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We show that the maximum tunneling current for a long thin window Josephson junction in the
presence of an external magnetic field is given to a good approximation by the solution of an
effective sine-Gordon model with appropriate rescalings. This model is obtained via a reduction of
the two-dimensional system to a one-dimensional integro-differential equdtiamlocal
sine-Gordoin The passive region introduces an effective Josephson characteristic length. Using
numerical simulations we show that for a narrow junction the cases of inline and overlap current
feed are well described by the effective model. We discuss the influence of the width of the junction
and find that the model gives a good approximation for the behavior of large area windows in the
inline geometry, while it deviates for the overlap. ®®99 American Institute of Physics.
[S0021-897€09)02122-1

I. INTRODUCTION which is characterized by the maximum current flowing
through the junction for a given magnetic field and provides
A Josephson junction is a weak link between two superan important way to calibrate them, is also strongly affected.
conducting films across a thin oxide layer allowing the tun-The maximum current for zero magnetic field increases with
neling of Cooper pairs and/or quasipartictéslts electro- ' and the critical magnetic fielé, corresponding to the
magnetic properties as an oscillator can be described by @anishing of the current decreadednother experimental
sine-Gordon equation for the phase difference of the macrasy gy by the group of Saleriemphasized the different roles
scopic order parameters in each film. This model has beegayeq by a lateral or longitudinal passive region for long
successfully used to describe a variety of static and dynam'ﬁmctions. It showed that a lateral passive region causes an

effects for long ]unct|on§ whose Iegngth IS much larger tharincrease of the velocity of the linear waves in accordance
the Josephson penetration lengii.” In practice, however, with the result on the dispersion curve obtained by fee,

the technology of fabrication of modern Josephson Junct|onsWhile a longitudinal passive region only acts as a lumped

which stems from the technology of semiconductors, is Suc%apacitance on both ends of the junction

that the top and bottom superconducting plates occupy an We have emphasized the fundamental role of the lateral

area larger than the one of the junction itself and forms an . . . . . L .
“overhang” leading to a so-called “passive region” due to passive region for window junctions by considering static

the large thickness of the intermediate insulating Iayerfluxon sglutlons7_. we showed_ that the fluxon width n sugh a
ystem is not given by, as in the case of a pure junction,

around the junction. This serves as protection of the interfac . . .
from mechanical damage as well as a cavity to which th escribed by the sine-Gordon equation, but by a larger char-

oscillator can couple with adjustable impedance mismatch?Cteristic length of magnetic flux variatioa; which in the
thus increasing the output power of the device. case of a large passive region causes the inflation of the
The passive region contributes significantly to the statidluxon and |'Fs q_estructlon f(_)r a finite length junction. In Ref.
and dynamic properties of these window junctions. A sys-/ W€ gave limiting expressions forer and showed thater
tematic variation of the extension’ of the passive region €an be used for a quantitative understanding of the behavior
for a long junction has shown in particular that its presence®f the maximum currenty, for a given magnetic fieldd.
can lead to the disappearance of the “zero-field step” dy_Here we confirm and extenq thls approach by showmg-that
namical states corresponding to the shuttling of a solitothe Imax (H) curve for both inline and overlap geometries

inside the window!. The static behavior of these devices, can be accurately described by an effective one dimensional
model and appropriate rescalings wikly . This approach is

*Electronic mail: fytzani@physics.uch.gr justified in the case of a narrow junction by a reduction of

bAlso at: Institute for Physics of Microstructures, RAS, Nijny-Novgorod, the tWO'dimen.Si'()naQD) partial differential 'equati()'(‘!DDE) _
Russia. system describing the problem to a 1D integro-differential
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equation of the sine-Gordon type where the passive region (@) y
contributes to the integral term in the form of mutual induc-
tance. This method relies on the resolution of the Laplace
problem in the passive region and its subsequent coupling to
the equation in the junction, and it is common in the theory
of antennad or for treating surface waves in wy| W x
hydrodynamics. The nonlocal term can be shown to give a
rescaling of the second space derivative and justifies the ef-
fective 1D sine-Gordon approach. At this point it is worth
noting that an effective model and rescaling was intuitively - L
suggested in Ref. 10 to fit sonhg,(H) curves for the over-
lap geometry. Here we prove the validity of this approach in ®) y 5
both inline and overlap geometries and confirm it by com- by=>
parison to the 2D numerical solution.
In Sec. Il we will study the case of an infinitely long and )
thin window and obtain the integro-differential equation de-
scribing the phase in the window and recover the expressions
for A ¢ Obtained by a Rayleigh—Ritz variational procedure in
Ref. 7 in the extreme limits of small and infinite idle region. ,
In Sec. lll we consider the case of a finite length thin junc-
tion. Similarly an integro-differential equation can be ob-
tained, which leads to the effective model. In Sec. IV we
compare the results fdr,,(H) calculated from the numeri-
cal solution of the 2D PDE problem with the effective model © g ¢y=_5_
in the inline and overlap geometries. In Sec. V we discuss 2

the limitations of this approach, in particular for large area W
junctions, and include our conclusions.
¢x=H‘% w X
’ ox=H+Z
Il. MODEL FOR AN INFINITELY LONG WINDOW v ! b 2
JUNCTION

Using as units of spatial dimension the Josephson length
\; (defined in terms of parameters of the pure jundtidhe FIG. 1. Schematic drawing df) a window junction with mixed passive
normalized phase difference between the two superconductegions;(b) an infinitely long lateral window junctior(c) truncation of the
ors forming a window junction is given in the static case bydevice shown in(a) eliminating the longitudinal passive region.
the following system of coupled PDEs

A¢:Sin ¢ in S', (1) (;_lr/]/:LP‘JleXt! on Sov (4)
Ay=0 in S, @

. . . whered/ dn denotes the outward normal derivative dpgis
where ¢ and ¢ are the normalized phase differences in theq e 1o an external bias current or applied magnetic field and
junction(domainS;) and passive regiofdomainS,), respec-  has heen normalized byg/L N ,, where ¢, is the flux
tively [see Fig. 18)], andA=V* is the Laplacian operator. g, antym. The quantityp,=Lp/L, is the ratio of the surface

In the following we use three different geometriés): a pe- inductanceswith L, to be used as inductance yrassumed

rimetric passive region of.widFW' all around the window 4 simplicity constant in the passive region and junction
and finite window dimensions'xXw [see Fig. 1a)]; (b) an e |n the following we will assumep,=1, which de-

infinite lateral window[see Fig. )] with w (w’) the width  geripes a small thickness insulating layer in the passive re-
of the window (passive region;(c) a finite length/ lateral gion (t<\_, but larger than the oxide thicknetg so that
window [Fig. 1(c)]. In this section we consider the geometry the critical current vanishes in the passive region but the
of Fig. 1(b). . ] __ inductance is unaffected.

The equations are coupled by the following continuity For an infinitely long window junctiofiFig. 1(b)] in the
conditions for the phase and surface current on the junctiong direction, the passive regionS() corresponds tow/2

passive region interfac§, : <|y|=w/2+w’ and the window ) to |y|=< w/2, with in-
oy I terface §) the linesy= *=w/2. The boundary conditions in
¢=4¢ and i LPJ%, on S (3 Egs.(3) and(4) now become

and the boundary conditions on the external boundary of the Bly=we= Ply=wze  Syly=swiz=yly=-xwz,

passive regiorg, Iyly=+ w2 +w)=* 612,

®)
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in the case of an overlap current feed of densgityin the
earlier equations the subscripts represent derivation with re-  ¥x(X,y)= J’ dke i (k,y),
spect to the variable.

The solution of the lateral window narrow junction in-

A whereTpx(k,y) is the Fourier transform ap,(x,y). This way
volves four steps, not necessarily in the order presented:

we obtain the equation
() Solve the Laplace equation in the passive region. This o~ ~
is possible if we assume that the inwards current flow K gyt hxyy=0,
normal to the interface with the window is given by
an unknown yet function(x) [I(x)/2 at each inter-
face]. Since the_\ outside bognde_lry c_onditions are T//x(k,y)=ikA costik(y— wi2)]
known the solution forg(x,y) is given in terms of
I(x), which must be determined self consistently by +ikB sint{k(y—w/2)], y>0,
matching the solution and its normal derivative on the
interfalceg of the t\ljvl) domailns vatlv and where the coefficientd and B are obtained from the
(i)  Assume that the window is narrow and integrate theboundary condition8)
2D sine-Gordon equation over the thickness of the S—wi coshkw’ Wi
window. This requires the introduction ofanaveraged A=————  and B=—. 9
; ; ; 2k sinh kw’ 2k ©
x-dependent phask(x) in the window, while the 2D L

sine-Gordon equation with boundary conditions turns-
into a 1D equation driven by the interface current I and’s are the Fourier transforms ¢fand o. From Eq.(9)

1(x). we can solve fof (k), while A(k) can be eliminated in favor
(iii) Match ¢ and ® on the interface to express the un- of ®(k), since the matching at the interface gives

known | (x) in terms of the averaged phadgx). - ~
(iv)  Solve the resulting nonlocal sine-Gordon equation. D, (k)= ihy(k, WI2)=A, (10

whose solution is

The technical details and the reasoning behind the earlidsy identifying (x, w/2) with ®(x) for smallw. Thusl(x)
steps follow. We start by averaging ¢{x,y) acrossy inthe  ¢can pe eliminated from Eq7) if we extracti (k) from Egs.

narrow window, (10) and (9) and apply the inverse Fourier transform to ob-
tain
1 wi/2
<I>(X)=Wf d(x,y)dy. (6)
o I(x)= ——f dkek ———— +2i tanhkw')d
. coshk ! x|

Assumingw<1 so that the average of sifis close to

sin®,!! we obtain from Eq(1) 1D

which can be replaced in E@7) to yield the final integro-

— @t sin D= _[¢y]W/3v/2—I(X)r 7 differential equation describing the thin window junction
: 1 3(k)

wherel (x) is a function to be determined. It corresponds to — Dy +sind = W om J . d ékxm
the surface current normal to the junction-passive region in-
terface and acts as a spatially distributed overlap-like driving i o ~
current. In Eq(7) we assumed evey symmetry forg, i.e., o ﬁw dke** tanhkw’ d,(k).
dyly—+w2=*W(1/2). We should also remark that in the
averaging of Eq(6) it is not necessary to assume smalll 12

What is important is that the variation ef(x,y) with y is
small. In fact due to the nonlinearity there will be little varia-
tion for w up to the characteristic lengttin this caseh
instead of\;). This is the reason why the 1D sine-Gordon
model seems to work well in the pure junction.

In the passive region using tlyesymmetry we need only
to consider the Laplace problem in the upper halfZ<y
< w/2+w') with the following Neumann boundary condi-
tions onS; and S, correspondingly:

This equation yields the solution in the junction regibiix)
neglecting they dependence. Fro®(x) we computel (x)
in Eq. (11) and obtain the solution in the passive region by
forming y(x,k) from Eq. (9) and applying inverse Fourier
transform to obtainy(x,y). The first term in the rhs of Eq.
(12) is due to the external current and in the case of vanish-
ing passive region reduces to {)/5(x), while for uniform
distribution irrespective ofv’ it gives 8y /w, whered, is the
current density per unit length. The second term is a nonlocal
Ply=wo=W(1/2) and |y wo+w =912, (8)  term that arises from the folding of the 2D passive region in
the window. One can rewrite the second term as an integral
by using a Fourier transform ir. Notice however that the in x so that it can be considered as a mutual inductance term.
Fourier transform ofy in general does not exist because the  Let us remark that Eq(12) can also be obtained by a
function does not decay at infinity. We therefore apply thevariation of the functionaF which in the case of zero exter-
Fourier transform to its first derivativé, nal current 6(x)=0] can be written as
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—+ oo (I)2 4.0 -
F=f dx )

7X+1—cosd>

_ % Jj:dej:dx’@X(x)K(x_Xr)q)x(xf), (13)

where K(x—x") is the kernel associated to the right hand
side of Eq.(12) and has a Fourier transform

~ tanhkw’
)= Kk : 0.0
0.0 2.5 5.0 7.5 10.0

b4

w

Thus the second term & can be written by using the con-

volution theorem as _ , _ _
FIG. 2. Plot of the fluxon widthd =\ vs the passive region extensiar

obtained from(a) solution of the variation of(d) in Eq. (16) (solid line);
oo +oe (b) smallw’ limit from Eq. (21) (short dashes (c) infinite passive region
T= f dxf dx' @, (X)K(X=X" )P (x") from Eq.(23) (long dashes and(d) numerical solution of nonlocal Eg12)
— m for finite lengths withl =12 (circles and| =15 (crosses

— 1 A T T
=5 f_x dkd,(—K)KD,(K). (14)

4
In the limitw’ =0, Eq.(12) is the 1D static sine-Gordon F{®= E+4d

equation, while for smallv’ it leads to fluxons with an in- ,
creased width. To see this we rewrite the second term in the + 2m [+, Bnhkw 1 )
rhs of Eq.(12) by noting that the main contribution to the woJ k  costt(mkd/2)
integral comes fronk~0, as can be seen by the method of
stationary phase. So in the limit of a small we use the
expansion (tankw')/k=w'+0O(k?) and it yields approxi-
mately (2v'/w) ®,, by virtue of the inverse Fourier trans-

(16)

For largew’ one can approximate the integral in E46)
and recover the logarithmic expression for the magnetic en-
ergy in the passive region in the case of radial phase lines,

since
form. Thus, we obtain for Eq12) in this limit (with §=0)
— N2 Dy, +sin®=0, with A o>\y(=1) given by J%dﬂ(:b 2w’
1w’ k 9 md’
_ Z_WI from which by differentiation ofF with respect tod one
Neit= \/ 1+ . (15 . : . g :
w obtains the effective fluxon width for infinite passive
regiong

This can also be obtained by a variational approach of the —
free energy functional in the special case where the constant g= - 1+ A /1+(l) } (17)
phase lines are almost straight lines even in the passive 2w
region’ with the variational parameter the width of the kink- The two limits given by Eqs(15) and(17) obtained respec-
like solutions. Expressioiil5) can be easily understood if tively for a small and infinitev’ should be compared with
we define an effective inductance per unit length in he the the valuel which minimizesF, i.e., fromdF/dd=0. We
direction as the sum of two parallel inductances with  calculated the solution numerically and plotted the fluxon
= pod/w for the window andLp= pod/2w’ in the passive width in Fig. 2 obtained from the variation of E€L6) (solid
region. If we use an effective current density per unit lengthiine) together with the limiting behaviors given by E@.5)
of wJ, in the expression fok;, we obtain Eq(15). for w'—0 (short dashed curyeand Eq.(17) for w’—o

In the case of largev’ the surface current paths present (long dashed curye It can be seen that E¢15) describes
strong deviations from straight lines and one cannot use th@ell the situation forw’ <1, but diverges from the varia-
previous result, where we consider the effective inductanc@onal result for higherw’. The asymptotic value fow’
of two parallel waveguides. Here one must use a variational, « is given by Eq.(17) to a good approximation giving a
approach by assuming explicitly a fluxon type solution inside) =3.43. This value depends only on the width of the win-
the window of the form®(x)=4 arctan¢” *%), where the  dow, which in this case is=1. The analytical simple for-
width d is the variational parameter. Like in Ref. 7 we usemulas and the variational result are derived for an infinite
the free energy approach and notice that Ek®) results  junction by neglecting the tails in the solution. Thus one does
from the variation of the functiondf. The calculations are not expect them to agree with the numerical solution of the
easier if one considerg(x)=(Py),= (2/d)1/coshi/d) with  nonlocal sine-Gordon, where the tail for increasing is
its Fourier transforng(k) =27 sechgtkd/2). Summing all  important. In the figure we present the results obtained from
the terms yields the expression fer the numerical solution of the nonlocal sine-Gordon system in
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2.0 Based on our computer simulations, we remark that the
(a) results for largew’ with the variational approach may be
considerably improved, if we take into account the possibil-
L5+ ity of nonexponential soliton tails by introducing the follow-
ing three-parametric trial function
e>< 1.0} 2 2
(I)X—Otd—l SeCNX/dl)‘FZ(l—O{)m.
05 ¢ The parameter is a weighting factor for the two terms
which can be considered the solutions for the limiting cases
of local (w'—0) and completely nonlocaWw(’ = —x) be-
0.0 o - havior with corresponding widths determined ¢y andd,.
The parameted, by fitting the amplitude ofb, is given as a
(b) | function of @« and d;. Using the earlier trial function we
1ot fitted the curve fow’ =2 [short-dashed line in Fig.(B)] and
we see that forr=0.785 andd,=2.055(so thatd,=1.561)
0.8 | we obtain a much better fitting. From the value af
.e,* =0.785 we see that the contribution of the algebraic part is
0.5 | significant. Fow’=0.5, we finda=0.97 so that the contri-
bution of the algebraic tail is not so important, but fof
02 | =5 we geta=0.504 so that it deviates strongly from the
local expression and one must solve numerically the integral
0.0 - equation as we do here.
"220.0 -10.0 0.0 10.0 20.0 We have therefore shown that the 2D PDE systédin

X and (2) describing the static behavior of an infinitely long
ot of or a finite lenath iunction with J and thin window junction can be reduced to a 1D integro-
He.s '(g“z ﬁ;;’qu(ﬁ);?]gog:srlgges ?Qﬁértlzggﬁgg ("t‘)’;tT;el’C‘;vs_ellv', &% differential equation which can be rescaled into the static
(solid line) is fitted by a sech-type forrfiong-dashed lineand the modified ~ SiN€-Gordon equation by changing the spatial unit from 1
trial function (short-dashed lineincluding a nonlocal component. (=\y) to N @s given by Egs15) or (17). This approxima-
tion done in the infinite length case for which no boundary
conditions are given in the direction will be shown to carry
Eq. (12) for I=12(circles) and =15(squares). We used a on to the finite junction length case in the next section.
cosine transform expansion for the finite length calculation,
who.se details will be disc_:ussed .in thg next section. The Nupy; THE CASE OF A FINITE LONG THIN JUNCTION
merical result for the static solution with no external current
and magnetic field is fitted by a monoparametric function ~ We consider now the case of a finite length window
Q«(x)= (2/d)sech/d) for the ®,, which corresponds to a junction as shown in Fig.(t) together with the mixed inline-
pure sine-Gordon soliton with an effective width This  overlap boundary conditions. For the general geometry of
particular fitting is necessary for the sake of comparisorfig. 1(a), it is difficult to treat the problem of a general
since we keep the same form as in the local or nonlocapassive region because of the complexity of the Green's
variational approach. In the numerical simulations for a finitefunction. We will therefore make the following simplifying
length one expects deviations due to the boundary conditiorgssumptions(i) the junction is infinitely thin,(ii) we will
and therefore a length dependence. It should be remarketeglect the longitudinal passive regions so that the design
that the width of the fluxon is not a sufficient parameter toreduces to the one in Fig(d. The latter hypothesis can be
characterize the solution since the form of the solution is nojustified by the numerical experiments for the static
of a simple sech-typéor ®,) but also has a tail component propertie$ which showed that only the lateral part of the
which becomes more important as the size of the passiveassive region contributes i in accordance with the ob-
region increases. In Fig.(8& we show the variation of the servations of Ref. 5. In any case the design of Fig) tan
solution profile forw’ =0,2,5. We see that ag’ increases a be also achieved experimentally. In the following we will
solution with essentially two scales becomes apparent. Thigssume for simplicity in the calculations that the current den-
is evident if we try to fit the casev’ =2 with a sech-type sitiese, 5, and magnetic fieldd are uniform.
solution and we see that the agreement is good near the cen- In this case we solve the 2D PDE systéi and(2) in
ter but is off at the tails. In Fig.(®) the fitting (long-dashed  the window domainx|< %, |y|< w/2 and the passive region
Iipe) i; done by matching the gmplituc_ie of thg pulse while it?domain|x| <L wi2<|y|<w/2+w’, together with the in-
width is automatically determlned as in thg sme-Gprdon solizerface and lateral boundary conditidisee Eq(5)] supple-
ton.. We see that thg numerical soluti@ontinuous ling has _mented by the end boundary conditions
a slightly smaller width near the center and larger at the tails,
stressing again the existence of more than one scale due to a4 _ a
nonlocality. ¢’x|x:t |§_ H * 2 1 (/fx|x:t |§_ ( H * 2) . (18)
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We can follow the same procedure as in the infinite length

I
case and obtain Ed7) but the Laplace problem in the pas- |:; Iy cosky| x+ 5
sive region involves now boundary conditionsxn To re-
duce these to homogeneous Neumann boundary conditions, 5 2 an ,
we introduce the auxiliary functiofi(x) and the new vari- W ow zn: P P K2 k, tanhk,w
able 6(x,y) such that "
I
60x,y)=(x,y) ~ f(x) with X CoSkn| X+ 3. 24
o 12 [\2 Replacing forl in Eq. (7) yields the final integro-differential
f(x)z{ Hx+ ar (x— > +| X+ > “ (19 equation describing the thin window junction
_ 5 2 1
so that the problem foé is now ~Oxtsin® = — ; Pn—fn— W“n Kn
a , |
A0=—|—, (20 Xtanhk,w' cosk, x+§ . (25
5 On the right hand side the first term is the usual overlap
Ox=1=0, 6, WQ:& Oyly=wiz s =5, (21) current while the second represents the contribution from the
==+ 2 ) = 2 1 = 2 ’

bulk of the passive regions exactly like the second integral
on the right hand side of Eq12). The last two terms are
which can be solved by expandirign cosine Fourier series  associated with the boundary conditions in theirection on
In X the passive region. We will now proceed to estimate these
terms and show that E¢R5) can be reduced in the same way
f(X,y) = Z 0,(y)cosk,(x+ 1/12) as Eq(12) can be reduc_ed to an effective sine-Gordon model
n with appropriate rescalings by .

The second term on the rhs of E&5) yields the rescal-
wherek,=mn/l and ing of ®,, using the same approximation as for the infinite
case when the idle region extensienh is small and the third
term arose from the boundary conditioftsrough the auxil-
iary functionf,) and we can ignore. Then the problem of a
“truncated” window junction as shown in Fig.(&) can be
from which we obtain the solution just like in the infinite approximated when the passive region is not very large by
junction case except for the last term the effective sine-Gordon model with the corresponding
boundary condition

|
x+§ dax,

1 (12
0n(y)=|—f I/2t9(x,y)coskn

— A, coshk,| y— o] + B, sinhk,| y— —| + 21 3 @
On(y)= A, coshk, y_E +B,, sinhkK, y_E +@, _q)xx)\gff"_sm q):w, with (Dxlx:iIIZZHiE' (26)
whereA, and B, are given by Eq(9) if k—k,, —4,, 1  Wherekg; is given by Eq.(15) and includes the effect of

—1,. Notice here thate,= @y, and 8,= 83,9, wheres,, ~ nonlocality. o
is the Kronecker symbol. One can proceed as in the infinite ~ Notice that the total currerit satisfies

length case and calculate 12 Sl W
I=f sin(®)dx=—+ l+2—)a,
W an — 112 w w
0”(5 =A”+@’ (22 which is exactly the value obtained for the 2D PDB.

Introducing the reduced length= 1/\ . and current density
connect it with Eq(7) for small junction widthw and iden- @’ = a/\ g we obtainl =\ (dl'/w +a’). We also normalize
tify (x, w/2) with ®(x). From Egs.(20)—(22) we can ex- the x variable and magnetic fieldd by introducing x’
tractl, = X/\g¢ andH’ =H\ 4 so that Eq.(26) with the boundary

conditions become

On 2a,

1
n()= w coshkw’ w (an9n+ 1k,

!

s a
—CIDX,X/-l-SIn(I):V—V Wlth (I)X/|x’:t|’/2:H i?

tanhk,w’.
(23

(27)

To make the connection witf we need to expresg, as a It is therefore very simple to obtain the,,,(H) curve for Eq.
function of ¢, . For that we calculate the coefficients of the (26) by computingl,,.(H') for Eq. (27) and rescale the cur-
cosine Fourier transform for each side of EfP) and obtain  rentl’ by Az and the magnetic fielth’ by 1/ .
0,=y,—f,, wheref, is the cosine Fourier component of This result could be inferred from physical consider-
f(x) and using®,,=f,+ 6,(w/2) we have ations. From the above we expect that since the lehgth
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10.0 Gordon equation with the usual boundary conditiong for
(a) the magnetic fieldb,=h and then rescale the plé(h) into
8.0 | ] NN/ \g) to obtain the behavior for the real junction.
6.0 T IV. NUMERICAL RESULTS FOR 2D WINDOW
= JUNCTIONS
'_‘E 4.0
0 For the numerical evaluation of the single static fluxon
in a finite length junction with no bias curredt=0, =0,
20 RV N 1 and H=0, we can use the discrete cosine series with the
/' \.}/\/ auxiliary function f(x) =0, which automatically satisfy the
0.0 : ~— homogeneous boundary conditiods,(x=*1/2)=0. The
10.0 problem reduces to the solution d€(k)®,= —[sin®];
\ (b) wherek=k,=mn/l, the subscript k" denoting thek, co-
80| = sine component and
2k
6.0 | ] K(k)=k?+ —tanh kw'). (28
% w
5 4.0} ] Thus, we end up with a system of nonlinear algebraic equa-
tions for the cosine Fourier components®d{x). This can
20! . o~ ] be easily solved by a simple relaxation iteration scheme
*\\/‘\ where we added in both sides of the equations the tebp
0.0 X : (with r=1.5) to speed up the convergence and get the solu-
0.0 0.5 II;? 1.5 2.0 tion with very high precision within a few iterations. We stop

the calculation when the norm of the difference of two sub-
FIG. 4. Plot ofl ,5(H) curve for the finite domain nonlocal junction with sequentilterants IS Ies_s than, fo V,Ve CaIC,:UIat,e the smgle
inline current feed. The parameters &re10, w=1, (8 w’ =2, (b) 5. ﬂuxon width as a func.tlon olv’, while the junction lengt
is kept constantsee Fig. 2.
In the numerical calculation of thi,,, vs H, for the

: , . . nonlocal 1D model given for the finite length in Sec. IlI, the
increases with the extend of the passive region, the maxi-

o : fhline boundary conditions due to the imposed current and
mum cyrrent at zero magnetic fieltl,5,(0) alsoilncreases magnetic field, arab (x= = 1/2)=H+ a/2. We used(x)
proportionally to\ o if we are not near saturation. On the i . . -~ :
other hand, since the maximum current vanishes when a fuif © (*) * f(x) and the iterative equation f@, is obtained
fluxon enters the junction, we expect that the critical magHf we put ®{"— (" except in the si®—sif O +f(x)]
netic field H, will decrease inversely proportional fo,s.  In the previous paragraph. For homogeneous current feed,
This is what the numerical simulations in the next sectiononly thek=0 component of f(x) ], is different from zero.
will show (see Fig. 4 Some insight in that direction can be This enters the equation fd, in a nonlinear function so
gained if we choose a normalized length and introdwce that it will influence all the components. However, in general
=X/\ o SO that the new junction length is= /A 4. Thenwe  Only a few components V\Lill be sufficient to get a well con-
see from Eq.(25) that H becomesH\ ¢ and @ becomes vergent solution, since th®, decay exponentially fast. We
al\g. This means that we can solve the 1D static sineperformed the calculations fav’ =0,2,5 with inline current
Gordon in the reduced length and then multiply the currenfeed (5=0), The case withw’=0 (sine-Gordon limif*
by A ¢ and divide the magnetic field by.¢. The difference served as a test for the accuracy of our numerical code. We
in scaling of the magnetic field and the current essentiallyfind that forH=0 the numerically calculated value differs
arises from their respective contributions to the symmetry ofrom the correct theoretical valug,,(0)=4, only by about
the boundary condition in E426). 0.1%. As in the 2D calculations, the zero-field critical cur-

There are therefore two levels in the approximationrent increases considerably even for modenate values,
which reduces the uniform window junction and the 2D PDEreaching 95% of its saturation value already for=>5 (see
system(1) to the effective 1D sine-Gordon E6). Firstis  Fig. 4). On the other hand, the vall¢, where the critical
the reduction of the uniform window to a lateral passivecurrent becomes zero for the first time decreases by a factor
region by eliminating the longitudinal passive regions. Afterwhich is about 2 or larger fov'=2.
that comes the reduction of the integro-differential sine- We have also solved the coupled PDE systémrand(2)
Gordon Eq.(12) to the effective model of E¢26). In the in the casd p;=1. Then Eq(1) is completely equivalent to
following section, we will show that the latter model pro- the equation describing the junction and passive regions
vides a good approximation to tHe,,(H) curves obtained A¢=1;(x,y)sin¢, where 1;(x,y)=0 (1) in the passive
for the 2D model and that the main limitation in the case of(window) area, respectively, together with the boundary con-
small width junctions comes from eliminating the longitudi- ditions on the passive region interface. Then one can linear-
nal passive regions. Thus one could solve the scaled sinéze using the Newton iterative method, which is known to
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FIG. 5. Phase portraitd, ,®) for the equationd,,=sin®.

converge quadratically. The practical implementations of the
procedure has been done using the ELLPACK softWare
and the details of this implementation can be found in Ref.
13. Atl =1, instability sets in and double precision is nec-
essary. At that point the linear operator in the Newton lin-
earized scheme becomes singular. This is completely equiva-
lent to the dynamical instability of the static solution in the
time-dependent sine-Gordon system, so that the threshold
obtained is of physical interest. Then stepping in current and
magnetic field one can obtain the differdpf,(H) branches
corresponding to 0-1 fluxon, 1-2 ., etc. The effective local oo
model of Eq.(26) was solved following the same procedures 0 0.5 1 1.5

and we chose the same junction of parameter$0, w=1 H
which we have embedded in passive regions of different unikig, 6. Three first branches of thg,,(H) curve for a window junction|(
form extensionsv’ along the window perimeter. =10, w=1) with inline current feed, for the uniform window around

We have first considered the case of an inline currentpoints and the effective modetlashed lines () w'=0.5, (b) w'=2, and
feed, i.e., ford=0. For a long junction thé,.(H) curve for ~ (©W'=5
the 0-1 fluxon branch is linear and for=H) one hasl .«
=4 (Ref. 19 corresponding to the penetration of the mag-length of the window. As the passive region extensidnis
netic field in a region of extension A () at each end of the increased to 2Fig. 6b)] and 5[Fig. 6(c)] | na{0) increases
junction. These features can be seen on the phase spaaed saturates at 10 as expected whiledecreases. The first
(P,P,) of the pendulum Eq(26) shown in Fig. 5. The so- branch loses its linearity and the behavior tends toward the
lution for H=0 is such thatp== at each end and corre- Fraunhofer pattern (siHI)/H typical of short junctions
sponds in the case of a long junction to the orbit close to thevhere the different branches do not overlap. ®ore=2 and
separatrix®2/2 = + (1— cos®), along AB for the right end 5, the values of . obtained from variation of Eq15) 2.23
and BC for the left end. When the magnetic field is increaseénd 3.31 yield a quite good agreement of the plgia vs
the left hand phase decreases gradu@lynoves towards B H/\ 4 obtained from the solution of Eq26) with the one
while the right(at A) remains atr so that the linear decrease given by the direct two-dimensional solution of E¢¥) and
of the currenta is given by ®,|,_, ,=2=H+ a/2. The (2).
value H, gives a zero current and corresponds to a one Therefore the loss of linearity of the first branch, the
fluxon solution. increase of ,,,,{0) and the decrease 6f.; indicate that the
When the passive region extensian is small the win-  behavior of a long junction in a passive region is the one of
dow junction exhibits the same qualitative features as can ba shorter junction of length/A.4. A junction of length 10
seen from Fig. @) for | ,,(H) atw’=0.5[all around as in becomes a “small junction” if the passive region extension
Fig. 1(b)]. Notice however thatl,(0) is significantly w’ is big enough approaching the diffraction-like pattern for
greater than 4 and that the magnetic field giving a zero curt,,(H). A qualitatively similar picture is seen in the experi-
rentH. is reduced from 2 to around 1.4. For this geometryments although the boundary conditions on the current are
Nef=V2~1.41 and the plot obtained from the solution of Eq. not of inline type and the ratio of inductances in the active
(26) (shown as a dashed lines in excellent agreement with and passive regions is different from 1.
the results of the 2D simulation. This means that at least for  The other type of current feed, the so-called overlap de-
small w' not only an effective local 1D problem can be sign is such thatkr=0. In the case of a long junction, current
constructed but the passive region at the ends is not so inwill accumulate at each end of the window giving it also an
portant, since the 1D sine-Gordon is solved only in theinline character. This will result in a maximum current at
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FIG. 8. Comparison of th&,,(H) curve for the uniform window junction
(squaresof Fig. 7(b) with the one obtained for a junction where the longi-
tudinal passive regions have been remol@odsses

solution of the integro-differential equation for the phase dis-
tribution of a single fluxon. This is the important length over
which all variations must be considered. Ongg is known
all static properties can be approximated by solving a re-
duced 1D problem over the lengtfY\ o+ and then rescaling
the current and the magnetic field as discussed earlier. We
chose nevertheless as the unit of length the Josephson pen-
etration length X ;=1) in the pure junction for two reasons.
It is the important parameter whew =0 and also\ .4 must
be calculated self consistently, and is not known beforehand.
For some geometries one can estimate it. Of course, the ear-
lier facts must be taken very seriously in experimental work
when determining the characteristic length scale from the
I max VS H curve or the maximum critical current density. A
FIG. 7. Same as Fig. 6 for overlap current feed. way to bypass the self-consistent solution, or better the solu-
tion of an integro-differential equation is the effective model
zero magnetic field slightly smaller than the ateaw. We  we have constructed, which works over a range of geometric
therefore expect that the approximation of neglecting thegparameters with the limitations stated later. Thus the self
longitudinal parts of the passive region leading to Fig. 3consistency is reduced to the solution of a simple sine-
becomes less good than in the inline case. This will of cours&ordon 1D equation with the rescalings on the length the
result in a less adequate correspondence between the effevagnetic field and the current discussed earlier. Outside the
tive model and the 2D solution. Figure(af shows the range of validity of the effective model one can solve the
I ma{H) curves for both the 2D solution and the effective nonlocal 1D problem.
model using overlap current feed for a passive region width A limitation of the effective model approach is due to
w’=0.5. The slight deficit in ,,,{(0) with respect to 10 can the lack of correspondence between the 2D geometry of the
be noticed together with the fact that the effective modelphase lines in the case of a window uniformly surrounded by
overestimates by 10% the total current. This overestimatiom passive region and a window with only lateral passive re-
naturally occurs because of the effect mentioned earlier. Fagions. In fact, the comparison of the maximum current
smaller currents and larger magnetic fields from whichythe |,.{H) for the two geometries shows that the latter always
dependence of the solution is less important, the agreemegives an overestimate of the maximum current as shown in
is very good. Notice also that the vallie,=1.4 is in full ~ Fig. 8 which compares thk,,(H) for the uniform window
agreement with the one for inline feed seen in Fige) &s  junction of Fig. Tb) with the one for the junction with only
expected because of the correspondence of the boundalgteral passive regions. To understand this effect we have
conditions wherw= 5=0. Whenw' is increased to 2 and 5 plotted the phase lines using the same contour levels for the
as shown in Figs. (b) and 7c), the deficit ofl,,,{0) is two geometries foH=0.11 andl=9.1 in Fig. 9. One can
improved but still as expected the effective model does nothen remark that the dip appearing in the left hand side of the
yield a very good agreement for large values of the currenfunction for the uniform geometry indicates an accumulation
For large enouglw’, it seems that the lateral side of the of current which is absent for the device for which the lon-
window attracts most of the current, approaching thus theitudinal passive region has been removed. Notice however
overlap-like boundary conditions. the good agreement of the overall set of contour lines ex-
plaining the 10% difference which is seen in this case be-
V. DISCUSSION AND CONCLUDING REMARKS tween the maximum current values. This is especially true
In this article we showed that the important length isnear the phase lineé=m/2 (heavy contour lingthat gives
Neit,» Which must be determined self consistently, i.e., by thehe most important contribution to the tunneling current.
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FIG. 9. Contour lines of the phase for the two geometries of Fig. 8Hfor
=0.21 and the corresponding,,=8.20 for the sample with a longitudinal
passive region shown on the top plate and a curtgpi=8.84 for the
sample without a longitudinal passive region shown on the bottom plate. .
The level curves are the same for both plots with a level spacing of 0.13. b=
The contour line corresponding t@/2 has been highlighted and the mini- 0 0.5 I}I 1.5 2
mum is on the left of the pictures.

FIG. 10. Three first branches of thg,(H) curve for a wide window junc-
tion with =10, w=6, andw’=2. (a) Overlap and(b) inline boundary

. . . conditions. The dashed line is from the 1D model.
Near this contour the two patterns are quite simflamark

the different length scales in the two patterrnghe differ-

ence is small for higher fields where the patterns becom@pase for this wide window junction, and one clearly sees the
1D-like. The accumulation of phase gradients at the ends Oéoundary layers of sizeX2«~2.4 on each lateral side of the
the junction leads to the slight inline character of the Cu”e”]unction. In this case a more precise modeling of the junction
feed reaching the junction. We have tried to model phenomy,,uid involve a Fourier expansion in the direction. The
enologi_cally this effect_ by assuming a uniform density along.sse of inline geometry is much more simple because then
the perimeter of the window and assum@nd 6to be non- e 2p character of the solution can still be neglected and the
zeroin the effective model calcu_latlon, however, thl_s did ”Otvalidity of the model depends on the validity of the approxi-
yield a good correspondence with the 2D calculations. Thenation of neglecting the longitudinal parts of the passive
percentage of |nI|ne.versus overlap current feed should theﬂegion which is good for this type of current feed.
be adjusted depending ow'. o In this study we have not addressed the case of an inho-
A more serious limitation of the approach resides in theyogeneous current distribution. This is mainly for technical
cases whenv is large so that the two-dimensional structure \ea50ns; there are no difficulties in principle. In this case all
of the phase distribution cannot be neglected. Figur@10 harmonics ofw and & should be kept. Then the overlap cur-
showsl ,,.(H) for a junction of lengtH =10, widthw=6 in
a uniform passive region of extensiari =2 for an overlap

current feed and in Fig. 1b) for an inline current feed. The 10

inline case is well approximated by the simple model. In the N
overlap case the maximum current does not reach the value .

given by the area but a much smaller value given by the ° > D
penetration depth of the magnetic field inside the junction. M
The result can only be obtained by a 2D numerical calcula-

tion. The absence of longitudinal passive region would give 0 5 10

an actual overlap situatiofin particular atH=0 with 10 | NRLANAN

I max{0)=40\ ], which from the simple expression is about / \
Neir=1.25. Thus it turns out that in this case a significant 5 >>>\
contribution comes from an inline component at the perim- /

eter, so that in the corner the inline and overlap components R /
feel the saturation due to the maximum critical tunneling oo ; /1/'0////

current sooner. In fact, the outside bias distribution is not so

crucial for a large idle region. Thus in this case the effectiveric. 11. Contour lines of the phase for a magnetic fiele 0.51 and the

model approach gives a strong overestimatigp,(0)=I corresponding ,,=30.71 for the overlap current feed shown on top and

Xw. This situation is analogous to the case of a pure junctiorﬁmax=20-61 for the inline current feed shown on the bottom. For the top
- 5 . . plate, the phase range is 57%<13.40 while for the bottom plate it is 0

of wide argé for which the averaging gpproach of E(@) . <¢$<6.62, the minima are on the left of the pictures. The level curves are

does not yield an accurate representation of the solution inpe same for both plots with a level spacing f6 and the contour line

side the junction. Figure 11 shows the contour lines for theorresponding to 2 has been highlighted.
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