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Abstract 

In this study we analyze a nonoverlapping domain decomposition method for the solution of elliptic Partial Differential 
Equation (PDE) problems. This domain decomposition method involves the solution of Dirichlet and Neumann PDE 
problems on each subdomain, coupled with smoothing operations on the interfaces of the subdomains. The convergence 
analysis of the method at the differential equation level is presented. The numerical results confirm the theoretical ones 
and exhibit the computational efficiency of the method. 

Keywords: Domain decomposition; Partial differential equations; Interface relaxation 

AMS classification: 35A25; 35J99; 65N99 

I. Introduction 

The objective of this paper is to analyze an iterative nonoverlapping domain decomposition method 
for elliptic problems, in which, at odd iteration levels, we exchange Dirichlet boundary values among 
subdomain problems at their interfaces, while at even iteration levels, we exchange Neumann bound- 
ary values. 

It seems that although this method has been considered and implemented in previous studies, 
a rigorous analysis of sharp convergence estimates has not yet given in the literature. In particular 
in [6] a convergence analysis of the method is carried out at a differential level using Hilbert space 

* Corresponding author. E-mail: jrr@cs.purdue.edu 
1Work supported in part by PENED grants 95-602 and 95-107, NSF grants CCR-9202536 and CDA-9123502, and 

AFOSR FM 49620-92-J-0069. 
2 Permanent address: University of Crete, Mathematics Department, 71409 Heraklion, Greece and IACM, FORTH, 

711 10 Heraklion, Greece. 

0377-0427/97/$17.00 © 1997 Elsevier Science B.V. All rights reserved 
PH $ 0 3 7 7 - 0 4 2 7 ( 9 7 ) 0 0 1  72-6 



12 J.R. Rice et al./Journal of Computational and Applied Mathematics 87 (1997) 11-19 

techniques. In [5] the Galerkin finite element method and the hybrid mixed finite element method are 
employed to give discrete versions of  this method. In this note, we apply Fourier analysis to show 
the fast convergence rate of  this domain decomposition method in case of  constant coefficients and 
two rectangular subdomains. Although real application problems are more complicated, the analysis 
of  the simple case gives us some feel on the general behavior of the method, since any robust 
method should perform well on this simple example. The sharp convergence results obtained in this 
paper show that this domain decomposition procedure converges very rapidly, and preconditioning 
is not necessary (as opposed to some other methods). As in most similar methods, the convergence 
properties of our scheme depend on a pair of  relaxation parameters. However, theoretical analysis 

1 for many important and numerical experiments will show that we can simply set them equal to 
computations. 

Several domain decomposition schemes similar to our method have been recently proposed and 
analyzed (see [4]). In particular, in the one considered by Funaro et al. [1], Neumann values are 
passed from one subdomain to its neighbor, while Dirichlet values are received from its neighbor. 
Expected convergence and numerical performance results were obtained. However, the subdomain 
problems in this method are not parallelizable, since information passing is required between sub- 
domains at the same iteration level. In [2], a convex combination of Neumann and Dirichlet data 
is passed from each subdomain to its neighbors. This method allows an arbitrary decomposition 
of the domain and each subdomain problem plays the same role in the computation. However, the 
convergence of this method is very slow unless some parameter is carefully chosen. 

The organization of  the rest of  this paper is as follows. In Section 2, the domain decomposition 
method is described for general elliptic problems. In Section 3, the convergence analysis is carried 
out for rectangular subdomains and constant coefficients. In Section 4, numerical experiments are 
provided to confirm the theory obtained in Section 3. 

2. Formulation of the proposed domain decomposition method 

Let f2 be a convex polygon in R d, d = 1,2 . . . .  with boundary 0~2. Consider the following boundary 
value problem: Given f c L 2 ( ( 2 )  and gEHk(Of2) find uEHI(~2) such that 

L u = f  in I2, u----g on 0f2, (1) 

where the operator L is defined by 

Lu =-- - ~ aij(x) + ao(x)u. (2) 
i,j=l 

Although the domain decomposition method of this paper is easily formulated and has been imple- 
mented with great success for arbitrary decompositions, for simplicity in the analysis that follow, 
we partition the domain f2 into two nonoverlapping subdomains ~1 and f22 such that 

We denote the interface of the two subdomains by F = Of 21 N 0f22. 
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It is well known that, under suitable regularity conditions, the problem (1 ) - (2 )  is equivalent to 
the following split problem: 

L u l = f  in (21, 

u 1 = 9  on ~f2~A00, 

/ l  1 : U 2 on F, 

~Ul ~u2 
8v ~ + ~ = 0  o n F ,  

Lu2= f ing22, 

u2 = 9 o n  ¢~c~ 2 N ~O, 

/d 2 = U 1 o n  F ,  

~ u  2 (~u 1 
~-v2 + ~i-v~ = 0 o n F ,  

(4) 

where, for n = 1,2, u, = ula° and where v" is the outward unit normal vector to 0Q,. 
Let us define the following domain decomposition method. Choose u~°)EHI(g2n) with 

u(O)fi I , ~,l~o.n~----9, n = l , 2 .  For k = 0 , 1 , 2 , . . . ,  we construct the sequence _.u(k+l)EHl(~n) with 
U~k+l) satisfying: n ~Q n ~2. = g 

(2k+1)  . ( 2 k + l )  Lu, = f  in f2,, u, - --au~2k)+(1-~)u~ 2k) on F, (5) 

L (2k+l) . ( 2 k + l )  . .  (2k) u 2 = f  in O2, u 2 --~u 2 + ( 1 - ~ ) u ]  2k) o n E ,  (6) 

-~ (2k+2)  -~ ( 2 k + l )  ~ ( 2 k + l )  
. ( 2k+2)  GUl___...1 CUl Ubl2 

L,  1 = f  in f2~, --fl  ~ + ( 1  - / 3 )  ~ on F, (7) 
CV" CV" 

Lu~ 2k+2)-- f in ~22, Ou~2k+2) 8uC22k+l) ~u]2k+l) ~v---5--3 ~ +(1- /~ )  ~ on r, (8) 

where ~, f ie  (0, 1 ) are relaxation parameters that will be determined to ensure and/or accelerate the 
convergence of the iterative procedure. Since these parameters obviously depend on the domain 
partition and the original PDE problem it is in general rather difficult to estimate their optimum 
values. However, theoretical analysis and numerical experiments will indicate that it is reasonable 

1 for many computations. to simply choose ~ = fl = 
As easily seen in this iterative scheme, we impose continuity of  the pressure variable u and the 

flux variable ~u/Ov on the interface alternately at each iteration level. When the iteration converges, 
the limit of  the sequence u(, k) should be the solution of the original problem. 

3. Convergence analysis of the differential problem 

In this section, we analyze the convergence of the proposed domain decomposition method for 
PDE problems on rectangular subdomains. We consider the model problem given by 

- A u + T u = f  in (2-- [-Xl,X2] × [ -1 ,1] ,  u - - 0  on 0f2, (9) 

where x~,x2 > 0  and 7 is a positive constant. We then split the domain 12 into the two subdomains 
121 _-- [ -x l ,0]  × [ -1 ,  1] and 02 -- [0,x2] × [ -1 ,  1], so that the interface line F is at x --0. If we denote 
by ul j) the solution of the domain decomposition method on subdomain f2; at iteration j ,  then it is 
easy to see that the corresponding error functions el/) defined by el/)(x, y) - u(x, y) - ul/)(x, y) for 
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(x, y)Ef2~ satisfy, for k = 0, 1,.. . ,  the PDE problems 

and 
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_de~2k+l) _ (2k+l) -t- Te2 = 0 in ~'~2, 

on r ,  2 

e(2k+l) 0 ~ 2 \ F ,  2 : 0 o n  

._ (2k+  1 ) -de~ 2k+1) + ,vt~ 1 : 0 i n  ~c~1, 

e ( 2 k + l )  = F( t~ ,  ~(2k) ~(2k)~, 
1 e: 1 , e~ 2 ) o n  / - ' ,  

e (2k+  1 ) 1 = 0  on c301\F, 

on F, 

. ~ (2k+2)  - A e ~  2k+2) + -ye 2 = 0 in ~c~2, 

8elEk+2)8x - r f l ' (  c3elE*+l)8x' aeI=*+') ~ ~xx J 

e(2k+2) O02\F,  2 = 0 o n  

. (2k+2)  ^ ~(2k+2)  - /ae  I +~e  1 = 0  in f21, 

c3e~2k+2)Ox - r  fl, Ox , ~x j ( 0 e l 2 k + l )  0e~2k+l)~ 

e(2k+2) 
1 = 0  o n  OO1\F, 

where r(c, w , z ) -  cw + (1 - c)z is a convex combination of w and z. 
We next set ~,i = 7 + (½in) 2 and define the functions 

~ (y )  = sin(½in(y + 1)), 

on F, 

(10) 

(11) 

• i(x)= sinh(v~i(x ~-Xl)) and Zi(x)= sinh(v/~(x2 - x ) )  (12) 
sinh(v~xl ) sinh(v~x2 ) 

It is easy to see that these functions are, respectively, solutions of the following problems: 

~ " ( y ) + ( l i n ) 2 ~ ( y ) = 0  for y E ( - 1 , 1 ) ,  ~ ( - 1 ) = ~ ( 1 ) = 0 ,  

-~['(x) + 7i~i(x)=O for xE(-Xl,O), ~ i ( - x l ) = 0 ,  ~ i (0)= 1 

and 

(13) 

(14) 

-Z['(x) + ?,Zi(x)=O for xE(0,x2), Zi(0)= 1, Z;(x2)=0. (15) 

We can now expand, at iteration j ,  the error functions in each subdomain in terms of the functions 
given in (12) as follows: 

e~i)(x, y) = ~ ali)+i(x)~ii(Y), e~+)(x, y) = blJ)Zg(x)~i(y). (16) 
i=1 i=1 

The coefficients of the above series are precisely the coefficients of the expansions of the functions 
e} 2k+I) and (Oe}2k+2))/~x on F and are given, for k = 0 ,  1,2,.. . ,  by 

// _(2k+l) [ee~2k)(O,y) + (1 -- e)e~2k)(O,y)]~(y)dy, (17) U i = 
1 

/? -ih(2k+l) = [~e~2k)(0, y) + (1 -- oOelEk)(O,y)]~(y)dy, (18) 
1 
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and 

f l  [ Oe~2k+O(O,y) 
";-(2k+z) = t~(xl) 1 3 8x 

3 ̂ (2k+l),,t~ .x'l 
+ (1 - f l ) ~ 2  klJ, y )  ' 

OX 
~ ( y ) d y ,  (19) 

f l  8e~Zk+l)(O' Y)I [fl Oe~2k+l)(O'y) + ( 1 -  fl) ~ ( y ) d y ,  b}2k+2) =--t i(x2) 1 L (~X (OX 

where ti(x)= [ t a n h ( v ~ x ) ] / v ~ .  Using the orthogonali ty of  the 
become 

a(2k+:) = t~(xl )[fla}2k+O~/(O) + (1 - fl)b}2k+l)z[(o)] 
i 

and 

(20) 

~ ' s  in L2(F) ,  Eqs. (19) and (20) 

(21) 

b(2k+2) : -ti(xE)[flbl2k+OZ[(O) + (1 - fl)al2k+')@[(O)], (22) i 

respectively. Adding the squares o f  the above two equalities, using the fact that 

• /~(0) = V/~i co th (v~Xl  ), Z;(0)  = - v ~  coth(v/~x2),  

and setting Pi = t a n h ( v / ~ x 2 ) / t a n h ( v ~ x l  ), we have that 

[alEk+2)] z + [b}Zk+2)] 2 ---- [fla} :k+O - (1 - fl)b}Zk+l)p7']2 + [-flbl zk+O + (1 - fl)a}Zk+l)pi]2. (23) 

Similarly, relations (17) and (18) give 

al 2k+l) = aa~2k)~(O) + (1 - a)bl:k)z,(o) = aal 2k) + (1 - a)b} zk), 

(24) 
b~ 2k+l) = ab~zk)z;(0) + (1 - a)a} 2k) ~i(0) = ab}Zk) + (1 - ~)al :k). 

Substituting Eqs. (24) into Eq. (23) we see that 

(a12k+2))2 + (b12k+2))2 = {~2[fl2 + (1 -- fl)2p2] + (1 -- ~)2[fl2 + (1 -- fl)Zp~-2] 

--2afl(1 -- a)(1 -- fl)(Pi + P71 )}(a}2k)) 2 

+ {a2[f12 + (1 - fl)Zp-2] + (1 - a)z[f12 + (1 - fl)2p2] 

- 2 ~ f l ( 1  - cz)(1 - fl)(pi + p71)}(b}2k)) 2 

+ {2 (1 - + (1 + pV:)] 

- 2fl(1 - fl)( 1 -= 2a + 2a 2)(p, + p~-~ )}al2k)b} 2k). (25) 

To determine the op t imum values for the relaxation parameters ~ and fl one needs to minimize 
the above expression with respect to these parameters.  We were unable to solve this two-parameter  
minimizat ion problem and therefore we set a = ½. This choice is well justified from the analysis of  
the one-dimensional  case which is not presented here. We proceed by giving next, without  proof, a 
simple l emma of  calculus. 
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Lemma 1. Let  p~ = tanh(x/~x2)/tanh(v~ixl ), then when Xl >x2 we have x2/xl < P l <~ Pi < 1, and 
when xl <x2 we have 1 < p~ <~ pl <x2/xl. 

Notice that Ile{2k+ )l [[2 = Z,% (a}2k+l)) 2 and Ile~2k+l)]rl]2 = Ei~, (b}2k+')) 2, where I1" II denotes the 
norm of the space L2(F). Next we give our main convergence result. 

Theorem 
tion (4), 

(i) The 

(ii) 

1 then for  the model problem and its decomposi- 2. Set s = (xl + Xz)/min{xl,x2}. I f  c~ = 
we have that: 
sequences u~ j), u~ j) converge i f  fiE(O, 21 and i f  

(1 - / / ) 2 s 2  - 2//(1 - / / ) s  - 2(1 - 2 / / ) < 2 .  

The optimum value o f  the relaxation parameter fl is given by flopt : ( $2 ÷ S - -  2)/(s 2 + 2s) and 
the following error relation holds: 

2 s _ 2  2 
Z IleJ(2k+2)lFl[2 ~ ~ Z Ilej('2k)[F[[2" 
j=l j=l 

(26) 

Proof. With ~ = ½, Eq. (25) becomes 

(2k+2) 2 = 1 (2k) h(2k)]2 I . . . .  a(2k)x2 (a12k+2)) 2 ÷ (bi ) ~g(Pi)[ai + - i  J <~ ~g(pi)[I, i ) ÷ (blZk))2], 

where g(pi) =2//2 + (l - / / )2(p~ + p72) _ 2//(1 - / / ) (p i  + pi-1). Setting a~ =p~ + p~-~ and applying 
Lemma 1 we have that 2 ~< ai <~(Xl +xz) /min{xl ,x2}  =s.  

Define now the function 

~(a) := (1 - / / )2a2  - 2//(l - / / ) a + 4 / / -  2 

and differentiate it to get 

o" 
~ ' ( a ) = 2 ( 1  - / / ) [ (1  - f l ) a - / / ] > j O ,  for//~< 1 +-----~" 

When fl ~< 2, we have that g'(O'i)/> 0, Vi and 

1- (2k) 2 (a/2(k+l)) 2 ÷ (b~(k+l)) 2 ~< ~g(s)[(ai ) ÷ (b12k))2], 

which implies part (i) of the theorem. 
The function ~(s) achieves its minimum with respect to // when / /=  (s2+ s -  2)/(sZ + 2s), and 

min~ (~(s)) = (s - 2)/2s. [] 

To illustrate the rapid convergence of the method we examine the size of the error reduction 
factor in (26) for some typical decompositions of f2. 

Corollary 1. With ~ = ½, this domain decomposition method enjoys the following properties: 
(i) For x~ : x 2  and//opt = ½, the method converges after two iterations (one Dirichlet sweep and 

one Neumann sweep). 
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(ii) For xl = 2x2 (or x2 = 2xl ), and [3opt = 2, we have the following error reduction Jbrmula. 

2 1 2 
[[e~.2k+2)[rl12 ~< g ~ Ile~2~)[rll z. (27) 

j = l  j = l  

3 (or x2 = gxl), and [3opt = we have (iii) For xl gx2 3 6.35 
= 1-'i~.25 ' 

2 2 

ile52 +z)[ ll= 1 ileS=k l l12" (28) 
j = l  j = l  

It is already known that the shapes of the subdomains play an important role in the convergence 
of several domain decomposition methods. As the next corollary exhibits, this happens also for our 
method. 

Corollary 2. W h e n  ~ = [3 = ½, the proposed method converges i f  either (2 - v~ )x l  <<. x2 <<. xt, or 

xl ~< x2 ~< (2 + v~)xl. 

1 Then Eq. (25) implies that Proof.  Let e = fl = i. 

2 1 [ 1  1 2 l 

j=l 

2 

+ pT')] Z 1142'>1FII 
j=l  

1 2 Convergence is achieved if ¼[1 + $(p, + p~-2)_ (p~ + p~-i )] < 1, which is equivalent to 

/ =  tanh(v~ix2) V/~. 
2 - v J < - - - < 2 +  

tanh(v/~ixl ) 

In view of Lemma 1, the proof is now complete. [] 

As Theorem 2 shows, this domain decomposition method always converges if suitable relaxation 
parameters are chosen; using the optimal relaxation parameters, the error reduction factor is less than 
t which indicates the fast convergence of the method. Furthermore, Corollary 1 gives some typical 2 
examples illustrating the possibility of fast convergence while Corollary 2 indicates that the method 
with trivial relaxation parameters still converges for a wide range of domain decompositions. 

4. Numerical experiments 

In this section, numerical examples are presented to confirm the theoretical results given above. 
A systematic performance evaluation of the proposed and similar domain decomposition methods 
is under way [4] and will be presented elsewhere. Here we show that, at least in certain cases 
of practical importance, the method proposed here outperforms the methods proposed by Funaro 
et al. [1], and Lions [2]. For this we have implemented these three methods using the ELLPACK 
software system [3]. It is important to point out here that we have observed by experimenting in 
the ELLPACK framework that the usage of different PDE discretization methods (various Galerkin, 
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finite difference and col loca t ion)  does not  affect the conve rgence  propert ies  o f  the method.  In all 

computa t ions  below,  we  apply  second-order  finite difference discret izat ions on un i fo rm grids in each 

o f  the two subdomains .  The result ing l inear sys tems o f  algebraic  equat ions are solved by  banded  

Gauss ian  elimination. Single precis ion is used for  all calculations.  The initial guesses  are a lways  taken 

to be zero. The errors are evaluated in the L °~ n o r m  over  the two subdomains  at each iteration. 

We  select the fo l lowing  mode l  p rob lems  defined on f 2 -  [0, 1] × [0, 1]. 

E x a m p l e  1. -~2u/t3x2 -02u/t3y2= f ,  in I2, u = g, on 0f2. The funct ions f and g are chosen  such 

that the exact  solution is u(x ,y )= s in (2x )y (1  - y ) .  

E x a m p l e  2. - - ~ 2 U / O X 2 - - 0 2 u / O y 2 - +  - 0,5U ~-f, in f2, u = 0, on  Of 2. The funct ion f is chosen  such that 

the exact  solut ion is u(x, y ) =  3eX+yx(1 - x ) y ( 1  - y ) .  

W e  denote  the domain  decompos i t ion  methods  as fol lows:  

M e t h o d  1.  The me thod  descr ibed in this paper  with ~ - - f l -  1 

1 M e t h o d  2. The me thod  p roposed  by  Funaro  et al. [1] with 0 -  ~. 

M e t h o d  3. The me thod  p roposed  b y  Lions  [2] with 2 = 1. 

Tables  1 and 3 contain the errors in the L °~ no rm in the case o f  equal s ized subdomains ,  whi le  

Tables  2 and 4 contain the errors in the L °~ no rm in the case o f  unequal  sized subdomains .  The 

Table l 
Numerical results for Example 1 with interface at x = 0.5. The errors are shown in the L °° norm 

 rid size × Grid size ~0 × 626 

Iteration Method 1 Method 2 Method 3 Method 1 Method 2 Method 3 

1 1.76.10 -1 1.76.10 - l  1.92- 10 - l  1.76.10 -1 1.76.10 - 1  1.91 • 10 -1  

2 1.19- 10 -4 4.34.10 -4 1.88.10 -I 4.39.10 -5 1.39.10 -4 1.90.10 -1 
3 5.29- 10 -5 5.73.10 -5 1.87.10 1 1.22- 10 -5 2.73.10 -5 1.90.10 -I  

Table 2 
Numerical results for Example 1 with interface at x = 0.65. The errors are shown in the L °° norm 

Grid size ~ × 1 1 Grid size g6 × 1 

Iteration Method 1 Method 2 Method 3 Method 1 Method 2 Method 3 

1 1.12.10 - l  2.12.10 - 1  1.45.10 - l  2.13- 10 -1 2.13. | 0  - 1  1 .45 -  10 - 1  

2 1.29.10 -2 1.93.10 -2 1.43- 10 -I 1.28.10 -2 1.90.10 - 2  1.45.10 - l  
3 1.3l. 10 -3 1.73.10 -3 1.42.10 -1 1.36- 10 -3 1.66.10 -3 1.45.10 - 1  
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Table 3 
Numerical results for Example 2 with interface at x = 0.5. The errors are shown in the L °~ norm 

19 

Grid size 1 × ~0 Grid size 626 × 

Iteration Method 1 Method 2 Method 3 Method 1 Method 2 Method 3 

1 5.41.10 - l  5.41.10 -1 4.28.10 -1 5.41.10 - I  5.41 • 10 -1 4 .07.10 -1 
2 2.26- 10 -3 3.17- 10 -3 4.26.10 -1 6.67.10 -4 9.62.10 -4 3.72.10 -1 
3 3.14.10 -4 1.25.10 -3 4.24- 10 -1 1.12.10 -4 3.85.10 -4 3.38.10 - l  
4 1.25- 10 -4 1.25- 10 -3 4.24- 10 -1 1.12- 10 -4 3.85- 10 -4 3.38.10 -1 

Table 4 
Numerical results for Example 2 with interface at x = 0.35. The errors are shown in the L °~ norm 

Grid size ~ × 326 Grid size ~ x 

Iteration Method 1 Method 2 Method 3 Method 1 Method 2 Method 3 

1 4.42.10 -1 4.98.10 -1 1.28- 10 - l  4 .24.10 -1 5.01.10 -1 1.14.10 -1 
2 3.95.10 -2 4.88.10 -2 1.27.10 -1 4.08- 10 -2 4.92.10 -2 9.12.10 -2 
3 3.00.10 -3 4.70- 10 -3 1.25.10 -1 3.31- 10 -3 4.55.10 -3 6.90.10 -2 
4 2.06- 10 -3 1.31- 10 -3 1.25.10 -1 8.07- 10 -4 7.21 • 10 -4 6.90.10 -2 

numerical results from Tables 1-4 show that our method performs quite well, being slightly better 
than Method 2 [1] and much better than Method 3 [2]. Note that the subdomain problems at 
each iteration level in our method are completely independent and thus the computation is easily 
parallelizable, while the subdomain problems at each iteration level in Method 2 [1] cannot be fully 
parallelized in such a natural way. 
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