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We studied the dependence of the maximum tunneling current on external magnetic field for large area
Josephson junctions with overlap boundary conditions. We used direct numerical solutions and developed a
split Fourier mode method to study the electromagnetic behavior. The steady-state pattern consists of two
terms, the first of which satisfies the in-line-like bias current boundary conditions and has zero fluxon content.
The second is treated in a mode expansion in they direction and only two terms are sufficient to reproduce the
direct solution of the two-dimensional junction for widths up to 2p times the Josephson characteristic length.
@S1063-651X~96!08007-5#

PACS number~s!: 02.70.2c, 03.40.Kf, 74.50.1r

I. INTRODUCTION

The maximum tunneling currentImax through a Josephson
junction depends on the strength of the external magnetic
field, the junction geometry, and the type of boundary con-
ditions @1#. Here, for simplicity we will consider rectangular
junctions of lengthL and widthW, which can be classified
as ~a! short if L,W!lJ , ~b! long if L@lJ@W, or ~c! large
if L,W.lJ . The parameterlJ is the Josephson penetration
depth, i.e., a characteristic length over which magnetic flux
variation occurs in the junction. It depends on the critical
tunneling current densityJ0 as the inverse of the square root.
In generalL,W,lJ@d0 ,lL , whered0 is the oxide thickness
in the barrier andlL is the London penetration depth in the
superconducting films.

For small dimensions and/or low critical current densities,
the magnetic field produced by the junction can be neglected
and the external field dependence ofImax gives the well
known Fraunhofer-like diffraction pattern@2–4# for a uni-
form critical current densityJ0 . For a given shape of the
junction theI max vsH patterns are rather insensitive to vari-
ous electrode configurations~reflected in the boundary con-
ditions! as long as the junction dimensions are less than
lJ .

For large current densities orL.lJ the self-field created
by the junction current influences strongly the field depen-
dence ofImax according to the ratioL/lJ . For large length
the junction exhibits a Meissner-like effect screening weak
external magnetic fields to within the Josephson penetration
lengthlJ from the edges, due to internal currents@5–8#. For
increasing external magnetic field, the junction behaves as a
nonuniform one.

In some technological applications one must consider
large area junctions, whose electromagnetic behavior is
strongly affected by geometrical factors and boundary con-
ditions. Even for narrow junctions it is useful to estimate the
effect of the width. The perimeter of a junction always has a
degree of nonuniformity which can increase with time~if the

perimeter is exposed!. Its effect ~not easily estimated! is
much more important in a narrow junction than in a wide
junction, since the percentage of size of inhomogeneity is
greatly reduced. It is also easier to pattern a specific profile
for a variable width when the average junction width is not
small. An interesting application for a wide junction is for
nuclear radiation detection@14#, making use at one end of the
shaping of the junction as a wedge so that fluxons created are
directed and transmitted to an attached transmission line and
the detector is returned to its equilibrium state. Thus the
understanding of large junction electrodynamics is important
also for device applications. Due to the lack of analytic so-
lutions @unlike the one-dimensional~1D! case#, the direct
numerical determination of the magnetic flux patterns is
computationally intensive. Thus an approximate approach to
the problem of current flow in junctions of various geom-
etries has been discussed@9,10#. It uses a piecewise linear
current phase relationship, i.e.,Jz;F ~instead of the Joseph-
son relation!, whereF is the phase difference of the super-
conducting order parameters in the superconducting films.
While the model does not reproduce all the features of the
spatial variation ofF(x,y) it can give some integrated prop-
erties and indications for the behavior for various geom-
etries.

The various boundary conditions, in addition to determin-
ing the spatial patterns for the constant phase lines, can also
influence some important parameters such as the maximum
tunneling current. In calculations the simplest boundary con-
ditions are those due to the in-line geometry where the pat-
tern is one-dimensional even for a wide junction. The nu-
merical procedure developed in@6# provides the dependence
of Imax on H for arbitrary length. The overlap geometry, on
the other hand, introduces two-dimensional patterns, when
both external current and magnetic field are applied. For
overlap narrow junctions (W!lJ!L) one can develop an
effective one-dimensional model where the magnetic field
enters as a boundary condition on a perturbed sine-Gordon
equation, with the external current acting as driving term
@11#.
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In this paper we present a split Fourier mode~SFM! ex-
pansion method which, without increase in computational
effort, can accurately describe the static properties of a rela-
tively wide (W/lJ,2p) junction. In fact, it gives good
agreement with the results of direct numerical solution~also
presented here! of the two-dimensional problem with the
overlap boundary conditions. The procedure gives the possi-
bility to study even very wide junctions by including several
terms in the expansion.

In Sec. II we present the split Fourier mode method which
captures the dominant variations in thex and y directions
that are caused by the magnetic field and the external current,
respectively. The coupling betweenx and y is treated in a
mode expansion. In Sec. III we derive a reduced model
where only two modes are kept, transforming thus the 2D
partial differential equation~PDE! problem to the solution of
a system of three ordinary differential equation~ODE! prob-
lems, one of which is uncoupled. In Sec. IV we discuss the
magnetic flux and introduce the notion ofx- andy- direction
fluxon content. In Sec. V we present the numerical results
and compare them with the direct solution of the 2D prob-
lem, and in the final section we summarize our results.

II. 2D MODEL

We consider a two-dimensional Josephson junction which
consists of two superconducting metal plates~parallel to the
x-y plane! separated by a thin oxide layer@Fig. 1~a!#. The
electromagnetic behavior of such a system is governed by
Maxwell’s equations coupled with the Josephson equation

Jz~x,y!5J0sinF~x,y! ~1!

for the tunneling supercurrent density through the oxide
layer. In Eq.~1! F(x,y) is the phase difference of the order
parameters in the two superconductors, and the constantJ0 is

the maximum Josephson current density. In generalJ0 de-
pends on material and geometry parameters and can be space
dependent.

If the thicknessd0 of the oxide layer is small as compared
with the London penetration depths in the two superconduct-
ing films l1 and l2 , a two-dimensional approach to this
problem is quite satisfactory@1# and it can be reduced to the
two-dimensional sine-Gordon equation

2F tt1¹2F5sinF1bF t , ~2!

where the unit of length is the Josephson penetration length
lJ5A\/2J0m0d, with d5l11l21d0 and m0 the perme-
ability of vacuum. The unit of time is the inverse of the
plasma frequencyvp5(2eJ0 /\C)

1/2, C being a capacity
between superconducting layers. The last term in the right-
hand side of Eq.~2! represents dissipative effects due to
quasiparticle tunneling with the McCumber parameter
b5(\/2eRJ0)vp , where R is an effective normal resis-
tance. In the following all lengths are scaled tolJ so that the
junction dimensions arel 5L/lJ , w5W/lJ , while we
also define dimensionless magnetic field and current corre-
spondingly as

He5
2m0edlJ

\
He , I5

2m0ed

\
I .

The relation between the effective magnetic fieldHW and the
phase differenceF is given by

HW 52~ ẑ3¹W F!, ~3!

whereẑ is the unit vector normal to the junction plane.
The boundary conditions for Eq.~2! are obtained from

Eq. ~3! and have the form

nW •¹W FuC5nW •@ ẑ3~HW e1HW I !#uC , ~4!

wherenW is the outward normal to the boundary of the junc-
tion regionC. In Eq. ~4! HW e is an external dimensionless
magnetic field andHW I is the magnetic field caused by a cur-
rent passing through the junction. In what follows the exter-
nal magnetic fieldHW e is assumed to be directed along they
axis. In the case of a rectangular junction@Fig. 1~a!# of nor-
malized lengthl and widthw (l .w), the boundary condi-
tions ~4! for the overlap geometry may be written@10# in the
form

]F

]x U
x56l /2

5He , ~5a!

]F

]y U
y56w/2

56
I
2l

, ~5b!

whereI is the normalized total bias current through the junc-
tion. In Fig. 1~b! we show the boundary conditions for the
2D equation forF(x,y) corresponding to the overlap geom-
etry.

In the general case Eq.~2! under the boundary conditions
~5! can only be solved numerically. At the same time the

FIG. 1. ~a! Schematic diagram~top! of the overlap large Joseph-
son junction. The current from the upper electrode goes through the
junction and comes in the lower electrode.~b! Overlap boundary
conditions for the 2D static sine-Gordon equation~bottom!.
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inequalityw!l in the case of a narrow junction suggests
separating transversal and longitudinal modes and using a
Galerkin-type method to solve the problem. To this end we
first consider the auxiliary problem of the 1D Josephson
junction

d2F0~y!

dy2
5sinF0~y!, ~6!

with the in-line boundary condition at zero external magnetic
field, i.e.,

dF0

dy U
y56w/2

56
I
2l

. ~7!

The solution of this problem is well known~see Refs.@1,6#!
and can be expressed in terms of Jacobi elliptic functions as

sinF052Amm1cd~yum!nd~yum!, ~8!

dF0

dy
52Amm1sd~yum!, ~9!

where pq(yum) with ~p,q5s, c, d, n! are Jacobi elliptic func-
tions with modulusm (m1512m is the complementary
modulus! @12#. The period of the solution is 4K(m), where
K(m) is the complete elliptic integral of the first kind. The
modulusm can be obtained from the boundary condition~7!

2Amm1sdSw2 UmD5
I
2l

. ~10!

If m is close to unity Eq.~10! simplifies to

m'12S I2l D 2 14 1

sinh2~w/2!
.

Now, a solution of the form

F~x,y,t !5F0~y!1C~x,y,t ! ~11!

reduces Eqs.~2! and ~5! to

2C tt2bC t1¹2C5sin@F0~y!1C~x,y!#2sin@F0~y!#,
~12!

]C

]x U
x56l /2

5He , ~13a!

]C

]y U
y56w/2

50. ~13b!

The solution of Eq.~2! under the boundary conditions~5!
must be a symmetric function of the transversal variabley. It
can be shown that the functionC(x,y,t) from Eq.~11! must
also be symmetric iny due to the symmetry of the boundary
conditions. Therefore taking into account the boundary con-
ditions ~13a! we can represent the functionC(x,y,t) by a
Fourier series which satisfies the boundary condition~13b!,

C~x,y,t !5 (
n50

`

An~x,t !cos
2pny

w
, ~14!

where the coefficientsAn(x,t) are determined by the usual
projection. Substituting Eq.~14! into Eqs.~12! and~13b! and
using the notation]x[]/]x we get

2] t
2An~x,t !2b] tAn~x,t !1]x

2An~x,t !2S 2pn

w D 2An~x!

5
22dn0
w E

2w/2

w/2

dy cos
2pny

w H sinFF0~y!

1 (
n50

`

An~x,t !cos
2pny

w G2sinF0~y!J , ~15!

]xAnS 6
l

2
,t D5dn0He , n50,1,2,. . . , ~16!

wherednn8 is the Kronecker delta.
It is interesting to remark here that in the absence of dis-

sipation (b50) Eqs.~15! and~16! can be obtained by mini-
mizing the Lagrangian functional

E5E
2l /2

l /2

dxH(
n

F11dno
4

@2~] tAn!
21~]xAn!

2#

1S pn

w D 2An
22SnAnG

12HeA0~x!FdS x1
l

2 D 2dS x2
l

2 D G2F~$An%!J ,
~17!

where

F~$An%!5
1

wE2w/2

w/2

dy cosFF0~y!1 (
n50

`

An~x,t !cos
2pny

w G
~18!

and where the abbreviation

Sn5
1

wE2w/2

w/2

dy sin@F0~y!#cos
2pny

w
~19!

was used.
It is seen from Eq.~15! that only the modes with

n<N[@w/2p# (@x# is the integer part of the numberx)
have an influence on the properties of the junction. The
modes with largen give contributions which decrease as
n22. In what follows we will consider the properties of not
very wide junctions and will assume thatw<2p. Thus we
can neglect all modes withn>2 and take into account only
the modes withn50 andn51. Moreover, whenw,2p we
haveA1(x,t),A0(x,t). Therefore we shall neglect effects
caused by nonlinear interactions of then51 mode and will
take into account nonlinear properties of the moden50 as
well as the coupling between both these modes. This allows
us to write Eq.~18! as
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F~A0 ,A1!5
1

wE2w/2

w/2

dy cosS F0~y!1A01A1cos
2py

w D
'2C0cosA01S0sinA0

1~S1cosA01C1sinA0!A1

1
1

2
~C2cosA02S2sinA0!A1

2 , ~20!

where

Cn5
1

wE2w/2

w/2

dy cos@F0~y!#cos
2pny

w
. ~21!

From Eqs.~15!, ~17!, and ~20! we obtain that the ampli-
tudesA0(x,t) andA1(x,t) are governed by the equations

2] t
2A02b] tA01]x

2A05C0sinA01S0cosA0

1~C1cosA02S1sinA0!A1

2
1

2
~C2sinA01S2cosA0!A1

22S0 ,

~22!

2] t
2A12b] tA11]x

2A15S 2p

w D 2A112@C1sinA01S1cosA0

1~C2cosA02S2sinA0!A12S1#,

~23!

under the boundary conditions

]xA0~x,t !ux56l /25He , ~24a!

]xA1~x,t !ux56l /250. ~24b!

Equations~22!–~24! give an effective description of the
electrodynamics of a long overlap geometry Josephson junc-
tion. It is worth noticing that to describe static and dynamic
properties for the overlap boundary conditions a perturbed
one-dimensional sine-Gordon equation has been used in the
form

Fxx2F tt5sinF1bF t2
I

J0l w
. ~25!

Eilbecket al. in Ref. @13# represented a solution of Eq.~2!
in the form~11! with F0(y)5(I/l wJ0)(y2/2) and assuming
that (1/8)(Iw/J0l )!1 they derived the effective equation
~25!. In a recent paper Paganoet al. @14# proposed an ap-
proximate averaging procedure, in the framework of which it
was postulated that

1

wE2w/2

w/2

dy sinF~x,y,t !'sinH 1wE2w/2

w/2

dy F~x,y,t !J
and the two-dimensional problem was reduced to an effec-
tive one-dimensional one. We shall show below that an ef-
fective one-dimensional approach to the long overlap Jo-
sephson junction based on Eq.~25! is valid only for narrow

enough junctions (w<2), while our approach based on the
set of Eqs.~22! and ~23! gives a good agreement with the
results of two-dimensional numerical simulations in the
whole interval for the width 0,w,2p, and the SFM offers
the possibility to extend to larger widths by including more
terms from the expansion in~14!.

III. STATIC SOLUTIONS IN THE OVERLAP GEOMETRY

The static properties of the junction are described by the
solutions of Eqs.~22!–~24! when the time derivatives are
neglected so thatA0(x) andA1(x) are functions ofx only.
Denoting derivation withx by a prime we have

A095C0sinA01S0cosA01~C1cosA02S1sinA0!A1

2
1

2
~C2sinA01S2cosA0!A1

22S0 , ~26!

A195S 2p

w D 2A112@C1sinA01S1cosA0

1~C2cosA02S2sinA0!A12S1#, ~27!

under the boundary conditions

A08~6l /2!5He , ~28a!

A18~6l /2!50. ~28b!

It is seen from Eqs.~26! and~27! that the longitudinal prop-
erties of the junction described by the amplitudesA0(x) and
A1(x) depend on the coefficientsCn andSn , which are de-
termined by the transversal characteristics of the junction.
Equation~26! reduces to the effective 1D model@11# if we
setA150, C051, and neglect the termS0cosA0.

When there is no external magnetic field (He50) Eqs.
~26! and~27! have a trivial solutionA05A150. In this case
the problem is reduced to the 1D one and the current and
magnetic field distributions are described by Eqs.~8! and~9!.
The maximum current that goes through the barrier can be
obtained from Eq.~10!. In the interval of widths under con-
sideration (w<2p) the function sd„(w/2)um… is positive and
for anym in the interval@0,1# the currentI is a nonmono-
tonic function of the modulusm with a single maximum at
m* . The position ofm* depends on the width of the junc-
tion. Whenw<2,m*' 1

2 andImax(He50)5l w. Whenw is
near 2p we have m*58(cosh2w116 coshw)21/2 and
Imax(He50)54l .

For finiteHe we must also solve the set of Eqs.~26! and
~27! with the boundary conditions~28!. In the framework of
our approach, the reason the maximum current which flows
through the barrier depends on the external magnetic field
He can be clarified if we consider simultaneously both equa-
tions forF0(y) andA0(x) neglecting for simplicityA1(x).
The external currentI determinesF0(x) through its bound-
ary condition~10! in which the external magnetic fieldHe
does not enter directly. It enters, however, in the equation for
A0 whose solution is not guaranteed for any external current,
but for a given magnetic fieldHeÞ0. Equation~26! gives a
stable solution only up to a maximum value in the external
current which depends on the external magnetic field. The
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variation ofImax nearHe'0 with the external magnetic field
can be estimated for narrow junctions (w,2). For small
He the amplitudeA0(x) is expected to be small and
A1(x)!A0(x). Therefore we can setA1(x)50, and, expand-
ing the trigonometric functions in Eq.~30!, we can write a
simple equation forA0(x) which can be solved analytically.
Using some analytic techniques we obtain the inequality~see
Appendix A!

I2<Imax
2 ~He50!F12S IHe

l w D 4/3G . ~29!

Thus at finiteHe the maximum current will decrease with
increasing magnetic field. An analytic solution of Eqs.~26!–
~28! for a generalHe cannot be obtained. The above proce-
dure shows that for smallw andHe the amplitudeA1 can be
neglected, because as seen from Eq.~27! A1;w2C1A0 , and
the contribution of A1 to the equation for A0 is
;w2C1

2A0!C0A0 . For largew, one must solve the set of
Eqs.~26!–~28! numerically as presented below along with a
comparison with the results of two-dimensional numerical
simulations.

IV. FLUX CONTENT OF 2D SOLUTIONS

In a 1D junction~very narrow and in-line boundary con-
ditions! the magnetic flux can be characterized by the fluxon
content ~in units of the basic quantum of fluxf05h/2e),
which increases with the magnetic field. Due to the sinu-
soidal nonlinearity of the Josephson term in the sine-Gordon
equation the magnetic flux is a multiple valued function of
the external magnetic field@1#. For a very short junction,
where one obtains the characteristic Fraunhofer pattern for
the maximum tunneling current,Imax(He) is a single valued
function where the maximum current vanishes when exactly
a multiple number of flux quanta penetrate the junction along
and normal to the long dimension. This creates a sequence of
branches labeled (n→n11) branches, signifying that the
magnetic flux content is betweenn andn11 fluxons. At the
same time the maximum tunneling current~due to nonlinear-
ity! is a nonmonotonic function of the external magnetic
field. For a long junction there is an overlap between the
different branches.

For a 2D junction, even when the external field is along
one dimension, the magnetic field pattern is not one dimen-
sional, so that it is necessary to define the flux penetration
along both dimensions. Thus according to Eq.~3! the effec-
tive magnetic fieldHW is a two-dimensional vector in the
plane of the barrier

HW 5~]yF,2]xF,0!. ~30!

The magnetic fluxes in units of the quantum of fluxf0 that
penetrate the junction along the two directions are

Nx5
1

2pdE2w/2

w/2

dyE
2d/2

d/2

dz Hx5
1

2pE2w/2

w/2

dy ]yF

5
1

2p FFS x,w2 D2FS x,2 w

2 D G ~31a!

and

Ny5
1

2pdE2l /2

l /2

dxE
2d/2

d/2

dz Hy5
1

2pE2l /2

l /2

dx ]xF

5
1

2p FFS l2 ,yD2FS 2
l

2
,yD G . ~31b!

Note that the fluxon contentNx is a function ofx andNy is
a function ofy.

We should remark that due to the boundary conditions
considered here, the functionF(x,y) is a symmetric func-
tion of y so thatNx50. If one neglects the term withA1 then
Ny is independent ofy. This is the case whenw,2 even
though the field is two dimensional. In that case we have an
effective separation of thex andy dependencies in the func-
tion F(x,y)5F0(y)1A0(x). If, however, higher terms are
needed in the expansion of~13!, then they-direction fluxon
content is a function ofy.

V. NUMERICAL RESULTS

The numerical solution of our quasi-one-dimensional
model can be divided into two separate problems. The first
involves the determination ofF0(y) from Eqs.~6! and ~7!
following the procedure in@6#. It gives the dominant varia-
tion of F(x,y) in y, since it takes into account the external
current which gives the gradient of the phase difference
alongy. The second step is the numerical solution of the set
of coupled nonlinear equations~26! and ~27! with ~28! for
the modal amplitudesA0 andA1 . For the geometries consid-
ered hereA0 along withF0(y) are sufficient to reproduce
the spatial variation ofF(x,y). The results can be compared
with the direct numerical solution of the time independent
form of Eq.~2! with the overlap boundary conditions~5!. For
this purpose we used the Newton iterative method

¹2F~ i !2cos~F~ i21!!F~ i !5sin~F~ i21!!

2cos~F~ i21!!F~ i21!, ~32!

which has been analyzed in detail in@15#. This algorithm
converges quadratically so that the norm of the difference
between two successive iterates goes to zero in about five
iterations. The main difficulty in the procedure comes from
the choice of the initial guess which should be close enough
to the solution. To obtain theImax(He) curve, we have
started from the well known situation whereHe is very
small, and the solution is close top/2 so that the current is
close to the maximum. We have then increased the current
up to the point where the iteration~32! does not converge
and then proceeded to bisect between these values to find the
critical current. The magnetic field is then increased, and
using the solution for the previous value ofHe and I, we
find the maximum current for this value ofHe by stepping
and bisecting. For this to work, it is essential that the steps in
I andH are close and small, and we took them to be a few
percent. The whole procedure was implemented very effi-
ciently using theELLPACK software@16#. The typical number
of mesh points used was about 80360 so that one iteration
took about 5 s on an IBM RS6000 and the whole 0-1 fluxon
branch could be obtained in about 12 h CPU time.
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The one-dimensional static sine-Gordon Eq.~6! and the
equations for the modal amplitudes (A0 ,A1) were solved
usingMATLAB following the same approach, except that for
the latter a bisection onm was used for large currents~near
He'0) because of the difficulty in inverting Eq.~10!. The
number of mesh points was chosen to be 150 and the current
tolerance for the bisection 1022.

In the SFM method the solution forF0(y) is given in the
form of elliptic functions with the modulusm (0,m,1),
which is determined from the boundary condition~10! for
the external bias current. In general, this equation for a given
I must be solved numerically. The left-hand side of~10! as a
function ofm depends strongly on the junction widthw, as
is seen in Fig. 2. For the values ofw considered hereI(m)
has a single maximum atm5m* and for a given bias current
there are two possible values inm that satisfy~10!. From
these only the one at the right ofm* corresponds to a stable
solution. Here we should remark that, when we neglect the
x dependence, allm>m* give stable solutions, and for a
finite magnetic field this interval is reduced tom.m1.m*
as discussed above. To the value ofm1 corresponds the
maximum possible current for the particular value of the ex-
ternal magnetic field. As seen in Fig. 2, for largew ~but
w,2p) the part of the curve abovem* becomes very steep
nearm'1 so that the elliptic functions become hyperbolic-
like. The class of solutions forF0(y) has zero fluxon con-
tent, and is at the beginning of the (0→1) branch, since in
~10! no magnetic field is included. We mention that for even
largerw @where more modal terms in~14! are needed# the
function I(m) becomes oscillating with more maxima, but
still only the region to the right of the last maximum very
close tom'1 is physically relevant.

Once m is determined and using the expression for
F0(y) we can evaluate the coefficientsCn and Sn which
enter in the ODE’s forA0(x) andA1(x). Thus the approxi-
mation toF(x,y) is obtained numerically. In Fig. 3 we plot,
for a junction width ofw51, the constant phase lines for
values ofI corresponding to the maximum possible bias cur-
rent at three values ofHe50.1,1.0,1.9 correspondingly. In

this and the following calculations the junction length is
l 510. The top pattern is forHe50.1 with Imax near its
maximum~atHe50). IncreasingHe causes the junction to
act as a nonuniform barrier due to applied or internal current
magnetic field penetration. This is reflected in the decreased
curvature as we go down in Fig. 3 from~a! to ~c!. In Fig. 3~a!
the phase is centered aroundF5p/2, ranging from 1 in the
center of the left edge to 1.95 at the corners of the right edge,
so that sinF is significant. The phase change along a fixed
y value is about 0.7, implying a fluxon contentNy'0.1
which is independent ofy and is small as expected. In Fig.
3~b! for the increasedHe51.0 we introduced almost half a
fluxon with Ny50.42. Notice that the constant phase line
spacing is different in the three figures 0.039 in~a!, 0.122 in
~b!, and 0.225 in~c!. In Fig. 3~c! the I ~the maximum for
He51.9) is very small since we have introduced almost one
fluxon with Ny50.8. At He52 the solution is the same as
for the 1D in-line geometry sinceImax(He50)50 and a
whole fluxon has penetrated the junction.

In Fig. 4 we study the effect of the junction width
w54,6,10 on the phase pattern at a constant external mag-
netic fieldHe51. In all three cases the contour spacing is
fixed atDF50.167. Thus taking into account the scaling of

FIG. 2. I(m) from the left-hand side of Eq.~10! for three values
of w51,4,6.

FIG. 3. Contour plots for the phaseF(x,y) for a junction with
l 510, w51, and three values of~a! He50.1 ~top!, ~b! 0.9
~middle!, ~c! 1.9 ~bottom!.

FIG. 4. Contour plots for the phaseF(x,y) for a junction with
l 510,He51, and three values of~a! w54 ~top!, ~b! 6 ~middle!,
~c! 10 ~bottom!.

54 2097TWO-DIMENSIONAL EFFECTS IN JOSEPHSON . . .



the junction dimensions we see that the gradient alongy is
slightly increasing as we go from~a! to ~c!, implying a
slightly higher current. In the center there is a relatively large
area where the phase is slowly varying nearF'0 since for
weak fields the penetration is along the perimeter. The mini-
mum of the phase is at the center of the left edge while the
maximum is at the right edge corners where there are strong
variations in the phase since the external magnetic field and
bias current act additively. A clearer indication of this is in
Fig. 5, where we give a 3D plot of the tunneling current
distribution along the barrier interface. The fluxon content
for the three curves isNy50.36,0.4,0.46 correspondingly
reflecting the small increase in the maximum current.

In Fig. 6 we plot the functionsF0(y), A0(x), and
A1(x) for a junction of widthw54 and three values of the
external magnetic fieldHe50.1,1.0,1.95. The current is
chosen at its maximum value for the corresponding external
field. The fluxon contentNy is essentially determined from
A0 and we see that it changes fromNy50.1,0.5,0.98. Notice
that the scale forA1 is enlarged by a factor of 20. Thus in all
three casesA1 is small and the fluxon content can only
weakly depend ony. For the caseHe51.95 we see that the
function F0(y) along with A1(x) almost vanish~they are
zero for He52.0). The solution for the phase is simply
A0(x) being clearly 1D since the current is near zero. At
He50.1 the modal amplitudes are quite small, as expected.

In Fig. 7 we compare the phase line pattern~with fixed
contour levels as in Fig. 4! for the caseHe51 @top plot Fig.
3~a!# using the 2D solution and that obtained from the SFM
method by settingA150 in Eq. ~26! ~top figure!, and with
A1 included~bottom! in Eqs.~26! and~27!. The basic struc-
ture is the same in all three cases, with only minor differ-
ences, which are compounded by the contour fitting proce-
dure. The main difference is in the right edge of the junction
where the phase varies significantly and the termA1 should
be included. The plot including both modal amplitudes is in
good agreement with that obtained with the direct numerical
solution of the 2D problem.

In Fig. 8 we plot the maximum tunneling current as a
function of He for five values of junction width
w51,2,3,4,6. The solid line is the result of the direct solu-

FIG. 5. 3D plot of the tunneling current distribution sinF(x,y)
for He51 andw54.

FIG. 6. Plots of the functionsF0(y) ~left!, A0(x) ~middle!, andA1(x) ~right! for a wide junctionw54 and ~a! He50.1 ~top!, ~b!
1~middle!, ~c! 2 ~bottom!.
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tion of the 2D sine-Gordon equation usingELLPACK. The
dashed lines are the results of the 1D model as discussed in
@11# and the points~different symbols for eachw) are the
results of our SFM model. We see that all three models give
almost identical results forw51 andw52, implying that the
use of the 1D model is adequate. Again all three models are
in good agreement for allw near the right end of the
(0→1) branch, where the slope increases linearly withw.
This is due to the vanishing of the maximum current and the
boundary conditions are in line~1D!, and nearHe52 it is
the external magnetic field that dominates the pattern and its
effect will be proportional to the junction width. The 1D
model, however, deviates significantly fromw53 and on,
especially nearHe50. This is the point, though, where our
method gives the exact result, since atHe50 we have
A05A150, and the current enters as in-line boundary con-
dition along the y direction, which gives our function
F0(y). In fact, up tow54 the SFM gives accurate results,
and in fact the accuracy is not changed much if we neglect

A1 . The approach deviates only slightly even for the rela-
tively largew56, above which higher modes may have to be
included. For largerw the maximum current saturates in
analogy with the corresponding effect in the 1D case@6#. We
must stress that the significantly improved accuracy is ob-
tained at no extra computational cost from the 1D model,
especially whenA0 is sufficient to describe the spatial pat-
tern. Of course the inclusion ofA1 automatically checks the
convergence. Actually it can be seen from Eqs.~26! and~27!
that A1 enters as the square in the equation forA0 with a
small coefficient in front of it, while from~27! it is seen that
it is important only ifw/2p@1. It was verified that using
only A0 changes theImax slightly for w<3.

VI. CONCLUDING REMARKS

In this paper we developed a split Fourier mode method to
study the static and dynamic properties of large area Joseph-
son junctions with overlap boundary conditions. The method
relies on separating out of the phase field the partF0(y) that
satisfies the external current boundary conditions. The rest is
expanded in a Fourier series iny with the proper symmetry,
whose dominant termA0(x) is y independent. The coupling
between thex and y directions is included in a systematic
way, but for the dimensions considered the first two terms in
the expansion are sufficient. We explicitly demonstrated how
the bias current enters as a driving term in the effective 1D
model that was introduced intuitively in@17#. We performed
numerical calculations using the SFM and the direct solution
of the 2D problem and demonstrated that the effective 1D
model is a good approximation forw<2 while our model
with only two terms is quite accurate at least up tow56,
reproducing not only global properties but also the compli-
cated two-dimensional pattern. In this paper we concentrated
on the first branch with~0,1! fluxon content where the 2D
effects are strongest. The other branches that correspond to
higher magnetic field with low bias currents are almost 1D-
like. Some difference is of course expected in the peaks of
the other branches.

For the first branch the commonly used 1D model gives a
reasonable agreement up tow52 while there are noticeable
differences in theImax for w.3. We also see a saturation
effect with increasingw ~nearw56) which is related to the
similar effect in@6# at zero external magnetic field. In fact,
the upper value ofImax atHe50 is easily obtained since we
have in-line boundary conditions alongy, and the lowest
point ~with Imax50 andHe52) satisfies in-line boundary
conditions alongx.

We introduced the notion of fluxon content in thex or y
direction, which corresponds to the magnetic flux through
the boundaries normal to thex or y direction and is a func-
tion of y andx correspondingly. For the boundary conditions
consideredNx50 andNy is the equivalent of the fluxon
content in 1D for a long junction. Here, however, it is
slightly dependent ony for w.3 due to the internal self-
magnetic-field.

The above calculations can be of relevance to direct mea-
surements of the Josephson supercurrent distribution in large
area tunneling junctions by means of low temperature scan-
ning electron microscopy~LTSEM! @18#. It is very easy to
reproduce also the boundary conditions and the form of criti-

FIG. 7. Comparison of the contour plots forF(y) in a wide
junction w54 with He51 without the modeA1(x) ~top! and in-
cluding it ~bottom!. In both figures the dashed lines are the direct
solution of the 2D sine-Gordon equation.

FIG. 8. Plot of the maximum tunneling currentImax vs the ex-
ternal magnetic fieldHe for w51,2,3,4,6. The solid lines are the
direct solution of the static 2D sine-Gordon equation. The dashed
line is the effective 1D model and the points~various symbols! are
the results of the SFM method.
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cal current inhomogeneity to fit a particular experimental
design. On the other hand, the maximum current at a given
He is a quantity of interest for design purposes. The effect of
the width on the dynamical behavior of the large area junc-
tion under a bias current and damping due to quasiparticle
tunneling is currently being investigated. This will be re-
flected in theI -V characteristics.
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APPENDIX

The variation ofImax nearHe'0 with the external mag-
netic field can be estimated for narrow junctions (w,2). For
smallHe the amplitudeA0(x) is expected to be small and
A1(x)!A0(x). Therefore we can putA1(x)50, and expand-
ing the trigonometric functions in Eq.~26!, we can write the
equation forA0(x) in the form

A095C0A02
S0
2
A0
2 , ~A1!

with the boundary condition

A08~6l /2!5He . ~A2!

Inserting Eq.~8! into ~19! we get

S05
I
l w

. ~A3!

The coefficientC0 , which is defined by Eq.~21!, has a much
more complicated expression, but for narrow junctions it
simplifies and can be written as follows:

C0'122m1'A12
I2

Imax
2 ~He50!

. ~A4!

The solution of Eq.~A1! can be represented in the form

A05
C0

S0
H 12

1

Aq22q11
F2q2113q~1

2q!cn2S AC0

2

x1x0
~q22q11!1/4UqD G J , ~A5!

where the modulusq and the parameterx0 may be obtained
from the boundary conditions~A2!. Inserting Eq.~A5! into
Eq. ~A2! we get

1

S0

6q~12q!C0
3/2

~q22q11!1/4
f ~u6!5He , ~A6!

where the abbreviations

f ~u!5sn~uuq!cn~uuq!dn~uuq! ~A7!

and

u65
AC0

2

x06
L

2

~q22q11!1/4
~A8!

were used. The functionf (u) is positive in the interval
@0,K(q)# and reaches a maximum at the pointu0 where

sn2~u0uq!5
11q2Aq22q11

3q
. ~A9!

Equation~A6! can have a solution if

He<
6q~12q!C0

3/2

~q22q11!3/4
f ~u0uq!

1

S0
. ~A10!

Inserting Eq.~A9! into Eq. ~A7! we find that

6q~12q!

~q22q11!3/4
f ~u0uq!5

2

A3
~12q!,

S 12
122q

Aq22q11
D 1/2S 11

22q

Aq22q11
D 1/2

3S 11q

Aq22q11
21D 1/2[ f 0~q!. ~A11!

The functionf 0(q) becomes equal to zero atq50,1 and
has a maximum at some pointq5q* . Thus from Eq.~A10!
we obtain that

1

S0
f 0~q* !C0

3/2>He . ~A12!

Introducing Eqs.~A3! and ~A4! in the inequality~A12! we
see that

I2<Imax
2 ~He50!F12S IHe

l w D 4/3G . ~A13!
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