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Fine tuning interface relaxation methods
for elliptic differential equations✩
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Abstract

Two simple interface relaxation techniques for solving elliptic differential equations are considered. A theoretical
analysis is carried out at the differential level and “optimal” relaxation parameters are obtained for model problems.
A comprehensive experimental numerical study for 1- and 2-dimensional problems is also presented. We present a
complete analysis of convergence and optimum parameters for two 1-dimensional methods applied to Helmholtz
equations: the averaging methodAVE and the Robin-type methodROB. We then present experimental studies
for 1- and 2-dimensional methods and more general equations. These studies confirm the theoretical results and
suggest they are valid in these more general cases.
 2002 IMACS. Published by Elsevier Science B.V. All rights reserved.

1. Introduction

Domain decomposition has proven an effective means of partitioning the task of solving Differential
Equation (DE) problems numerically. It is mainly an algebraic approach and works by splitting the
discrete DE domain into subdomains which can be coupled in many ways. The well established additive
and multiplicative Schwartz methods are examples of typical domain decomposition approaches that
have been analyzed extensively. Interface Relaxation (IR) is a step beyond domain decomposition [14].
IR methods are defined and analyzed at the continuous level, yet they can be implemented by traditional
numerical methods which can vary from subdomain to subdomain. They assume a splitting of the domain
into a set of non-overlapping subdomains and consider the associated DE problems defined on each one

✩ Work supported in part by PENED grants 95-602 and 95-107, NSF grants CCR-9202536 and CDA-9123502, and AFOSR
FM 49620-92-J-0069.

* Corresponding author.
E-mail address:jrr@cs.purdue.edu (J.R. Rice).

1 Author’s permanent address: University of Crete, Mathematics Department, 714 09 Heraklion, Greece and IACM, FORTH,
711 10 Heraklion, Greece.

0168-9274/02/$22.00 2002 IMACS. Published by Elsevier Science B.V. All rights reserved.
PII: S0168-9274(01)00176-3



460 J.R. Rice et al. / Applied Numerical Mathematics 43 (2002) 459–481

of them. These subproblems are coupled through relaxation mechanisms on the interfaces. IR methods
naturally apply to multi-physics problems when the DE may change from one subdomain to another. For
a general introduction to the IR methodology the reader is referred to [14,11,12].

Several interface relaxation methods, considered form the domain decomposition viewpoint, like the
Schwartz method, the Poincaré–Steklov method, the Schur complement, can be found in [1,2,18,19,23].
A review of a large collection of IR methods is presented in [13]. The convergence of these schemes
depends, as expected, on the differential operator, on the geometry of the original domain, and on the
geometry of the subdomains chosen. This makes the selection of “optimum” values for the relaxation
parameters a hard and challenging problem. On the other hand, the local subdomain discretization scheme
does not affect the convergence properties of the IR schemes which gives these methods great versatility;
one can select the most appropriate discretization parameters or numerical method for the differential
problem defined on each subdomain.

The development of an automated and adaptive procedure that dynamically estimates “good”
relaxation parameters, using automatic differentiation techniques, for general differential operators and
arbitrarily shaped subdomains is under way [16]. Nevertheless, in order for this parameter selection
procedure to be effective, theoretical results for simple model problems are needed that provide the
required reasonably good initial guess for the optimum values of the parameters and, more importantly,
a better understanding of the convergence mechanisms involved.

The main objective of this paper is to better understand IR methods for model problems where
direct analysis can be made. In particular, we analytically estimate values for the parameters involved
in two recently proposed and analyzed IR methods. Namely, we consider an averaging scheme [17,24,
25] (denoted byAVE in the sequel) and a Robin-type IR scheme [10] (denoted byROB). In [17], Fourier
analysis is applied for the theoretical analysis and shows that the fast convergence rate of theAVE method
in the case of constant coefficients and rectangular subdomains. the theoretical results are verified by the
experimental ones. In [24], a convergence analysis of theAVE method is carried out at differential level
using Hilbert space techniques. Numerical experiments verify the fast convergence of the method and
its stability with respect to different decompositions and different problems, using constant relaxation
parameters. In [25] a very closely related method toAVE is considered. The theoretical analysis is done
by Galerkin approximation with Lagrange multipliers and a mixed finite element method, and shows
that the error is independent of the grid size. These results are checked through numerical experiments.
The ROB method is formulated and analyzed in [10] for the Laplace equation. Convergence is proved
through energy norms, though there are no estimates of good relaxation parameter values to accelerate
the convergence. Although both methods were analyzed in these studies, more understanding is needed.
Specifically, expressions that relate their rate of convergence to the characteristics of the differential
problem and its partition in a clear way are needed.

The theoretical study in this paper concerns only one-dimensional boundary value problems.
Nevertheless, it seems to us that it is possible to extend this work to two-dimensions following the
framework used in [6]. Such an extension is beyond the scope of the present study.

We restrict ourselves to Helmholtz boundary value problems. In both schemes the error involved on
each interface can be given analytically in terms of the error in the previous iteration. This leads us to
a system of linear algebraic equations that represents the relation between the errors on all interfaces
in two consequent iterations. Then, we minimize the spectral radius of the iteration matrix involved
using a different approach for each method. For theAVE scheme we minimize the area of the associated
Gerschgorin discs (which is equivalent of bounding the max norm of the iteration matrix) to derive, in
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Theorem 4, an important relation between the size of the subdomains and the coefficient of the differential
equation that determines the domain of convergence of the method.

The iteration matrix associated with theROB scheme is quite sparse, and so we were able to
make its spectral radius zero by selecting appropriate values for the relaxation parameters involved. In
particular, Theorem 3 gives optimum values of the relaxation parameters involved, which are proved to
be independent both of the particular discretization of the differential operator and its original domain.

The rest of this paper is organized as follows. In Section 2 we formulate the two Interface Relaxation
methods whose theoretical convergence analysis is given in Section 3. Section 4 presents numerical
results from an experimental study which confirm our theoretical results; they also show that these hold
for more general problems, including two dimensional ones.

2. Two interface relaxation methods

We consider the Helmholtz boundary value problem

Lu≡ −u′′(x)+ γ 2(x)u(x)= f (x), x ∈Ω ≡ (a, b), (1)

with a, b ∈ R, subject to boundary conditions ona and b which, for simplicity, are taken to be
homogeneous Dirichlet. Assume thatΩ is decomposed into thep non-overlapping subdomains

Ωi ≡ (xi−1, xi), i = 1, . . . , p

with x0 = a, xp = b andxi−1 < xi ∈Ω for i = 1, . . . , p− 1. We denote the size of a subdomainΩi by
�i = xi − xi−1 and the restrictions ofL, f andγ inΩi byLi , fi , γi , respectively. We further assume that
γ (x)= γi for x ∈Ωi, i = 1, . . . , p, where theγi ’s are real constants.

2.1. TheROB method

TheROB method is defined, for the model problem under consideration, by the following algorithm:

(1) Define:

gii =
du
(k)
i+1

dx

∣∣∣∣
x=xi

+ λiu(k)i+1

∣∣
x=xi

gi+1
i = −du

(k)
i

dx

∣∣∣∣
x=xi

+ λiu(k)i
∣∣
x=xi

 i = 1, . . . , p− 1.

(2) Choose initial guessesu(0)i (x) for the solutions on each subdomainΩi, i = 1,2, . . . , p.
(3) Define the sequence of subdomain solutionsu(k)i (x), k = 1,2, . . . as follows:

L1u
(k+1)
1 = f1 inΩ1 Lpu

(k+1)
p = fp in Ωp

u
(k+1)
1

∣∣
x=x0

= 0 −du
(k+1)
p

dx

∣∣∣∣
x=xp−1

+ λp−1u
(k+1)
p

∣∣
x=xp−1

= gpp−1

du
(k+1)
1

dx

∣∣∣∣
x=x1

+ λ1u
(k+1)
1

∣∣
x=x1

= g1
1 u(k+1)

p

∣∣
x=xp = 0
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Liu
(k+1)
i = fi inΩi

−du
(k+1)
i

dx

∣∣∣∣
x=xi−1

+ λi−1u
(k+1)
i

∣∣
x=xi−1

= gii−1

du
(k+1)
i

dx

∣∣∣∣
x=xi

+ λiu(k+1)
i

∣∣
x=xi = gii


i = 2, . . . , p− 1.

This method is based on a simple relaxation technique that involves the Robin interface conditions shown
above. The DE problem is solved in each subdomain where the boundary conditions are provided from
the previously computed solution and its outward normal derivative from the adjacent subdomains. The
relaxation parameterλi controls the influence of the value of the function and its normal derivative on
the smoothing Robin interface conditions.

This method was first proposed and analyzed in [10] where, through energy estimates, the convergence
of the method at differential level was established for arbitrary decompositions and elliptic operators.
Later in [5,8], this method was further analyzed at discrete level in a finite element framework. Several
variations of this method have been also appeared. In [7] an ADI based modification is considered
and analyzed at discrete level for model problems and decompositions. A second variation of theROB
method that extends its applicability and frees it from the cross-point trouble is formulated and analyzed
in [4]. In [21] the addition of tangential derivatives in the smoothing procedure is proposed and analyzed
and, recently, in [26] a finite difference variation is presented and analyzed. In some of these studies
optimal values for the relaxation parameters have been obtained but only for model problems and only
assuming a discrete formulation of the method (i.e., first discretize and then decompose the linear algebra
problem). Therefore the determination of effective choices forλi ’s in the IR framework and for general
domains and decompositions is,in general, an open problem.

2.2. The two-step averageAVE method

TheAVE IR method [13,17,24,25] is a two-step iterative scheme described by the following algorithm:

(1) Choose initial guessesu(0)i (x) for the solution on each subdomainΩi, i = 1,2, . . . , p.
(2) Define the odd terms of the sequence of subdomain solutionsu

(2k+1)
i (x) as follows:

gii = βi
du
(2k)
i

dx

∣∣∣∣
x=xi

+ (1− βi)du
(2k)
i+1

dx

∣∣∣∣
x=xi
, i = 1, . . . , p− 1.

for i = 2, . . . , p− 1

L1u
(2k+1)
1 = f1 in Ω1 Liu

(2k+1)
i = fi inΩi Lpu(2k+1)

p = fp inΩp

u
(2k+1)
1

∣∣
x=x0

= 0
du
(2k+1)
i

dx

∣∣∣∣
x=xi−1

= gi−1
i−1

du(2k+1)
p

dx

∣∣∣∣
x=xp−1

= gp−1
p−1

du
(2k+1)
1

dx

∣∣∣∣
x=x1

= g1
1

du
(2k+1)
i

dx

∣∣∣∣
x=xi

= gii u(2k+1)
p

∣∣
x=xp = 0.

(3) Define the even terms of the sequence of subdomain solutionu
(2k+2)
i (x) as follows:
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hii = αiu(2k+1)
i

∣∣
x=xi + (1− αi)u(2k+1)

i+1

∣∣
x=xi , i = 1, . . . , p− 1.

for i = 2, . . . , p− 1

L1u
(2k+2)
1 = f1 in Ω1 Liu

(2k+2)
i = fi inΩi Lpu(2k+2)

p = fp in Ωp

u
(2k+2)
1

∣∣
x=x0

= 0 u
(2k+2)
i

∣∣
x=xi−1

= hi−1
i−1 u(2k+2)

p

∣∣
x=xp−1

= hp−1
p−1

u
(2k+2)
1

∣∣
x=x1

= h1
1 u

(2k+2)
i

∣∣
x=xi = hii u(2k+2)

p

∣∣
x=xp = 0.

The relaxation parametersαi andβi are to smooth the function and its normal derivative, respectively,
and they both take values in(0,1). In the first step (odd terms), the Neumann problem is solved for each
subdomain, using as estimates of the derivatives on the interface a convex combination of the normal
derivatives of the initial guess (or previously computed solutions). Then a convex combination of the
values of computed solutions on adjacent domains is computed and used as boundary values to solve the
Dirichlet problem in the second step (even terms). There are already several theoretical results concerning
the AVE method. In [25], two finite element approaches (a Galerkin and a hybrid mixed) have been
employed to analyze the convergence of the method at a discrete level setting both relaxation parameters
equal to 1/2. A convergence analysis of the method at the differential level using Hilbert space techniques
is given in [24]. A simple model problem with a two subdomain decomposition is considered in [17]
where Fourier analysis at the differential level is used to obtain “good” values for the interface relaxation
parameterβ1, while α1 is set equal to 1/2.

It is worth pointing out the inherent parallelism in both the algorithms. In each one the DE solver or
interface task steps can be executed on different processing elements. The only synchronization needed
is a barrier at the end of each step and then only data on the interfaces need to be communicated to the
processors handling neighboring subdomains. Note that parallelism and the number of subdomain are
somewhat separate issues. One can apply IR to a problem withk subdomains using one,k or any number
of processors in-between.

3. Selection of relaxation parameters

We start our analysis by stating the following simple lemma that can be easily verified.

Lemma 1. The solution of the boundary value problem

Lu= 0 in (a, b), c1u
′(a)+ c2u(a)= v1 and c3u

′(b)+ c4u(b)= v2

with constantsci ∈ R, i = 1,2,3,4, is given by

u(x) = [(−(c3γ + c4)eγ (b−x)+ (−c3γ + c4)e−γ (b−x)
)
v1

+ (−(−c1γ + c2)eγ (x−a)+ (c1γ + c2)e−γ (x−a)
)
v2

]
× [
(c1γ + c2)(−c3γ + c4)e−γ (b−a) − (c3γ + c4)(−c1γ + c2)eγ (b−a)

]−1
. (2)
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Let us now introduce notation for the sequence of values of the solutions, their derivatives and

their errors at the interface points:u(k)i,j ≡ u(k)i (xj ), du(k)i,j ≡ du
(k)
i

dx

∣∣
x=xj , ε

(k)
i (x) ≡ u(k)i (x) − u(x), ε(k)i,j ≡

u
(k)
i,j − u(xj ) anddε(k)i,j ≡ du(k)i,j − u′(xj ).

3.1. Optimum relaxation parameters for theROB method

Consider the following differential problems associated with the error functions in each subdomain
which can be easily obtained from theROB algorithm given in the previous section.

L1ε
(k+1)
1 (x)= 0, x ∈Ω1,

ε
(k+1)
1,0 = 0, dε

(k+1)
1,1 + λ1ε

(k+1)
1,1 = dε(k)2,1 + λ1ε

(k)
2,1,

(3)

for i = 2, . . . , p− 1,

Liε
(k+1)
i (x)= 0, x ∈Ωi,

−dε(k+1)
i,i−1 + λi−1ε

(k+1)
i,i−1 = −dε(k)i−1,i−1 + λi−1ε

(k)

i−1,i−1, (4)

dε
(k+1)
i,i + λiε(k+1)

i,i = dε(k)i+1,i + λiε(k)i+1,i ,

Lpε
(k+1)
p (x)= 0, x ∈Ωp,

− dε(k+1)
p,p−1 + λp−1ε

(k+1)
p,p−1 = −dε(k)p−1,p−1 + λp−1ε

(k)

p−1,p−1, ε(k+1)
p,p = 0.

(5)

Using (2) we observe that these error functions are given by

ε
(k+1)
1 (x)= −eγ1(x−x0) + e−γ1(x−x0)

(−γ1 + λ1)e−γ1�1 − (γ1 + λ1)eγ1�1

(
dε
(k)

21 + λ1ε
(k)

21

)
, (6)

for i = 2, . . . , p− 1,

ε
(k+1)
i (x) = [

(−γi + λi−1)(−γi + λi)e−γi�i − (γi + λi)(γi + λi−1)e
γi�i

]−1

× [(−(γi + λi)eγi(xi−x) + (−γi + λi)e−γi (xi−x))(−dε(k)i−1,i−1 + λi−1ε
(k)

i−1,i−1

)
+ (−(γi + λi−1)e

γi(x−xi−1) + (−γi + λi−1)e
−γi (x−xi−1)

)(
dε
(k)

i+1,i + λiε(k)i+1,i

)]
(7)

and

ε(k+1)
p (x)= −eγp(xp−x) + e−γp(xp−x)

(−γp + λp−1)e
−γp�p − (γp + λp−1)e

γp�p

(−dε(k)p−1,p−1 + λp−1ε
(k)
p−1,p−1

)
. (8)

From these we obtain

ε
(k+1)
1,1 = m1

γ1n1 + λ1m1

(
dε
(k)
2,1 + λ1ε

(k)
2,1

)
,

ε
(k+1)
i,i−1 = 1

di

[
(γini + λimi)

(−dε(k)i−1,i−1 + λi−1ε
(k)
i−1,i−1

) + 2γi
(
dε
(k)
i+1,i + λiε(k)i+1,i

)]
,

ε
(k+1)
i,i = 1

di

[
(γini + λi−1mi)

(
dε
(k)

i+1,i + λiε(k)i+1,i

) + 2γi
(−dε(k)i−1,i−1 + λi−1ε

(k)

i−1,i−1

)]
,

ε
(k+1)
p,p−1 = mp

γpnp + λp−1mp

(−dε(k)p−1,p−1 + λp−1ε
(k)
p−1,p−1

)
,
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where

di =
(
γ 2
i + λiλi−1

)
mi + γi(λi + λi−1)ni, i = 2, . . . , p− 1,

ni = eγi�i − e−γi�i and mi = eγi�i + e−γi�i , i = 1, . . . , p.

By differentiating equations (6)–(8) we obtain expressions similar to the above that relatedε
(k+1)
1,1 , dε(k+1)

i,i−1 ,

dε
(k+1)
i,i , i = 2, . . . , p− 1, anddε(k+1)

p,p−1 with associated values from the iteration(k); these are

dε
(k+1)
1,1 = γ1n1

γ1n1 + λ1m1

(
dε
(k)
2,1 + λ1ε

(k)
2,1

)
,

dε
(k+1)
i,i−1 = γi

di

[
(γimi + λini)

(
dε
(k)

i−1,i−1 − λi−1ε
(k)

i−1,i−1

) + 2λi−1
(
dε
(k)

i+1,i + λiε(k)i+1,i

)]
,

dε
(k+1)
i,i = γi

di

[
(γimi + λi−1ni)

(
dε
(k)

i+1,i + λiε(k)i+1,i

) + 2λi
(
dε
(k)

i−1,i−1 − λi−1ε
(k)

i−1,i−1

)]
,

dε
(k+1)
p,p−1 = γpnp

γpnp + λp−1mp

(
dε
(k)
p−1,p−1 − λp−1ε

(k)
p−1,p−1

)
.

Now we order the errors on the interface points to create a sequence of error vectors as follows, for
k = 0,1,2, . . . ,

ε(k) ≡ [
dε
(k)
1,1, ε

(k)
1,1, ε

(k)
2,1, dε

(k)
2,1, dε

(k)
2,2, ε

(k)
2,2, ε

(k)
3,2, dε

(k)
3,2, . . . ,

dε
(k)
i,i , ε

(k)
i,i , ε

(k)
i+1,i , dε

(k)
i+1,i , . . . , dε

(k)
p−1,p−1, ε

(k)
p−1,p−1, ε

(k)
p,p−1, dε

(k)
p,p−1

]T
.

We obtain the following relation between the vectors of interface errors in the two consecutive iteration
steps(k) and(k+ 1)

ε(k+1) =Mε(k), k = 0,1, . . . , (9)

where the iteration matrixM ∈ R
4(p−1)×4(p−1) has the form

M =



0 M1,2 0 0 0 0 · · · 0
M2,1 0 0 M2,4 0 0 · · · 0
M3,1 0 0 M3,4 0 0 · · · 0

0 0 M4,3 0 0 M4,6 · · · 0
0 0 M5,3 0 0 M5,6 · · · 0

.

.

.
.
.
.

. . .
. . .

. . .
.
.
.

0 0 · · · 0 M2(p−1)−2,2(p−1)−3 0 0 M2(p−1)−2,2(p−1)
0 0 · · · 0 M2(p−1)−1,2(p−1)−3 0 0 M2(p−1)−1,2(p−1)
0 0 · · · 0 0 0 M2(p−1),2(p−1)−1 0


. (10)

The submatrices ofM are as follows:

M1,2 = 1

γ1n1 + λ1m1

[
γ1n1λ1 γ1n1

m1λ1 m1

]
,

for i = 2, . . . , p− 1,

M2(i−1),2(i−1)−1 = 1

di

[−(γini + λimi) λi−1(γini + λimi)
γi(γimi + λini) −γiλi−1(γimi + λini)

]
,

M2(i−1)+1,2(i−1)+2 = 1

di

[
γiλi(γimi + λi−1ni) γi(γimi + λi−1ni)

λi(γini + λi−1mi) (γini + λi−1mi)

]
,
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M2(i−1),2(i−1)+2 = 2γi
di

[
λi 1
λiλi−1 λi−1

]
, M2(i−1)+1,2(i−1)−1 = 2γi

di

[
λi −λiλi−1

−1 λi−1

]
,

and

M2(p−1),2(p−1)−1 = 1

γpnp + λp−1mp

[−mp λp−1mp
γpnp −γpnpλp−1

]
.

For the rest of the analysis in this section we use a methodology similar to the one found in [9].
In the following lemma we construct a matrix̃M ∈ R

2(p−1)×2(p−1) of reduced size which is spectrally
equivalent to the iteration matrixM and whose special non-zero structure lets us select optimum values
for the relaxation parametersλi .

Lemma 2. The two matricesM andM̃ have the same non-zero eigenvalues, i.e.,

σ (M)\{0} = σ (
M̃

)\{0}, (11)

where

M̃ =



0 M̃1,2 0 0 0 0 · · · 0
M̃2,1 0 0 M̃2,4 0 0 · · · 0
M̃3,1 0 0 M̃3,4 0 0 · · · 0

0 0 M̃4,3 0 0 M̃4,6 · · · 0
0 0 M̃5,3 0 0 M̃5,6 · · · 0

.

.

.
.
.
.

. . .
. . .

. . .
.
.
.

0 0 · · · 0 M̃2(p−1)−2,2(p−1)−3 0 0 M̃2(p−1)−2,2(p−1)
0 0 · · · 0 M̃2(p−1)−1,2(p−1)−3 0 0 M̃2(p−1)−1,2(p−1)
0 0 · · · 0 0 0 M̃2(p−1),2(p−1)−1 0


. (12)

The elements of̃M are defined as follows:

M̃1,2 = −γ1n1 + λ1m1

γ1n1 + λ1m1
,

for i = 2, . . . , p− 1,

M̃2(i−1),2(i−1)−1 = λi−1(γini + λimi)− γi(γimi + λini)
di

,

M̃2(i−1)+1,2(i−1)+2 = λi(γini + λi−1mi)− γi(γimi + λi−1ni)

di
,

M̃2(i−1),2(i−1)+2 = 4γiλi−1

di
, M̃2(i−1)+1,2(i−1)−1 = 4γiλi

di
,

and

M̃2(p−1),2(p−1)−1 = −γpnp + λp−1mp

γpnp + λp−1mp
.

Proof. We define the non-singular matrix

Q= diag
(
Q1,Q

T
1,Q2,Q

T
2, . . . ,Qp−1,Q

T
p−1

)
,
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where

Qi =Q−1
i =

[
1 −λi
0 −1

]
, QT

i =Q−T
i =

[
1 0

−λi −1

]
, i = 1, . . . , p− 1,

and consider the similarity transformation matrixQ−1MQ whose submatrices are specified by the
following relations:

Q−1
1 M1,2Q

T
1 =

0
−γ1n1 + λ1m1

γ1n1 + λ1m1

0
m1

γ1n1 + λ1m1

 ,
for i = 2, . . . , p− 1,

Q−T
i−1M2(i−1),2(i−1)−1Qi−1 = 1

di

[ −(γini + λimi) 0
λi−1(γini + λimi)− γi(γimi + λini) 0

]
,

Q−T
i−1M2(i−1),2(i−1)+2Q

T
i = 2γi

di

[
0 −1
0 2λi−1

]
,

Q−1
i M2(i−1)+1,2(i−1)−1Qi−1 = 2γi

di

[
2λi 0
1 0

]
,

Q−1
i M2(i−1)+1,2(i−1)+2Q

T
i = 1

di

[
0 −γi(γimi + λi−1ni)+ λi(γini + λi−1mi)

0 γipi + λi−1mi

]
,

and

Q−T
p−1M2(p−1),2(p−1)−1Qp−1 = 1

γpnp + λp−1mp

[ −mp 0
mpλp−1 − γpnp 0

]
.

A simple comparison of the above relations with the elements of the matrixM̃ and the fact that there
exists (Lemma 3.2 in [9]) a permutation matrixP such that

P TQTMQP =
[

0 ∗
0 M̃

]
,

complete the proof of the lemma.✷
We conclude this section with the main theorem that presents analytic expressions for the optimum

relaxation parameters.

Theorem 3. Consider the model problem(1) and a non-overlapping decomposition ofΩ into p
subdomainsΩi of length�i, i = 1, . . . , p. If the parametersλi involved in theROB interface relaxation
method are selected as

λp−1 = γpnp
mp
, λi−1 = γi(γimi + λini)

γini + λimi , i = p− 1, . . . ,2, (13)

then the spectral radius of the iteration matrixM is zero.



468 J.R. Rice et al. / Applied Numerical Mathematics 43 (2002) 459–481

Proof. It can been seen (Lemma 3.2 in [9]) that if we setM̃2(i−1),2(i−1)−1 = 0, i = 2, . . . , p, then we
obtain thatσ (M̃)= 0. This leads to the following equations.

λp−1mp − γpnp = 0

and

λi−1(γini + λimi)− γi(γimi + λini)= 0, i = 2, . . . , p− 1. (14)

To conclude the proof, we back solve forλi, i = p− 1, . . . ,1 and use the previous lemma.✷
3.2. “Optimum” relaxation parameters for theAVE method

Using the notation adopted in the previous section and theAVE algorithm given in Section 2 we easily
see that the error functions involved satisfy the following differential equations: For the odd steps the
equation for the first subdomain is

L1ε
(2k+1)
1 (x)= 0, x ∈Ω1,

ε
(2k+1)
1,0 = 0, dε

(2k+1)
1,1 = β1dε

(2k)
1,1 + (1− β1)dε

(2k)
2,1 ,

(15)

for the ith interior subdomain,i = 2, . . . , p− 1, the equation is

Liε
(2k+1)
i (x)= 0, x ∈Ωi,

dε
(2k+1)
i,i−1 = βi−1dε

(2k)
i−1,i−1 + (1− βi−1)dε

(2k)
i,i−1, (16)

dε
(2k+1)
i,i = βidε(2k)i,i + (1− βi)dε(2k)i+1,i ,

and for the last subdomain the equation is

Lpε
(2k+1)
p (x)= 0, x ∈Ωp,

dε
(2k+1)
p,p−1 = βp−1dε

(2k)
p−1,p−1 + (1− βp−1)dε

(2k)
p,p−1, (17)

ε(2k+1)
p,p = 0.

For the even steps the equation for the first subdomain is

L1ε
(2k+2)
1 (x)= 0, x ∈Ω1,

ε
(2k+2)
1,0 = 0, ε

(2k+2)
1,1 = α1ε

(2k+1)
1,1 + (1− α1)ε

(2k+1)
2,1 ,

(18)

for the ith interior subdomain,i = 2, . . . , p− 1, the equation is

Liε
(2k+2)
i (x)= 0, x ∈Ωi,

ε
(2k+2)
i,i−1 = αi−1ε

(2k+1)
i−1,i−1 + (1− αi−1)ε

(2k+1)
i,i−1 , (19)

ε
(2k+2)
i,i = αiε(2k+1)

i,i + (1− αi)ε(2k+1)
i+1,i ,

and for the last subdomain the equation is

Lpε
(2k+2)
p (x)= 0, x ∈Ωp,

ε
(2k+2)
p,p−1 = αp−1ε

(2k+1)
p−1,p−1 + (1− αp−1)ε

(2k+1)
p,p−1 , ε(2k+2)

p,p = 0.
(20)
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The solutions to the Neumann problems (15)–(17) are given by (see Lemma 1)

ε
(2k+1)
1 (x)= 1

γ1m1

(
eγ1(x−x0) − e−γ1(x−x0)

)(
β1dε

(2k)
1,1 + (1− β1)dε

(2k)
2,1

)
,

ε
(2k+1)
i (x)= 1

γini

{(−eγi(xi−x) − e−γi (xi−x))(βi−1dε
(2k)
i−1,i−1 + (1− βi−1)dε

(2k)
i,i−1

)
+ (
eγi (x−xi−1) + e−γi (x−xi−1)

)(
βidε

(2k)
i,i + (1− βi)dε(2k)i+1,i

)}
, i = 2, . . . , p− 1,

ε(2k+1)
p (x)= 1

γpmp

(−eγp(xp−x) + e−γp(xp−x))(βp−1dε
(2k)
p−1,p−1 + (1− βp−1)dε

(2k)
p,p−1

)
.

The solutions to the Dirichlet problems (18)–(20) are given by

ε
(2k+2)
1 (x)= 1

ni

(
eγ1(x−x0) − e−γ1(x−x0)

)(
α1ε

(2k+1)
1,1 + (1− α1)ε

(2k+1)
2,1

)
,

ε
(2k+2)
i (x)= 1

ni

{(
eγi(xi−x) − e−γi (xi−x))(αi−1ε

(2k+1)
i−1,i−1 + (1− αi−1)ε

(2k+1)
i,i−1

)
+ (
eγi (x−xi−1) − e−γi (x−xi−1)

)(
αiε

(2k+1)
i,i + (1− αi)ε(2k+1)

i+1,i

)}
, i = 2, . . . , p− 1,

ε(2k+2)
p (x)= 1

np

(
eγp(xp−x) − e−γp(xp−x))(αp−1ε

(2k+1)
p−1,p−1 + (1− αp−1)ε

(2k+1)
p,p−1

)
.

If, for k = 0,1, . . . , we define the vectors

ε(k) ≡ [
ε
(k)

1,1, ε
(k)

2,2, . . . , ε
(k)

p−1,p−1

]T
and dε(k) ≡ [

dε
(k)

1,1, dε
(k)

2,2, . . . , dε
(k)

p−1,p−1

]T
(21)

then we get from the above that

ε(2k+2) =MDdε(2k+1), (22)

dε(2k+1) =MNε(2k), (23)

where the Dirichlet and Neumann iteration matricesMD,MN ∈ R
(p−1)×(p−1) are tridiagonal with

elements

MD1,1 = α1m1

n1γ1
− (1− α1)n2

m2γ2
, MDp−1,p−1 = αp−1np−1

mp−1γp−1
− (1− αp−1)mp

npγp
,

MDi,i =
αini

miγi
− (1− αi)ni+1

mi+1γi+1
, i = 2, . . . , p− 2,

MDi,i+1 = 2(1− αi)
mi+1γi+1

, i = 2, . . . , p− 1,

MDi+1,i = − 2αi
miγi

, i = 1, . . . , p− 2,

(24)
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MN1,1 = β1n1γ1

m1
− (1− β1)n2γ2

m2
, MNp−1,p−1 = βp−1np−1γp−1

mp−1
− (1− βp−1)npγp

mp
,

MNi,i =
βiniγi

mi
− (1− βi)ni+1γi+1

mi+1
, i = 2, . . . , p− 2,

MNi,i+1 = 2(1− βi)γi+1

mi+1
, i = 2, . . . , p− 1,

MNi+1,i = −2βiγi
mi
, i = 1, . . . , p− 2.

(25)

Forp = 2 it is easy to see (force the roots of the characteristic polynomial ofMD orMN to be zero)
thatα1 = m2n1γ1

m2n1γ1+m1n2γ2
or β1 = m1n2γ2

m1n2γ2+m2n1γ1
are optimum values and achieve immediate convergence.

Forp > 2 we have been unable to derive optimum values for the relaxation parameters. Instead we obtain
values for them that are optimum in the max-norm (see Appendix A).

Theorem 4. Consider the iteration matrixM ≡MNMD of theAVE method associated with the model
problem(1) and a non-overlapping decomposition ofΩ into p subdomainsΩi of length�i, i = 1, . . . , p
with γi = γ in i = 1, . . . , p. For the values the relaxation parameters given below, the max-norms ofMN

andMD are minimized and the matrixM is a contraction mapping, with respect to the max-norm:

α1 = n1n2

n1n2 +m1m2
, αp−1 = mpmp−1

mpmp−1 + npnp−1
, (26)

αi = mini+1

mini+1 +mi+1ni
, i = 2, . . . , p− 2 (27)

and

β1 = m1n2

m1n2 +m2n1
, βp−1 = mp−1np

mp−1np +mpnp−1
, (28)

βi = mini+1

mini+1 +mi+1ni
, i = 2, . . . , p− 2, (29)

provided that�i >
ln(1+√

2)
γ

, i = 1, . . . , p.

Proof. To minimize the max-norm of the iteration matrix, it is sufficient to minimize the quantity

f (αi, βi, βi−1, βi+1)

= 4
αiβi−1

mimi−1
+ 2

mi

∣∣∣∣αi βi−1(mini−1 +mi−1ni)−mi−1ni

mi−1mi
+ βi αi(mi+1ni +mini+1)−mini+1

mimi+1

∣∣∣∣
+

∣∣∣∣−4
αi(1− βi−1)

m2
i

+ αi(mi+1ni +mini+1)−mini+1

mimi+1

βi(mi+1ni +mini+1)−mini+1

mimi+1

− 4
(1− αi)βi+1

m2
i+1

∣∣∣∣ (30)

+ 2

mi+1

∣∣∣∣αi(mi+1ni +mini+1)−mini+1

mimi+1
(1− βi)

+ βi+1(mi+2ni+1 +mi+1ni+2)−mi+1ni+2

mi+1mi+2
(1− αi)

∣∣∣∣ + 4
(1− αi)(1− βi+1)

mimi+1
.
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One can determine values forαi, βi, βi−1 andβi+1 that minimizef by an elementary but very lengthy
and tedious analysis which involves splitting the absolute values and considering several different cases.
(This analysis is presented in Appendix A.) Here, instead, we give an indication why this theorem is true.

Set

αi = α∗
i ≡ mini+1

mi+1ni +mini+1
, βi = β∗

i ≡ mini+1

mi+1ni +mini+1
,

βi−1 = β∗
i−1 ≡ mi−1ni

mi−1ni +mini−1
and βi+1 = β∗

i+1 ≡ mi+1ni+2

mi+1ni+2 +mi+2ni+1
.

Then the expressions in the absolute values of (30) become zero and so we have

f
(
α∗
i , β

∗
i , β

∗
i−1, β

∗
i+1

) = 4

mi+1ni +mini+1

(
mi+1(mi +mi−1)

mi−1ni +mini−1
+ mi(mi+1 +mi+2)

mi+1ni+2 +mi+2ni+1

)
.

Under the constraint that�j >
ln(1+√

2)
γ

we have thatnj > 2, j = i− 1, i, i + 1, and therefore we have

f
(
α∗
i , β

∗
i , β

∗
i−1, β

∗
i+1

)
<

4

2(mi +mi+1)

(
mi+1(mi +mi−1)

2(mi +mi−1)
+ mi(mi+1 +mi+2)

2(mi+2 +mi+1)

)
= 1.

Continuing in the same way for the 1st, 2nd,(p− 2)th and(p− 1)th rows of the iteration matrix, we
get optimum values for the relaxation parameters for all the interface points.✷

4. Numerical experiments

The purpose of the numerical experiments performed in this study is two-fold. First to verify
and elucidate our theoretically determined relaxation parameter values on a class of one-dimensional
problems and second to examine how effective these parameters values are for two-dimensional PDEs.
All experiments reported here are performed in single precision on SUN workstations.

4.1. One-dimensional case

We have implemented the two IR methods considered in this paper using MATLAB. All MATLAB
files we use to produce the one-dimensional data in this section are available through our web page.2

Implementations of several other relaxation schemes also can be found there. We use zero as initial guess
and consider the following model problem:

Lu≡ −u′′(x)+ γ 2u(x)= f (x), x ∈ (0,1), u(0)= 0, u(1)= 0, (31)

where the right hand side functionf is selected such that the true solutionu(x) is either

DP1 u(x)= cosh(2x − 1)− cosh(1.0), or
DP2 u(x)= ex+4x(x − 1)(x − 0.7).

2 http://www.cs.purdue.edu/homes/giwta/dom-dec/1_dim/matlab/index.html.
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Table 1
The max-norm of the error and the computed values of the convergence factor of theROB method applied to model
problem (31)-DP1 (γ 2 = 2). In the first column we have the iteration number, in the first row the discretization step-size
and in the second row the number of equal subdomains

Iter h= 0.01 h= 0.005

p = 2 p = 4 p = 10 p = 20 p = 2 p = 4 p = 10 p = 20

2 3.08E−5 1.48E−1 2.74E−1 3.87E−1 7.83E−6 1.48E−1 2.74E−1 3.87E−1
(0.2966) (0.2997) (0.2424) (0.1811) (0.2966) (0.2992) (0.2421) (0.1809)

3 1.19E−5 7.18E−2 1.72E−1 3.00E−1 3.07E−6 7.18E−2 1.72E−1 3.00E−1
(0.4447) (0.4635) (0.4409) (0.3723) (0.4447) (0.4635) (0.4408) (0.3721)

4 1.19E−5 3.18E−2 1.42E−1 2.27E−1 3.07E−6 3.18E−2 1.42E−1 2.27E−1
(0.5446) (0.5524) (0.5651) (0.5106) (0.5446) (0.5524) (0.5651) (0.5105)

5 1.19E−5 1.41E−2 1.53E−1 1.75E−1 3.07E−6 1.41E−2 1.53E−1 1.75E−1
(0.6150) (0.6167) (0.6425) (0.6063) (0.6150) (0.6166) (0.6425) (0.6063)

8 1.19E−5 6.11E−5 7.25E−2 1.64E−1 3.07E−6 1.52E−5 7.24E−2 1.64E−1
(0.7379) (0.7379) (0.7494) (0.7576) (0.7379) (0.7379) (0.7494) (0.7576)

16 1.19E−5 6.14E−5 2.04E−3 7.43E−2 3.07E−6 1.52E−5 2.05E−3 7.41E−2
(0.8590) (0.8590) (0.8590) (0.8658) (0.8590) (0.8590) (0.8590) (0.8658)

20 1.19E−5 6.14E−5 2.13E−4 3.99E−2 3.07E−6 1.52E−5 5.28E−5 3.98E−2
(0.8855) (0.8855) (0.8855) (0.8883) (0.8855) (0.8855) (0.8855) (0.8883)

32 1.19E−5 6.14E−5 2.14E−4 2.23E−3 3.07E−6 1.52E−5 5.32E−5 2.18E−3
(0.9268) (0.9268) (0.9268) (0.9268) (0.9268) (0.9268) (0.9268) (0.9268)

36 1.19E−5 6.14E−5 2.14E−4 4.72E−4 3.07E−6 1.52E−5 5.32E−5 2.54E−4
(0.9347) (0.9347) (0.9347) (0.9347) (0.9347) (0.9347) (0.9347) (0.9347)

In Table 1 we present the max norm of the error‖u(k) − u‖∞ and the computed convergence factor

rk = k

√∥∥Lu(k) − f ∥∥∞/
∥∥Lu(0) − f ∥∥∞, k = 1,2, . . .

of theROB method applied to the model problem (31) withγ 2 = 2 and solution DP1. We assume that
the domain is decomposed intop = 2,4,10,20 domains of equal size. We use the 5-point star difference
approximation with two different global discretization stepsh = 0.01 andh = 0.005 to solve the DE.
Similarly in Table 2 we consider theAVE method and setγ 2 = 10. The rapid rate of convergence is
easily observed as one moves down along any column. Note that this convergence is not immediate
(1 iteration) as our theory might indicate. It can be shown [22] that this is mainly due to the particular
block structure of the Jordan form of the iteration matrices which may require from 1 to 2(p−1) iteration
steps instead of one.

It can be also observed that, as the computed convergence factors indicate, the rate of convergence
of both methods does not seem to depend on the fineness of the domain discretization. Nevertheless,
the orderh2 finite difference discretization convergence rate is preserved. The rate of convergence does
depend, as expected, on both the number of subdomains and the coefficientγ 2. Extensive numerical
experiments (some of them presented in Fig. 3 below, and some others that are not included in this paper)
show that the rate of convergence increases asγ 2 increases for both methods but much more rapidly in
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Table 2
The max norm of the error and the computed values of the convergence factor of theAVE method applied to model problem (31)-
DP1(γ 2 = 10). In the first column we have the iteration number, in the first row the discretization step-size and in the second
row the number of equal subdomains

Iter h= 0.01 h= 0.005

p = 2 p = 4 p = 10 p = 20 p = 2 p = 4 p = 10 p= 20

2 1.39E−6 2.32E−4 1.43E−2 1.03E−1 3.48E−7 2.34E−4 1.43E−2 1.04E−1
(0.0965) (0.0965) (0.0966) (0.0966) (0.0965) (0.0965) (0.0966) (0.0966)

3 1.39E−6 5.23E−6 7.18E−3 2.23E−1 3.48E−7 3.71E−6 7.23E−3 2.25E−1
(0.2103) (0.2104) (0.2097) (0.2104) (0.2103) (0.2104) (0.2097) (0.2104)

4 1.39E−6 1.99E−6 4.58E−3 5.39E−1 3.48E−7 4.65E−7 4.62E−3 5.44E−1
(0.3106) (0.3106) (0.3113) (0.3419) (0.3106) (0.3106) (0.3113) (0.3423)

5 1.39E−6 2.04E−6 3.15E−3 1.41E+0 3.48E−7 5.10E−7 3.19E−3 1.43E+0
(0.3924) (0.3924) (0.3920) (0.4934) (0.3924) (0.3924) (0.3920) (0.4945)

8 1.39E−6 2.04E−6 8.61E−4 4.22E+1 3.48E−7 5.09E−7 8.76E−4 4.32E+1
(0.5573) (0.5573) (0.5574) (0.9617) (0.5573) (0.5573) (0.5574) (0.9644)

16 1.39E−6 2.04E−6 2.93E−5 5.18E+5 3.48E−7 5.09E−7 2.65E−5 5.43E+5
(0.7465) (0.7465) (0.7465) (1.830) (0.7465) (0.7465) (0.7465) (1.770)

20 1.39E−6 2.04E−6 9.18E−6 1.68E+6 3.48E−7 5.09E−7 5.58E−6 6.19E+7
(0.7915) (0.7915) (0.7915) (1.993) (0.7915) (0.7915) (0.7915) (2.001)

32 1.39E−6 2.04E−6 7.44E−6 2.68E+14 3.48E−7 5.09E−7 1.86E−6 2.95E+14
(0.8640) (0.8640) (0.8640) (2.487) (0.8640) (0.8640) (0.8640) (2.491)

36 1.39E−6 2.04E−6 7.44E−6 4.41E+16 3.48E−7 5.09E−7 1.86E−6 6.29E+16
(0.8781) (0.8781) (0.8812) (2.586) (0.8781) (0.8781) (0.8749) (2.597)

the AVE case. TheAVE method diverges forγ 2 = 10 andp = 20. This is in good agreement with the
restriction

�i >
ln(1+ √

2)

γ
, i = 1, . . . , p,

imposed by Theorem 4. This restriction seems to be necessary as well as sufficient (see also our
discussion following the figures).

In Figs. 1, 2 and 3 we consider the model problem (31)-DP1, with a splitting of the domainΩ into
three subdomains. We present the contour plots of the experimentally determined number of iterations
required to reduce the max norm of the difference of two successive iterants smaller than 10−5 as a
function of the various relaxation parameters involved. The stars in these plots indicate the theoretically
optimum relaxation parameters computed by using the formulas (13) and (26) (since there are only two
interfaces) of theROB andAVE methods, respectively. In all plots associated with theAVE method,
we useγ 2 = 2. The Neumann relaxation parametersβ1 andβ2 are computed by formula (28) while we
systematically vary the Dirichlet parametersα1 andα2 in (0,1). For theROB method, we setγ 2 = 2
while the relaxation parameters vary in a larger interval since there are no bounds for them. For this
method we see that there is a curve in theλ1λ2 plane with optimum values for the relaxation parameters.
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Fig. 1. Contour plots for case DP1 of the number of iterations required by theROB (top two plots) andAVE (bottom two
plots) methods to make the max norm of the difference of two successive iterants smaller than 10−5 as a function of associated
relaxation parameters. We assume a uniform 3 subdomain partition in the graphs on the left and non-uniform partition with
x1 = 0.2 andx2 = 0.7 on the right(γ 2 = 2). The star points are the theoretically determined optimum values of the parameters.

The stars in theROB plots represent the optimum values computed using formula (13), which is located
at the intersection of the above curve and the solution of Eq. (14) forp = 3, i.e.,

λ1(γ2n2 + λ2m2)= γ2(γ2m2 + λ2n2).

We note that, at the points indicated by stars in all the following graphs, the experimentally observed
number of iterations are always in the range of 5 to 8. This confirms the theoretical optimality of the
parameter values. It is also interesting to observe that this optimality seems to be independent of the
uniformity of the decomposition and of the changes in the value ofγ 2 in the subdomains.

In particular, in Fig. 2, we have the same non-uniform decomposition as in the right two plots in Fig. 1,
but here the coefficient ofu in the DE is discontinuous at the interface points. Specifically, in the first
subdomainγ 2 = 2, in the secondγ 2 = 10 and in the thirdγ 2 = 4. The right plot forAVE, is made using,
as before, Neumann relaxation parameters (β1, β2) computed by formula (28) and lettingα1 andα2 vary
in (0,1).

In general, theAVE method seems to converge faster thanROB but Theorem 4 imposes a restriction
on its convergence region. In Fig. 3 we experimentally verify the results of Theorem 4 and we clearly
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Fig. 2. Contour plots for case DP1 of the number of iterations required by theROB (left) and theAVE (right) methods to
make the max norm of the difference of two successive iterants smaller than 10−5 as a function of the associated relaxation
parameters. We assume a non-uniform partition withx1 = 0.2 andx2 = 0.7, with a discontinuous coefficient ofu. Particularly,
γ 2 = 2 for the first subdomain,γ 2 = 10 for the second andγ 2 = 4 for the third subdomain. The stars represent the theoretical
optimum values.

Fig. 3. Contour plots for case DP1 of the upper bounds of the spectral radius for the uniform case for theAVE method. In the
top three plotsγ 2 = 20 while the number of subdomainsp is equal to 2 (left), 4 (middle) and 5 (right). In the bottom three
figures we fix the number of subdomains atp = 6 andγ 2 is equal to 30 (left), 40 (middle) and 80 (right).

see that the restriction on the size of the subdomains imposed is not only sufficient but required,
too. The restrictionγ �i > ln(1 + √

2) of Theorem 4 is, for the six cases in Fig. 3, for the top row
(γ /p = 2.24,1.19,0.89 > 0.881) and bottom (γ /p = 0.913,1.05,1.17 > 0.881). The convergence
region (the area where the spectral radius of the iteration matrix is less than 1) shrinks as one either
increases the number of subdomains keepingγ 2 constant, or decreasesγ 2 assuming a constant number
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Fig. 4. Convergence history for case DP2 withγ 2 = 20 and a 4 subdomain uniform decomposition. The graph shows the true
solution and the first three iterants for theROB (on the left plot) and theAVE (on the right) methods.

of subdomains. The imposed bound on the size of subdomains seems to be a sharp one, since in all our
experiments we observe divergence every time we make�iγ slightly less than ln(1 + √

2) while we
always observe convergence otherwise.

To obtain additional information on the convergence behavior of the two methods we now switch to
the model problem (31)-DP2. The data for Figs. 4 and 5 have been extracted from [13] and are presented
here for completeness. In Fig. 4 we setγ 2 = 20 and plot the true solution and the first three iterants. We
observe that both methods converge in a non-monotone way, butAVE follows a much smoother path.

In Fig. 5, we consider the model problem (31)-DP2, with a two subdomain partition. We set all
relaxation parameters equal to 0.5 and experimentally measure the effects that the size ofγ 2 and the
location of the interface point have on the convergence rates for the two methods. We plot the logarithm
of the max norm of the error (on they-axis) versus the number of iterations (on thex-axis). The interface
point is fixed at 0.5 for the two plots on the left of the figure whileγ 2 = 20 for the two on the right.
We observe that theAVE method is significantly affected by both parameters while theROB method
converges in a smoother but slower way.

4.2. Two-dimensional case

We have implemented3 theAVE andROB methods for two-dimensional problems using ELLPACK
[15] assuming “skyline” domains (a string of rectangles of different heights and widths). This leads
to a one-dimensional decomposition of two-dimensional rectangles. The detailed presentation of this
two-dimensional performance analysis is beyond the scope of this section but, we give an example in
Fig. 6 of the convergence rate of theAVE and ROB methods. The Helmholtz differential equation
is −*u + γ 2u = f ∈ Ω with Dirichlet boundary conditions wheref is selected such thatu(x) =
ey(x+4)x(x−1)(x−0.7)y(y−0.5). The PDE domain and its one-dimensional partition into 3 subdomains
is as follows:

Ω1 = (0, x1)× (0,2), Ω2 = (x1, x2)× (0,0.5), Ω3 = (x2,1)× (0,1), Ω ≡
3⋂
i=1

Ωi,

3 See http://www.cs.purdue.edu/homes/giwta/dom-dec/2_dim/matlab/index.html.
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Fig. 5. The effect of the coefficientγ 2 (left graph,γ 2 = 1,10,20,30) and of the location of the interface point (right,
x = 0.2,0.4,0.6,0.8) on the convergence rates for theROB (top) andAVE (bottom) applied to case DP2. They-axis is the
max norm of the difference of successive solutions and thex-axis is the number of iterations.

where 0< x1< x2< 1. We have numerically verified that both the discretization scheme and the grid size
have very little effect on the convergence rate of both the IR methods considered. In all the experiments
associated with the present study the 5-point star ELLPACK discretization module was used and the
domain is discretized with a uniform grid in both directions usingh= 0.01.

The similarity of the convergence behavior between the one-dimensional and the two-dimensional
problems is easily observed by comparing Figs. 1 and 6. We performed many other experiments (some
of them are given in Chapter 6 in [20]), all of these were in reasonably good agreement with both the
quantitative and qualitative conclusions we draw from the one-dimensional experiments presented above,
provided that the subdomains are not very narrow in they-direction. Specifically, it is apparent that the
region of convergence shrinks down as the subdomains become large in they-direction. This is consistent
with the similar behavior observed or even proved in other conventional domain decomposition studies
like [3].
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Fig. 6. Contour plots of number of iterations required for PDE problem defined in Section 4.2 by theROB (top two plots) and
AVE (bottom two plots) methods to make the max norm of the difference of two successive iterants smaller than 10−5 for the
two-dimensional Dirichlet problem−*u+ 2u= f as a function of associated relaxation parameters. We assume a uniform 3
subdomain partition in the graphs on the left and non-uniform partition withx1 = 0.2 andx2 = 0.7 on the right the PDE domain
and its partition given on the left.
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Appendix A. Analysis for the AVE method

A.1. Minimize the max-norm ofMD

The max-norm ofMD is given by∥∥MD∥∥∞ = max
1�i�p−1

fi,

where
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f1(α1)=
∣∣∣∣α1m1

n1γ1
− (1− α1)n2

m2γ2

∣∣∣∣ + 2(1− α1)

m2γ2
,

fi(αi)= 2αi
miγi

+
∣∣∣∣ αinimiγi

− (1− αi)ni+1

mi+1γi+1

∣∣∣∣ + 2(1− αi)
mi+1γi+1

, i = 2, . . . , p− 2, (A.1)

fp−1(αp−1)= 2αp−1

mp−1γp−1
+

∣∣∣∣ αp−1np−1

mp−1γp−1
− (1− αp−1)mp

npγp

∣∣∣∣.
Considering the fact thatγi = γ, i = 1, . . . , p, as in Theorem 4, the formulas (A.1) can be simplified as

f1(α1)=
∣∣∣∣α1m1

n1γ
− (1− α1)n2

m2γ

∣∣∣∣ + 2(1− α1)

m2γ
,

fi(αi)= 2αi
miγ

+
∣∣∣∣αinimiγ

− (1− αi)ni+1

mi+1γ

∣∣∣∣ + 2(1− αi)
mi+1γ

, i = 2, . . . , p− 2, (A.2)

fp−1(αp−1)= 2αp−1

mp−1γ
+

∣∣∣∣αp−1np−1

mp−1γ
− (1− αp−1)mp

npγ

∣∣∣∣.
We present the analysis for the general case (i.e., forfi, i = 2, . . . , p− 2). The minimum forf1 and

fp−1 is obtained in the same way.
The functionfi obtains its minimum value (see Fig. 7) atα∗

i or α∗∗
i , whereα∗

i is the intersection point
of the lines 2αi

miγ
and 2(1−αi)

mi+1γ
and is equal toα∗

i = mi
mi+mi+1

, while α∗∗
i is the root of the quantity in the

absolute value, and is equal toα∗∗
i = mini+1

mi+1ni+mini+1
. Substitutingα∗

i andα∗∗
i in fi we get the following

equalities

fi
(
α∗
i

) = 4+ |ni − ni+1|
γ (mi +mi+1)

, (A.3)

and

fi
(
α∗∗
i

) = 2(ni + ni+1)

γ (mi+1ni +mini+1)
. (A.4)

Fig. 7. The components of the sum of the absolute values of the elements of theith row of matrixMD .
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Next, we compare the values in (A.3) and (A.4) and prove thatfi(α
∗∗
i ) is the minimum. To do so, we

show that the quantityγ (fi(α∗∗
i )− fi(α∗

i )) is negative under the assumptionni > 2, i = 1, . . . , p− 1. It
is easy to see that

f ∗
i ≡ γ (

fi
(
α∗∗
i

) − fi
(
α∗
i

)) = 2(mi+1 −mi)(ni+1 − ni)− |ni+1 − ni|(mi+1ni +mini+1)

(mi +mi+1)(mi+1ni +mini+1)
.

We derive two cases with respect to the difference in the absolute value and we have that

f ∗
i =

{
(ni+1 − ni)

(
mi+1(ni + 2)+mi(ni+1 − 2)

)
, ni > ni+1,

−(ni+1 − ni)
(
mi+1(ni − 2)+mi(ni+1 + 2)

)
, ni � ni+1.

In the first branch, whereni > ni+1, the quantity in the second parenthesis is positive under the
assumption thatni > 2 and thereforef ∗

i is negative, while in the second branch the first parenthesis
is positive and the second one is negative assuming thatni+1> 2.

Hence, under the constraintni > 2, i = 1, . . . , p − 1 (which is equivalent to the only constraint of
Theorem 4), we have proved thatfi(α∗∗

i ) < fi(α
∗
i ), which makesα∗∗

i the minimum of the functionfi.

A.2. Minimize the max-norm ofMN

The max-norm ofMN is given by∥∥MN∥∥∞ = max
1�i�p−1

gi,

where

g1(β1)=
∣∣∣∣β1n1γ1

m1
− (1− β1)n2γ2

m2

∣∣∣∣ + 2(1− β1)γ2

m2
,

gi(βi)= 2βiγi
mi

+
∣∣∣∣βiniγimi

− (1− βi)ni+1γi+1

mi+1

∣∣∣∣ + 2(1− βi)γi+1

mi+1
, i = 2, . . . , p− 2, (A.5)

gp−1(βp−1)= 2βp−1γp−1

mp−1
+

∣∣∣∣βp−1np−1γp−1

mp−1
− (1− βp−1)npγp

mp

∣∣∣∣.
Working in the same way as in the previous section, we prove that theβi, i = 1, . . . , p− 1, as defined

in (28) and (29) are the optimum values, in the sense that they minimize the max-norm of matrixMN .

References

[1] P.E. Bjørstad, O.B. Widlund, Iterative methods for the solution of elliptic problems on regions partitioned into
substructures, SIAM J. Numer. Anal. 23 (6) (1986) 1093–1120.

[2] J.H. Bramble, J.E. Pasciak, A.H. Schatz, An iterative method for elliptic problems on regions partitioned into substructures,
Math. Comp. 46 (173) (1986) 361–369.

[3] T. Chan, T. Hou, P.L. Lions, Geometry related convergence results for domain decomposition algorithms, SIAM J. Numer.
Anal. 28 (1991) 378–391.

[4] Q. Deng, An analysis for a nonoverlapping domain decomposition iterative procedure, SIAM J. Sci. Comput. 18 (1997)
1517–1525.

[5] B. Despres, Méthodes de décomposition de domaines pour les problèmes de propagation d’ondes en régime harmonique,
Ph.D. Thesis, Université Paris IX Dauphine, UER Mathématiques de la Decision, Paris, 1991.



J.R. Rice et al. / Applied Numerical Mathematics 43 (2002) 459–481 481

[6] A. Hadjidimos, D. Noutsos, M. Tzoumas, Nonoverlapping domain decomposition: A linear algebra viewpoint, Math.
Comput. Simulation 51 (1999) 597–625.

[7] J. Douglas Jr., C.-S. Huang, An accelerated domain decomposition procedure based on Robin transmission conditions,
Technical report, Purdue University, Department of Mathematics, 1996.

[8] J. Douglas Jr., P.J. Paes Leme, J.E. Roberts, J. Wang, A parallel iterative procedure applicable to the approximate solution
of the second order partial differential equations by mixed finite element methods, Numer. Math. 65 (1993) 95–108.

[9] S.-B. Kim, A. Hadjidimos, E.N. Houstis, J.R. Rice, Multi-parameterized Schwarz splittings, Math. Comput. Simulation 42
(1996) 47–76.

[10] P.L. Lions, On the Schwarz alternating method III: A variant for nonoverlapping subdomains, in: R. Glowinski,
G.H. Golub, G.A. Meurant, J. Periaux (Eds.), Domain Decomposition Methods for Partial Differential Equations, SIAM,
Philadelphia, PA, 1990, pp. 202–223.

[11] M. Mu, Solving composite problems with interface relaxation, SIAM J. Sci. Comput. 20 (1999) 1394–1416.
[12] M. Mu, J.R. Rice, Modeling with collaborating PDE solvers—Theory and practice, Comput. Systems in Engrg. 6 (1995)

87–95.
[13] J.R. Rice, P. Tsompanopoulou, E.A. Vavalis, Interface relaxation methods for elliptic differential equations, Appl. Numer.

Math. 32 (2000) 219–245.
[14] J.R. Rice, An agent–based architecture for solving partial differential equations, SIAM News 31 (1998).
[15] J.R. Rice, R.F. Boisvert, Solving Elliptic Problems Using ELLPACK, Springer, New York, 1985.
[16] J.R. Rice, P. Tsompanopoulou, E. Vavalis, Automated estimation of relaxation parameters for interface relaxation,

Technical Report CSD-TR-98-018, Purdue University, Computer Science Department, 1998.
[17] J.R. Rice, E. Vavalis, D. Yang, Analysis of a non-overlapping domain decomposition method for elliptic PDEs, J. Comput.

Appl. Math. 87 (1997) 11–19.
[18] Y.-H. De Roeck, P. Le Tallec, Analysis and test of a local domain decomposition preconditioner, in: R. Glowinski,

Y. Kuznetsov, G. Meurant, J. Périaux, O. Widlund (Eds.), Fourth International Symposium on Domain Decomposition
Methods for Partial Differential Equations, SIAM, Philadelphia, PA, 1991.

[19] P. Le Tallec, Y.-H. De Roeck, M. Vidrascu, Domain-decomposition methods for large linearly elliptic three dimensional
problems, J. Comput. Appl. Math. 34 (1991).

[20] P. Tsompanopoulou, Collaborative PDEs solvers: Theory and practice, Ph.D. Thesis, Mathematics Department, University
of Crete, Greece, 2000.

[21] H.T.M. van der Maarel, A. Platschorre, Optimization of flexible computing in domain decomposition for a system of
PDEs, in: P. Biørstad, M. Espedal, D. Keyes (Eds.), Proc. of the Ninth International Conference on Domain Decomposition
Methods, Wiley, New York, 1998.

[22] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962 (2nd Edition revised and expanded,
Springer, Berlin, 2000).

[23] O.B. Widlund, Some Schwarz methods for symmetric and nonsymmetric elliptic problems, in: T.F. Chan, D.E. Keyes,
G.A. Meurant, J.S. Scroggs, R.G. Voigt (Eds.), Fifth International Symposium on Domain Decomposition Methods for
Partial Differential Equations, SIAM, Philadelphia, PA, 1992.

[24] D. Yang, A parallel iterative nonoverlapping domain decomposition procedure for elliptic problems, IMA J. Numer.
Anal. 16 (1996) 75–91.

[25] D. Yang, A parallel domain decomposition algorithm for elliptic problems, J. Comput. Math. 16 (1998) 141–151.
[26] D. Yang, A parallel grid modification and domain decomposition algorithm for local phenomena capturing and load

balancing, J. Sci. Comput. 12 (1998) 99–117.


