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1 Introduction 

In this paper we present the implementation of an 
“intelligent” mathematical software system for the 
parallel processing of second order elliptic partial 
differential equations (PDE) and describe its soft- 
ware components. The system is referred through- 
out with the acronym parallel (//) ELLPACK since 
it is a superset of the well known ELLPACK sys- 
tem [Rice 851. The design of //ELLPACK is based 
on a scenario for future numerical simulation systems 
which are capable of accommodating users with dif- 
ferent computational objectives and implemented on 
a distributed hardware facility involving high pow- 
ered parallel machines. Its design objective is to pro- 
vide a uniform programming environment for imple- 
menting parallel MIMD PDE solvers, automatic par- 
titioning and allocation of the PDE computation, a 
very high level problem specification language, an in- 
teractive high level environment for grid selection, a 
domain partitioning and mapping facility, a uniform 
environment for obtaining software engineering mea- 
surements, and a graphical display of the solution 
output. The //ELLPACK system is implemented 
on a hardware facility consisting of graphics work- 
stations supporting the X11 window system and con- 
nected to NCUBE, ALLIANT and SEQUENT ma- 
chines through a wide bandwidth local network. The 
software infrastructure of //ELLPACK includes i) a 
man machine interface consisting of a PDE problem 
oriented language and X11 facilities for composing, 
editing and executing a //ELLPACK program, and 
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geometry tools for specifying the PDE domain and 
its boundary conditions, ii) a PDE solution prepre 
cessing subsystem capable of automatically generat- 
ing orthogonal and finite element meshes, a domain 
decomposition tool for partitioning and allocation of 
the specified computations and a PDE solution spec- 
ification/selection tool, iii) the ,//ELLPACK libraries 
for each target parallel machine built assuming a hier- 
archical structure of PDE solvers with fixed interfaces 
and iv) a PDE postprocessing subsystem consisting 
of facilities to collect, analyze and visualize perfor- 
mance data and tools for visualizing the computed 
solution. 

This paper is organized as 6~110~s: Section 2 de- 
scribes //ELLPACK as a realization of the future 
scenario for numerical simulation systems. Sections 
3 to 6 present the description of its various software 
components. 

2 //ELLPACK: A Realization 
of a Future Numerical Simu- 
lation System 

It has been predicted in [NOOI: 831, [Rice 881, and 
[Hous 89a] that in the 1990’s we will see the 
widespread use of distributed computer facilities or- 
ganized hierarchically with respect to their compu- 
tational power and connected with appropriate net- 
ware. They will consist of powerful graphics worksta- 
tions, parallel MIMD systems with tens of processors 
in the billion instruction per second range, parallel 
MIMD systems with hundreds of processors in several 
million instructions per second and SIMD machines 
with several thousands (maybe close to a million) pro- 
cessors. In the meantime, the necessity of closing the 
gap between hardware and software technology has 
been recognized by many as one of the fundamental 
problems of parallel computation. The future hard- 
ware facilities will require “intelligent” software tools 
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Figure 1: The software infrastructure of //ELLPACK. 
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capable of exploiting the enormous power of the coop- 
erating computational engines, while making the id- 
iosyncrasies of such facilities transparent to the appli- 
cation user. The parallel ELLPACK group at Purdue 
University has established a research program to de- 
velop a programming environment and software tools 
that attempt to reduce the parallel computation over- 
head for certain applications governed by partial dif- 
ferential equations (PDEs), while allowing the PDE 
algorithm designer to specify them in a reasonable 
time with good implementation mappings to the fu- 
ture hardware facilities. 

It is clear that the current monolithic designs of 
numerical simulation systems are not flexible enough 
to be mapped efficiently on the future hardware fa- 
cilities. Furthermore, the new generation of numer- 
ical solution systems will be characterized by inter- 
activeness at many levels, decision making and feed 
back. They will include high level user interfaces for 
specifying the component of PDE problem in tex- 
tural/graphical formats, tools for modeling and ma- 
nipulating the geometry of the problem domain, fa- 
cilities for mapping the underlying computations to 
the selected machines, “intelligent” components for 
selecting the efficient method/machine pairs for the 
specified problem, performance evaluation and T/O 
data visualization tools. The main objective of the 
//ELLPACK project is to study the requirements of 
such systems, develop appropriate infrastructure and 
realize an instance of this scenario that attempts to 
address many of the issues related to the parallel pro- 
cessing of second order PDEs used to model “field” 
problems. 

The developing system referred as //ELLPACK 
can be considered as a superset of ELLPACK with 
new facilities for determining parameters of certain 
parallel solvers, modified module interfaces and a 
new man-machine interface. A preliminary design 
of the system was reported in [Hous 89a]. In this 
paper and the technical report [Hous 89b] we dis- 
cuss the detailed structure and functionality of its 
current implementation. The software infrastructure 
of //ELLPACK is described in Figure 1 and can be 
grouped into six subsystems: the user interface, the 
PDE problem specification, PDE solution preprocess- 
ing, PDE solution, run time support and PDE post- 
processing. 

The components of these subsystems and their in- 
teractions are indicated in the same figure. 

3 The Man-Machine Interface 

The //ELLPACK man-machin’e interface consists of 
four X-11 window subsystems referred throughout as 
tools, which are used to specify the components of 
an elliptic PDE problem (operator, domain, bound- 
ary conditions) symbolically, textually and/or graph- 
ically. Figure 2 depicts the lalyout of the PDE and 
geometry specification tools. Their generated out- 
put is saved and displayed in the //ELLPACK con- 
trol tool in the form of a very high level language 
program. This tool is presented in Figure 2 which 
in addition features an interactive editor for modify- 
ing or composing a //ELLPACK program textually 
and facilitates the control of the //ELLPACK system 
by allowing the activation/deactivation of the various 
subsystems. 

The //ELLPACK language is a very high level 
PDE problem/solution statement language. It sup- 
ports facilities specifying PDE: equations and do- 
mains, defining domain decompositions, and selecting 
solution algorithms. It can generate FORTRAN code 
for multiple target machines including parallel and se- 
quential ones for which an appropriate //ELLPACK 
library exists. The syntax of //ELLPACK language 
is described in [Hous 89b]. The //ELLPACK pre- 
processor currently can generate code for a NCUBE 
hypercube. Its modification is under way for the 
SEQUENT, ALLIANT, SUPRIENUM and CEDAR 
MIMD machines. Furthermore, we are adding a new 
facility that will allow “foreign”’ simulation systems 
to be invoked, obtain input information from the 
//ELLPACK environment and display output using 
the //ELLPACK visualization tools. 

The PDE specification tool supports an interface to 
Maxima and Fortran, while it permits the specifica- 
tion of the PDE coefficients and the corresponding 
right side in a template form. The output of this tool 
is saved as ELLPACK equation coefficients or Fortran 
segments. 

The geometry specification tool allows the graphical 
representation of 2-D domain boundary. Following 
to ELLPACK [R ice 851 the boundary of a 2-D PDE 
domain with or without holes :is specified piecewise 
in terms of parametric representation of each bound- 
ary piece. This tool allows the user to specify each 
boundary piece graphically using a cursor driver de- 
vice (currently a mouse) and input the correspond- 
ing boundary conditions interactively. Currently the 
specification of each boundary piece is done through 
a set of points that can be considered as the control 
points to Bernstein polynomials [Klin 901 or the inter- 
polating points of a cubic spline. These points can be 
moved or developed interactively. For 3-D domains, 
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Figure 2: The X11-windows for PDE and geometry specification and //ELLPACK control tools. 
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we are interfacing the ProtoSolid system [Vane 891 in 
collaboration with the CAP0 geometry group. 

4 PDE Solution Preprocessing 
Subsystem 

The design objectives of this subsystem in- 
cludes (a) the selection of grid/configuration and 
method/machine pairs based on specified accu- 
racy/performance requirements and (b) the partition- 
ing/allocation of the underlying computation into the 
selected machine. For the implementation of (a) ob- 
jective, we are developing an expert system [Hous 901. 
Currently the grid can be specified through an inter- 
active tool and methods can be selected from a list of 
displayed options. For the implementation of the (b) 
objective, we have developed two separate tools cor- 
responding to partitioning procedures based on ge- 
ometry mapping strategies [Chri 901. Following we 
give brief descriptions of these tools. 

The Geometry discretization tool is used to display 
and manipulate 2-D orthogonal and finite element 
(FEM) meshes on 2-D grids generated by the ELL- 
PACK’s 2-D domain processor [Rice 851. Figure 3 de- 
picts instances of such meshes and the functionality 
supported by the tool. In case of orthogonal meshes, 
lines can be moved, removed or added, while for FEM 
meshes, the nodes can be moved without guarantee- 
ing regularity. For 3-D polyhedra domains, we will 
use the ProtoSolid system with its own orthogonal 
mesh generator [Vane 891. 

The parallel processing of PDE computations re- 
quires the partitioning and allocation of the under- 
lying computations to fit the targeted architecture. 
This problem can be formulated and solved on the 
continuous or discrete geometric data, the algebraic 
data or at the data flow graph of the computation. 
We have developed and implemented several parti- 
tioning strategies based on finite element or difference 
meshes referred as domain decomposition techniques. 
The goal of these techniques is to subdivide the do- 
mains in load balanced subdomains with minimum 
interface length. For the partitioning of PDE compu- 
tations, we have developed a software tool called do- 
main decomposer supported by different domain de- 
composition strategies [Chri 891. This tool has its own 
user interface and provides different heuristic solu- 
tions to the continuous or discrete partitioning prob- 
lem. These heuristics differ in the degree of optimal- 
ity with respect to the interface length, topology and 
algorithm complexity. The user can modify an au- 
tomatically obtained decomposition interactively or 
define one manually. Currently, the allocation is im- 

plemented by the solvers based on the information 
provided by the domain decomposer. Figure 4 de- 
picts the layout of this tool, while its functionality 
and performance are presented in [Chri 891, [Chri 901. 

In the //ELLPACK environment, there is more 
than one solution path (sequence of methods to be 
applied) for a given problem. The selection of the 
path can be done in three levels. First, the user 
can specify a solution path manually by consulting 
the //ELLPACK manual and using the computation 
segments of the //ELLPACK language. Second, an 
advisor system will be available which will indicate 
to the user the possible applicable solution paths to 
the given problem. This facility eliminates the refer- 
ence to the //ELLPACK manual, but the final deci- 
sion is still left to the user. Finally, an expert sys- 
tem will be available capable of choosing the final 
solution path for the user. In the case of sequen- 
tial ELLPACK, we will use the advisor/expert sys- 
tem developed by Dyksen and Critter [Dyks 901. For 
the //ELLPACK modules, a similar system is under 
development [Hous 901. 

5 PDE Solution Subsystem 

The software architecture of the current //ELLPACK 
library is influenced significantly by the structure of 
the geometry decomposition solvers. Its design is 
based on the requirements of the so-called “contin- 
uous” and “discrete” geometry decomposition tech- 
niques. In the first case, a partitioning/mapping 
of the continuous PDE domain is obtained, using a 
global course mesh and a seque:ntial ELLPACK pro- 
gram is defined over each subdomain and executed in 
each processor with user defined continuous interface 
conditions. The “small” PDE problems are solved 
repeatedly until convergence to the global solution is 
reached. The discrete domain decomposition solvers 
are based on a partitioning of a global mesh of the 
PDE domain and usually consists of seven distinct 
tasks which communicate with each other through 
fixed interfaces. These tasks correspond to mathe- 
matical steps needed to obtain a PDE solution in a 
parallel MIMD computational environment. These 
steps are: a) PDE domain decomposition, b) Par- 
titioning of the underlying computation into paral- 
lel parts, c) Mapping of the underlying computation 
onto the target machines, d) PDE: equation discretiza- 
tion, e) Preprocessing of the solution data structures, 
f) Discrete equations solution, and g) Postprocess- 
ing of the output data. In our first implementation 
of these solvers, continuous or discrete data are dis- 
tributed in all processors. Each individual processor 
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Figure 3: 2-D geometry discretization tool. 
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generates only the equations associated with its sub- 
domains. The algebraic equations data are stored lo- 
cally in sparse mode using the same data structures as 
ELLPACK with some additional structures for the in- 
terface unknowns. In the case of multi-segment ELL- 
PACK PDE solvers the solution is obtained in four 
steps or phases. 

[Phase 1] deals with domain discretization, and par- 
titioning/allocation of the underlying computa- 
tion. Currently this phase takes place in the 
front-end or host/node of the parallel system. Its 
parallel implementation is underway. 

[Phase 21 generates and stores the distributed data 
in the local memories of the available processors 
according to the partitioning/allocation scheme 
defined in Phase 1. 

[Phase 31 carries out the solution of the discretized 
PDE using the algebraic data structure defined 
in Phase 2. 

[Phase 41 deals with postprocessing of the solution 
and its derivatives. 

The current implementation of these phases are de- 
scribed in [Hous 89b]. Most of the modules used to 
implement the above phases are parallelized versions 
of the corresponding sequential ELLPACK ones. The 
interested reader should refer to [Rice 851 for their 
complete description. Tables 1, 2 and 3 present a 
brief view of the existing discrete domain decomposi- 
tion solvers. 

6 PDE Postprocessing Subsys- 
tem 

The responsibilities of this subsystem are: (a) Collect 
the data for performance anaIysis and visualization, 
(b) Monitor of the computation, and (c) Display the 
computed solution in various forms. We have imple- 
mented two tools to support (a) and (c), while (b) will 
be implemented using the TRIPLEX software system 
[Krum 891. 

6.1 Performance evaluation facility 

The //ELLPACK performance evaluation facility 
consists of three parts - the collection, analysis and vi- 
sualization of the //ELLPACK program performance 
data. The performance data collection facility pro- 
vides a common base for both basic program perfor- 
mance measurement and sophisticated performance 
evaluation of different numerical algorithms and their 

implementations. Performance data can be collected 
at different granularity levels of the program, rang- 
ing from a single numerical m.odule to the whole pro- 
gram. Primitives are also provided to collect data for 
arbitrary program blocks, such as each iteration of 
an iterative method. Both communication and com- 
putation time data are collected. The code for per- 
formance data collection is generated automatically 
by the //ELLPACK preproce:ssor when the appropri- 
ate option is set or primitive invoked. This subsys- 
tem records the timing of each of the modules plus 
other important context information such as names 
and types of the modules and the order that the mod- 
ules appeared in the //ELLPACK program. These 
data can be stored permanently in a database so that 
systematic performance evalnation of numerical algo 
rithms is possible. This subsystem is a separate en- 
tity from the //ELLPACK program and can be used 
to do several kinds of performance evaluation and 
to support the development of “expert” systems for 
the grid/configuration and method/machine selection 
problems. It also includes tools for the user to select, 
compose and compare performance data of different 
numerical algorithms. Primitives for data comparison 
include computing mean values, variances, maximum, 
minimum, communication/computation ratios, com- 
munication hot spots location, and other performance 
indicators. The performance data visualization tool 
allows the user to select combinations of different cat- 
egories of performance data and to visualize them in 
different graphical forms. Currently the visualization 
of this data is done in bar chart format, more sophis- 
ticate graphic representation is under development. 
The layout of this tool is illustrated in Figure 4. 

6.2 Data and output visualization fa- 
cili ty 

The //ELLPACK data and output visualization facil- 
ity is intended to provide a gra:phical representation of 
the data structures and PDE solutions obtained. The 
//ELLPACK visualization and output statements di- 
rect the //ELLPACK preprocessor to generate code 
for preparing data for visualization. Statements exist 
to visualize 2-D, 3-D data structures or results of 2-D, 
3-D problem domains for the specified functions. To 
visualize 2-D data structures or producing 3-D plots 
of functions on 2-D domains, a X-11 visualization tool 
has been built. The current implementation uses the 
ATHENA X-11 toolkit. The user is able to select the 
function to be graphed from a menu of available func- 
tions. After that a window with the 3D-plot of the 
requested function is brought up. The plot window(s) 
can be resized and a number of the parameters asso- 
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Table 1: The //ELLPACK-NCUBE discretization modules. 

Module Reference 
5-point star 
PZClCOL 
PSClCOL 
P3C2COL 
Finite Element 

Method 
Finite difference on general 2-D domains 
Quad. spline collocation for rectangular domains 
Hermite collocation for general 2-D domains 
Cubic spline collocation for rectangular domains 
Linear quadrilateral/brick elements on general domains 

Table 2: The solution modules of //ELLPACK-NCUBE library 

Module 
Jacobi-CG 
Jacobi-S1 

Ordering Scheme 
block, arrow-head 
block, arrow-head 

SOR block, arrow-head 
SSOR CG block, arrow-head 

SSOR SI 

Jacobi Schwarz 

block, arrow-head 

block 

GS Schwarz block 

Band Gauss Elimination 
Multilevel Elimination 
Parallel Sparse 

wrap-around 
block 
sparse 

Method = 
Jacobi conjugate gradierir 
Jacobi with Chebyshev 
acceleration 
Successive over relaxation 
Symmetric SOR conjuga.tion 
gradient 
Symmetric SOR with 
Chebyshev acceleration 
Schwarz splitting with Jacobi 
iterations 
Schwarz splitting with 
Gauss-Seidel iterations 
Gauss elimination 
Gauss elimination 
Gauss elimination 

- 

Table 3: The “triple” modules of //ELLPACK-NCUBE library. 

Module Reference I Assumptions 
5-point star/Jacobi-S1 1 Strip domain partitioning 
5-point star)Jacobi-CG Strip domain partitioning 
5-point star/Schwarz Tensor product rectangular splitting 
P3C2 spline/Schwarz Tensor product rectangular partitioning I 
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,6),(8,7),(8,8),(8,9),19,6),(10.5). R 
).(11,5).(12,5) 

- 1.083333 
-- 1.000000 __-____________--_-_--------~-----------------. 

-. 0.916667 UTPUT DISPLAY METHODS 

.-- 0.833333 
__-_______--_____----------------------------~ 

-.--. 0.750000 
c ohion column (xplot.3d' 

1 Total elapse 

proc(Uomain) elapse 

4 proc(Uomain) commun. 

5 deco(domains) elapsi 

8 disc(5points)commun. 
,._ 

-5 dkco(domains) elapse 

6 deco(domains)commun. 
_..._.._.... _____.._.. -..-.-__- ___._.. -.. 
7 disc(5points) elapse 

8 disc(5points) commun. 
s,s6.~uaac6~is~ er'a'rjse 

10 solu(.iacobiS) commun. 

Figure 5: Solution and performance data display tools. 
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ciated with the plot changed interactively. These are 
the horizontal and vertical rotation angles, the reso- 
lution of the graph, the z-intercept and the type of 
the graph. The window is then updated to reflect 
the new changes. The current version of this tool is 
based on an early implementation of 3D-plot facility 
in Interactive ELLPACK and XELLPACK [Bono 901. 
Most of the code has been migrated from FORTRAN 
to C and adapted to the requirements of an interac- 
tive X application. Figure 4 shows an instance of this 
tool. 

The 3-D plots of a function on 2-D domain utilize 
both height and colors to achieve the 3-D visual ef- 
fect on a 2-D display monitor. Unfortunately, this is 
not possible for functions on 3-D domain, onIy the 
color can be used to distinguish the values of ele- 
ments in the 3-D domain. For a color representation 
of a 3-D volume, one needs the ability to “peel” part 
of the volume away to see the actual values inside 
the volume. For this purpose, we are currently using 
the “NCSA X Data Slice” (XDS) facility [NCSA 891 
from the University of Illinois to view slices of the 3-D 
data volume. The //ELLPACK preprocessor gener- 
ates code to translate the data values into the format 
that XDS requires and then XDS is invoked to view 
data slices interactively. Other methods to visual- 
ize 3-D data are under investigation. The 3-D data 
visualization tool can be used to visualize any data 
structures or functions on the 3-D domains including 
the decomposition and mapping of 3-D domains and 
the 3-D meshes. 
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