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aWe study the number Nq(n;m1;m2) of polynomials of degree n over a �nite�eld Fq with all irredu
ible fa
tors of degree bigger than m2 and less than orequal to m1. Applying the saddle point method, we obtain estimates forNq(n;m1;m2) in the range m1 = o(n), whi
h have the 
avor of de Bruijn [6℄,Can�eld, Erd�os and Pomeran
e [3℄ and Friedlander [11℄ for the 
orrespondingproblem for integers. Our results have appli
ations in 
omputational numbertheory and 
ryptography [12℄, and in
lude as a parti
ular 
ase the smoothpolynomials studied by Odlyzko [17℄ and others.1. INTRODUCTIONA well-known area of resear
h in analyti
 number theory is the studyof fun
tions related with the de
omposition of numbers into primes. Twoof these fun
tions have been largely studied. The Di
kman fun
tion mod-els numbers without large prime fa
tors [6, 8℄. An ex
ellent survey onthis topi
 is due to Hildebrand & Tenenbaum [14℄. On the other hand,the Bu
hstab fun
tion 
overs the study of numbers without small primefa
tors [2, 5℄. Both fun
tions are de�ned as solutions of some parti
ulardi�eren
e-di�erential equations. Furthermore, that is the 
ase for a 
lassof fun
tions related with number theory [15℄.The Di
kman and Bu
hstab fun
tions underlay not only the study ofnumbers without large and small primes but also the one of de
omposable



stru
tures without large and small \irredu
ible" 
omponents. This 
on-ne
tion appears in [13℄ for the Di
kman fun
tion, and in [20, 21℄ for theBu
hstab fun
tion.In this paper we are interested in one parti
ular de
omposable stru
ture:polynomials over �nite �elds. When dealing with polynomials over �nite�elds, the prime elements are of 
ourse the irredu
ible fa
tors of the poly-nomial, and the size of the irredu
ible 
omponent is its degree. We studypolynomials over �nite �elds free of large and small degree irredu
ible fa
-tors. Previous results on this dire
tion were obtained by Car [4℄. Thesestudies are related to the one of Friedlander [11℄ for numbers free fromsmall and large primes. It seems also plausible to extend our results toother de
omposable 
ombinatorial stru
tures.Apart from being a natural question form a mathemati
al standpoint,our interests on this problem also arise from a 
ryptographi
al appli
ation.As it is well-known, many algorithms for 
omputing dis
rete logarithmsin extensions of �nite �elds rely on �nding smooth polynomials (all theirredu
ible fa
tors have degree bounded by some value m); see, for instan
ethe ex
ellent surveys by Odlyzko [17, 18℄. In this 
ase, the fa
tor base isformed by all irredu
ible polynomials of degree smaller or equal to m. Weare interested in developing a generalized version of the index 
al
ulusmethod for the dis
rete logarithm problem in Fq , when q = pn, p is a smallprime and n!1; see [12℄. Instead of 
onsidering smooth polynomials, letus form our fa
tor base with all irredu
ible polynomials of degree betweengiven bounds. In order to estimate the asymptoti
 running time of thisversion one has to provide estimates for the number of polynomials over Fqwith all their irredu
ible fa
tors in an interval.We now des
ribe the stru
ture of the paper. In Se
tion 2, we brie
yreview the 
ryptographi
al appli
ation related to this work. Our approa
hto solve the problem is presented in Se
tion 3. In Se
tion 4, two te
hni
allemmas needed in the proofs of Theorem 6.1 and Corollary 6.1 (the mainresults of our paper) are presented (Lemmas 4.1 and 4.3). We disse
tthe study in two 
ases. The 
ase when the lower bound of the intervalis �xed and the upper bound is o(n) is treated in Se
tion 5. Our results(Theorems 5.1 and 5.2) are similar to those of de Bruijn [6℄ and Can�eld,Erd�os and Pomeran
e [3℄. Then, in Se
tion 6, we fo
us on ranges where thelower bound of the interval tends to in�nity with n while the upper boundis o(n). Our results are given in the form of an integral representation(Theorem 6.1), whi
h we estimate asymptoti
ally (Corollary 6.1). We alsoobtain a Can�eld, Erd�os and Pomeran
e type result by in
reasing the rangeof the estimate; this weakens the result (Theorem 6.2). Due to the natureof the appli
ation we have in mind [12℄, we are interested in the 
ase wherethe upper bound of the interval is o(n). In Se
tion 7, we 
omment on otherranges for further work. 2



POLYNOMIALS FREE FROM LARGE AND SMALL IRREDUCIBLES 3We �nish the introdu
tion by 
ommenting on the methodology usedalong this paper. We start with a pre
ise 
hara
terization of the poly-nomials of interest using generating fun
tions (for an introdu
tory surveyon this issue, see [9℄). Applying some te
hni
al lemmas, we give estimatesfor our generating fun
tions in terms of the exponential integral. Finally,we extra
t 
oeÆ
ients via Cau
hy integrals, whi
h we estimate using saddlepoint approximations [7, 10℄.2. CRYPTOGRAPHICAL APPLICATIONIn this se
tion we sket
h a 
ryptographi
al appli
ation that started ourinterest in the subje
t of this paper; see [12℄ for more information on thisappli
ation.We are interested on the index 
al
ulus method for 
omputing dis
retelogarithms in Fq , where q = pn, p is a prime, and n > 1. The elements inFq 
an be represented as polynomials over Fp of degree smaller than n.As it is well-known, the index 
al
ulus method depends on �nding smoothpolynomials, that is, polynomials su
h that all their irredu
ible fa
tors havedegree smaller than or equal to 
ertain bound m. The algorithm startsby 
omputing a large database formed by the dis
rete logarithms of allirredu
ible polynomials of degree smaller than or equal to m. This set ofirredu
ible polynomials is 
alled the standard fa
tor base. Until our work,the standard fa
tor base was the only one being used, and it was 
onsideredto be the natural 
hoi
e; see, for instan
e, Odlyzko [17, 18℄.We 
onsider a variant of the index 
al
ulus method where the database
ontains the dis
rete logarithms of all irredu
ible polynomials with degreein 
ertain range (m2;m1), with m2 < m1. Thus, the index 
al
ulus methoddepends now on �nding polynomials that de
ompose into irredu
ible fa
torswith degree in the interval (m2;m1). This implies that we have to provideestimates for the number of polynomials over Fq of degree n that 
ompletelyde
ompose into irredu
ible fa
tors with degree in the interval (m2;m1),m2 < m1. As we proved in [12℄, the upper bound m1 of the interval is ofthe same order as in the original index 
al
ulus method. However, the lowerbound of the interval, m2, is a free parameter that 
an be 
hosen almostat will. We note that when m2 is as small as possible we have the originalindex 
al
ulus method, and so, our variant 
an be seen as a generalizationof this method. On the other hand, our method 
an be extended, under
ertain te
hni
al 
onditions, to fa
tor bases formed by the union of severalintervals (see [12℄, p. 1259). This greatly in
rease the possible fa
tor basesto be 
onsidered and 
ompared.In pra
ti
al terms, our results allow a tradeo� asso
iated with m2. Infa
t, smaller values of m2 imply higher probabilities of su

ess (when �nd-ing polynomials that fa
tor into irredu
ibles with degree between m2 and



4 GAREFALAKIS AND PANARIOm1), but the spa
e used in the fa
tor base and the system of 
ongruen
esto be solved are large. On the other hand, larger values of m2 mean lowerprobabilities of su

ess but small size of fa
tor base and size of the sys-tem of 
ongruen
es to be solved. Hen
e, there is some possible furtherimprovements by tuning the value of m2.We should emphasize that our work is only a �rst step on produ
inggeneralized fa
tor bases. Extensive 
omputational experiments should be
arried out to draw other 
on
lusions.3. THE GENERAL TECHNIQUEWe turn now to the problem of 
ounting the number of moni
 polynomi-als over a �nite �eld that are free of irredu
ible fa
tors of small and largedegree. We start by �xing the notation. Let q be a prime power, and Fqbe the �nite �eld with q elements. We use boldfa
e letters, e.g., f , d, todenote polynomials over Fq . In parti
ular, p always denotes an irredu
iblepolynomial, and 1 denotes the unit of Fq . We are interested in the numberof moni
 polynomials of degree n over Fq with all irredu
ible fa
tors havingdegree greater than m2 and less than or equal to m1, whi
h we denote byNq(n;m1;m2). In general both m1 and m2 
an (and will) be fun
tions ofn.The main idea of the proof is to �nd the generating fun
tion Pm1;m2(z)of the numbers Nq(n;m1;m2), and then estimate the 
oeÆ
ients. Weexpress Pm1;m2(z) in terms of rm1(z) = Pk>m1 zk=k or rm1;m2(z) =Pm1k=m2+1 zk=k depending on the behaviour ofm2. Then we use Lemma 4.1to express it in terms of the exponential integral. The 
oeÆ
ients of thegenerating fun
tion are given by Cau
hy integral, whi
h is estimated viathe saddle point method. The appli
ation of the saddle point method isthe main and most involved part of the proof.Let I be the 
olle
tion of all moni
 irredu
ible polynomials over Fq . Theset of moni
 polynomials with irredu
ible fa
tors between m2 and m1 
anbe symboli
ally written asYp2I; m2<deg(p)�m1(1+p+p2+ :::) �1 = Yp2I; m2<deg(p)�m1(1�p)�1 �1:Note that the �1 in the above formula will not a�e
t anything, sin
e[zn℄ 1 = 0 for n � 1. For simpli
ity we will drop it in the expression of thegenerating fun
tion that follows. Let z be a formal variable. The generatingfun
tion is obtained immediately via the substitution p! zdeg(p)Pm1;m2(z) = m1Yk=m2+1(1� zk)�Ik : (1)



POLYNOMIALS FREE FROM LARGE AND SMALL IRREDUCIBLES 5We denote by (m1;m2){polynomials the ones with all irredu
ible fa
torsof degree bigger than m2 and less than or equal to m1. The number of(m1;m2){polynomials is given by the Cau
hy 
oeÆ
ient formulaNq(n;m1;m2) = [zn℄Pm1;m2(z) = qn[zn℄Pm1;m2 �zq�= qn2�i ZC Pm1;m2 �zq� dzzn+1 ;where the 
ontour C is 
hosen to be z = e��=n+i�; �� � � � �, and � isa parameter to be 
hosen later. The idea for this substitution �rst appearsin the thesis of Gourdon [13℄. The 
hange of variable z = e�h=n impliesh = � � in�, and the limits of integration now are (� + in�; � � in�).Therefore,Nq(n;m1;m2) = qn2�i Z ��in��+in� � 1nPm1;m2 �e�h=nq � dhe�h= qn2�i Z �+in���in� Pm1;m2 �e�h=nq � ehn dh: (2)The last integral 
annot be 
omputed exa
tly. Instead, we will 
omputeit asymptoti
ally. The fun
tion Pm1;m2(e�h=n=q) will be approximateddi�erently depending on whether m2 is 
onstant or an in
reasing fun
tionof n. Similarly, � will be 
hosen di�erently depending on m2.Fixed lower bound. In this 
ase, m2 is a 
onstant, and one wouldexpe
t the expression for Nq(n;m1;m2) to be similar to that for Nq(n;m1)of m1-smooth polynomials. We treat the generating fun
tion as follows.The generating fun
tion of the set of moni
 polynomials over Fq isP (z) = 1Yk=1(1� zk)�Ik = 11� qz :Thus, Pm1;m2(z) 
an be expressed asPm1;m2(z) = m2Yk=1(1� zk)IkP (z) Yk>m1(1� zk)Ik :



6 GAREFALAKIS AND PANARIOThe last term in the produ
t 
an be treated in the same way as in [20℄,Equation (3.2), and obtainPm1;m2(z) = m2Yk=1(1� zk)Ik 11� qz exp �r[1℄m1(z)� r[2℄m1(z)2 � r[3℄m1(z)3 � � � �! ;(3)where r[j℄m1(z) = Xk>m1 Ikzkj :The well-known estimate kIk = qk +O(qk=2) impliesr[1℄m1 �zq� = Xk>m1 zkk +O �q�2m1=5� for jzj < q1=10;and supjzj<1 r[j℄m1 �zq� = O �q�m1(j�1)� for j � 2:As it will be
ome 
lear later, the 
hoi
e of � in Equation (2) will be su
hthat � = o(n), and � < 0. Thus, for n suÆ
iently large, the 
onditionje�h=nj < q1=10 holds. Then, from the above dis
ussion we 
on
ludePm1;m2 �e�h=nq � = f(h) � e�r[1℄m1 (e�h=n=q)+o(1)1� e�h=n= f(h) � e�rm1 (e�h=n)+o(1)1� e�h=n= (1 + o(1))f(h) � e�rm1(e�h=n)1� e�h=n ; (4)where f(h) =Qm2k=1(1� e�kh=nqk )Ik , and rm1(z) =Pk>m1 zk=k.Lower bound tending to in�nity. In this 
ase, we express the gen-erating fun
tion as follows.Pm1;m2(z) = m1Yk=m2+1(1� zk)�Ik = exp � m1Xk=m2+1 Ik log(1� zk)!= exp0� 1Xj=1 1j m1Xk=m2+1 Ikzjk1A



POLYNOMIALS FREE FROM LARGE AND SMALL IRREDUCIBLES 7= exp r[1℄m1;m2(z) + r[2℄m1;m2(z)2 + � � �!where in this 
ase r[j℄m1;m2(z) = m1Xk=m2+1 Ikzjk; j � 1:Using now the estimate kIk = qk +O(qk=2), we obtain for jzj < q1=10r[1℄m1;m2 �zq� = m1Xk=m2+1 zkk +O �q�2m2=5� ;and r[j℄m1;m2 �zq� = O �q(�9j=10+1)m2� = O �q�4m2=5� ; j � 2:Again the 
hoi
e of � in Equation (2) will be su
h that � = o(n), so forn large enough we have je�h=nj < q1=10, thereforePm1;m2 �e�h=nq � = erm1;m2 (e�h=n)+o(1)= (1 + o(1))erm1;m2 (e�h=n); (5)where rm1;m2(z) =Pm1k=m2+1 zk=z.In both 
ases, in order to estimate the Cau
hy integral we need �rstto estimate the expressions rm1(z) and rm1;m2(z) at least in the 
ases ofinterest here. This is the subje
t of the next two lemmata.4. TWO TECHNICAL LEMMATAIn this se
tion we prove a pair of te
hni
al lemmata that we need forthe proof of our main results. It will be 
ru
ial to estimate the part of thelogarithm series between m1 and m2rm1;m2(z) = m1Xk=m2+1 zkk :The following lemma, extension of that in [19℄, provides an estimate forrm1;m2(z) in terms of the exponential integralE(a) = Z 1a e�ss ds:



8 GAREFALAKIS AND PANARIOLemma 4.1. Let n;m1;m2 2 N, and assume that n;m1;m2; n=m1; n=m2tend to in�nity. Let h = �� + i� , with � > 0 and �=n! 0.If j� j � n=m2, thenrm1;m2(e�h=n) = E(m2h=n)�E(m1h=n) +O�� + �n e�m1=n� : (6)For any value of � ,rm1;m2(e�h=n) = O (E(m2h=n)�E(m1h=n)) : (7)Proof. Let u1 = n=m1 and u2 = n=m2. By de�nition of rm1;m2(z), wehaverm1;m2(e�h=n) = m1Xk=m2+1 e�kh=nk = m1Xk=m2+1 Z 1h=n e�kydy= Z 1h=n m1Xk=m2+1 e�ky! dy= Z 1h=n e�m2yey � 1dy � Z 1h=n e�m1yey � 1dy= Z 1h=u2 e�s 1=m2es=m2 � 1ds� Z 1h=u1 e�s 1=m1es=m1 � 1ds:Consider now the integralZ 1h=u e�s 1=mes=m � 1ds = Z 1h=u e�ss s=mes=m � 1ds;where u = n=m, and let  (z) = zez�1 , whi
h is analyti
 for jzj < 2�. Then,the above integral 
an be written asZ 1h=u e�ss  � sm� ds = Z 1h=u e�ss ds+ Z 1h=u e�ss � � sm�� 1� ds (8)= E(h=u) + Z �h=uh=u e�ss � � sm�� 1� ds+ Z 1�h=u e�ss � � sm�� 1� ds:



POLYNOMIALS FREE FROM LARGE AND SMALL IRREDUCIBLES 9We re
all that <(h) = �� < 0. The term E(h=u) is the main term inthe approximation of Equation (6). To �nish the proof of Equation (6) weneed to bound the last two integrals. To that end we use the followingsublemma.Lemma 4.2. The fun
tion  (z) = zez�1 is analyti
 for jzj < 2�. Wehave the following asymptoti
 estimates.1.For jzj ! 0,  (z) = 1 +O(z).2.For jzj ! 1,  (z)! 0.Proof. The analyti
ity of  is obvious from its de�nition. When jzj ! 0,expanding ez we obtain (z)� 1 = zez � 1 � 1 = zz +O(z2) � 1= 11 +O(z) � 1 = O(z):When jzj ! 1, 
learly  (z)! 0.For the �rst integral in Equation (8), we observe that for s in the range(h=u;�h=u), we havejsjm < 1m jhju � 1m �m�n + j� ju �� �n + j� jn � �n + 1m2 ;where in the last step we used the assumption j� j � u2 of the lemma.Sin
e �=n! 0, and m2 !1, we get jsjm ! 0. Therefore, using Lemma 4.2we have  � sm�� 1 = O � sm� :This implies�����Z �h=uh=u e�ss � � sm�� 1� ds����� � e�=ujh=uj 2jhju O�hn�= O�e�=u hn� = O�e�=u � + �n � ;



10 GAREFALAKIS AND PANARIOwhere the last equality holds, sin
e jhj = O(�+ �). For the se
ond integralin Equation (8), we note that in the range (�h=u;1) the fun
tion  isbounded. This follows from Lemma 4.2. Therefore,�����Z 1�h=u e�ss � � sm�� 1� ds����� � O(1)E(�h=u):Next we need to bound E(�h=u). For that we establish the followingbound, as the real part � of the argument is positive,E(� + i�) = Z 1�+i� e�ss ds = Z ��+i� e�ss ds+ Z 1� e�ss ds: (9)The se
ond integral is O(e��=�). The �rst integral, after the substitutions = � + iy, be
omesZ ��+i� e�ss ds = ie�� Z 0� e�iy� + iy dy:One 
an 
he
k now that the se
ond integral is O(e�� log �).Returning to the lemma now, we 
on
lude that the integral in the range(�h=u;1) is O(e��=u log(�=u)), whi
h is absorbed by the error term in-du
ed by the integral in the range (h=u;�h=u) (re
all that � > 0). Equa-tion (6) now follows by subtra
tion, 
onsidering u = u2 and u = u1, andnoting that u1 < u2.A similar lemma is needed for the study of generalized smooth polynomi-als (i.e., when m2 is 
onstant). The next lemma provides an approximationof the remainders of the logarithm seriesrm(z) = Xk>m zkk : (10)Lemma 4.3. Let n;m 2 N, and h = �� + i� , with � > 0 and �=n ! 0.If j� j = o(n), thenrm(e�h=n) = E(mh=n) +O�� + �n e�m=n� : (11)For any value of � , rm(e�h=n) = O(E(mh=n)): (12)



POLYNOMIALS FREE FROM LARGE AND SMALL IRREDUCIBLES 11Proof. The proof is essentially the same as in the previous lemma. Oneneeds only to noti
e that Xk>m e�ky = emyey � 1 :The 
hoi
e of the parameters of the above lemmas, although somewhatarti�
ial, are made to �t exa
tly the saddle point method that is extensivelyused in the next se
tions.5. FIXED LOWER BOUNDFrom this point on, we distinguish between the 
ases of m2 
onstant,and m2 tending to in�nity. The reason for this distin
tion is that theexpressions for the generating fun
tion are suÆ
iently di�erent, so thatthe 
hoi
es that we have to make in the pro
ess of estimating the Cau
hyintegral will be di�erent as well. The method we use for estimating theintegral is the saddle point method.The number of generalized smooth polynomials, i.e., when m2 is �xed,under 
ertain 
onditions on m1, 
an be expressed in terms of the Di
k-man fun
tion whi
h also governs the behavior of smooth integers [6, 14℄.The Di
kman fun
tion is de�ned as the unique solution of the followingdi�eren
e-di�erential equation:�(u) = 1; 0 � u � 1u�0(u) = ��(u� 1); u > 1�(u) is 
ontinuous:In our work, it is 
onvenient to 
onsider the integral representation givenby the inverse Lapla
e transform�(u) = 12�i Z �+i1��i1 �eE(s)s eus ds: (13)The following theorem gives an asymptoti
 estimate for Nq(n;m1;m2),and it is similar to de Bruijn's result [6℄ for integers. The fa
t that m2 is
onstant allows for an elementary argument. However, we take the oppor-tunity to introdu
e the analyti
 methods that are fully required in orderto prove Theorem 6.1.Theorem 5.1. The number Nq(n;m1;m2) of moni
 polynomials of de-gree n over Fq with all irredu
ible fa
tors with degree greater than m2 and



12 GAREFALAKIS AND PANARIOless than or equal to m1, with m2 �xed and pn logn� m1 � n satis�esNq(n;m1;m2) � qnf(0)�� nm1� ;where � is the Di
kman fun
tion, andf(h) = m2Yk=1�1� e�kh=nqk �Ik :Proof. From Equation (2) and Equation (4) we haveNq(n;m1;m2) = (1 + o(1)) qn2�i Z �+in���in� f(h) e�rm1 (e�h=n)n(1� e�h=n)ehdh= (1 + o(1)) qn2�i Z �+in���in� f(h)e�rm1(e�h=n)h h=n1� e�h=n ehdh:Let �(z) = z1�e�z , that is analyti
 in jzj < 2�. We now 
on
entrateon the above integral. One expe
ts that the main 
ontribution to theintegral 
omes from the neighborhood of the real axis. Indeed, let Æ = o(n),h = �+ i� , and 
onsider the integralsJÆ(n;m1;m2) = Z �+iÆ��iÆ f(h)e�rm1(e�h=n)h h=n1� e�h=n ehdh;and Jtail(n;m1;m2) = ZÆ<j� j�n� f(h)e�rm1 (e�h=n)h h=n1� e�h=n ehdh:Let us 
onsider �rst JÆ(n;m1;m2). For the range (� � iÆ; � + iÆ), wehave h=n ! 0, and limz!0 z1�e�z = 1. As we will see later, � � Æ �pu1 log(u1), where u1 = n=m1, and an appli
ation of Lemma 4.3 impliesJÆ(n;m1;m2) = exp�O� j�jn ej�j=u1��Z �+iÆ��iÆ f(h)e�E(h=u1)h ehdh:Furthermore, jh=nj < j�=nj + � < 2�, provided that �=n = o(1) (whi
hwill be the 
ase for our 
hoi
e of �, if logn=m1 = o(1)), and � is analyti




POLYNOMIALS FREE FROM LARGE AND SMALL IRREDUCIBLES 13in that range, so it is bounded by a 
onstant. Therefore, for h = � + i� ,using Lemma 4.3 we haveJtail(n;m1;m2) = O(1) ZÆ<j� j�n� f(h)e�O(E(h=u1))h ehdh:Note now that f(h) is analyti
, and bounded by a 
onstant in the rangeof interest. Spe
i�
ally, f(h) = O(1) for Æ < j� j � n�. Furthermore, theTaylor expansion of f(h) around zero for j� j < Æ yieldsf(h) = f(0) +O�hn� = f(0) + o(1):Thus,JÆ(n;m1;m2) = (1 + o(1)) exp�O� j�jn ej�j=u1�� f(0) Z �+iÆ��iÆ e�E(h=u1)h ehdh;(14)and Jtail(n;m1;m2) = O(1) ZÆ<j� j�n� e�O(E(h=u1))h ehdh: (15)It remains to estimate the above expressions. It is well-known that e�E(s)=sis the Lapla
e transform b�(s) of the Di
kman fun
tion. The integrals inEquations (14) and (15) have been studied by several authors. We brie
ysket
h here the exposition by Tenenbaum (see [23℄, pp. 372-376). The keyidea is to use the saddle point method to prove that the main 
ontribution
omes from JÆ(n;m1;m2), whi
h is then estimated. For the method to gothrough we have to 
hoose � to be the real solution of the equation(�E(h=u1) + h� logh)0 = 0:The solution � satis�es � � �u1 log(u1 logu1). Thus, the 
ondition � =o(n), whi
h was needed throughout the proof, holds if logn=m1 ! 0.For this 
hoi
e of � it is then shown that the 
ontribution of the tailsis O(u�1=21 + exp (�u1 log�2 u1 + 2 logu1)) times the �rst integral, and isnegligible provided m1 = o(n). The tails along the verti
al line up to +i1and �i1 are shown to be negligible. The argument is te
hni
al, and wewill not go into the details for two reasons: it appears in [23℄, and a similarargument will be used in the next se
tion for the 
ase m2 !1.



14 GAREFALAKIS AND PANARIOColle
ting the previous results we haveNq(n;m1;m2) � qn2�i exp�O� j�jn ej�j=u1�� f(0) Z �+iÆ��iÆ e�E(h=u1)h ehdh� qn exp�O� j�jn ej�j=u1�� f(0)�(u1);where � is the Di
kman fun
tion as de�ned in Equation (13).Finally, under the assumption that pn logn=m1 ! 0, we haveO� j�jn ej�j=u1� = O�u21 log2 u1n � = O�n log2 nm21 � = o(1):In the spirit of Can�eld, Erd�os and Pomeran
e, we 
an obtain a slightlyweaker result that holds for a mu
h larger range of values of m1. Indeed,repla
ing the assumption pn logn=m1 ! 0 by logn=m1 ! 0, and usingthe notation u1 = n=m1, it follows from the proof of Theorem 5.1 thatNq(n;m1;m2) � qn exp� j�jn ej�j=u1� f(0)�(u1):It is known [6℄ that �(u1) = e�(1+o(1))u1 log u1 :Also it 
an be 
he
ked that,e j�jn ej�j=u1 = eO((u1 log u1 logn)=m1) = eo(1)u1 log u1 :Therefore, we have the following theorem.Theorem 5.2. The number Nq(n;m1;m2) of moni
 polynomials of de-gree n over Fq with all irredu
ible fa
tors with degree between m2 and m1,with m2 �xed and logn� m1 � n, satis�esNq(n;m1;m2) = qne�(1+o(1)) nm1 log nm1 :
6. LOWER BOUND TENDING TO INFINITY



POLYNOMIALS FREE FROM LARGE AND SMALL IRREDUCIBLES 15We turn now to the 
ase when both bounds m1 and m2 tend to in�nity,with m1 = o(n). Let Nq(n;m) be the number of m-smooth polynomials.Sin
e Nq(n;m1;m2) � Nq(n;m1), the power seriesPm1;m2 �zq� = 1Xn=0Nq(n;m1;m2)znqn ;is dominated by the power seriesPm1 �zq� = 1Xn=0Nq(n;m1)znqn ;and therefore, its radius of 
onvergen
e is greater or equal to the radius of
onvergen
e of Pm1 . Sin
e jzj = e��=n is within the radius of 
onvergen
eof Pm1 for � � �n=m1 log(n=m1 logn=m1) (see [17, p.74℄), it is 
ertainlywithin the radius of 
onvergen
e of Pm1;m2 as well. This will turn out tobe the 
hoi
e of � when estimating the integral in Equation (2).From Equations (2) and (5) we haveNq(n;m1;m2) = (1 + o(1))qn2�i Z �+in���in� erm1;m2 (e�h=n) ehn dh: (16)We fo
us on the above integral. Let us denoteJ(n;m1;m2) = 12�i Z �+in���in� erm1;m2 (e�h=n) ehn dh:As usual in this paper, we write u1 = n=m1 and u2 = n=m2. We expe
tthat the main 
ontribution to the integral 
omes from the neighborhoodof the real axis. If the saddle point method is to work, then we hope toapproximate the term rm1;m2(e�h=n) 
lose to the real axis by E(h=u2) �E(h=u1)+O(��n e��=u1), a

ording to Lemma 4.1, provided of 
ourse thatthe value of � satis�es the 
onditions of the lemma. Letf(h) = E(h=u2)�E(h=u1) + h:The value of � is determined as the real solution of the equation f 0(h) = 0,that is, f 0(h) = 1� e�h=u2h + e�h=u1h = 0:The following lemma will be 
ru
ial for the appli
ation of the saddle pointmethod.



16 GAREFALAKIS AND PANARIOLemma 6.1. The equatione�h=u2h � e�h=u1h = 1 (17)has a negative real solution, ��, su
h that � � u1 log(u1 log u1). Morepre
isely, u1 log (u1 logu1) < � < u1 log (u1(log u1)2); (18)where u1 � 
 u2 for any 
onstant 
 < 1, and u1 !1.Proof. Consider the fun
tion f 0(h) de�ned above at the points h1 =�u1 log (u1 logu1), and h2 = �u1 log (u1(log u1)2). One 
an easily 
he
kthat f 0(h1) > 0, and f 0(h2) < 0, and sin
e f 0(h) is 
ontinuous, it followsthat it has a zero in (h2; h1). =(h)
TailJÆ <(h)Tail���� � iÆ�� + iu1�� + in�

�� + iÆ�� � iu1�� � iu2�� � in�

�� + iu2

FIG. 1. De
omposition of the integral



POLYNOMIALS FREE FROM LARGE AND SMALL IRREDUCIBLES 17To estimate J(n;m1;m2) we 
hoose � = ��. We break J(n;m1;m2) asthe sum of two integrals along the verti
al line with =(h) = ��, as shownin Figure 1 J(n;m1;m2) = 12n�i Z ��+iÆ���iÆ exp (f(h)) dh+ 12n�i ZÆ<j=(h)j<n� exp (f(h)) dh:Nearly all the 
ontribution to the integral will 
ome from the neighborhoodof the point ��, with the 
ontribution of the tail being negligible. To showthat, we �rst estimate 12n�i Z ��+iÆ���iÆ erm1;m2 (e�h=n) ehn dh;for a suitable Æ. One 
an easily 
he
k now that the 
onditions of Equa-tion (6) in Lemma 4.1 are satis�ed | in fa
t the 
onditions were 
hosento �t the proof. Substituting the estimate f(h) for rm1;m2(e�h=n) + h, weobtain 1 + o(1)2n�i Z ��+iÆ���iÆ exp (f(h)) dh:We need to estimateJÆ(n;m1;m2) = 12n�i Z ��+iÆ���iÆ exp (f(h)) dh: (19)We need the �rst three derivatives at h = ��. By the de�nition of �, wehave f 0(��) = 0:For the se
ond derivative we 
an writef 00(��) = 1�� �e�=u2u2 � e�=u1u1 + 1�� 1u1 log(u1 logu1) � (u1 logu1)u1=u2u2 � logu1 + 1�� � logu1u1 log(u1 logu1) � �1u1 ; (20)where we used the fa
ts that � � u1 log(u1 logu1), that �� satis�es Equa-tion (17), and that u2 � 
u1 for some 
 < 1. Finally, the third derivative



18 GAREFALAKIS AND PANARIO
an be 
omputed and shown to bef 000(��) = O�e�=u1u21� � = O� 1u21� :It follows thatf(�� + it) = f(��)� f 00(��)2 t2 +O �f 000(��)t3� :Taking Æ = u1=21 logu1 and using Lemma 6.1, we obtain t3f 000(��) =O �u�1=21 (log u1)3�. Under the 
hange of variable h = �� + it, we haveJÆ(n;m1;m2) = 12n� Z Æ�Æ exp�f(��)� t2f 00(��)=2 + t3O �f 000(��)�� dt= exp (f(��))2n� Z Æ�Æ �1 + t3O �f 000(��)�� exp��t2f 00(��)=2� dt:The term 
ontaining t3 is o(1). Therefore, we obtainJÆ(n;m1;m2) = (1 + o(1))exp (f(��))2n� Z Æ�Æ exp��t2f 00(��)=2� dt= (1 + o(1)) exp (f(��))np2�jf 00(��)j : (21)For the tails now, we will use the following te
hni
al lemma.Lemma 6.2. For h = ��+it, t 2 R, and g(h) = O(E(h=u2)�E(h=u1))+h, we have exp(g(h)) = exp (�� + o (u1) + it) ; jtj � u2;exp(<(f(h))) � exp�f(��)� Kt2u1 � ; jtj � u1;exp(<(f(h))) � exp�f(��)� u1(logu1)2 + �2 +O(1)� ; u1 < jtj < u2:(22)



POLYNOMIALS FREE FROM LARGE AND SMALL IRREDUCIBLES 19Proof. We note that E(s) = o(e��=j� j), for s = �+ i� (see [23℄, p. 373).Therefore, for jtj � u2exp(g(h)) = exp�O �e�=u2u2=jtj��O �e�=u1u1=jtj�� � + it�= exp (�� + o (u1) + it) ;where we need to assume u1 logu1 = o(u2), whi
h is satis�ed if m2 =o(m1= logn).The se
ond equation is more involved. We start by 
he
king that (see [1℄,5.1.37) f(��)�<(f(h)) = Z 10 e�y=u1(1� 
os(ty=u1))y dy� Z 10 e�y=u2(1� 
os(ty=u2))y dy� Z 10 e�y=u1(
os(ty=u2)� 
os(ty=u1))y dy: (23)For jtj � u1 and an appropriate 
onstant K 0 , we have
os(ty=u2)� 
os(ty=u1) � K 0t2y2u21 : (24)Using Equations (23) and (24), we have for a 
onstant Kf(��)�<(f(h)) � Z 10 e�y=u1K 0t2yu21 dy = K 0t2u21 Z 10 ye�y=u1dy= K 0t2u21 e�=u1(� � u1)u1 + u21�2 � Kt2u1 :The bound in Equation (22) 
an be shown in a similar way. We work inthe range u1 < jtj < u2. We observe thatf(��)�<(f(h)) = Z 10 e�y=u1(1� 
os(ty=u1))y dy� Z 10 e�y=u2(1� 
os(ty=u2))y dy� u1(�=u1)2 + �2 +O(1): (25)Indeed, we refer to the proof in [23℄ p. 374 that the �rst integral in Equa-tion (25) is greater than or equal to u1=((�=u1)2 + �2). Next we give a



20 GAREFALAKIS AND PANARIOlower bound for the se
ond integralZ 10 e�y=u2(1� 
os(ty=u2))y dy = tu2 Z 10 e�y=u2 1� 
os(ty=u2)ty=u2 dy: (26)For the range u1 < jtj < u2, and sin
e 0 < y < 1, we have jty=u2j < 1. Forx < 1, from the Taylor expansion of 
os(x) we have
os(x) = 1�O(x2);whi
h implies that 1� 
os(x)x = O(x):Applying this to the integral in Equation (26), we obtainZ 10 e�y=u2(1� 
os(ty=u2))y dy = O(1) tu2 Z 10 tyu2 e�y=u2dy= O(1) t2u22 Z 10 ye�y=u2dy � O(1) t2u22 Z 10 e�y=u2dy= O(1) t2u22 u2� (e�=u2 � 1) = t2u22 u2� O� �u2� � O(1)where we used the assumption u1 logu1 = o(u2), whi
h implies that�=u2 ! 0, and therefore e�=u2 � 1 = O(�=u2). Also in this range jt=u2j < 1whi
h proves Equation (25) and 
on
ludes the proof.We break up the tails in three parts: jtj � u2, , u1 < jtj < u2 andÆ < jtj � u1. For the �rst range, the 
ontribution is negligible due to theabove lemma, and the following easy fa
ts:u1 = O�E ���u2 ��E ���u1 �� ;and f(��) = �� +E ���u2 ��E���u1 � :We 
on
entrate now in the range Æ < jtj � u1. By the above lemma, thetail in this range is upper bounded byZÆ<jtj�u1 exp�f(��)� Ku1 t2� dt � exp (f(��)) Z 1Æ e� Ku1 t2dt



POLYNOMIALS FREE FROM LARGE AND SMALL IRREDUCIBLES 21� exp (f(��))pu12pK Z 1Æ2K=u1 e�y dypy� exp (f(��))u12ÆK e�KÆ2=u1= exp (f(��))pu12K log(u1) e�K(logu1)2whi
h is 
learly a

eptable.For the intermediate range u1 < jtj < u2, the tails are bounded byexp�e�=u1 u2n � exp (f(��)) e� u1(log u1)2+�2 (u2 � u1);whi
h again is a

eptable provided that the above expression is o(pu1).This holds by the hypothesis of Theorem 6.1 sin
e m2 � log3 n and m2 �pnm1e�n=(m1(log n)2). Putting all pie
es together, we have proven thatNq(n;m1;m2) = qn2n�ieO(e�=u1 (�+Æ)=n) Z ��+i1���i1 eE(h=u2)�E(h=u1)ehdh:Under the 
ondition pn logn� m1, we haveeO(e�=u1 (�+Æ)=n) = 1 + o(1):We have proven the following theorem.Theorem 6.1. The number Nq(n;m1;m2) of moni
 polynomials over Fqwith all irredu
ible fa
tors with degree between m1 and m2, m1;m2 ! 1satisfying pn logn � m1 � n, and maxflog3 n;pnm1e�n=(m1(logn)2)g �m2 � m1= logn, is asymptoti
allyNq(n;m1;m2) � qn2n�i Z ��+i1���i1 eE(m2h=n)�E(m1h=n)ehdh;where � is given in Equation (18) of Lemma (6.1).The proof of Theorem 6.1 gives more than the integral form stated. Thefollowing 
orollary gives the asymptoti
 estimate obtained in the proof ofTheorem 6.1. The estimate is stated in terms of the integralEi(x) = Z x�1 ett dt (x > 0):The reason for this is that Ei(x) is a real valued fun
tion, and the �nalresult is more natural expressed in that way.



22 GAREFALAKIS AND PANARIOCorollary 6.1. The number Nq(n;m1;m2) of moni
 polynomials overFq with all irredu
ible fa
tors with degree betweenm1 and m2, m1;m2 !1,pn logn � m1 � n, and maxflog3 n;pnm1e�n=(m1(logn)2)g � m2 �m1= logn, is asymptoti
allyNq(n;m1;m2) � qnpm1p2n� exp (Ei(�m1=n)�Ei(�m2=n)� �) ;where � is given in Equation (18) of Lemma (6.1).Proof. From the proof of Theorem 6.1 we haveNq(n;m1;m2) � qnJÆ(n;m1;m2):This 
ombined with Equation (21) implies thatNq(n;m1;m2) � qn exp (f(��))np2�jf 00(��)j :As it was pointed out in Equation (20), f 00(��) � �1=u1, where againu1 = n=m1. Thus, it only remains to estimate f(��)f(��) = E(��=u2)�E(��=u1)� �= �Ei(�=u2) +Ei(�=u1)� �;where the se
ond equality holds sin
e E(x + i0) = �Ei(�x) � i� (see[1℄, 5.1.7).Again, as for the generalized smooth polynomials, one 
an extend therange of the estimate 
onsiderably, by weakening the result.Theorem 6.2. The number Nq(n;m1;m2) of moni
 polynomials overFq with all irredu
ible fa
tors between m1 and m2, with m1;m2 ! 1,m1e�n=m1 � m2 � 
m1 for any 
onstant 
 < 1, and 2(logn)2 � m1 � nsatis�es Nq(n;m1;m2) = qne�(1+o(1)) nm1 log nm1 :Proof. Let u1 = n=m1 and u2 = n=m2. The number Nq(n;m1;m2)was estimated in terms of four integrals that 
orrespond to the rangesjtj � Æ, Æ < jtj � u1, u1 < jtj < u2, and jtj � u2. From the proof ofTheorem 6.1, it is 
lear that the main integral 
orresponding to the range



POLYNOMIALS FREE FROM LARGE AND SMALL IRREDUCIBLES 23jtj � Æ is e�(1+o(1))u1 log u1 with the only assumption that logn� m1 � n.Moreover, the tail integrals that 
orrespond to the ranges jtj � u2 andÆ < jtj � u1 are e�(1+o(1))u1 log u1 under no further assumption. The rest ofthe 
onditions 
ome from the range u1 < jtj < u2. In that range the tail isexp�e�=u1 u2n � exp (f(��)) e� u1(log u1)2+�2 (u2 � u1)= exp (f(��)) e� u1(log u1)2+�2+u1u2 log u1n +log (u2�u1):We know that f(��) = �(1+o(1))u1 logu1, and all the other terms in theexponent are o(1)u1 logu1, ex
ept maybe logu2. In order to ensure this, weneed to impose the 
ondition m2 � m1e�n=m1 . The theorem now fol-lows. 7. CONCLUSION AND FURTHER WORKWe studied the problem of estimating the number of polynomials ofdegree n over Fq that have irredu
ible fa
tors of degree greater than m2and less than or equal to m1. Our results hold for 
ertain ranges of valuesfor m1 and m2. For example, if m2 = 0, then we have provenNq(n;m1;m2) � qn�� nm1� ; (27)only if pn logn << m1. Can the range of m1 for whi
h the Di
kmanfun
tion appears, be extended? If not, one might be able to prove thatfor smaller values of m1, Nq(n;m1;m2) is asymptoti
ally di�erent than theexpression in Equation (27), by proving a stronger version of Lemma 4.1.Using this, one 
ould also extend the range for m1 in Theorem 6.1.Also the 
ase m1 = n=
, 
 � 1, was not 
onsidered at all. When 
 = 1,that is m1 = n, it has been proven [20℄ that he number of polynomials withirredu
ible fa
tors with degrees in that range are related with the Bu
hstabfun
tion. When 
 > 1, using the same arguments as in Se
tion 6, one �ndsthat Equation (16) holds. Furthermore, the approximation of Lemma 4.1will work equally well. However, the saddle point method fails be
ause ofte
hni
al reasons (basi
ally due to the fa
t that the 
orresponding value of� is 
onstant). It would be interesting to solve the 
ase m1 = n=
, 
 > 1,and thus 
omplete the range.Another interesting problem is the study of similar estimates for otherde
omposable stru
tures. These studies would provide estimates, for in-stan
e, for the number of permutations that de
ompose into 
y
les of lengthwithin a 
ertain interval, or the unmber of 2-regular graphs that de
omposeinto 
onne
ted 
omponents of size between two bounds, and so on.
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