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Effective sine-Gordon model for the static properties of narrow
window junctions
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We show that the maximum tunneling current for a long thin window Josephson junction in the
presence of an external magnetic field is given to a good approximation by the solution of an
effective sine-Gordon model with appropriate rescalings. This model is obtained via a reduction of
the two-dimensional system to a one-dimensional integro-differential equation~nonlocal
sine-Gordon!. The passive region introduces an effective Josephson characteristic length. Using
numerical simulations we show that for a narrow junction the cases of inline and overlap current
feed are well described by the effective model. We discuss the influence of the width of the junction
and find that the model gives a good approximation for the behavior of large area windows in the
inline geometry, while it deviates for the overlap. ©1999 American Institute of Physics.
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I. INTRODUCTION

A Josephson junction is a weak link between two sup
conducting films across a thin oxide layer allowing the tu
neling of Cooper pairs and/or quasiparticles.1,2 Its electro-
magnetic properties as an oscillator can be described b
sine-Gordon equation for the phase difference of the ma
scopic order parameters in each film. This model has b
successfully used to describe a variety of static and dyna
effects for long junctions whose length is much larger th
the Josephson penetration lengthlJ .3 In practice, however,
the technology of fabrication of modern Josephson junctio
which stems from the technology of semiconductors, is s
that the top and bottom superconducting plates occupy
area larger than the one of the junction itself and forms
‘‘overhang’’ leading to a so-called ‘‘passive region’’ due
the large thickness of the intermediate insulating la
around the junction. This serves as protection of the interf
from mechanical damage as well as a cavity to which
oscillator can couple with adjustable impedance misma
thus increasing the output power of the device.

The passive region contributes significantly to the sta
and dynamic properties of these window junctions. A s
tematic variation of the extensionw8 of the passive region
for a long junction has shown in particular that its presen
can lead to the disappearance of the ‘‘zero-field step’’
namical states corresponding to the shuttling of a soli
inside the window.4 The static behavior of these device

a!Electronic mail: flytzani@physics.uch.gr
b!Also at: Institute for Physics of Microstructures, RAS, Nijny-Novgoro
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which is characterized by the maximum current flowi
through the junction for a given magnetic field and provid
an important way to calibrate them, is also strongly affect
The maximum current for zero magnetic field increases w
w8 and the critical magnetic fieldHc corresponding to the
vanishing of the current decreases.4 Another experimental
study by the group of Salerno5 emphasized the different role
played by a lateral or longitudinal passive region for lo
junctions. It showed that a lateral passive region causes
increase of the velocity of the linear waves in accordan
with the result on the dispersion curve obtained by Le6

while a longitudinal passive region only acts as a lump
capacitance on both ends of the junction.

We have emphasized the fundamental role of the lat
passive region for window junctions by considering sta
fluxon solutions.7 We showed that the fluxon width in such
system is not given bylJ as in the case of a pure junction
described by the sine-Gordon equation, but by a larger c
acteristic length of magnetic flux variationleff which in the
case of a large passive region causes the inflation of
fluxon and its destruction for a finite length junction. In Re
7 we gave limiting expressions forleff and showed thatleff

can be used for a quantitative understanding of the beha
of the maximum currentI max for a given magnetic fieldH.
Here we confirm and extend this approach by showing t
the I max (H) curve for both inline and overlap geometrie
can be accurately described by an effective one dimensi
model and appropriate rescalings withleff . This approach is
justified in the case of a narrow junction by a reduction
the two-dimensional~2D! partial differential equation~PDE!
system describing the problem to a 1D integro-differen
1 © 1999 American Institute of Physics
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equation of the sine-Gordon type where the passive reg
contributes to the integral term in the form of mutual indu
tance. This method relies on the resolution of the Lapl
problem in the passive region and its subsequent couplin
the equation in the junction, and it is common in the theo
of antennas8 or for treating surface waves i
hydrodynamics.9 The nonlocal term can be shown to give
rescaling of the second space derivative and justifies the
fective 1D sine-Gordon approach. At this point it is wor
noting that an effective model and rescaling was intuitiv
suggested in Ref. 10 to fit someI max(H) curves for the over-
lap geometry. Here we prove the validity of this approach
both inline and overlap geometries and confirm it by co
parison to the 2D numerical solution.

In Sec. II we will study the case of an infinitely long an
thin window and obtain the integro-differential equation d
scribing the phase in the window and recover the express
for leff obtained by a Rayleigh–Ritz variational procedure
Ref. 7 in the extreme limits of small and infinite idle regio
In Sec. III we consider the case of a finite length thin jun
tion. Similarly an integro-differential equation can be o
tained, which leads to the effective model. In Sec. IV w
compare the results forI max(H) calculated from the numeri
cal solution of the 2D PDE problem with the effective mod
in the inline and overlap geometries. In Sec. V we disc
the limitations of this approach, in particular for large ar
junctions, and include our conclusions.

II. MODEL FOR AN INFINITELY LONG WINDOW
JUNCTION

Using as units of spatial dimension the Josephson len
lJ ~defined in terms of parameters of the pure junction!, the
normalized phase difference between the two supercond
ors forming a window junction is given in the static case
the following system of coupled PDEs7

Df5sin f in Sj , ~1!

Dc50 in Sp , ~2!

wheref and c are the normalized phase differences in t
junction~domainSj ! and passive region~domainSp!, respec-
tively @see Fig. 1~a!#, andD[¹2 is the Laplacian operator
In the following we use three different geometries:~a! a pe-
rimetric passive region of widthw8 all around the window
and finite window dimensionsl 3w @see Fig. 1~a!#; ~b! an
infinite lateral window@see Fig. 1~b!# with w (w8) the width
of the window~passive! region; ~c! a finite lengthl lateral
window @Fig. 1~c!#. In this section we consider the geomet
of Fig. 1~b!.

The equations are coupled by the following continu
conditions for the phase and surface current on the junct
passive region interfaceSi :

f5c and
]c

]n
5LPJ

]f

]n
, on Si ~3!

and the boundary conditions on the external boundary of
passive regionSo
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]c

]n
5LPJI ext, on So , ~4!

where]/]n denotes the outward normal derivative andI ext is
due to an external bias current or applied magnetic field
has been normalized byf0 /LJlJ , where f0 is the flux
quantum. The quantityLPJ5LP /LJ is the ratio of the surface
inductances~with LJ to be used as inductance unit! assumed
for simplicity constant in the passive region and juncti
area. In the following we will assumeLPJ[1, which de-
scribes a small thickness insulating layer in the passive
gion (t!lL , but larger than the oxide thicknesst0! so that
the critical current vanishes in the passive region but
inductance is unaffected.

For an infinitely long window junction@Fig. 1~b!# in the
x direction, the passive region (Sp) corresponds tow/2
<uyu< w/21w8 and the window (Sj ) to uyu< w/2, with in-
terface (Si) the linesy56w/2. The boundary conditions in
Eqs.~3! and ~4! now become

fuy56w/25cuy56w/2 , fyuy56w/25cyuy56w/2 ,
~5!

cyuy56~w/2 1w8!56d/2 ,

FIG. 1. Schematic drawing of~a! a window junction with mixed passive
regions;~b! an infinitely long lateral window junction;~c! truncation of the
device shown in~a! eliminating the longitudinal passive region.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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in the case of an overlap current feed of densityd. In the
earlier equations the subscripts represent derivation with
spect to the variable.

The solution of the lateral window narrow junction in
volves four steps, not necessarily in the order presented

~i! Solve the Laplace equation in the passive region. T
is possible if we assume that the inwards current fl
normal to the interface with the window is given b
an unknown yet functionI (x) @I (x)/2 at each inter-
face#. Since the outside boundary conditions a
known the solution forc(x,y) is given in terms of
I (x), which must be determined self consistently
matching the solution and its normal derivative on t
interface of the two domains.

~ii ! Assume that the window is narrow and integrate
2D sine-Gordon equation over the thickness of
window. This requires the introduction of an averag
x-dependent phaseF(x) in the window, while the 2D
sine-Gordon equation with boundary conditions tur
into a 1D equation driven by the interface curre
I (x).

~iii ! Match c and F on the interface to express the u
known I (x) in terms of the averaged phaseF(x).

~iv! Solve the resulting nonlocal sine-Gordon equation

The technical details and the reasoning behind the ea
steps follow. We start by averaging off(x,y) acrossy in the
narrow window,

F~x!5
1

w E
2 w/2

w/2

f~x,y!dy. ~6!

Assuming w!1 so that the average of sinf is close to
sinF,11 we obtain from Eq.~1!

2Fxx1sin F5
1

w
@fy#2 w/2

w/2 [I ~x!, ~7!

whereI (x) is a function to be determined. It corresponds
the surface current normal to the junction-passive region
terface and acts as a spatially distributed overlap-like driv
current. In Eq.~7! we assumed eveny symmetry forf, i.e.,
fyuy56w/256w (I /2). We should also remark that in th
averaging of Eq.~6! it is not necessary to assume smallw.
What is important is that the variation off(x,y) with y is
small. In fact due to the nonlinearity there will be little vari
tion for w up to the characteristic length~in this caseleff

instead oflJ!. This is the reason why the 1D sine-Gordo
model seems to work well in the pure junction.

In the passive region using they symmetry we need only
to consider the Laplace problem in the upper half (w/2<y
< w/21w8) with the following Neumann boundary cond
tions onSi andSo correspondingly:

cyuy5 w/25w ~ I /2! and cyuy5 w/2 1w85d/2 , ~8!

by using a Fourier transform inx. Notice however that the
Fourier transform ofc in general does not exist because t
function does not decay at infinity. We therefore apply t
Fourier transform to its first derivativecx
Downloaded 23 May 2003 to 139.91.254.18. Redistribution subject to A
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cx~x,y!5
1

2p E
2`

1`

dkeikxc̃x~k,y!,

wherec̃x(k,y) is the Fourier transform ofcx(x,y). This way
we obtain the equation

2k2c̃x1c̃xyy50,

whose solution is

c̃x~k,y!5 ikA cosh@k~y2 w/2!#

1 ikB sinh@k~y2 w/2!#, y.0,

and where the coefficientsA and B are obtained from the
boundary conditions~8!

A5
d̃2wĨ coshkw8

2k sinh kw8
and B5

wĨ

2k
. ~9!

Ĩ and d̃ are the Fourier transforms ofI andd. From Eq.~9!

we can solve forĨ (k), while A(k) can be eliminated in favor

of F̃(k), since the matching at the interface gives

F̃x~k!5c̃x~k, w/2!5A, ~10!

by identifying c(x, w/2) with F(x) for small w. ThusI (x)
can be eliminated from Eq.~7! if we extract Ĩ (k) from Eqs.
~10! and ~9! and apply the inverse Fourier transform to o
tain

I ~x!5
1

w

1

2p E
2`

1`

dkeikxF d̃

coshkw8
12i tanh~kw8!F̃xG ,

~11!

which can be replaced in Eq.~7! to yield the final integro-
differential equation describing the thin window junction

2Fxx1sin F5
1

w

1

2p E
2`

1`

dkeikx
d̃~k!

coshkw8

1
2

w

i

2p E
2`

1`

dkeikx tanhkw8F̃x~k!.

~12!

This equation yields the solution in the junction regionF(x)
neglecting they dependence. FromF(x) we computeI (x)
in Eq. ~11! and obtain the solution in the passive region
forming c̃(x,k) from Eq. ~9! and applying inverse Fourie
transform to obtainc(x,y). The first term in the rhs of Eq
~12! is due to the external current and in the case of van
ing passive region reduces to (1/w) d(x), while for uniform
distribution irrespective ofw8 it givesd0 /w, whered0 is the
current density per unit length. The second term is a nonlo
term that arises from the folding of the 2D passive region
the window. One can rewrite the second term as an inte
in x so that it can be considered as a mutual inductance te

Let us remark that Eq.~12! can also be obtained by
variation of the functionalF which in the case of zero exter
nal current@d(x)50# can be written as
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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F5E
2`

1`

dxS Fx
2

2
112cosF D

2
1

w E
2`

1`

dxE
2`

1`

dx8Fx~x!K~x2x8!Fx~x8!, ~13!

where K(x2x8) is the kernel associated to the right ha
side of Eq.~12! and has a Fourier transform

K̃~k!5
tanhkw8

k
.

Thus the second term ofF can be written by using the con
volution theorem as

I 5E
2`

1`

dxE
2`

1`

dx8Fx~x!K~x2x8!Fx~x8!

5
1

2p E
2`

1`

dkF̃x~2k!K̃F̃x~k!. ~14!

In the limit w850, Eq.~12! is the 1D static sine-Gordon
equation, while for smallw8 it leads to fluxons with an in-
creased width. To see this we rewrite the second term in
rhs of Eq.~12! by noting that the main contribution to th
integral comes fromk'0, as can be seen by the method
stationary phase. So in the limit of a smallw8 we use the
expansion (tanhkw8)/k5w81O(k2) and it yields approxi-
mately (2w8/w) Fxx by virtue of the inverse Fourier trans
form. Thus, we obtain for Eq.~12! in this limit ~with d50!
2leff

2 Fxx1sinF50, with leff.lJ(51) given by

leff5A11
2w8

w
. ~15!

This can also be obtained by a variational approach of
free energy functional in the special case where the cons
phase lines are almost straight lines even in the pas
region,7 with the variational parameter the width of the kin
like solutions. Expression~15! can be easily understood
we define an effective inductance per unit length in thex
direction as the sum of two parallel inductances withLJ

5m0d/w for the window andLP5m0d/2w8 in the passive
region. If we use an effective current density per unit len
of wJc in the expression forlJ , we obtain Eq.~15!.

In the case of largew8 the surface current paths prese
strong deviations from straight lines and one cannot use
previous result, where we consider the effective inducta
of two parallel waveguides. Here one must use a variatio
approach by assuming explicitly a fluxon type solution ins
the window of the formF f(x)54 arctan(e2 x/d), where the
width d is the variational parameter. Like in Ref. 7 we u
the free energy approach and notice that Eq.~12! results
from the variation of the functionalF. The calculations are
easier if one considersq(x)[(F f)x5(2/d)1/cosh(x/d) with
its Fourier transformq̃(k)52p sech(pkd/2). Summing all
the terms yields the expression forF
Downloaded 23 May 2003 to 139.91.254.18. Redistribution subject to A
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d
14d

1
2p

w E
2`

1`

dk
tanhkw8

k

1

cosh2 ~pkd/2!
. ~16!

For largew8 one can approximate the integral in Eq.~16!
and recover the logarithmic expression for the magnetic
ergy in the passive region in the case of radial phase lin
since

E
1/w8

2/pd dk

k
5 log

2w8

pd
,

from which by differentiation ofF with respect tod one
obtains the effective fluxon width for infinite passiv
regions7

d5
p

2w F11A11S p

2wD 22G . ~17!

The two limits given by Eqs.~15! and~17! obtained respec-
tively for a small and infinitew8 should be compared with
the the valued which minimizesF, i.e., fromdF/dd50. We
calculated the solution numerically and plotted the flux
width in Fig. 2 obtained from the variation of Eq.~16! ~solid
line! together with the limiting behaviors given by Eq.~15!
for w8→0 ~short dashed curve! and Eq. ~17! for w8→`
~long dashed curve!. It can be seen that Eq.~15! describes
well the situation forw8<1, but diverges from the varia
tional result for higherw8. The asymptotic value forw8
→` is given by Eq.~17! to a good approximation giving a
leff53.43. This value depends only on the width of the w
dow, which in this case isw51. The analytical simple for-
mulas and the variational result are derived for an infin
junction by neglecting the tails in the solution. Thus one do
not expect them to agree with the numerical solution of
nonlocal sine-Gordon, where the tail for increasingw8 is
important. In the figure we present the results obtained fr
the numerical solution of the nonlocal sine-Gordon system

FIG. 2. Plot of the fluxon widthd5leff vs the passive region extensionw8
obtained from~a! solution of the variation ofF(d) in Eq. ~16! ~solid line!;
~b! small w8 limit from Eq. ~21! ~short dashes!; ~c! infinite passive region
from Eq.~23! ~long dashes!; and~d! numerical solution of nonlocal Eq.~12!
for finite lengths withl 512 ~circles! and l 515 ~crosses!.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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Eq. ~12! for l 512(circles) andl 515(squares). We used
cosine transform expansion for the finite length calculati
whose details will be discussed in the next section. The
merical result for the static solution with no external curre
and magnetic field is fitted by a monoparametric funct
Qs(x)5 (2/d)sech(x/d) for the Fx , which corresponds to a
pure sine-Gordon soliton with an effective widthd. This
particular fitting is necessary for the sake of comparis
since we keep the same form as in the local or nonlo
variational approach. In the numerical simulations for a fin
length one expects deviations due to the boundary condit
and therefore a length dependence. It should be rema
that the width of the fluxon is not a sufficient parameter
characterize the solution since the form of the solution is
of a simple sech-type~for Fx! but also has a tail componen
which becomes more important as the size of the pas
region increases. In Fig. 3~a! we show the variation of the
solution profile forw850,2,5. We see that asw8 increases a
solution with essentially two scales becomes apparent. T
is evident if we try to fit the casew852 with a sech-type
solution and we see that the agreement is good near the
ter but is off at the tails. In Fig. 3~b! the fitting ~long-dashed
line! is done by matching the amplitude of the pulse while
width is automatically determined as in the sine-Gordon s
ton. We see that the numerical solution~continuous line! has
a slightly smaller width near the center and larger at the ta
stressing again the existence of more than one scale du
nonlocality.

FIG. 3. ~a! Plot of Fx(x) for a finite length junction withl 51, w51, and
w850 ~solid line!, 2 ~long dashes!, 5 ~short dashes!. ~b! The casew852
~solid line! is fitted by a sech-type form~long-dashed line! and the modified
trial function ~short-dashed line! including a nonlocal component.
Downloaded 23 May 2003 to 139.91.254.18. Redistribution subject to A
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Based on our computer simulations, we remark that
results for largew8 with the variational approach may b
considerably improved, if we take into account the possib
ity of nonexponential soliton tails by introducing the follow
ing three-parametric trial function

Fx5a
2

d1
sech~x/d1!12~12a!

d2

~x21d2
2!

.

The parametera is a weighting factor for the two term
which can be considered the solutions for the limiting ca
of local (w8→0) and completely nonlocal (w85→`) be-
havior with corresponding widths determined byd1 andd2 .
The parameterd2 by fitting the amplitude ofFx is given as a
function of a and d1 . Using the earlier trial function we
fitted the curve forw852 @short-dashed line in Fig. 3~b!# and
we see that fora50.785 andd152.055~so thatd251.561!
we obtain a much better fitting. From the value ofa
50.785 we see that the contribution of the algebraic par
significant. Forw850.5, we finda50.97 so that the contri-
bution of the algebraic tail is not so important, but forw8
55 we geta50.504 so that it deviates strongly from th
local expression and one must solve numerically the inte
equation as we do here.

We have therefore shown that the 2D PDE system~1!
and ~2! describing the static behavior of an infinitely lon
and thin window junction can be reduced to a 1D integ
differential equation which can be rescaled into the sta
sine-Gordon equation by changing the spatial unit from
(5lJ) to leff as given by Eqs.~15! or ~17!. This approxima-
tion done in the infinite length case for which no bounda
conditions are given in thex direction will be shown to carry
on to the finite junction length case in the next section.

III. THE CASE OF A FINITE LONG THIN JUNCTION

We consider now the case of a finite length windo
junction as shown in Fig. 1~c! together with the mixed inline-
overlap boundary conditions. For the general geometry
Fig. 1~a!, it is difficult to treat the problem of a genera
passive region because of the complexity of the Gree
function. We will therefore make the following simplifying
assumptions:~i! the junction is infinitely thin,~ii ! we will
neglect the longitudinal passive regions so that the des
reduces to the one in Fig. 1~c!. The latter hypothesis can b
justified by the numerical experiments for the sta
properties7 which showed that only the lateral part of th
passive region contributes toleff in accordance with the ob
servations of Ref. 5. In any case the design of Fig. 1~c! can
be also achieved experimentally. In the following we w
assume for simplicity in the calculations that the current d
sitiesa, d, and magnetic fieldH are uniform.

In this case we solve the 2D PDE system~1! and ~2! in

the window domainuxu< l
2 , uyu< w/2 and the passive regio

domain uxu< l
2 , w/2<uyu< w/21w8, together with the in-

terface and lateral boundary conditions@see Eq.~5!# supple-
mented by the end boundary conditions

fxux56
l
2
5H6

a

2
, cxux56

l
2
5S H6

a

2 D . ~18!
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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We can follow the same procedure as in the infinite len
case and obtain Eq.~7! but the Laplace problem in the pa
sive region involves now boundary conditions inx. To re-
duce these to homogeneous Neumann boundary condit
we introduce the auxiliary functionf (x) and the new vari-
ableu(x,y) such that

u~x,y!5c~x,y!2 f ~x! with

f ~x![H Hx1
a

4l F S x2
l

2D 2

1S x1
l

2D 2G J ~19!

so that the problem foru is now

Du52
a

l
, ~20!

uxux56
l
2
50, uyuy5 w/25

w

2
I , uyuy5 w/2 1w85

d

2
, ~21!

which can be solved by expandingu in cosine Fourier series
in x

u~x,y!5(
n

un~y!coskn~x1 l /2!

wherekn5pn/ l and

un~y!5
1

l E
2 l /2

1/2

u~x,y!cosknS x1
l

2Ddx,

from which we obtain the solution just like in the infinit
junction case except for the last term

un~y!5An coshknS y2
w

2 D1Bn sinh knS y2
w

2 D1
an

lkn
2 ,

whereAn andBn are given by Eq.~9! if k→kn , d̃→dn , Ĩ
→I n . Notice here thatan5adn0 anddn5ddn0 , wheredn0

is the Kronecker symbol. One can proceed as in the infi
length case and calculate

unS w

2 D5An1
an

lkn
2 , ~22!

connect it with Eq.~7! for small junction widthw and iden-
tify c(x, w/2) with F(x). From Eqs.~20!–~22! we can ex-
tract I n

I n~x!5
dn

w coshkw8
2

1

w S 2knun1
2an

lkn
D tanhknw8.

~23!

To make the connection withF we need to expressun as a
function of cn . For that we calculate the coefficients of th
cosine Fourier transform for each side of Eq.~19! and obtain
un5cn2 f n , where f n is the cosine Fourier component o
f (x) and usingFn5 f n1un(w/2) we have
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I 5(
n

I n cosknS x1
l

2D
5

d

w
2

2

w (
n

S Fn2 f n2
an

lkn
2D kn tanhknw8

3cosknS x1
l

2D . ~24!

Replacing forI in Eq. ~7! yields the final integro-differentia
equation describing the thin window junction

2Fxx1sin F5
d

w
2

2

w (
n

S Fn2 f n2
1

lkn
2 anD kn

3tanhknw8 cosFknS x1
l

2D G . ~25!

On the right hand side the first term is the usual over
current while the second represents the contribution from
bulk of the passive regions exactly like the second integ
on the right hand side of Eq.~12!. The last two terms are
associated with the boundary conditions in thex direction on
the passive region. We will now proceed to estimate th
terms and show that Eq.~25! can be reduced in the same wa
as Eq.~12! can be reduced to an effective sine-Gordon mo
with appropriate rescalings byleff .

The second term on the rhs of Eq.~25! yields the rescal-
ing of Fxx using the same approximation as for the infin
case when the idle region extensionw8 is small and the third
term arose from the boundary conditions~through the auxil-
iary function f n! and we can ignore. Then the problem of
‘‘truncated’’ window junction as shown in Fig. 1~c! can be
approximated when the passive region is not very large
the effective sine-Gordon model with the correspond
boundary condition

2Fxxleff
2 1sin F5

d

w
, with Fxux56 l /25H6

a

2
, ~26!

where leff is given by Eq.~15! and includes the effect o
nonlocality.

Notice that the total currentI satisfies

I 5E
2 l /2

1/2

sin~F!dx5
d l

w
1S 112

w8

w Da,

which is exactly the value obtained for the 2D PDE~1!.
Introducing the reduced lengthl 85 l /leff and current density
a85 a/leff we obtainI 5leff(dl8/w1a8). We also normalize
the x variable and magnetic fieldH by introducing x8
5 x/leff andH85Hleff so that Eq.~26! with the boundary
conditions become

2Fx8x81sin F5
d

w
with Fx8ux856 l 8/25H86

a8

2
.

~27!

It is therefore very simple to obtain theI max(H) curve for Eq.
~26! by computingI max8 (H8) for Eq. ~27! and rescale the cur
rent I 8 by leff and the magnetic fieldH8 by 1/leff .

This result could be inferred from physical conside
ations. From the above we expect that since the lengthleff
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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increases with the extend of the passive region, the m
mum current at zero magnetic field,I max(0) also increases
proportionally toleff if we are not near saturation. On th
other hand, since the maximum current vanishes when a
fluxon enters the junction, we expect that the critical ma
netic field Hc will decrease inversely proportional toleff .
This is what the numerical simulations in the next sect
will show ~see Fig. 4!. Some insight in that direction can b
gained if we choose a normalized length and introducx̄

5x/leff so that the new junction length isl̄ 5 l /leff . Then we
see from Eq.~25! that H becomesHleff and a becomes
a/leff . This means that we can solve the 1D static si
Gordon in the reduced length and then multiply the curr
by leff and divide the magnetic field byleff . The difference
in scaling of the magnetic field and the current essenti
arises from their respective contributions to the symmetry
the boundary condition in Eq.~26!.

There are therefore two levels in the approximati
which reduces the uniform window junction and the 2D PD
system~1! to the effective 1D sine-Gordon Eq.~26!. First is
the reduction of the uniform window to a lateral passi
region by eliminating the longitudinal passive regions. Af
that comes the reduction of the integro-differential sin
Gordon Eq.~12! to the effective model of Eq.~26!. In the
following section, we will show that the latter model pro
vides a good approximation to theI max(H) curves obtained
for the 2D model and that the main limitation in the case
small width junctions comes from eliminating the longitud
nal passive regions. Thus one could solve the scaled s

FIG. 4. Plot of I max(H) curve for the finite domain nonlocal junction wit
inline current feed. The parameters arel 510, w51, ~a! w852, ~b! 5.
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Gordon equation with the usual boundary conditions inx for
the magnetic fieldFx5h and then rescale the plotd(h) into
leffd(h/leff) to obtain the behavior for the real junction.

IV. NUMERICAL RESULTS FOR 2D WINDOW
JUNCTIONS

For the numerical evaluation of the single static flux
in a finite length junction with no bias currentd50, a50,
and H50, we can use the discrete cosine series with
auxiliary function f (x)50, which automatically satisfy the
homogeneous boundary conditionsFx(x56 l /2)50. The

problem reduces to the solution ofK(k)F̃k52@sin F̃#k

wherek[kn5pn/ l , the subscript ‘‘k’’ denoting thekn co-
sine component and

K~k!5k21
2k

w
tanh~kw8!. ~28!

Thus, we end up with a system of nonlinear algebraic eq
tions for the cosine Fourier components ofF(x). This can
be easily solved by a simple relaxation iteration sche

where we added in both sides of the equations the termr F̃k

~with r 51.5! to speed up the convergence and get the so
tion with very high precision within a few iterations. We sto
the calculation when the norm of the difference of two su
sequent iterants is less than 1026. We calculate the single
fluxon width as a function ofw8, while the junction lengthl
is kept constant~see Fig. 2!.

In the numerical calculation of theI max vs H, for the
nonlocal 1D model given for the finite length in Sec. III, th
inline boundary conditions due to the imposed current a
magnetic field, areFx(x56 l /2)5H6a/2. We useF(x)

5Q(x)1 f (x) and the iterative equation forQ̃k is obtained

if we put F̃k
(n)→Q̃k

(n) except in the sinF(n)→sin@Q(n)1f(x)#
in the previous paragraph. For homogeneous current f
only thek50 component of@ f (x)#k is different from zero.

This enters the equation forQ̃k in a nonlinear function so
that it will influence all the components. However, in gene
only a few components will be sufficient to get a well co

vergent solution, since theQ̃k decay exponentially fast. We
performed the calculations forw850,2,5 with inline current
feed (d50), The case withw850 ~sine-Gordon limit!14

served as a test for the accuracy of our numerical code.
find that for H50 the numerically calculated value differ
from the correct theoretical valueI max(0)54, only by about
0.1%. As in the 2D calculations, the zero-field critical cu
rent increases considerably even for moderatew8 values,
reaching 95% of its saturation value already forw855 ~see
Fig. 4!. On the other hand, the valueHc where the critical
current becomes zero for the first time decreases by a fa
which is about 2 or larger forw8>2.

We have also solved the coupled PDE system~1! and~2!
in the caseLPJ[1. Then Eq.~1! is completely equivalent to
the equation describing the junction and passive regi
Df5I J(x,y)sinf, where I J(x,y)50 ~1! in the passive
~window! area, respectively, together with the boundary co
ditions on the passive region interface. Then one can line
ize using the Newton iterative method, which is known
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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converge quadratically. The practical implementations of
procedure has been done using the ELLPACK softwa12

and the details of this implementation can be found in R
13. At I 5I max instability sets in and double precision is ne
essary. At that point the linear operator in the Newton l
earized scheme becomes singular. This is completely equ
lent to the dynamical instability of the static solution in th
time-dependent sine-Gordon system, so that the thres
obtained is of physical interest. Then stepping in current
magnetic field one can obtain the differentI max(H) branches
corresponding to 0-1 fluxon, 1-2, . . ., etc. The effective local
model of Eq.~26! was solved following the same procedur
and we chose the same junction of parametersl 510, w51
which we have embedded in passive regions of different u
form extensionsw8 along the window perimeter.

We have first considered the case of an inline curr
feed, i.e., ford50. For a long junction theI max(H) curve for
the 0-1 fluxon branch is linear and for H50 one hasI max

54 ~Ref. 14! corresponding to the penetration of the ma
netic field in a region of extension 2 (lJ) at each end of the
junction. These features can be seen on the phase s
(F,Fx) of the pendulum Eq.~26! shown in Fig. 5. The so-
lution for H50 is such thatf5p at each end and corre
sponds in the case of a long junction to the orbit close to
separatrixFx

2/256(12cosF), along AB for the right end
and BC for the left end. When the magnetic field is increa
the left hand phase decreases gradually~C moves towards B!
while the right~at A! remains atp so that the linear decreas
of the currenta is given by Fxux5l /2525H1 a/2. The
value Hc gives a zero current and corresponds to a o
fluxon solution.

When the passive region extensionw8 is small the win-
dow junction exhibits the same qualitative features as can
seen from Fig. 6~a! for I max(H) at w850.5 @all around as in
Fig. 1~b!#. Notice however thatI max(0) is significantly
greater than 4 and that the magnetic field giving a zero c
rent Hc is reduced from 2 to around 1.4. For this geome
leff5&'1.41 and the plot obtained from the solution of E
~26! ~shown as a dashed line! is in excellent agreement with
the results of the 2D simulation. This means that at least
small w8 not only an effective local 1D problem can b
constructed but the passive region at the ends is not so
portant, since the 1D sine-Gordon is solved only in t

FIG. 5. Phase portrait (Fx ,F) for the equationFxx5sinF.
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length of the window. As the passive region extensionw8 is
increased to 2@Fig. 6~b!# and 5@Fig. 6~c!# I max(0) increases
and saturates at 10 as expected whileHc decreases. The firs
branch loses its linearity and the behavior tends toward
Fraunhofer pattern (sinHl)/H typical of short junctions
where the different branches do not overlap. Forw852 and
5, the values ofleff obtained from variation of Eq.~15! 2.23
and 3.31 yield a quite good agreement of the plotleffa vs
H/leff obtained from the solution of Eq.~26! with the one
given by the direct two-dimensional solution of Eqs.~1! and
~2!.

Therefore the loss of linearity of the first branch, th
increase ofI max(0) and the decrease ofHc1 indicate that the
behavior of a long junction in a passive region is the one
a shorter junction of lengthl /leff . A junction of length 10
becomes a ‘‘small junction’’ if the passive region extensi
w8 is big enough approaching the diffraction-like pattern f
I max(H). A qualitatively similar picture is seen in the exper
ments although the boundary conditions on the current
not of inline type and the ratio of inductances in the act
and passive regions is different from 1.

The other type of current feed, the so-called overlap
sign is such thata50. In the case of a long junction, curren
will accumulate at each end of the window giving it also
inline character. This will result in a maximum current

FIG. 6. Three first branches of theI max(H) curve for a window junction (l
510, w51! with inline current feed, for the uniform window aroun
~points! and the effective model~dashed lines!. ~a! w850.5, ~b! w852, and
~c! w855.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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zero magnetic field slightly smaller than the areal 3w. We
therefore expect that the approximation of neglecting
longitudinal parts of the passive region leading to Fig.
becomes less good than in the inline case. This will of cou
result in a less adequate correspondence between the e
tive model and the 2D solution. Figure 7~a! shows the
I max(H) curves for both the 2D solution and the effecti
model using overlap current feed for a passive region wi
w850.5. The slight deficit inI max(0) with respect to 10 can
be noticed together with the fact that the effective mo
overestimates by 10% the total current. This overestima
naturally occurs because of the effect mentioned earlier.
smaller currents and larger magnetic fields from which thy
dependence of the solution is less important, the agreem
is very good. Notice also that the valueHc51.4 is in full
agreement with the one for inline feed seen in Fig. 6~a! as
expected because of the correspondence of the boun
conditions whena5d50. Whenw8 is increased to 2 and 5
as shown in Figs. 7~b! and 7~c!, the deficit of I max(0) is
improved but still as expected the effective model does
yield a very good agreement for large values of the curre
For large enoughw8, it seems that the lateral side of th
window attracts most of the current, approaching thus
overlap-like boundary conditions.

V. DISCUSSION AND CONCLUDING REMARKS

In this article we showed that the important length
leff , which must be determined self consistently, i.e., by

FIG. 7. Same as Fig. 6 for overlap current feed.
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solution of the integro-differential equation for the phase d
tribution of a single fluxon. This is the important length ov
which all variations must be considered. Onceleff is known
all static properties can be approximated by solving a
duced 1D problem over the lengthl /leff and then rescaling
the current and the magnetic field as discussed earlier.
chose nevertheless as the unit of length the Josephson
etration length (lJ51) in the pure junction for two reasons
It is the important parameter whenw850 and alsoleff must
be calculated self consistently, and is not known beforeha
For some geometries one can estimate it. Of course, the
lier facts must be taken very seriously in experimental wo
when determining the characteristic length scale from
I max vs H curve or the maximum critical current density.
way to bypass the self-consistent solution, or better the s
tion of an integro-differential equation is the effective mod
we have constructed, which works over a range of geome
parameters with the limitations stated later. Thus the s
consistency is reduced to the solution of a simple si
Gordon 1D equation with the rescalings on the length
magnetic field and the current discussed earlier. Outside
range of validity of the effective model one can solve t
nonlocal 1D problem.

A limitation of the effective model approach is due
the lack of correspondence between the 2D geometry of
phase lines in the case of a window uniformly surrounded
a passive region and a window with only lateral passive
gions. In fact, the comparison of the maximum curre
I max(H) for the two geometries shows that the latter alwa
gives an overestimate of the maximum current as shown
Fig. 8 which compares theI max(H) for the uniform window
junction of Fig. 7~b! with the one for the junction with only
lateral passive regions. To understand this effect we h
plotted the phase lines using the same contour levels for
two geometries forH50.11 andI 59.1 in Fig. 9. One can
then remark that the dip appearing in the left hand side of
junction for the uniform geometry indicates an accumulat
of current which is absent for the device for which the lo
gitudinal passive region has been removed. Notice howe
the good agreement of the overall set of contour lines
plaining the 10% difference which is seen in this case
tween the maximum current values. This is especially t
near the phase linef5p/2 ~heavy contour line! that gives
the most important contribution to the tunneling curre

FIG. 8. Comparison of theI max(H) curve for the uniform window junction
~squares! of Fig. 7~b! with the one obtained for a junction where the long
tudinal passive regions have been removed~crosses!.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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Near this contour the two patterns are quite similar~remark
the different length scales in the two patterns!. The differ-
ence is small for higher fields where the patterns beco
1D-like. The accumulation of phase gradients at the end
the junction leads to the slight inline character of the curr
feed reaching the junction. We have tried to model pheno
enologically this effect by assuming a uniform density alo
the perimeter of the window and assumea andd to be non-
zero in the effective model calculation, however, this did n
yield a good correspondence with the 2D calculations. T
percentage of inline versus overlap current feed should t
be adjusted depending onw8.

A more serious limitation of the approach resides in
cases whenw is large so that the two-dimensional structu
of the phase distribution cannot be neglected. Figure 1~a!
showsI max(H) for a junction of lengthl 510, widthw56 in
a uniform passive region of extensionw852 for an overlap
current feed and in Fig. 10~b! for an inline current feed. The
inline case is well approximated by the simple model. In
overlap case the maximum current does not reach the v
given by the area but a much smaller value given by
penetration depth of the magnetic field inside the juncti
The result can only be obtained by a 2D numerical calcu
tion. The absence of longitudinal passive region would g
an actual overlap situation@in particular at H50 with
I max(0)540leff#, which from the simple expression is abo
leff51.25. Thus it turns out that in this case a significa
contribution comes from an inline component at the per
eter, so that in the corner the inline and overlap compone
feel the saturation due to the maximum critical tunneli
current sooner. In fact, the outside bias distribution is not
crucial for a large idle region. Thus in this case the effect
model approach gives a strong overestimationI max(0)5l
3w. This situation is analogous to the case of a pure junc
of wide area15 for which the averaging approach of Eq.~6!
does not yield an accurate representation of the solution
side the junction. Figure 11 shows the contour lines for

FIG. 9. Contour lines of the phase for the two geometries of Fig. 8, foH
50.21 and the correspondingI max58.20 for the sample with a longitudina
passive region shown on the top plate and a currentI max58.84 for the
sample without a longitudinal passive region shown on the bottom p
The level curves are the same for both plots with a level spacing of 0
The contour line corresponding top/2 has been highlighted and the min
mum is on the left of the pictures.
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phase for this wide window junction, and one clearly sees
boundary layers of size 2leff'2.4 on each lateral side of th
junction. In this case a more precise modeling of the junct
would involve a Fourier expansion in they direction. The
case of inline geometry is much more simple because t
the 2D character of the solution can still be neglected and
validity of the model depends on the validity of the appro
mation of neglecting the longitudinal parts of the pass
region which is good for this type of current feed.

In this study we have not addressed the case of an in
mogeneous current distribution. This is mainly for technic
reasons, there are no difficulties in principle. In this case
harmonics ofa andd should be kept. Then the overlap cu

e.
3.

FIG. 10. Three first branches of theI max(H) curve for a wide window junc-
tion with l 510, w56, and w852. ~a! Overlap and~b! inline boundary
conditions. The dashed line is from the 1D model.

FIG. 11. Contour lines of the phase for a magnetic fieldH50.51 and the
correspondingI max530.71 for the overlap current feed shown on top a
I max520.61 for the inline current feed shown on the bottom. For the
plate, the phase range is 5.75,f,13.40 while for the bottom plate it is 0
,f,6.62, the minima are on the left of the pictures. The level curves
the same for both plots with a level spacing ofp/6 and the contour line
corresponding to 2p has been highlighted.
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rent terms in the effective model are not so simple as in
~26!. In any case a fork type structure up to the junction c
assure a uniform bias distribution.16

An important physical effect which we have not cons
ered in this study is the difference in the surface inductan
between the active and passive regions. In this case th
duction of the uniformly surrounded junction of Fig. 1~b! to
the lateral passive region junction of Fig. 1~c! is not physi-
cally meaningful, for the boundary conditions assumed,
cause this introduces discontinuities of thex derivative of the
phase at the interface. In this case~lateral window! the solu-
tion has some delta function singularities at each corne
the interface, and this problem cannot be used to unders
the uniform window case. This will require different boun
ary conditions than the ones adopted here. In this article
considered only the static properties and did not take
account the effect of damping, which, however can influe
the transient behavior. Damping due to quasiparticle tun
ing or surface losses will play an important role in the c
rent voltage characteristics, i.e., the dynamic behavior of
junction.

ACKNOWLEDGMENTS

Part of this work was supported by an INTAS Gra
~No. 94-1783! and two PENED Grant~Nos. 2028/1995, 602
1995!. V.K. and J.G.C. acknowledge the hospitality of t
University of Crete. The visit of J.G.C. was made possi
by a grant under the Greek-French collaboration agreem
and the visit of V.K. by a grant from the University of Cret
Downloaded 23 May 2003 to 139.91.254.18. Redistribution subject to A
q.
n

s
re-

-

of
nd

e
o
e
l-
-
e

e
nt

1A. Barone and G. Paterno,Physics and Applications of the Josephso
Effect ~Wiley, New York, 1982!.

2K. Likharev,Dynamics of Josephson Junctions and Circuits~Gordon and
Breach, New York, 1986!.

3See papers inProceedings of Nonlinear Superconducting Devices a
High-Tc Materials, edited by R. D. Parmentier and N. F. Pedersen~World

Scientific, Singapore, 1995!.
4N. Thyssen, A. V. Ustinov, H. Kohlstedt, J. G. Caputo, S. Pagano, and
Flytzanis, Proceedings of Nonlinear Superconducting Devices and H
Tc Materials~World Scientific, Singapore, 1995!, p. 107.

5R. Monaco, G. Costabile, and N. Martucciello, Proceedings of Nonlin
Superconducting Devices and HighTc Materials ~World Scientific, Sin-

gapore, 1995!, p. 115.
6C. Lee, IEEE Trans. Appl. Supercond.1, 121 ~1991!; C. Lee and A.
Barfknetcht,ibid. 2, 67 ~1992!.

7J. G. Caputo, N. Flytzanis, and E. Vavalis, Int. J. Mod. Phys. C7, 191
~1996!.

8Computer Techniques for Electromagnetics, International Series of Mono-
graphs in Electrical Engineering, Vol. 7, edited by R. Mittra~Pergamon,
New York, 1973!.

9L. D. Landau and E. M. Lifchitz,Theoretical Physics~Pergamon, New
York, 1986!, Vol. 6.

10S. Maggi and V. Lacquaniti, J. Low Temp. Phys.106, 393 ~1997!.
11J. C. Eilbeck, P. S. Lomdahl, O. H. Olsen, and M. R. Samuelsen, J. A

Phys.57, 861 ~1985!.
12J. R. Rice and R. F. Boisvert,Solving Elliptic Problems Using ELLPACK

~Springer, New York, 1985!.
13J. G. Caputo, N. Flytzanis, and E. Vavalis, Int. J. Mod. Phys. C6, 241

~1995!.
14C. S. Owen and D. J. Scalapino, Phys. Rev.164, 538 ~1967!.
15J. G. Caputo, N. Flytzanis, Y. Gaididei, and E. Vavalis, Phys. Rev. E54,

2092 ~1996!.
16A. Matsuda, Phys. Rev. B34, 3127~1985!.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp


