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Abstract

We prove estimates for the number of self-reciprocal momeducible polyno-
mials over a finite field of odd characteristic, that have tth@wer degree coef-
ficients fixed to given values. Our estimates imply that ong sy@ecify up to
m/2—1logy(2m) — 1 values in the field and a self-reciprocal monic irreducéy-
nomial of degree @ exists with its low degree céicients fixed to those values.
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1. Introduction

Let g be a prime power and |, be the finite field withg elements. For any
n € N, we denote by, the set of monic irreducible polynomialsIi[X]. It is well
known that the cardinality df,, denoted byrq(n), is roughlyq"/n. Itis of interest,
both from a theoretical and a practical point of view, and lbesn the topic of an
active line of research, to compute the cardinalities abumrsubsets df,. Perhaps
the earliest result along these lines is Dirichlet’s theofer primes in arithmetic
progression foiffg[X], see [22]. Dirichlet’s theorem, applied with moduli,
implies that the number of monic irreducibles of degnegith the codficients of
thet lowest degree terms fixed to given values (the constant teingtnon zero)
is approximated byrq(n)/®(X'), whered(-) is Euler’s totient function defined in
Fq[X] as ®(F) = #(IFy[X]/FFq[X])*. It should be noted that results as the above
require Riemann’s Hypothesis for function fields. As a cousacet has to be
taken less than/2.

Dirichlet’s theorem has been the starting point for an afeagearch that has
been very active during the past thirty years. For instaine@gucible polynomials
with prescribed ca@écients [1, 13, 14, 16, 17, 23], and primitive godnormal
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polynomials with prescribed céiiients [5, 6, 7, 8, 9, 10, 11, 12] have been the
focus of substantial research.

Irreducible polynomials with additional properties hatteated considerable
attention. One class of irreducibles of particular intetess been that of self-
reciprocal, monic irreducibles, that is, monic irredueibP that satisfyP(X) =
X4e9P)p(1/X). The reader is refered to [15, 18] for their applicationsauling
theory, to [21] for their connection to combinatorics and4p19] for their use in
the construction of certain infinite extensionsipf Due to their applications, self-
reciprocal irreducible polynomials have been studiedrestiely. In particular, it
has been shown that all self-reciprocal monic irreducildlymomials have even
degree and their number has been computed in [2, 3, 20].

The subject of the present work is to study the distributibsedf-reciprocal
monic irreducible polynomials. More precisely, givemalues inlf; we compute
the number of self-reciprocal monic irreducibles of degzaein Fy[X] with the t
low degree coféicients fixed to the given values. We note that the constamt iter
necessarily fixed to 1. Our approach is based on the work dittCg.

2. Auxiliary lemmata

Let p be an odd primeg > 1 andq = p°. We letA = Fy[X] be the polynomial
ring overly. Forme N, we denote by, the set of monic irreducible polynomials
in A of degreem. For a polynomiaF € A, we denote the cdicient of X' by F;.

Lemmal. LetPely, m> 2 and letP = Piome( ) ThenP € I, andP =

Proor. LetP(X) =31, P X!, wherePy, = 1 sinceP is monic. Then

m i m i
4P, 4mip

§ -1 :§ T M i 1
Po = Po @

i=0

Clearly, P is monic. If 3 is a root of P, theng = 4/a, whereq is a root of P.
Therefore Fy(e) = IF4(8) andP is irreducible if and only ifP is irreducible. Finally,

P is monic irreducible of degremand ify is one of its roots, them = 4/8 = a. It
follows thatP = P. O

The polynomialP has the following important property: it can be easily deter
mined whether or not it is a square modiXé— 4 based on whethd? is a square
moduloX? — 4. We denote by-{X? — 4) the Legendre symbol moduk? — 4 for
the ringA.



Lemma 2. Let Pe I, m> 2. Then the following hold.

1. Ifq =1 (mod 4)or mis even thefP|X2 — 4) = (P|X2 — 4).
2. 1fq =3 (mod 4)and m is odd theP|X2 — 4) = —(P|X2 — 4)

Proor. Leta be a root ofP ands = 4/« be a root ofP. The quadratic reciprocity
law for A [22, Ch. 3] implies thatR|X? — 4) = (X2 — 4|P). Further, K - 4/P) = 1
if and only if ® — 4 = 62 for somes € [Fy. The same reasoning, appliedRshows
that (P|X2 — 4) = (X2 - 4|P). Furthermore, X2 — 4|P) = 1 ifand only if 32 - 4 is a
square infy. We compute

4 26\’
ﬁ2—4=—2—4:—?(02—4):—(—) .

(0% a

To finish the proof, it sfiices to note that1 is a square ity if and only if either
g=1 (mod 4) omis even.OJ

For an abelian group!, we denote byH the dual ofH, that is, the group of
characters ofl. In particular, given a polynomid € A, and taking the groupl =
(A/FA)*, we note that the dual ¢ is essentially the group of Dirichlet characters
moduloF. We will make use of the following simple lemma in Section 4.

Lemma 3. Let F G € A be co-prime polynomials. The map

—_—

o (A L (AY A Y
'(ﬁ) x(@) (@)
v) = xy,

whereyy/(f modFG) = y(f modF) - ¢(f modG), is a group isomorphism.

Proor. The statement follows easily from the isomorphism of then€ée Remain-
der Theorem4/FGA)* — (A/FA)* x (A/GA)*. O

3. Outline of method

It is well known, see [2], that every monic self-reciprocaeducible polyno-
mial has even degree and is of the fo@¢X) = X™P(X + X~1), whereP is a monic
irreducible of degreen such thatX? — 4 is a non-square modu®. The last con-
dition can be written asX? — 4|P) = -1, using Legendre’s symbol. Conversely,
given a monic irreducible polynomid of degreem, that satisfiesX? —4|P) = -1,



the polynomialQ(X) = X™P(X + X~1) is a monic, irreducible, self-reciprocal poly-
monial of degree &. Accordingly,

#{Q e Iy : Qis self-reciprocal = #{P €l : (P|X2 -4)= —1},
where we used the fact that] — 4|P) = (P|X? — 4). Our goal is to estimate
#{Q e Iy : Qis self-reciprocal an®);, =c¢;, i=1,...,t},

whereQ = M QX andcy, ..., ¢ € Fy are fixed values.
Itis clear that the cd@cients ofQ depend linearly on the céiecients ofP. The
next lemma makes this dependence explicit.

Lemma4. LetP= XM PiX and Q= 2% QX' be two polynomials i\ satis-
fying Q= X"P(X + X Y)andte N, 1 <t < m- 1. Then there exists a lower
triangular matrix U € SL¢(IFy) with all the elements in the diagonal equal 1p
such that

(QO? Qla ) Qt)T = U : (Pm, Pm—lv DR Pm—t)T-
Proor. LetP =y PiX = 3" & X™". Then

szm: (X +X ™ = i aX (X2 + 1™ = i aX E (mj_ i)XZi
i=0 i=0 i=0

j=0

Q

2 (=gl 2 (ke

O<i<m k=0| O<i<m
0<j<m-i 0<j<m-i
k=i+2]
It follows that _
m-—1
&= ) ( . )a.-,Oskszm. )
0<i<m ]
O<j<m-i
k=i+2]

It is easy to see thddy is a linear combination ody, . .., ax and the cofficient of
ay is (mak) = 1. The statement of the lemma follows once we substR4te for a;
and consider the firdt+ 1 equationsd

Lemma5. Letm>2,teN,1<t<m-1landg,...,c €y Then

#{Q € Iy : Qis self-reciprocal and Q=c¢;,i =1,...,t}

4m c/4m

= Y #Peln: (PX*-4)=¢gPo=—,P=1—,i=1..,t,
C C

celfy




where(L,c;,...,¢)T =U (L cy,...,c)T, U is the matrix of Lemma 4 and

[ -1 if g=1 (mod4)om=0 (mod 2)
71 1 if gq=3 (mod4)andn=1 (mod 2)

Proor. From Lemma 4 and the discussion preceeding it, it folloves th

#{Q € Iy, : Qis self-reciprocal an@; = ¢,i = 1,...,t} 3
= #{Pely : (PX?-4)=-1Pyi=¢.i=1...t.

We patrtition the set on the right-hand side as

{Pelm: (PIX?-4)=-1Pyi=q.i=1...1 (4)
- U{PeHm : (PX2-4)=-1Py=CPni=c.i=1...t.
celfy

Let now
ﬂc:{PEHm . (P|X2_4):—1,P0:C,Pm_i :Ci/’i :l,...,t}

and

U
Bc:{PEHm . (P|X2—4):8,P0:?,Pi: IC Jd=1...,1,

wheree is defined in the statement of the Lemma. Clearly the gkt € I are
pairwise disjoint. The same is true for the sBtsc € F;. We claim that for every
c € Iy, the map

. A — B
P - P
is a bijection. Indeed, from Lemma 1 follows tha(P) = P € I, and from
Lemma 2 follows that®|X? — 4) = &. Finally, Eqg.(1) shows that the cigients of
P are as required. This shows that the map is well defined. Teeftas injective,
note that¥(P1) = ¥(P,) implies P; = P,. Applying ¢ again and using Lemma 1
we obtainPy = Py Surjectivity follows from the observation that f& € B,
P € A, andy(P) = P, that is,? is its own inverse.
From Eq. (3), Eq. (4) and the fact thais bijective, we obtain

#{Q e Iy : Qis self-reciprocal an®@; =¢j,i=1,...,t} = Z #B.,

"
celfy

and the proof is completél



Lemma 5 reduces our problem to that of estimating the cdityiraf a set of
the form
(Pelm: (PX?-4)=5P =c.i=0....1,

for anyco, ..., ¢t € Fy, Co # 0. Note that for fixed values, i = 0,...,t, we have
(Pelm: (PIX?-4)=5P =c,i=0,...1
= {Peln : (PX?-4)=¢, P=C (mod X"},
whereC = ¢ X' + -+ - + 1 X + Cg € A. We denoterg(m) = #lm,
ng(Mm.C,8) =#{P eIy : (PIX*-4)=¢, P=C (mod X"*1)},
and
g g) = #{P eIy : (PIX?-4) =&},
4. Main result

Let M € A be a polynomial of degreleand supposg is a non-trivial Dirichlet
character modul®/. The DirichletL-function associated with is defined to be

e =Y w1
F

where|F| = q%96) and the sum is over monic polynomials in Making the
substitutionu = -5, we have

L(ap)=L(u,p)=i[ > p(F)]u“.

n=0 \degfF)=n

It is not hard to show that(u, p) is a polynomial inu of degree at mosk — 1.
Further,L(u, p) has an Euler product,

(o)

Lup =[] [] (@-pPu)".

d=1 degP)=d

Taking the logarithmic derivative &f(u, o) and multiplying byu, we obtain a series
Y1 Cn(o)u", with
n
)= 5 >, POPL (5)

dn ~ degP)=n/d



Weil's theorem of the Riemann hypothesis for function figtdplies that

len(o)l < (k- 1)q2. (6)

For a detailed account of the above well known facts, seeGa24].

Consider now the quadratic Dirichlet character modkde- 4, y/(F) = (F|X? -
4), for F € A. In [2], Carlitz computed the humber of self-reciprocal rwoinre-
ducibles inA using the Dirichlet_-function associated wita.

Let y be a Dirichlet character modukd*. Since K*1,X?-4) = 1, Lemma 3
applies, and there is a non-trivial Dirichlet character mod*1(X? — 4), which
we denote by such thagy(F) = x(F)y(F). In our case, it is natural to consider
the L-function associated with the dirichlet characigy. We use the notation

L(u, x, ¥) for L(u, yy) andc,(y, ¥) for chn(xy).
Applying Eq.(5) and Eq.(6) witl = yy, we obtain

=5 > P ™
din ~ degP)=n/d

and
len(x- ¥l < (t+ 2)qz2. (8)
Eq.(6), applied withp = y, for a non-trivial charactey, yields

lca()| < tq2, for x # xo. 9

Proposition 1. Lety be a non-trivial Dirichlet character modulo%. Then the
following bounds hold:

1. Foreveryne N, n> 2,

D, X(P)| < tPek.
degP)=n
v(P)=-1

2. Forevery ne N, n> 2, n odd,

> x(P)| < B2,
degP)=n
u(P)=1



Proor. From Eg. (7), taking into account thatis a quadratic character, we have

aey) = a2 PP Y DD Py
din degP) n/d din degP) n/d
d odd d even
_ n d n d
= DG 2 AP o > P
din degP)=n/d din degP)=n/d
d odd w(P)=1 dodd y(P)=-1
n
2q 2 X
din degP)=n/d
deven
= Y5 Y dPr-2) D Y P
d|n degP) n/d din degP):n/d
do dodd y(P)=—1
n
Z g 2 X
din degP)=n/d
deven
= >0 Y -2y s Y e
din degP) n/d din degP):n/d
dodd y(P)=-1
By definition

Q=5 > xPr

din " degfP)=n/d

v -D= > 2 Y, P,

din degP)=n/d
dodd y(P)=-1

and we denote

so that
cn(xs ¥) = cnlx) — 2en(x, ¥, —1).
From Eq.(8) and Eq.(9) it follows that
len(x. ¢, —1) < (t+1)02, for x # xo. (10)
Furthermore,

av.-D=n > xP+ > o > P

degP)=n din degP)=n/d
w(P)=—1 ddoc]i_d Y(P)=—1
>



We bound the second summand as follows

[n/3]
IR A ED I I DN DY
dn degP)=n/d din degP)=n/d j=1 degP)=j

d odd P)=—1 d odd P)=-1
d>1 v(P) d>1 v(P)

and using the fact thgyeqp)=j = 7q(J) < oq/j+ 3qié/2 forq > 3, we have
Ln/3]

D Lg’?(qW—Jq )

j=1 degP)=] =1

L

IA
Nol—-

IN
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l\)loo
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where we used the fact thq;t(q 1) < 3/2 and+[q/(4/q-1) < 3forg > 3. Since
3q3/2 <292 and 31q6/2 < 292 for everyq > 3 andn > 2, we obtain

n n
DEIDWRCLE
din degP)=n/d
d odd y(P)=—1
d>1

From this bound and Eq. (10) follows that

§ X(P)| < ®2q2. (11)
degP)=n
¥(P)=-1

Forn odd, we have

Cn(X7 l//)

Y2 Y xPE)

din degP)=n/d

IR G DI DI (s

din degP) n/d din ~ degfP)=n/d
Y (P)=1 Yy(P)=-1
= 23D > aPt-Y 2 Y, PR
din degP) n/d din degP):n/d
¥(P)=1



Denoting

ey, 1) = § = > P
din degP):n/d
u(P)=1

we have
cn(y, ¥) = 2en(x, ¢, 1) — cnly).
It follows that
len(i. . 1)l < (t+ 1)q?

and

> xP)| < gk O
degP)=n
w(P)=1
Proposition 1 can be used to obtain estimatesc§n, C, -1).
Theorem 1. Let q be a power of an odd prime andeCA, co-prime to X of degree
at most t. Then the following bounds hold:

1. Foreveryne N, n> 2,

1 t+5 5 2
ng(n,C,-1) - q)(xt+l)7rq(n 1)’ < 543
2. Foreveryne N, n > 2, n odd,
1 t+5 2
ﬂq(n, C, 1) - mﬂ'q( ) < Q2

Proor. Fore € {-1, 1}, we have

1 _
nq(n,C,e) = Z m;X(P)X(C)

degP)=n
y(P)=e
1 _
= ——=>XC) > x(P).
(D(X ) X degP)=n
y(P)=e

where® is Euler’s totient function on the rind. Separating the term correspond-
ing to y, we have

1
mo(n.C.6) = G e) + @(xm) > X0 ). xP),

X#Xo degP)=n
y(P)=¢

10



and we obtain

1
ﬂQ(n’ C’ 8) - mﬂQ(n ‘ (D(Xt+l) X;X de%:nX(P) .
()=

The result follows from Proposition 1]
Theorem 2. Lette N,t>1,¢c=(Cy,...,c) € Ft, and denote
Ng(2m,c) = #{Q € Ibm : Qis self-reciprocal and Q=c;, i = 1,...,t}.

Then
INg(2m, ) - qtq(m, -1)| < E3(q - 1)q°.

Proor. From Lemma 5 we know that

Nq(zm, C) = Z ﬂq(ma CCa 8)a

*
celfy

whereC¢ = 4M/c + Y1 (4™ '/¢)X!. Forg = 1 (mod 4) orm even, we have
g =-1. Forg =3 (mod 4) andnodd, we have: = 1. In this case, we see that

1 m 1
mo(m ~1) = 5 > u(d)a? = Srg(m).
ddtl)rgd

Sinceng(m, 1) + mg(m, =1) = mg(m) for m > 2, we obtainrg(m, 1) = m¢(m, -1).
Theorem 1 implies that in every case,

1 m
ﬂq(m,CC,s) (I)(Xt+1)7rq(m 1)’ % 2,
It follows that
Ng(@m 0) - = ry(m 1) < 5(q - 1)q.
q (D(Xt+1) q

The result follows by noting thab(X'*1) = (q - 1)q'. O

Theorem 2 can be combined with well known formulaszgim, —1) to obtain
esimates foNg(2m, ). This is done in the next corollary.

11



Corollary 1. Lette N,t>1,¢c=(Cy,...,C) € Fé Then

qm—t

Ng(2m, €) — —| < &5gz+L,
ol 2m a

- m

In particular, if gz t1 > 2t + 10 then there exists a monic self-reciprocal polyno-
mial Q of degre2m suchthat Q=c¢ for1<i <t.

Proor. The following enumeration formulas have been known siheswork of
Carlitz [2] and have been proven byffdirent methods in [3, 19, 20].

=(q"-1) , ifm=28

L3 gm u(d)g? , otherwise
d odd

The formulas imply the estimate
m

‘nq(m, _1)- g—m

@

m
3

< .

m

Combining this with Theorem 2, we obtain the stated resuilt.

5. Conclusion

In this work, we have proved estimates for the number of manéducible
self-reciprocal polynomials of degreendver a finite field of odd characteristic,
that have up tan/2 - log,(2m) - 1 low degree cacients prescribed. Our method
is based on that of Carlitz [2]. We should emphasize that esaults apply to
finite fields of odd characteristic. It would be interestilngextend the results of
the present work to polynomials ov& or, more generaly, over finite fields of
characteristic two.
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