Self-reciprocal irreducible polynomials with prescribed coefficients

Theodoulos Garefalakis
Department of Mathematics, University of Crete, 71409 Heraklion, Greece

Abstract

We prove estimates for the number of self-reciprocal monic irreducible polynomials over a finite field of odd characteristic, that have the t lower degree coefficients fixed to given values. Our estimates imply that one may specify up to $m / 2-\log _{q}(2 m)-1$ values in the field and a self-reciprocal monic irreducible polynomial of degree $2 m$ exists with its low degree coefficients fixed to those values.

Keywords: Self-reciprocal polynomials, irreducible polynomials, finite fields

1. Introduction

Let q be a prime power and let \mathbb{F}_{q} be the finite field with q elements. For any $n \in \mathbb{N}$, we denote by \mathbb{I}_{n} the set of monic irreducible polynomials in $\mathbb{F}_{q}[X]$. It is well known that the cardinality of \mathbb{I}_{n}, denoted by $\pi_{q}(n)$, is roughly q^{n} / n. It is of interest, both from a theoretical and a practical point of view, and has been the topic of an active line of research, to compute the cardinalities of various subsets of \mathbb{I}_{n}. Perhaps the earliest result along these lines is Dirichlet's theorem for primes in arithmetic progression for $\mathbb{F}_{q}[X]$, see [22]. Dirichlet's theorem, applied with modulus X^{t}, implies that the number of monic irreducibles of degree n with the coefficients of the t lowest degree terms fixed to given values (the constant term being non zero) is approximated by $\pi_{q}(n) / \Phi\left(X^{t}\right)$, where $\Phi(\cdot)$ is Euler's totient function defined in $\mathbb{F}_{q}[X]$ as $\Phi(F)=\#\left(\mathbb{F}_{q}[X] / F \mathbb{F}_{q}[X]\right)^{*}$. It should be noted that results as the above require Riemann's Hypothesis for function fields. As a consequence, t has to be taken less than $n / 2$.

Dirichlet's theorem has been the starting point for an area of research that has been very active during the past thirty years. For instance, irreducible polynomials with prescribed coefficients [1, 13, 14, 16, 17, 23], and primitive and/or normal

[^0]polynomials with prescribed coefficients $[5,6,7,8,9,10,11,12]$ have been the focus of substantial research.

Irreducible polynomials with additional properties have attracted considerable attention. One class of irreducibles of particular interest has been that of selfreciprocal, monic irreducibles, that is, monic irreducibles P that satisfy $P(X)=$ $X^{\operatorname{deg}(P)} P(1 / X)$. The reader is refered to [15, 18] for their applications in coding theory, to [21] for their connection to combinatorics and to [4, 19] for their use in the construction of certain infinite extensions of \mathbb{F}_{q}. Due to their applications, selfreciprocal irreducible polynomials have been studied extensively. In particular, it has been shown that all self-reciprocal monic irreducible polynomials have even degree and their number has been computed in [2, 3, 20].

The subject of the present work is to study the distribution of self-reciprocal monic irreducible polynomials. More precisely, given t values in \mathbb{F}_{q} we compute the number of self-reciprocal monic irreducibles of degree $2 m$ in $\mathbb{F}_{q}[X]$ with the t low degree coefficients fixed to the given values. We note that the constant term is necessarily fixed to 1 . Our approach is based on the work of Carlitz [2].

2. Auxiliary lemmata

Let p be an odd prime, $e \geq 1$ and $q=p^{e}$. We let $\mathbb{A}=\mathbb{F}_{q}[X]$ be the polynomial ring over \mathbb{F}_{q}. For $m \in \mathbb{N}$, we denote by \mathbb{I}_{m} the set of monic irreducible polynomials in \mathbb{A} of degree m. For a polynomial $F \in \mathbb{A}$, we denote the coefficient of X^{i} by F_{i}.

Lemma 1. Let $P \in \mathbb{I}_{m}, m \geq 2$, and let $\widetilde{P}=\frac{1}{P_{0}} X^{m} P\left(\frac{4}{X}\right)$. Then $\widetilde{P} \in \mathbb{I}_{m}$ and $\widetilde{\widetilde{P}}=P$.
Proof. Let $P(X)=\sum_{i=0}^{m} P_{i} X^{i}$, where $P_{m}=1$ since P is monic. Then

$$
\begin{equation*}
\widetilde{P}=\sum_{i=0}^{m} \frac{4^{i} P_{i}}{P_{0}} X^{m-i}=\sum_{i=0}^{m} \frac{4^{m-i} P_{m-i}}{P_{0}} X^{i} \tag{1}
\end{equation*}
$$

Clearly, \widetilde{P} is monic. If β is a root of \widetilde{P}, then $\beta=4 / \alpha$, where α is a root of P. Therefore, $\mathbb{F}_{q}(\alpha)=\mathbb{F}_{q}(\beta)$ and P is irreducible if and only if \widetilde{P} is irreducible. Finally, $\widetilde{\widetilde{P}}$ is monic irreducible of degree m and if γ is one of its roots, then $\gamma=4 / \beta=\alpha$. It follows that $\widetilde{\widetilde{P}}=P$.

The polynomial \widetilde{P} has the following important property: it can be easily determined whether or not it is a square modulo $X^{2}-4$ based on whether P is a square modulo $X^{2}-4$. We denote by ($\cdot \mid X^{2}-4$) the Legendre symbol modulo $X^{2}-4$ for the ring \mathbb{A}.

Lemma 2. Let $P \in \mathbb{I}_{m}, m \geq 2$. Then the following hold.

1. If $q \equiv 1(\bmod 4)$ or m is even then $\left(P \mid X^{2}-4\right)=\left(\widetilde{P} \mid X^{2}-4\right)$.
2. If $q \equiv 3(\bmod 4)$ and m is odd then $\left(P \mid X^{2}-4\right)=-\left(\widetilde{P} \mid X^{2}-4\right)$

Proof. Let α be a root of P and $\beta=4 / \alpha$ be a root of \widetilde{P}. The quadratic reciprocity law for $\mathbb{A}\left[22\right.$, Ch. 3] implies that $\left(P \mid X^{2}-4\right)=\left(X^{2}-4 \mid P\right)$. Further, $\left(X^{2}-4 \mid P\right)=1$ if and only if $\alpha^{2}-4=\delta^{2}$ for some $\delta \in \mathbb{F}_{q}$. The same reasoning, applied to \widetilde{P} shows that $\left(\widetilde{P} \mid X^{2}-4\right)=\left(X^{2}-4 \mid \widetilde{P}\right)$. Furthermore, $\left(X^{2}-4 \mid \widetilde{P}\right)=1$ if and only if $\beta^{2}-4$ is a square in \mathbb{F}_{q}. We compute

$$
\beta^{2}-4=\frac{4^{2}}{\alpha^{2}}-4=-\frac{4}{\alpha^{2}}\left(\alpha^{2}-4\right)=-\left(\frac{2 \delta}{\alpha}\right)^{2}
$$

To finish the proof, it suffices to note that -1 is a square in \mathbb{F}_{q} if and only if either $q \equiv 1(\bmod 4)$ or m is even.

For an abelian group H, we denote by \widehat{H} the dual of H, that is, the group of characters of H. In particular, given a polynomial $F \in \mathbb{A}$, and taking the group $H=$ $(\mathbb{A} / F \mathbb{A})^{*}$, we note that the dual of H is essentially the group of Dirichlet characters modulo F. We will make use of the following simple lemma in Section 4.

Lemma 3. Let $F, G \in \mathbb{A}$ be co-prime polynomials. The map

$$
\begin{aligned}
\theta: \widehat{\left(\frac{\mathbb{A}}{F \mathbb{A}}\right)^{*}} \times\left(\widehat{\left(\frac{\mathbb{A}}{G \mathbb{A}}\right)^{*}}\right. & \rightarrow\left(\frac{\mathbb{A}}{F G \mathbb{A}}\right)^{*} \\
(\chi, \psi) & \mapsto \chi \psi
\end{aligned}
$$

where $\chi \psi(f \bmod F G)=\chi(f \bmod F) \cdot \psi(f \bmod G)$, is a group isomorphism.
Proof. The statement follows easily from the isomorphism of the Chinese Remainder Theorem $(\mathbb{A} / F G \mathbb{A})^{*} \rightarrow(\mathbb{A} / F \mathbb{A})^{*} \times(\mathbb{A} / G \mathbb{A})^{*}$.

3. Outline of method

It is well known, see [2], that every monic self-reciprocal irreducible polynomial has even degree and is of the form $Q(X)=X^{m} P\left(X+X^{-1}\right)$, where P is a monic irreducible of degree m such that $X^{2}-4$ is a non-square modulo P. The last condition can be written as $\left(X^{2}-4 \mid P\right)=-1$, using Legendre's symbol. Conversely, given a monic irreducible polynomial P of degree m, that satisfies $\left(X^{2}-4 \mid P\right)=-1$,
the polynomial $Q(X)=X^{m} P\left(X+X^{-1}\right)$ is a monic, irreducible, self-reciprocal polymonial of degree $2 m$. Accordingly,

$$
\#\left\{Q \in \mathbb{I}_{2 m}: Q \text { is self-reciprocal }\right\}=\#\left\{P \in \mathbb{I}_{m}:\left(P \mid X^{2}-4\right)=-1\right\}
$$

where we used the fact that $\left(X^{2}-4 \mid P\right)=\left(P \mid X^{2}-4\right)$. Our goal is to estimate
$\#\left\{Q \in \mathbb{I}_{2 m}: Q\right.$ is self-reciprocal and $\left.Q_{i}=c_{i}, i=1, \ldots, t\right\}$,
where $Q=\sum_{i=0}^{2 m} Q_{i} X^{i}$ and $c_{1}, \ldots, c_{t} \in \mathbb{F}_{q}$ are fixed values.
It is clear that the coefficients of Q depend linearly on the coefficients of P. The next lemma makes this dependence explicit.

Lemma 4. Let $P=\sum_{i=0}^{m} P_{i} X^{i}$ and $Q=\sum_{i=0}^{2 m} Q_{i} X^{i}$ be two polynomials in \mathbb{A} satisfying $Q=X^{m} P\left(X+X^{-1}\right)$ and $t \in \mathbb{N}, 1 \leq t \leq m-1$. Then there exists a lower triangular matrix $U \in \mathrm{SL}_{t}\left(\mathbb{F}_{q}\right)$ with all the elements in the diagonal equal to 1 , such that

$$
\left(Q_{0}, Q_{1}, \ldots, Q_{t}\right)^{T}=U \cdot\left(P_{m}, P_{m-1}, \ldots, P_{m-t}\right)^{T}
$$

Proof. Let $P=\sum_{i=0}^{m} P_{i} X^{i}=\sum_{i=0}^{m} a_{i} X^{m-i}$. Then

$$
\begin{aligned}
Q & =X^{m} \sum_{i=0}^{m} a_{i}\left(X+X^{-1}\right)^{m-i}=\sum_{i=0}^{m} a_{i} X^{i}\left(X^{2}+1\right)^{m-i}=\sum_{i=0}^{m} a_{i} X^{i} \sum_{j=0}^{m-i}\binom{m-i}{j} X^{2 j} \\
& =\sum_{\substack{0 \leq i \leq m \\
0 \leq j \leq m-i}}\binom{m-i}{j} a_{i} X^{i+2 j}=\sum_{k=0}^{2 m}\left(\sum_{\substack{0 \leq i \leq m \\
0 \leq j \leq m-i \\
k=i+2 j}}\binom{m-i}{j} a_{i}\right) X^{k} .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
Q_{k}=\sum_{\substack{0 \leq i \leq m \\ 0 \leq j \leq m-i \\ k=i+2 j}}\binom{m-i}{j} a_{i}, \quad 0 \leq k \leq 2 m \tag{2}
\end{equation*}
$$

It is easy to see that Q_{k} is a linear combination of a_{0}, \ldots, a_{k} and the coefficient of a_{k} is $\binom{-k}{0}=1$. The statement of the lemma follows once we substitute P_{m-i} for a_{i} and consider the first $t+1$ equations.

Lemma 5. Let $m \geq 2, t \in \mathbb{N}, 1 \leq t \leq m-1$ and $c_{1}, \ldots, c_{t} \in \mathbb{F}_{q}$. Then

$$
\begin{aligned}
& \#\left\{Q \in \mathbb{I}_{2 m}: Q \text { is self-reciprocal and } Q_{i}=c_{i}, i=1, \ldots, t\right\} \\
= & \sum_{c \in \mathbb{R}_{q}^{*}} \#\left\{P \in \mathbb{I}_{m}:\left(P \mid X^{2}-4\right)=\varepsilon, P_{0}=\frac{4^{m}}{c}, P_{i}=\frac{c_{i}^{\prime} 4^{m-i}}{c}, i=1, \ldots, t\right\},
\end{aligned}
$$

where $\left(1, c_{1}^{\prime}, \ldots, c_{t}^{\prime}\right)^{T}=U^{-1}\left(1, c_{1}, \ldots, c_{t}\right)^{T}, U$ is the matrix of Lemma 4 and

$$
\varepsilon=\left\{\begin{array}{rlll}
-1, & \text { if } & q \equiv 1 & (\bmod 4) \text { or } m \equiv 0 \quad(\bmod 2) \\
1, & \text { if } & q \equiv 3 & (\bmod 4) \text { and } m \equiv 1
\end{array} \quad(\bmod 2)\right.
$$

Proof. From Lemma 4 and the discussion preceeding it, it follows that

$$
\begin{align*}
& \#\left\{Q \in \mathbb{I}_{2 m}: Q \text { is self-reciprocal and } Q_{i}=c_{i}, i=1, \ldots, t\right\} \tag{3}\\
= & \#\left\{P \in \mathbb{I}_{m}:\left(P \mid X^{2}-4\right)=-1, P_{m-i}=c_{i}^{\prime}, i=1, \ldots, t\right\} .
\end{align*}
$$

We partition the set on the right-hand side as

$$
\begin{align*}
& \left\{P \in \mathbb{I}_{m}:\left(P \mid X^{2}-4\right)=-1, P_{m-i}=c_{i}^{\prime}, i=1, \ldots, t\right\} \tag{4}\\
= & \bigcup_{c \in \mathbb{F}_{q}^{*}}\left\{P \in \mathbb{I}_{m}:\left(P \mid X^{2}-4\right)=-1, P_{0}=c, P_{m-i}=c_{i}^{\prime}, i=1, \ldots, t\right\} .
\end{align*}
$$

Let now

$$
\mathcal{A}_{c}=\left\{P \in \mathbb{I}_{m}:\left(P \mid X^{2}-4\right)=-1, P_{0}=c, P_{m-i}=c_{i}^{\prime}, i=1, \ldots, t\right\}
$$

and

$$
\mathcal{B}_{c}=\left\{P \in \mathbb{I}_{m}:\left(P \mid X^{2}-4\right)=\varepsilon, P_{0}=\frac{4^{m}}{c}, P_{i}=\frac{c_{i}^{\prime} 4^{m-i}}{c}, i=1, \ldots, t\right\},
$$

where ε is defined in the statement of the Lemma. Clearly the sets $\mathcal{A}_{c}, c \in \mathbb{F}_{q}^{*}$ are pairwise disjoint. The same is true for the sets $\mathcal{B}_{c}, c \in \mathbb{F}_{q}^{*}$. We claim that for every $c \in \mathbb{F}_{q}^{*}$, the map

$$
\begin{array}{rll}
\vartheta: \mathcal{A}_{c} & \longrightarrow \mathcal{B}_{c} \\
P & \mapsto & \widetilde{P}
\end{array}
$$

is a bijection. Indeed, from Lemma 1 follows that $\vartheta(P)=\widetilde{P} \in \mathbb{I}_{m}$ and from Lemma 2 follows that $\left(\widetilde{P} \mid X^{2}-4\right)=\varepsilon$. Finally, Eq.(1) shows that the coefficients of \widetilde{P} are as required. This shows that the map is well defined. To prove it is injective, note that $\vartheta\left(P_{1}\right)=\vartheta\left(P_{2}\right)$ implies $\widetilde{P_{1}}=\widetilde{P_{2}}$. Applying ϑ again and using Lemma 1 we obtain $P_{1}=P_{2}$. Surjectivity follows from the observation that for $P \in \mathcal{B}_{c}$, $\widetilde{P} \in \mathcal{A}_{c}$ and $\vartheta(\widetilde{P})=P$, that is, ϑ is its own inverse.

From Eq. (3), Eq. (4) and the fact that ϑ is bijective, we obtain

$$
\#\left\{Q \in \mathbb{I}_{2 m}: Q \text { is self-reciprocal and } Q_{i}=c_{i}, i=1, \ldots, t\right\}=\sum_{c \in \mathbb{F}_{q}^{*}} \# \mathcal{B}_{c},
$$

and the proof is complete.

Lemma 5 reduces our problem to that of estimating the cardinality of a set of the form

$$
\left\{P \in \mathbb{I}_{m}:\left(P \mid X^{2}-4\right)=\varepsilon, P_{i}=c_{i}, i=0, \ldots, t\right\}
$$

for any $c_{0}, \ldots, c_{t} \in \mathbb{F}_{q}, c_{0} \neq 0$. Note that for fixed values $c_{i}, i=0, \ldots, t$, we have

$$
\begin{aligned}
& \left\{P \in \mathbb{I}_{m}:\left(P \mid X^{2}-4\right)=\varepsilon, P_{i}=c_{i}, i=0, \ldots, t\right\} \\
= & \left\{P \in \mathbb{I}_{m}:\left(P \mid X^{2}-4\right)=\varepsilon, P \equiv C\left(\bmod X^{t+1}\right)\right\},
\end{aligned}
$$

where $C=c_{t} X^{t}+\cdots+c_{1} X+c_{0} \in \mathbb{A}$. We denote $\pi_{q}(m)=\# \mathbb{I}_{m}$,

$$
\pi_{q}(m, C, \varepsilon)=\#\left\{P \in \mathbb{I}_{m}:\left(P \mid X^{2}-4\right)=\varepsilon, P \equiv C\left(\bmod X^{t+1}\right)\right\}
$$

and

$$
\pi_{q}(m, \varepsilon)=\#\left\{P \in \mathbb{I}_{m}:\left(P \mid X^{2}-4\right)=\varepsilon\right\} .
$$

4. Main result

Let $M \in \mathbb{A}$ be a polynomial of degree k and suppose ρ is a non-trivial Dirichlet character modulo M. The Dirichlet L-function associated with ρ is defined to be

$$
\mathcal{L}(s, \rho)=\sum_{F} \frac{\rho(F)}{|F|^{s}}, \quad \mathfrak{R}(s)>1
$$

where $|F|=q^{\operatorname{deg}(F)}$ and the sum is over monic polynomials in \mathbb{A}. Making the substitution $u=q^{-s}$, we have

$$
\mathcal{L}(s, \rho)=L(u, \rho)=\sum_{n=0}^{\infty}\left(\sum_{\operatorname{deg}(F)=n} \rho(F)\right) u^{n} .
$$

It is not hard to show that $L(u, \rho)$ is a polynomial in u of degree at most $k-1$. Further, $L(u, \rho)$ has an Euler product,

$$
L(u, \rho)=\prod_{d=1}^{\infty} \prod_{\operatorname{deg}(P)=d}\left(1-\rho(P) u^{d}\right)^{-1}
$$

Taking the logarithmic derivative of $L(u, \rho)$ and multiplying by u, we obtain a series $\sum_{n=1}^{\infty} c_{n}(\rho) u^{n}$, with

$$
\begin{equation*}
c_{n}(\rho)=\sum_{d \mid n} \frac{n}{d} \sum_{\operatorname{deg}(P)=n / d} \rho(P)^{d} \tag{5}
\end{equation*}
$$

Weil's theorem of the Riemann hypothesis for function fields implies that

$$
\begin{equation*}
\left|c_{n}(\rho)\right| \leq(k-1) q^{\frac{n}{2}} \tag{6}
\end{equation*}
$$

For a detailed account of the above well known facts, see [22, Ch. 4].
Consider now the quadratic Dirichlet character modulo $X^{2}-4, \psi(F)=\left(F \mid X^{2}-\right.$ 4), for $F \in \mathbb{A}$. In [2], Carlitz computed the number of self-reciprocal monic irreducibles in \mathbb{A} using the Dirichlet L-function associated with ψ.

Let χ be a Dirichlet character modulo X^{t+1}. Since $\left(X^{t+1}, X^{2}-4\right)=1$, Lemma 3 applies, and there is a non-trivial Dirichlet character modulo $X^{t+1}\left(X^{2}-4\right)$, which we denote by $\chi \psi$ such that $\chi \psi(F)=\chi(F) \psi(F)$. In our case, it is natural to consider the L-function associated with the dirichlet character $\chi \psi$. We use the notation $L(u, \chi, \psi)$ for $L(u, \chi \psi)$ and $c_{n}(\chi, \psi)$ for $c_{n}(\chi \psi)$.

Applying Eq.(5) and Eq.(6) with $\rho=\chi \psi$, we obtain

$$
\begin{equation*}
c_{n}(\chi, \psi)=\sum_{d \mid n} \frac{n}{d} \sum_{\operatorname{deg}(P)=n / d} \chi \psi(P)^{d} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|c_{n}(\chi, \psi)\right| \leq(t+2) q^{\frac{n}{2}} \tag{8}
\end{equation*}
$$

Eq.(6), applied with $\rho=\chi$, for a non-trivial character χ, yields

$$
\begin{equation*}
\left|c_{n}(\chi)\right| \leq t q^{\frac{n}{2}}, \text { for } \chi \neq \chi_{o} \tag{9}
\end{equation*}
$$

Proposition 1. Let χ be a non-trivial Dirichlet character modulo X^{t+1}. Then the following bounds hold:

1. For every $n \in \mathbb{N}, n \geq 2$,

$$
\left|\sum_{\substack{\operatorname{deg}(P)=n \\ \psi(P)=-1}} \chi(P)\right| \leq \frac{t+5}{n} q^{\frac{n}{2}}
$$

2. For every $n \in \mathbb{N}, n \geq 2$, n odd,

$$
\left|\sum_{\substack{\operatorname{deg}(P)=n \\ \psi(P)=1}} \chi(P)\right| \leq \frac{t+5}{n} q^{\frac{n}{2}}
$$

Proof. From Eq. (7), taking into account that ψ is a quadratic character, we have

$$
\begin{aligned}
& c_{n}(\chi, \psi)=\sum_{\substack{d \mid n \\
d \text { odd }}} \frac{n}{d} \sum_{\operatorname{deg}(P)=n / d} \chi(P)^{d} \psi(P)+\sum_{\substack{d \mid n \\
d \text { even }}} \frac{n}{d} \sum_{\operatorname{deg}(P)=n / d} \notin(P)^{d} \\
& =\sum_{\substack{d \mid n \\
d \text { odd }}} \frac{n}{d} \sum_{\substack{\operatorname{deg}(P)=n / d \\
\psi(P)=1}} \chi(P)^{d}-\sum_{\substack{d \mid n \\
d \text { odd }}} \frac{n}{d} \sum_{\substack{\operatorname{deg}(P)=n / d \\
\psi(P)=-1}} \chi(P)^{d}+ \\
& \sum_{\substack{d \mid n \\
d \text { even }}} \frac{n}{d} \sum_{\operatorname{deg}(P)=n / d} \chi(P)^{d} \\
& =\sum_{\substack{d \mid n \\
d \text { odd }}} \frac{n}{d} \sum_{\operatorname{deg}(P)=n / d} \chi(P)^{d}-2 \sum_{\substack{d \mid n \\
d \text { odd }}} \frac{n}{d} \sum_{\substack{\operatorname{deg}(P)=n / d \\
\psi(P)=-1}} \chi(P)^{d}+ \\
& \sum_{\substack{d \mid n \\
d \text { even }}} \frac{n}{d} \sum_{\operatorname{deg}(P)=n / d} \chi(P)^{d} \\
& =\sum_{d \mid n} \frac{n}{d} \sum_{\operatorname{deg}(P)=n / d} \chi(P)^{d}-2 \sum_{\substack{d \mid n \\
d \text { odd }}} \frac{n}{d} \sum_{\substack{\operatorname{deg}(P)=n / d \\
\psi(P)=-1}} \chi(P)^{d} .
\end{aligned}
$$

By definition

$$
c_{n}(\chi)=\sum_{d \mid n} \frac{n}{d} \sum_{\operatorname{deg}(P)=n / d} \chi(P)^{d}
$$

and we denote

$$
e_{n}(\chi, \psi,-1)=\sum_{\substack{d \mid n \\ d \text { odd }}} \frac{n}{d} \sum_{\substack{\operatorname{deg}(P)=n / d \\ \psi(P)=-1}} \chi(P)^{d},
$$

so that

$$
c_{n}(\chi, \psi)=c_{n}(\chi)-2 e_{n}(\chi, \psi,-1)
$$

From Eq.(8) and Eq.(9) it follows that

$$
\begin{equation*}
\left|e_{n}(\chi, \psi,-1)\right| \leq(t+1) q^{\frac{n}{2}}, \quad \text { for } \chi \neq \chi_{o} \tag{10}
\end{equation*}
$$

Furthermore,

$$
e_{n}(\chi, \psi,-1)=n \sum_{\substack{\operatorname{deg}(P)=n \\ \psi(P)=-1}} \chi(P)+\sum_{\substack{d \mid n \\ \text { oodd } \\ d>1}} \frac{n}{d} \sum_{\substack{\operatorname{deg}(P)=n / d \\ \psi(P)=-1}} \chi(P)^{d} .
$$

We bound the second summand as follows

$$
\left|\sum_{\substack{d \mid n \\ d \text { odd } \\ d>1}} \frac{n}{d} \sum_{\substack{\operatorname{deg}(P)=n / d \\ \psi(P)=-1}} \chi(P)^{d}\right| \leq \sum_{\substack{d \mid n \\ d \text { odd } \\ d>1}} \frac{n}{d} \sum_{\substack{\operatorname{deg}(P)=n / d \\ \psi(P)=-1}} 1 \leq \sum_{j=1}^{\lfloor n / 3\rfloor} j \sum_{\operatorname{deg}(P)=j} 1,
$$

and using the fact that $\sum_{\operatorname{deg}(P)=j}=\pi_{q}(j) \leq q^{j} / j+3 q^{\frac{j}{2}} / 2$ for $q \geq 3$, we have

$$
\begin{aligned}
\sum_{j=1}^{\lfloor n / 3\rfloor} j \sum_{\operatorname{deg}(P)=j} 1 & \leq \sum_{j=1}^{\lfloor n / 3\rfloor}\left(q^{j}+\frac{3 j}{2} q^{\frac{j}{2}}\right) \\
& \leq \frac{q}{q-1}\left(q^{\frac{n}{3}}-1\right)+\frac{3}{2} \frac{n}{3} \sum_{j=1}^{\lfloor n / 3\rfloor} q^{\frac{j}{2}} \\
& \leq \frac{3}{2} q^{\frac{n}{3}}+\frac{3 n}{2} q^{\frac{n}{6}}
\end{aligned}
$$

where we used the fact that $q /(q-1) \leq 3 / 2$ and $\sqrt{q} /(\sqrt{q}-1) \leq 3$ for $q \geq 3$. Since $3 q^{\frac{n}{3}} / 2 \leq 2 q^{\frac{n}{2}}$ and $3 n q^{\frac{n}{6}} / 2 \leq 2 q^{\frac{n}{2}}$ for every $q \geq 3$ and $n \geq 2$, we obtain

$$
\left|\sum_{\substack{d \mid n \\ \text { odd } \\ d>1}} \frac{n}{d} \sum_{\substack{\operatorname{deg}(P)=n / d \\ \psi(P)=-1}} \chi(P)^{d}\right| \leq 4 q^{\frac{n}{2}}
$$

From this bound and Eq. (10) follows that

$$
\begin{equation*}
\left|\sum_{\substack{\operatorname{deg}(P)=n \\ \psi(P)=-1}} \chi(P)\right| \leq \frac{t+5}{n} q^{\frac{n}{2}} \tag{11}
\end{equation*}
$$

For n odd, we have

$$
\begin{aligned}
c_{n}(\chi, \psi) & =\sum_{d \mid n} \frac{n}{d} \sum_{\operatorname{deg}(P)=n / d} \chi(P)^{d} \psi(P) \\
& =\sum_{d \mid n} \frac{n}{d} \sum_{\substack{\operatorname{deg}(P)=n / d \\
\psi(P)=1}} \chi(P)^{d}-\sum_{d \mid n} \frac{n}{d} \sum_{\substack{\operatorname{deg}(P)=n / d \\
\psi(P)=-1}} \chi(P)^{d} \\
& =2 \sum_{d \mid n} \frac{n}{d} \sum_{\substack{\operatorname{deg}(P)=n / d \\
\psi(P)=1}} \chi(P)^{d}-\sum_{d \mid n} \frac{n}{d} \sum_{\operatorname{deg}(P)=n / d} \chi(P)^{d}
\end{aligned}
$$

Denoting

$$
e_{n}(\chi, \psi, 1)=\sum_{d \mid n} \frac{n}{d} \sum_{\substack{\operatorname{deg}(P)=n / d \\ \psi(P)=1}} \chi(P)^{d},
$$

we have

$$
c_{n}(\chi, \psi)=2 e_{n}(\chi, \psi, 1)-c_{n}(\chi)
$$

It follows that

$$
\left|e_{n}(\chi, \psi, 1)\right| \leq(t+1) q^{\frac{n}{2}}
$$

and

$$
\left|\sum_{\substack{\operatorname{deg}(P)=n \\ \psi(P)=1}} \chi(P)\right| \leq \frac{t+5}{n} q^{\frac{n}{2}}
$$

Proposition 1 can be used to obtain estimates for $\pi_{q}(n, C,-1)$.
Theorem 1. Let q be a power of an odd prime and $C \in \mathbb{A}$, co-prime to X of degree at most t. Then the following bounds hold:

1. For every $n \in \mathbb{N}, n \geq 2$,

$$
\left|\pi_{q}(n, C,-1)-\frac{1}{\Phi\left(X^{t+1}\right)} \pi_{q}(n,-1)\right| \leq \frac{t+5}{n} q^{\frac{n}{2}} .
$$

2. For every $n \in \mathbb{N}, n \geq 2$, n odd,

$$
\left|\pi_{q}(n, C, 1)-\frac{1}{\Phi\left(X^{t+1}\right)} \pi_{q}(n, 1)\right| \leq \frac{t+5}{n} q^{\frac{n}{2}} .
$$

Proof. For $\varepsilon \in\{-1,1\}$, we have

$$
\begin{aligned}
\pi_{q}(n, C, \varepsilon) & =\sum_{\substack{\operatorname{deg}(P)=n \\
\psi(P)=\varepsilon}} \frac{1}{\Phi\left(X^{t+1}\right)} \sum_{\chi} \chi(P) \bar{\chi}(C) \\
& =\frac{1}{\Phi\left(X^{t+1}\right)} \sum_{\chi} \bar{\chi}(C) \sum_{\substack{\operatorname{deg}(P)=n \\
\psi(P)=\varepsilon}} \chi(P),
\end{aligned}
$$

where Φ is Euler's totient function on the ring \mathbb{A}. Separating the term corresponding to χ_{o} we have

$$
\pi_{q}(n, C, \varepsilon)=\frac{1}{\Phi\left(X^{t+1}\right)} \pi_{q}(n, \varepsilon)+\frac{1}{\Phi\left(X^{t+1}\right)} \sum_{\chi \neq \chi_{o}} \bar{\chi}(C) \sum_{\substack{\operatorname{deg}(P)=n \\ \psi(P)=\varepsilon}} \chi(P),
$$

and we obtain

$$
\left|\pi_{q}(n, C, \varepsilon)-\frac{1}{\Phi\left(X^{t+1}\right)} \pi_{q}(n, \varepsilon)\right| \leq \frac{1}{\Phi\left(X^{t+1}\right)} \sum_{\chi \neq \chi_{o}}\left|\sum_{\substack{\operatorname{deg}(P)=n \\ \psi(P)=\varepsilon}} \chi(P)\right|
$$

The result follows from Proposition 1.
Theorem 2. Let $t \in \mathbb{N}, t \geq 1, \mathbf{c}=\left(c_{1}, \ldots, c_{t}\right) \in \mathbb{F}_{q}^{t}$, and denote

$$
N_{q}(2 m, \mathbf{c})=\#\left\{Q \in \mathbb{I}_{2 m}: Q \text { is self-reciprocal and } Q_{i}=c_{i}, i=1, \ldots, t\right\}
$$

Then

$$
\left|N_{q}(2 m, \mathbf{c})-q^{-t} \pi_{q}(m,-1)\right| \leq \frac{t+5}{m}(q-1) q^{\frac{m}{2}} .
$$

Proof. From Lemma 5 we know that

$$
N_{q}(2 m, \mathbf{c})=\sum_{c \in \mathbb{F}_{q}^{*}} \pi_{q}\left(m, C_{c}, \varepsilon\right)
$$

where $C_{c}=4^{m} / c+\sum_{i=1}^{t}\left(c_{i} 4^{m-i} / c\right) X^{i}$. For $q \equiv 1(\bmod 4)$ or m even, we have $\varepsilon=-1$. For $q \equiv 3(\bmod 4)$ and m odd, we have $\varepsilon=1$. In this case, we see that

$$
\pi_{q}(m,-1)=\frac{1}{2 m} \sum_{\substack{d \mid m \\ d \text { odd }}} \mu(d) q^{\frac{m}{d}}=\frac{1}{2} \pi_{q}(m)
$$

Since $\pi_{q}(m, 1)+\pi_{q}(m,-1)=\pi_{q}(m)$ for $m \geq 2$, we obtain $\pi_{q}(m, 1)=\pi_{q}(m,-1)$. Theorem 1 implies that in every case,

$$
\left|\pi_{q}\left(m, C_{c}, \varepsilon\right)-\frac{1}{\Phi\left(X^{t+1}\right)} \pi_{q}(m,-1)\right| \leq \frac{t+5}{m} q^{\frac{m}{2}}
$$

It follows that

$$
\left|N_{q}(2 m, \mathbf{c})-\frac{q-1}{\Phi\left(X^{t+1}\right)} \pi_{q}(m,-1)\right| \leq \frac{t+5}{m}(q-1) q^{\frac{m}{2}}
$$

The result follows by noting that $\Phi\left(X^{t+1}\right)=(q-1) q^{t}$.
Theorem 2 can be combined with well known formulas for $\pi_{q}(m,-1)$ to obtain esimates for $N_{q}(2 m, \mathbf{c})$. This is done in the next corollary.

Corollary 1. Let $t \in \mathbb{N}, t \geq 1, \mathbf{c}=\left(c_{1}, \ldots, c_{t}\right) \in \mathbb{F}_{q}^{t}$. Then

$$
\left|N_{q}(2 m, \mathbf{c})-\frac{q^{m-t}}{2 m}\right| \leq \frac{t+5}{m} q^{\frac{m}{2}+1}
$$

In particular, if $q^{\frac{m}{2}-t-1}>2 t+10$ then there exists a monic self-reciprocal polynomial Q of degree $2 m$ such that $Q_{i}=c_{i}$ for $1 \leq i \leq t$.

Proof. The following enumeration formulas have been known since the work of Carlitz [2] and have been proven by different methods in [3, 19, 20].

$$
\pi_{q}(m,-1)=\left\{\begin{array}{ll}
\frac{1}{2 m}\left(q^{m}-1\right) & , \text { if } m=2^{s} \\
\frac{1}{2 m} \sum_{d \mid m}^{d \text { odd }}
\end{array} \mu(d) q^{\frac{m}{d}} \quad, \text { otherwise } .\right.
$$

The formulas imply the estimate

$$
\left|\pi_{q}(m,-1)-\frac{q^{m}}{2 m}\right| \leq \frac{q^{\frac{m}{3}}}{m}
$$

Combining this with Theorem 2, we obtain the stated result.

5. Conclusion

In this work, we have proved estimates for the number of monic irreducible self-reciprocal polynomials of degree $2 m$ over a finite field of odd characteristic, that have up to $m / 2-\log _{q}(2 m)-1$ low degree coefficients prescribed. Our method is based on that of Carlitz [2]. We should emphasize that our results apply to finite fields of odd characteristic. It would be interesting to extend the results of the present work to polynomials over \mathbb{F}_{2} or, more generaly, over finite fields of characteristic two.

Acknowlegdments

This work was done while I was visiting the School of Mathematics and Statistics of Carleton University. I would like to thank Prof. Daniel Panario for the invitation and the School for the hospitality. I would also like to thank the reviewers for carefully reading the manuscript and for providing helpful comments.
[1] M. Car. Distribution des polynomes irreductibles dans $\mathbb{F}[t]$. Acta Arith., 88:141-153, 1999.
[2] L. Carlitz. Some theorems on irreducible reciprocal polynomials over a finite field. J. Reine Angew. Math., 227:212-220, 1967.
[3] S.D. Cohen. On irreducible polynomials of certain types in finite fields. Proc. Camb. Math. Soc., 66:335-344, 1969.
[4] S.D. Cohen. The explicit construction of irreducible polynomials over finite fields. Designs Codes and Cryptography, 2:169-174, 1992.
[5] S.D. Cohen. Explicit theorems on generator polynomials. Finite Fields Appl., 11(3):337-357, 2005.
[6] S.D. Cohen. Primitive polynomials with a prescribed coefficient. Finite Fields Appl., 12(3):425-491, 2006.
[7] S.D. Cohen and D. Hachenberger. Primitive normal bases with prescribed traces. Appl. Algebra Eng. Comm. Comp., 9:383-403, 1999.
[8] S.D. Cohen and D. Hachenberger. Primitivity, freeness, norm and trace. Discrete Math., 214:135-144, 2000.
[9] S. Fan. Primitive normal polynomials with the last half coefficients prescribed. Finite Fields Appl., 15:604-614, 2009.
[10] S.Q. Fan and W.B. Han. p-adic formal series and cohen's problem. Glasg. Math. J., 46:47-61, 2004.
[11] S.Q. Fan and W.B. Han. Primitive polynomials over finite fields of characteristic two. Appl. Algebra Eng. Comm. Comp., 14:381-395, 2004.
[12] S.Q. Fan, W.B. Han, K.Q. Feng, and X.Y. Zhang. Primitive normal polynomials with the first two coefficients prescribed: A revised p-adic method. Finite Fields Appl., 13:577 - 604, 2007.
[13] T. Garefalakis. Irreducible polynomials with consecutive zero coefficients. Finite Fields Appl., 14(1):201 - 208, 2008.
[14] K.H. Ham and G.L. Mullen. Distribution of irreducible polynomials of small degrees overn finite fields. Math. Comp., 67(221):337-341, 1998.
[15] S.J. Hong and D.C. Bossen. On some properties of self-reciprocal polynomials. IEEE Trans. Inform. Theory, IT-21:462-464, 1975.
[16] C-N. Hsu. The distribution of irreducible polynomials in $\mathbb{F}_{q}[t]$. J. Number Theory, 61(1):85-96, 1996.
[17] E.N. Kuz'min. Irreducible polynomials over finite fields i. Algebra and Logic, 33(4):216-232, 1994.
[18] J.L. Massey. Reversible codes. Information Control, 7:369 - 380, 1964.
[19] H. Meyn. On the construction of irreducible self-reciprocal polynomials over finite fields. Appl. Algebra Eng. Comm. Comp., 1:43-53, 1990.
[20] H. Meyn and W. Götz. Self-reciprocal polynomials over finite fields. volume 413/S-21, pages 82 - 90. Publ. I.R.M.A. Strasbourg, 1990.
[21] R.L. Miller. Necklaces, symmetries and self-reciprocal polynomials. Discrete Math., 22:25-33, 1978.
[22] M. Rosen. Number theory in function fields. Springer Verlag, 2002.
[23] D. Wan. Generators and irreducible polynomials over finite fields. Math. Comp., 66(219):1195-1212, 1997.

[^0]: Email address: theo@math.uoc.gr (Theodoulos Garefalakis)

