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We present the design of a computational methodology and a prototype software envir-
onment and infrastructure that promotes collaboration in air pollution simulations in a
highly interactive way during the development and use of the simulation engine over
scalable distributed systems of heterogeneous computational components. In particular
we focus on the software runtime system to support such a distributed simulation engine.
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1. INTRODUCTION

During the past two decades the modeling of atmospheric pollution

has proven to be a very challenging and a very important problem

[13]. The main difficulties are due to: (1) the complexity of the physical

and chemical processes involved; (2) the fact that the associated math-

ematical formulation is not well established yet; (3) the increase need

of significant amounts of various input data of certain ‘‘quality’’

from different sources; and (4) to the usually high CPU requirements.

We have recently proposed a new distributed methodology for effi-

cient and accurate simulation of air pollution phenomena [37,45].

This multidisciplinary effort is still underway, and is based on
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collaborative operations of two kinds: cooperative operation between

distinct but neighboring numerical solvers (simulation engines),

and also collaboration between users/modellers who interact with

neighboring solvers during model development, experimentation

and production mode operation. This methodology leads to scalable,

collaborative operations on heterogeneous networked machines and

requires a runtime support system.

In this paper we present the design of an efficient and portable

runtime support system which is based on modern techniques and

practices from the software systems area. Although the novel software

system proposed here is targeted to a distributed air pollution model it

can be easily adapted to a broad class of applications that both involve

multi-physics phenomena on multi-domain geometries and teraflop-

level computations.

The rest of this paper is organized as follows. Next we briefly

describe the main characteristics of a truly distributed long range

air pollution model and the rest of the paper is devoted on the specifi-

cation of a runtime support system needed for the effectiveness of

such a model. In Section 3 we present the general architecture of the

proposed runtime system together with details on the various issues

related to our model. In the appendix we provide basic information

about the various software toolkits we mention in this paper.

2. COLLABORATIVE AIR POLLUTION MODELS

We now know that the simulation of highly complex physical phenom-

ena can be done by viewing the system in terms of sub-problems

or groups of sub-problems. Initially, independent solutions are

obtained for each sub-problem, and estimates are made of values

of concentration functions at interfaces. By exchanging function

values across sub-problem boundaries, a global model is had. For

each sub-problem, the analyst can make change or add to the kinetics

or the chemistry, without modifying the rest of the model or the

interface mechanisms. Naturally, different numerical approaches

may be used on distinct sub-problems.

The main difficulty in air pollution modeling is the complexity of

the physical and chemical processes involved. In simplification, one
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partitions the domain into sub-domains, thereby splitting the model

into distinct (simpler) submodels [37,45]. Assuming that one can

solve exactly any single partial differential equation (PDE) that governs

the air pollution model on any simple domain (or, more realistically,

given such a PDE problem one can select a highly accurate solver for

it from one’s library), the interface relaxation method iterates through

the following steps:

1. Guess solution values (and derivatives if needed) on all interfaces.
2. Solve all single PDEs exactly and independently with these values

as boundary conditions.
3. Compare and improve the values on all interfaces using a relaxer.
4. Return to Step 2 until satisfactory accuracy is achieved.

Fortunately, the splitting of an air pollution problem can be done in

an easy and natural way since the transition zones between sub-areas

are known a priori. Coasts, the limits of urban areas and strong vari-

ations in the landscape are examples of such zones that can be easily

identified. Most of the chemistry sub-models defined this way can be

significantly simpler then the universal model but need to be coupled

together by imposing certain conditions on the interface boundaries

[37,45]. Although the various schemes that are already in use [36]

(which are solely based on the continuity or discontinuity of the con-

centration function and its flux) can be used for interfaces, we strongly

believe that more complicated conditions that naturally reflect the

particular atmospheric and meteorological characteristics will be

powerful tools in expert hands. The formulation of such advanced

relaxers is a challenging and open problem.

Interface relaxation is naturally suited for distributed high perform-

ance computing.1 The method defines a mathematical network with a

single PDE solver at each node (representing a domain) and relaxers

connecting the nodes. One distributes the single (and usually different)

PDE or other solvers to high performance machines (since many sub-

problems have to be solved) and let the relaxers ‘‘control’’ the compu-

tation. However, even given the existence of independent solvers, such

experimentation is not possible without efficient runtime system

support that provides the appropriate functionality: scalability,

1A crude form of interface relaxation is already in fairly widespread use – a ‘‘trade’’ of
current values across interfaces without any relaxation.
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balanced-loads, co-operative mechanisms, multiway communicaton,

and realtime protocols for collaborative interactions at the analyst’s

level.

3. RUNTIME SUPPORT

Our objective is to develop a computational methodology and soft-

ware environment that supports collaborative air pollution models.

We focus on: (1) runtime support for collaboration between models;

and (2) runtime support for user-level collaboration between analysts

(simulation engine developers and/or users) who interact with models

on neighboring subdomains. At the simulation-engine level, collabora-

tive support implies efficient mechanisms for managing distributed

threads and synchronization (API, functionality and efficiency

issues) and scalability (threads, and communication). At the user-

level, collaborative support implies efficient communication protocols

(multiprotocol support, realtime, multiway, low-latency and high-

throughput communication) that provides all the requisite efficiency

and functionality for user-level collaborative interactions.

3.1. The Proposed Architecture

We propose the architecture shown Fig. 1. A major portion of the

research in this paper deals with issues at the lowest layer: here soft-

ware systems like ARIADNE and ARACHNE (see Appendix) will offer

threads functionality, while others like CLAM will offer highly

efficient (as will be seen shortly) communication functionality.

FIGURE 1 Architecture for collaborative solver.
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The kernel layer exports ARIADNE or ARACHNE (see Appendix) threads

to the solver layer, to new or legacy solvers like ELLPACK, and provides

support for threads scheduling and process synchronization via spec-

ulative executions [26,28]. That is, we have to provide a methodology

in which application layer code can be written without use of host ids,

explicit send/receive or processor synchronization primitives, with

appropriate help from the solver layer, object layer and kernel layer.

Using migrant-threads and object proxies, we have had considerable

success in implementing optimistic and speculative executions in the

PARASOL system. We propose to borrow a page from the PARASOL

book to synchronize processors. All this functionality will reside

within the kernel layer.

The object layer is an application-independent layer, but requires

object definitions for every interface (boundary) in the problem

space. Because these definitions depend on the data (problem) and

not the solver, they should be defined by class libraries which represent

different boundary geometries. With this, the object layer is made

completely independent of the data structures used by legacy systems,

and also provides for object definitions in new multithreaded solvers.

We initially plan to offer users a bind_subdomain(A, hostid) primitive

that, at the start of execution, statically binds subdomain A to a

solver running on processor hostid. Since the object layer will be

equipped with an object location mechanism, users are relieved of the

responsibility of programming in terms of processor ids. Once

bind_subdomain(A, hostid) runs to establish the object-processor

map, any invocation of object A by a thread automatically and trans-

parently migrates the thread to processor hostid which hosts A. This

system have been very effectively used in both ARIADNE [30,31] and

PARASOL [27,28].

Because a collaborative solver must iterate and communicate with

neighboring solvers in a chaotic way, communication is highly irregu-

lar. To enable such unpredictable communication patterns and yet

enhance communication performance (i.e., by eliminating high polling

costs which involve several layers of a communication protocol like

TCP/IP), and to make speculative executions possible, all (interface)

objects in the object layer must provide save and restore methods

[28], so that they can be transparently checkpointed at appropriate

times that are indexed by iteration indices. These checkpointed states
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will be (transparently) used to restore objects, wherever necessary,

during speculative computations [27,28].

The solver layer provides for either legacy or new solvers. Using

envelopes, modular legacy solvers like ELLPACK can be implemented

as three fat threads: (1) an ‘‘input’’ thread that a user can interact

with for dynamic parameter modification; (2) an ‘‘output’’ thread

which offers dynamic display [29,32] of simulation results; and (3) a

‘‘solver’’ thread that iterates over its subdomain, given boundary

values. New solvers can be fully designed in terms of an arbitrary

number of threads, to maximize the potential benefits of design

simplicity, concurrency on multiprocessors, and performance. For

example, even with as few as three threads for legacy solvers like

ELLPACK, ARIADNE’s time-slicing feature enables separate actions to

be performed concurrently: execution, output visualization and run-

time modification of parameters. Depending of the legacy code, further

concurrency and object-definition support for checkpointing and

restoration (to offer more flexibility at the application-level) may be

also be possible.

Finally, application-code is developed at the application layer,

using primitives provided in the object layer. As explained below,

different types of threads may be created at the application-level,

with support from below. ARIADNE’s thread-migration capability is

exploited in the kernel level, based on a method that is successfully

used in the PARASOL system [26,28]. The kernel layer offers applications

access to migratable threads as follows. Distinct processors are given

object proxies for all objects that they do not host, but which are

resident on other processors. When a thread invokes a method on a

proxy, the thread invokes code provided in the object layer of the

architecture. This code transparently packs the thread, migrates it to

the processor on which the real object resides, unpacks the thread,

and finally makes it available to the threads scheduler at the target

host. Each thread is scheduled for execution based on its priority.

Thread migration offers significant benefits: program simplicity, local-

ity of reference, and one-time transmission. If a thread repeatedly

accesses large remote objects, it makes sense to migrate the thread to

the remote host. Data migration will be poor if data size is large

or replicated write-shared data is used. Thread migration will be

poor if a thread’s state is large relative to the average amount of
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work it does between consecutive migrations. This is equivalent to

sending large messages frequently. Migrating a thread is as efficient

as passing a message which contains the information on the thread’s

stack. It has been found this to be an often misunderstood feature of

thread migration vs. message passing. Details on migration can be

found in [26,28,30].

3.2. Issues in Synchronization

We have introduced above the notion of Solver threads (S-threads),

Interface threads (I-threads) and Control threads (C-threads).

Because S-threads operate on subdomains while I-threads operate

on boundaries, a single iteration of an S-thread over its subdomain

takes an order of magnitude longer than a single iteration of an

I-thread over its interface. Processors hosting S-threads communicate

asynchronously with processors hosting I-threads. Indeed both types

of threads may reside on the same processor/multiprocessor. Using

functionality from CLAM, each I-thread (which computes interface

values) may either post an active-message [22] containing relevant

boundary (interface) data to each neighboring S-thread (solver), or

this data may be relayed by threads which repeatedly migrate between

I-thread hosts and neighboring S-thread hosts. In either case, an

S-thread begins its next iteration step with new boundary data and –

as explained in the previous subsection – explicit send/receive primi-

tives, synchronization actions or processor ids need never be used by

model developers at the application-level. Whenever an S-thread com-

pletes an iteration step, it uses the reverse process (an active message or

a relay-thread which migrates back to each neighboring I-thread host)

to offer each neighboring I-thread new boundary data based on the

interaction step it just completed.

Execution is speculative in the following sense. At the end of an

iteration step, an S-thread sends its boundary data to neighboring I-

threads. It may choose to begin its next iteration step without receiving

interface data from all neighboring I-threads. Such data may not

have been received due to a variety of reasons (e.g., slow network,

some S-thread is more computationally taxed because of its subdo-

main, or because of competition for the CPU). However, whenever
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an I-thread receives interface values from S-threads, it is free to check-

point the state of its interface objects (e.g., an array of boundary

values), indexed by iteration number. With kernel and object layer sup-

port, checkpointing is completely transparent to the application-level.

An I-thread may use any one of a number of methods to select a

‘‘best’’ interface object (i.e., the best boundary values) based on an

error-norm, and migrate this object to neighboring S-threads. In this

way, S-threads continue computing – whenever they are unsure if

new interface data will ever arrive – but may later be forced to take

‘‘better’’ routes when and if such data eventually arrives from neighbor-

ing I-threads. A second level of speculative execution can be had

by checkpointing object states for data structures within the solver,

so that recomputation is avoided in those problems which may require

more complicated evaluations on subdomain interiors. This is hard to

provide in legacy systems, but is highly recommended with new solvers

because recomputation can be avoided whenever a solver’s object states

are checkpointed. In complex physical simulations, this technique can

yield significant savings [26–28].

C-threads are defined at the application-level to enable user-defined

policies for convergence. These threads invoke methods in the object

class that define appropriate control policies, which in turn decide

the frequency and type of checkpointing done. Like the S-threads

and I-threads, C-threads run in time-slicing mode and share a host

processor’s CPU time-slice with other threads, based on thread

priority. We plan to enhance ARIADNE’s timers to support highly

accurate internal timing by exploiting context-switching intervals to

examine delta-queues and expired timers.

3.3. Issues in Integrating MultiProtocols and User-Space Threads

To achieve better efficiency and functionality we have to eliminate the

traditional layering that separates communication from computation

to provide an integrated system of threads which support both commu-

nication and computation. Experience [22] indicates that the net result is

increased CPU efficiency, low latency, high throughput, increased

scalability, and a capacity for multiprotocol support. The underlying

research question is: how is this to be done?
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How can user-level threads be used in the development of efficient,

scalable multiprotocols with multiway communication support?

And, how can methodology from our software subsystems be

integrated to provide transparent (speculative) synchronization,

migration, checkpointing and restoration. In employing user-level

threads, the main idea is to perform efficient scheduling of multiple

compute- and communicate-functions that are integrated within a

single process, so as to minimize the effects of OS-level context

switches. The resulting protocol actions will be efficient only if

thread operations are efficient, and if threads are scheduled in a

manner that minimizes packet-delays. Tailored thread schedules [21]

will help reduce packet-loss (and thus retransmission delays) at a recei-

ver’s transport layer, simultaneously increasing client processing

ability. We believe this approach is valuable because these factors

are critical in realtime or low latency message delivery (to support

user-level collaborative interactions) and efficient multiway transport.

Problems with Single-Threaded Communication

Consider the standard communication model, e.g., for workstation

networks, shown in Fig. 2(a). Processes A and B, on machines X

and Y, respectively, open sockets and obtain receive-buffers. The OS

kernel routes a process’s incoming packets from its network interface

to its receive-buffer. Let labels W, S and R represent a process’s work,

send and receive functionalities, respectively. Ordinarily, a single-

threaded process must ‘‘complete’’ an invoked function before

invoking another. Though non-blocking calls are permitted, these

can be expensive (e.g., probing a buffer for packets). If process A is

in W when process B sends it a string of packets, A’s packet-retrieval

cost involves either a high polling overhead, or a high latency over-

head (since it must complete W before a read operation). In the

former case (a) computation is unnecessarily taxed, and (b) polling

constructs complicate applications. In the latter case, packets are

dropped when the buffer is full. Buffers sizes are limited, and our

experience [21] with Ethernets is that even large buffers routinely

overflow (besides consuming valuable space); faster networks imply

potentially higher losses. Because a process’s receive-buffer (or buffers,
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in the case of multiprotocols) may be shared by packets from many

senders, flow- and congestion-control are not workable; these point-

to-point solution mechanisms cannot address the additive effects of

multiple senders.

In extant message-passing systems (e.g., PVM, P4/Parmacs, LAM/

MPI) clients typically implement work, message sending and message

receiving tasks in a single thread of control. A client thus computes

until it is necessary to send or to receive. Functions for sending, receiv-

ing, or both are invoked as and when necessary. If either sends

or receives involve blocking calls to the OS, an OS context switch

ensues. Once switched, a process regains control at some later

time, but only after the condition for the block has been satisfied.

Though it may appear pointless for a CPU to stay with a process

FIGURE 2 (a) Single-threaded operation in an OS. (b) Integrating threads and pro-
tocols.
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once a blocking call is made, the forced context switch actually pena-

lizes the process. It prevents such a process from continuing with

other useful work that is unrelated to the block, were the process to

have access to such work.

Some systems (e.g., PVM) exploit multiple processes – a daemon and

a compute process – to overlap communication and computation. One

or more OS context switches must take place while daemons talk to

local compute processes. This hampers the ability to both a daemon

and a compute process to attend to their respective receive buffers.

Moreover, communication between compute processes is hindered

by the presence of intermediate daemons. Finally, since such systems

are generally TCP/IP based, integrating services such as scalability,

realtime delivery, and multipoint communication is difficult. P4 suffers

from similar drawbacks and for similar reasons, though daemons are

not used in communication.

To support scalability, it is best to use a single UDP-kernel buffer to

support input from various end-points. As shown in [22], this scheme is

highly effective in reducing the cost of message receipt from multiple

sources. It may appear that packet-loss can be prevented by point-to-

point flow control or congestion control algorithms. But although

the flow of packets in each session may be controlled at a given time,

the aggregate packet flow of all the protocol sessions cannot be

controlled. Such control is particularly difficult when the number of

sessions is large. Given that point-to-point flow control cannot be

used to regulate packet-loss in our environment, we propose smart

scheduling mechanisms as an alternate path to this goal. It may

appear appropriate to increase UDP-buffer size, depending on the

number of protocol sessions in effect. While this may help in alleviating

packet-loss at a receiver, in our experience [21] it does little to reduce

latency. Further, because it is impossible to predict the number of

active sessions a protocol will simultaneously attend to, and because

kernel-shape memory is a precious and limited resource, overestima-

tion in receive-buffer size may sharply curtail the number of processes

or protocols that can be within a host. Also, if instead of using

UDP we are able to directly access a network interface as our best-

effort delivery subsystem, buffer size will be limited not by the

configuration of the system, but by the on-board physical memory

included in the interface.
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Proposed Integration of MultiProtocols and Threads

Consider a multithread version of the standard model, as depicted in

Fig. 2(b). Threads enable distinct functionalities to operate within

a single address space, with low context-switching costs, compared

to the relatively high context-switching costs offered by kernel-level

processes. To simplify discussion, because we emphasize the efficient

scheduling of a receive thread to minimize incoming packet-loss and

latency, we assume that the send and work threads are lumped together

in W.

An OS-level context-switch may occur during execution of any

thread, placing CPU attention on other processes in the system.

When control is returned to the process in question, execution resumes

within the thread preempted by the OS. In general, actions taken by the

OS are outside our (user) control; what is in our control is deciding just

how our process’s CPU time-slice is to be divided between its receive

thread and other threads, given that the goal is to keep packet-loss

and packet-latency low, and work-efficiency high.

A reasonable scheduling scheme entails sharing CPU attention

between send, receive, and work threads is some equitable manner.

Details of a variety of scheduling schemes can be found in [21]. For

example, one simple scheme (but not the best) is to give each thread

a fixed quantum of CPU attention, using a fixed time-slice. A running

thread is preempted by the threads system scheduler when a signal is

generated on time-slice expiry. This fixed-slice, preemptive approach

is taken by the Conch message-passing library [43], which uses a

signal-generated multiplexing scheme.

When the threads system scheduler selects a thread that is ready to

run, it has no way of knowing if the thread will have work to do; a

thread’s work may depend on the thread’s data. Thus, such a thread

begins to run even though to may have work to do. If it finds it has

no work to do, it will typically yield control to the threads scheduler.

If this action is frequent, many unnecessary thread context-switches

are generated. With too small a time-slice, a frequently scheduled

receive thread may tend to find its receive-buffer empty. Even if it

finds its buffer occupied every so often, a small time-slice will cause

the receive thread to be preempted even while it works on removing

packets from the buffer. Both factors – frequent context-switching
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and small receive thread run times – can cause protocol performance

degradation.

Examples: Systems Without Integrated Threads and Protocols

Popular examples of single-threaded systems include PVM [40], P4 [4],

Express [16], Zipcode [39], PARMACS [5], and Conch [43]. These

support a variety of hardware platforms, ranging from HeWNs (het-

erogeneous workstation networks) to hardware DMMPs (distributed

memory multiprocessors), which use XDR [34] to provide data homo-

geneity in heterogeneous environments. Although they all provide

similar services, their interfaces are different. This hinders portability

between implementations. All these systems contributed important

ideas towards a message-passing interface (MPI) standard [33]. PVM

contributed support for dynamic process creation. P4 is known for

its support of shared-memory multiprocessors (SMMPs) and its moni-

tor primitives for coordinating access to shared data. Express built

high-level functions upon messaging primitives to facilitate parallel

computing; it also tackled problems of parallel I/O and dynamic

load balancing. Zipcode introduced the idea of communication con-

texts, to enable the safe implementation of parallel libraries.

PARMACS evolved from P4, and one of its main contributions was

the concept of virtual process topologies. Here, computational nodes

are arranged in a structured manner and referenced by their location

in the structure. For example, if the structure is a two-dimensional

grid, processes can be referenced by their grid coordinates. Conch

and Zipcode also contributed to the field of virtual topologies.

PVM and P4 are perhaps the most successful of these messaging

systems. P4 is currently used as the communication layer of choice

for a portable version of MPI (MPICH [3]). PVM is still widely

used and has served as a low level communication layer for MPI

and Zipcode implementations.

Most message-passing systems for HeWNs, including MPI

libraries, rely on TCP/IP. As a result, scalability is seriously limited.

Some implementations attempted to provide partial solutions. In P4,

a direct connection is established between two nodes only when one

needs to transfer a message to the other. When a process runs out

of connections, however, there is no connection recycling, and the
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application simply fails. Connection recycling would help, but

brings in the added expense of connection management: closing old

unused TCP/IP connections, and opening and maintaining new ones.

The number of simultaneous connections remains relatively small.

PVM and LAM–MPI use communication daemons to enhance

scalability. Though both systems support a fully connected model

using TCP/IP, they also support a more scalable model running on

UDP-based user-level protocols. But the increase in scalability comes

at a high cost: a reduction of at least 50% in throughput and a sharp

increase in latency [22]. Throughput falls mainly because of process

scheduling and store-and-forward overheads at daemons that lie

on message paths. Further, these user-level protocols are usually

incomplete (e.g., PVM–UDP). For example, they may not provide

flow- and congestion-control mechanisms; the consequences can be

disastrous. The lack of adequate control mechanisms makes such

systems function poorly in WAN settings.

Because of a well-recognized need for improved communicability in

irregular applications [18,22] systems proposing application-level

threads services have begun to appear (e.g., TPVM [15], Nexus [18],

LPVM [47], ARIADNE [30,31], PARASOL [28], Chant [23], Nexus [17],

and UPVM [25]). There are many benefits to multithreading,

including support for unpredictable data-access patterns, efficient

and transparent masking of communication and I/O latencies, dynamic

computation schedules, asynchronous operations, and fine-grained

load-balancing. It should be emphasized that the above-mentioned efforts

are all geared towards concurrency enhancements at the application-level.

But, concurrent threads are forced to rely on the old communications

framework (e.g., TCP/IP, or PVMs reliable-UDP) for message

delivery. This leaves intact the problems of layering and poor

protocol/application interactions [41] discussed earlier. Further,

these proposals do not offer solution mechanisms for ‘‘collaborative’’

operations, i.e., multiprotocol support, multiway communication,

efficient integration of realtime communication and computation etc.

Although these systems provide asynchronous communication

primitives to enable overlap of communication and computation, the

application programmer is forced to explicitly poll for incoming

messages. This results in increased computational overheads and

increased programming complexity. Further, these systems cannot
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offer applications the many potential benefits of multithreading

that our design offers: support for unpredictable data-access patterns,

efficient and transparent masking of communication and I/O latencies,

dynamic computation schedules, asynchronous operations, and fine-

grained load-balancing.

3.4. Issues in Threads Scheduling

The basic equation is: how should communication threads be sched-

uled? There are two possible types of solutions: schemes based on I/O

signal or network interrupts, and schemes based on polling. In

interrupt-based algorithms the receive action is initiated from

below, i.e., from the network. In polling algorithms, the receive

action is instantiated periodically from above, i.e., from the upper

layers. Further, polling algorithms can be made to work either adap-

tively or non-adaptively. Adaptive algorithms may repeatedly adjust

their polling frequency to match network input, while non-adaptive

algorithms poll the network at fixed intervals, independently of

network activity.

There are several ways to implement interrupt-based polling. One

way is to process network input directly, within an interrupt handler.

Because most threads systems are not designed to support interrupt

handlers that invoke thread primitives, this may not work if input

processing requires thread primitives; the complex race conditions

that result may be difficult or impossible to detect and solve.

Another way to process network input is to exploit I/O interrupts for

scheduling a receive thread when messages arrive. With this, input

can be processed using thread primitives.

Polling may be implemented in one of three ways. Polling calls may

be embedded by a compiler or a preprocessor at compile-time. This

usually results in inefficient code because compilers or preprocessors

have little or no knowledge of communication patterns that can

arise when the application runs. Similarly, explicit polling calls may

be embedded by the application programmer during code develop-

ment. This also results in inefficiencies, and for the same reason,

in addition to the extra development work for the application

programmer. We believe that it is best to implement an implicit polling
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mechanism within the communication library because this relieves the

application programmer of unnecessary work, and enables run-time

optimizations via adaptive polling strategies.

There are several mechanisms that can potentially support an

integration of threads and protocols. These include OS processes,

user-level threads [30], kernel-level threads [14], scheduler-activations

[1], Filaments [19], Upcalls [7], and user-level processes. A simple

way to integrate user-level protocols with applications is to place

protocols and applications in distinct kernel-level processes which

can communicate via shared-memory or any from of IPC. Having

distinct protection domains facilitates development and debugging.

But because of the high cost of OS process context-switching, this is

only useful for support of coarse-grained parallelism; context-switching

time between kernel-level processes is typically higher than small-mess-

age round-trip latency in modern LANs.

User-level threads offer a highly efficient alternative for integrating

communication and computation. Distinct protocols may run as

threads within a single address-space. Naturally, this yields a big reduc-

tion in application-to-protocol interface costs; these now turn into

function calls and global-memory or heap management issues.

Context-switching time for user-level threads is generally two orders

of magnitude smaller than context-switching times for OS processes

(e.g., ARIADNE threads context-switch in 10–15 ms, while OS processes

may require 500–1000 ms on typical workstations), and only two to

four times the cost of a function call. Scheduling user-level threads

is significantly cheaper than process scheduling, since it does not

require kernel intervention or remapping virtual memory to physical

addresses. User-level threads are portable and do not require modifica-

tions to the kernel.

There are, however, some limitations to user-level threads, stemming

from the loose integration of processes, the OS scheduler, and the

virtual memory system. In general, the kernel is oblivious to the

existence of user threads and so may preempt a process hosting a

high priority thread. Control may be given to a process hosting a

low priority thread, resulting in undesirable behavior. Without

kernel-level threads support, a process blocks whenever one of its

threads blocks on I/O. For multithreaded applications, this is not

a desirable feature. The use of non-blocking calls is a portable and
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effective way of circumventing the latter problem, at the expense of

some increase in programming complexity. Handling OS context

switches on page-faults remains a problem, although [22] not a signifi-

cant one. We propose solutions based on additional support from

kernel-level threads. An alternative is to use Scheduler Activations

[1]. Through a separate interface, the kernel is able to notify processes

of events like page faults, blocked I/O, and preemption. When a pro-

cess is so notified, it can immediately schedule another runnable

thread, thus avoiding an OS context-switch. Also, the kernel is able to

utilize user-space thread priority information in scheduling decisions. A

serious disadvantage is that scheduler-activations are not widely sup-

ported in commercial operating systems, and thus conflict with our

portability requirements.

One might decide to use the ARIADNE threads system because it

supports a crucial feature: preemptive time-slicing. With this, all

runnable threads receive CPU attention in a finite time interval.

Preemption aids in implementation of time-sensitive asynchronous

protocol action which cannot tolerate indefinite delay. Spinlocks are

avoided whenever possible; they are known to perform poorly in the

presence of preemptive time-slicing [2]. Finally we could further

enhance the threads system with an efficient timer-subsystem for

realtime control, using appropriate kernel-threads support.

3.5. Issues in Protocol Structuring and Efficiency

A protocol’s performance is determined by how its implementation is

modularized and integrated with a host OS [22]. Despite TCP/IP’s suc-

cess, its in-kernel, stream-oriented design has hampered the perform-

ance and expandability of distributed computing systems that have

come to rely on it. For example, hard limits on resources within the

kernel renders TCP ineffective2 in the support of large distributed

computations. In Section 3.3, we described a number of systems

which follow the general trend of layering threads systems and services

upon existing protocols and messaging libraries. This is a top-down

2Reconfiguring the OS kernel to redefine limits requires management intervention and
is not a viable alternative because it effects normal machine usage, and hampers system
flexibility and application portability.
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use of threads for enhancing applications. In contrast, we propose a

bottom-up view: eliminate the protocol layering that separates comput-

ing threads from communicating threads, and implement protocols

entirely in terms of threads. Freed from layering constraints, the

communication and computation subsystems can be made to interact

optimally. If all threads are in user-space, the controllable part of

the communication framework is in user-space. Apart from satisfying

the important portability and flexibility requirements [12], this setup

offers the potential for shared-memory multiprocessing of protocol

actions [20].

A basic question is: how should protocols be structured if we

would like to have multiprotocol and realtime support? There are

three possibilities. One is to leave all protocols in the kernel, another

is to place them all in user-space, and the last is to leave some in

the kernel and put others in user-space. There are many advantages

to user-space implementations [42]. New protocol design principles

like Application Level Framing and Integrated Layer Processing [8]

cannot be implemented efficiently in systems where protocols are

not highly sensitive to application needs. For example, regular in-

kernel implementations of TCP/IP do not understand boundaries

imposed by the application on its data, and a TCP layer cannot

deliver data received out-of-order [22].

Protocols implemented in user-space have been shown to perform

at least as efficiently as in-kernal implementations; given adequate

low-level hardware support, user-space implementations have even

outperformed kernal-space implementations [12]. In-kernal protocols

are generally unable to offer an integrated set of data manipulation

functions, such as functions for rapid data presentation and data

movement to and from an application’s address space. Such features

can be critical to the performance of applications like realtime

collaboration which are highly sensitive to rapid data transfer. The

availability of a common threads framework at both the application

and the protocol level enables the efficient integration and optimal

scheduling of communication and computation functions within a

single OS-level process. User-space protocols may implemented

without resorting to distinct OS-level process for computation and

communication, i.e., no communication daemons are necessary.

Finally, this approach provides for scalability in two senses. First,
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multiple protocols transporting, for example, message-data multime-

dia, may be optimally scheduled – without OS context switches –

within a single OS process. Each protocol is handled on a dedicated

socket. Second, each socket may connect to an arbitrary number

of remote sockets with minimal or no kernel involvement.3

Issues in Multiway Communication

Our interest multicast streams directly from its use in implementing

efficient collective operations (e.g., scatter, gather, broadcast), fault-

tolerance algorithms, and support for ‘‘collaborative’’ interactions,

both between solvers and between users at neighboring subdomains.

We seek ways to provide efficient, portable and reliable user-level

multicast as an option in CLMAM’s suite of protocols.

The large scale air pollution models we target at require efficient

service that scale to a large number of nodes (in the order of a 1000

nodes). There are basically two types of reliable multicast protocols

[35], but choosing an appropriate one for an application is not

simple. Sender-initiated multicasts suffer from scalability problems

like ACK implosion. Receiver-initiated multicasts conserve ACK

bandwidth by allowing receivers to initiate packet-retransmission

based on NACKs; this can, however, lead to memory shortage at sen-

ders that do not receive timely feedback on which packets can be dis-

carded. A combination of the two techniques appears to be a

convenient alternative, but some experimentation is needed to confirm

this.

Problems of congestion and flow-control have not been previously

addressed for reliable multicast [6]. Experimental work is crucial

in handling such problems. For example, with widely distributed recei-

vers, timely feedback will enable a sender to determine a near-optimal

sending-rate. Also, if receivers are all treated in the same manner, the

sender is forced to tailor its rate to suit the slowest receiver, or a receiver

with smallest buffering capability. Thus, the main issue involve

congestion-and flow-control, scalability and a lack of standardization;

the latter is readily apparent from the number of different proposals

3The degree of kernel involvement depends on how much of the protocol is implemen-
ted in use-space.
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for multicast protocols, including those described in [46]. Most

systems now support IP multicast [9]. But, providing reliable and

scalable service is nontrivial, and IP traffic may be restricted at

gateways that filter traffic or are not configured for multicast routing.

Note that one might use the idea of ‘‘grouping’’ to split receivers in a

multicast group. In this way, reliable transmission to fast receivers

will not be delayed because of slower receivers.
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APPENDIX

Next we include a brief description (with the basic references) of the set

of software toolkits mentioned so far in this paper. Some of these tools

are already in daily use, others are not fully developed yet. They all

provide the necessary basic blocks for building an effective distributed

air pollution model.

ELLPACK [24] is a problem solving and development environment

for PDE based applications. It is well over a million lines of C and

Fortran code and it was implemented using the ELLPACK language
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and sequential solver libraries as a foundation, and then introducing

finite element methods, foreign system solvers, parallel execution,

and a graphical user interface for problem specification and solution.

The ELLPACK system employs several parallel reuse methodologies

based on the decomposition of discrete geometric data to map sparse

PDE computations to parallel machines. An instance of the system

is available as a Web server for public use at http://pellpack.cs.

purdue.edu.

SCIAGENTS [44] is an agent-based approach to building Multi-

disciplinary Problem Solving Environments which is natural par-

allel and highly scalable; and is especially suited for a distributed

high performance computing environments. It is based on the interface

relaxation methodology [11,36,38]. A SCIAGENTS prototype implemen-

tation has been created which uses the ELLPACK system as its

solver agents. Mediator agents have been created for a class of PDE

problems as well. The system uses the KQML querying language,

makes extensive use of multithreading, and at present runs on Sun/

Solaris machines. A newer version has replaced the command line

oriented input of the earlier version with a GUI which has been

developed in Tcl/tk and the KQML support with an integrated

Agent system.

ARIADNE [30] is a threads system that offers scheduler customizabil-

ity, highly efficient timers, time-slicing, and thread migration. It is

known [30] to be as efficient as other threads systems (including

P-Threads), in addition to offering more functionality (e.g., migration,

accurate internal timers, scheduler customizability). ARACHNE [10] is a

sister threads system that supports migration between heterogeneous

computing platforms. It is been shown to be more efficient that

P-threads. The Ariadne system [30] consists of three layers: the

bottom layer contains the kernel, the middle layer provides threads

support, and the top layer provides customization support. The

kernel layer facilitates thread creation, initialization, destruction, and

context-switching; it uses an internal priority-queue based scheduler.

The support layer enables applications to use threads via supervised

kernel access and offers customization support, i.e., for shared-

memory access, thread migration, distributed computations and spe-

cialized schedulers. The customization layer provides independent

modules that aid in customization, e.g., schedulers for sequential and
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parallel simulation [28]. The ARACHNE [10] threads system is a sister

threads system that, in addition to ARIADNE’s functionality, also

supports efficient thread migration between heterogeneous platforms.

As shown in [30], ARIADNE is as efficient as other threads systems,

including POSIX threads, and offers significantly more functionality

(e.g., migration, accurate internal timers, scheduler customizability),

and ARACHNE is even more efficient than POSIX threads [10].

CLAM is a connectionless, light weight and multiway communication

architecture [20–22] designed to address the requirements listed above

and, in particular, to support scalable, high-performance and colla-

borative applications that manage multimodal data. Experimental

design of CLAM components, and their relationship to the other systems

mentioned here will form the major part of the proposed work. Instead

of a heavy cumbersome functionality, CLAM offers a plug-and-play

methodology with its protocol suite [20]. It is layered on top of the

ARIADNE threads library [30] and the UDP protocol, but it can be

ported to any ‘‘best-effort’’ communication system. It consists of a soft-

ware layer that offers runtime support for global process management,

and three native protocol modules: an unreliable module which pro-

vides efficient unreliable uni-and multicast, a module which provides

reliable multicast, and a reliable module which is described below.

Each protocol module is implemented with a specific set of communi-

cating threads, depending on the functionality required. For example,

the reliable module requires three threads (i.e., a receive, a send and a

timer thread); the unreliable module requires only a receive thread.

PARASOl [26–28] is a parallel simulation system based on the pro-

cess-interaction (i.e., migrant threads) paradigm, and uses optimistic

and speculative [26,27] synchronization protocols. Instead of using

timestamped message for communication and synchronization

between ‘‘discrete-event simulation solvers’’ as done in other systems,

PARASOL exploits a highly effective transparent thread migration

facility to obtain a more powerful programming interface at the

application level. Indeed, this transparency leads to greatly simplified

model development for many simulation problems, and was an im-

portant design consideration [26]. PARASOL presents a programming

environment that offers migratable threads – dynamic, computa-

tional units with some private data – and a set of global objects.

Both transactions and objects are distributed among the physical
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processors hosting a simulation. Threads, which are dynamically cre-

ated and destroyed, usually spend their time either performing local

computations or accessing objects. To access an object located at a

remote process, a transaction migrates to the process where the

object is located, thus enhancing locality.
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