
CONCURRENCY: PRACTICE AND EXPERIENCE
Concurrency: Pract. Exper.2000;12:845–861

Agent based scientific simulation
and modeling

L. Bölöni, D. C. Marinescu∗, J. R. Rice,
P. Tsompanopoulou and E. A. Vavalis

Computer Science Department, Purdue University

SUMMARY

The simulation and modeling of complex physical systems often involves many components because
(i) the physical system itself has components of differing natures, (ii) parallel computing strategies require
many (somewhat independent) components, and (iii) existing simulation software applies only to simpler
geometrical shapes and physical situations. We discuss how agent based networks are applied to such multi-
component applications. The network agents are used to (a) control the execution of existing solvers on sub-
components, (b) mediate between sub-components, and (c) coordinate the execution of the ensemble. This
paper focuses on partial differential equation (PDE) models as an instance of the approach and describes the
implementation of networks using the PELLPACK problem solving environment for PDEs and the Bond
system for agent based computing. Copyright 2000 John Wiley & Sons, Ltd.

KEY WORDS: software agent; inference; data-intensive applications; problem solving environments; simulation
and modeling

1. INTRODUCTION

A number of new initiatives and ideas for high performance distributed computing have emerged in the
last few years. Object-oriented design and programming languages like Java open up intriguing new
perspectives for the development of complex software systems capable of simulating physical systems
of interest to computational sciences and engineering.

Software agents may provide an answer to the increased complexity of the software systems
expected to intelligently anticipate and adapt to the needs of dynamically distributed applications. Yet
different groups have radically different views of what software agents are [1] and what applications
could benefit from the agent technology, and many have a difficult time sorting out the reality from
fiction in this rapidly moving field. A software agent is expected to exhibit to some degree attributes
broadly classified into three groups [2].

∗Correspondence to: D. C. Marinescu, Computer Science Department, Purdue University, West Lafayette, IN 47907, U.S.A.

Received 5 March 2000
Copyright 2000 John Wiley & Sons, Ltd.

846 L. BÖLÖNI ET AL.

• Agency: measures the degree of autonomy and authority of an agent. It reflects the nature of
the interactions between an agent and the user, other agents, data, services. Asynchrony and
reactivity are expressions of this facet of agent behavior.

• Intelligence: reflects the degree of preferences, reasoning, planning, and learning behavior.
• Mobility: the ability to travel through a network.

A considerable body of work has been devoted to creating agents able to meet the Turing test
by emulating human behavior. Such agents are useful for a variety of applications in science and
engineering, e.g. deep space explorations, robotics, and so on. Our view of an agent is slightly different
[3]. For us a software agent is an abstraction for building complex systems. Our main concern is to
develop a constructive framework for building collaborative agents out of ready-made components
and to use this infrastructure for building complex systems including Problem Solving Environments,
PSEs [4]. In this paper we examine alternative means to exploit the advantages of code mobility, object-
oriented design, and agent technology for high performance distributed computing. To use a biological
metaphor [5,6], software agents form a nervous system and perform command and control functions in
a PSE. The agents themselves rely on a distributed object system to communicate with another. Though
the agents are mobile, some of the components of the PSE are tightly bound to a particular hardware
platform and software environment and cannot be moved with ease.

The primary function of a Problem Solving Environment is to assist computational scientists and
engineers in carrying out multiple computations. We use the term dynamic workflow to denote both
the static and the dynamic aspects of this set of computations. We argue that there are several classes
of high performance computing applications that can greatly benefit from the use of agent-based PSEs:

• naturally distributed applications;
• data intensive applications;
• applications with data-dependent or non-deterministic workflows.

Many problems in computational science and engineering are naturally distributed, involve large
groups of scientists and engineers, large collections of experimental data and theoretical models, as
well as multiple programs developed independently and possibly running on systems with different
architectures. Major tasks can and should be delegated to a PSE, including coordination of various
activities, enforcing a discipline in the collaborative effort, discovering services provided by various
members of the team, transporting data from the producer site to the consumer site, and others. The
primary functions of agents in such an environment are: planning, scheduling and control, resource
discovery, management of local resources, and use-level resource management.

Data-intensive applications are common to many experimental sciences and engineering design
applications. As sensor-based applications become pervasive, new classes of data-intensive
applications are likely to emerge. An important function of the PSE is to support data annotation.
Once metadata describing the actual data are available, agents can automatically control the workflow,
allow backtracking and restart computations with new parameters of the models.

Applications like data acquisition and analysis in physics, chemistry, biology, climate and
oceanographic modeling often rely on many data collection points, and the actual workflow depends
both upon the availability of the data and the confidence we have in the data. The main function of the
agents in such cases is the dynamic generation of the workflows based upon available information.

A contribution of this paper is the idea of combining software agents with legacy applications to
solve data intensive problems, the topic of Section2 of the paper. In Section3 we outline domain

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:845–861

AGENT BASED SCIENTIFIC SIMULATION 847

decomposition, a common approach to simulating large scientific and engineering problems. The Bond
system is introduced in Section4, in Section5 we discuss the design of a network of PDE solvers and
in Section6 we present an application. We conclude that the combination of Bond and PELLPACK
allows one to quickly construct models and simulations for complex physical systems. This success
should be repeatable in a variety of science and engineering areas.

2. COMBINING AGENTS AND LEGACY CODE FOR DATA INTENSIVE PROBLEMS

Data parallelism is a common approach to reducing the computing time and to improving the quality of
the solution for data-intensive applications. In this case individual nodes execute the same computations
but, on different segments of the data, domain-decomposition is probably the best known instance of
this paradigm. Often the algorithm for processing each data segment is rather complex and the effort to
partition the data, to determine the optimal number of data segments, to combine the partial results, and
to adapt to a specific computing environment and to user requirements must be delegated to another
program. Mixing control and management functions with the computational algorithm leads in such
cases to brittle and complex software.

In this paper we advance the idea of mixins, combinations of legacy code and software agents [7]
where agents perform control and management functions for data parallel applications. The principal
advantages of this approach are as follows.

• Separation of concerns. The processing algorithms are created by a scientist or engineer
knowledgeable in an an application area, e.g. chemistry, physics, biology, materials, and so on,
the control functions and structures by a computer scientist.

• Legacy code requires minor or no adaptation at all. This leads to a substantial reduction of the
development time and cost and to increased reliability.

• The resulting ensemble is more adaptive, more functional, and easier to use as shown in the
example given below.

We also recognize potential problems with this approach. First, the overall performance may be
affected, and there is an additional overhead for communication and control functions. Agents are
rather slow, they are written in Java and some of their functions, e.g. the inference, require a fair amount
of iteration. But the control functions are exercised seldom and in most cases the overall performance is
not affected, the control functions add a few seconds to minutes or hours required by the computations.
In our experience the total time required by agents is less than 1% of the total execution time. Second,
though the agents are mobile, the legacy code is not. An agent may choose to run one instance of the
legacy code but only on systems that support that. Porting a large legacy application to a new hardware
architecture and operating system is a major endeavor.

Typically the agent has as input a set of rules and facts. Some of the facts are rather static, e.g those
describing the configuration of the system or the characteristic of the problems, while others are more
dynamic, e.g. partial results needed to make a decision for the next step, the system load needed to adapt
to the environment. The agent and the legacy application interact through aproblem description file
produced by the agent. This file contains the location of the data, parameters of the model, parameters
of the algorithms, and hints. The function of the agent is thus to generate the problem description file,

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:845–861

848 L. BÖLÖNI ET AL.

e.g. using inference, and then start up the legacy application and monitor it throughout its execution.
The agent acts as awrapperof the legacy application.

Let us give an example illustrating the interactions between an agent and a legacy application
for a particular application that has already been parallelized but to be used effectively requires a
substantial amount of knowledge. The application is the 3D reconstruction of a spherical virus from
its 2D projections obtained experimentally with an electron microscope [8]. The agent controlling this
application is under development as a component of a larger effort to build a Virtual Laboratory for
Computational Biology.

The 3D reconstruction process is iterative—it starts with (i) a set ofn, 2D projections each of size
p × p obtained experimentally and (ii) an initial model of the virus given as a 3D lattice of electron
density values, of sizem × m × m. Here the number of experimental images may vary from few
hundreds for an icosahedral virus to possibly 100 000 for an asymmetric one. The size of a projection
may be as large as 500× 500 pixels and the electron density map may consist of 5003 real values.

The first step of the process is to determine the orientation of each projection and once the orientation
is known we proceed to the 3D reconstruction and produce a new electron density map. The process is
repeated until the convergence criteria are met.

We focus only on the orientation determination. The idea of the algorithm is to construct a database
of calculated projections using as input the current value of the electron density map and then to
compare each of then images obtained experimentally against each calculated image in the database,
whose orientation is known. We assign the orientation of the experimental projection based upon the
correlation coefficient between the two. Thus the algorithm is straightforward and embarrassingly
parallel. The only problems are the structural biology knowledge necessary to formulate the problem
and the amount of data involved. An image may consist of 0.5 MB of data and the database of calculated
images may consist of about 4000 images or about 2 GB for a virus with icosahedral symmetry. For an
asymmetric virus the database may be two orders of magnitude larger.

Let us discuss briefly the problem of symmetry. Some viruses exhibit icosahedral symmetry—they
resemble a soccer ball and are made out of 60 identical wedges—but others are not symmetric. When
we say that the virus exhibits some symmetry we only refer to its protein shell, the virus core containing
genetic material does not. If we know that a virus has icosahedral symmetry then we only need to know
the electron density in a wedge. Moreover, for an icosahedral virus from every single 2D projection
we can construct 60 others using the symmetry operators. Sometimes, the symmetry of the virus is not
known and we are interested to determine the axes of symmetry. In this case we have to construct the
full database of calculated images and for each experimental image determine its correlation coefficient
with every single image in the upper hemisphere, then rank the correlation coefficients and deduce the
symmetry.

We outline some of the options we have and the decisions to be made. Our first algorithm is based
upon a multi-resolution approach. For an icosahedral virus we construct first a low-resolution database
(at 3 deg resolution we have only 67 images), find out the approximate orientation of each image, then
we construct the high resolution database at say 0.3 deg resolution (it has about 4000 images) and
conduct the search of the optimal orientation on it. The high resolution database is distributed across
nodes and experimental images are sorted based upon the approximate orientation determined in the
first phase. Each node will process only a fraction of the total number of experimental images. The
choices to be made are:

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:845–861

AGENT BASED SCIENTIFIC SIMULATION 849

• How to get the data in each node. We can read the electron density file in parallel in each node or
have one node read the electron density data and broadcasts it to the other nodes. This decision is
based upon the actual machine configuration, the presence of a parallel file system, the speed of
the interconnection network, the amount of main memory available in each node, the architecture
of the system, distributed memory or a set of shared memory nodes interconnected together.

• How to construct the low resolution database. We can construct it in one node and broadcast it
to all other nodes or have each node construct it. Though the first approach seems more effective
we have to keep in mind that for the second step each node needs the electron density map to
construct its own segment of the database.

• How to distribute the data and computations amongst nodes for the second phase. We have the
choice of dividing the database evenly among nodes, but in that case the number of images to be
processed by each node is likely to be different, and thus the load is imbalanced. The alternative is
to distribute evenly amongst nodes the number of experimental images but risk that the segment
of the database assigned to one node is much larger than the one for other nodes. Hints about the
choice are available at the end of the first phase.

• How to deal with a shared system. If other processes are running on some of the nodes the
optimal load distribution is affected by them.

• How to deal with a cluster of heterogeneous workstations. The load distribution is affected by
the relative speed of individual nodes.

The problem is further complicated when we do not know the symmetry. The multi-resolution
algorithm described above will not work at all for large virues because at low resolution their features
are completely lost. Thus for a large particle whose symmetry is not known we need to construct
from the beginning a very large database consisting of, say, 100 000 calculated images of 0.5 MB
each. Because of the sheer amount of data we need a large system configuration; e.g. forN = 100
nodes, each one will be assigned 1000 calculated images or about 5 GB. Then we construct a circular
list of experimental images and process groups of sizeN of them in a pipelined fashion. In step
one we assign experimental imageI1 to processorP1, I2 to P2 . . . IN to PN and compute the best
correlation coefficients,σ 1

1 , σ 2
2 , . . . , σN

N . Then in step twoI1 migrates toP2, I2 to P3, . . . , IN to P1

and we computeσ 2
1 , σ 3

2 , . . . , σ 1
N . After N steps we determine the orientation by selectingσi = min[σj

i]
∀i, j ∈ [1, N]. Then we process the next batch ofN experimental images,IN+1 to I2N , and continue
until the entire pool of experimental images is exhausted.

We omitted many details of the algorithm; for example, the Polar Fourier Transforms of the
calculated and experimental images are first computed and then compared to determine the orientation
of the experimental one. Even from this relatively brief description it is clear that an agent provided
with a set of rules is a better choice than to hardwire in a Fortran program the information necessary to
make the decisions outlined above.

As pointed out earlier, in some cases one can achieve parallelism using sequential legacy codes
without the need to modify them at all. Whenever we can apply a divide and conquer methodology
based upon the partitions of the data into sub-domains, solve the sub-problems independently in each
sub-domain, and then resolve with ease the eventual conflicts between the individual workers we
have an appealing alternative to code parallelization. The agents should be capable of coordinating
the execution and mediating conflicts. This is the case of the network of PDE solvers discussed in
more depth in the next sections.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:845–861

850 L. BÖLÖNI ET AL.

3. DOMAIN DECOMPOSITION AND COLLABORATING SIMULATORS

There are three computational approaches to simulating large scientific problems. The first and most
common approach is to discretize the geometrical domain using grids or meshes to create a large
discrete problem. These grids or meshes are then partitioned to create a set of inter-connected discrete
problems. This is simpledomain decomposition[9] and the coupling between components (discrete
problems) is rather tight as the mathematical model along interface points or elements is discretized
into equations that involve details from both neighboring components. The second and oldest approach
is Schwarz splitting, which decomposes the geometrical domain into components with a small overlap.
The mathematical models on each component can then be solved independently in some way and
the Schwarz alternating methodis applied iteratively to compute the global solution. Of course,
some discretization method is applied to the solution process on each individual component. The
overlapping creates a serious complication in the Schwarz method [10] even when the global problem
has a simple geometry. The method has become more feasible with the discovery of non-overlapping
domain versions. The third and newest approach isinterface relaxation[11], where the geometrical
domain is decomposed into sub-domains, each with its own mathematical model. Along the interfaces
between sub-domains one must satisfy interface conditions derived from the physical phenomena (e.g.
continuity of mass or temperature, conservation of momentum). The models on each sub-domain are
solved in the inner loop of the interface relaxation iteration method to compute the global solution.
These methods use one of a variety of ‘smoothing’ formulas to reduce the error in satisfying the
interface conditions.

The goals of handling different physical models, using parallel computers and reusing existing
software all lead to the need for high flexibility and loose coupling between components in the
computation. These three approaches have similar goals but are quite different in their generality
and flexibility. The tight coupling of domain decomposition requires that neighboring components
have a lot of shared information about their discretizations. Further, this approach is quite awkward
when the models are different on neighboring components. Themortar methodcreates specialized
refinements of the models and meshes along the interfaces to accommodate changes in models across
interfaces. Overlapping Schwarz methods are similarly constrained to a single physical model and
also create a tight coupling between neighboring sub-domains. The non-overlapping Schwarz methods
are restricted to a single mathematical model for neighboring sub-domains. The interface relaxation
approach imposes no coupling conditions, except those inherent in the mathematical models, and it
provides maximum generality and flexibility.

Since interface relaxation is relatively new and unfamiliar, we outline the method and then present
one specific instance. The method assumes that one can solve exactly any single PDE on any simple
domain or, more realistically, that, given such a PDE problem, we can select a highly accurate solver
for it from a library. The interface relaxation method uses a library of ‘single, simple-domain, exact’
PDE solvers to solve composite PDE problems. It is an iterative method of the classical type, based on
relaxation, as follows.

1. Guess solution values (and derivatives if needed) on all sub-domain interfaces.
2. Solve all single PDEs exactly and independently on all the sub-domains with these values as

boundary conditions.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:845–861

AGENT BASED SCIENTIFIC SIMULATION 851

3. Compare and improve the values on all interfaces using a relaxer (discussed below).
4. Return to Step 2 until satisfactory accuracy is achieved.

The simplest relaxers do some sort of ‘smoothing’ of values on the interfaces and averaging is a good
mental model for a relaxation formula.

The attraction of interface relaxation is threefold. First it allows the accurate coupling of independent
models and the reuse of PDE software that handles single-phenomenon models. Second it uncouples
the parallelism of the computation somewhat from that of the machines used. Finally, it is intuitively
consistent with a person’s view of the geometry and physical models of a composite PDE problem.

Interface relaxation is an iteration defined at the continuum (mathematical) level; its convergence
properties are a question of mathematical analysis, not of numerical analysis. LetUN and VN be
the PDE solution values at iterationN on opposite sides of an interface. Assume for simplicity that
the interface conditions to be satisfied are a continuity of value(UN = VN) and normal derivative
(∂UN/∂n = −∂VN/∂n). Then two simple relaxation formulas forU andV are:

VN+1 = UN+1 = (UN + VN)/2 − f (∂UN/∂n + ∂VN/∂n)

VN+1 = UN+1 = ωUN + (1 − ω)[α(UN − VN)2 + β(∂UN/∂n + ∂VN/∂n)2]

wheref , ω, α, andβ are relaxation parameters. Approximately ten relaxation formulas appear in the
literature, seven of which are cataloged in [11]. One of the important open questions concerns the
comparative performance of these methods and procedures for computing good relaxation parameters.

The convergence analysis of interface relaxation presents formidable mathematical challenges;
almost any question asked will be both hard and open. Even for the single-PDE case—one global
PDE or domain decomposition—work on convergence analysis has appeared rarely, starting about 10
years ago [10] and then more recently in 1992 [9].

Given that theoretical analysis is intractable for the moment, we use experiments to provide guidance
and insight for interface relaxation. Numerous experiments done in recent years indicate that interface
relaxation converges for a wide variety of problems and relaxers. The convergence is sometimes very
fast, other times not. The results in [12] show (for a single problem) that the rate of convergence is
independent of the number of sub-domains, and this was verified by experiments using up to 500 sub-
domains. There is reason to be hopeful that, as we better understand interface relaxation, it can become
a very useful method for solving composite PDEs. (A crude form of interface relaxation already in
fairly widespread use simply involves ‘trading’ current values across interfaces without any relaxation.
This method makes the most sense in time-varying problems, but we are not aware of any attempts to
analyze the effects of the errors involved.)

A 1997 result [13] illustrates the progress in the mathematical analysis of interface relaxation.
We consider the Helmholtz equationLu = uxx + uyy − γ u = f (x, y) on the rectangular domain
� = [−x1, x2] × [−1, 1] with zero boundary conditions. The domain� is partitioned into two sub-
domains�1 and�2 along the linex = 0 (called0), and the solutions on the left�1 and right�2 are
denoted byu1(x, y) andu2(x, y). Given initial guessesu(0)

1 andu
(0)
2 with zero values as the boundary

of −�, the interface relaxation iteration is defined by the following set of four PDE problems and
boundary conditions. These boundary conditions comprise the relaxation formulas and combine values

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:845–861

852 L. BÖLÖNI ET AL.

on0 of previous solutions to provide better conditions for the next step.

Lu
(2k+1)
1 = f in �1, u

(2k+1)
1 = αu

(2k)
1 + (1 − α)u

(2k)
2 on0

Lu
(2k+1)
2 = f in �2, u

(2k+1)
2 = αu

(2k)
1 + (1 − α)u

(2k)
2 on0

Lu
(2k+2)
1 = f in �1,

∂u
(2k+2)
1

∂ν1
= β

∂u
(2k+1)
1

∂ν1
+ (1 − β)

∂u
(2k+1)
2

∂ν1
on0

Lu
(2k+2)
2 = f in �2,

∂u
(2k+2)
2

∂ν2 = β
∂u

(2k+1)
2

∂ν1 + (1 − β)
∂u

(2k+1)
1

∂ν2 on0

The relaxation parametersα andβ are determined to accelerate the convergence; experiments and
theory both suggest thatα = β = 1/2 are good values. The following theorem is established in [13].

Theorem. Sets = (x1 + x2) min{x1, x2}. If α = 1/2 the sequencesu(j)

1 , u
(j)

2 converge provided
0 < β ≤ 2/3 and

(1 − β)2s2 − 2β(1 − β)s − 2(1 − 2β) < 2

If β = βopt = (s2 + s − 2)/(s2 + 2s) then the error decays exponentially with ratio(s − 2)/2s.

This theorem provides a nice result for a very simple model problem, but extending such analysis
further is quite difficult. These results are confirmed by experiments and the optimumβ is seen to
provide faster convergence than two other interface relaxation methods. Mo Mu [12] provides another
set of mathematical theorems with a different flavor.

4. BOND AGENTS

Bond [3], is a distributed-object, message-oriented system, providing a constructive frame-
work for building collaborative network agents. Several distributed object systems provide sup-
port for software agents: Infospheres (//www.infospheres.caltech.edu/) and Bond
(http://bond.cs.purdue.edu) are academic research projects, while Objectspace Voyager
(//www.objectspace.com) and IBM Aglets (www.trl.ibm.co.jp/aglets/index.-
html) are commercial systems. Bond is released under an open source license, LPGL, and was used
as a workflow enactment engine supporting dynamic workflows [14], for an adaptive video service
[15], for resource discovery in a wide area distributed system [16], for the design of a network of PDE
solvers [17], and for other applications.

Bond uses KQML [18] as a meta-language for inter-object communication. Support for XML
based communication was added to the system recently. KQML offers a variety of message types
(performatives) that express an attitude regarding the content of the exchange. Performatives can also
assist agents in finding other agents that can process their requests. A performative is expressed as an
ASCII string, using a Common Lisp Polish-prefix notation. The first word in the string is the name of
the performative, followed by parameters. Parameters in performatives are indexed by keywords and
are therefore order-independent.

The infrastructure provided by Bond supports basic object manipulation, inter-object communica-
tion, local directory and local configuration services, a distributed awareness mechanism, probes for
security and monitoring functions, graphical user interfaces, and utilities.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:845–861

AGENT BASED SCIENTIFIC SIMULATION 853

Shadowsare proxies for remote objects. Realization of a shadow provides for instantiation of remote
objects. Collections of shadows formvirtual networksof objects.

Residentsare active Bond objects running at aBond address. A resident is a container for a collection
of objects including communicator, directory, configuration, and awareness objects.

Subprotocolsare closed subsets of KQML messages. Objects inherit subprotocols. The discovery
subprotocol allows an object to determine the set of subprotocols understood by another object.
Examples of other subprotocols are monitoring, security, agent control, and the property access
subprotocol understood by all objects.

The transport mechanism between Bond residents is provided by acommunicatorobject with four
interchangeable communication engines based upon: (a) UDP, (b) TCP, (c) Infospheres, (info.net), and
(d) IP Multicast protocols.

Probesare objects attached dynamically to Bond objects to augment their ability to understand new
subprotocols and support new functionality. Asecurity probescreens incoming and outgoing messages
to an object [19,20]. The security framework supports two authentication models, one based upon
username, plain passwordand one based upon theChallenge Handshake Authentication Protocol,
CHAP [21]. Two access control models are supported, one based upon theIP address (firewall)and
one based upon anaccess control list. Monitoring probesimplement a subscription-based monitoring
model. Anautoprobeallows loading of probes on demand.

The distributed awarenessmechanism provides information about other residents and individual
objects in the network. This information is piggy-backed on regular messages exchanged among
objects to reduce the overhead of supporting this mechanism. An object may be aware of objects it
has never communicated with. The distributed awareness mechanism and the discovery subprotocol
reflect our design decision to reduce the need for global services like directory service and (CORBA-
like) interface repositories.

A first distinctive feature of the Bond architecture, described in more detail in [3], is that agents are
integrated with the distributed object model. This guarantees that agents and objects can communicate
with one another and that the same communication fabric is used by the entire population of objects.
Another distinctive trait of our approach is that we provide middleware, a software layer to facilitate
the development of a hopefully wide range of applications of network computing. We are thus forced to
pay close attention to the software engineering aspects of agent development, in particular to software
reuse. We decided to provide a framework for assembly of agents out of components, some of them
reusable. This is possible due to the agent model we describe next.

We view an agent as a finite-state machine, with a strategy associated with every state, a model of the
world, and an agenda as shown in Figure1. Upon entering a state the strategy or strategies associated
with that state are activated and various actions are triggered. The model is the ‘memory’ of the agent—
it reflects the knowledge the agent has access to, as well as the state of the agent. Transitions from one
state to another are triggered by internal conditions determined by the completion code of the strategy,
e.g. success or failure, or by messages from other agents or objects.

The finite-state machine description of an agent can be provided at multiple granularity levels, a
course-grain description contains a few states with complex strategies, a fine-grain description consists
of a large number of states with simple strategies. The strategies are the reusable elements in our
software architecture, and the granularity of the finite-state machine of an agent should be determined
to maximize the number of ready made strategies used for the agent. We have identified a number of
common actions and we have started building a strategy repository. Examples of actions packed into

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:845–861

854 L. BÖLÖNI ET AL.

Figure 1. The model of a Bond agent.

strategies are: starting up one or more agents, writing into the model of another agent, starting up a
legacy application, data staging, and so on. Ideally, we would like to assemble an agent without the
need to program, using instead ready-made strategies.

Another feature of our software agent model is the ability to assemble an agent dynamically from
a ‘blueprint’—a text file describing the states, the transitions, and the model of the agent. XML-based
blueprints are now supported in Bond. Every Bond-enabled site has an ‘agent factory’ capable of
creating an agent from its blueprint. The blueprint can be embedded into a message, or the URL of the
blueprint can be provided to the agent factory. Once an agent is created, the agent control sub-protocol
can be used to control it from a remote site.

In addition to favoring reusability, the software agent model we propose has other useful features.
First, it allows a smooth integration of increasingly complex behavior into agents. For example,
consider a scheduling agent with a mapping state and a mapping strategy. Given a task and a set of
target hosts capable of executing the task, the agent will map the task to one of the hosts subject to some
optimization criteria. We may start with a simple strategy, selecting randomly one of the target hosts.
Once we are convinced that the scheduling agent works well, we may replace the mapping strategy
with one based upon an inference engine with access to a database of past performance. The scheduling
agent will perform a more intelligent mapping with the new strategy. Second, the model supports agent
mobility. A blueprint can be modified dynamically and an additional state can be inserted before a
transition takes place. For example a ‘suspend’ new state can be added and the ‘suspend’ strategy can

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:845–861

AGENT BASED SCIENTIFIC SIMULATION 855

be concatenated with the strategy associated with any state. Upon entering the ‘suspend’ state the agent
can be migrated elsewhere. All we need to do is send the blueprint and the model to the new site and
make sure that the new site has access to the strategies associated with the states the agent may traverse
in the future. The dynamic alteration of the finite-state machine of an agent can be used to create a
‘snapshot’ of a group of collaborating agents and help debug a complex system.

Agent security is a critical issue for the system because the ability to assemble and control agents
remotely as well as agent mobility, provide unlimited opportunities for system penetration. Like any
Bond object, Bond agents can be augmented dynamically with a security probe providing a defense
perimeter and screening all incoming and outgoing messages.

The components of a Bond agent shown in Figure1 are as follows.

• Themodel of the world—a container object which contains the information the agent has about
its environment. This information is stored in the form of dynamic properties of the model object
and thus it allows for various representation formats. It can be a knowledge base or an ontology
composed of logical facts and predicates, a pre-trained neural network, a collection of meta-
objects or different forms of handles of external objects (file handles, sockets, etc.).

• Theagendaof the agent, which defines the goal of the agent. The agenda is in itself an object,
which implements a Boolean and a distance function on the model. The Boolean function shows
if the agent accomplished its goal or not. The distance function may be used by the strategies to
choose their actions.

• The finite state machineof the agent. Each state has an assigned strategy which defines the
behavior of the agent in that state. An agent can change its state by performingtransitions.
Transitions are triggered by internal or externalevents. External events are messages sent by
other agents or objects. The set of external messages which trigger transitions in the finite-state
machine of the agent defines thecontrol subprotocolof the agent.

• Each state on an agent has astrategy defining the behavior of the agent in that state. Each
strategy performs actions in an infinite cycle until the agenda is accomplished or the state is
changed. Actions are considered atomic from the agent’s point of view; external or internal
events interrupt the agent only between actions. Each action is defined exclusively by the agenda
of the agent and the current model. A strategy can terminate by an internal event. After the
transition the agent moves in a new state where a different strategy defines the behavior.

All components of the Bond system are objects, and thus Bond agents can be assembled dynamically
and even modified at runtime. The behavior of an agent is uniquely determined by its model (the model
also contains the state which defines the current strategy). The model can be saved and transferred over
the network.

A bondAgent can be created statically, or dynamically by a factory objectbondAgentFactory
using ablueprint. The factory object generates the components of the agent either by creating them or
by loading them from persistent storage. The agent creation process is summarized in Figure2. The
beneficiary can be the user or another agent capable of creating the blueprint [22,23].

The methodology to create an agent in Bond is: (a) write down a brief description of the actions in
each state; (b) create a state transition diagram for each agent; (c) search Bond databases for strategies
suitable for new agents; (d) write new strategies whenever necessary.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:845–861

856 L. BÖLÖNI ET AL.

Agent Factory Beneficiary object

Blueprint
repository

Agent

Strategy database

2

1
3

4

5

6

Figure 2. Creating an agent remotely using an agent factory. (1) The beneficiary object sends a create-agent
message to the agent factory. (2) The blueprint is fetched by the agent factory from a repository or extracted
from the message. (3) The strategies are loaded from the strategy database. (4) The agent is created. (5) The id of

the agent is communicated back to the beneficiary. (6) The beneficiary object controls the new agent.

5. A NETWORK OF PDE SOLVING AGENTS

Details of the actual implementation of the network of PDE solvers including the state machines of
all agents involved are provided in [17]. Here we outline the component agents and their functionality.
The basic functionality of individual agents involved in a network of PDE solvers is presented in the
SciAgents system [24]. Thus we were able to identify with relative ease the functions expected from
each agent and write new strategies in Java. The actual design and implementation of the network of
PDE solving agents took less than one month.

Three types of agents are involved: onePDECoordinator agent, severalPDESolvers and
PDEMediator agents. ThePDECoordinator is responsible with the control of the entire
application, aPDEMediator arbitrates between the two solvers sharing a boundary between two
domains, and aPDESolver is a wrapper for the legacy application.

As pointed out earlier, it is rather difficult to install legacy software on a new system, and in this
paper we assume that the software is already installed and the paths to executables on all systems
are known. An installer agent would need to discover the actual configuration of the system, locate
libraries, compilers, ensure that enough resources are available locally and so on. The operation of the
network of agents is presented next.

A PDECoordinator agent is started by means of a GUI. Once started the agent reads and
parses a problem description file and writes the information into its model. This input file contains

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:845–861

AGENT BASED SCIENTIFIC SIMULATION 857

information about the number of solvers and mediators, the characteristics of the interfaces, the initial
guesses on the interfaces, the relaxation methods and the names of the machines that will be used
to solve the global problem. The next step is the creation and the configuration ofPDESolver and
PDEMediator agents. Since the agents are alive, thePDECoordinator uses their addresses to
set up the communication among them. Then the coordinator waits for messages from the mediators,
regarding the status of the convergence to the solution of the problem, or from the user. The messages
from the user are to change the values of specific variables of the input file, such as the convergence
tolerance, or to force the execution to stop.

The PDESolver agent is created, configured and started by thePDECoordinator . Its model
contains addresses of the legacy programs used to solve the problem locally, paths of the input/output
files, addresses of the visualization programs, etc. In the first state, thePDESolver starts-up the
Pelltool which compiles the.e file that describes the local PDE problem, and creates the
executable that will be used later on by theExecuteTool . These tools and file designations are all
part of thePELLPACK system [25]. In the next state, the solver extracts the points on the interfaces
from the file that contains the mesh/grid points, and writes them into a file. Then the solver notifies
the mediators that the files are ready. ThePDESolver agent remains idle until being notified by the
mediators that the list with all the points and their initial guesses are stored in a file at a specific location.
Then the solver uses these files of points and initial guesses to run theExecuteTool to solve the
problem. When the execution is finished, the solver sends a message to the mediators that new values
are computed, and then waits for their response. Depending on the message from the mediators, the
solver will solve the problem again, remain idle waiting for the other solver to reach convergence, or
plot the local solution. ThePDECoordinator is able to terminate thePDESolver by sending an
appropriate message.

The mediator agent,PDEMediator , is created and configured by the coordinator agent. The
mediator agent has a complete description of the interface, the relaxation method used, the solvers
to collaborate with, the location of the input/output files, the location of the legacy programs, the
tolerance used to decide convergence, and the initial guess function. This information is provided by
the coordinator agent. After being started, the mediator waits for the boundary points from the two
neighboring solvers. In the next state, the mediator combines the two point lists and then uses the
initial guess to compute values at these points. Afterwards, the mediator sends a messages to the two
solvers that the files with the points and their values are ready. The mediator remains idle, waiting for
new values from the two solvers. When it receives new values it moves to the next state, reads the
new data and compares them with current data. Then the mediator agent uses the relaxation method to
calculate the new boundary conditions. If convergence is reached on this interface then the mediator
sends messages to the solvers and informs thePDECoordinator about the local convergence so it
will be able to decide on global convergence. A message from the coordinator will cause the mediator
to (i) finish, in the case of global convergence, or (ii) wait for new data from the two solvers. In the
latter case the procedure is repeated until convergence.

6. AN APPLICATION: THE HELMHOLTZ MODEL IN UNDERWATER ACOUSTICS

In this section we present one of the important problems solvable with a network of agent controlled
PDE solvers. A standard approach in modeling propagation and scattering of acoustic waves in the
ocean is based on the use of the Helmholtz equation, or its approximations, coupled by appropriate

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:845–861

858 L. BÖLÖNI ET AL.

boundary and interface conditions; see, for example, [26,27]. To be specific we consider the problem
of modeling the propagation of acoustic waves in the area defined by the linesε (sea level),γ (bottom
of the sea) andδ ≡ ∂�3 (the boundary of an obstacle that scatters incident waves) as those given on
the left of Figure3. The lineγ represents the bottom and plays the role of the interface between water
(the domain marked as�1) and soil (domain�2). For simplicity we assume thatε is a straight line and
that�2 consists of homogeneous isotropic soil. The propagation of waves in the area can be effectively
modeled by the following PDE problem:

1u(x) + k2u(x) = f (x), x ∈ � (1)

Bγ u(x) = gγ (x), x ∈ γ and Bδu(x) = gδ(x), x ∈ δ (2)

and

∂u(x)

∂r
− iku(x) = o(r−1/2) uniformly asr = |x| → ∞ (3)

Equation (1) is known as the Helmholtz (or reduced wave) equation, wherek = 2π/λ ∈ C is
called the number of a wave of frequencyλ. k2 is complex in the case of damped waves. Depending
on the physical properties of the obstacle and the soil the interface/boundary conditions (2) can be of
Dirichlet, Neumann or Robin type. To model the difference in the physical acoustic properties of soil
and water the coefficients of these boundary conditions might be discontinuous implying a jump on the
normal toγ derivative of the solution. Assuming that the obstacle is not penetrable by the waves there
is no such jump onδ. The additional condition (3) is required to ensure mathematically the uniqueness
of the solution of the above Helmholtz problem. Relation (3) is known as the Sommerfeld radiation
condition and physically specifies an outgoing wave.

One usually restricts the unbounded domain of interest into a rectangular domain� ≡ABCD
shown in the figure by introducing linesBC, CD andDAwhich are artificial boundaries that truncate
the physical unbounded domain. The selection of optimum (with respect to modeling capabilities)
conditions on these artificial boundaries is an open problem. Several choices are available ranging from
simple Robin-type conditions to powerful non-local ones realized by appropriate integral equations on
the artificial boundary lines.

In a typical application the computational domain is large, ranging from a few to several hundred
miles. To ensure that the associated discrete model captures all physical phenomena this domain
needs to be discretized using a relatively fine grid. Typical mesh sizes are no more than one tenth
of the wavelength, which leads to very large linear systems of complex algebraic equations. Note
that this PDE lacks certain important properties (symmetricity and positivity) and involves boundary
conditions of mixed type. Therefore fast Poisson-type solvers like FFT are not readily applicable. Thus
solving these linear systems in the case of high frequency waves can easily exhaust the capabilities
of any modern uni-processor computer system. Therefore efficient parallel solvers are necessary for
this problem and already significant research effort has been devoted to searching for them. Domain
decomposition methods have the potential to provide such solvers. Nevertheless it was realized
quite early that some of the most popular domain decomposition methods could not be used due
to either divergence or slow convergence. One has to be careful in selecting appropriate conditions
on the interface along subdomain lines so that the resulting local problems are well posed and have
reasonable condition numbers. In addition, they should guarantee that waves can easily propagate
from one subdomain to the other even in the case that they oscillate rapidly on an interface. The

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:845–861

AGENT BASED SCIENTIFIC SIMULATION 859

Ω

Ω

Ω

1

2

3

A B

CD

E

F

ε

γ

δ

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

xy

Figure 3. Plots of a cross-section of the 3-D acoustic domain (on the left) and of the amplitude of the computed
solution for a 2-D simplified model withk = 20 (on the right).

possibility of imposing non-local conditions on the artificial boundary or interface lines simply make
the domain decomposition approach more complicated and the analysis more challenging. Theoretical
and experimental domain decomposition studies for the Helmholtz model have been published with an
increasing frequency lately.

We use this application to illustrate the use of agent based implementation [28] of domain
decomposition and interface relaxation. This problems is described in Figure 3 and has a known
analytic solution. The numeric PDE solving method used to compute the acoustic pressure is a standard
Galerkin/finite element method [29]. This model assumes that a point source is placed at(0, ys), that
the sea bottom is horizontal, that there are no obstacles in the problem domain, and that the second order
absorbing boundary condition apply on the side BC seen in Figure3. This is a well-posed Helmholtz
problem and, as seen from the two views plotted, there is considerable complexity in the solution. The
computed solution agrees with the analytic solution very well.

Note that PDE models similar to the one described above are frequently used in general time-
harmonic acoustic and electro-magnetic wave scattering problems. Most of the domain decomposition
methods we consider can be readily used for such problems.

7. CONCLUSIONS

Software agents may provide an answer to the increased complexity of the software systems expected
to intelligently anticipate and adapt to the needs of dynamically distributed applications. In this paper
we discuss combining agents with legacy applications to solve data intensive problems.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:845–861

860 L. BÖLÖNI ET AL.

Data parallelism is a common approach to reduce the computing time and to improve the quality
of the solution for data-intensive applications. Often the algorithm for processing each data segment
is rather complex, and the effort to partition the data, to determine the optimal number of data
segments, and to combine the partial results, to adapt to a specific computing environment and to
user requirements must be delegated to another program. Mixing control and management functions
with the computational algorithm leads in such cases to brittle and complex software.

We discuss the complex choices faced by a user in the context of a parallel algorithm for determining
the parallel orientation of virus particles in electron microscopy. We argue that an agent with inference
abilities provides an optimal solution to the problem. Such an agent is developed as part of Virtual
Laboratory for Computational Biology.

In some cases one can achieve parallelism using sequential legacy codes without the need to modify
them at all. Whenever we can apply a divide-and-conquer methodology based upon the partitions of
the data into sub-domains, solve the sub-problems independently in each sub-domain, and then resolve
with ease the eventual conflicts between the individual workers, we have an appealing alternative to
code parallelization. The agents coordinate the execution and mediate the conflicts, as in the network
of PDE solvers discussed in Section 5 of the paper. The main advantage of the solution we propose is
a drastic reduction of the development time from several months to a few weeks.

ACKNOWLEDGEMENTS

The work reported in this paper was partially supported by a grant from the National Science Foundation, MCB-
9527131, by the Scalable I/O Initiative, by a contract from the Department of Energy ASCI Academic Strategic
Alliance Program, LG 6982, and by a grant from the Intel Corporation.

REFERENCES

1. Franklin S, Graesser A. Is it an agent, or just a program?.Proceedings of the Third International Workshop on Agent
Theories, Architectures and Languages. Springer Verlag, 1996.

2. Bradshaw JM. An introduction to software agents.Software Agents. Bradshaw JM (ed.). MIT Press, 1997; 3–46.
3. Bölöni L, Marinescu DC. An object-oriented framework for building collaborative network agents.Intelligent Systems and

Interfaces. Teodorescu NH, Mlynek D, Kandel A, Hoffmann H-J (eds.). Kluwer Publishing House, 2000; 31–65.
4. Marinescu DC. An agent-based design for problem solving environment,Proceedings of Workshop on Parallel/High

Performance Scientific Computing, POOSC’99, 1999; 24–34.
5. Bölöni L, Hao R, Jun KK, Marinescu DC. Structural biology metaphors applied to the design of a distributed object system.

Proceedings Second Workshop on Bio-Inspired Solutions to Parallel Processing Problems(LNCS, vol. 1586). Springer
Verlag, 1999; 275–283.

6. Marinescu DC, B¨olöni L. Biological metaphors in the design of complex software system.Journal of Future Generation
Computing Systems. Elsevier, 2000 (in press).

7. Genesereth MR. An agent-based framework for interoperability.Software Agents. Bradshaw JM (ed.). MIT Press, 1997;
317–345.

8. Lynch RE, Marinescu DC, Lin H, Baker TS. Parallel algorithms for 3D reconstruction of asymmetric objects from electron
micrographs.Proceedings 13th International Parallel Processing Symposium. IEEE Press, 1999; 632–637.

9. Quarteroni A, Pasquarelli F, Valli A. Heterogeneous domain decomposition: principles, algorithms, applications.
Proceedings Fifth International Symposium Domain Decomposition Methods PDEs. Keyes D et al. (eds.). SIAM:
Philadelphia, 1992.

10. Lions DL. On the schwarz alternating method III: a variant for non-overlapping domains.Domain Decomposition Methods
for PDEs. Chan Tet al. (eds.). SIAM: Philadelphia, 1990.

11. Rice JR, Tsompanopoulou P, Vavalis EA. Interface relaxation methods for elliptic differential equations.Appl. Numer.
Math. 2000; 219–245.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:845–861

AGENT BASED SCIENTIFIC SIMULATION 861

12. Mu M. Solving composite problems with interface relaxation.SIAM J. Sci. Comp. 1999;20:1394–1416.
13. Rice JR, Vavalis EA, Yang D. Analysis of a nonoverlapping domain decomposition method for elliptic partial differential

equations.J. Computational Appl. Math.1997;87:11–19.
14. Palacz K, Marinescu DC. An agent-based workflow management system.ProceedingsAAAI Spring Symposium Workshop.

AAAI Press, 2000; 119–127.
15. Jun KK, Bölöni L, Yau DKY, Marinescu DC. Intelligent QoS support for an adaptive video service.Proceedings

International Resource Management Association. IRMA, 2000; 1096–1099.
16. Jun KK, Bölöni L, Palacz K, Marinescu DC. Agent-based resource discovery.Proceedings Heterogeneous Computing

Workshop, HCW 2000, vol. 1. IEEE Press, 2000; 43–52.
17. Tsompanopoulou P, B¨olöni L, Marinescu DC, Rice JR. The design of software agents for a network of PDE solvers.

Proceedings Workshop on Agent Technologies for High Performance Computing, at Agents 99, 1999; 57–68.
18. Finn T, Labrou Y, Mayfield J. KQML as an agent communication language.Software Agents. Bradshaw JM (ed.). MIT

Press, 1997; 291–316.
19. Hao R, Jun KK, Marinescu DC. Bond system security and access control model.Proceedings IASTED Conference on

Parallel and Distributed Computing and Networks, 1998; 520–524.
20. Hao R, B¨olöni L, Jun KK, Marinescu DC. An aspect-oriented approach to distributed object security.Proceedings of the

4th IEEE Symposium on Computers and Communications. IEEE Press, 1999; 23–31.
21. Schneier B.Applied Cryptography. John Willey & Sons, 1996.
22. Bölöni L, Marinescu DC. Agent surgery: the case for mutable agents.Proceedings Workshop on Biologically Inspired

Solutions to Parallel Processing Problems(LNCS). Springer Verlag, 2000 (in press).
23. Bölöni L, Marinescu DC. A component agent model—from theory to implementation.Proceedings International

Symposium, From Agent Theory to Agent Implementation. IEEE Press, 2000 (in press).
24. Drashansky TT. An agent based approach to building multidisciplinary problem solving environments.PhD Thesis, Purdue

University, 1996.
25. Houstis EN, Rice JR Weerawarana S, Catlin A, Gaitatzes M, Papachiou P, Wang K. PELLPACK: a problem solving

environment for PDE based applications on multicomputer platforms.ACM Trans. Math. Software1998;24:30–73.
26. Bayliss A, Goldstein C, Turkel E. The numerical solution of the Helmholtz equation for wave propagation problems in

underwater acoustics.Comp. Math. Applic.1985;11:655–665.
27. Bayliss A, Goldstein C, Turkel E. On accuracy conditions for the numerical computation of waves.J. Comp. Phys.1985;

59:396–404.
28. Rice JR, Vavalis E. Collaborative agents for modeling air pollution.Syst. Anal. Modeling Simulation1998;32:93–101.
29. Dougalis V, Kampanis N. Tsompanopoulou P, Vavalis E. Linear systems solvers for finite element discretizations of the

Helmholtz equation.Proceedings of the 3rd European Conference on Underwater Acoustics, 1996; 279–284.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:845–861

	1 INTRODUCTION
	2 COMBINING AGENTS AND LEGACY CODE FOR DATA INTENSIVE PROBLEMS
	3 DOMAIN DECOMPOSITION AND COLLABORATING SIMULATORS
	4 BOND AGENTS
	5 A NETWORK OF PDE SOLVING AGENTS
	6 AN APPLICATION: THE HELMHOLTZ MODEL IN UNDERWATER ACOUSTICS
	7 CONCLUSIONS

