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Abstract. This paper presents the formulation, analysis, and implementation of alternating
direction implicit (ADI) methods for solving the linear system of algebraic equations that arise from
the discretization of multidimensional linear elliptic partial differential equations (PDEs). The theo-
retical analysis is carried out for a broad class of PDE problems. Numerical experiments confirm the
theoretically determined characteristics of the ADI iterative schemes. The computational effective-
ness of the proposed schemes is shown through a detailed theoretical complexity analysis confirmed
with our experimental data.

Key words. alternating direction implicit methods, collocation methods, elliptic partial differ-
ential equations

AMS subject classifications. 65N35, 65N05, 65F10

PII. S1064827595281794

1. Introduction. Collocation methods based on Hermite splines ([16], [26], [1],
[19], [20]) or cubic splines ([28], [1], [18], [14]) have been proved lately to be very im-
portant and powerful discretization tools for the solution of elliptic partial differential
equations (PDEs). It has been seen that both classes of methods can achieve optimal
order of convergence and increased computational efficiency. A series of papers ([9],
[10], [11], [2], [3]) have been devoted recently to the analysis, implementation, and
performance evaluation of alternating direction implicit (ADI) methods applied to
linear algebraic systems which arise from Hermite cubic collocation discretizations of
elliptic PDEs in two and three dimensions. This study is the first attempt to pro-
pose, analyze, and implement ADI schemes for cubic spline collocation discretizations.
Specifically, we formulate alternating direction implicit spline collocation (ADISC)
methods based on cubic spline piecewise polynomials for approximating the solution
u of the second-order elliptic PDE

(1a) Lu ≡
k∑

i=1

αi
∂2u

∂x2
i

+ γu = f in Ω,

subject to Dirichlet boundary conditions, where Ω ≡
∏k

i=1 ⊗[ai, bi] is a rectangular
domain in Rk and αi(< 0), γ(≥ 0), f , and g are functions of k variables. Although
the formulation and the implementation of the proposed ADISC schemes are given for
the above general PDE problem, we carry out most of the convergence analysis only
for the three-dimensional Helmholtz problem, with Dirichlet boundary conditions and
constant coefficients, that is,

(1b) Lu ≡
3∑

i=1

∂2u

∂x2
i

+ γu = f in Ω,
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(2b) u = g on ∂Ω.

The two-dimensional ADISC case can be treated similarly and it will not be presented
here.

The rest of this paper is organized as follows. The derivation of the ADI schemes
associated with the linear algebraic system of equations which arises from cubic spline
collocation discretization schemes is given in section 2 where the convergence analysis
and the complexity analysis of the proposed ADISC methods are also presented.
The results of our extensive numerical experiments are given in section 3. Section 4
contains a summary of our results and some concluding remarks.

2. ADISC methods.

2.1. Cubic spline collocation methods. For a detailed formulation and anal-
ysis of the cubic spline collocation method in two or more dimensions the reader is
referred to [18] and [29]. Next, we briefly describe how to derive the associated linear
system of algebraic equations.

We start by discretizing uniformly each interval [ai, bi], i = 1, . . . , k, to obtain the
extended uniform partition of [ai, bi]

∆i ≡
{

τ i
` = ai + `hi ; ` = −1, . . . , Ni + 1 with hi =

bi − ai

Ni

}
.

Then ∆ ≡
∏k

i=1 ⊗∆i is the induced uniform partition of the domain Ω. We denote
by S3,∆i ≡ P3,∆i ∩C2([ai, bi]) the space of the one-dimensional splines defined by the
partition ∆i of [ai, bi]. The basis elements of the space of the k-dimensional splines
S3,∆ are obtained by taking the tensor product of the basis Bi

` of the one-dimensional
splines S3,∆i

(see [18]). The cubic spline collocation approximate u∆ ∈ S3,∆ can then
be represented as

u∆(x) =
N1+1∑
`1=−1

N2+1∑
`2=−1

· · ·
Nk+1∑
`k=−1

U`1`2···`k
B1

`1(x1)B2
`2(x2) · · ·Bk

`k
(xk),(3)

where x = (x1, x2, . . . , xk) is a point in ∆ and where U`1`2···`k
(with `i = −1, . . . , Ni +

1, i = 1, . . . , k) are the unknown spline collocation coefficients. In order to determine
these

∏k
i=1(Ni + 3) unknowns we require u∆ to satisfy the PDE (1) at all points

in ∆ and the boundary conditions (2b) at all boundary points ∆ ∩ ∂Ω. Using well-
known results from the spline-interpolation theory ([22]) it can be easily seen that the
solution u of the PDE problem satisfies the collocation equations within an error of
order O(h2). In order to obtain an optimal ( O(h4) ) spline approximation u∆ of u we
force it to satisfy the perturbed PDE L′u = f where the operator L′ is a perturbation
of the operator L in (1) and can be obtained by replacing, for i = 1, . . . , k,

∂2u

∂x2
i

∣∣∣∣
x

by
1
12

[
∂2u

∂x2
i

∣∣∣∣
x−

+ 10
∂2u

∂x2
i

∣∣∣∣
x

+
∂2u

∂x2
i

∣∣∣∣
x+

]
,

where x−,x, and x+ are grid points in ∆ consecutive in the i-direction.
For both O(h2) and O(h4) collocation schemes for the PDE problem defined by

(1a), the collocation equations obtained from the boundary conditions and from the
differential equation at the end points of each line can be uncoupled. The reader
is referred to [18] and [29] to check how such an uncoupling can be achieved. The
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FIG. 1. The three-dimensional coefficient stencil of the O(h2) collocation equations at points
away from the boundary.

collocation equations away (2 ≤ ` ≤ Ni − 2) from the boundary can be presented,
for the three-dimensional Poisson equation, in the form of stencils. The stencils as-
sociated with the O(h2) scheme and with the O(h4) scheme are given in Figures 1
and 2, respectively. The value of each entry in these stencils is the coefficient of the
corresponding unknown. All entries in the O(h2) stencil have been multiplied by a
factor of − 1

12h2 , and all entries in the O(h4) stencil have been multiplied by a fac-
tor of − 1

432h2 . For lines next to the boundary, the equations have similar form with
appropriately modified right sides (see [14]).

From the above discussion, the assumed representation (3) of u∆, and the nature
of the B-spline basis functions, we conclude ([18], [29]) that the interior collocation
equations can be written in the form

k∑
i=1

AiU = F, Ai ∈ RK×K,(4)

where K =
∏k

i=1(Ni − 1) and where (for the Poisson equation)

Ai ≡

i+1∏
j=k

⊗T j
4

 ⊗ 1
6k−1h2

i

E i ⊗

 1∏
j=i−1

⊗T j
4

 , i = 1, . . . , k,(5)

with E i =
{

T i
−2 second-order scheme,
1
12T i

10T
i
−2 fourth-order scheme, T i

α = tridiag(1, α, 1)

and T i
α ∈ R(Ni−1)×(Ni−1). The right-hand-side vector F holds the associated values of

the right-hand-side function f of the PDE and contains the effect of the elimination
of the “boundary” unknowns.
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FIG. 2. The three-dimensional coefficient stencil of the O(h4) collocation equations at points
away from the boundary.

2.2. Derivation. The collocation linear system of coefficients (4) can be solved
by several direct and iterative solvers (see [18], and [17] for the two-dimensional case,
and [14] for the k-dimensional one). Our first ADISC method1 associated with the
linear system (4), obtained by generalizing the approach found in [7], can be described
by the following recurrence relation:

1For a detailed introduction to the theory of tensor products (Kronecker products) of matrices,
the first usage of this theory for the analysis of PDEs, and the efficient computer manipulation of
tensor products, the reader is referred to [15], [23], and [4], respectively.
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Given a guess U(0), iterate for s = 0, 1, . . .

(A1 + rs+1D)U(s+1/k) =

[
(A1 + rs+1D) − ω

k∑
i=1

Ai

]
U(s) + ωF,(6)

(Aj + rs+1D)U(s+j/k) = AjU(s+(j−1)/k) + rs+1DU(s), j = 2, . . . , k,(7)

where D ≡ 1
6k

∏1
j=k ⊗T j

4 , rs+1, s = 0, 1, . . ., are positive parameters to accelerate the
convergence and ω is a relaxation parameter. It should be pointed out that for ω = 1
our scheme reduces to the so-called Douglas–Rachford scheme [8] and for ω = 2 it
reduces to the Douglas scheme [7]. The above ADISC scheme can be written in the
following matrix form:

U(s+1) = Mrs+1,ωU(s) + rk−1
s+1 ω

1∏
i=k

(
1

rs+1
D−1Ai + I

)−1

F,(8)

where the iteration matrix Mrs+1,ω is given by

Mrs+1,ω = I − ω
1

rs+1

1∏
i=k

(
1

rs+1
D−1Ai + I

)−1
(

k∑
i=1

D−1Ai

)
.(9)

In an effort to increase the per iteration efficiency of the above-described ADISC
scheme we express all the tridiagonal matrices T i

α involved in terms of the associated
identity matrix I and the tridiagonal matrix T i

−2. Substituting these expressions in
(4), the O(h2) interior collocation equations are now given (for the Poisson equation)
in the form  k∑

i=1

Xi +
k∑

i=2

(k
i )∑

j=1

Hij

U = F(10)

with

Xi = − 1
h2

i+1∏
j=k

⊗I

 ⊗ T i
−2 ⊗

 1∏
j=i−1

⊗I

 and Hij = − i

6i−1h2 Cij ,

where Cij is a tensor product of k matrices, where i of them are T i
−2 and the remaining

k − i of them are identity matrices. The above form of the linear system naturally
leads us to our second ADISC scheme given by the following recurrence relation:

(rs+1I + X1)U(s+1/k) = (rs+1I + X1)U(s)−ω

 k∑
i=1

Xi +
k∑

i=2

(k
i )∑

j=1

Hij

U(s)+ωF,

(11)

(rs+1I + Xi)U(s+i/k) = rs+1U(s+(i−1)/k) + XiU(s) , i = 2, . . . , k,(12)

which in matrix form is given by

U(s+1) = Mrs+1,ωU(s) + rk−1
s+1 ω

(
1∏

i=k

(rs+1I + Xi)
−1

)
F(13)
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and where the associated iteration matrix is

Mrs+1,ω = I − ω

(
1∏

i=k

(
I +

1
rs+1

Xi

)−1
) k∑

i=1

1
rs+1

Xi +
k∑

i=2

(k
i )∑

j=1

1
rs+1

Hij

 .(14)

The new scheme is closer to the ADI scheme associated with the five-point star dis-
cretization method as far as matrix inversions are concerned [23]. It has been observed
([24]) that ADI formulations like (11)–(12) may lead to an increased accuracy. The
analysis of this phenomenon is beyond the scope of this study and it will not be
presented here. Therefore, in this study we will only consider the O(h2) version of
(11)–(12). In what follows we will call the ADI method defined by the relations (6)–(7)
ADISC1 and call the one defined by the relations (11)–(12) ADISC2.

2.3. Complexity analysis. For our analysis and implementation we naturally
represent the individual matrix factors of a tensor product as separate matrices stored
in Fortran fashion as two-dimensional arrays while it is computationally convenient
to represent the vectors as k-dimensional arrays. We have the following definition for
such an array and its transpose.

DEFINITION 2.1. Let x be a vector of order
∏k

i=1 Ni, where Ni ∈ N, i = 1, . . . , k.
We define the N1N2 · · ·Nk k-multidimensional matrix representation X = {Xi1,i2,...,ik

}
of x by

Xi1,i2,...,ik
= xi1+N1(i2−1+N2(i3−1+···+Nk−1(ik−1)···)),

where ij = 1, . . . , Nj, j = 1, . . . , k.
DEFINITION 2.2. Let X be a k-multidimensional matrix of order

∏k
i=1 Ni. Then

XT is a k-multidimensional matrix of order
∏k

i=2 Ni × N1 such that

XT
l2,l3,...,lk,l1 = Xl1,l2,...,lk ,

where li = 1, . . . , Ni, i = 1, . . . , k.
For the implementation of the ADI schemes we need efficient procedures for com-

puting matrix-times-vector operations of the tensor product form (
∏k

i=1 ⊗Ai)x and
for solving systems of linear equations given in the following tensor product form:(

1∏
i=k

⊗Ai

)
X = B.(15)

These procedures should use only the factors Ai and avoid explicitly forming the
matrix A =

∏k
i=1 ⊗Ai. Using the above definitions, the following theorem (its proof,

given in [29], is a simple generalization of the analysis found in [4] for the k = 2 case)
gives us such efficient procedures which only involve the matrices Ai, X, and B.

THEOREM 2.3. Let Ai be matrices of order Ni × Ni, i = 1, . . . , k, let x be a
vector of order

∏k
i=1 Ni, let X be its k-multidimensional matrix representation of

order N1 · · ·Nk−1Nk, let B be k-multidimensional matrices of order N1 · · ·Nk−1Nk,
and consider the linear system (

∏1
i=k ⊗Ai)X = B. Then we have that(

1∏
i=k

⊗Ai

)
x =

(
Ak

(
Ak−1

(
· · ·A2 (A1X)T · · ·

)T
)T

)T

,(16)
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((
1∏

i=k

⊗Ai

)
X

)T

=

(
A1 ⊗

(
2∏

i=k

⊗Ai

))
XT ,(17)

and that if A−1
i exists for i = 1, . . . , k and if

A1Y1 = B, A2Y2 = YT
1 , . . . , AiYi = YT

i−1, . . . , AkYk = YT
k−1,

then X = YT
k .

It is worthwhile to point out that while the first and third parts of this theorem
give us efficient ways for computing the matrix–vector product and for solving linear
systems of equations of the form (15), respectively, the second one gives us the ability
to switch the order of the terms in a tensor product. Instead of solving linear systems
of the form ((

m+1∏
i=k

⊗I

)
⊗ Am ⊗

(
1∏

i=m−1

⊗I

))
X = B ,(18)

this allows us to use existing numerical software to compute the solution of the equiv-
alent, in view of the above theorem, linear system

((
1∏

i=m−1

⊗I

)
⊗

(
m+1∏
i=k

⊗I

)
⊗ Am

)
X

m−1 times︷ ︸︸ ︷
T · · · T = B

m−1 times︷ ︸︸ ︷
T · · · T .(19)

In order to compare the efficiency of our ADI algorithms we estimate, in the fol-
lowing lemma (its proof based on the above theorem is simple and can be found in
[29]), the computer work by computing the so-called operation counts in the tradi-
tional manner by counting only floating-point operations.

LEMMA 2.4. Let Ai, i = 1, . . . , k, be matrices of order Ni × Ni and let X and B
be k-multidimensional matrices of order K ≡ N1N2 · · ·Nk. Then the computer work
required to

• compute (Ak⊗Ak−1⊗· · ·⊗A1)B is K
∑k

i=1(2Ni−1) and reduces to 4K
∑k

i=1 Mi

when the Ai’s are banded matrices with respective bandwidths Mi;
• solve the linear system (15) using Gauss elimination with partial pivoting is

2(K
∑k

i=1 Ni+
∑k

i=1 N3
i /3) and reduces to 2(3K

∑k
i=1 Mi+

∑k
i=1 M2

i Ni) when
the Ai’s are banded matrices with respective bandwidths Mi.

To clearly observe the significant difference in the efficiency we mark that for
matrices Ai,X,B given as above, where now Ni = N and Mi = M for i = 1, . . . , k,
the work to solve the linear system (15) reduces from 2((M2 + 3M)Nk) when the
tensor product

∏1
i=k ⊗Ai is expanded to 2k(3MNk +M2N) when the above theorem

is used.
The procedures described above are not only time efficient but also memory ef-

ficient. Using simple calculations we can obtain Table 1 which shows the amount of
memory required to store the data by using the data structures described at the be-
ginning of this section (in the second row) and by storing

∏1
i=k ⊗Ai expanded (in the

third row). As we see, the usage of tensor products can significantly reduce the com-
puter memory required to store

∏1
i=k ⊗Ai. This is particularly important for solving

three- (or more) dimensional problems for which memory can easily be exhausted
even on modern computers.
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TABLE 1
Memory requirements for storing

∏k
i=1 ⊗Ai.

Memory
Storage format Full Band

(Ak ⊗ · · · ⊗ A1)
∑k

i=1 N2
i 2

∑k
i=1 MiNi

expand
∏1

i=k ⊗Ai
∏k

i=1 N2
i 2M1N1

∏k
i=2 N2

i

TABLE 2
Work to sweep the first direction of ADISC1.

Work
Procedure +,– *

W1 := D + rs+1A1 3(N1 − 1) 3(N1 − 1)
U

(s)
i := AiU

(s) 2kK 2kK
Y :=

∑k
i=1 U

(s)
i (2k2 + k − 1)K 2k2K

R := W1U(s) − ωY + ωF 2(k + 1)K 2(k + 1)K
Solve W1U(s+1/k) = R 3kK +

∑k
i=1 Ni 3kK +

∑k
i=1 Ni

Total (2k2 + 6k + 1)K+ (2k2 + 5k + 2)K+
3(N1 − 1) +

∑k
i=1 Ni 3(N1 − 1) +

∑k
i=1 Ni

TABLE 3
Work to sweep the last k − 1 directions of ADISC1.

Work
Procedure +,– *

Wi := D + rs+1Ai 3(Ni − 1) 3(Ni − 1)
Y1 := DU(s+(i−1)/k) 2kK 2kK

Y2 := AiU
(s) 2kK 2kK

Y := Y1 + rs+1Y2 K K
Solve WiU

(s+i/k) = Y 3kK +
∑k

j=1 Nj 3kK +
∑k

j=1 Nj

Total (7k + 1)K+ (7k + 1)K+
3(Ni − 1) +

∑k
j=1 Nj 3(Ni − 1) +

∑k
j=1 Nj

Based on the above complexity results it is easy to calculate the per iteration work
involved in the two O(h2) ADISC schemes derived in the previous section. This way, a
detailed arithmetic count for the sweep of our schemes in the first direction (relations
(6) and (11)) is presented in Tables 2 and 4, respectively, while the arithmetic count in
the other directions (associated with relations (7) and (12)) are presented in Tables 3
and 5. We can calculate the total number of additions (OA

j ) and multiplications (OM
j )

for our ADISCj j = 1, 2 scheme by multiplying the last rows in Tables 3 and 5, by
k − 1 and adding them to the last rows in Tables 2 and 4, respectively.

To compare the per iteration complexity of our two schemes we need to compare
the overall total work required. Assuming that the time to perform (by the CPU) a
multiplication is twice the time to perform an addition, we calculate the quantities
Oj = OA

j +2OM
j , j = 1, 2, which correspond to the CPU time needed for the ADISC1

and ADISC2 schemes to perform an iteration, respectively. In Figure 3 we plot the
quantity 100O1−O2

O2
(= 100 27k2−2k(3k+1)−25k−4

2k(3k+1)+23k+2 ) in the y-axis versus the dimension k

of the PDE problem. As depicted the ADISC2 iterative method is, per iteration, more
efficient than the ADISC1 one when Ω is a k-dimensional domain for k = 2, 3, 4, and 5
achieving its maximum relative efficiency, of approximately 55%, for three-dimensional
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TABLE 4
Work to sweep the first direction of ADISC2.

Work
Procedure +,– *

Z1 := rs+1I + X1 3(N1 − 1) 3(N1 − 1)
U

(s)
i := XiU

(s) 2K 2K
V

(s)
ij := Hi

jU(s) 2iK 2iK∑k
i=1 U

(s)
i +

∑k
i=2

∑(k
i )

j=1 V
(s)
ij = V (2k(k + 1) + k − 1)K (2k + 2)kK

R := Z1U(s) − ωV + ωF 4K 4K
Solve Z1U(s+1/k) = R 3K + N1 3K + N1

Total (2k(k + 1) + k + 6)K ((2k + 2)k + 7)K
+4N1 − 3 +4N1 − 3

TABLE 5
Work to sweep the last k − 1 directions of ADISC2.

Work
Procedure +,– *

Zi := rs+1I + Xi 3(Ni − 1) 3(Ni − 1)
Y1 := XiU

(s) 2K 2K
Y := rs+1U(s+(i−1)/k) + Y1 K K

Solve ZiU
(s+i/k) = Y 3K + Ni 3K + Ni

Total 6K + 4Ni − 3 6K + 4Ni − 3

FIG. 3. Efficiency improvement (percent).

problems. In more than five dimensions ADISC1 seems to win, increasing its relative
efficiency as k increases.

2.4. Convergence analysis. In this section we present our theoretical results
concerning the convergence analysis of the proposed ADISC methods. Although the
analysis can be carried out for the generalized Helmholtz PDE problem (i.e., ai =
1, i = 1, . . . , k) (1b)–(2b), for simplicity in the presentation, we consider the Poisson
PDE equation (i.e., γ = 0). Recall that our two ADI methods for solving the interior
collocation equation can be written in the form

U(s+1) = Mrs+1,ωU(s) + G,(20)
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where the iteration matrix Mrs+1,ω is given by relations (9) and (14) for the ADISC1
and ADISC2 methods, respectively. We start our analysis by giving below analytic
expressions of the eigenvalues of these iteration matrices.

LEMMA 2.5. The eigenvalues ν of the iteration matrix Mrs+1,ω defined by the
relation (9) for the ADISC1 scheme and by (14) for the ADISC2 scheme are given by

ν = ν(`) = 1 − ω


∑k

i=1
α

(`i)
i

rs+1
+ C∏k

i=1

(
α

(`i)
i

rs+1
+ 1

)
(21)

with ` = (`1, . . . , `k), `i = 1, . . . , Ni − 1, where

α
(`i)
i =


−6N2

i λ
(`i)
i

6+λ
(`i)
i

for ADISC1 O(h2),

−N2
i λ

(`i)
i

(
λ

(`i)
i +12

)
2
(

λ
(`i)
i +6

) for ADISC1 O(h4),

−N2
i λ

(`i)
i for ADISC2 O(h2),

(22)

λ
(`i)
i = −4 sin2

(
`iπ

2Ni

)
,(23)

and C = 0 for the ADISC1 scheme and

C =
k∑

i=2

i

rs+1

(k
i )∑

j=1

N2
j

6i−1

k∏
m=1

p(ij)
m λ(`m)

m

for the ADISC2 scheme with

p(ij)
m =

{
1 if there is T−2 at the position m of the matrix Hij ,

1
λ

(`m)
m

if there is I at the position m of the matrix Hij .

Proof. It is known ([14]) that the eigenvalues λ
(`i)
i of the matrix T i

−2 ∈ RNi×Ni

are given by the relation (23). It is easy to see that all the matrices T i
a ∈ RN×N ,

T i
a ≡ tridiag(1, a, 1), a ∈ R, have a common set of linearly independent eigenvectors

and that the eigenvalues of the matrix T i
a are given by (a + 2) + λ

(`i)
i . Relations (21)

and (22) can be now easily obtained by applying Lemma 3.5 in [13] to the iteration
matrices given by (9) and (14).

Denote now the error at the sth iteration by E(s) = U−U(s), where U and U(s)

are the coefficients of u∆ and u
(s)
∆ in (3), respectively. Then from (20) we have that

E(s+1) = Mrs+1,ωE(s).

We can expand the error E(s) in terms of the eigenvectors pij
, j = 1, . . . , k, of D−1Ai

or of Xi (see Lemma 3.5 in [13]) and use the above to get

E(s+1) =
N1−1∑
i1=1

· · ·
Nk−1∑
ik=1

νi1,...,ik
(rs+1)Ei1,...,ik

pi1 ⊗ · · · ⊗ pik
,
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where νi1,...,ik
(rs+1) are the eigenvalues of the iteration matrix given by Lemma 2.5.

Thus we have

E(s) =
N1−1∑
i1=1

· · ·
Nk−1∑
ik=1

 s∏
j=0

νi1,...,ik
(rj)

Ei1,...,ik
pi1 ⊗ · · · ⊗ pik

.(24)

For the ADISC1 scheme (the ADISC2 scheme can be treated similarly) we use relation
(24), Lemma 3.5 in [13], and the fact that the function

g(x1, . . . , xk) :=
∑k

i=1 xi∏k
i=1(xi + 1)

− 1

is always negative to obtain our first convergence result.
THEOREM 2.6. For any given set of positive acceleration parameters rs+1, s =

0, 1, . . ., and 0 < ω ≤ 2, the proposed iterative methods ADISC1 and ADISC2 converge
from any initial guess.

For the rest of this section we restrict ourselves in three dimensions since most of
our results cannot be easily extended to more dimensions. Without loss of generality,
and for simplicity in the presentation only, we will assume that we have a uniform
discretization grid of equal spacing in all dimensions (i.e., Ni = N, i = 1, 2, 3).

It is worthwhile to note that the ADISC1 iterative method can be exact (except
for round-off) in a number of iterations equal to the number of unknowns. This
can be easily seen by observing that νi1,i2,i3(rs) is a fraction whose numerator is a
cubic polynomial in rs which has a real root ri1i2i3 for which the denominator does not
vanish. Therefore, E(s) can be made zero in (N −1)3 iterations by setting rs = ri1i2i3 ,
s = 1, . . . , (N − 1)3, and ij = 1, . . . , (N − 1), j = 1, 2, 3.

If the number of iterations s required is known in advance, one can determine
the optimum values for the sequence of iteration parameters rs by solving a minimax
problem. This minimax problem becomes a whole sequence of such problems since in
practice we very rarely know s in advance. Our objective here is to choose a sequence
of “good” acceleration parameters rs that will reduce the number of iterations required
to produce a satisfactory approximation to the solution. We will do that, following
the methodology found in [7], for the Douglas scheme, i.e., we set ω = 2.

We start by letting for j = 1, 2, 3

ζ` =
12

r`h2 , ` = 1, 2, . . . , and ξij
=

sin2 ijπ
2N

3 − 2 sin2 ijπ
2N

, ij = 1, . . . , N − 1 .(25)

Then we have that

νi1,i2,i3(r`) = 1 − 2
ζ`ξi1 + ζ`ξi2 + ζ`ξi3

(1 + ζ`ξi1)(1 + ζ`ξi2)(1 + ζ`ξi3)
.(26)

We would like to find a sequence {ζ(`)}, ` = 1, . . . , P , such that µ ≤ ζ(`)ξij
≤ ν for

every ` for at least one j. µ and ν are parameters that will be determined later on.
Since ξ1 = sin2 π

2N

3−2 sin2 π
2N

and ξN−1 ≈ 1 we define ξ(1) = ξ1 and the sequence {ζ(`), ξ(`)}
such that

ζ(`)ξ(`) = µ and ζ(`)ξ(`+1) = ν
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from which we have for ` = 1, . . . , P − 1 that

ζ(`) = µ
(µ

ν

)`−1 3 − 2 sin2 π
2N

sin2 π
2N

(27)

and

ξ(`) =
(

ν

µ

)`−1 sin2 π
2N

3 − 2 sin2 π
2N

,(28)

for which µ ≤ ζ(`)ξ ≤ ν for every ξ such that ξ(`) ≤ ξ ≤ ξ(`+1). We stop generating
terms when we cross one, i.e., when ξ(P+1) ≈ 1 ≈ ξN−1, and thus we have that

P = log−1
(

ν

µ

)
log

(
3 − 2 sin2 π

2N

sin2 π
2N

)
.(29)

Using the expressions for ζ` in (25) and (27) we obtain the following expression for
the acceleration parameters:

rs =
12N2

µ

(
ν

µ

)s−1 sin2 π
2N

3 − 2 sin2 π
2N

, s = 1, . . . , P.(30)

We proceed by stating two lemmas found in [7].
LEMMA 2.7. Let

ρ ≡ ρ(a, b, c) = 1 − 2(a + b + c)
(1 + a)(1 + b)(1 + c)

(31)

and

ρ̂(µ, ν) ≡ max{|ρ(a, b, c)| : [µ ≤ a ≤ ν; 0 ≤ b, c ≤ ν] or
[µ ≤ b ≤ ν; 0 ≤ a, c ≤ ν] or [µ ≤ c ≤ ν; 0 ≤ a, b ≤ ν]}.

Then if µ < 1 < ν

ρ̂(µ, ν) = max
[
1 − 6ν

(1 + ν)3
, 1 − 2µ

1 + µ

]
.(32)

LEMMA 2.8. Let ν ≥ 1 and

µ =
3ν(1 + ν)−3

1 − 3ν(1 + ν)−3 =
3ν

1 − 3ν2 + ν3 ;(33)

then

ρ̂(µ, ν) = 1 − 6ν

(1 + ν)3
= 1 − 2µ

1 + µ
.(34)

If we denote by Rs the operator which maps E(0) to E(s+1), then we easily see
from (24) that its L2-norm is

||Rs|| = max
i1,...,ik

 s∏
j=0

νi1,...,ik
(rj)

 .(35)
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From Lemmas 2.7 and 2.8 we have that if we iterate P times using the parameters
given in (30) we have

||RP || ≤ ρ̂(µ, ν),

and if we iterate mP times using the parameters in (30) cyclically (i.e., rmP+` = r`,
m = 1, 2, . . .) we have that

||RmP || ≤ ρ̂m(µ, ν).

If we now want to have ||RmP || ≈ ε we get

m ≈ log ε

log ρ̂(µ, ν)

and therefore

mP ≈
− log ε log

(
3−2 sin2 π

2N

sin2 π
2N

)
log (ρ̂(µ, ν))−1 log

(
ν
µ

) .(36)

Assuming (for our convenience) that µ satisfies (33) and evaluating the denominator
of relation (36) for ν = 1(.01)2 we find that the number of iterations mP is minimized
for ν = 1.78 and µ = 0.33. We can summarize the above discussion (the O(h4) case
can be treated in a similar way) in the following theorem.

THEOREM 2.9. If the acceleration parameters rs are selected as

rs =


12N2

µ

(
ν
µ

)s−1 sin2 π
2N

3−2 sin2 π
2N

in the O(h2) case,

8N2

µ

(
ν
µ

)s−1 sin2 π
2N (3−sin2 π

2N )
6−4 sin2 π

2N
in the O(h4) case,

s = 1, . . . , P,

(37)
and used cyclically, i.e., riP+s = rs, i = 1, 2, . . ., s = 0, . . . , P − 1, the ADISC1
iterative methods with ω = 2 will reduce the initial error E(0) by a preassigned factor
of ε in mP iterations where m ≈ log ε

log .5

P ≈


0.59 log

(
3−2 sin2 π

2N

sin2 π
2N

)
in the O(h2) case,

0.59 log
(

6−4 sin2 π
2N

sin2 π
2N (3−sin2 π

2N )

)
in the O(h4) case.

(38)

In order to further increase the efficiency of our ADISC1 scheme we would like to
find a value of ω for which either the asymptotic rate of convergence is a maximum
or the number of calculations needed to reduce the norm of the matrix operator
that maps the error vector E(0) to the error vector E(s), ||Rs||, below a preassigned
tolerance is a minimum. We will follow the latter approach and the techniques found
in [12]. Recall that the eigenvalues of the ADISC1 iteration matrix are given by

ρ = ρ(a, b, c) ≡ ν = 1 − ω
a + b + c

(1 + a)(1 + b)(1 + c)
,(39)

where a = ζ`ξi1 , b = ζ`ξi2 , and c = ζ`ξi3 with ζ` and ξij
given by (25). We decide to

use as acceleration parameters rs the ones obtained above for ω = 2. Thus we replace,
for ` = 1, . . . , n0, (n0 = P ) the ζ` by ζ(`) that are given in (27). So if we iterate n0
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times with any triple (a, b, c) such that a ≥ b ≥ c, then there exists n∗ ∈ {1, . . . , n0}
for which one of the following is satisfied:

µ ≤ an∗ ≤ ν, tµ ≤ bn∗ , cn∗ ≤ ν,(40)

µ ≤ bn∗ ≤ ν, tµ ≤ an∗ , cn∗ ≤ ν,(41)

µ ≤ cn∗ ≤ ν, tµ ≤ an∗ , bn∗ ≤ ν(42)

with

t =
6 tan2 π

2N − 4 sin2 π
2N

6 − 4 sin2 π
2N

.(43)

For n 6= n∗ the considered triple does not satisfy any of (40), (41), and (42) anymore.
Instead, we have

tµ ≤ an, bn, cn ≤ t−1ν.(44)

By simply taking derivatives and following an elementary but tedious analysis we
can prove the following lemma.

LEMMA 2.10. Let t be given by relation (43), f = f(a, b, c) = a+b+c
(1+a)(1+b)(1+c) ,

fmax = max {f(a, b, c) for a, b, c that satisfy (44)} ,

f∗
max = max {f(a, b, c) for a, b, c that satisfy one of (40), (41), and (42)} ,

and

f∗
min = min {f(a, b, c) for a, b, c that satisfy one of (40), (41), and (42)} .

Then we have

fmax =
2tµ + t−1ν

(1 + tµ)2(1 + t−1ν)
,(45)

f∗
max =

2tµ + ν

(1 + tµ)2(1 + ν)
,(46)

and

f∗
min = min

{
µ + 2tµ

(1 + tµ)2(1 + µ)
,

3ν

(1 + ν)3

}
.(47)

We are now in a position to determine the optimum value of ω as function of N ,
µ, and ν as follows. From (39) we observe that the possible range of ω is limited by
the fact that we must have |ρ| < 1. So for triples a, b, c that satisfy the inequality
(44) we have −1 < 1 − ωf < 1 from which we have that

0 < ω ≤ 2
fmax

.(48)
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With ω in the above range we can easily verify that |ρ| < 1 for any triple (a, b, c) that
satisfies one of the inequalities (40), (41), and (42). For convenience we take

µ + 2tµ

(1 + tµ)2(1 + µ)
=

3ν

(1 + ν)3
.(49)

We can now easily see that for optimality we must have 1 − ωf∗
min = − (1 − ωf∗

max),
that is,

ω =
2

f∗
min + f∗

max

.(50)

To conclude, we consider the following two cases for ωopt:
• If 2

f∗
min+f∗

max
≤ 2

fmax
and if we choose ωopt as in relation (50) which also

satisfies (48), then |ρ| ≤ 1 − ωoptf
∗
min ≡ ρ(µ, ν).

• If 2
f∗

min+f∗
max

> 2
fmax

and for ωopt in the range defined by (48) we have that
1 − ωoptf

∗
min < − (1 − ωoptf

∗
max), thus we have again |ρ| ≤ ρ(µ, ν).

So by choosing

ωopt = min
{

2
f∗

min + f∗
max

,
2

fmax

}
(51)

we have |ρ| < 1 − ωoptf
∗
min.

Going back to (49), we can see that function y(ν) = 3ν
(1+ν)3 decreases for ν ≥ 1

and so we have y(ν) ≤ y(1) = 3/8 for ν ≥ 1. Thus to find the optimum pair of (µ, ν),
which minimizes the total number of iterations, we search among the pairs (µ, ν) that
satisfy (47), 0 < µ ≤ 1, and

0 <
µ + 2tµ

(1 + tµ)2 (1 + µ)
≤ 3

8
,

and maximize the function log ρ (µ, ν)−1 log (µ/ν). Notice that since 0 < f∗
min < 3/8

and we want 0 < 1−ωf∗
min ≤ 1, the desired inequality is equivalent to 0 < 1− 3

8ω ≤ 1
or 0 ≤ ω < 8

3 .

2.5. More general PDE operators. The problem of selecting the acceleration
parameters rs of the proposed ADI iterative schemes for more general than Helmholtz
PDE operators is obviously very important. The assumption of commutativity, while
necessary for our analysis presented in the previous sections, is rarely satisfied in prac-
tice. Fortunately, as observed by the authors and others the acceleration parameters
based on the commutative assumption have worked well in a variety of problems.
In particular Young and Ehrlich in [31] indicated how successful such ADI methods
could be, even when it is apparent that the commutativity theory on which the se-
lection of parameters was based do not hold, while Pearcy in [25] has shown that
we can always get convergence for any given problem if we choose the cycle length
m sufficiently large, have a mild restriction on the size of iterative parameters, and
use them in certain order. Furthermore, some preliminary studies have shown to us
that the noncommutative case associated with a general self-adjoint PDE operator
can be treated for our ADISC scheme in a way similar to the one found in [30] for the
five-point star ADI scheme, but this is beyond the scope of the present study.
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In this section we address the problem of theoretically selecting the acceleration
parameters rs of the ADISC1 iterative scheme for more general than Helmholtz op-
erators and specifically the following PDE operator:

k∑
i=1

−αi
∂2u

∂x2
i

= f in Ω,(52)

where αi(> 0) are functions of xi and f is a function of k variables. Following the
procedure presented in the previous section (see also [29]), one can easily see that
the matrices Ei involved in the interior collocation equations are given for the PDE
operator (52) by

Ei = T T AiT with Ai = diag(αij),(53)

where αij = αi((xj−1 + xj)/2), j = 1, . . . , Ni + 1, and

T =



1
−1 1

−1 1
. . .
−1 1

−1


(Ni+1)×(Ni)

.

The ADISC1 scheme which is defined by the recurrence relations (6)–(7) can be
expressed in the equivalent form(

1
rs+1

B1 + I
)
W(s+1/2) =

(
1

rs+1
B1 + I

)
W(s) − ω

∑k
j=1

1
rs+1

BjW(s) + ωD1/2F,

(
1

rs+1
Bi + I

)
W(s+1) = 1

rs+1
BiW(s) + W(s+1/2) for i = 2, . . . , k,

(54)

where Bi = D−1/2AiD
1/2, i = 1, . . . , k, and where W(s) = D1/2U(s), s = 1, 2, . . ..

The iteration matrix associated with the above scheme is given in the form

Mrs+1,ω = I − ω
1

rs+1

1∏
i=k

(
1

rs+1
Bi + I

)−1
(

k∑
i=1

Bi

)
.(55)

To derive the spectral radius of the above ADISC1 iteration matrix we first obtain
expressions for the eigenvalues of the matrices Bi. For this we denote with λi an
eigenvalue of the matrix Bi and with φ ≡ φk ⊗· · ·⊗φ1 the associated eigenvector; we
observe that

λi = (λiφ, φ) =

Bi

1∏
j=k

⊗φj ,
1∏

j=k

⊗φj

 .(56)

Therefore we have that

λi =
i+1∏
j=k

||φj ||2 ×
(
Aφ̂i, φ̂i

)
×

1∏
j=i−1

||φj ||2 with φ̂i =
1
h

T T
−1/2
4 φi
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from which we easily get

λi ≤ max
0≤x≤1

ai(x)||φ̂i||2
1∏

j=k,j 6=i

||φj ||2.(57)

Also we see that

||φ̂i||2 =
(
T−4φ,− 1

h2 T−2T−4φ
)

≤ 1
h2 ρ (−T−2)

(
T−1

4 φi, φi
)

≤ ρ (−T−2) ρ
(
T−1

4

)
||φi||2.

If we assume, without loss of generality, that ||φj || = 1, j = 1, . . . , k, and use the
analytic expressions for the eigenvalues of the tridiagonal matrices involved we obtain
the right-hand-side of the inequality below:

1
h2 min

0≤x≤1
{ai(x)}

2 sin2 π
2Ni

3 − 2 sin2 π
2Ni

≤ λi ≤ 1
h2 max

0≤x≤1
{ai(x)}

2 cos2 π
2Ni

3 − 2 cos2 π
2Ni

, i = 1, . . . , k,

(58)
while its left side can be found in a similar way. Therefore, although analytic expres-
sions for the eigenvalues of the matrices Bi, i = 1, . . . , k, cannot be obtained, we have
successfully computed sharp bounds for the spectral radii of the matrices Bi’s. From
this point on, the analysis is almost identical with that in the previous section but
rather tedious and complicated and will not be presented here. The outcome of this
analysis can be summarized in the following theorem.

THEOREM 2.11. A “good” choice for the acceleration parameters rs of the O(h2)
ADISC1 scheme associated with the PDE operator (52) is the following:

rs =
2N2

µ

(
ν

µ

)s−1

min
0≤x≤1,1≤i≤k

{ai(x)}
sin2 π

2N

3 − 2 sin2 π
2N

, s = 1, . . . , P(59)

and used cyclically, i.e., riP+s = rs, i = 1, 2, . . ., s = 0, . . . , P − 1, the ADISC1
iterative methods with ω = 2 will reduce the initial error E(0) by a preassigned factor
of ε in mP iterations where m ≈ log ε

log .5 and

P ≈ 0.59 log

(
3 − 2 sin2 π

2N

sin2 π
2N

max0≤x≤1,1≤i≤k{ai(x)}
min0≤x≤1,1≤i≤k{ai(x)}

)
.(60)

3. Numerical experiments. In this section we present the results of our nu-
merical experiments obtained for the O(h2) and the O(h4) ADISC1 iterative methods.
Our computer implementation of these ADISC1 methods uses software components
available to us through BLAS ([21], [6]) and LINPACK ([5]) and is based on algo-
rithms for the basic tensor product operations proposed in [4]. Our codes perform very
few floating-point operations outside BLAS and LINPACK. For the discretization of
the PDE domain Ω we have used a uniform, equal in all dimensions, discretization
with grid spacing h. As an initial guess we have used the zero function. We stop the
iterations of our ADISC schemes when we obtain three significant digits correct in the
max-norm of the relative error or when the max-norm of the difference of two suc-
cessive iterations (||U(s+1) −U(s)||∞) is less than 10−7. All experiments presented in
this section have been performed in double precision Fortran on a CONVEX C-3420
configured with 128Mb RAM and all CPU times reported are in seconds.
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For our experimental study we have considered three PDE model problems defined
by the following PDE equations:

PDE 1: The Poisson equation

uxx + uyy + uzz = f.

PDE 2: The generalized Helmholtz equation

uxx + uyy + uzz − γu = f

with γ(x, y, z) = 100 + cos(2πx) + sin(3πy) + cos(πz).
PDE 3: The general elliptic equation

(1 + x2)uxx + ey−1uyy + (3 + sin2(πz))uzz + γu = f

with γ(x, y, z) = e2x cos(3πx)+y3−2y+sin(πz) cos(2πz) on the unit cube with homo-
geneous Dirichlet boundary conditions. The right-hand-side function f was selected
so that the true solution of PDE 1 and PDE 3 is

u(x, y, z) = 10ex+y+z(x2 − x)(y2 − y)(z2 − z)

and the true solution of PDE 2 is

u(x, y, z) = −0.31c(x)s(x)(y2 − y)c(y)s(z)

(
1

1 + (4 (r(x) + r(y) + r(z)))4
− 0.5

)
,

where c(t) := 5.4 − cos(4πt), s(t) := sin(πt), and r(t) = (t − .5)2. As we easily see
all solutions are analytic with the one associated with the model problem PDE 2 (a
problem from stratospheric physics [27]) being oscillatory. All the experimental data
presented in this section were obtained using as acceleration parameters rs and as
cycle length m the ones determined by using Theorem 2.9 for PDE 1 and PDE 2 and
by using Theorem 2.11 for PDE 3.

In Table 6 we present our results for the O(h2) scheme. Specifically we present
the following for different numbers of discretization points N (N = 5(5)30) and for
the three PDE model problems:

The achieved accuracy. By error in the third column of Table 6 we denote the
maximum norm of the error at the discretization points, i.e., error = ||u − u∆||∞.

The order of convergence. We compute an estimation of the order of the dis-
cretization from the expression

− log
(

||(u − u∆1)||∞
||(u − u∆2)||∞

)/
log

(
h1

h2

)
,

where u∆i
represents the collocation spline approximate obtained using a uniform

grid step hi in all directions. As we easily see, the order of convergence is O(h2) for
all three model problems as was theoretically expected.

Optimum ω. The optimum value of the relaxation parameter ω was obtained
experimentally by systematically searching the value of ω in [0, 4] which corresponds
to the minimum number of iterations required by the ADISC1 method to satisfy the
stopping criteria. These experimental estimations of ωopt agree within a reasonable
accuracy with the theoretical ones obtained (when applicable) by relation (51). It
should be pointed out that the optimal point of ω for the model problem PDE 2
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TABLE 6
Error, order of convergence, ωopt, time, and number of iterations for the O(h2) scheme applied

to the three PDE model problems.

Number of iterations
N Error Order ωopt Time ω = 1 ω = 2 ω = ωopt

PDE 1 5 1.01e-3 2.3 .04 21 7 5
10 3.20e-4 1.88 2.3 .28 37 13 7
15 1.55e-4 1.93 2.3 .93 44 13 9
20 8.99e-5 2.00 2.3 2.20 57 18 13
25 5.90e-5 1.97 2.3 4.24 62 21 14
30 4.18e-5 1.96 2.3 7.30 75 18 13

PDE 2 5 7.87e-2 2.1 – 2.3 .04 17 6 6
10 3.29e-2 1.43 2.1 – 2.6 .28 20 10 8
15 1.52e-2 2.05 2.2 – 2.6 .93 22 8 6
20 9.43e-3 1.76 2.2 – 2.6 2.19 42 10 10
25 6.07e-3 2.06 2.1 – 2.4 4.20 34 13 10
30 4.27e-3 2.00 2.2 – 2.6 7.19 37 14 10

PDE 3 5 1.01e-3 2.1 – 2.2 .06 15 3 4
10 3.31e-4 1.84 2.2 .29 23 10 7
15 1.53e-4 2.05 2.1 .97 28 7 7
20 9.16e-5 1.89 2.1 2.23 45 13 10
25 6.00e-5 1.98 2.1 5.20 57 17 14
30 4.21e-5 2.01 2.1 7.40 49 14 13

becomes an interval of length up to .5. During this systematic search for ωopt we were
able to confirm the theoretically obtained interval of convergence for ω which agrees
with remarkable accuracy with the experimental one.

Time. In order to check the per iteration efficiency of our implementations we
give in the sixth column the average CPU time required to perform one iteration. A
least squares logarithmic fit of these data shows that the per iteration total time T is
given by T = .0003N2.93. This experimental estimation confirms our theoretical one
obtained in the complexity analysis in section 2.3 (see Tables 2, 3, 4, and 5).

Number of iterations. In the last three columns of Table 6 we present the number
of iterations required by the Douglas–Rachford (ω = 1), the Douglas (ω = 2), and
the optimum ADISC1 iteration methods to satisfy the stopping criteria. As can be
observed there is a significant increase in the rate of convergence as we move from
the Douglas–Rachford scheme to the Douglas scheme and to the optimum scheme for
all the PDE model problems. We can also observe another nice feature of, at least,
our optimal scheme in the fact that the associated number of iterations required for
convergence for a specific discretization step remains almost constant for all model
problems.

The same observations as above can be made for the data in Table 7 where we
present, similar to the O(h2) case, our results obtained by the O(h4) ADISC1 scheme
applied to the model problem PDE 1. In addition we can point out that the number
of iterations required does not increase significantly as we move from the O(h2) to
the O(h4) scheme.

In Figures 4 and 5 we present a detailed history of the convergence of the O(h2)
and the O(h4) ADISC1 methods applied to the model problem PDE 1 with all stop-
ping criteria removed. We can split both figures in two branches, the upper one
corresponding to the Douglas–Rachford scheme and the lower one corresponding to
the optimum scheme. Each of these branches can be further split into two groups of
lines corresponding to error being ||u − u∆||∞ (lines “——–” and “– . — .” on the
upper branch) or being ||U(s+1) −U(s)||∞ (lines “- - - - ” and “– ... —” on the upper
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TABLE 7
Error, order of convergence, ωopt, and number of iterations for the O(h4) scheme applied to

model problem PDE 1.

Number of iterations
N Error Order ωopt ω = 1 ω = 2 ω = ωopt

5 3.01e-4 2.3 31 11 9
10 3.31e-5 3.91 2.3 51 16 10
15 7.90e-6 3.82 2.3 60 19 12
20 3.16e-6 3.66 2.3 61 19 13
25 1.51e-6 3.36 2.3 73 21 13
30 8.95e-7 3.19 2.3 77 25 17

FIG. 4. History of convergence for O(h2) and PDE 1.

FIG. 5. History of convergence for O(h4) and PDE 1.

branch). We easily see the effect of using the acceleration parameters cyclically which
is apparent for the ||U(s+1) − U(s)||∞ case and almost invisible in the ||u − u∆||∞
case.

In order to rank the proposed ADISC1 iterative method we compare it with the
two three-dimensional PDE solving methods available in ELLPACK ([27]), namely,
the standard seven-point star finite difference method which is an O(h2) method and
an O(h4) 27-point difference method called HODIE. The result of the seven-point
star linear system (which involves N3 equations and unknowns) was solved using
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FIG. 6. Efficiency of O(h2) ADISC1 ( . ) , O(h4) ADISC1 ( ... ), and O(h4) HODIE (- - -)
methods.

the ITPACK’s SOR iterative method. The HODIE module discretizes the PDE us-
ing high-order finite difference stencils and solves the resulting linear system using
the Fourier (FFT) method. The HODIE-FFT requires 2N3 + 5N2 places memory
workspace and its CPU execution time is proportional to 2N2 ln(N − 1). In Fig-
ure 6 we plot the logarithm of the error ||u − u∆||∞ versus the required CPU time to
achieve it. The data for the seven-point star method do not appear in the graph since
its efficiency is too low and the associated line is further above the line −8 parallel
to the x-axis. We mention here that for N = 40 the seven-point star generates a
linear system of 54872 equations solved by the SOR method which converged in 124
iterations, took 69 seconds of CPU time, and achieved an error whose maximum norm
was approximately 2.6 × 10−3. To compare, the HODIE-FFT for N = 20 involves
5824 equations, took 1.21 seconds CPU time, and reduced the maximum norm of the
error to 1.2 × 10−4. Although Figure 6 compares the implementation and not the ac-
tual methods themselves, we can claim that the proposed methods easily outperform
the standard seven-point star method and perform equally well with the high-order
HODIE method. Here we should point out that we were unable to obtain more points
to extend the HODIE line in the graph further due to memory limitations. Further-
more, the applicability of the HODIE method is restricted to generalized Helmholtz
problems only and cannot be applied to general self-adjoint PDEs.

4. Synopsis and conclusions. In this study we have formulated, analyzed, and
implemented efficient ADI iterative methods for the solution of the linear algebraic
systems which arise from the discretization of self-adjoint elliptic PDE problems in k
dimensions using O(h2) and O(h4) cubic spline collocation.

Two ADISC schemes have been proposed, namely, ADISC1 and ADISC2. A
detailed per iteration complexity analysis has been presented showing us that the
ADISC2 scheme is much more efficient (within an iteration) for k = 2, 3, 4 dimensions
while ADISC1 takes over for k > 5. More specifically we have shown that the total
number of operations required to perform one iteration step in the O(h2) ADISC1 and
ADISC2 schemes are (18k2 − k − 1)Nk + O(N) and (2k(k + 2) + 15k + 1)Nk + O(N),
respectively, where N represents the number of discretization points in one direction.

Most of our convergence analysis of the proposed schemes has been carried out
for the Poisson PDE and can be easily extended to the generalized Helmholtz PDE.
Specifically we first prove the convergence of the O(h2) and O(h4) ADISC1 and the
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O(h2) ADISC2 schemes in k dimensions for any set of positive acceleration parameters
and for 0 < ω < 2. The rest of our analysis is restricted to our ADISC1 schemes
and to three dimensions since most of our results cannot be easily extended to more
dimensions. We obtain values for the acceleration parameters rs which are not optimal
but reasonably good. Furthermore, we estimate the number of iterations required
by our schemes to reduce the initial error by a preassigned factor ε. By estimating
bounds on the one-dimensional collocation matrices involved we were able to estimate
the rs’s and the required number of iterations for more general than Helmholtz PDE
operators. We also obtain analytic expressions for the optimal values and give intervals
of convergence of the relaxation parameter ω.

We have implemented our ADISC1 schemes using software components that take
full advantage of the tensor product formulation of our iterative methods. Our ex-
tensive numerical results confirm the increased efficiency of the methods predicted by
our complexity analysis which is verified by our timing results. Furthermore, a careful
experimental comparison has been carried out which shows that our ADI schemes out-
perform well-known methods. We have used our implementation to solve three PDE
model problems, namely, a Poisson, a Helmholtz, and a general PDE on a unit cube.
All experimental data obtained exhibit good agreement with our theoretical results.
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