
Polynomials over Finite Fields Free fromLarge and Small Degree Irreduible FatorsTheodoulos GarefalakisDepartment of Mathematis, Royal Hollaway, University of London,Egham, Surrey TW20 0EX, United Kingdom.E-mail: theo.garefalakis�rhul.a.ukandDaniel PanarioShool of Mathematis and Statistis, Carleton University,Ottawa, K1S 5B6, Canada.E-mail: daniel�math.arleton.aWe study the number Nq(n;m1;m2) of polynomials of degree n over a �nite�eld Fq with all irreduible fators of degree bigger than m2 and less than orequal to m1. Applying the saddle point method, we obtain estimates forNq(n;m1;m2) in the range m1 = o(n), whih have the avor of de Bruijn [6℄,Can�eld, Erd�os and Pomerane [3℄ and Friedlander [11℄ for the orrespondingproblem for integers. Our results have appliations in omputational numbertheory and ryptography [12℄, and inlude as a partiular ase the smoothpolynomials studied by Odlyzko [17℄ and others.1. INTRODUCTIONA well-known area of researh in analyti number theory is the studyof funtions related with the deomposition of numbers into primes. Twoof these funtions have been largely studied. The Dikman funtion mod-els numbers without large prime fators [6, 8℄. An exellent survey onthis topi is due to Hildebrand & Tenenbaum [14℄. On the other hand,the Buhstab funtion overs the study of numbers without small primefators [2, 5℄. Both funtions are de�ned as solutions of some partiulardi�erene-di�erential equations. Furthermore, that is the ase for a lassof funtions related with number theory [15℄.The Dikman and Buhstab funtions underlay not only the study ofnumbers without large and small primes but also the one of deomposable



strutures without large and small \irreduible" omponents. This on-netion appears in [13℄ for the Dikman funtion, and in [20, 21℄ for theBuhstab funtion.In this paper we are interested in one partiular deomposable struture:polynomials over �nite �elds. When dealing with polynomials over �nite�elds, the prime elements are of ourse the irreduible fators of the poly-nomial, and the size of the irreduible omponent is its degree. We studypolynomials over �nite �elds free of large and small degree irreduible fa-tors. Previous results on this diretion were obtained by Car [4℄. Thesestudies are related to the one of Friedlander [11℄ for numbers free fromsmall and large primes. It seems also plausible to extend our results toother deomposable ombinatorial strutures.Apart from being a natural question form a mathematial standpoint,our interests on this problem also arise from a ryptographial appliation.As it is well-known, many algorithms for omputing disrete logarithmsin extensions of �nite �elds rely on �nding smooth polynomials (all theirreduible fators have degree bounded by some value m); see, for instanethe exellent surveys by Odlyzko [17, 18℄. In this ase, the fator base isformed by all irreduible polynomials of degree smaller or equal to m. Weare interested in developing a generalized version of the index alulusmethod for the disrete logarithm problem in Fq , when q = pn, p is a smallprime and n!1; see [12℄. Instead of onsidering smooth polynomials, letus form our fator base with all irreduible polynomials of degree betweengiven bounds. In order to estimate the asymptoti running time of thisversion one has to provide estimates for the number of polynomials over Fqwith all their irreduible fators in an interval.We now desribe the struture of the paper. In Setion 2, we brieyreview the ryptographial appliation related to this work. Our approahto solve the problem is presented in Setion 3. In Setion 4, two tehniallemmas needed in the proofs of Theorem 6.1 and Corollary 6.1 (the mainresults of our paper) are presented (Lemmas 4.1 and 4.3). We dissetthe study in two ases. The ase when the lower bound of the intervalis �xed and the upper bound is o(n) is treated in Setion 5. Our results(Theorems 5.1 and 5.2) are similar to those of de Bruijn [6℄ and Can�eld,Erd�os and Pomerane [3℄. Then, in Setion 6, we fous on ranges where thelower bound of the interval tends to in�nity with n while the upper boundis o(n). Our results are given in the form of an integral representation(Theorem 6.1), whih we estimate asymptotially (Corollary 6.1). We alsoobtain a Can�eld, Erd�os and Pomerane type result by inreasing the rangeof the estimate; this weakens the result (Theorem 6.2). Due to the natureof the appliation we have in mind [12℄, we are interested in the ase wherethe upper bound of the interval is o(n). In Setion 7, we omment on otherranges for further work. 2



POLYNOMIALS FREE FROM LARGE AND SMALL IRREDUCIBLES 3We �nish the introdution by ommenting on the methodology usedalong this paper. We start with a preise haraterization of the poly-nomials of interest using generating funtions (for an introdutory surveyon this issue, see [9℄). Applying some tehnial lemmas, we give estimatesfor our generating funtions in terms of the exponential integral. Finally,we extrat oeÆients via Cauhy integrals, whih we estimate using saddlepoint approximations [7, 10℄.2. CRYPTOGRAPHICAL APPLICATIONIn this setion we sketh a ryptographial appliation that started ourinterest in the subjet of this paper; see [12℄ for more information on thisappliation.We are interested on the index alulus method for omputing disretelogarithms in Fq , where q = pn, p is a prime, and n > 1. The elements inFq an be represented as polynomials over Fp of degree smaller than n.As it is well-known, the index alulus method depends on �nding smoothpolynomials, that is, polynomials suh that all their irreduible fators havedegree smaller than or equal to ertain bound m. The algorithm startsby omputing a large database formed by the disrete logarithms of allirreduible polynomials of degree smaller than or equal to m. This set ofirreduible polynomials is alled the standard fator base. Until our work,the standard fator base was the only one being used, and it was onsideredto be the natural hoie; see, for instane, Odlyzko [17, 18℄.We onsider a variant of the index alulus method where the databaseontains the disrete logarithms of all irreduible polynomials with degreein ertain range (m2;m1), with m2 < m1. Thus, the index alulus methoddepends now on �nding polynomials that deompose into irreduible fatorswith degree in the interval (m2;m1). This implies that we have to provideestimates for the number of polynomials over Fq of degree n that ompletelydeompose into irreduible fators with degree in the interval (m2;m1),m2 < m1. As we proved in [12℄, the upper bound m1 of the interval is ofthe same order as in the original index alulus method. However, the lowerbound of the interval, m2, is a free parameter that an be hosen almostat will. We note that when m2 is as small as possible we have the originalindex alulus method, and so, our variant an be seen as a generalizationof this method. On the other hand, our method an be extended, underertain tehnial onditions, to fator bases formed by the union of severalintervals (see [12℄, p. 1259). This greatly inrease the possible fator basesto be onsidered and ompared.In pratial terms, our results allow a tradeo� assoiated with m2. Infat, smaller values of m2 imply higher probabilities of suess (when �nd-ing polynomials that fator into irreduibles with degree between m2 and



4 GAREFALAKIS AND PANARIOm1), but the spae used in the fator base and the system of ongruenesto be solved are large. On the other hand, larger values of m2 mean lowerprobabilities of suess but small size of fator base and size of the sys-tem of ongruenes to be solved. Hene, there is some possible furtherimprovements by tuning the value of m2.We should emphasize that our work is only a �rst step on produinggeneralized fator bases. Extensive omputational experiments should bearried out to draw other onlusions.3. THE GENERAL TECHNIQUEWe turn now to the problem of ounting the number of moni polynomi-als over a �nite �eld that are free of irreduible fators of small and largedegree. We start by �xing the notation. Let q be a prime power, and Fqbe the �nite �eld with q elements. We use boldfae letters, e.g., f , d, todenote polynomials over Fq . In partiular, p always denotes an irreduiblepolynomial, and 1 denotes the unit of Fq . We are interested in the numberof moni polynomials of degree n over Fq with all irreduible fators havingdegree greater than m2 and less than or equal to m1, whih we denote byNq(n;m1;m2). In general both m1 and m2 an (and will) be funtions ofn.The main idea of the proof is to �nd the generating funtion Pm1;m2(z)of the numbers Nq(n;m1;m2), and then estimate the oeÆients. Weexpress Pm1;m2(z) in terms of rm1(z) = Pk>m1 zk=k or rm1;m2(z) =Pm1k=m2+1 zk=k depending on the behaviour ofm2. Then we use Lemma 4.1to express it in terms of the exponential integral. The oeÆients of thegenerating funtion are given by Cauhy integral, whih is estimated viathe saddle point method. The appliation of the saddle point method isthe main and most involved part of the proof.Let I be the olletion of all moni irreduible polynomials over Fq . Theset of moni polynomials with irreduible fators between m2 and m1 anbe symbolially written asYp2I; m2<deg(p)�m1(1+p+p2+ :::) �1 = Yp2I; m2<deg(p)�m1(1�p)�1 �1:Note that the �1 in the above formula will not a�et anything, sine[zn℄ 1 = 0 for n � 1. For simpliity we will drop it in the expression of thegenerating funtion that follows. Let z be a formal variable. The generatingfuntion is obtained immediately via the substitution p! zdeg(p)Pm1;m2(z) = m1Yk=m2+1(1� zk)�Ik : (1)



POLYNOMIALS FREE FROM LARGE AND SMALL IRREDUCIBLES 5We denote by (m1;m2){polynomials the ones with all irreduible fatorsof degree bigger than m2 and less than or equal to m1. The number of(m1;m2){polynomials is given by the Cauhy oeÆient formulaNq(n;m1;m2) = [zn℄Pm1;m2(z) = qn[zn℄Pm1;m2 �zq�= qn2�i ZC Pm1;m2 �zq� dzzn+1 ;where the ontour C is hosen to be z = e��=n+i�; �� � � � �, and � isa parameter to be hosen later. The idea for this substitution �rst appearsin the thesis of Gourdon [13℄. The hange of variable z = e�h=n impliesh = � � in�, and the limits of integration now are (� + in�; � � in�).Therefore,Nq(n;m1;m2) = qn2�i Z ��in��+in� � 1nPm1;m2 �e�h=nq � dhe�h= qn2�i Z �+in���in� Pm1;m2 �e�h=nq � ehn dh: (2)The last integral annot be omputed exatly. Instead, we will omputeit asymptotially. The funtion Pm1;m2(e�h=n=q) will be approximateddi�erently depending on whether m2 is onstant or an inreasing funtionof n. Similarly, � will be hosen di�erently depending on m2.Fixed lower bound. In this ase, m2 is a onstant, and one wouldexpet the expression for Nq(n;m1;m2) to be similar to that for Nq(n;m1)of m1-smooth polynomials. We treat the generating funtion as follows.The generating funtion of the set of moni polynomials over Fq isP (z) = 1Yk=1(1� zk)�Ik = 11� qz :Thus, Pm1;m2(z) an be expressed asPm1;m2(z) = m2Yk=1(1� zk)IkP (z) Yk>m1(1� zk)Ik :



6 GAREFALAKIS AND PANARIOThe last term in the produt an be treated in the same way as in [20℄,Equation (3.2), and obtainPm1;m2(z) = m2Yk=1(1� zk)Ik 11� qz exp �r[1℄m1(z)� r[2℄m1(z)2 � r[3℄m1(z)3 � � � �! ;(3)where r[j℄m1(z) = Xk>m1 Ikzkj :The well-known estimate kIk = qk +O(qk=2) impliesr[1℄m1 �zq� = Xk>m1 zkk +O �q�2m1=5� for jzj < q1=10;and supjzj<1 r[j℄m1 �zq� = O �q�m1(j�1)� for j � 2:As it will beome lear later, the hoie of � in Equation (2) will be suhthat � = o(n), and � < 0. Thus, for n suÆiently large, the onditionje�h=nj < q1=10 holds. Then, from the above disussion we onludePm1;m2 �e�h=nq � = f(h) � e�r[1℄m1 (e�h=n=q)+o(1)1� e�h=n= f(h) � e�rm1 (e�h=n)+o(1)1� e�h=n= (1 + o(1))f(h) � e�rm1(e�h=n)1� e�h=n ; (4)where f(h) =Qm2k=1(1� e�kh=nqk )Ik , and rm1(z) =Pk>m1 zk=k.Lower bound tending to in�nity. In this ase, we express the gen-erating funtion as follows.Pm1;m2(z) = m1Yk=m2+1(1� zk)�Ik = exp � m1Xk=m2+1 Ik log(1� zk)!= exp0� 1Xj=1 1j m1Xk=m2+1 Ikzjk1A



POLYNOMIALS FREE FROM LARGE AND SMALL IRREDUCIBLES 7= exp r[1℄m1;m2(z) + r[2℄m1;m2(z)2 + � � �!where in this ase r[j℄m1;m2(z) = m1Xk=m2+1 Ikzjk; j � 1:Using now the estimate kIk = qk +O(qk=2), we obtain for jzj < q1=10r[1℄m1;m2 �zq� = m1Xk=m2+1 zkk +O �q�2m2=5� ;and r[j℄m1;m2 �zq� = O �q(�9j=10+1)m2� = O �q�4m2=5� ; j � 2:Again the hoie of � in Equation (2) will be suh that � = o(n), so forn large enough we have je�h=nj < q1=10, thereforePm1;m2 �e�h=nq � = erm1;m2 (e�h=n)+o(1)= (1 + o(1))erm1;m2 (e�h=n); (5)where rm1;m2(z) =Pm1k=m2+1 zk=z.In both ases, in order to estimate the Cauhy integral we need �rstto estimate the expressions rm1(z) and rm1;m2(z) at least in the ases ofinterest here. This is the subjet of the next two lemmata.4. TWO TECHNICAL LEMMATAIn this setion we prove a pair of tehnial lemmata that we need forthe proof of our main results. It will be ruial to estimate the part of thelogarithm series between m1 and m2rm1;m2(z) = m1Xk=m2+1 zkk :The following lemma, extension of that in [19℄, provides an estimate forrm1;m2(z) in terms of the exponential integralE(a) = Z 1a e�ss ds:



8 GAREFALAKIS AND PANARIOLemma 4.1. Let n;m1;m2 2 N, and assume that n;m1;m2; n=m1; n=m2tend to in�nity. Let h = �� + i� , with � > 0 and �=n! 0.If j� j � n=m2, thenrm1;m2(e�h=n) = E(m2h=n)�E(m1h=n) +O�� + �n e�m1=n� : (6)For any value of � ,rm1;m2(e�h=n) = O (E(m2h=n)�E(m1h=n)) : (7)Proof. Let u1 = n=m1 and u2 = n=m2. By de�nition of rm1;m2(z), wehaverm1;m2(e�h=n) = m1Xk=m2+1 e�kh=nk = m1Xk=m2+1 Z 1h=n e�kydy= Z 1h=n m1Xk=m2+1 e�ky! dy= Z 1h=n e�m2yey � 1dy � Z 1h=n e�m1yey � 1dy= Z 1h=u2 e�s 1=m2es=m2 � 1ds� Z 1h=u1 e�s 1=m1es=m1 � 1ds:Consider now the integralZ 1h=u e�s 1=mes=m � 1ds = Z 1h=u e�ss s=mes=m � 1ds;where u = n=m, and let  (z) = zez�1 , whih is analyti for jzj < 2�. Then,the above integral an be written asZ 1h=u e�ss  � sm� ds = Z 1h=u e�ss ds+ Z 1h=u e�ss � � sm�� 1� ds (8)= E(h=u) + Z �h=uh=u e�ss � � sm�� 1� ds+ Z 1�h=u e�ss � � sm�� 1� ds:



POLYNOMIALS FREE FROM LARGE AND SMALL IRREDUCIBLES 9We reall that <(h) = �� < 0. The term E(h=u) is the main term inthe approximation of Equation (6). To �nish the proof of Equation (6) weneed to bound the last two integrals. To that end we use the followingsublemma.Lemma 4.2. The funtion  (z) = zez�1 is analyti for jzj < 2�. Wehave the following asymptoti estimates.1.For jzj ! 0,  (z) = 1 +O(z).2.For jzj ! 1,  (z)! 0.Proof. The analytiity of  is obvious from its de�nition. When jzj ! 0,expanding ez we obtain (z)� 1 = zez � 1 � 1 = zz +O(z2) � 1= 11 +O(z) � 1 = O(z):When jzj ! 1, learly  (z)! 0.For the �rst integral in Equation (8), we observe that for s in the range(h=u;�h=u), we havejsjm < 1m jhju � 1m �m�n + j� ju �� �n + j� jn � �n + 1m2 ;where in the last step we used the assumption j� j � u2 of the lemma.Sine �=n! 0, and m2 !1, we get jsjm ! 0. Therefore, using Lemma 4.2we have  � sm�� 1 = O � sm� :This implies�����Z �h=uh=u e�ss � � sm�� 1� ds����� � e�=ujh=uj 2jhju O�hn�= O�e�=u hn� = O�e�=u � + �n � ;



10 GAREFALAKIS AND PANARIOwhere the last equality holds, sine jhj = O(�+ �). For the seond integralin Equation (8), we note that in the range (�h=u;1) the funtion  isbounded. This follows from Lemma 4.2. Therefore,�����Z 1�h=u e�ss � � sm�� 1� ds����� � O(1)E(�h=u):Next we need to bound E(�h=u). For that we establish the followingbound, as the real part � of the argument is positive,E(� + i�) = Z 1�+i� e�ss ds = Z ��+i� e�ss ds+ Z 1� e�ss ds: (9)The seond integral is O(e��=�). The �rst integral, after the substitutions = � + iy, beomesZ ��+i� e�ss ds = ie�� Z 0� e�iy� + iy dy:One an hek now that the seond integral is O(e�� log �).Returning to the lemma now, we onlude that the integral in the range(�h=u;1) is O(e��=u log(�=u)), whih is absorbed by the error term in-dued by the integral in the range (h=u;�h=u) (reall that � > 0). Equa-tion (6) now follows by subtration, onsidering u = u2 and u = u1, andnoting that u1 < u2.A similar lemma is needed for the study of generalized smooth polynomi-als (i.e., when m2 is onstant). The next lemma provides an approximationof the remainders of the logarithm seriesrm(z) = Xk>m zkk : (10)Lemma 4.3. Let n;m 2 N, and h = �� + i� , with � > 0 and �=n ! 0.If j� j = o(n), thenrm(e�h=n) = E(mh=n) +O�� + �n e�m=n� : (11)For any value of � , rm(e�h=n) = O(E(mh=n)): (12)



POLYNOMIALS FREE FROM LARGE AND SMALL IRREDUCIBLES 11Proof. The proof is essentially the same as in the previous lemma. Oneneeds only to notie that Xk>m e�ky = emyey � 1 :The hoie of the parameters of the above lemmas, although somewhatarti�ial, are made to �t exatly the saddle point method that is extensivelyused in the next setions.5. FIXED LOWER BOUNDFrom this point on, we distinguish between the ases of m2 onstant,and m2 tending to in�nity. The reason for this distintion is that theexpressions for the generating funtion are suÆiently di�erent, so thatthe hoies that we have to make in the proess of estimating the Cauhyintegral will be di�erent as well. The method we use for estimating theintegral is the saddle point method.The number of generalized smooth polynomials, i.e., when m2 is �xed,under ertain onditions on m1, an be expressed in terms of the Dik-man funtion whih also governs the behavior of smooth integers [6, 14℄.The Dikman funtion is de�ned as the unique solution of the followingdi�erene-di�erential equation:�(u) = 1; 0 � u � 1u�0(u) = ��(u� 1); u > 1�(u) is ontinuous:In our work, it is onvenient to onsider the integral representation givenby the inverse Laplae transform�(u) = 12�i Z �+i1��i1 �eE(s)s eus ds: (13)The following theorem gives an asymptoti estimate for Nq(n;m1;m2),and it is similar to de Bruijn's result [6℄ for integers. The fat that m2 isonstant allows for an elementary argument. However, we take the oppor-tunity to introdue the analyti methods that are fully required in orderto prove Theorem 6.1.Theorem 5.1. The number Nq(n;m1;m2) of moni polynomials of de-gree n over Fq with all irreduible fators with degree greater than m2 and



12 GAREFALAKIS AND PANARIOless than or equal to m1, with m2 �xed and pn logn� m1 � n satis�esNq(n;m1;m2) � qnf(0)�� nm1� ;where � is the Dikman funtion, andf(h) = m2Yk=1�1� e�kh=nqk �Ik :Proof. From Equation (2) and Equation (4) we haveNq(n;m1;m2) = (1 + o(1)) qn2�i Z �+in���in� f(h) e�rm1 (e�h=n)n(1� e�h=n)ehdh= (1 + o(1)) qn2�i Z �+in���in� f(h)e�rm1(e�h=n)h h=n1� e�h=n ehdh:Let �(z) = z1�e�z , that is analyti in jzj < 2�. We now onentrateon the above integral. One expets that the main ontribution to theintegral omes from the neighborhood of the real axis. Indeed, let Æ = o(n),h = �+ i� , and onsider the integralsJÆ(n;m1;m2) = Z �+iÆ��iÆ f(h)e�rm1(e�h=n)h h=n1� e�h=n ehdh;and Jtail(n;m1;m2) = ZÆ<j� j�n� f(h)e�rm1 (e�h=n)h h=n1� e�h=n ehdh:Let us onsider �rst JÆ(n;m1;m2). For the range (� � iÆ; � + iÆ), wehave h=n ! 0, and limz!0 z1�e�z = 1. As we will see later, � � Æ �pu1 log(u1), where u1 = n=m1, and an appliation of Lemma 4.3 impliesJÆ(n;m1;m2) = exp�O� j�jn ej�j=u1��Z �+iÆ��iÆ f(h)e�E(h=u1)h ehdh:Furthermore, jh=nj < j�=nj + � < 2�, provided that �=n = o(1) (whihwill be the ase for our hoie of �, if logn=m1 = o(1)), and � is analyti



POLYNOMIALS FREE FROM LARGE AND SMALL IRREDUCIBLES 13in that range, so it is bounded by a onstant. Therefore, for h = � + i� ,using Lemma 4.3 we haveJtail(n;m1;m2) = O(1) ZÆ<j� j�n� f(h)e�O(E(h=u1))h ehdh:Note now that f(h) is analyti, and bounded by a onstant in the rangeof interest. Spei�ally, f(h) = O(1) for Æ < j� j � n�. Furthermore, theTaylor expansion of f(h) around zero for j� j < Æ yieldsf(h) = f(0) +O�hn� = f(0) + o(1):Thus,JÆ(n;m1;m2) = (1 + o(1)) exp�O� j�jn ej�j=u1�� f(0) Z �+iÆ��iÆ e�E(h=u1)h ehdh;(14)and Jtail(n;m1;m2) = O(1) ZÆ<j� j�n� e�O(E(h=u1))h ehdh: (15)It remains to estimate the above expressions. It is well-known that e�E(s)=sis the Laplae transform b�(s) of the Dikman funtion. The integrals inEquations (14) and (15) have been studied by several authors. We brieysketh here the exposition by Tenenbaum (see [23℄, pp. 372-376). The keyidea is to use the saddle point method to prove that the main ontributionomes from JÆ(n;m1;m2), whih is then estimated. For the method to gothrough we have to hoose � to be the real solution of the equation(�E(h=u1) + h� logh)0 = 0:The solution � satis�es � � �u1 log(u1 logu1). Thus, the ondition � =o(n), whih was needed throughout the proof, holds if logn=m1 ! 0.For this hoie of � it is then shown that the ontribution of the tailsis O(u�1=21 + exp (�u1 log�2 u1 + 2 logu1)) times the �rst integral, and isnegligible provided m1 = o(n). The tails along the vertial line up to +i1and �i1 are shown to be negligible. The argument is tehnial, and wewill not go into the details for two reasons: it appears in [23℄, and a similarargument will be used in the next setion for the ase m2 !1.



14 GAREFALAKIS AND PANARIOColleting the previous results we haveNq(n;m1;m2) � qn2�i exp�O� j�jn ej�j=u1�� f(0) Z �+iÆ��iÆ e�E(h=u1)h ehdh� qn exp�O� j�jn ej�j=u1�� f(0)�(u1);where � is the Dikman funtion as de�ned in Equation (13).Finally, under the assumption that pn logn=m1 ! 0, we haveO� j�jn ej�j=u1� = O�u21 log2 u1n � = O�n log2 nm21 � = o(1):In the spirit of Can�eld, Erd�os and Pomerane, we an obtain a slightlyweaker result that holds for a muh larger range of values of m1. Indeed,replaing the assumption pn logn=m1 ! 0 by logn=m1 ! 0, and usingthe notation u1 = n=m1, it follows from the proof of Theorem 5.1 thatNq(n;m1;m2) � qn exp� j�jn ej�j=u1� f(0)�(u1):It is known [6℄ that �(u1) = e�(1+o(1))u1 log u1 :Also it an be heked that,e j�jn ej�j=u1 = eO((u1 log u1 logn)=m1) = eo(1)u1 log u1 :Therefore, we have the following theorem.Theorem 5.2. The number Nq(n;m1;m2) of moni polynomials of de-gree n over Fq with all irreduible fators with degree between m2 and m1,with m2 �xed and logn� m1 � n, satis�esNq(n;m1;m2) = qne�(1+o(1)) nm1 log nm1 :
6. LOWER BOUND TENDING TO INFINITY



POLYNOMIALS FREE FROM LARGE AND SMALL IRREDUCIBLES 15We turn now to the ase when both bounds m1 and m2 tend to in�nity,with m1 = o(n). Let Nq(n;m) be the number of m-smooth polynomials.Sine Nq(n;m1;m2) � Nq(n;m1), the power seriesPm1;m2 �zq� = 1Xn=0Nq(n;m1;m2)znqn ;is dominated by the power seriesPm1 �zq� = 1Xn=0Nq(n;m1)znqn ;and therefore, its radius of onvergene is greater or equal to the radius ofonvergene of Pm1 . Sine jzj = e��=n is within the radius of onvergeneof Pm1 for � � �n=m1 log(n=m1 logn=m1) (see [17, p.74℄), it is ertainlywithin the radius of onvergene of Pm1;m2 as well. This will turn out tobe the hoie of � when estimating the integral in Equation (2).From Equations (2) and (5) we haveNq(n;m1;m2) = (1 + o(1))qn2�i Z �+in���in� erm1;m2 (e�h=n) ehn dh: (16)We fous on the above integral. Let us denoteJ(n;m1;m2) = 12�i Z �+in���in� erm1;m2 (e�h=n) ehn dh:As usual in this paper, we write u1 = n=m1 and u2 = n=m2. We expetthat the main ontribution to the integral omes from the neighborhoodof the real axis. If the saddle point method is to work, then we hope toapproximate the term rm1;m2(e�h=n) lose to the real axis by E(h=u2) �E(h=u1)+O(��n e��=u1), aording to Lemma 4.1, provided of ourse thatthe value of � satis�es the onditions of the lemma. Letf(h) = E(h=u2)�E(h=u1) + h:The value of � is determined as the real solution of the equation f 0(h) = 0,that is, f 0(h) = 1� e�h=u2h + e�h=u1h = 0:The following lemma will be ruial for the appliation of the saddle pointmethod.



16 GAREFALAKIS AND PANARIOLemma 6.1. The equatione�h=u2h � e�h=u1h = 1 (17)has a negative real solution, ��, suh that � � u1 log(u1 log u1). Morepreisely, u1 log (u1 logu1) < � < u1 log (u1(log u1)2); (18)where u1 �  u2 for any onstant  < 1, and u1 !1.Proof. Consider the funtion f 0(h) de�ned above at the points h1 =�u1 log (u1 logu1), and h2 = �u1 log (u1(log u1)2). One an easily hekthat f 0(h1) > 0, and f 0(h2) < 0, and sine f 0(h) is ontinuous, it followsthat it has a zero in (h2; h1). =(h)
TailJÆ <(h)Tail���� � iÆ�� + iu1�� + in�

�� + iÆ�� � iu1�� � iu2�� � in�

�� + iu2

FIG. 1. Deomposition of the integral



POLYNOMIALS FREE FROM LARGE AND SMALL IRREDUCIBLES 17To estimate J(n;m1;m2) we hoose � = ��. We break J(n;m1;m2) asthe sum of two integrals along the vertial line with =(h) = ��, as shownin Figure 1 J(n;m1;m2) = 12n�i Z ��+iÆ���iÆ exp (f(h)) dh+ 12n�i ZÆ<j=(h)j<n� exp (f(h)) dh:Nearly all the ontribution to the integral will ome from the neighborhoodof the point ��, with the ontribution of the tail being negligible. To showthat, we �rst estimate 12n�i Z ��+iÆ���iÆ erm1;m2 (e�h=n) ehn dh;for a suitable Æ. One an easily hek now that the onditions of Equa-tion (6) in Lemma 4.1 are satis�ed | in fat the onditions were hosento �t the proof. Substituting the estimate f(h) for rm1;m2(e�h=n) + h, weobtain 1 + o(1)2n�i Z ��+iÆ���iÆ exp (f(h)) dh:We need to estimateJÆ(n;m1;m2) = 12n�i Z ��+iÆ���iÆ exp (f(h)) dh: (19)We need the �rst three derivatives at h = ��. By the de�nition of �, wehave f 0(��) = 0:For the seond derivative we an writef 00(��) = 1�� �e�=u2u2 � e�=u1u1 + 1�� 1u1 log(u1 logu1) � (u1 logu1)u1=u2u2 � logu1 + 1�� � logu1u1 log(u1 logu1) � �1u1 ; (20)where we used the fats that � � u1 log(u1 logu1), that �� satis�es Equa-tion (17), and that u2 � u1 for some  < 1. Finally, the third derivative



18 GAREFALAKIS AND PANARIOan be omputed and shown to bef 000(��) = O�e�=u1u21� � = O� 1u21� :It follows thatf(�� + it) = f(��)� f 00(��)2 t2 +O �f 000(��)t3� :Taking Æ = u1=21 logu1 and using Lemma 6.1, we obtain t3f 000(��) =O �u�1=21 (log u1)3�. Under the hange of variable h = �� + it, we haveJÆ(n;m1;m2) = 12n� Z Æ�Æ exp�f(��)� t2f 00(��)=2 + t3O �f 000(��)�� dt= exp (f(��))2n� Z Æ�Æ �1 + t3O �f 000(��)�� exp��t2f 00(��)=2� dt:The term ontaining t3 is o(1). Therefore, we obtainJÆ(n;m1;m2) = (1 + o(1))exp (f(��))2n� Z Æ�Æ exp��t2f 00(��)=2� dt= (1 + o(1)) exp (f(��))np2�jf 00(��)j : (21)For the tails now, we will use the following tehnial lemma.Lemma 6.2. For h = ��+it, t 2 R, and g(h) = O(E(h=u2)�E(h=u1))+h, we have exp(g(h)) = exp (�� + o (u1) + it) ; jtj � u2;exp(<(f(h))) � exp�f(��)� Kt2u1 � ; jtj � u1;exp(<(f(h))) � exp�f(��)� u1(logu1)2 + �2 +O(1)� ; u1 < jtj < u2:(22)



POLYNOMIALS FREE FROM LARGE AND SMALL IRREDUCIBLES 19Proof. We note that E(s) = o(e��=j� j), for s = �+ i� (see [23℄, p. 373).Therefore, for jtj � u2exp(g(h)) = exp�O �e�=u2u2=jtj��O �e�=u1u1=jtj�� � + it�= exp (�� + o (u1) + it) ;where we need to assume u1 logu1 = o(u2), whih is satis�ed if m2 =o(m1= logn).The seond equation is more involved. We start by heking that (see [1℄,5.1.37) f(��)�<(f(h)) = Z 10 e�y=u1(1� os(ty=u1))y dy� Z 10 e�y=u2(1� os(ty=u2))y dy� Z 10 e�y=u1(os(ty=u2)� os(ty=u1))y dy: (23)For jtj � u1 and an appropriate onstant K 0 , we haveos(ty=u2)� os(ty=u1) � K 0t2y2u21 : (24)Using Equations (23) and (24), we have for a onstant Kf(��)�<(f(h)) � Z 10 e�y=u1K 0t2yu21 dy = K 0t2u21 Z 10 ye�y=u1dy= K 0t2u21 e�=u1(� � u1)u1 + u21�2 � Kt2u1 :The bound in Equation (22) an be shown in a similar way. We work inthe range u1 < jtj < u2. We observe thatf(��)�<(f(h)) = Z 10 e�y=u1(1� os(ty=u1))y dy� Z 10 e�y=u2(1� os(ty=u2))y dy� u1(�=u1)2 + �2 +O(1): (25)Indeed, we refer to the proof in [23℄ p. 374 that the �rst integral in Equa-tion (25) is greater than or equal to u1=((�=u1)2 + �2). Next we give a



20 GAREFALAKIS AND PANARIOlower bound for the seond integralZ 10 e�y=u2(1� os(ty=u2))y dy = tu2 Z 10 e�y=u2 1� os(ty=u2)ty=u2 dy: (26)For the range u1 < jtj < u2, and sine 0 < y < 1, we have jty=u2j < 1. Forx < 1, from the Taylor expansion of os(x) we haveos(x) = 1�O(x2);whih implies that 1� os(x)x = O(x):Applying this to the integral in Equation (26), we obtainZ 10 e�y=u2(1� os(ty=u2))y dy = O(1) tu2 Z 10 tyu2 e�y=u2dy= O(1) t2u22 Z 10 ye�y=u2dy � O(1) t2u22 Z 10 e�y=u2dy= O(1) t2u22 u2� (e�=u2 � 1) = t2u22 u2� O� �u2� � O(1)where we used the assumption u1 logu1 = o(u2), whih implies that�=u2 ! 0, and therefore e�=u2 � 1 = O(�=u2). Also in this range jt=u2j < 1whih proves Equation (25) and onludes the proof.We break up the tails in three parts: jtj � u2, , u1 < jtj < u2 andÆ < jtj � u1. For the �rst range, the ontribution is negligible due to theabove lemma, and the following easy fats:u1 = O�E ���u2 ��E ���u1 �� ;and f(��) = �� +E ���u2 ��E���u1 � :We onentrate now in the range Æ < jtj � u1. By the above lemma, thetail in this range is upper bounded byZÆ<jtj�u1 exp�f(��)� Ku1 t2� dt � exp (f(��)) Z 1Æ e� Ku1 t2dt



POLYNOMIALS FREE FROM LARGE AND SMALL IRREDUCIBLES 21� exp (f(��))pu12pK Z 1Æ2K=u1 e�y dypy� exp (f(��))u12ÆK e�KÆ2=u1= exp (f(��))pu12K log(u1) e�K(logu1)2whih is learly aeptable.For the intermediate range u1 < jtj < u2, the tails are bounded byexp�e�=u1 u2n � exp (f(��)) e� u1(log u1)2+�2 (u2 � u1);whih again is aeptable provided that the above expression is o(pu1).This holds by the hypothesis of Theorem 6.1 sine m2 � log3 n and m2 �pnm1e�n=(m1(log n)2). Putting all piees together, we have proven thatNq(n;m1;m2) = qn2n�ieO(e�=u1 (�+Æ)=n) Z ��+i1���i1 eE(h=u2)�E(h=u1)ehdh:Under the ondition pn logn� m1, we haveeO(e�=u1 (�+Æ)=n) = 1 + o(1):We have proven the following theorem.Theorem 6.1. The number Nq(n;m1;m2) of moni polynomials over Fqwith all irreduible fators with degree between m1 and m2, m1;m2 ! 1satisfying pn logn � m1 � n, and maxflog3 n;pnm1e�n=(m1(logn)2)g �m2 � m1= logn, is asymptotiallyNq(n;m1;m2) � qn2n�i Z ��+i1���i1 eE(m2h=n)�E(m1h=n)ehdh;where � is given in Equation (18) of Lemma (6.1).The proof of Theorem 6.1 gives more than the integral form stated. Thefollowing orollary gives the asymptoti estimate obtained in the proof ofTheorem 6.1. The estimate is stated in terms of the integralEi(x) = Z x�1 ett dt (x > 0):The reason for this is that Ei(x) is a real valued funtion, and the �nalresult is more natural expressed in that way.



22 GAREFALAKIS AND PANARIOCorollary 6.1. The number Nq(n;m1;m2) of moni polynomials overFq with all irreduible fators with degree betweenm1 and m2, m1;m2 !1,pn logn � m1 � n, and maxflog3 n;pnm1e�n=(m1(logn)2)g � m2 �m1= logn, is asymptotiallyNq(n;m1;m2) � qnpm1p2n� exp (Ei(�m1=n)�Ei(�m2=n)� �) ;where � is given in Equation (18) of Lemma (6.1).Proof. From the proof of Theorem 6.1 we haveNq(n;m1;m2) � qnJÆ(n;m1;m2):This ombined with Equation (21) implies thatNq(n;m1;m2) � qn exp (f(��))np2�jf 00(��)j :As it was pointed out in Equation (20), f 00(��) � �1=u1, where againu1 = n=m1. Thus, it only remains to estimate f(��)f(��) = E(��=u2)�E(��=u1)� �= �Ei(�=u2) +Ei(�=u1)� �;where the seond equality holds sine E(x + i0) = �Ei(�x) � i� (see[1℄, 5.1.7).Again, as for the generalized smooth polynomials, one an extend therange of the estimate onsiderably, by weakening the result.Theorem 6.2. The number Nq(n;m1;m2) of moni polynomials overFq with all irreduible fators between m1 and m2, with m1;m2 ! 1,m1e�n=m1 � m2 � m1 for any onstant  < 1, and 2(logn)2 � m1 � nsatis�es Nq(n;m1;m2) = qne�(1+o(1)) nm1 log nm1 :Proof. Let u1 = n=m1 and u2 = n=m2. The number Nq(n;m1;m2)was estimated in terms of four integrals that orrespond to the rangesjtj � Æ, Æ < jtj � u1, u1 < jtj < u2, and jtj � u2. From the proof ofTheorem 6.1, it is lear that the main integral orresponding to the range



POLYNOMIALS FREE FROM LARGE AND SMALL IRREDUCIBLES 23jtj � Æ is e�(1+o(1))u1 log u1 with the only assumption that logn� m1 � n.Moreover, the tail integrals that orrespond to the ranges jtj � u2 andÆ < jtj � u1 are e�(1+o(1))u1 log u1 under no further assumption. The rest ofthe onditions ome from the range u1 < jtj < u2. In that range the tail isexp�e�=u1 u2n � exp (f(��)) e� u1(log u1)2+�2 (u2 � u1)= exp (f(��)) e� u1(log u1)2+�2+u1u2 log u1n +log (u2�u1):We know that f(��) = �(1+o(1))u1 logu1, and all the other terms in theexponent are o(1)u1 logu1, exept maybe logu2. In order to ensure this, weneed to impose the ondition m2 � m1e�n=m1 . The theorem now fol-lows. 7. CONCLUSION AND FURTHER WORKWe studied the problem of estimating the number of polynomials ofdegree n over Fq that have irreduible fators of degree greater than m2and less than or equal to m1. Our results hold for ertain ranges of valuesfor m1 and m2. For example, if m2 = 0, then we have provenNq(n;m1;m2) � qn�� nm1� ; (27)only if pn logn << m1. Can the range of m1 for whih the Dikmanfuntion appears, be extended? If not, one might be able to prove thatfor smaller values of m1, Nq(n;m1;m2) is asymptotially di�erent than theexpression in Equation (27), by proving a stronger version of Lemma 4.1.Using this, one ould also extend the range for m1 in Theorem 6.1.Also the ase m1 = n=,  � 1, was not onsidered at all. When  = 1,that is m1 = n, it has been proven [20℄ that he number of polynomials withirreduible fators with degrees in that range are related with the Buhstabfuntion. When  > 1, using the same arguments as in Setion 6, one �ndsthat Equation (16) holds. Furthermore, the approximation of Lemma 4.1will work equally well. However, the saddle point method fails beause oftehnial reasons (basially due to the fat that the orresponding value of� is onstant). It would be interesting to solve the ase m1 = n=,  > 1,and thus omplete the range.Another interesting problem is the study of similar estimates for otherdeomposable strutures. These studies would provide estimates, for in-stane, for the number of permutations that deompose into yles of lengthwithin a ertain interval, or the unmber of 2-regular graphs that deomposeinto onneted omponents of size between two bounds, and so on.
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POLYNOMIALS FREE FROM LARGE AND SMALL IRREDUCIBLES 2518. A. M. Odlyzko. Disrete logarithms and smooth polynomials. In G.L. Mullen andP. J.-S. Shiue, editors, Finite �elds: theory, appliations and algorithms, pages 269{278. Contemporary Mathematis 168, Amer. Math. So., 1994.19. D. Panario, X. Gourdon, and P. Flajolet. An analyti approah to smooth poly-nomials over �nite �elds. In ANTS: 3rd International Algorithmi Number TheorySymposium, volume 1423 of LNCS, pages 226{236. Springer-Verlag, 1998.20. D. Panario and L.B. Rihmond. Analysis of Ben-Or's polynomial irreduibility test.Random Strutures and Algorithms, 13:439{456, 1998.21. D. Panario and L.B. Rihmond. Smallest omponents in deomposable strutures:exp-log lass. Algorithmia, 29:205{226, 2001.22. K. Soundararajan. Asymptoti formulas for the ounting funtion of smooth poly-nomials. Preprint.23. G. Tenenbaum. Introdution to analyti and probabilisti number theory. CambridgeUniversity Press, 1996.


