,) ~ 61(n)logn for n — oo.

Further related results are given in [61] (G. Diaz and G. Philibert) forjtfienction and [138]
(D.W. Masser) foro-function.

The proof of [15] can be adapted to yield quantitative estimates [13, 14].

A Corollary to Theorem 40 on the transcendencd @f) is the following mixed analog of the four
exponentials Conjecture 12:

Corollary 41 Letlog o be alogarithm of a non-zero algebraic number. Zet; + Zw, be a lattice with
algebraic invariantsy,, g3. Then the determinant

w1 loga
wo 2T

does not vanish.
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The four exponentials conjecture for the product of an elliptic curve by the multiplicative group is
the following more general open problem:

Conjecture 42Let p be a Weierstral3 elliptic function with algebraic invariapis gs. Let E be the

corresponding elliptic curve;; andus be two elements if z andlog a1, log ao be two logarithms of
algebraic numbers. Assume further that the two rows of the matrix

M— (u1 log a1>
ug log ag
are linearly independent ov€. Then the determinant df/ does not vanish.

Another special case of Conjecture 42, stronger than Corollary 41, is the next question of Yu. V.
Manin:

Conjecture 43 (Yu.V. Maniret log o; andlog a; be two non-zero logarithms of algebraic numbers
and letZw, + Zw- be a lattice with algebraic invariangs andgs. Then

wi _, logay

wy " logan’
In this direction let us quote some of the open problems raised by G. Diaz [59, 60].

Conjecture 44 (G. Diaz)

1. For anyz € C with |z| = 1 andz # +1, the number?""= is transcendental.

2. If ¢ is an algebraic number with < |¢| < 1 such that/(q) € [0, 1728], theng € R.
3. The function/ is injective on the set of algebraic numbersvith 0 < |a < 1.

Remark (G. Diaz). The third part 3 of Conjecture 44 implies the two first ones, it follows from the four
exponentials Conjecture 12, also it follows from the next Conjecture of D. Bertrand.

Conjecture 45 (D. Bertrand)f «; and a, are two multiplicatively independent algebraic numbers
in the domain{z € C;0 < |z| < 1}, then the two numberd(a;) and J(ay) are algebraically
independent.

This Conjecture 45 implies the special case of the four exponentials Conjecture 12, where two of
the algebraic numbers are roots of unity and the two others have modulus

5.6 Nesterenko’s Theorem

In 1976 [17], D. Bertrand pointed out that Schneider’s Theorem 20 implies:
For anyq € Cwith 0 < |g| < 1, one at least of the two humbeiXq), R(q) is transcendental.

Two years later [19], he noticed that G®udnovéki's Theorem 29 yields:
For anyg € C with0 < |g| < 1, two at least of the numbeB(q), Q(¢q), R(q) are algebraically
independent.

The following result of Yu.V. Nesterenko [148,149] (see also [208,151,210,152] as well as Chap. 3
and 4 of [153]) goes one step further:

Theorem 46 (Nesterenko, 1996jor anyq € C with0 < |¢| < 1, three at least of the four numbeys
P(q), Q(q), R(q) are algebraically independent.
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Among the tools used by Nesterenko in his proof is the following result due to K. Mahler [119] (see
also Chap. 1 of [153]):
The functionsP, Q, R are algebraically independent ovéX(q).
Also he uses the fact (see again Chap. 1 of [153]) that they satisfy a system of differential equations
for D =qd/dg:
DP Q .DQ R _DR Q

127: —_ 7:P_7, 27:P—7'
P P 30 Q R R

One of the main steps in his original proof [149] is his following zero estimate:

Theorem 47 (Nesterenko’s zero estimatd)et L, and L be positive integersd € C|z, X7, X5, X3] a
nonzero polynomial in four variables of degreel, in z and < L in each of the three other variables
X1, X, X3. Then the multiplicity at the origine of the analytic functidifz, P(z), Q(z), R(z)) is at
most2 - 10%° Ly L3.

In the special case whetHgq) is algebraic, P. Philippon [161] produced a simpler proof where this
zero estimate 47 is not used; in place of it he uses Philibert's measure of algebraic independence for
w/m andn/m (see [156] and 5.2 above).

Using (11) one deduces from Theorem 46

Corollary 48 The three numbers, e™, I'(1/4) are algebraically independent.
while using (12) one deduces
Corollary 49 The three numbers, e™V3, I'(1/3) are algebraically independent.
Consequences of Corollary 48 are the transcendence of the numbers
oy (1/2) = 25/ /2em/8 (1 /4) 72
and (P. Bundschuh [37])

> 1 1 7w e"+e™ ™
D1ty e
—=n +1 2 2 e"—e

D. Duverney, K. and K. Nishioka, and I. Shiokawa [62,63, 65, 64,66,67] as well as D. Bertrand [25]
derived from Nesterenko’'s Theorem 46 a number of interesting corollaries, including the following
ones.

Corollary 50 Rogers-Ramanujan continued fraction:

RR(a) =1+

is transcendental for any algebraicwith 0 < |af < 1.

Corollary 51 Let(F},),>o be the Fibonacci sequencéy =0, F}, =1, F,, = F,,_1 + F,,_». Then the

number
=1
2

]

is transcendental.
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Jacobi Theta Series are defined by

oo
02(q) = 2¢"/* D " q" D =2¢" TT(1 = ¢") (1 + ¢*),

nZ() n=1
03((]) e anz — H(1 _ an)(l + an—l)27
nez n=1
04(q) = 03(—q) = Z(—l)”q"2 = H(l — P (1— g2
nez n=1

Corollary 52 . Leti, j andk € {2,3,4} withi # j. Letq € C satisfy0 < |g| < 1. Then each of the
two fields

Q(q.0i(q),0(a). DOk()) and Q(q.0k(q), Dbk (q), D*0k(a))
has transcendence degree3 overQ.

As an examplefor an algebraic numbeg € C with 0 < |¢| < 1, the number

AOED

neZ

is transcendentalThe numbems(q) was explicitly considered by Liouville in his 1844 memoir (see
[153] p.30).

The proof of Yu.V. Nesterenko is effective and yields quantitative refinements (measures of alge-
braic independence): [150,161, 83].

5.7 Further open problems

Among many open problems, we mention

— the algebraic independence of the three numberl¥(1/3), I'(1/4).

— the algebraic independence of at least three numbers amadng /5), I'(2/5), e™V>.
— the algebraic independence of the four numlsers e™ andl’(1/4).

The main conjectures in this domain are due to S. Schanuel, A. Grothendieck, ¥ Rjamd
C. Bertolin [16]. The proof of the algebraic independencer@inde™ requires elliptic and modular
functions. One may expect that higher dimensional objects (Abelian varieties, motives) should be in-
volved to go further. In this respect we conclude by alluding to the remarkable progress which have been
achieved recently in finite characteristic (after the works by Jing Yu, G.W. Anderson and D. Thakur,
L. Denis, W.D. Brownawell, J.F. Voloch, M. Papanikolas among others).
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