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We study the number Ny(n,mi,m2) of polynomials of degree n over a finite
field |, with all irreducible factors of degree bigger than ms2 and less than or
equal to mi. Applying the saddle point method, we obtain estimates for
Ng(n,m1,mz2) in the range mi = o(n), which have the flavor of de Bruijn [6],
Canfield, Erd6s and Pomerance [3] and Friedlander [11] for the corresponding
problem for integers. Our results have applications in computational number
theory and cryptography [12], and include as a particular case the smooth
polynomials studied by Odlyzko [17] and others.

1. INTRODUCTION

A well-known area of research in analytic number theory is the study
of functions related with the decomposition of numbers into primes. Two
of these functions have been largely studied. The Dickman function mod-
els numbers without large prime factors [6, 8]. An excellent survey on
this topic is due to Hildebrand & Tenenbaum [14]. On the other hand,
the Buchstab function covers the study of numbers without small prime
factors [2, 5]. Both functions are defined as solutions of some particular
difference-differential equations. Furthermore, that is the case for a class
of functions related with number theory [15].

The Dickman and Buchstab functions underlay not only the study of
numbers without large and small primes but also the one of decomposable



structures without large and small “irreducible” components. This con-
nection appears in [13] for the Dickman function, and in [20, 21] for the
Buchstab function.

In this paper we are interested in one particular decomposable structure:
polynomials over finite fields. When dealing with polynomials over finite
fields, the prime elements are of course the irreducible factors of the poly-
nomial, and the size of the irreducible component is its degree. We study
polynomials over finite fields free of large and small degree irreducible fac-
tors. Previous results on this direction were obtained by Car [4]. These
studies are related to the one of Friedlander [11] for numbers free from
small and large primes. It seems also plausible to extend our results to
other decomposable combinatorial structures.

Apart from being a natural question form a mathematical standpoint,
our interests on this problem also arise from a cryptographical application.
As it is well-known, many algorithms for computing discrete logarithms
in extensions of finite fields rely on finding smooth polynomials (all the
irreducible factors have degree bounded by some value m); see, for instance
the excellent surveys by Odlyzko [17, 18]. In this case, the factor base is
formed by all irreducible polynomials of degree smaller or equal to m. We
are interested in developing a generalized version of the index calculus
method for the discrete logarithm problem in F,, when ¢ = p”, p is a small
prime and n — oo; see [12]. Instead of considering smooth polynomials, let
us form our factor base with all irreducible polynomials of degree between
given bounds. In order to estimate the asymptotic running time of this
version one has to provide estimates for the number of polynomials over F,
with all their irreducible factors in an interval.

We now describe the structure of the paper. In Section 2, we briefly
review the cryptographical application related to this work. Our approach
to solve the problem is presented in Section 3. In Section 4, two technical
lemmas needed in the proofs of Theorem 6.1 and Corollary 6.1 (the main
results of our paper) are presented (Lemmas 4.1 and 4.3). We dissect
the study in two cases. The case when the lower bound of the interval
is fixed and the upper bound is o(n) is treated in Section 5. Our results
(Theorems 5.1 and 5.2) are similar to those of de Bruijn [6] and Canfield,
Erdos and Pomerance [3]. Then, in Section 6, we focus on ranges where the
lower bound of the interval tends to infinity with n while the upper bound
is o(n). Our results are given in the form of an integral representation
(Theorem 6.1), which we estimate asymptotically (Corollary 6.1). We also
obtain a Canfield, Erdés and Pomerance type result by increasing the range
of the estimate; this weakens the result (Theorem 6.2). Due to the nature
of the application we have in mind [12], we are interested in the case where
the upper bound of the interval is o(n). In Section 7, we comment on other
ranges for further work.



POLYNOMIALS FREE FROM LARGE AND SMALL IRREDUCIBLES 3

We finish the introduction by commenting on the methodology used
along this paper. We start with a precise characterization of the poly-
nomials of interest using generating functions (for an introductory survey
on this issue, see [9]). Applying some technical lemmas, we give estimates
for our generating functions in terms of the exponential integral. Finally,
we extract coefficients via Cauchy integrals, which we estimate using saddle
point approximations [7, 10].

2. CRYPTOGRAPHICAL APPLICATION

In this section we sketch a cryptographical application that started our
interest in the subject of this paper; see [12] for more information on this
application.

We are interested on the index calculus method for computing discrete
logarithms in F,, where ¢ = p”, p is a prime, and n > 1. The elements in
F, can be represented as polynomials over E, of degree smaller than n.

As it is well-known, the index calculus method depends on finding smooth
polynomials, that is, polynomials such that all their irreducible factors have
degree smaller than or equal to certain bound m. The algorithm starts
by computing a large database formed by the discrete logarithms of all
irreducible polynomials of degree smaller than or equal to m. This set of
irreducible polynomials is called the standard factor base. Until our work,
the standard factor base was the only one being used, and it was considered
to be the natural choice; see, for instance, Odlyzko [17, 18].

We consider a variant of the index calculus method where the database
contains the discrete logarithms of all irreducible polynomials with degree
in certain range (ms, m1 ), with ms < my. Thus, the index calculus method
depends now on finding polynomials that decompose into irreducible factors
with degree in the interval (mgy,mq). This implies that we have to provide
estimates for the number of polynomials over F, of degree n that completely
decompose into irreducible factors with degree in the interval (mg,mq),
ma < my. As we proved in [12], the upper bound m, of the interval is of
the same order as in the original index calculus method. However, the lower
bound of the interval, ms, is a free parameter that can be chosen almost
at will. We note that when ms is as small as possible we have the original
index calculus method, and so, our variant can be seen as a generalization
of this method. On the other hand, our method can be extended, under
certain technical conditions, to factor bases formed by the union of several
intervals (see [12], p. 1259). This greatly increase the possible factor bases
to be considered and compared.

In practical terms, our results allow a tradeoff associated with ms. In
fact, smaller values of msy imply higher probabilities of success (when find-
ing polynomials that factor into irreducibles with degree between msy and
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my1), but the space used in the factor base and the system of congruences
to be solved are large. On the other hand, larger values of m, mean lower
probabilities of success but small size of factor base and size of the sys-
tem of congruences to be solved. Hence, there is some possible further
improvements by tuning the value of ms.

We should emphasize that our work is only a first step on producing
generalized factor bases. Extensive computational experiments should be
carried out to draw other conclusions.

3. THE GENERAL TECHNIQUE

We turn now to the problem of counting the number of monic polynomi-
als over a finite field that are free of irreducible factors of small and large
degree. We start by fixing the notation. Let ¢ be a prime power, and [,
be the finite field with ¢ elements. We use boldface letters, e.g., f, d, to
denote polynomials over If,. In particular, p always denotes an irreducible
polynomial, and 1 denotes the unit of If,. We are interested in the number
of monic polynomials of degree n over F, with all irreducible factors having
degree greater than mo and less than or equal to m;, which we denote by
Ny(n,mq,ms). In general both m; and my can (and will) be functions of
n.

The main idea of the proof is to find the generating function Py, m,(2)
of the numbers Ny(n,m1,m2), and then estimate the coefficients. We
express P, m,(2) in terms of 7, (2) = Yo, 2°/k O Ty my(2) =

ZZmzH 2* /k depending on the behaviour of m,. Then we use Lemma 4.1
to express it in terms of the exponential integral. The coefficients of the
generating function are given by Cauchy integral, which is estimated via
the saddle point method. The application of the saddle point method is
the main and most involved part of the proof.

Let 7 be the collection of all monic irreducible polynomials over ;. The
set. of monic polynomials with irreducible factors between msy and my can
be symbolically written as

II (14+p+p’+..) —1= 11 (1-p) ' —1.

PEZ, ma<deg(p)<mi PEZ, ma2<deg(p)<mi

Note that the —1 in the above formula will not affect anything, since
[2"]1 =0 for n > 1. For simplicity we will drop it in the expression of the
generating function that follows. Let z be a formal variable. The generating
function is obtained immediately via the substitution p — zd¢8(P)

mi

Poyma(z) =[] (1=297" (1)

k=mo+1
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We denote by (m1, msa)—polynomials the ones with all irreducible factors
of degree bigger than ms and less than or equal to m;. The number of
(mq, mg)—polynomials is given by the Cauchy coefficient formula

zZ
Ny(nmr,ma) = ()P s (2) = 01"V Pons ms (5)
Q" z\ dz
= % Cthmg <a> W)

where the contour C is chosen to be z = e~/ _7 < 9 < 7, and « is

a parameter to be chosen later. The idea for this substitution first appears
in the thesis of Gourdon [13]. The change of variable z = e~"*/™ implies
h = a —inf, and the limits of integration now are (a + inm, a — inm).
Therefore,

Nq(naml,ﬂh)
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The last integral cannot be computed exactly. Instead, we will compute
it asymptotically. The function Py, m,(e "/"/q) will be approximated
differently depending on whether ms is constant or an increasing function
of n. Similarly, a will be chosen differently depending on ms.

Fixed lower bound. In this case, ms is a constant, and one would
expect the expression for Ny(n,m1,m2) to be similar to that for N, (n,m1)
of mi-smooth polynomials. We treat the generating function as follows.
The generating function of the set of monic polynomials over F, is

o0

1
Hl—z ’“:1 .
k=1 —qz

Thus, P, ,m, () can be expressed as
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The last term in the product can be treated in the same way as in [20],
Equation (3.2), and obtain

mao [2] [3]
1 Ty (2 Tmy (2
Pm1,m2(z) = H(l _ Zk)Ik e exp <_T’EL]1 (Z) _ 2( ) _ 3( ) _ ) ’
k=1

where
r,[%]l(z) = Z I 2k,
k>mq

The well-known estimate kI, = ¢* + O(¢*/?) implies

k
r%]l <E> = Z % +0 (q72m1/5) for |z < ¢*/1°,

q k>mq
and
sup 7] (E) =0 (¢™6) forj>2.
l2]<1 q

As it will become clear later, the choice of a in Equation (2) will be such
that o = o(n), and o < 0. Thus, for n sufficiently large, the condition
le="/"| < q'/'° holds. Then, from the above discussion we conclude

e—h/n o= (e ) to(1)
mm( q > = =
e—Tmy (e M) +o(1)
= f(h) 1—e h/n
=Ty (7™
= (1+o0(1))f(h)- = e—h/n (4)

e—kh/n

where f(h) = [[}2, (1 = =)™, and 1y, (2) = 340, /K.

Lower bound tending to infinity. In this case, we express the gen-
erating function as follows.

Pryms(2) = H (1—2F)"" =exp (— Z I log(1 — zk)>

k=mo+1 k=mso+1

[oe] 1 mi )
exp Z—, Z I 2%

j=1"% k=mao+1
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[2]
= exp (Tﬁ]l,mz (2) + L’;a(z) 4. )

where in this case

my
w2 = D L >
k=mo+1

Using now the estimate kI = ¢* + O(¢"/?), we obtain for |z| < ¢'/1°

(i) £ Srofemr)
and
o (2) =0 (g0 =0 (g7 me) >

Again the choice of a in Equation (2) will be such that a = o(n), so for
n large enough we have |e="/"| < ¢'/1°, therefore

—h/n o
Pml,m2 <e q > == erm1,m2(e h/ )4o(1)

= (1+o(n)emumal™), (5)

_ m1 k
where 7, m, (2) = Zk:m2+1 2F /2.
In both cases, in order to estimate the Cauchy integral we need first
to estimate the expressions ry,, (2) and rm, m, (%) at least in the cases of

interest here. This is the subject of the next two lemmata.

4. TWO TECHNICAL LEMMATA

In this section we prove a pair of technical lemmata that we need for
the proof of our main results. It will be crucial to estimate the part of the
logarithm series between my and mo

m1 Zk
Tm1,mo (2) = Z ?
k=mo+1

The following lemma, extension of that in [19], provides an estimate for
Tma,ms (%) in terms of the exponential integral

E(a) = /aoo 6_sds.

S
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LEMMA 4.1. Letn,mq,mq € N, and assume that n,mq, ma,n/mq,n/ms
tend to infinity. Let h = —€ + i, with £ > 0 and £/n — 0.
If |7] < n/my, then

rmhmz(e_h/”) = E(mah/n) — E(mih/n) + O <£+T7-e€m1/”> . (6)
For any value of T,

Py ms (€)= O (B(mah/n) — E(mih/n)). (7)

Proof. Let u; = n/m; and uz = n/my. By definition of 7, m,(2), we
have

mi —kh/n

Tm1,ma (e_h/n) = Z Z _kydy

k=mo+1 k=mo+1 h
[e%e} mi
J ( 5 )
h/n k=mo+1
X pmmay 00 pTm1y
= dy — d
/};/ney—ly /};/ney_ly
e 1 e 1
/ 6757/ /m ds —/ e*si/ /m ds.
h/uz eS m2 — ]‘ h/u1 es mr— ]‘

Consider now the integral

(o] o0 —8
/ e*sil/m ds = / et _s/m ds,
hu o €/m—1 hje 5 €/m—1

where u = n/m, and let ¢(2) = —*5, which is analytic for |2| < 27. Then,
the above integral can be written as

oo ,—s o0 _—s
/ € v (i) ds / C s +/
hju S m hju S h/u
h/u —s

E(h/u) + /h ) ~ (v

5 G

o) e
()
)

ds.
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We recall that R(h) = —¢ < 0. The term E(h/u) is the main term in
the approximation of Equation (6). To finish the proof of Equation (6) we
need to bound the last two integrals. To that end we use the following
sublemma.

LEMMA 4.2.  The function (z) = =5
have the following asymptotic estimates.

is analytic for |z| < 2w. We

1.For |z| = 0, ¢¥(2) =1+ O(z).
2.For |z| = o0, ¥(z) — 0.

Proof. The analyticity of ¢ is obvious from its definition. When |z| — 0,
expanding e* we obtain

w(z)_lzez—l_lzz—l—O(zQ)_l
1

When |z| = oo, clearly (z) — 0. |

For the first integral in Equation (8), we observe that for s in the range
(h/u, —h/u), we have

sl _ 1|h|<1< 3 |T|>
- —— < — m_+_
m m u m n U
1
b e, 1
n n n o me

where in the last step we used the assumption |7| < wus of the lemma.
Since &£/n — 0, and m2 — 0o, we get |—;‘ — 0. Therefore, using Lemma 4.2

we have
o(3)-1-0()

ef/v 2|n| [k
< i =
< Thful u O(n)

0 <e£/UE> -0 (eé/ug"'T) :
n n

This implies

—h/u s
L. S eG) -y
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where the last equality holds, since |h| = O({ + 7). For the second integral
in Equation (8), we note that in the range (—h/u,c0) the function ¢ is
bounded. This follows from Lemma 4.2. Therefore,

[ ) -

Next we need to bound E(—h/u). For that we establish the following
bound, as the real part o of the argument is positive,

E(a-l-z'r):/ € ds:/ € ds+/ € ds. 9)
otir S otir S o 8

The second integral is O(e~7 /o). The first integral, after the substitution

s = o + iy, becomes
o e—s 0 e—iy
/ ds = ie_”/ —dy.
o+iT S r 0 + )

One can check now that the second integral is O(e~ 7 log 7).

Returning to the lemma now, we conclude that the integral in the range
(—h/u,00) is O(e=¢/"log(r/u)), which is absorbed by the error term in-
duced by the integral in the range (h/u, —h/u) (recall that £ > 0). Equa-
tion (6) now follows by subtraction, considering u = us and u = wuy, and

< O(V)E(=h/u).

noting that vy < us. |

A similar lemma is needed for the study of generalized smooth polynomi-
als (i.e., when ms is constant). The next lemma provides an approximation
of the remainders of the logarithm series

Zk
rm(2) =Y = (10)

k>m

LEMMA 4.3. Letn,m € N, and h = —§ +i7, with £ > 0 and {/n — 0.
If |7| = o(n), then

rm(e ™) = E(mh/n) + O (“TTeﬁm/n> . (11)

For any value of T,

(€™ = O(E(mh/n)). (12)
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Proof. The proof is essentially the same as in the previous lemma. One
needs only to notice that

my

_ e
I
ey —1

k>m

The choice of the parameters of the above lemmas, although somewhat
artificial, are made to fit exactly the saddle point method that is extensively
used in the next sections.

5. FIXED LOWER BOUND

From this point on, we distinguish between the cases of ms constant,
and mo tending to infinity. The reason for this distinction is that the
expressions for the generating function are sufficiently different, so that
the choices that we have to make in the process of estimating the Cauchy
integral will be different as well. The method we use for estimating the
integral is the saddle point method.

The number of generalized smooth polynomials, i.e., when ms is fixed,
under certain conditions on mq, can be expressed in terms of the Dick-
man function which also governs the behavior of smooth integers [6, 14].
The Dickman function is defined as the unique solution of the following
difference-differential equation:

plu) =1, 0<u<l
up (u) = —pu—1), u>1

p(u) is continuous.

In our work, it is convenient to consider the integral representation given
by the inverse Laplace transform

1 a+1i00 _eE(s)

p(u) —/ —e%ds. (13)

210 J o—ioo s

The following theorem gives an asymptotic estimate for N, (n,mq,m2),
and it is similar to de Bruijn’s result [6] for integers. The fact that ms is
constant allows for an elementary argument. However, we take the oppor-
tunity to introduce the analytic methods that are fully required in order
to prove Theorem 6.1.

THEOREM 5.1.  The number Ny(n,my,m2) of monic polynomials of de-
gree n. over E, with all irreducible factors with degree greater than ms and



12 GAREFALAKIS AND PANARIO
less than or equal to my, with mo fized and \/nlogn < m; < n satisfies
n n
Ny(n,mi,mz) ~q"f(0)p | — ),

where p is the Dickman function, and

-l

k=1

Proof. From Equation (2) and Equation (4) we have

7h/n)

n a+inm —rmq (€
q e~ "m
Ny(n,my,my) = (1+0(1))%/ f(h)mehdh

q" /HW LT ICR I W2

a—inm

(1+0(1))=— f(h) - TR edh.

2mi a—inm

Let ¢(z) = ==, that is analytic in |z| < 27. We now concentrate
on the above integral. One expects that the main contribution to the
integral comes from the neighborhood of the real axis. Indeed, let 6 = o(n),

h = a + it, and consider the integrals

R e Y
_ e 1 n L
Jﬁ(n7m17m2) - /;—ié f(h) h 1— efh/ne dh7
and
Ty (e7™) h/
e 1 n
Jtair(n, m1, = h hdh.
! l(n m m2) A<T<nwf( ) h 1 _e_h/ne

Let us consider first Js(n,mi,ms). For the range (a — i, a + id), we
have h/n — 0, and lim._,o == = 1. As we will see later, a > § ~

uq log(uy ), where u; = n/my, and an application of Lemma 4.3 implies
atis —E(h/u1)
Js(n,mq, ms) = exp <O <Me|a/“1>> / f(h)eiehdh.
n a—id h

Furthermore, |h/n| < |a/n| + © < 2w, provided that a/n = o(1) (which
will be the case for our choice of «, if logn/m; = 0(1)), and ¢ is analytic
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in that range, so it is bounded by a constant. Therefore, for h = a + iT,
using Lemma 4.3 we have

e—O(B(h/u1))

Jiair(n,mi,me) = 0(1)/ f(h)y—————e"dh

6<|r|<nmw h

Note now that f(h) is analytic, and bounded by a constant in the range
of interest. Specifically, f(h) = O(1) for § < |r| < nw. Furthermore, the
Taylor expansion of f(h) around zero for |7| < § yields

F(h) = F(0) +0 (h) = £(0) + o(1).

n

Thus,
atis ,—F(h/u)
Js(n,my,ma) = (1 + o(1)) exp <O <%e|a/’“>> f(O)/ eTehdh,
a—1id
(14)
and
e—O(E(h/u1))
Jtait(n,my,my) = O(l)/ - ehdn. (15)
i<|r|<nm h

It remains to estimate the above expressions. It is well-known that e~ #(%) /5
is the Laplace transform p(s) of the Dickman function. The integrals in
Equations (14) and (15) have been studied by several authors. We briefly
sketch here the exposition by Tenenbaum (see [23], pp. 372-376). The key
idea is to use the saddle point method to prove that the main contribution
comes from Js(n,mi,mz), which is then estimated. For the method to go
through we have to choose a to be the real solution of the equation

(—=E(h/uy) + h —logh) = 0.

The solution « satisfies a ~ —uq log(us loguy). Thus, the condition o =
o(n), which was needed throughout the proof, holds if logn/m; — 0.
For this choice of « it is then shown that the contribution of the tails
is O(u;l/2 + exp (—ui log 2wy + 2loguy)) times the first integral, and is
negligible provided m1 = o(n). The tails along the vertical line up to +ico
and —ioo are shown to be negligible. The argument is technical, and we
will not go into the details for two reasons: it appears in [23], and a similar
argument will be used in the next section for the case my — 0o.
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Collecting the previous results we have
q" || | /QHJ e~ F(h/u)
N, ~ = I elaf/w € T T h
¢(n,m1, ms) 57 CXP <O < e 7(0) - e dh
~ q"exp (0 (%e""/’“)) F(0)p(ur),

where p is the Dickman function as defined in Equation (13).
Finally, under the assumption that y/nlogn/mi — 0, we have

2752 2
0 (%e"’/‘“) —_0 <U1 los u1> —0 <nlf,§2 n> — o(1).
1

In the spirit of Canfield, Erdés and Pomerance, we can obtain a slightly
weaker result that holds for a much larger range of values of m;. Indeed,
replacing the assumption /nlogn/m; — 0 by logn/m; — 0, and using
the notation u; = n/my, it follows from the proof of Theorem 5.1 that

N, ma) ~ o exp (el ) go)ptan)

It is known [6] that

p(Ul) — 67(1+o(1))u1 logul-

Also it can be checked that,

e‘Z—le""l/"l — eO((ul log ui logn)/m1) o(1)uq log uy

=e
Therefore, we have the following theorem.

THEOREM 5.2. The number Ny(n,m1,m2) of monic polynomials of de-
gree n over I, with all irreducible factors with degree between mo and mq,
with ma fized and logn < my K n, satisfies

Ny(n,my,my) = qn€7(1+0(1))ﬁ1 18 1

6. LOWER BOUND TENDING TO INFINITY
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We turn now to the case when both bounds m and ms tend to infinity,
with m; = o(n). Let Ny(n,m) be the number of m-smooth polynomials.
Since Ny(n,my,mz2) < Ny(n,my), the power series

z = z"
Pm17m2 <_> :ZNq(namlamQ)_n7
q 0 q

is dominated by the power series
z > z"
Pml <_> :ZNq(naml)_na
q =0 q

and therefore, its radius of convergence is greater or equal to the radius of
convergence of P,,,. Since |z| = e~®/" is within the radius of convergence
of Py, for a ~ —n/mylog(n/mylogn/my) (see [17, p.74]), it is certainly
within the radius of convergence of P, ., as well. This will turn out to
be the choice of o when estimating the integral in Equation (2).

From Equations (2) and (5) we have

1 1 n a+inmT n h
Ny(n,mi,mz) = %/ ermmale" )%dh. (16)

—inT
We focus on the above integral. Let us denote

1 atinw ~h/m) eh

ermima (e Z_gp,

J(n,my,my) = "

2mi a—inm
As usual in this paper, we write u; = n/m; and us = n/my. We expect
that the main contribution to the integral comes from the neighborhood
of the real axis. If the saddle point method is to work, then we hope to
approximate the term p,, m,(e~"/") close to the real axis by E(h/us) —
E(h/uy)+ O(’Tc’e_“/ul ), according to Lemma 4.1, provided of course that
the value of « satisfies the conditions of the lemma. Let

f(h) = E(h/UQ) - E(h/ul) + h.

The value of « is determined as the real solution of the equation f (h) = 0,
that is,

e*h/ug efh/ul

fy=1-"——+"——=0.

The following lemma will be crucial for the application of the saddle point
method.




16 GAREFALAKIS AND PANARIO

LEMMA 6.1. The equation

e—h/uz e—h/U1

L h

=1 (17)

has a megative real solution, —¢&, such that & ~ wuylog(uiloguy). More
precisely,

uy log (ug loguy) < € < ug log (uq (logur)?), (18)

where uy < cus for any constant ¢ < 1, and uq — oo.

Proof. Consider the function f (h) defined above at the points hy =
—uy log (uy loguy), and he = —uy log (u1(logu;)?). One can easily check
that f (h1) > 0, and f (hy) < 0, and since f (k) is continuous, it follows
that it has a zero in (ha, hy). |

S(h)
—¢ + inmyr
I I
—f + iuln
—€ 454t
Js
=3 R(h)
—&—ibe |
_E — iull
€ —iu Tail
—& — iune
—5 —iNTe-1-

FIG. 1. Decomposition of the integral
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To estimate .J(n,m,ms) we choose @ = —&. We break J(n,mi,ms) as
the sum of two integrals along the vertical line with I(h) = —&, as shown
in Figure 1

1 —&+id
Sonmima) = g [ e (f)dn

=
+ ; exp (f(h)) dh.
2nmi 6<|S(h)|<nm (1)

Nearly all the contribution to the integral will come from the neighborhood
of the point —¢, with the contribution of the tail being negligible. To show
that, we first estimate

—&£+1i6 h
! / ermima(e "M E gy
2nmi J_g_ys n

for a suitable §. One can easily check now that the conditions of Equa-
tion (6) in Lemma 4.1 are satisfied — in fact the conditions were chosen
to fit the proof. Substituting the estimate f(h) for rm, m,(e~"/") + h, we
obtain

—E4i6
LAl [ :6 exp (f(1)) dh.
We need to estimate
1 —&+id
T, ma) = o [ e (19)

We need the first three derivatives at h = —¢. By the definition of &, we
have

f (=& =0.
For the second derivative we can write

" £/ uz &/u
F(-9 = _%(e - - +1)

U2 (5%
| loguy )1 /2
~ <(U,1 Ogul) _lOgU1 +1>
uq log(uy loguy) Us
—1 -1
~—_08m T (20)

uq log(uy loguy) U]

where we used the facts that £ ~ u log(uy logu, ), that —¢ satisfies Equa-
tion (17), and that us > cu; for some ¢ < 1. Finally, the third derivative
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can be computed and shown to be
" eg/ul 1
reo-o(SE) o)

flerin= -0 - L% 0 (5 (o).

It follows that

Taking § = u}/Q logu; and using Lemma 6.1, we obtain #3f (=¢) =
) (ul_l/Q (log u1)3). Under the change of variable h = —¢ + it, we have

" 1"

T, mims) = 5 [ Zexp (F-o 221" o2+ 0 (£7(-9)) at

_ e (F(=0) / ‘; (1+20 (1" (=9) ) exp (~£21" (-8)/2) at.

2nmw

The term containing #* is o(1). Therefore, we obtain

J— 5 1"
S m) = (14 o) LT [ ey (—f" (-9 72) a

2nmw
exp (f(=€)
ny/2x|f" (=€)|

For the tails now, we will use the following technical lemma.

LEMMA 6.2. Forh = —{+it,t € R, and g(h) = O(E(h/u2)—E(h/uy))+
h, we have

(1+0(1)) (21)

exp(g(h)) = exp (=€ +o(ur) +it), [t > uy;

Kt?
Uy

exp(R(f (1)) < exp (f(—f) ) <

U

exp(RU(1) < exp (1(-6) = ot

+ O(l)) , up < |t < us.

(22)
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Proof. We note that E(s) = o(e”7/|r|), for s = o +i7 (see [23], p. 373).
Therefore, for |t| > us
exp(g(h)) = exp (O (eg/“ZU2/|t|) -0 (eg/“1u1/|t|) —&+ it)
= exp(={+o(u) +it),
where we need to assume uj logu; = o(uz), which is satisfied if ms =
o(my/logn).

The second equation is more involved. We start by checking that (see [1],
5.1.37)

f(=8) =R(f(h) =

/1 efy/u (1 — cos(ty/ul))dy
0

)
L oy/ua(q — t
e cos(ty/u
[t
0 )
1 gy/ur _
> / e (cos(ty/uz) cos(ty/ul))dy- (23)
0 Y
For |t| < uy and an appropriate constant K ', we have
K’t2 2
cos(ty/us) — cos(ty/uy) > u2y . (24)

1

Using Equations (23) and (24), we have for a constant K

1 42 "2 pl
Kt Kt
O =R > [ e B ay =S [ ey
0 uy uy 0
K2 e/ (¢~ wuy 408 K2

u? £2 wy

The bound in Equation (22) can be shown in a similar way. We work in
the range uy < [t| < uz. We observe that

1 eﬁy/u1 _ uy
F(=€) —R(f(h) = / (1 ;os(ty/ )
~ /1 eSv/uz(1 — cos(ty/uz))dy
0 y
+ O(1). (25)

dy

u1
(&/ur)* + 72

Indeed, we refer to the proof in [23] p. 374 that the first integral in Equa-
tion (25) is greater than or equal to uy/((£/u1)? + ©%). Next we give a

>
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lower bound for the second integral

/1 e€v/u (1 — Cos(ty/u2))dy _ ot /1 v/ 1 — cos(ty/us) i
0 0

. (26
, ” /s y. (26)

For the range u; < |t| < ug, and since 0 < y < 1, we have |ty /us2| < 1. For
x < 1, from the Taylor expansion of cos(xz) we have

cos(x) =1 — O(x?),

which implies that
1-cos(z) _ O(z).

xr

Applying this to the integral in Equation (26), we obtain

\/1 egy/UZ(]_ — COS(ty/U2))dy _ O(].)i /1 t_yegy/UZdy
0 0

Yy U2 U2
2l 2l
:O(l)—Q/ yet¥/ 2 dy SO(l)—Q/ eS¥/ v dy
U3 Jo U3 Jo
t2 Us t2 U2 ( f >
—0(1)= 22 1)Y= _20(>2) <001
(e —1) = 520 () <o)
where we used the assumption uqlogui = o(u2), which implies that

¢/us — 0, and therefore e&/42 — 1 = O(£/us). Also in this range |t/us| < 1
which proves Equation (25) and concludes the proof. |

We break up the tails in three parts: |t| > ua, , u1 < |t| < w2 and
0 < |t| < uy. For the first range, the contribution is negligible due to the
above lemma, and the following easy facts:

o (e()-5()

reo--cox(2)-#(5)

We concentrate now in the range § < |t| < u;. By the above lemma, the
tail in this range is upper bounded by

and

Kt2

_ _5 2 < _ > —K
/5<t|§u1 P <f( 2 U1t>dt < exp (f( 5))/5 e dt
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exp (f(=9) vur % _,dy
2\/[_( 02K /uy \/g
exp (f(=€)) u1 ks /u,
< —ox "
X0 () VT k(g
2K log(uy)

which is clearly acceptable.
For the intermediate range u; < || < ug, the tails are bounded by

€/ug U2 _ ~Teem TR _
exp (e exp (f(=§)) e Ce=m”+7% (uy —uq),
n

which again is acceptable provided that the above expression is o(y/u1).
This holds by the hypothesis of Theorem 6.1 since mo > log3 n and mo >
ampe "/ (milogn)”) " Putting all pieces together, we have proven that

q" /ur —€+ico
N,(n,m1,ms) = 'eO(e (&+9)/n) B (h/u2)=E(h/u1) gh g3,
! 2nmi —f—ico

Under the condition y/nlogn < m;, we have
eO(ef/u1(5+6)/n) -1 +O(1).

We have proven the following theorem.

THEOREM 6.1. The number Ny(n,m1,ms) of monic polynomials over F,
with all irreducible factors with degree between my and ms, my,ms — 00
satisfying /nlogn < my < n, and max{log®n, \/We’”/(ml(log ”)2)} <
mo <K my/logn, is asymptotically

qn —&+ico
N, (n,mq,ms) ~ / ePmah/m)=E(mh/m) h g,

2nmi —£—ico

where £ is given in Equation (18) of Lemma (6.1).

The proof of Theorem 6.1 gives more than the integral form stated. The
following corollary gives the asymptotic estimate obtained in the proof of
Theorem 6.1. The estimate is stated in terms of the integral

x t

Ei(a:):/ %dt (z > 0).

— 00

The reason for this is that Ei(z) is a real valued function, and the final
result is more natural expressed in that way.
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COROLLARY 6.1. The number Ny(n,m1,m2) of monic polynomials over
E, with all irreducible factors with degree between my and ma, my, my — 00,

Vnlogn € m; < n, and max{log3 n,,/nmle*”/(ml(log")%} <K me K
my/logn, is asymptotically

q"\/m1
V2nm

where £ is given in Equation (18) of Lemma (6.1).

Ny(n,mi,ma) ~ exp (Ei(§émi/n) — Ei(§ma/n) —§),

Proof. From the proof of Theorem 6.1 we have
Ny(n,mi,ms) ~ ¢"Js(n,mi, ms).
This combined with Equation (21) implies that

q"exp (f(=9)
nv/2z|f" (=€)

As it was pointed out in Equation (20), f (—=¢) ~ —1/us, where again
uy = n/my. Thus, it only remains to estimate f(—¢)

Nq(n,mth) ~

f(=8) = E(=¢/uz) — E(=&/u1) — ¢
= —FEi(§/u2) + Ei({/u1) = &,

where the second equality holds since E(z + i0) = —FEi(—x) — im (see
[1], 5.1.7). 1

Again, as for the generalized smooth polynomials, one can extend the
range of the estimate considerably, by weakening the result.

THEOREM 6.2. The number N,(n,m1,m2) of monic polynomials over
E, with all irreducible factors between m; and mso, with mi,ms — o0,
mie~"'™ & my < emy for any constant ¢ < 1, and 2(logn)? < m; K n
satisfies

Ny(n,mi,my) = qne_(lJrO(l))mL1 8 my

Proof. Let u1 = n/mi and us = n/ms. The number Ny (n,m1,ms)
was estimated in terms of four integrals that correspond to the ranges
[t| < 6,5 < |t < uy, up < |t| < uz, and |t| > us. From the proof of
Theorem 6.1, it is clear that the main integral corresponding to the range
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|t] < 6 is e~ (IHo()urlogur with the only assumption that logn < m; < n.
Moreover, the tail integrals that correspond to the ranges |t| > w2 and
§ < |t| < uy are e~(IFo()urlogur ypder no further assumption. The rest of
the conditions come from the range u; < [t| < us. In that range the tail is

exp (/1 22) exp (f(—)) € o (up — )

5+ “1“2:°g “1 +log (us—u1)

= exp (f(—¢)) ¢ Trme
We know that f(—¢) = —(1+0(1))u; loguy, and all the other terms in the
exponent are o(1)uy log uy, except maybe log us. In order to ensure this, we

need to impose the condition mso > mie /™1 The theorem now fol-
lows. |

7. CONCLUSION AND FURTHER WORK

We studied the problem of estimating the number of polynomials of
degree n over F, that have irreducible factors of degree greater than msy
and less than or equal to my. Our results hold for certain ranges of values
for my and ms. For example, if my = 0, then we have proven

n
N’J(namlamQ) ~q"p <m_1> , (27)

only if /nlogn << m;. Can the range of m; for which the Dickman
function appears, be extended? If not, one might be able to prove that
for smaller values of my, Ny(n,m1, m2) is asymptotically different than the
expression in Equation (27), by proving a stronger version of Lemma 4.1.
Using this, one could also extend the range for m; in Theorem 6.1.

Also the case m; = n/e, ¢ > 1, was not considered at all. When ¢ = 1,
that is m; = n, it has been proven [20] that he number of polynomials with
irreducible factors with degrees in that range are related with the Buchstab
function. When ¢ > 1, using the same arguments as in Section 6, one finds
that Equation (16) holds. Furthermore, the approximation of Lemma 4.1
will work equally well. However, the saddle point method fails because of
technical reasons (basically due to the fact that the corresponding value of
¢ is constant). It would be interesting to solve the case my = n/e, ¢ > 1,
and thus complete the range.

Another interesting problem is the study of similar estimates for other
decomposable structures. These studies would provide estimates, for in-
stance, for the number of permutations that decompose into cycles of length
within a certain interval, or the unmber of 2-regular graphs that decompose
into connected components of size between two bounds, and so on.
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In addition to the previous mathematical questions, we are interested in

the application of the results of this paper to cryptography. A first step in
this direction has appeared in [12].
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