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ABSTRACT 

In the parallel ELLBACK (//ELLPACK) project we are deveIoping a library of parallel iterative methods for 
distributed memory multiprocessor systems and software tools for partitioning and allocation of the underlying 
computations. In this paper we discuss the implementation issues within the JELLPACK environment and present 
preliminary performance results of some of the modules on three hypercube based architectures: NCUBE, iPSC/l 
and iPSC2. These results indicate that the iterative methods are capabIe of delivering close to optimal scaled speed- 
ups while the combination of concurrent/vector processing can lead to sizable improvements of the overall perfor- 
mance. These experiments have shown that distributed memory systems are capable of solving significantly large 
problems effectively. 

1. INTRODUCTION 

In this paper we discuss the implementation of a 
library of pam.UeI iterative methods (//IPACK) for 
solving large linear systems of algebraic equations 
obtained by discretizing elliptic partial differential 
equations (PDEs) with various finite element and 
difference schemes. Preliminary performance results 
are reported for some of the modules for three existing 
hypercube machines. This library currently consists of 
the 12 modules listed in Table 1.1 using well known 
iterative methods and ordering schemes. 

For the efficient development of new parallel elliptic 
solvers and the transformation of existing ones from 
the sequential ELLPACK system, we have developed 
and implemened a parallel software environment 
~HOUS 89a] for distributed memory multiprocessor 
systems. The architecture of this system is described 
in Section 2, its current functionality is capable of 
supponing geom.fwy decomposition methods at the 
levels of the user interface and solution process. All 
the domain splitting solvers are driven by a geometry 
decomposirion tool described in mous 89b] and [Chri 
891. 

//ITPACK module 

Jacobi-CG 
Jacobi-53 
SOR 
SSOR-CG 
SSOR-SI 
Jacobi Schwatz 
GS Schwarz 

Ordering Scheme 

block, mow-head 
block, arrow-head 
block arrow-head 
block. mow-head 
block, arrow-head 
block 
block 

Method 

Jacobi conjugate gradient 
Jacobi with Chebyshev acceleration 
Successive Over-Relaxation 
Symmetric SOR conjugate gradient 
Symmeuic SOR with Chebyshev acceleration 
Schwaxz splitig with Jacobi iteration 
Schwarz splitting with Gauss-Seidel iteration 

Table 1.1 Parallel iterative methods in the //TI’F’ACK library. 
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The parallel block iterative schemes are based on the 
sequential modules in the ELLPACK system which 
are also driven by the geometry decomposition tool. 
The iterative Schwarz splitting schemes are formulat- 
ed on subdomains which are implicitly defined 
through the non-overlapping domain splitting pro- 
duced by the decomposition tool and an overlapping 
parameter. The paper is organized as follows. Sec- 
tion 2 contains a brief description of the proposed ar- 
chitecture for the //ELLPACK system. 

In Section 3 we present the parallel implementa- 
tion strategies used and discuss their communication 
complexity. Performance results obtained on Ncube, 
iPSC/l and iPSC/2 hypercube machines are presented 
and discussed in Section 4. A summary of the experi- 
ence gained so far is included in Section 5. 

2. PARALLEL ELLPACK ARCHITECTURE 

The overall design objective of the //ELLPACK 
is the creation of a uniform programming environment 
in which parallel software modules associated with the 
components of PDE solvers can be implemented and 
interfaced with minimum effort. The transformation of 
the existing sequential ELLPACK modules to parallel 
versions was another important consideration that 
influenced the design of //ELLPACK system. Follow- 
ing the ELLPACK conventions, a parallel PDE solver 
either consists of a set of modules realizing the various 
steps of the PDE solution or a single module. In 
ELLPACK terminology this solvers are called multi- 
phase or triples. In the current implementation of 
//ELLPACK architecture, the partition and the alloca- 
tion of the underlying computation takes place at the 
discrete geometrical data structures (mesh data). This 
phase is implemented by the geometry decomposition 
tool [Hous 89b] which is supported by a number of 
automatic mapping algorithms [Chri 891. In the 
//ELLPACK library we implement and study linear 
solvers which assume block or substructuring order- 
ing of algebraic data defined with respect to a 
predefined mesh decomposition. In contrast with 
ELLPACK, the indexing of the algebraic data in 
//ELLPACK takes place prior to the generation of 
these data. This sequencing is necessary for reducing 
the communication overhead among processors. For 
the so called multi-phase PDE solvers, we have gen- 
eralized the ELLPACK interfaces among the various 
modules [Hous 89af in order to accommodate the 
geometry decomposition, indexing communication 
interfaces and I/O parameters and data structures. 
Specifically, a parallel multi-phase elliptic PDE solver 
consists of eight primitive modules: domain discreti- 
zation, mesh generation, indexing, discretization, 
discrete system solution, post processing of the solu- 

tion and computation back play. Currently the first 
three modules are executed at the host or fast remote 
servers. The indexing takes place at the host while the 
interfaces of these modules are broadcast to all pro- 
cessing elements of the targeted architecture. Each 
individual processor is responsible for the generation 
of the equations associated with the assigned sub- 
domains and setting up the communication interfaces 
among them, all this is guided by the decomposition 
tool. The algebraic data are stored locally in sparse 
mode together with global indexing information. The 
communication interfaces depend on the ordering 
scheme used and are defined in terms of the local and 
global information generated by the domain processor 
and the indexing module. In order to implement the 
back play of the parallel execution, we use the 
SEECUBE tool [Couc 871. 

3. A LIBRARY OF PARALLEL ITERATIVE 
METHODS 

One of the objectives of the //ELLPACK project 
is the design and the implementation of an efficient 
portable general purpose library of iterative methods 
for the solution of large PDE discretization systems of 
arbitrary PDE domain geometry. This library is 
designed to operate efficiently on distributed memory 
multiprocessor machines. The modules in this library 
are driven by two tools the geometry decomposition 
tool described in [Hous 89b] and [Chri 891, and an 
expert system that supports the selection of the 
appropriate solution modules and their parameters. The 
proposed library currently consists of the ITPACK 
methods implemented under two different orderings 
and two iterative schemes based on Schwarz splitting. 
These are four semi-iterative schemes with conjugate 
gradient and Chebyshev acceleration and the basic 
SOR method implemented using block and substruc- 
turing orderings of the equations and the correspond- 
ing unknowns. In the block ordering we assume a 
geometry decomposition of contiguous elements which 
results in a rowwise partition of the associated alge- 
braic data structures of Au =J Each processor i is 
assigned the computation associated with ri consecu- 
tive rows of the matrix A and the corresponding slice 
of the unknown u and the right hand side J Depend- 
ing on the discretization method (or the block structure 
of the coefficient matrix A) and the hardware 
configuration (number of processors) selected (see Fig- 
ure 3.1) we map the partitioned data structure onto an 
interconnection scheme (ring, grid, etc) which can be 
embedded into a hypercube ensemble of processors, 
In this way we have communication only between 
nearest neighbor nodes. 
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@> 2-d grid 
Figure 3.1 Data structure obtained from the block order- 

ing scheme. 

The substructuring ordering is defined with 
respect to some decomposition or splitting of the asso- 
ciated discrete geometric data structures into a number 
of non-overlapping subdomains. In [Chri 891 and 
IJIous 89b] this partition problem is studied and an 
appropriate algorithmic infrastructure is developed for 
its automatic solution. In this ordering scheme the 
algebraic data associated with subdomain interfaces are 
ordered last while the rest are ordered first. This leads 
to the Arrow-Head structure indicating in Figure 3.2. 
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Figure 3.2 Arrow-Head structure obtained by the sub- 
slr~cturing ordering scheme. 

For the implementation of the Schwarz splitting 
modules we derive them from non-overlapping domain 
decompositions and the overlapping region is defined 
implicitly by expanding these substructures or 
superelements. The amount of overlapping is a fixed 
parameter for all subdomains and it is considered as an 
acceleration parameter. 

For the modules of the //ITPACK the initial esti- 
mation of the solution and various acceleration param- 
eters are implicitly calculated inside each module or 
are provided by the expert system front-end. Finally, 
stopping criteria similar to the ones used in sequential 
ITPACK [Rice 851 are employed. For the description 
of the iterative schemes included in //ITPACK we 
assume thought the scaled splitting (144)~ = c of 
the discrete equations, with L being a strictly lower tri- 
angular matrix and U being a strictly upper triangular 
one. In the next subsection we indicate some impor- 
tant implementation issues related to the parallel for- 
mulation of the methods in Table 1.1. 

3.1 Parallel SOR 

Assuming the above mentioned (I-L-U) split- 
ting of the matrix A, the nA iteration of the SOR 
method is given by 

u(n+l) = (-@u ~“+‘~+uu~“~+c)c(l-o)u~“~ (34 

where cc is the overrelaxation parameter. The first SOR 
iteration uses w=l and a heuristic procedure is used to 
estimate the optimum relaxation factor 0. 

First, we consider the SOR implementation over 
the block structures of Figure 3.1. Since SOR reuses 
updated values as soon as they are available, each pro- 
cessor must wait for the previous processors’ updates 
before it starts working on its equations. In this imple- 
mentation we paralIelize the SOR iterations in a pipe- 
lined fashion. It is known that pipelining combined 
with global broadcasts leads to a serial execution. 
Thus, we use a pipeline technique to calculate the 
vector/vector operations for avoiding global broad- 
casts. A number of specific details about the imple- 
mentation of the algorithm are worth pointing out 
Before the scaling of the matrix A and the right hand 
side vector f we communicate the diagonal entries of A 
in a nearest neighbor fashion. More precisely each 
node receives the associated diagonal entries from the 
nearest neighbors (right and left in the ring case and 
north, south, west and east in the grid case) and sends 
its own entries. Within each iteration we first receive 
the updated values of the unknown vector u from the 
“previous” (right in ring case and south and west in the 
grid case) processors. Next the updating of the local 
unknowns takes place and these values are sent to the 
“next” processors (left in the ring case and north and 
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east in the grid case). The calculation of the inner pro- 
ducts take place locally and a similar communication 
scheme is used to form the various norms globally. 
Finally only the last processor applies the stopping test 
and sends a “halt” flag to the others when convergence 
has been reached. It is clear from the above discussion 
that only nearest neighbor data transfer is used while 
we overlap communication with computation as much 
as possible. Furthermore, it can be seen that for this 
implementation we need more iterations than the 
sequential SOR method to reach convergence. 

Second, we present the formulation of the 
domain decomposition SOR. In this case, it is 
assumed that the algebraic data axe stored in an 
arrow-head structure (Figure 3.2) where each diagonal 
block and its corresponding coupling interface matrix 
are stored in different processors. For the interface 
equations there are three mapping alternatives. They 
can be allocated to 

1) 

2) 

a single processor, or 

be partitioned rowwise for symmetric matrices 
and columnwise for non-symmetric ones and 
allocated to the previous used processors, or 

3) recursively be partitioned using some substruc- 
tuting of the interfaces. 

For two dimensional problems we are exploring the 
first two options. The third alternative has been formu- 
lated in [Farh 873 in connection with SOR iteration 
which we plan to implement in the //ITPACK library. 

3.2. Parallel Semi-iterative Methods. 

It is well known that the basic iterative methods 
(such as Jacobi, SSOR) can be accelerated by using 
appropriate linear combinations of consecutive iterants 
of the basic methods. These acceleration techniques 
lead to the so-called semi-iterative methods. We con- 
sider four such methods based on the Jacobi and 
SSOR basic iteration schemes and the accelerations 
Chebyshev (SI) and conjugate gradient (CG). A 
detailed description of these methods can be found in 
[Kinc 821 while some of the implementation issues are 
discussed in [Rice 851. If G is the Jacobi iteration 
matrix then the methods are defined by the iteration 
equation 

u(” + ‘) = pn + 1 [y,, + 1 (Gd”) + k) (3.2) 

+ (1 -‘(n + &(“)I + (1 - pII + I)& l) 

where P,,+~ and yn+l are appropriate acceleration 
parameters. In the case of Chebyshev acceleration 
these parameters are given in terms of the M(G), larg- 

est, and m(G), smallest eigenvalues of G. In the 
absence of their values, adaptive procedures can be 
used to estimate them mice 851. In order to visualize 
the parallel implementation of the sequential ITPACK 
routines we present the Jacobi-S1 module in a high 
level form. 

d := f; 

start-iterations; 
d := d-Au; compute pseudo residual 
dnrm = dT x d, unrm = uT x u; compute d and u norms 
if adapt-test(dnrm) then; adaptivity tests 

if cme-test(dnrm,unrm) then; 
compute-cme; recompute M(G) 

else if sme-test(dnrm,unrm) then; 
compute-sme; recompute m(G) 

endif; 
endif; 
if cow-tests(dnrm,unrm,sme,cme) goto unscale(u); 
u := compute(sme,cme,u); compute new estimation of u 
got0 start-iterations; 

unscale(u); unxaling ofu 

Algorithm 3.1 The sequential adaptive Jacobi-S1 algorithm. 

The use of the conjugate gradient acceleration 
yields a convergence rate which is nearly always faster 
than Chebyshev acceleration and can be described also 
by Algorithms 3.1 and 3.2. In the conjugate gradient 
the estimation of the spectral radius (M(G) and m(G)) 
is not needed for calculating the acceleration parame- 
ters but used in performing the stopping and adaptivity 
tests. These parameters are calculated using the pro- 
duct dT x A x d. 

The Symmetric SOR (SSOR) based semi- 
iterative methods are characterized by the matrix 

Q = k-0(2-o)]-‘(I-oL)(Z-0U) 

involved in the iteration matrix G = I-Q-‘A. Again 
the semiiteration equations are defined by (3.2) where 
pn and ?(n can be determined by either Chebyshev or 
conjugate gradient accelerations. For the implementa- 
tion we use the fact that, each step of the SSOR 
method consists of two SOR (forward and backward) 
sweeps. For the visualization of the inherent parallel- 
ism in the semi-iterative SSOR computation we 
include a high level description of the SSOR-SI 
ELLPACK module. The CG case is almost identical 
with the differences indicated above. 
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d := f; 

start iterations; 
sor(f&ward); forward SOR sweep 
sor(backward); backward SOR sweep 
residual(forward,backward); 
if (adapt) then; udaptivify test 
if (acceleration) then; 
estimate(acce1); estimate acceleration parameters 

endif; 
if (relaxation) then; 
estimate(omega); estimate optimum omega 

endif; 
endif; 
if (convergence) got0 unscale; 
got0 start-iterations; 

unscale(u); unsealing of u 

Algorithm 3.2 The sequential adaptive SSOR-SI algorithm. 

3.2.1 Parallel Jacobi Semi-iterative Methods 

Starting with the block partition given above 
(Figure 3.1), we denote by A”‘, uCi) and p) the linear 
system blocks assigned to processor i and we assume 
they reside in its local memory. For the parallel 
Jacobi-S1 method we see from the description of Algo- 
rithm 3.1 that each processor needs to broadcast its 
own diagonal entries of A and receive appropriate 
diagonal entries of other processors for scaling and 
unsealing the matrix A. This can be done by means of 
fanout/faniE algorithms [Ayka 881, [Gust 881. The 
computation of the inner products required for the cal- 
,culation of the norms of u and d is done by first com- 
puting on each processor i, the local part of the inner 
product and then using additive bidirectional 
exchanges [Gust 881 to calculate the inner product as 
the sum of all partial sums. The calculation of the 
new estimation of u within each iteration is done 
locally after receiving appropriate values of the old 
estimation from neighbor processors. From the above 
discussion one concludes that the only additional com- 
putation required to parallelize the original algorithm 
is due to indexing. In addition, interprocessor com- 
munication involves mostly nearest neighbor 
exchanges of one dimensional arrays and global 
exchanges of scalars. This parallel implementation 
gives _ a iw~ aspect ratio 

(r= 
time for computation j which leads to efficient . time for communication ’ 

performance. 

If we use the substructuring ordering and con- 
sider the corresponding arrow-head data structures in 
Figure 3.2 then we assign to each processor the aqua- 
tions associated with a subdomain. Then the interface 

equations are equally distributed among all processors. 
In this implementation, within each iteration the com- 
putation of the required inner products is performed in 
two phases. First, the part local to each processor is 
computed and then bidirectional exchanges among all 
processors are used to compute the part associated 
with the interface data. For the updating of the 
unknown vector within each iteration only the values 
of the interface unknowns are broadcast. 

From Algorithms 3.1 and 3.2 and the preceding 
discussion it can be seen that the parallel implementa- 
tion of the conjugate gradient acceleration can be 
treated similarly. Moreover, the calculation of the inner 
product dT x A x d that is required for estimating its 
acceleration parameters can be treated similarly using 
the fanin/fanout algorithms. 

3.2.2 Parallel SSOR Semi-iterative Methods 

From the discussion in Sections 3.1 and 3.2 it is 
clear that the parallel realization of accelerated SSOR 
methods folIows easily from the parallel implementa- 
tion of the SOR method and the parallel accelerated 
techniques used for the Jacobi semi-iterative methods. 
Specifically, in the block structured case, we perform 
both the backward and the forward SOR sweeps in a 
pipelined fashion. In the same way we calculate the 
associated pseudo-residuals and the inner products 
needed. It can be seen that the substructuring ordering 
transforms the two SOR sweeps to a Jacobi-like 
scheme. Within each SSOR iteration the updates of the 
interior unknowns local to each subdomain are per- 
formed in parallel while a broadcast of the interface 
unlmown vector is needed before each processor starts 
updating its interface unknowns. Note that, in addition 
to the inner products needed for the estimation of the 
acceleration parameters, additional vector/vector opera- 
tions are performed to estimate the optimum relaxation 
parameter o even in the conjugate gradient case. 

3.3 Parallel Schwarz Splitting Methods 

It has been recognized that the Schwarz splitting 
technique is a powerful alternative for solving elliptic 
PDEs in parallel architectures (see [Rodr 841, [Tang 
871 and [Hous 88b]). For the //ELLPACK implemen- 
tation of the Schwarz splitting the domain decomposi- 
tion tool is used first to split the PDE domain into a 
set of non-overlapping subdomains. Then, the overlap- 
ping parameter is used to expand the subdomains to 
overlapping ones and on each one of them appropriate 
boundary conditions ae imposed where needed. In 
this way the original PDE problem is replaced by a 
number of PDE subproblems. The interaction among 
them is achieved by means of an iteration scheme with 
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the solution of each of them being assigned to a 
different processor. It is important to notice that each 
subproblem needs to receive updates on its “pseudo- 
boundaries” from processors associated with the solu- 
tion of the “nei@xx” subproblems and to send its 
local updated unknowns on the “pseudo-boundaries” of 
the “neighbor” subdomains to corresponding proces- 
sors. The concept of “neighbor” subproblem is deter- 
mined from the connectivity information of the 
geometric decomposition, the overlapping parameter 
and the ordering of the subdomains. The order of 
receiving and sending the data depends on the iteration 
scheme used. Most of the basic convergence proper- 
ties, developed essentially in modr 841 and [Tang 871, 
have been extended to cover cases where more than 
two overlapping subdomains share a common part of 
the original region. A detailed discussion of a 
//ELLPACK implementation of the S&wan splitting 
associated with Jacobi and Gauss-Seidel iterative 
schemes, together with numerical experiments on 
hypercube architectures, is given in [Hous 88b]. 

4. PERFORMANCE RESULTS 

In this section we present the performance data 
of some //ITPACK modules solving the linear equation 
system arising from discretizing Elliptic PDEs on the 
NCUBE, iPSC/l and iPSC/2 hypercube multiproces- 
sors. Table 4.1 indicates the specific hardware 
configurations of these machines used in our experi- 
ments. Extensive performance comparison of these 
machines together with a detailed description of their 
hardware and software characteristics can be found in 
puni 883. 

Table 4.1 Wypercube configurations used for the imple- 
mentation of semi-iterative methods. 

The Iinear systems considered are obtained by 
discretizing linear second order elliptic partial 
differential equations on rectangular and 
non-rectangular domains. The timings reported here 
do not include the cost of the discretization phase, this 
time being at most 10% of the total solution cost. The 
solution time includes the time per iteration and the 
cost of adaptive and convergence test procedures. All 
computations were carried out in single precision. The 
FORTRAN implementation of the algorithms are 
almost identical. for the three machines and portability 

was achieved by conditional compilation of the Iower 
level communication and timing routines. 

Figure 4.1 and Table 4.2 show the scaled perfor- 
mance of the parallel accelerated Jacobi semi-iterative 
methods. In this experiment we consider the solution 
of the elliptic equation U, + uyy - 100~ =f on the 
domain Sz = [O,lO]x[O,lO] with solution u = 1 on the 
boundary of R and using the 5-point star finite 
difference method. 

im: 

112 

10 

s 
6 

4 

z 

Figure 4.1 Scaled speed up of parallel Jacobi-S1 (J-X) 
and Jacobi-CG (J-CG) on the NCUBE mul- 
tiprocessor. Each processor is assigned 400 
equations and the assumed iteration tolerance 
is IO”. 

The data indicate almost perfect scaled speed up 
for both methods. It is apparent that Jacobi-CG is fas- 
ter than Jacobi-S1 since it requires fewer iterations 
(42) compared to the Jacobi-S1 (55). On the other 
hand, the need of computing the inner product 
dT x A x d Ieads to an increase of the time needed 
for communication. It should be pointed out that for 
comparison purposes in the data in Figure 4.1 and 
Table 4.2 we keep the spectral radius of the iteration 
matrix the same as we change the mesh size of the 
discretization. 
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NCUBE 
Nodes T,,, Tc 

iPSC/Z 

Tco, Team _ 
4 764.2 tz 199.5 20.9 
8 764.6 85.1 201.9 21.1 

16 765.1 86.2 203.0 22.3 
32 766.9 88.3 204.2 24.0 

Table 4.2 Communication (TcO-) and computation 
(Scow) time requirements of Jacobi-S1 on 
NCUBE and iPSC/2 for 4000 equations per 
processor. 

Table 4.2 lists the numerical values of the scaled 
performance of the Jacobi-S1 (similar measurements 
have been obtained for the Jacobi<G) for the 
NCUBE and iPSC/2 machines. These data suggest 
that iPSC/z. is a faster machine while the speed up of 
the method is identical. In Table 4.3 we give the fixed 
size speed ups achieved by the parallel Jacobi-S1 on 
the NCUBE after 400 iterations for the PDE problem 
considered in Figure 4.1. The fixed size speed up has 
been determined with respect to the sequential imple- 
mentation. 

Tonl rime 
,A0 . . . . . . . . . . . . . . . . . . . :........ . . . . . . . . . . .:.. . . . . . . . . . . . . . . . . . . :.. . . . . . . . . . . . . . * 

.+----- : 
, So: \cvxizrd 

2oo _...__.............. i .._.................; . . . . . . . . . . . . . . . . . . . . .._............_._._ i . 
Vexxizcd 

yf . . . . . . . . . . . . . . . y. < . . . . . . . . . . . . . . i 1 1 

Fkure 4.2 The effect of iPSC/2 vector processing for 
Jacobi-SI. Each processor is assigned a fixed 
number of equations as the hypercube size in- 
creases fkom 4 to 8 fo 16. thus the linear sys- 
tem size increases by a factor of 4 and the 
memory used by a factor of 16. 

Nodes Grid SPd UP Grid Speed up Grid Speed up 
4 3200x4 1.12 1.23 - 
8 1600x8 2.08 2.17 - 

16 800x 16 4.19 4.52 4.38 
32 400x32 7.93 128 x 128 8.52 256 x 256 9.10 
64 200x64 14.93 15.90 17.45 

128 100 x 128 13.60 26.74 33.15 

Table 4.2 Fixed speed up of Jacobi-S1 on NCUBE after 400 iterations. 

Figure 4.2 illustrates the effect of vector proces- 
sors in the iPSC/z. The results indicate that a speed 
up by a factor of four is obtained from vectorization. 
The vectorization of the Jacobi-S1 &computations is 
achieved by using the vector BLAS, fill in, gather and 
scatter routines. 

The performance of the parallel SOR module 
with block ordering is given in Figure 4.3. In this 
experiment we have considered the Poisson problem 
on the unit square with Dirichlet boundary conditions 
and true solution u = 3e”+Y(x-x2)0)-y2). The 5-point 
star discretization module has been used and the fixed 
point speed up was calculated with respect to the 
sequential SOR method. 
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Figure 43 Fixed speed up of the block structured SOR 
on the NCUBE and PSCR. 

To measure the performance of the //ITPACK 
modules that assume the substructuring ordering of the 
algebraic data, we consider the partial differential 
equation U, + u,,, - (l+x)u = f(x) defined on the rec- 
tilinear domain depicted in Figure 4.4. The function f 
is selected so that u = e(z+y) and the rectangular grid is 
defined by an overlay grid of 64 x 64 lines. 

0 1 2 3 4 

Figure 4.1 The rectilinear PDE domain. 

The domain decomposition is done heuristically 
using the domain decomposirion roof of //ELLPACK 
and the automatic load partitioning strategies 

developed in [Hous 89bl. We have used the 
/iELLPACK-NCUBE 5point star discretization 
module to generate linear systems of equations. In this 
environment the host processor gets the domain’s 
decomposition from DecTool, then applies the 
specified ordering of the algebraic data structures and 
distributes this information to processor nodes where 
the generation of the discrete equations takes place. 
Figure 4.5 shows the per iteration scaled and fixed 
speed ups achieved in the case of Jacobi-CG on 
NCUBE. For these measurements we used 100 equa- 
tions per processor to compute the scaled speed up and 
64 x 64 overlay grid for the estimation of the fixed 
speed up. It is worth pointing out that the performance 
of this method depends on the decomposition. 

32 

16 

8 

optimum . . . . . . 

Fixed - - - 

1 4 8 16 

Number of nodes 

32 64 

Figure 45 Per iteration speed ups of the domain decom- 
position Jacobi-CG method on the NCUBE. 

5. CONCLUSIONS. 

Iterative methods have been shown [Hous 88a] 
to be effective alternatives for solving well behaved 
sparse large linear systems of equations with “realistic” 
accuracy requirements. Their potential is even greater 
in parallel computation environments. We are 
developing a library of parallel iterative methods 
which is an extension of the ITPACK package for dis- 
tributed memory machines. In this paper we present 
the performance of some of them on commercially 
available message passing MIMD (hypercube) 
machines. The preliminary experimental results indi- 
cate that they are capable of exploiting the parallel 
processing power of these machines and delivering 
close to optimal scaled speed ups. These dam also 
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indicate that the combination of concurrent/vector pro- 
cessing can lead to significant speed ups. Many stu- 
dies have overlooked the space complexity of parallel 
algorithms/architecture pairs. Our experiments show 
that distributed memory systems are capable of solving 
very large problems. Specifically, we were able to 
solve close to l/2 million finite difference equations in 
a reasonable time on NCUBE with 128 processors. A 
space and time complexity study for all modules in 
Table 1.1 is underway and results will be reported 
elsewhere. 
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