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Two-dimensional effects in Josephson junctions: Static properties
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We studied the dependence of the maximum tunneling current on external magnetic field for large area
Josephson junctions with overlap boundary conditions. We used direct numerical solutions and developed a
split Fourier mode method to study the electromagnetic behavior. The steady-state pattern consists of two
terms, the first of which satisfies the in-line-like bias current boundary conditions and has zero fluxon content.
The second is treated in a mode expansion inytd@ection and only two terms are sufficient to reproduce the
direct solution of the two-dimensional junction for widths up te #mes the Josephson characteristic length.
[S1063-651%96)08007-5

PACS numbd(s): 02.70—c, 03.40.Kf, 74.50+r

I. INTRODUCTION perimeter is exposed Its effect (not easily estimatedis
much more important in a narrow junction than in a wide
The maximum tunneling curremt,,, through a Josephson junction, since the percentage of size of inhomogeneity is
junction depends on the strength of the external magnetigreatly reduced. It is also easier to pattern a specific profile
field, the junction geometry, and the type of boundary confor a variable width when the average junction width is not
ditions[1]. Here, for simplicity we will consider rectangular small. An interesting application for a wide junction is for
junctions of lengthL and widthW, which can be classified nuclear radiation detectidii4], making use at one end of the

as(a) short ifL,W<\;, (b) long if L>\,>W, or () large shaping of the junction as a wedge so that fluxons created are
if L,W>)\,. The parametek  is the Josephson penetration directed and transmitted to an attached transmission line and

depth, i.e., a characteristic length over which magnetic quQhed deiectdo_r IS ][(Iaturne.d tof Its elqutlllbélum s_tatg. Thus tthet
variation occurs in the junction. It depends on the criticalUNd€rstanding ot 'arge junction electrodynamics 1S importan

tunneling current density, as the inverse of the square root. also for device applications. Due to the lack of analytic so-

) . ) lutions [unlike the one-dimensiondllD) casd, the direct
!n ghenEraIIT,W,quo,)\hL, whedredo Is the o.X|death|crI]<r.1es; numerical determination of the magnetic flux patterns is
In the barrier andv, is the London penetration depth in the ;,mtationally intensive. Thus an approximate approach to
superconducting films.

h ) - .. the problem of current flow in junctions of various geom-
For small dimensions and/or low critical current densities,atries has been discussg®l10]. It uses a piecewise linear
the magnetic field produced by the junction can be neglectegrrent phase relationship, i.6,~® (instead of the Joseph-
and the external field dependence Iof,« gives the well  gon relation, where® is the phase difference of the super-
known Fraunhofer-like diffraction patterfi2—4] for a uni-  conducting order parameters in the superconducting films.
form critical current densityd,. For a given shape of the While the model does not reproduce all the features of the
junction thel ., vs H patterns are rather insensitive to vari- spatial variation ofb(x,y) it can give some integrated prop-
ous electrode configuratioriseflected in the boundary con- erties and indications for the behavior for various geom-
ditions) as long as the junction dimensions are less tharetries.
\j. The various boundary conditions, in addition to determin-
For large current densities &r> X\ ; the self-field created ing the spatial patterns for the constant phase lines, can also
by the junction current influences strongly the field depeninfluence some important parameters such as the maximum
dence ofl 5 according to the ratic./\ ;. For large length tunneling current. In calculations the simplest boundary con-
the junction exhibits a Meissner-like effect screening wealkditions are those due to the in-line geometry where the pat-
external magnetic fields to within the Josephson penetratiotern is one-dimensional even for a wide junction. The nu-
length\ ; from the edges, due to internal curreffis-8]. For ~ merical procedure developed [i6] provides the dependence
increasing external magnetic field, the junction behaves as @f |, 0n H for arbitrary length. The overlap geometry, on
nonuniform one. the other hand, introduces two-dimensional patterns, when
In some technological applications one must consideboth external current and magnetic field are applied. For
large area junctions, whose electromagnetic behavior isverlap narrow junctionsW<NA\ ;<L) one can develop an
strongly affected by geometrical factors and boundary coneffective one-dimensional model where the magnetic field
ditions. Even for narrow junctions it is useful to estimate theenters as a boundary condition on a perturbed sine-Gordon
effect of the width. The perimeter of a junction always has aequation, with the external current acting as driving term
degree of nonuniformity which can increase with tififehe  [11].
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1 the maximum Josephson current density. In genggadle-
pends on material and geometry parameters and can be space

l [ dependent.
__________________ If the thicknesdd, of the oxide layer is small as compared
with the London penetration depths in the two superconduct-
H, @ ing films A; and \,, a two-dimensional approach to this
. . problem is quite satisfactofyl] and it can be reduced to the
'L \ two-dimensional sine-Gordon equation

— P+ V2P =sind + P, 2

where the unit of length is the Josephson penetration length
Ny=VAl2Joued, with d=N;+AN,+dy and uy the perme-
— ability of vacuum. The unit of time is the inverse of the
: plasma frequencyw,=(2eJ,/AC)"% C being a capacity
R7,) : 2 x between superconducting layers. The last term in the right-

""""""" hand side of Eq(2) represents dissipative effects due to

, \CD =-H quasiparticle tunneling with the McCumber parameter

w2 B=(/2eR})w,, whereR is an effective normal resis-

= " 31 tance. In the following all lengths are scaled\tpso that the
junction dimensions are”=L/\;, w=W/\;, while we

FIG. 1. () Schematic diagrarftop) of the overlap large Joseph- 2lS0 define dimensionless magnetic field and current corre-

son junction. The current from the upper electrode goes through thePondingly as

junction and comes in the lower electrodb) Overlap boundary

conditions for the 2D static sine-Gordon equatibottom). _ 2pgedh, _ 2peed
He_—h e I= 7 .

In this paper we present a split Fourier md@&-M) ex-
pansion method which, without increase in computationalThe relation between the effective magnetic figldand the
effort, can accurately describe the static properties of a relgshase difference is given by
tively wide (W/\;<<2) junction. In fact, it gives good
agreement with the results of direct numerical solufjalso H=—(ZXVD), (3
presented hejeof the two-dimensional problem with the
overlap boundary conditions. The procedure gives the possiwherez is the unit vector normal to the junction plane.
bility to study even very wide junctions by including several The boundary conditions for Eq2) are obtained from

terms in the expansion. Eqg. (3) and have the form
In Sec. Il we present the split Fourier mode method which R R L
captures the dominant variations in tkeandy directions N-V®|c=n-[ZX(He+H)]lc, 4

that are caused by the magnetic field and the external current, R

respectively. The coupling betweenandy is treated in a wheren is the outward normal to the boundary of the junc-
mode expansion. In Sec. Il we derive a reduced modefion regionC. In Eq. (4) H, is an external dimensionless
wh?'rel ((j)_?fly tWtc.’ Imodest. a(rlgl;lgpt, t;\nsf?rn:rl]ng thlu? the fZDmagnetic field and?, is the magnetic field caused by a cur-
partial ditferential equation= ) probiem to the Soution ot o ¢ passing through the junction. In what follows the exter-
a system of three ordinary differential equati@®DE) prob- S ,

lems, one of which is uncoupled. In Sec. IV we discuss thd'@ magnetic fieldH, is assumed to be directed along the
magnetic flux and introduce the notionsof andy- direction ~ @is- In the case of a rectangular junctifig. (a)] of nor-
fluxon content. In Sec. V we present the numerical resultdn@lized length” and widthw (/>w), the boundary condi-
and compare them with the direct solution of the 2D prob-iions(4) for the overlap geometry may be writtgh0] in the

lem, and in the final section we summarize our results. oM

P
Il. 2D MODEL — =He, (5a)
. . . . . . 20 x==*/12
We consider a two-dimensional Josephson junction which
consists of two superconducting metal plafearallel to the EY T
x-y plane separated by a thin oxide layfFig. 1(a)]. The v =t (5b)
electromagnetic behavior of such a system is governed by Yly=zwre :

Maxwell's equations coupled with the Josephson equation . . . .
d P P d whereZ is the normalized total bias current through the junc-

J,(x,y) = Jpsin®(X,y) (1)  tion. In Fig. 1(b) we show the boundary conditions for the
2D equation for®(x,y) corresponding to the overlap geom-
for the tunneling supercurrent density through the oxideetry.
layer. In Eq.(1) ®(x,y) is the phase difference of the order  In the general case E(R) under the boundary conditions
parameters in the two superconductors, and the conktast (5) can only be solved numerically. At the same time the
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inequality w</" in the case of a narrow junction suggests 2mwny
separating transversal and longitudinal modes and using a T(xy,0)=2, An(X,t)cos——, (14
Galerkin-type method to solve the problem. To this end we n=0

first consider the auxiliary problem of the 1D Josephso

. ) "Where the coefficient®\,(x,t) are determined by the usual
junction

projection. Substituting Eq14) into Eqs.(12) and(13b) and
using the notatio,=d/Jx we get

d*Do(y)
7— =SinPy(y), (6) 2
dy ’ ) 2mn
_ﬁtAn(Xit)_ﬂé’tAn(th)+§XAn(X1t)_ T An(x)
with the in-line boundary condition at zero external magnetic
field, i.e., 2_5“OJW/2 ; 2mny | oy
= cos sin
dd, T wo e W oy
d_ = i7 (7)
Y ly=zwe ’ = 2mny|
+ >, An(x,t)cos—=| —sindy(y) {, (15
The solution of this problem is well know(see Refs[1,6]) n=0 w
and can be expressed in terms of Jacobi elliptic functions as ,
. OAn| = .t]=6n0He, N=0,1,2,..., 16
sind o= 2\mmycd(y|m)nd(y|m), (8) X ”( 2 e, N (16
dd, where &, is the Kronecker delta.
d—=2\/m mysdy|m), (9 It is interesting to remark here that in the absence of dis-
y sipation (3=0) Egs.(15) and(16) can be obtained by mini-

where pgg|m) with (p,g=s, c, d, n are Jacobi elliptic func- mizing the Lagrangian functional

tions with modulusm (m;=1-—m is the complementary /P2 +5
modulug [12]. The period of the solution isk{m), where E= f dx[ > 2 L = (9:A) 2+ (9A)2]
K(m) is the complete elliptic integral of the first kind. The —/12 n

modulusm can be obtained from the boundary conditi@h )\ 2
W Aﬁ_SnAn
2 ad _Z 10 "
mmsd = /m|=5—. (10 y y
+2HAp(X)| x+§ —5(x— E”—F({An})],
If mis close to unity Eq(10) simplifies to
5 17
P EAR !
M=27127] 2 sinr(wi2)- where
Now, a solution of the form 1 (w2 . 2mny
! FHAD == dycogdo(y)+ 2 Ay(x,t)cos— =
—w/2 n=0 W
reduces Eqs(2) and(5) to and where the abbreviation
— Wy = B+ VAW =i Bo(y) + W (x,y)] - s Do(y)], _1 f "2 4y s 2mny
12 Sh=w _W/Zdy sin ®o(y)]cos—— (19
oV was used.
i =He, (133 It is seen from Eq.(15) that only the modes with
x==/12 n<N=[w/27] ([x] is the integer part of the numbes)
have an influence on the properties of the junction. The
ﬂ -0. (13b) modes with largen give contributions which decrease as
W 1y n~2. In what follows we will consider the properties of not

very wide junctions and will assume that<2. Thus we

The solution of Eq(2) under the boundary conditior(s) can neglect all modes with=2 and take into account only
must be a symmetric function of the transversal varighle  the modes witm=0 andn=1. Moreover, whemw <2 we
can be shown that the functioh(x,y,t) from Eq.(11) must  have A;(X,t)<Ao(X,t). Therefore we shall neglect effects
also be symmetric iy due to the symmetry of the boundary caused by nonlinear interactions of the1 mode and will
conditions. Therefore taking into account the boundary contake into account nonlinear properties of the modeO as
ditions (139 we can represent the functioki(x,y,t) by a  well as the coupling between both these modes. This allows
Fourier series which satisfies the boundary conditit3b), us to write Eq.(18) as
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1 (w2 2wy
F(Aq,A)= WLW/Zdy cog Oy(y)+Ay+ AlcosT

~ — COCO$0+ S()SinAO
+(S;c07y+ C1SinA) A,
1
+5(Cacosho— S,SinAg)AZ, (20)
where
1 (w2 2mny
Cn=—f dy cog dy(y)]cos—. (21
W J —wr2 w

From Egs.(15), (17), and(20) we obtain that the ampli-
tudesAqy(x,t) andA;(x,t) are governed by the equations

— 92Ag— BIAg+ 92Ag= CoSinAg+ Sycosh,
+(C1Cc08A;— S;SinAG) Ay
1 )
— E(CzsmAOnL S,C0A)AT— S,
(22)

2

2
— 02AL— BAAL+ I2AL = ( | A1t 2[CisinAg+ S;cosh,

+(C,c0A;— S,SinAG) A — S ],

(23)

under the boundary conditions
xPo(X, 1) [y= = o= He, (249
AL, D) x= 2+ p=0. (24b)

2095

enough junctionswW=<2), while our approach based on the
set of EQgs.(22) and (23) gives a good agreement with the
results of two-dimensional numerical simulations in the
whole interval for the width &w< 27, and the SFM offers
the possibility to extend to larger widths by including more
terms from the expansion if14).

[ll. STATIC SOLUTIONS IN THE OVERLAP GEOMETRY

The static properties of the junction are described by the
solutions of Egs(22)—(24) when the time derivatives are
neglected so thady(x) and A;(x) are functions ofx only.
Denoting derivation withx by a prime we have

Ag: CosinA0+ 80C0$0+ (Clcoﬁo_ S]_SinAo)Al

1
— 5 (CysinAg+S,c09R0) AT~ Sy,

5 (26)
2
EI,.: W A1+ 2[ClsinA0+ S]_CO%O
+(C2C0A0— S8IMA) AL — S ], (27)
under the boundary conditions
AY(=/12)=H,, (283
Al(=/12)=0. (28b)

It is seen from EQqs(26) and(27) that the longitudinal prop-
erties of the junction described by the amplitudegx) and
A;(x) depend on the coefficients,, andS,,, which are de-
termined by the transversal characteristics of the junction.
Equation(26) reduces to the effective 1D moddll] if we
setA;=0, Cy=1, and neglect the teri§,cosh,.

When there is no external magnetic fielt{{=0) Egs.
(26) and(27) have a trivial solutioAy=A;=0. In this case

Equations(22)—(24) give an effective description of the the problem is reduced to the 1D one and the current and
electrodynamics of a long overlap geometry Josephson jundnagnetic field distributions are described by Eg.and(9).
tion. It is worth noticing that to describe static and dynamicThe maximum current that goes through the barrier can be
properties for the overlap boundary conditions a perturbe@btained from Eq(10). In the interval of widths under con-
one-dimensional sine-Gordon equation has been used in tiséderation (v<2) the function s§(w/2)|m) is positive and

form

D, — Dy =sind + D, — (25)

Jo/ W’

Eilbecket al.in Ref.[13] represented a solution of E@®)
in the form(11) with ®o(y) = (Z//wJp) (y?/2) and assuming

that (1/8)(Zw/Jy/)<1 they derived the effective equation
(25). In a recent paper Pagam al. [14] proposed an ap-

for any m in the interval[ 0,1] the currentZ is a nonmono-
tonic function of the modulusn with a single maximum at
m*. The position ofm* depends on the width of the junc-
tion. Whenw=2, m* ~3 andl . H.=0)=/w. Whenw is
near 2r we have m*=8(coshw+16 coslw) Y2 and
ImadHe=0)=4/".

For finite H, we must also solve the set of Eq&6) and
(27) with the boundary condition&8). In the framework of
our approach, the reason the maximum current which flows

proximate averaging procedure, in the framework of which itthrough the barrier depends on the external magnetic field

was postulated that

1 (w2 1 (w/2
—f dy sin®(x,y,t)=sin —f dy &(x,y,t)
W J —wp2 W J —wr2

‘H. can be clarified if we consider simultaneously both equa-
tions for dy(y) and Ag(x) neglecting for simplicityA,(X).

The external currer determinesby(x) through its bound-
ary condition(10) in which the external magnetic fieltl,
does not enter directly. It enters, however, in the equation for

and the two-dimensional problem was reduced to an effecAy whose solution is not guaranteed for any external current,
tive one-dimensional one. We shall show below that an efbut for a given magnetic fiel@.# 0. Equation(26) gives a
fective one-dimensional approach to the long overlap Jostable solution only up to a maximum value in the external

sephson junction based on H5) is valid only for narrow

current which depends on the external magnetic field. The
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variation ofl ., nearH,~0 with the external magnetic field and
can be estimated for narrow junction&/<€2). For small o o2 o
H. the amplitude Ay(x) is expected to be small and N. = 1 J dxf dz Hy:i T dX 9D
Y 2md 2 X
1

A (X)<Ap(X). Therefore we can sét;(x) =0, and, expand- ~/12 —di2 T /12
ing the trigonometric functions in Eq30), we can write a : :

i i i i /7 /
simple equation foAq(x) which can be solved analytically. =—|o|Zy|-0-Zy (31b)
Using some analytic techniques we obtain the inequédiee 2 2’ 270
Appendix A ) ) )

Note that the fluxon contem, is a function ofx andN, is
TH,\*? a function ofy.
T?<IZ% (H=0) 1—( /w) } (29 We should remark that due to the boundary conditions

considered here, the functich(x,y) is a symmetric func-
tion of y so thatN,= 0. If one neglects the term with,; then

Ny is independent of/. This is the case whew<2 even
though the field is two dimensional. In that case we have an
effective separation of the andy dependencies in the func-
tion ®(x,y)=®(y) +Aq(x). If, however, higher terms are
needed in the expansion ¢£3), then they-direction fluxon
content is a function oy.

Thus at finiteH, the maximum current will decrease with
increasing magnetic field. An analytic solution of E¢(&6)—
(28) for a generalH, cannot be obtained. The above proce-
dure shows that for smalt and?, the amplitudeA; can be
neglected, because as seen from @) A;~w?C;A,, and
the contribution of A; to the equation for A, is
~W?C32A,<CyA,. For largew, one must solve the set of
Egs.(26)—(28) numerically as presented below along with a

comparison with the results of two-dimensional numerical V. NUMERICAL RESULTS

simulations. The numerical solution of our quasi-one-dimensional
model can be divided into two separate problems. The first
IV. FLUX CONTENT OF 2D SOLUTIONS involves the determination oby(y) from Eqgs.(6) and (7)

following the procedure ifi6]. It gives the dominant varia-
. ) . tion of d(x,y) iny, since it takes into account the external
ditions) the magnetic flux can be characterized by the fluxon.,rrent which gives the gradient of the phase difference

Cor.“e“F(‘” units of'the basic qua.”‘“r.“ of flus,=h/2e), . alongy. The second step is the numerical solution of the set
which increases with the magnetic field. Due to the sinu-; coupled nonlinear equatior@6) and (27) with (28) for
soidal nonlinearity of the Josephson term in the sine-Gordo

. : X ; ; the modal amplitudeA, andA, . For the geometries consid-
equation the magnetic f_qu is a multiple valued functl_on Ofered hereA, along with ®(y) are sufficient to reproduce
the external magnetic fielftl]. Fo_r a very short junction, the spatial variation of(x,y). The results can be compared
where one obtains the characteristic Fraunhofer pattern fcU(/ith the direct numerical solution of the time independent
the maximum tunneling current,,,( H,) is a single valued

f f Eq.(2) with th | iti .F
function where the maximum current vanishes when exactl orm of Eq. (2) with the overlap boundary conditiox). For

. : ! ¥his purpose we used the Newton iterative method
a multiple number of flux quanta penetrate the junction along

and normal to the long dimension. This creates a sequence of  y2¢ () — cogd(-1) ) =gin(P(-1)
branches labeledn(~n+1) branches, signifying that the _ ,
magnetic flux content is betweenandn+1 fluxons. At the —cog @)~ (32

same time the maximum tunneling currédtie to nonlinear- ) . . ) .
ity) is a nonmonotonic function of the external magneticWhich has been analyzed in detail ih5]. This algorithm

field. For a long junction there is an overlap between thecOnverges quadratically so that the norm of the difference
different branches. between two successive iterates goes to zero in about five
For a 2D junction, even when the external field is alongiterations. The main difficulty in the procedure comes from
one dimension, the magnetic field pattern is not one dimenthe choice of the initial guess which should be close enOUgh
sional, so that it is necessary to define the flux penetratiof? the solution. To obtain thén.(H) curve, we have

along both dimensions. Thus according to E).the effec-  Started from the well known situation whefi is very
tive magnetic field{ is a two-dimensional vector in the small, and the solution is close t&/2 so that the current is

. close to the maximum. We have then increased the current
plane of the barrier up to the point where the iteratiof832) does not converge
and then proceeded to bisect between these values to find the
critical current. The magnetic field is then increased, and
using the solution for the previous value Bf, andZ, we
find the maximum current for this value @{, by stepping
and bisecting. For this to work, it is essential that the steps in
7 and’H are close and small, and we took them to be a few
N ZLJ'WQ dyjdlz d7 H :iJ'W/Z dy d.® percent. The whole procedure was implemented very effi-

*2ad ) —wpe —d2 2w —wp Y ciently using theeLLPACK software[16]. The typical number

of mesh points used was aboutX860 so that one iteration

q;( « ﬂ) —(I)( « — ﬂ” (313 took abow 5 s on an IBM RS5000 and the whole 0-1 fluxon
‘2 2 branch could be obtained in about 12 h CPU time.

In a 1D junction(very narrow and in-line boundary con-

H=(dy®,— 3, D,0). (30)

The magnetic fluxes in units of the quantum of fliby that
penetrate the junction along the two directions are

1

2
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w=4 1.0 | I I
g } 0.5

0.0

0.5 h g

0.0 I I I
0 2 4 6 8 10

FIG. 3. Contour plots for the phase(x,y) for a junction with
0 0.2 0.4 0.6 0.8 1 /=10, w=1, and three values ofa) H.=0.1 (top), (b) 0.9
m (middle), (c) 1.9 (bottom.

FIG. 2. Z(m) from the left-hand side of Eq10) for three values  this and the following calculations the junction length is

of w=1,4,6. /'=10. The top pattern is fof{,=0.1 with | ,,, near its
maximum (at H.=0). IncreasingH, causes the junction to

The one-dimensional static sine-Gordon Eg). and the  act as a nonuniform barrier due to applied or internal current
equations for the modal amplitude#\(,A,) were solved magnetic field penetration. This is reflected in the decreased
usingMATLAB following the same approach, except that for curvature as we go down in Fig. 3 frof@) to (c). In Fig. 3a)
the latter a bisection om was used for large curren(eear  the phase is centered arousid= /2, ranging from 1 in the
He~0) because of the difficulty in inverting EGL0). The  center of the left edge to 1.95 at the corners of the right edge,
number of mesh points was chosen to be 150 and the curresp that si is significant. The phase change along a fixed
tolerance for the bisection 18. y value is about 0.7, implying a fluxon conteht,~0.1

In the SFM method the solution faby(y) is given in the  which is independent of and is small as expected. In Fig.
form of elliptic functions with the modulusn (0<m<1),  3(b) for the increased,=1.0 we introduced almost half a
which is determined from the boundary condititt0) for  fluxon with N,=0.42. Notice that the constant phase line
the external bias current. In general, this equation for a giveBpacing is different in the three figures 0.039@h 0.122 in
7 must be solved numerically. The left-hand sidgX@) asa (p), and 0.225 in(c). In Fig. 3(c) the Z (the maximum for
function of m depends strongly on the junction width as  7{,=1.9) is very small since we have introduced almost one
is seen in Fig. 2. For the values wf considered her&(m)  fluxon with N,=0.8. At H,=2 the solution is the same as
has a single maximum at=m* and for a given bias current for the 1D in-line geometry sincén.(H.=0)=0 and a
there are two possible values im that satisfy(10). From  whole fluxon has penetrated the junction.
these only the one at the right of* corresponds to a stable In Fig. 4 we study the effect of the junction width
solution. Here we should remark that, when we neglect thgy=4,6,10 on the phase pattern at a constant external mag-
x dependence, alin=m* give stable solutions, and for a netic field H,=1. In all three cases the contour spacing is
finite magnetic field this interval is reduced te>m;>m*  fixed atAd®=0.167. Thus taking into account the scaling of
as discussed above. To the value mof corresponds the
maximum possible current for the particular value of the ex- 4 4
ternal magnetic field. As seen in Fig. 2, for large (but
w<27) the part of the curve abowe* becomes very steep 2.0 } )
nearm=~1 so that the elliptic functions become hyperbolic- .
like. The class of solutions foby(y) has zero fluxon con-
tent, and is at the beginning of the{01) branch, since in 6.0
(10) no magnetic field is included. We mention that for even
largerw [where more modal terms i(l4) are needefthe
function Z(m) becomes oscillating with more maxima, but ¢g
still only the region to the right of the last maximum very
close tom~1 is physically relevant.

Once m is determined and using the expression for s
dy(y) we can evaluate the coefficien®, and S, which
enter in the ODE’s folAy(x) andA(x). Thus the approxi- 0
mation to®(x,y) is obtained numerically. In Fig. 3 we plot,
for a junction width ofw=1, the constant phase lines for  FIG. 4. Contour plots for the phase(x,y) for a junction with
values ofZ corresponding to the maximum possible bias cur-/=10, H,=1, and three values dB) w=4 (top), (b) 6 (middle),
rent at three values of{,=0.1,1.0,1.9 correspondingly. In (c) 10 (bottom).

10
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In Fig. 6 we plot the functions®y(y), Aq(x), and
A1(x) for a junction of widthw=4 and three values of the

TILLLLTT 77777
y i
PN s N s 4 s s

L7777
St

1 external magnetic field{,=0.1,1.0,1.95. The current is
0.5 chosen at its maximum value for the corresponding external
0 field. The fluxon contenN, is essentially determined from

-0.5 Ao and we see that it changes fra¥g=0.1,0.5,0.98. Notice

4 that the scale foA; is enlarged by a factor of 20. Thus in all
three casesA; is small and the fluxon content can only
weakly depend oly. For the casé{,=1.95 we see that the
function ®(y) along with A;(x) almost vanish(they are
zero for H,=2.0). The solution for the phase is simply

FIG. 5. 3D plot of the tunneling current distribution €i(ky)  Ay(x) being clearly 1D since the current is near zero. At
for He=1 andw=4. H,=0.1 the modal amplitudes are quite small, as expected.
In Fig. 7 we compare the phase line pattéwith fixed
contour levels as in Fig.)4or the caseH.=1 [top plot Fig.

the junction dimensions we see that the gradient alprig 3(a)] using the _2D soluti(_)n and that obtai_ned from the_ SFM

slightly increasing as we go fronte) to (c), implying a ~ Method by settingy; =0 in Eqg. (26) (top figure, and with

slightly higher current. In the center there is a relatively largeP1 included(bottom in Egs.(26) and(27). The basic struc-
area where the phase is SlOWIy Varying ndex 0 since for ture is the same in all three cases, with Only minor differ-
weak fields the penetration is along the perimeter. The miniences, which are compounded by the contour fitting proce-
mum of the phase is at the center of the left edge while th&lure. The main difference is in the right edge of the junction
maximum is at the right edge corners where there are stronghere the phase varies significantly and the téyyrshould
variations in the phase since the external magnetic field anbe included. The plot including both modal amplitudes is in
bias current act additively. A clearer indication of this is in good agreement with that obtained with the direct numerical

Fig. 5, where we give a 3D plot of the tunneling currentsolution of the 2D problem.

distribution along the barrier interface. The fluxon content In Fig. 8 we plot the maximum tunneling current as a

for the three curves idN,=0.36,0.4,0.46 correspondingly function of 7. for five values of junction width

reflecting the small increase in the maximum current. w=1,2,3,4,6. The solid line is the result of the direct solu-
, Ay Ay
| i i T I | I I I
50 2.0 —
00 =———————
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FIG. 6. Plots of the function®y(y) (left), Ag(x) (middle), and A;(x) (right) for a wide junctionw=4 and(a) H.=0.1 (top), (b)
1(middle), (c) 2 (bottom.
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A;. The approach deviates only slightly even for the rela-
tively largew= 6, above which higher modes may have to be
included. For largemw the maximum current saturates in
analogy with the corresponding effect in the 1D ci&eWe
must stress that the significantly improved accuracy is ob-
tained at no extra computational cost from the 1D model,
especially whem is sufficient to describe the spatial pat-
tern. Of course the inclusion &, automatically checks the
convergence. Actually it can be seen from E@®) and(27)
that A; enters as the square in the equation Agrwith a
small coefficient in front of it, while fron{27) it is seen that

it is important only ifw/27>1. It was verified that using
only Ay changes thé,,, slightly for w=3.

0.0

0 2 4

. . . VI. CONCLUDING REMARKS
FIG. 7. Comparison of the contour plots fdr(y) in a wide

junction w=4 with H,=1 without the modeA,(x) (top) and in- In this paper we developed a split Fourier mode method to
cluding it (bottom). In both figures the dashed lines are the directstudy the static and dynamic properties of large area Joseph-
solution of the 2D sine-Gordon equation. son junctions with overlap boundary conditions. The method

relies on separating out of the phase field the ggyty) that
tion of the 2D sine-Gordon equation usimgLPACK. The  satisfies the external current boundary conditions. The rest is
dashed |ineS are the resu|tS Of the 1D mOdel as discussed &panded in a Fourier Seriesy'nvvith the proper Symmetry,
[11] and the pointddifferent symbols for eachw) are the  \whose dominant term(x) is y independent. The coupling
results of our SFM model. We see that all three models givgyetween thex andy directions is included in a systematic
almost identical results fov=1 andw=2, implying that the  \yay, but for the dimensions considered the first two terms in
use of the 1D model is adequate. Again all three models argye expansion are sufficient. We explicitly demonstrated how
in good agreement for aliv near the right end of the the bias current enters as a driving term in the effective 1D
(0—1) branch, where the slope increases linearly with  model that was introduced intuitively {117]. We performed
This is due to the vanishing of the maximum current and theyumerical calculations using the SFM and the direct solution
boundary conditions are in lin€lD), and nearH,=2 itis  of the 2D problem and demonstrated that the effective 1D
the external magnetic field that dominates the pattern and it,odel is a good approximation fav<2 while our model
effect will be proportional to the jUnCtion width. The 1D with on|y two terms is quite accurate at least upr: 6'
model, however, deviates significantly from=3 and on,  reproducing not only global properties but also the compli-
especially neaf,=0. This is the point, though, where our cated two-dimensional pattern. In this paper we concentrated
method gives the exact result, since =0 we have on the first branch wit{0,1) fluxon content where the 2D
Ap=A;=0, and the current enters as in-line boundary coneffects are strongest. The other branches that correspond to
dition along they direction, which gives our function higher magnetic field with low bias currents are almost 1D-
®(y). In fact, up tow=4 the SFM gives accurate results, like. Some difference is of course expected in the peaks of
and in fact the accuracy is not changed much if we neglecthe other branches.
For the first branch the commonly used 1D model gives a

. - - reasonable agreement upwoe=2 while there are noticeable
40 b, w= i differences in thd ,, for w>3. We also see a saturation

- effect with increasingv (nearw==6) which is related to the
similar effect in[6] at zero external magnetic field. In fact,
the upper value of ;. at H,=0 is easily obtained since we
have in-line boundary conditions along and the lowest
point (with 1,,=0 andH.=2) satisfies in-line boundary
conditions alongk.

We introduced the notion of fluxon content in theor y
direction, which corresponds to the magnetic flux through
the boundaries normal to theor y direction and is a func-
tion of y andx correspondingly. For the boundary conditions
, , , e E consideredN,=0 and N, is the equivalent of the fluxon
0 0.4 0.8 1.2 16 2 C(_)ntent in 1D for a long junction. Here, however, it is

Magnetic Field slightly .dependent oty for w>3 due to the internal self-
magnetic-field.

FIG. 8. Plot of the maximum tunneling currehf, vs the ex- The above calculations can be of relevance to direct mea-
ternal magnetic field<, for w=1,2,3,4,6. The solid lines are the Surements of the Josephson supercurrent distribution in large
direct solution of the static 2D sine-Gordon equation. The dashedrea tunneling junctions by means of low temperature scan-
line is the effective 1D model and the poirtarious symbolsare  hing electron microscopyL TSEM) [18]. It is very easy to
the results of the SFM method. reproduce also the boundary conditions and the form of criti-

30

Current
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cal current inhomogeneity to fit a particular experimental
design. On the other hand, the maximum current at a give
H. is a quantity of interest for design purposes. The effect o
the width on the dynamical behavior of the large area junc-
tion under a bias current and damping due to quasiparticle

here the modulug and the parameteq; may be obtained
rom the boundary condition€A2). Inserting Eq.(A5) into
g. (A2) we get

tunneling is currently being investigated. This will be re- 1 6q(1—q)C8/2
flected in thel-V characteristics. g (q°—q+ 1)174f(ui)=He' (A6)
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were used. The functiori(u) is positive in the interval

APPENDIX [0,K(g)] and reaches a maximum at the paigtwhere

The variation ofl ,,,, nearHe~0 with the external mag-

netic field can be estimated for narrow junctioms<2). For 1+g—JP—a+1
small H, the amplitudeAy(x) is expected to be small and sré(uo|q) = a 3q a . (A9)
A1 (X)<<Ap(X). Therefore we can puwt,(x) =0, and expand- a
ing the trigonometric functions in E§26), we can write the
equation forAy(x) in the form Equation(A6) can have a solution if
. S ., 6q(1-q)C5? 1
AO_COAO_ ?A , (Al) He$ mf(udq)% (A].O)
with the boundary condition Inserting Eq.(A9) into Eq. (A7) we find that
AN x=/12)="H,. (A2) 6q(1—q) fug )—i(l— )
(qP—q+ )3 o q /3 a),
Inserting Eq.(8) into (19) we get
(1 1_2q )1/2(1+ 2_q 1/2
T S e
So=7 (A3) Vg°-g+1 Vg*-g+1
X 1*a 1 1/2—1‘ (q) (A11)
The coefficienCq, which is defined by Eq21), has a much Voi—-qg+1 — ol @

more complicated expression, but for narrow junctions it
simplifies and can be written as follows: The functionfy(q) becomes equal to zero g&=0,1 and
has a maximum at some poigt=q*. Thus from Eq.(A10)

7 we obtain that
Co~l-2mi~\/1— —"—. (A4)
° ! | He=0)

1
—fo(q*)CI2=H,. (A12)
The solution of Eq(Al) can be represented in the form So
Introducing Eqgs{(A3) and (A4) in the inequality(A12) we
AOZE 1_; 2q—1+3q(1 see that
So VoP—q+1

2 VCo  x+Xg
—q)c 2 (qz_q+1)1/4

(A13)

5 5 IHE 4/3
q)”y ”5) Islmmmezm[l—(/w)
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