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† Laboratoire de Mathématiques, INSA and URA CNRS 1378, BP8,
76131 Mont-Saint-Aignan Cédex, France
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Abstract. We present all the possible solutions of a Josephson junction with bias current and
magnetic field with both inline and overlap geometry, and examine their stability. We follow
the bifurcation of new solutions as we increase the junction length. The analytical results are
in terms of elliptic functions for the case of inline geometry, and are in agreement with the
numerical calculations, explaining also the strong hysteretic phenomena typically seen in the
calculation of the maximum tunnelling current. This suggests a different experimental
approach based on the use, instead of the external magnetic field, of the modulus of the
elliptic function or the related quantity the total magnetic flux to avoid hysteretic behaviour
and unfold the overlapping Imax(H) curves.

1. Introduction

The static properties of a narrow Josephson junction are
well characterized by the static sine–Gordon equation
[1]. They are experimentally measured by the maximum
tunnelling current Imax as a function of the external field
H . This is an important and useful measurement since
it is required not only for the characterization of the
junction properties but also to tailor a device with the
desired maximum current. In contrast to its simple form,
the static sine–Gordon differential equation problem poses
several mathematical and computational challenges. The
complete analysis of all of its solutions is hard due to
various interesting properties (nonlinearity, nondefiniteness,
periodicity, boundary conditions of Newmann type) inherent
to the sine–Gordon problem and the determination of Imax

either theoretically, numerically or experimentally is difficult.
Several studies analysing the dynamic and static stability

of fluxons in the sine–Gordon equation have appeared in the
literature in the past three decades with [2–5] being the most
representative of them. All these studies combine theoretical
and numerical analysis and they mainly address the case
where there is no external current or magnetic field applied
on the junction. None of the above studies is comprehensive
enough as far as exploiting all solutions and studying the
affect of all physical and geometrical parameters of the
problem.

The main objective of this study is fourfold.

• To analytically express all static solutions of one-
dimensional narrow Josephson junctions in a way that

will allow us to examine their stability properties and
their evolution with respect to the size of the junction,
and the applied magnetic field and current.

• To explain the hysteretic behaviour and if possible to
find the important physical parameters that unravel the
hysterisis.

• To build a numerical simulation framework that will
allow us to verify some of our theoretical results and
show that they apply to more complicated Josephson
junction configurations.

• To propose an experimental procedure that will enable us
to examine the properties of superconducting devices in
a more accurate way. This approach is particularly useful
for the analysis of devices that deviate from the standard
mathematical model currently used i.e. junctions with
impurities, inhomogeneities, . . ..

We should remark here that, at present, a complete
theoretical analysis of such devices is not feasible while
numerical simulations, based on state-of-the-art software
packages [6, 7], usually fail to capture all the important
features. This is mainly due to the difficulty of tracking the
continuation branches and to deal with the bifurcation points
involved. It is worthwhile to remark here that the effects
of the above mentioned difficulties are clearly seen, even in
a relatively simple case, by the fact that it was only very
recently [5] realized that the critical value of the bias current
corresponds not to a termination point, as conjectured for
many years, but to a turning point in the bifurcation diagram.

In addition to the above, the experimental analysis and
the computer simulation and analysis of superconducting
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devices modelled by the sine–Gordon equation require an
initial guess that is reasonably close to the desired solution.
The selection of such initial guesses significantly affects the
effectiveness of the various continuation methods needed to
determine Imax . These guesses will be extensions of the
various 1D solutions obtained here. Therefore the results
of the present study are expected to be fully utilized in
effectively analysing two-dimensional window Josephson
junctions.

The behaviour of a Josephson junction is determined by
the Josephson characteristic length λJ which depends both
on material and geometry properties. For a short junction
of length l � λJ the Imax–H pattern (shown in figure 1(a)
for normalized length w = l

λJ
= 1.0) presents the usual

Fraunhoffer pattern

Imax =
sin π �

�0

π �
�0

where � = Hld is the applied flux, �0 = h/2e the flux
quantum and d the magnetic thickness [1]. Each of the lobes
in the diagram can be labelled by the pair of integers (n, n+1)
where at one end the magnetic field corresponds to exactly n

fluxons (i.e. flux = n�0) and at the other end n + 1 fluxons.
For the case of a long junction the problem was solved by
Owen and Scalapino [8], and there, the different lobes overlap
(as shown in figure 1(b) for w = 10).

It should be remarked that the sine–Gordon equation, due
to its nonlinearity and periodicity with several equilibrium
points, has a multiplicity of solutions as shown by the
overlapping lobes (in figure 1(b)) and the existence of
several unstable branches which play an important role in the
hysteretic behaviour as we vary the external magnetic field.
The unstable branches are of interest too because one can
stabilize them, by introducing small defects, and therefore
they should lead to observable maximum current. As we will
see later in the discussion a defect can modify significantly the
relative amplitude of the different lobes in the Imax–H curve.
The unstable branches can be partially traced experimentally
if we perform a quasistatic scanning of the magnetic field.

The rest of the paper is organized as follows. In section 2
we present the mathematical problem, give the explicit
analytical solutions using elliptic functions and sketch the
stability analysis. In section 3 we study the solutions in the
particular case of zero magnetic field H = 0, and in section 4
the analytic solutions for zero current I = 0. We study both
theoretically and numerically their stability in section 5 and
we calculate the maximum tunnelling current. In section 6
we briefly propose an experimental procedure which utilizes
our numerical procedure. We summarize our results in the
last section.

2. Inline geometry and stability of solutions

The case of inline geometry is a one-dimensional problem,
even for a wide junction, and one can obtain analytic solutions
[8]. Furthermore one can easily check their stability by using
linear perturbations. The particular case of zero external
magnetic field with inline bias current also reduces the
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Figure 1. Plot of the maximum tunnelling current as a function of
applied magnetic field for a short junction with: (a) w = 1.0 and
(b) w = 10.

overlap boundary conditions to inline ones. In the one-
dimensional case we have to solve the following problem

−d2�(x, t)

dt2
+

d2�(x, t)

dx2
= sin �(x, t) (1)

with the inline boundary condition

d�

dx

∣∣∣∣
x=±w/2

= ±I

2
+ H ≡ γ± (2)

where w is the normalized junction length and I is the current
line density.

Equation (2) has a static solution �0(x), implicitly
expressed using elliptic functions [9] as

sin �0(x) = −2
√
m sn(x + x0|m) dn(x + x0|m) (3)

cos�0(x) = 2m sn2(x + x0|m)−1 (4)

d�0

dx
= 2

√
m cn(x + x0|m) (5)

where the modulus m determines the period of the cn elliptic
function (equal to 4K(m)) and the arbitrary constant x0 the
phase at the centre of the junction. They are determined
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by the boundary conditions (2). Introducing (5) into (2) we
obtain

2
√
m cn

(
x0 +

w

2

∣∣∣∣m
)

= γ+ (6a)

2
√
m cn

(
x0 − w

2

∣∣∣∣m
)

= γ−. (6b)

A useful quantity to classify the solutions is the fluxon
content or the magnetic flux in units of the quantum of flux,
defined by

Nf = 1

2π

{
�

(
w

2

)
− �

(
− w

2

)}
.

At specific values of H , Nf takes integer values, so that the
flux is that of an integer number of fluxons.

To check the stability of the static solution (3)–(5) we
consider small perturbations on the static solution �0(x) in
the form

�(x, t) = �0(x) + U(x, t) (7)

and linearize equation (1) with respect to U(x, t), to obtain

−Utt + Uxx = cos�0(x)U. (8)

There is no loss of generality if we consider specific
perturbations in the form

U(x, t) = X(x) est . (9)

This way we obtain from equation (8) the eigenvalue equation

−X′′ + cos�0(x)X = λX (10)

under the boundary conditions

X′|x=±w/2 = 0. (11)

In equation (10) λ = −s2. It is seen from equation (9) that if
the eigenvalue problem (10), (11) has a negative eigenvalue
the static solution �0(x) is unstable. If all the eigenvalues are
positive �0(x) is stable, while the case λ = 0 corresponds to
neutral stability and defines the boundary of stability. In the
following we consider the two special cases γ+ = γ−(I = 0)
and γ+ = −γ−(H = 0) separately, since the associated
boundary conditions are easy to handle and the stability
analysis is simplified.

To get a feeling concerning the possible solutions, we
plot from the boundary conditions (2) and (6) the constant
H and I contours in the plane of the m and x0 parameters in
figure 2. We give different plots for m < 1 and m > 1. The
lines labelled with ‘0’ correspond to H = 0 (or I = 0 for I
contours) and in both cases their network encloses areas with
a single maximum (denoted by ‘+’) or minimum (‘−’) inside.
Notice that there are two types of curve on which H = 0 (or
I = 0) as summarized in table 1.

The curved (H = 0) lines in figure 2 correspond to the
solutions of the first line in the table which we call fixed x0

solutions, in the sense that the shift is a fixed multiple fraction
of the period. From (6) we see that the physical quantities I

and H are periodic functions of x0 with period 4K(m). There
are also solutions that have a fixed m = m� and arbitrary x0,
and correspond to the vertical lines in figure 2 (remark that

contour fitting can be distorted when two equicurrent lines
cross). Similar results hold for the constant I contours. For
m > 1 at the vertical I = 0 curves we have an integer
number of fluxons in the junction. Thus on the lines through
c (a) we have Nf = 1 (2) correspondingly. In the current
contours the points f and b correspond to peaks in the Imax

(see section 4.4). In the following we will focus our attention
on the solutions where either H or I vanishes.

3. No-magnetic-field case (H = 0)

In the absence of external magnetic field we have
γ+ = −γ− = I

2 and equations (6) reduce to

2
√
mcn

(
x0 +

w

2

∣∣∣∣m
)

= I

2
(12a)

2
√
mcn

(
x0 − w

2

∣∣∣∣m
)

= −I

2
(12b)

which determine the parametersm andx0 that characterize the
periodicity and phase shift of the static solutions. There are
two different classes of solutions due to the antisymmetry of
the boundary conditions, which can be satisfied for different
I either by fixing x0 or m.

3.1. Fixed x0 solutions

It is seen from equations (12) and the symmetry of the
elliptic functions that for positive I one choice for x0 in (12)
is x0 = −K(m) (K(m) is the elliptic integral of the first
kind), so that x0 is fixed to one-quarter of the period of the
elliptic function. It is in that sense that we call them fixed
x0 solutions. Strictly x0 is not a constant independent of m

since K(m) is a function of m. Thus we have (see [9])

I

2
= 2

√
m(1 − m)

sn(w
2 |m)

dn(w
2 |m)

0 � m < 1 (13)

cos�0(x) = 2m
cn2(x|m)

dn2(x|m)
− 1 0 � m < 1

(14)

sin �0(x) = 2
√
m(1 − m)

cn(x|m)

dn2(x|m)
0 � m < 1.

(15)
Another possibility is x0 = K(m) (x0 is shifted by half of a
period) for the case where 2K(m) < w

2 < 4K(m), or more
generally when sn(w

2 |m) < 0, since we are limiting ourselves
to I > 0. This means that every time w increases by 2π we
introduce two extra solutions. In other words the function
I (m), in (13), is highly oscillating for large w. We do not
need to consider the case where m > 1 since in that case we
cannot satisfy the antisymmetric boundary conditions for the
external current.

In figure 3(a) we present three plots of I against m for
w = 2π

3 , 3π
2 , 5π

2 . We see that for small w < 2π there is,
as expected, only one lobe for x0 = −K(m), and as we
will see later only the part to the right of the maximum will
correspond to stable solutions, while the peak corresponds to
the maximum current for zero magnetic field. For w = 5π

2
we have an extra lobe, with the left one at x0 = K(m) and
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Figure 2. Constant H and I contours in the (m, x0) plane for w = 3π/2. The curves with the symbol 0 are for H = 0 in (a) and I = 0
in (b). The signs ‘+’ or ‘−’ give the sign of I and H . The letter symbols signify the same points in the I and H contours.

Table 1. Different types of curves due to various selections of m and x0.

m x0 (periodic)

H = 0 0 < m < 1 ±(2n + 1)K(m), n = 0, 1, . . .
m = m∗, n = 0, 1, . . . , nmax
w

2 = (2n + 1)K(m∗) −∞ < x0 < ∞
if w > π

I = 0 0 < m < 1 x0 = ±2nK(m), n = 0, 1, . . .
1 < m < ∞ x0 = ± 1√

m
2nK( 1

m
)

m = m∗ < 1
w

2 = 2nK(m∗), w > 2π −∞ < x0 < ∞
n = 0, 1, . . . , nmax

m = m∗ > 1
w

2 = 1√
m∗ nK( 1

m∗ ) −∞ < x0 < ∞
n = 0, 1, . . .

the right at x0 = −K(m). For w = 10 (dashed line in
figure 3(b)) the right lobe has a maximum within 10−3 of
m = 1 and corresponds to x0 = K(m), while the left to
x0 = −K(m). The jump in path along two different curves
is necessary because of the restriction of positive current I .
Of course the curve is symmetric about the I = 0 line. The
right lobe for w = 10 is shown in the inset of figure 3(b)
in expanded form (solid line) with a different scale for m.
The part that is of experimental interest is the last lobe near
m = 1 to the right of the maximum. The two extreme m

values correspond to trivial solutions �0(x) = π(m = 0)
and �0(x) = 0 (m = 1), the first of which is clearly unstable
(pendulum analogy) and the second is stable. For currents
above zero at w = 10 there are four possible solutions for a
given I < I�, where I � is the maximum of the lowest lobe.

Because the right lobe for large w is very steep it is
useful to give some analytic formulas valid near m = 1 and
for the maximum point. By using asymptotic formulas and
assuming thatm1 ≡ 1−m ≈ ε2, where ε is a small parameter,
we obtain the value of m1 where I is a maximum as

mmax
1 = 4

sinh2 w
2

.

The result is consistent with our scaling assumption with

1

sinh w
2

∼ ε.

Thus care is required when simplifying the analytic formulas
in [9] (see p 574). The corresponding maximum current is

I = 4 − 8

sinh2 w
2

(16)

so that for large junction lengthw it approaches exponentially
the infinite length limit. To the right of the maximum the
relation between I (m1) is

I = 4 − m
3/2
1

tanh w
2

sechw
2

.

From the previous discussion we see that as we increase
the junction lengthw we obtain more solutions. In figure 4(a)
we give as a function of w the range of m values for each
type of solution which is defined by the separating lines.
These values were determined by solving (6) numerically.
We remark that consecutive pairs of regions of solutions
correspond to different x0 (i.e. different lobes of figure 3).
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Figure 3. (a) Plot of I (m) (using equation (13)) with
x0 = −K(m) or K(m) and three values of w: (i) w = 2π/3,
(ii) w = 3π/2 and (iii) w = 5π/2. (b) Same as (a) with w = 10
(dashed line). The right lobe in (b) is also shown in an expanded
scale for m (solid line). The small m scale is shown at the top of
the figure.

We see that when w increases by 2π a new pair of solutions
is introduced. Thus near w = 10 we have four solutions
labelled u, al, ar and a0, the first two corresponding to
x0 = K(m) and the last two to x0 = −K(m). For w → ∞
there is an infinite number of solutions and many of the
dividing lines coalesce at m = 1. The stability is checked
by looking at the eigenvalues of the linearized problem in
(10). We see that already for w = 10 only a small range near
m = 1 gives stable solutions, while for w = 14 it is of the
order 10−7, which is extremely small and not visible on the
scale of the plot. In figure 4(b) we give the same information
but in a diagram of current against w. The lines correspond
to the maximum current for each lobe and below each line
there are two solutions. Thus the solutions a0 and ar have
the same maximum current (starting from zero current) and
correspond to the right lobe of figure 3(b), while u and al to
the left one. In order to make sure that we obtain all solutions
we scan over m (with a uniform and fine grid), and the current
is obtained from (13). As expected the maximum current for
large w is accurately estimated by (16) down to w = 4, while
for small w it varies linearly.
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Figure 4. (a) A diagram of the different solutions in the space of
parameter w and m with x0 = ±K(m) for the solutions in
equations (13)–(15). (b) The same as (a) but presented in the space
of w and I (instead of m).

3.2. Fixed m solutions

Another possibility exists if w > π , so that we can
fit in the length exactly an odd number of half periods.
This automatically satisfies the antisymmetric boundary
conditions due to the current. Then, there exists a
fixed (sometimes more than one depending on the length)
m = m∗ for which w = 2K(m∗). In fact every time
w increases by 2π there is an extra solution arising.
Thus for π(2n + 1) < w < π(2n + 3), we have solutions at
w = 2K(m), . . . , 2(2n + 1)K(m) with n different values of
m∗. By shifting x0 we can obtain a range of possible
currents I while always satisfying the boundary conditions
at zero magnetic field. In figure 5(a) we plot the current
as a function of x0, for w = 10, where we expect two
solutions of this type. The corresponding values of m∗ are
m∗ = 0.999 272 (from w = 2K(m∗), see curves 1l and
1r in figure 5(a)) and m∗ = 0.213 8839 (w = 6K(m∗), see
curves 0l, 0r in figure 5(a)), with the maximum currents
being I0 ≈ 4 (at x0 = −w

2 ) and I1 ≈ 1.8 (at x0 = w
6 )

correspondingly. These also coincide with the maximum
currents obtained by fixing x0 = −K(m), K(m) and varying
m. It should be remarked, though, that they correspond to
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Figure 5. (a) Plot of I (x0) for H = 0, w = 10 and fixed m with
(i) m∗ = 0.999 272 (curves 1l and 1r) from w = 2K(m∗),
(ii) m∗ = 0.213 8839 (curves 0l and 0r) from w = 6K(m∗).
(b) Fluxon content Nf (analytically) as a function of the bias
current I for the different solutions with fixed m:
(i) m = 0.999 272 with one half period of the elliptic function (1r
and 1l). (ii) m = 0.213 8839 with three half periods of the elliptic
function (0l and 0r).

different solutions as we increase the current (I < Imax). This
can be seen by the different fluxon content of these solutions
in figure 5(b). At the maximum current value though they
coincide. In comparison, the solutions in the previous
subsection correspond to zero fluxon content Nf = 0.

3.3. Solutions for w = 10

We will present in more detail the calculations for w = 10
since this is a common length in experimental design of long
junctions and one can clearly see the multiplicity of solutions.
In figure 6 we present all the solutions (for constant x0 and
constant m) for H = 0 at three different currents in order
to follow their evolution. The branch with a half period
solution for w = 2K(m) (see 1r and 1l in figures 6(g)–(i))
has a maximum current I = 4 which is the same as the
maximum current in figure 3(b). In fact at the maximum
current (figure 6(i)) we have the coalescence of four different
solutions. In the third column of figure 6 (i.e. (g), (h), (i)) we

see the four solutions being different at I = 0 (see (g)) but
converging to the same solution (modulo 2π ) as I approaches
the I = 4 (see (i)) value which is the maximum current for
all four solutions. The four solutions come in pairs: two
from the pair with w = 2K(m) discussed earlier (i.e. 1r,
1l) and two from the right lobe of figure 3(b), i.e. ar and
a0 in figures 6(g)–(i), discussed in the previous subsection.
The other pair of solutions with three half periods when
w = 6K(m), i.e 0l, 0r in figures 6(a)–(c) have a maximum
current near I = 1.8. For higher currents (above the value at
c) it jumps branch and converges to the solutions of the left
lobe of figure 3(b) since the two pairs of solutions are quite
close as can be seen from the plots in figures 6(c) and 6(f).
Notice that the currents are different for the two plots. We
should also point out (to be discussed in the next section) that
by slightly increasing the magnetic field the w = 6K(m)

solutions show an interesting bifurcating behaviour with a
jump in the maximum tunnelling current. All solutions as
seen in figure 5(b) come in pairs with opposite fluxon content.
Thus on the line Nf = 0 (zero flux) we also have two pairs
of solutions up to I = 2.4 (point A in figure 5(b), where only
the point at the maximum current is shown). One pair is the
curves u, al in figures 6(d), (e), (f). A second pair goes up
to I = 4.0 (point B), i.e. the curves a0, ar in figures 6(g)–(i).
The solutions of each pair are different as can be seen in
figures 6(a), (d), (g) or figures 6(b), (e), (h) and only coincide
at the maximum current. Notice that u and a0 are simply
displaced by π , while al and ar have opposite signs. With
increasing current, though, they evolve very differently. The
same is true for the pair of solutions 0r and 0l.

4. No-current case (I = 0)

In the absence of external current equations (6) reduce to the
following

2
√
mcn

(
x0 +

w

2

∣∣∣∣m
)

= H (17a)

2
√
mcn

(
x0 − w

2

∣∣∣∣m
)

= H (17b)

which determine the parameters m and x0 that characterize
the periodicity and phase shift of the static solutions. This is
seen from equations (17) and the periodicities of the elliptic
functions. Notice that these are the only three possibilities
leading to three branches, if we consider solutions where only
m varies and x0 is fixed to x0 = 0 or x0 = 2K(m). Here we
need x0 = 2K(m), and not x0 = −K(m) as in the zero-field
solution, due to the symmetric boundary conditions for the
magnetic field. At the same time we also have solutions
where m is fixed and x0 is varied continuously with the
current.

4.1. Fixed x0 solutions

We start by giving the three branches.

Branch I . An obvious choice in (17) is x0 = 0, so that for
m � 1

H = 2
√
m cn

(
w

2

∣∣∣∣m
)

0 � m < 1 (18a)
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Figure 6. Plot of the phase distribution �(x) for all the solutions at H = 0 and three values of the current (different for each line). (a), (d),
(g) I = 0, (b), (e), (h) I = Imax/2, (c), (f), (i) I = Imax (where Imax is different for each case). The three columns correspond to: (a), (b),
(c) the two solutions (0l, 0r) with m∗ = 0.213 8839. (d), (e), (f) the two solutions (u, al) from the left lobe of figure 3(b) and (g), (h), (i) the
two solutions (1r, 1l) for m∗ = 0.999 272 and the two solutions from the left lobe of figure 5(a) (i.e. a0, ar).

cos�0(x) = 2m sn2(x|m) − 1 0 � m < 1 (18b)

sin �0(x) = −2
√
m sn(x|m) dn(x|m) 0 � m < 1.

(18c)
Another possibility is x0 = 2K(m) for the case where
K(m) < w

2 < 3K(m), or more generally when
cn(w

2 |m) < 0, since we are limiting ourselves to H > 0.
This means that every time w increases by 2π we introduce
two extra solutions. In other words the function H(m) in
(18a) is highly oscillating for large w.

Branch II . For x0 = 0 and m > 1 we use the notation
m̄ = 1/m and the transformation rules of elliptic functions
[9] to obtain

H = 2√
m̄

dn

(
w

2

1√
m̄

∣∣∣∣m̄
)

0 � m̄ < 1 (19a)

cos�0(x) = 2sn2

(
x

1√
m̄

∣∣∣∣m̄
)

− 1

0 � m̄ < 1 (19b)

sin �0(x) = −2sn

(
x

1√
m̄

∣∣∣∣m̄
)

cn

(
x

1√
m̄

∣∣∣∣m̄
)

0 � m̄ < 1. (19c)

Branch III . Taking into account the period and symmetry
of the nd elliptic function we can also put in equations (17)
x0 = 1√

m
K( 1

m
) with m > 1 (it cannot be satisfied for m < 1)

to obtain

H = 2

√
1 − m

m
nd

(
w

2

1√
m̄

∣∣∣∣m̄
)

m̄ < 1 (20a)

cos�0(x) = 2 cd2

(
x

1√
m̄

∣∣∣∣m̄
)

− 1 (20b)

sin �0(x) = 2
√

1 − m̄ cd

(
x

1√
m̄

∣∣∣∣m̄
)

sd

(
x

1√
m̄

∣∣∣∣m̄
)
.

(20c)

The branches II and III were obtained from equa-
tions (17) by assuming that the modulus m > 1 and putting
m̄ = 1

m
. The expressions (18a) and (19a) can both be written

in the form

H = 2
√
m cn

(
w

2

∣∣∣∣m
)

0 � m < ∞. (21)

In this case branch II is described by equation (21) at m � 1
which reduces to (19b) by using the transformation formulas
(see [9]) when the modulus is greater than unity. Again for
large w, H(m) is strongly oscillating, even though it remains
always positive.

In figure 7 we plot the fluxon content Nf , at I = 0 for
three lengths, that show different patterns and evolution and
the introduction of multiple solutions with length. In the first
row we plot the magnetic field (H against m) and we see
that for the same H we have different flux. This means that
they correspond to different solutions with different screening
currents. Comparing the second and the third rows we see that
the modulus m (at zero current) is a much better parameter
than the magnetic field H to characterize the solutions,
since the flux in this case is unique except for a symmetry
multiplicity. Also notice that the curves should be symmetric
about the horizontal at the zero level (two x0 values), but
the plot is not completed to keep the vertical scale shorter
and avoid optical complexity to the eye. Only for branch I
we show both curves (for x0 = 0 and x0 = 2K). On the
other hand the magnetic field plots exhibit some interesting
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Figure 7. Plots of H against m (top figures) and of the fluxon content Nf for I = 0 as a function of (i) m (middle figures) and (ii) H
(bottom figures), for a junction of length w = 2π

3 (a), (b), (c), 3π
2 (d), (e), (f), 5π

2 (g), (h), (i). The different curves are (i) branch I with x0 = 0
(solid line), (ii) branch I with x0 = 2K (dotted line), (iii) branch II (dashed line) and (iv) branch III (long dashed line). The symbols I, II, III
refer to the branches of section 4.

changes of slope which for very long junctions alternatively
correspond to stable and unstable regions of solutions. The
change of slope is especially apparent for w = 5π

2 but the
alternation of stable and unstable regions also exists for small
lengths as will be discussed later.

Notice that at the points of slope change the fluxon
content is an integer for both branches II (light dashed)
and III (dark dashed). Actually for stronger H the curves
in figure 7(i) will look just like those in 7(c). Notice also
that the symmetry in figures (b), (e), (h) will correspond to
an antisymmetric form in the plot of flux (Nf ) with H . The
oscillatory form of flux against H is understood by looking
at the relation of H and m as plotted in (a), (d) and (g) for
the three lengths. Notice the evolution with the creation of
lobes for small m, whose number will increase with w as
discussed. In the w = 5π

2 case we also have extra solutions
with m fixed which are not shown in the plot, but will be
discussed in what follows. Also for higher w the Nf plot
becomes more complex and as a particular case we discuss
the w = 10 length in the next subsection.

4.2. Magnetic flux for w = 10

In figure 8 we plot the fluxon content Nf , for a junction
length w = 10, at zero current as a function of the magnetic
field H in (a) and equivalently the modulus m in (b). We
see that the plot in (b) is essentially single valued, while the
two curves (for m < 1) correspond to the choices x0 = 0 and
x0 = 2K(m) (of branch I), which give solutions with opposite
flux. The corresponding plot with H is quite deformed (due
to the periodic relation between H and the modulus m). In
the plots the lines are the results of the analytic solutions

and the symbols the numerical simulation results. In the
numerical approach we have to try different runs to complete
the curve. The letters e, c, a, g, l, o, r, p, q denote solutions
with integer fluxon content. As we see the plot of Nf against
m can be continuously traced by varying the modulus m in
the analytic solutions. Then one can obtain the magnetic field
H from m using analytic expressions (shown in figure 8(c))
and also trace the curve in (a). When, however, we perform
numerical simulations, using the magnetic field as a varying
parameter, we can trace only the part of the curve with the
same slope. When we reach an extremum in the magnetic
field (see points g, l, i, k, r, q, . . . in figure 8(a)), where the
slope becomes infinite, the iteration procedure for the branch
continuation with increase of H does not converge. Then
you must decrease the value for H to trace the negative slope
curve. Thus one needs five tracings back and forth in H to
obtain all the solutions of branch I, i.e. the curves 0l, 0r, u,
1l, 1r in figure 8(a).

In figure 8 we show all three branches: branch I as given
by the curves o–i–g–e for x0 = 0 (solid line) and o–k–l–m
for x0 = 2K(m) (dotted line); branch II is given by the line
e–c–a–. . . (long dashed line); and branch III is given by the
line o–r–q–p . . . (dashed line). Near H = 0 for I = 0 we
have several solutions four of which have the same fluxon
content Nf = 0, i.e. al, ar, a0, u, and four with different Nf

at points e, m, x and y, i.e. 1l, 1r, 0l, 0r. Notice that the point e
is slightly to the right of the Nf axis. This is because, for the
particular value of w = 10 near m = 1, the cn(w

2 , 1) elliptic
function behaves like sech(w

2 ) so that for large w it is small
and positive.

When we increase the current I and fixH = 0, the points
x, y of figure 8, will give us the curves 0r and 0l in figure 5(b)
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Figure 8. Plot of the fluxon content Nf for I = 0 and w = 10 as a
function of (a) H and (b) m. In (c) we give H(m).

for the flux. The corresponding points in the neighbourhood
of e and m will give us the curves 1l and 1r in figure 8.
At the point o there are two solutions with constant m, i.e.
al, ar in figure 8(a) (which for H = 0 are part of the curve
Nf = 0). With increasing current one of them (i.e. al) reaches
the maximum current at point A in figure 5(b) with I ≈ 2.4.
The other (i.e. ar) goes to B in figure 5(b) with I ≈ 4.0. These
solutions have m = 0.882 99 where cn(w|m) for the given w

−8 −6 −4 −2 0 2 4 6 8
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−1

0

1

2

H
(I

=
0)

al
ar

m=0.882992

Figure 9. Magnetic field H(x0) at I = 0 for the constant
m = 0.882 992 solution.

vanishes. They have opposite flux because they correspond
to the two possible values of x0 = −K(m),K(m). They are
equivalent to the solutions in the middle point with I = 0 in
figure 3(b). In the point o there are two more solutions from
which one belongs to the stable branch o–r (i.e. a0) and the
other to the unstable branch i–o–k (i.e. u) in figure 8(a).

4.3. Fixed m solutions

The first branch (I) has also solutions with fixed m = m∗

= 0.882 99 if w > 2π . The value of m∗ is obtained from
the condition w

2 = 2K(m∗), so that we have an integer
number of periods (4K(m)) for the elliptic function in the
junction length w. This automatically satisfies the symmetry
requirement for the boundary conditions. The magnetic field
is determined from the position phase parameter x0 (with H

a periodic function of x0 with period 4K(m∗) = w). It is
given by

H = 2
√
m∗cn(x0 + 2K(m∗)|m∗)

and is presented in figure 9 for w = 10. The maximum value
of H for this branch is H = 1.8 at x0 = ±2K(m∗). The two
signs correspond to the al and ar curves. Notice that these
solutions at zero current have zero fluxon content (Nf = 0)
over the whole extent of the magnetic field for which they
exist. These solutions also exist for w = 5

2π , but are not
shown in figure 7(h), (i). For larger w we expect more pairs
of solutions, i.e. a pair for each increase of w by 2π . Thus
for 4π < w < 6π there are two pairs of solutions.

4.4. Maximum tunnelling current

In figure 10 we plot the maximum tunnelling current as a
function of the magnetic field for the three different lengths.
We see that for w = 2π

3 there are two curves (like a0 and
u0 in (a)) for the maximum current, one of which is stable
and the other unstable. There are, however, abrupt variations
of the maximum current. Thus at the end of the stable (0–1)
branch (line a–b) there is an unstable (1–2) branch (line c–d),
which however has a discontinuity at about H = 3.3 in Imax
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Figure 10. Maximum tunnelling current as a function of H for three different lengths (a) w = 2π
3 , (b) w = 3π

2 , (c) w = 5π
2 and Nf against

H at the maximum current (d), (e), (f) correspondingly for the three lengths.

(see vertical arrow). The same happens at the left of the
stable (1, 2) branch d–n–c–m where its continuation has a
discontinuity of 0.4 in Imax , at about H = 2.6. We see that
at the Imax there are two curves superimposed with the same
Imax but they start from different solutions at I = 0. Thus one
has to be very careful when tracing numerically the Imax–H
curve. For intermediate current values (I < Imax at a fixed
H ) we must check to the right of c which solution branch
we follow. Thus if we trace for the Imax the stable branch
at I = 0 from H = 0 (i.e. �0(x) = 0) to the right we
follow the curve a–p–b–c–n–d . . ., while if we start from the
unstable branch at H = 0 (i.e. �0(x) = π ) we follow the
curve a–p–m–c–n–d. . . .

The plot for w = 3π
2 (figure 10(b)) is a bit more

complicated. This to some extent is caused by the loops in
figure 7(d). Thus when we trace from H = 3.0 to the left, we
follow the curve a–b–c with a jump to d then d–f–e–f–g–f–h,
followed by a jump to a point symmetric to c and from then
on following a symmetric path which is not shown in the
figure. The corresponding path for w = 5π

2 (figure 10(c)) is
a–b–c with a jump to d then e–f–g, to h and from there on a
symmetric curve. Notice that in this case, the extra branch
e–f–g has a lower peak current from the previous cases.

In the above Imax diagrams the existence of jumps as we
scan the magnetic field and increasing the I value (at fixed
H ) implies a dependence of the final solution at Imax on the
initial condition and the path of approaching it. This becomes
clear if we connect it with the morphology of the I and H

contours in figure 2 for the case w = 3π/2.
As we see there are four paths to reach the point f (notice

corresponding points in both figures 2 and 10(b)) if we fix
H = 0 while increasing the current. These paths are along
the curves x0 = 3K(m) (which is equivalent to −K(m)) and
the vertical line m = m∗ = 0.84. From these only the one

from the right of f along x0 = 3K(m) (up to m = 1) is
stable. This corresponds to the solution a0. The other three
paths will give solutions u, 1l and 1r. The last two are along
the vertical line and u along x0 = 3K(m) from 0 (the origin
with I = 0 and H = 0) to f. Notice that the whole vertical
axis (i.e. m = 0) corresponds to the single point (H = 0,
I = 0) in the I–H diagram (of figure 10).

From the contours of H around the points e and g it is
clear that at these points we have extrema ofH which also fall
on the curves x0 = 4K(m) and x0 = 2K(m) where I = 0.
Let us take another look at figure 10(b). If we start from the
point a (with Nf = 2) by decreasing H at I = 0 we reach the
point c (with Nf = 1) along the line x0 = 0 (i.e. branch II)
in figure 2. The continuation of branch II through m < 1 is
branch I which goes up to point e in figure 10(b). In the rest
of the curve, i.e. when m goes from e to 0, the magnetic field
is reversed from −0.6 (at e) to zero. The range in H from c
to m corresponds to two different paths in the x0–m diagram.
From the topology it is clear that they end up in different
maximum currents asH is kept constant. The path mc (above
m) has its maximum current to the left of the vertical line,
while the path cm (i.e. below m) has its maximum current
to its right. Notice also that in figure 10(b), in going from
a to c (along branch II) we cross the H value at m. The
corresponding point in the x0–m diagram is a different one,
to be called (m′) on the m-axis between a and c. Finally the
point b can be reached from several paths. A similar analysis
can be given in all cases, but we chose a single length as a
point of illustration.

Below each case in figure 10 we plot the corresponding
flux against H at the maximum current. These curves
resemble the ones at zero current in figures 7(c), (f), (i). One
remark is that while at I = 0 Nf against H is a continuous
curve, at Imax the flux shows discontinuities the same way
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Figure 11. The same as figure 10 for w = 10. (a) Imax(H),
(b) Nf (H) at I = Imax .

that the maximum current was discontinuous. Comparing
figures 7(f) and 7(e) we see that the branches om (o being
the origin) and ca of figures 10(e) and 10(f) are only slightly
modified. The branch I in figure 7(f) is folded onto e–o–d
(in figure 10(e)). The same happens for w = 5π

2 between
figures 7(i) and 10(f). In the plot for the flux we have not
shown all the branches. For a more complete plot of the
branch II and III solutions see the case w = 10 in figure 11
since they have the same approximate structure.

In figure 11(a) we show the maximum tunnelling current
and the flux (at Imax) as a function of the magnetic field, for
w = 10. At this length we are already at the limit of long
length branches. In this case when going from right to left
we trace the Imax through the points a–b–c–d–e and jump to
f–g–h–i–j–k–l–m with a symmetric continuation. The flux
(figure 11(b)) also shows a similar folding as for the case
w = 5π

2 . The letters correspond to the ones in the Imax–H
plot.

5. Analytical stability analysis

Next we obtain some analytic estimates for the stability
regions for the zero-current solution. The observations
obtained by these estimates will verify and extend our results

by solving numerically the stability eigenvalue problem in
(10). Substituting equation (4) into equation (10) we obtain
the Lamé equation.

−X′′ + [2m sn2(x + x0|m) − 1]X = λX. (22)

Numerical solution of (22) with the boundary conditions
in (11) gives us all the eigenvalues and we can check the
stability of the static solution. One can gain some insight into
a necessary bound for stability from the following analytic
considerations, which we also compare with the numerical
results.

Let us remark that for three values of λ = m − 1, 0,m
we can give an explicit analytic form for the corresponding
solutions of (22), which are

X0 = dn(x + x0|m) λ0 = m − 1 (23a)

X1 = cn(x + x0|m) λ1 = 0 (23b)

X2 = sn(x + x0|m) λ2 = m (23c)

while other eigenfunctions of equation (22) have much more
complicated forms.

It is worth stressing that the functions in (23) cannot be
called eigenfunctions of our problem in (10), (11), because
they do not satisfy the boundary conditions (11). Taking now
into account equation (11) we can find the curves of neutral
stability, i.e. the critical relationship between parameters (w
and H or I in our case) when the problem (10), (11) has an
eigenvalue λ = 0.

In the following we shall examine the implications of
the above three analytic eigenfunctions on the stability of
the static solution. We must bear in mind though that it
is not sufficient that one of the three above eigenvalues is
zero or negative, but on top we must satisfy the boundary
conditions. Even in that case we can prove instability but not
the reverse, which can only be done by numerical solution
of the eigenvalue problem. We will see, however, that some
of the conclusions will be very useful. We will examine the
situation for each of the three branches separately.

Branch I . In this case it is not easy to obtain analytical
estimates. We do not have an extra neutral stability since
m < 1 and in any case it can be considered as a continuation
of branch II.

Branch II . In this case the three eigenfunctions of interest are

X0 = cn

[√
mx

∣∣∣∣ 1

m

]
λ0 = m − 1 > 0

(24)

X1 = dn

[√
mx

∣∣∣∣ 1

m

]
= dn

[
x√
m̄

∣∣∣∣m̄
]

λ1 = 0 (25)

X2 = sn

[√
mx

∣∣∣∣ 1

m

]
λ2 = m > 0.(26)

Again, since m > 1 only X1 is of interest. It is an
eigenfunction of the linearized problem if

sn

(
w√
m̄

∣∣∣∣m̄
)

= 0 (27)
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or equivalently if

w√
m̄

= 2jK(m̄) j = 1, 2, . . . . (28)

Substituting (28) into (19a) we obtain two families of curves
of neutral stability, where again we can distinguish two cases
for even (j = 2n) and odd (j = 2n + 1) values of j . For
even j we have Nf = 2n + 1 and for odd Nf = 2n, i.e. odd
and even number of fluxons correspondingly. The respective
values of w are given by

w = 8

H
nK

(
4

H 2

)
Nf = 2n with n = 0, 1, . . .

(29)

w = 2(2n + 1)√
1 + H 2

4

K

(
1

1 + H 2

4

)
Nf = 2n + 1

with n = 0, 1, . . . . (30)

Branch III . In this case m > 1 and we can write the
eigenfunctions in the following form

X0 = cn

[√
m(x + x0)

∣∣∣∣ 1

m

]
λ0 = m − 1 > 0

X1 = dn

[√
m(x + x0)

∣∣∣∣ 1

m

]
=

√
1 − 1

m

dn
[√

mx
∣∣ 1
m

] =
√

1 − m̄

dn
[

x√
m̄

∣∣∣m̄]
λ1 = 0

X2 = sn

[√
m(x + x0)

∣∣∣∣ 1

m

]
λ2 = m > 0. (31)

In (31) we used a standard transformation of elliptic
functions so that their modulus is less than unity, and then

substituted x0 =
√

1
m
K( 1

m
). We also used the notation

m̄ = 1
m

. Since λ0 and λ2 are always positive we only
need to consider X1. For X1 in (31) to be an eigenfunction
of (10), (11) we must have again the condition (27) or the
equivalent (28). Here we can distinguish two cases for even
(j = 2n) and odd (j = 2n + 1) values of j . It can easily
be verified again that for even j we have Nf = 2n and
for odd Nf = 2n + 1, i.e. even and odd number of fluxons
correspondingly.

Substituting equation (28) into equation (20) we obtain
two families of curves of neutral stability in H , with the
values of w given for n = 1, 2, . . . by

w = 4n√
1 + H 2

4

K

(
1

1 + H 2

4

)
N = 2n − 1 (32)

and

w = 4

H
(2n − 1)K

(
4

H 2

)
N = 2n. (33)

Equation (32) is valid for anyH � 0 but (33) only forH � 2.
As we will see in the section of the numerical evaluation of
stability the above families of curves will in fact compare
very well giving the boundaries of stability.
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Figure 12. Plot of four lowest eigenvalues as a function of m for
(a) branches I and II and (b) branch III.

5.1. Numerical stability results

To check the stability of the solutions discussed and examine
the validity of the analytical stability results we have
calculated the eigenvalue spectrum for small oscillations
around the solution �0(x). In figure 12 we plot the four
lowest eigenvalues of equation (10) for w = 10 and I = 0
as a function of the parameter m for the branches I and II
(figure 12(a)) and III (figure 12(b)) correspondingly. Stability
requires all eigenvalues to be positive while an increasing
number of negative eigenvalues denotes a higher degree of
instability.

The regions inmwith all positive eigenvalues correspond
to the stable fluxon solutions and are separated by regions in
m with unstable solutions. Often stable solutions correspond
(in the plot of Nf with H ) to the branches with positive slope,
line ec, etc in branch II of figure 8 or qp, etc in branch III.
This is not the case though of small w (see figure 7) or strong
magnetic fields. All the solutions in branch I (m < 1)
are unstable, with several eigenvalues being negative. In
all cases as expected the lowest mode has no nodes and is
symmetric. It can have however several lobes, reflecting
the number of fluxons that show in the unperturbed solution
�0(x). Also when a higher mode eigenvalue vanishes the
lowest mode reflects this and reforms by creating more lobes,
and this effect can be strong when eigenvalues cross each
other. In comparing figures 12(a) and (b) we see that the
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Figure 14. Plot of the neutral stability lines of integer Nf in an
m–w diagram.

regions of stable solutions in m for branch II are regions of
unstable solutions for branch III, while the bounding values
of m are the same in both cases. This is consistent with the
analytic expressions (28) and (30). Of course they correspond
to different solutions due to different x0. In branches II
and III there are at most two negative eigenvalues, while in
branch I (m < 1 in (23)) there is a region with four negative
eigenvalues. The analytic formulas for stability are entirely
consistent for the points in m where instability sets in. In
fact in figure 13 we show the four lowest eigenvectors for
m = 1.010 12 where λ1 = 0. The corresponding eigenvector
is fitted with equation (25) and as expected for m ≈ 1 the
dn function behaves like a sech

√
m(x). The same is true for

the branch III, where the lowest mode can be fitted well with
(31).

In figure 14 we plot in the m–w diagram the lines from
conditions (28), so that each line corresponds to solutions
with an integer fluxon number. Thus the range of m values
between two lines for a given w corresponds to the (j, j + 1)
branch of both cases II and III. In figure 15 we plot the same
information but in an H–w plot for II (figure 15(a)) and III
(figure 15(b)). Due to the oscillatory relation of H and m

the extrema of the magnetic field at I = 0 for each branch
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Figure 15. Same as figure 14 in an H–w plot: (a) branch I and II
and (b) branch III.

do not exactly coincide with the stability boundary lines.
This means that the branch ends on these lines but in the
intermediate range it might reach H values slightly outside
this range. If viewed as a function of w for a fixed m (or
m̄) then the corresponding magnetic field varies periodically,
with a period in w equal to 4

√
m̄K(m̄), i.e. for each m it

covers the w-values between every other curve (%j = 2).
We also notice from figure 15 that the width in H of the
(0,1) branch is almost independent of w for large w, while
for w → ∞ many branches tend to coalesce in the same
interval of H for both II and III. One can understand this
case by using the pendulum analogy and realize that for large
w the solutions correspond to trajectories that pass near the
separatrix points. This can also be seen from (20a). In order
to satisfy the boundary condition for w → ∞, the important
values of m̄ are quite close to m̄ ≈ 1, since in that case
K(m̄) → ∞. On the other hand for high magnetic fields
H → ∞ the corresponding values of m̄ are near zero.

6. Experimental relevance

In this section we relate some of our theoretical and numerical
results to the experimental techniques and data. Since the
behaviour of the maximum tunnel current is of importance
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Figure 16. Numerical results for Imax against H for L = 8.24, L = 9 and L = 10 and the experimental data from [1]. In the experimental
data the dots (•) are the measured points and the dashed lines should only be considered as a guide for the eye.

for junction characterization, we start by plotting in figure 16
the numerically estimated (using the iteration procedure
described in section 4.2) values of Imax for three different
lengths (8.24, 9 and 10) and the associated experimental data
extracted from figure 5.10 in [1].

The best fitting seems to be for L = 9.0, i.e. slightly
different from L = 8.24, as was determined by analysis of
the experimental data. The discrepancy is due to the fact
that the critical current density is not homogeneous in the
experimental sample and the analysis used in the experiment
it would be valid for a larger length junction. An exact
knowledge of the inhomogeneity can give a more accurate
profile but this is not the purpose of this paper.

Besides the relatively good agreement of the maximum
current Imax value for each H , that verifies our numerical
and theoretical analysis we can also make the following
observations: The experimental data for Imax seem to try to
follow the stable branches. After crossing of Imax lines they
seem to approach some ‘bifurcation’ points where it becomes
easy to fall in another branch, but a careful experimental
quasistatic scanning of the magnetic field and current (as
was done in the numerical simulations used to obtain the
displayed data) will enable us to successfully trace the whole
stable branch experimentally. Then one can pass over these
‘fuzzy’ bifurcation points and be able to select the appropriate
continuation branch. To work within a given branch with low
Imax is of interest for low energy (or current) devices. The

quasistatic scanning will also help to elucidate the physical
nature and the practical consequences of such bifurcation
points.

There is a close relation between the experimental and
the computer simulation methodologies for determining the
whole Imax line of a device. One of these methodologies is
described (as a numerical scheme) in [10, 12]. It is based
on the failure of the convergence of the associated iteration
method when the bias current exceeds the maximum valued.
We should mark that in this case one has to solve a large
set of PDE problems associated with continuation points
on the Imax line through fine tuning of I and H along the
boundary line. This requires significant amounts of computer
power since it is prone to the effect of hysteresis. A similar
approach is used in experiments. In this case tracing Imax

corresponds in configuring the device on the border line of
the branch. Specifically slightly higher bias currents switch
the device from the pair tunnelling to quasiparticle mode. A
similar approach (used here) is to configure the device so it
corresponds to a point on the H -axis (I = 0) and slightly
increase the current until the above mode switch will be
detected. It is possible but not easy to realize such an ‘initial
configuration’. For both cases one has to introduce some
initial flux configuration.

The main difficulty that arises from the hysteretic
behaviour can be avoided if one looks at figure 17 where
we replot figure 2 but with a rescaling of the vertical axis by
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Figure 17. Constant H and I contours in the (m, x̄0) plane, where x̄0 (in the vertical axis) is a normalization of x0. For m < 1,
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K(m), so that the curves x0 = K(m) now become horizontal
lines. As we mentioned earlier the parameters x0 and m

define uniquely the fluxon distribution of the solutions. So
the area enclosed by a curve through the points a, b and c (with
upper half I > 0 and lower half I < 0) is the stable region
corresponding to the (1–2) branch in the Imax(H) diagram
(see the corresponding a, b and c points). It is actually
separated from the other stable regions. One can go however
from one stable region to the next, by moving quasistatically
along the x0 = K line.

Then it is clear that for an experiment one might select the
starting configuration of his choice and follow an appropriate
path quasistatically to another stable region and to the
maximum current so that the whole procedure is convenient.
Note that keeping H (or I ) constant corresponds to walking
on a particular contour line.

For the procedure described above where the H is
increased or decreased monotonically the scanning in the
I–H plane suffers from strong hysteretic phenomena that
are apparent in both the computer simulations and the actual
experiments. Based on the analysis presented in this paper an
alternative way free of such phenomena can be very naturally
proposed. Specifically, as seen in section 4.2 (see in particular
figures 8(a)–(c)) one might consider searching for the Imax on
the I–Nf plane where it is mostly single valued. The search
methodology will remain the same as before and therefore
it can be easily done on computer simulations by making a

simple modification to the existing software. Nevertheless
it is not clear how this can be done experimentally since it
requires a manipulation of both the current and the external
field. Another way is to keep the flux constant and this can
be done by applying a non-constant magnetic field that varies
trying to keep the distance between the fluxons constant. It
remains to be seen how easily this can be done in practice.

7. Discussion

In the preceding sections we have presented a theoretical,
numerical and experimental study of the various static
solutions of 1D Josephson junctions. Our basic approach
was the use of elliptic functions to analytically express the
solutions of the associated sine–Gordon equation. The two
parameters involved in the elliptic functions (m and x0) were
properly selected based on the particular form of the boundary
conditions. This let us obtain useful analytic expressions for
these solutions in particular for the cases of zero magnetic
field H = 0 or zero current I = 0. Their importance
lies in the fact that one can easily study their stability by
using simple linear perturbations. This simplicity in the
stability analysis let us exploit the role of the geometric (w)
and physical parameters (H, I,Nf ) involved. A significant
outcome of our study is the fact that the modulus (m) of
the elliptic functions is a good characterization parameter
that greatly simplifies the general qualitative and quantitative
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pictures of the various solutions. The use of m as a
characterization parameter also leads to more stable, accurate
and efficient numerical algorithms used to study various
aspects of Josephson junctions.

The analysis presented above is particularly useful to
understand the sometimes complicated behaviour when we
try to follow numerically the different branches. In fact,
this was one of the motivations behind this work. We
are currently building a software engine to numerically
simulate two-dimensional window Josephson junctions of
various types and configurations. Preliminary numerical
experiments clearly show that although our simulation engine
is built on top of powerful numerical continuation methods
[13] using state-of-the-art PDE software [7, 11] it very often
fails if we do not fully utilize the results obtained in the
current study. Some the most common, annoying problems
encountered (even in the case where no defects are present)
are the following: considering bifurcation points as regular
points and vice versa, missing bifurcation points, viewing
certain turning or bifurcation points as limiting points and
improper branch switching (e.g. 2π jumps). The present
study gives several hints to help us drive our simulation
engine with no such problems.

Our original goal was the study of the influence of the
critical current density (Jc → Jc(x)) inhomogeneities on the
tunnelling current Imax . Two observations, however, made it
necessary to study the perfect junction:

(a) We noticed that when studying window junctions, even
for zero magnetic field, the maximum current starting
with different initial conditions was not always the same
i.e. at Imax = 4.0. Several times it stopped at lower
values.

(b) Both numerical and experimental results show strong
hysteresis phenomena with jumps between different
branches when varying the external magnetic field.
Related to this, the question arises of whether there
exists a way of analytic continuation between different
branches. Or in more physical terms whether there is
a physical parameter (in the place of H ) whose smooth
variation shows no hysteresis in Imax .

With respect to point (a), it is clear now that the second
value belongs to one of the unstable branches we discussed
for w = 10. If, however, there are defects in the junction the
unstable solutions might also become stable and therefore are
of interest [14]. Another way to stabilize solutions is by high
frequency fluctuations (of small amplitude) in a way similar
to the Kapitza inverse pendulum problem [15]. This can also
be achieved by small wavelength spatial variation of the crit-
ical current density [16]. For remark (b) in the undefected
1D junction one has the advantage that the analytic solution
is known and the choice of m and x0 pin uniquely the proper

solution. Thus one can follow smoothly the solution if we
look at Imax as a function of the magnetic flux. This way we
can avoid hysteresis by choosing a proper initial condition at
I = 0 and increase I to Imax .

If, however, one uses the magnetic field as an input
parameter, strong hysteretic phenomena are observed, due to
the nonuniqueness of the relation between H and m for large
w. The multiple solutions (for fixed x0 due to symmetry)
correspond to different fluxon content. This nonuniqueness
will disappear for large H where in fact the junction behaves
as if it is a short one and we recover the diffraction-
like pattern. Also an increase of the temperature makes
the junction behave as a short one, with non-overlapping
branches.
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