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ABSTRACT 

We consider the formulation of the Schwatz alternating method 

for a new class of elliptic cubic spline collocation discmtization 

schemes. The convergence of the method is studied using Jacobi and 

Gauss-Seidel iterative methods for implementing the interaction 

among subdomains. The Schwa= Cubic Spline Collocation (SCSC) 

method is formulated for hypercube architectures and implemented 

on the NCUBE (128 processors) machine. The performance and con- 

vergence of the hypercube SCSC algorithm is studied with respect to 

domain partition and subdomain overlapping area. The numerical 

results indicate that the partition and mapping of the SCSC on the 

NCUBE is almost optimal while the speedup obtained is similar to 

other domain decomposition techniques. 

1. INTRODUCTION 

In this paper we consider the parallelization of a new cubic 

spline collocation scheme [Hous 88a] for solving elliptic Partial Dif- 

ferential Equations (PDEs) following the basic idea of the Schwas 

alternating method (SAM). Recently a large number of papers ( 
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2.1. The Cubic Spline Collocation Method. 

In this section we give a brief description of the Cubic Spline 

Collocation method. We are interesting in approximating the solu- 

tion u (X y ) of the elliptic linear partial differential equation 
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[Bjor 861, [Ehrl86], [Keye 871, [Meie 871, [Rodr 84.861, [Tang 871). 

analyze the convergence and complexity of the method while con- 

clude that SAM is a powerful alternative for solving elliptic PDEs in 

parallel architectures. 

It appears that tbcre is limited information about the perfor- 

mance of the method on real parallel machines. The objective of this 

study is to identify the dominant parameters of SAM and study its 

performance with respect to various parameter values. Specifically in 

section 2 we formulate SAM for the cubic spline collocation equa- 

tions corresponding to a model problem. Funher we study its conver- 

gence characteristics when the interaction among subdomains is 

implemented according to Jacobi and Gauss-Seidel iterative 

schemes. In section 3 we present a hypercube implementation of 

SCSC and analyze its complexjty. Finally in section 4 we present the 

performance of the method measured by the execution time and 

speedups obtained as a function of domain partition and subdomain 

overlapping area. This results almost optimal mapping of the compu- 

tation (SCSC) on the NCUBE machine and similar speedups as other 

domain decomposition methods [Keye 871. 

2. SCHWARZ CUBIC SPLINE COLLOCATION. 



subject to homogeneous Dirichlet or Neumann boundary conditions 

h - 0 on an = b0~ndruy 0f R 

whereBu isu,D,u orD,u. 

(2.2) 

The Cubic Splme Collocation method introduced in [HOW 88a] 

involves the determination of the bicubic spline piecewise polyno- 

mial U,(XY)v over a uniform partition 

A~{x~=a+kh,:k=ON}xIy,=c+~~,:~=OtoM}ofR,that 

satisfies exactly the boundary conditions and an operator equation 

L’u,, = -f at the interior grid points Q, of A, and additional sphne 

end conditions. Here L’ is a high order perturbation of L and can be 

described, at the interior notes a, by stencil S.l. For later use we 

denote by fi, the boundary nodes of A except the comer points S2c. 

~[uD~S(Z~, yj) + ~DzS(zia %)I 
+jD:S(G-1,Yj) +6D,S(Xi, Yj) + +S(%r Yj) sD;s(2i+l> Yjl 

+pD,DyS(zi,Yj) + Cs(+i,Yj) 

&DYjS(zi,Yj-l) 

Stencil S-1. Definition of L’S in terms of the cubic spline interpolant 
S and its derivatives at n, grid points. 

The convergence and the applicability of the method are discussed in 

[Hous 881. It has been shown that the method can be integrated suc- 

cessfully with iterative methods and runs more efficiently than COIIO- 

cation methods based on Hermite cubits and Galerkin methods 

based on cubic splines. Three implementations of the method exist 

in ELLPACK [Rice 853 for various forms of the equation (2.1) and 

mixed Dirichlet or Neumann boundary conditions on parts of the 

boundary. In this section we consider the interior formulation of the 

Cubic Spline Collocation method for the Laplace equation on the 

unit square A detailed analysis of the Schwatz Cubic spline Colh- 

cation for general elliptic operators and for the one and two step for- 

mulations is given in [Hous 88b]. 

In order to determine the corresponding discrete equations we 

adopt the following representation of u,, 

U&by) = 5 5 uij BiCr)BiCy) (2.3) 
id) j4 

where the Bi ’ s arc the basis functions for the one-dimensional cubic 

spliies space that satisfy exactly the boundary conditions. We deter- 

mine ~1~ such that it satisfies 

(9 the interior collocation equations in Q, : 

[ L~ub-(-f)](*J,)=o 

where L ’ is defined by Stencil ~3.1 with $ E 6 c E Eo and 

aEy=l, 

(ii) the boundary collocation equations in f& : 

D,‘u~ = -fiJ or Dy2ub = -fiti. 

(iii) and the corner collocation equations in & : 

D,ZD,~U,=-DI~~~~. 

The boundary azzd corner collocation equations can be expli- 

citly solved to obtain the boundary Ul-lkIlOwnS 

Uijv i = 0,A’ and j = O,l,...&f and Uij, i = 1.2 . . . . ,iV-1 and j = 0.M. 

After the elimination of the above unknowns the interior equations 

can be written in a mauix form as 

AU=b 
(2.4) 

where A is a quintdiagonal block matrix of the following form: 

r 
Ul 

U2 

*t 

U,+, 

z 

b-1 

Ul 

“N-Z 

UN-, 

Notice that all blocks in A am (M-l)x(M-I) matrices where 

C,-, = El = quindiag(1,16,14,16,1) with M CJ!, = c,, w-1 = 13 

DNml = D, = quindiag(4,13,-148.13.4) with Dhl$ = DNM_;1#*’ = -152 

and the rest of the black matrices Bi, Ci, Di, Ei and Fi are 

Bi = Fi = tridiag(lP.1). Ci = I$ = quindiag(l,16,14,16.1) and 



Di = quinding(4,14,-1~,14,4). Assuming that the equations or allo- 

Cation pints have been ordered with respect to vertical mesh lines 

from left to right, the solution vector consists of the components 

Ui = [ ui,l, Ui.7, , . . B UiM-2, L’i,+,-1 T . The right hand side vector 1 
involves the values of the function f and the effect of the eliminadon 

of the boundary conditions. 

2.2. The Schwarz Cubic Spline Collocation Method. 

For simplicity oi the presentation we decompose the domain R 

intO two overlapping subdomains a, and 4 as show in Figure 2.1. 

Also without loss of generality we assume that the new boundary 

fines AB and CD are the I* and the k* grid lines in the x direction 

respectively. 

c A 

I I I I 
I . - . . 
I 

- i 

--r! 
I 

I 
1 
I I : 
i 1 

D B 

Figure 2.1. Two vertical overlapping subdomains. 

According to Schwatz splitting scheme the original problem 

(2. l), (2.2) can be formulated as two coupled problems, 

Lu, =-f in Cl, u2 on line AL3 

BUI = 81 on an,’ 81= (2.5) 
0 on rhe other boundary lines of Xl, 

and 

Luz = -f in q u, on line CD 

BU,= g2 on any 8~~ (2.6) 
0 on the other boundary lines of a& 

The Schwarz Alternating Algorithm starts by giving u2 an ini- 

tial guess on the boundary line AB. Then (2.5) is solved and its solu- 

tion is used to determine f2 on CD. Finally (2.5) is solved and its 

solution is used to determine 6,. The entire process is repeated until 

appropriate stopping criterion is satisfied, 

The Schwarz Cubic Spline Collocation (SCSC) method con- 

sists of discretizing the subproblems (2.5) and (2.6) using the Cubic 

Spline Collocation method described in section 2.1 while the interac- 

tion between the subproblems is computed by an iterative method. 

For both the convergence analysis and the implementation of the 

method, it is more convenient to formulate the SCSC method at the 

discretization level. 

The above described Schwa= Alternating Algorithm can be 

viewed (see [Meie 861, [Rodr 841, [Tang 871) as a 2x2 Block Gauss- 

Seidel iteration of the following matrix equath 

A-&[ ,"I ;J [ ;:I = [ ::]. 

where 

u’ = [u,.u,, . . JJ,] T, u2= [udJ,,I,. . . .U”-J T* 

.b,l T, b2= [b&+w . . ,b,+;lT> 
4 L J 

, Ala 

(2.7) 

I 
I 
I 0 
I 
I 
I 

and KS 
oi-- I 

I IO . 
I 0 I 
I I _ 

The general case of decomposing the domain in both horizontal 

and venical directions is presented in detail in [Hous 88b]. 

2.3. Iterative methods for Subproblem Interaction. 

Recently, it has been noticed that the choice of Gauss-Seidel as 

the iterative scheme for handling the interaction between the sub- 

problems might not be the best. Its slow convergence forced many 

researchers, [Bjor 861, [Ehrl 861, [Keye 871, [Meie 861, [Tang 871, to 

apply, successfully, SOR and preconditioned conjugate gradient 

acceleration techniques. Theoretical results on the convergence rates 

and the choice of the optimum acceleration parameters are also avail- 

able, but the computational cost to estimate these parameters is not 
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fully analyzed. Also the Jacobi method has been considered in [Rodr 

841, [Tang 871. Its advantage is its inherent parallelism. 

In this paper we will consider only the Jacobi and Gauss-Seidel 

iterative schemes. Their convergence properties are studied in [HOW 

88b] and summarized hem in the following theorem. 

Theorem 2.1 The Jacobi and Gauss-Seidel Schwarz Cubic Spline 

Collocation Methods converge from any initial approximation. 

Furthermore the spectral radius of the Gauss-Se&l iteration matrir 

is half the spectral radius of the Jacobi iteration matrix. 

The SCSC method is dominated by a number of parameters, 

ranging from non overlapping strips to overlapping subdomains with 

arbitrary area. In this paper we consider only partitions of strips or 

boxes of equal area. This resniction greatly simplifies the formula- 

tion and analysis of the method and it is not an unreasonable con- 

straint for smooth elliptic problems on rectangular domains. 

Before implementing SCSC in parallel, it is essential to exam- 

ine the dominance of parameters like the number of subdomains, the 

number of iterations, the size of the overlapping area and the type of 

domain partition on the convergence and complexity of SCSC on 

sequential machines. The SCSC algorithm can be described as 

STEP 0 discretize 

STEP 1 for id = 1,2,... number_of_subdomains do: 
I-factor matrix(id) 

STEP 2 for iter = 1,2,... until convergence do: 
1 for id = 1, number of subdomains do: 
1 1 back-sotve matrti(id) 
I-l-update rhs(id) 

At Step 0 we apply the one step interior Cubic Spline Colloca- 

tion to fonn the coefficient matrix and the right hand side on the 

whole domain. At Step 1 we use band Gauss elimination to factor the 

coefficient matrices of all subdomains. At Step 2 we back solve these 

matrices, update the tight hand sides and iterate until convergence. 

It is cIear that the number of iterations is not such a dominant 

performance factor since most of the time is spend at Step 0 to factor 

the matrices. This suggests that Jacobi’s slow convergence might 

not be a serious disadvantage. Specifically, the application of Cubic 

Spline Collocation on an nxm interior grid points leads to a 

coefficient of size nmxnm and bandwidth w = 2m + 1. Assuming 

that the ordering of the equations is done from bottom to top. left to 

right, the number of operations to factor this matrix is nmw(w+l) 

while the cost to back solve it is nm(2w+l). It is important to notice 

that when we decompose the domain in horizontal strips we decrease 

m (the number of grid lines in y direction), and the bandwidth w 

while n {the number of grid tines in x direction) is kept constant. The 

opposite is true in case of vertical strip decomposition. In Figure 2.2 

we give the total (steps 0, 1 and 2) VAX 8600 time in seconds to 

solve the self adjoint equation 

LJ,(e’yL+) + D~(c-~Dxu) - ul(l+x+y)cf(xy) with Dirichlet boun- 

dary conditions on the unit square as a function of the number of non 

overlapping vertical or horizontal strips for several grids. The con- 

vergence tolerance for each grid size is selected in such a way that it 

guarantees the foutth order convergence. The data indicate that the 

non overlapping domain decomposition effects the complexity or 

performance of the sequential SCSC. 

Time 

86 _____---- 
____--- 

r--- 
I’ 

16 #’ 
,’ 

66 ,’ 

56 

46 

36 

26 

16 

6 

_____------ 
_---- 

33x33 pid 

I I I I I I I 1 

1 2 3 4 5 6 7 8 ; 

Number of subdomains 

Figure 2.2. Timing in seconds of the sequential SCSC on VAX 8600 
in double precision. The solid lines correspond to a 
domain decomposition in horizontal non overlapping 
strips while the dashed lines in vertical non overlapping 
strips. 

One can also figure out that the increase of the number of the sub- 
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domains does not increase dramatically the total cpu time while 

increases significantly the parallelism. 

3. A I-M’ERCUBE REAUZATIUN OF SCSC METHOD. 

To assure load balancing we restrict ourselves to the homo- 

geneous case, where all subdomains are of the same sip. In addi- 

tion, we assume that the number of processors we use is equal to the 

number of subdomains. We start by considering the particularly 

simple decomposition given in Figure 3.1(a) and partition the com- 

putation of SCSC by simply assigning one processor to each sub- 

domain. 

(a) 0) 

Figure 3.1. A simple 3x3 decomposition (a) and a subdomain with its 
data dependencies (b). 

It is clear that neighbor processors share some degrees of free- 

dom (the time symbol x’s in Figure 4.1(b) ) which are associated 

with the boundary of neighbor subdomains. Thus each processor 

needs to send the values of these unknowns to neighbor processors 

which must update the corresponding right hand sides accordingly. 

If we assume that in each subdomain we use an nixmi grid then 

within one iteration, the amount of data to be communicated is 

A comm = 4( ni + mi + 3 ) while the total amount of computation (to 

update the right hand side and back solve) is 

A camp = 12( ni + mi ) + * 2( mi + 1). It is important to notice that 

A 
the ratio Refl = F decreases as we increase the local grid nixmi 

camp 

while is independent of the number of subdomains. 

(HSCSC) is executed on the host processor and consists of discretiz- 

ing problem (2.1), (2.2) over domain R using Cubic Spline 

Collocation, by forming the global collocation coefficient matrix. 

Furthermore, the host processor sends the local coefficient matrices 

corresponding to various subdomains to the associated processor 

nodes, together with an initial guess of the corresponding degrees of 

freedom. The second step takes place at each processor node and 

consists of the factorization of each local coefficient man-ix. 

(4 @) 

Figure 3.2. Communication schemes for (a) Jacobi 
and (b) Gauss-Seidel of the first two iterations 
for the 3x3 decomposition given in Figure 3.1(a). 

If we use the Gauss-Seidel iteration scheme to implement the 

interaction among subdomains then each node processor gets the 

values of the degrees of freedom left to its left boundary from its 

nearest neighbor in the west direction as shown in Figure 3.1(b) and 

the corresponding degrees of freedom from the nearest neighbor in 

the south dire&on before updating the right hand side and back solv- 

ing. Next, it sends the appropriate data to the west, north, south and 

east neighbor and waits to get data from the north and west before 

starting the next iteration. In Jacobi, at the beginning. all processors 

become fully utilized by working on each subdomain. When they 

f&h they all send and receive data from neighbors and start work- 

ing on the next iteration. In Figure 3.2 we give the data dependence 

graph of the proposed parallel Jacobi and Gauss-Seidel iterations. 

The above iterative procedures can be described in pseudo C ’ 

code as follows : 

The first step of the hypercube implementation of SCSC 
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HOST PROGRAM 

call init; 
call generate~collocation_matrix; 

for ( node = I; node < number-of-subdomainr; node++ ) { 
call sendparameters(node); 
call send-local-matrix(node); 
call get-local-solurion(node); 

I 

call form-solution; 

NODE PROGRAM (GAUSS-SEIDEL) 

call getgarameters; 
call get-local-matrix; 
call factor matrix; 

for ( iter = I; iter c mar_iterationr; iter++ ) ( 
call get-so/ution(south.west); 
call modi&rhs 
call backsolve; 
call send~solution(twrth,east,south,west); 
call get-solution(north,east); 

I 

call send_local-solution(host); 

NODE PROGRAM (JACOBI) 

call getgarameters: 
call get-local-matrix; 
call factor matrix; 

for ( iter = I; iter < W-iterations; iter++ ) ( 
call modify_rhs 
call backsolve; 
call send-solution(north,east,south,west); 
call get-solution(north,east,south,west); 

I 

call setu~local~solution(host); 

4. NUMERICAL EXPERIMENTS ON THE NCLJBti7 (128 

processors). 

In this section we present the numerical performance of 

HSCSC in double precision on an NCUBE/7 hypercube machine 

with 128 processors. In all experiments, we have applied HSCSC on 

the self adjoint elliptic equation 

D,(ewD,u) + Dy(ewqD,u) - ul(l+x+y)=f(x,y) (4.1) 

with Dirichlet boundary conditions on the unit square. The right 

hand side f corresponds to the exact solution 

u = 0.75e”sin(xx)sin(rcy). In these experiments, the local to each 

processor, linear system of equations is solved by Gauss elimination 

using the LINPACK routines for banded matrices DGBFA and 

DGBSL. The convergence tolerance for each grid size is selected in 

such a way that guarantees the fourth order convergence of the Cubic 

Spline Collocation. All timings are given in seconds. 
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3so 
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700 

z 
21 
.m 
.33 
21 

.n 
54 

1.41 
.a 
.35 
.45 
n 

20.6. 
10.5 
23.2 
9.4 
4.9 
7.0 
3.6 

2&v 
20.7 
9.7 
155 
7.2 

5- l 

40.3 

18.0 
30.1 
12.8 
7.8 
10.5 
6.7 

1445* 
485 
89.3 

34.0 
18.7 
27.2 
14.4 

329.6. 
756 
37.4 
595 
28.0 

19495’ 
192.5 
346.8 
1428 
83.3 

117.3 

JACOBI 

lmticns tim. 

11 .I6 
17 .31 
23 .14 

16 53 
22 1.02 
31 4.5 
37 .n 
42 .33 
49 .21 

21 1.9 
31 17.4 
43 6.9 
55 3.8 
63 5.1 
76 3.0 

57 IS.8 
71 75 
81 11.2 
99 5.6 

74 321 
91 14.2 

105 223 
125 105 
164 6.8 
187 8.5 
232 5.8 

131 39.1 
151 66.6 
182 28.3 
245 16.9 
286 227 
347 n.3 

736 615 
314 327 
s75 49.1 
458 25.6 

1191 1729 
68s 290.7 
832 125.0 

1175 79.0 
1340 107.1 

Table 4.1. Timing and number of iterations of HSCSC for non 
overlapping subdomains. (* predicted value) 

In Table 4.1, we summarize the performance of HSCSC 

method on the NCUBEP. Various configurations are used and in the 

first column we give the order of the corresponding subcube. The 

second column gives the grid used to discretize the original domain 

and the fourth column gives the grid used for each subdomain. The 

third column gives the number of non-overlapping subdomains in x 

and y directions that fits to the current NCUBE configuration. The 

error achieved is reported in the fifth column. It is easy to see the 
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optimal fourth order convergence of the Cubic Spline Collocation 

method, Columns six and eight give the number of iterations needed 

by Jacobi and Gauss-Seidel schemes to achieve the discretization 

error. It is important to notice that Gauss-Seidel needs precisely half 

the number of iterations that Jacobi needs. That was expected since 

from Theorem 2.1 we know that the spectral radius of the Gauss- 

Seidel is half the spectral radius of the Jacobi. It can also be seen 

that the direction of splitting is a dominating factor for the parallel 

performance, but not as strong as in the sequential case, Wnally in 

column seven and nine we list the total cpu time (the time to read 

data from the host processor is not included). Based on the above 

data the Jacobi scheme is at least 10 percent faster than the Gauss- 

Seidel scheme. 

Table 4.2 is similar to Table 4.1 but involves overlapping sub- 

domains. In column five, we list the size of the overlapping area, 

More specifically we give the number of horizontal and vertical grid 

lines that are common to two subdomains. According to these data 

the increase of overlapping area resnhs in rapid decrease of the 

number of iteration and the execution time for both Jacobi and 

Gauss-Seidel. It should be noticed that even for overlapping sub- 

domains the Jacobi scheme is faster and that the Gauss-Seidel 

requires precicely half the number of Jacobi iterations. 

In Table 4.3 we present the relative speedups achieved for the 

data given in Table 4.1, as the ratio of the execution times with two 

different NcubeD configurations on the same size problem. 

Specifically in the second and third cohunns we give the number of 

node processors used and in the last two columns the associated time 

ratio for Gauss-Seidel and Jacobi iterations. 

Comparing these data against the relative speedups of domain 

decomposition methods for the Laplace equation presented in [Keye 

871 we GUI claim that the Schwarz splitting can be implemented at 

least as effectively as the domain decomposition methods For the 

spline collocation methods. 
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rcntimr time 

10 .zi 23 .14 

5 1.29 10 .73 

3 1.87 8 22, 

IS .64 31 .4s 

8 3.14 16 221 

S 4.69 10 2.49 

4 6.41 7 289 

3 8.50 5 3.76 

2s 37 49 .21 

9 4.93 19 200 

22 9.4 43 69 

11 6.8 22 5.6 

8 I a.9 15 5.8 

6 13.1 11 6.4 

4 16.1 9 7.7 

37 3.6 76 3.0 

14 83 2s 3.8 

29 20.7 57 15.8 

1s 11.4 29 120 

10 20.4 20 122 

so 7.2 99 5.6 

18 13.8 31 6.8 

62 1ZS 12.5 10.5 

22 sm.7 46 iO.4 

14 423 29 2n.b 

91 34.0 112 23.3 

33 44.2 68 24.6 

Table 4.2. Tuning and number of iterations of HSCSC 
algorithm for overlapping subdomains. 

I II I .,.. 1 

global grid p ) q 
13x13 2 ) 8 
17x17 2 I 8 

lP 1 IP 

Gauss-Seidel 1 Jacobi 
2.00 1 2.12 
2.14 I 2.08 

Table 43. Relative speedups of HSCSC with Jacobi and Gauss- 
Seidel iteration schemes For the data given in Table 4.1. 
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Figure 4.3. Percentage of the cpu time spent for communication and 
synchronization as a function of the number of 
processors, Solid lines represent the Jacobi and dashed 
lines the Gauss-Seidel iterations. 
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Figure 4.4. Speedups of HSCSC with Jacobi (solid lines) and 
Gauss-Seidel (dashed lines) iteration schemes for the 
data given in Table 4.1. (Speedup has been obtained 
with respect to sequential SCSC.) 

Recently, ([Luba 841, [Reed 841) has been realized that in 

parallel iterative methods one can avoid the synchronization penalty 

using a chaotic iterative scheme. In earljer work [Hous 871 we 

developed an asynchronous iterative method for the solution of a 

class of elliptic PDEs on bus architecture machines With success. 

With this in mind we have tried to remove synchronization from the 

SCSC algorithms described in section 4.1. The new iterative scheme 

converges unreasonable slow and the cpu time increases 

significantly. 
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