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Abstract

A population of seven non-overlapping domain decomposition methods for solving elliptic differential equations
are viewed and formulated as iterated interface relaxation procedures. A comprehensive review of the underlying
mathematical ideas and the computational characteristics is given. The existing theoretical results are also reviewed
and high level descriptions of the various algorithms are presented. The effectiveness of these methods on various
differential problems is investigated by presenting and discussing preliminary performance evaluation data. 2000
IMACS. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

The various domain decomposition methods that have been recently developed for the efficient solution
of elliptic differential equations can be easily classified into two categories—overlapping and non-
overlapping. Both approaches already have been used to effectively model large scale, industrial, ill-
conditioned problems. Nevertheless it is believed that further theoretical and experimental analysis is
required before such methods will become practical and useful tools for non-experts.

Overlapping (Schwartz) schemes have received in the past a great deal of attention. Articles that review
and compare various such schemes [19] and survey the associated preconditioning strategies [4,7] have
already appeared in the literature. It is relatively recent that a number of studies have shown that non-
overlapping schemes can compete well and can possibly free the user from certain complications in their
formulation and implementation. The comparison of the main characteristics of these two classes of
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methods and the existence of equivalence relations between them have already received a great deal of
study [2,3,5].

Interface relaxation methods are taking us a step beyond non-overlapping domain decomposition [28].
In an effort to mimic the physics in the real world, they split a complicated partial differential equation
(PDE) that acts on a large and/or complex domain into a set of PDE problems with different but simple,
operators acting on different smaller and “easy” subdomains. This multi-PDE, multi-domain system is
properly coupled using smoothing operators on the inter-domain boundaries. The present work reviews
and evaluates a class of interface relaxation methods for solving elliptic PDE problems. Although these
methods can be considered from the preconditioning viewpoint, here we follow Southwell’s relaxation
of the 1930’s—but at the PDE level instead of the linear algebra level—to formulate them as iterated
interface smoothing procedures. We believe that such a formalism has certain theoretical and algorithmic
advantages.

From the interface relaxation viewpoint these methods consist of partitioning the domain on a set of
non-overlapping subdomains and of imposing some boundary conditions on the interface boundaries
defined by this partition. Then, using initial guesses on the interfaces, the set of the resulting PDE
problems is solved. The solutions obtained do not satisfy the interface boundary conditions and interface
relaxation is applied to obtain new interface boundary values, which satisfy the conditions better, and we
solve the PDEs with these new values. We repeat the above steps until convergence.

For our study we have collected most of the known interface relaxation methods and proposed two
new ones. Specifically we consider the methods listed below in alphabetical order with respect to their
acronyms. These acronyms are used in the sequel to refer to associated methods.

AVE A simple method of averaging the solution and its normal derivative along the interfaces.

GEO A method based on a simple geometric contraction.

NEW A scheme based on Newton’s method to “correct” the interface values.

ROB An algorithm that uses Robin interface conditions for smoothing.

SCO A scheme that is based (but not formulated) on a Schur complement approach.

SHO A method based on the concept of the shooting method for solving Ordinary Differential Equations
(ODEs).

SPO A method originated from the use of Steklov–Poincaré operator which involves alternating
boundary condition types.

To the best of our knowledgeGEO, andNEW has not been considered in any previous studies. The
analysis of these methods is beyond the scope of this paper. We should point out that in order to
preserve some uniformity in our study we have not experimented with a class of interesting interdomain
smoothing methods which use a few modes of the expansion [6] of certain interface operators (i.e.,
Lagrange multipliers [11,12] or Steklov–Poincaré operators [26,27]). We will only briefly describe these
techniques.

The rest of the paper is organized as follows. In Section 2 we present the general framework for
decomposing a multi-PDE problem into a collaborative pool of single-PDE problems and discuss the
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implications on simulating complicated physical problems. The interface relaxation methods we consider
for this study are presented in Section 3, where we give their formulation and list the known theoretical
results. In Section 4 we present our performance data and in Section 5 we summarize the contributions
of our study.

2. Domain decomposition with iterated interface relaxation

Currently the domain decomposition world consists of two parts—overlapping and non-overlapping—
both living in prosperity. Overlapping, known also as Schwartz, methods were the first considered
and have already proved themselves as very efficient numerical procedures enjoying certain very
desirable convergence properties. Nevertheless it has been also observed that they might have several
serious drawbacks which will prohibit their use for certain applications. For example, almost all of
the many proposed domain decomposition methods for solving wave propagation models (that consist
of the Helmholtz equation coupled with various absorbing or reflecting boundary conditions) are non-
overlapping and of interface relaxation type [1,9,20,30].

Non-overlapping methods exhibit certain advantages compared to overlapping ones. Specifically:
– They are not sensitive to jumps on the operator coefficients. Their convergence behavior and

theoretical error estimates remain the same even if the differential operator includes discontinuous
coefficients provided that the jumps occur along the interface lines [35].

– They have smaller communication overhead in a parallel implementation on distributed memory
multiprocessor systems. Their communication overhead is proportional to the length of the interface
lines while it is proportional to the overlapping area in the case of overlapping methods [13].

– The bookkeeping is rather easy for the decomposition and manipulations of the associated
data structures compared to the more complicated and costly bookkeeping of the overlapping
methods [13].

There are two principal viewpoints of non-overlapping methods, preconditioning and interface
relaxation. For an in depth and up-to-date survey of non-overlapping domain decomposition methods
considered and analyzed from the preconditioning viewpoint the reader is referred to [33] and for a
general formulation and analysis of interface relaxation methods to [24]. We give a brief presentation of
the interface relaxation method philosophy and practice, in order to identify its main characteristics.

Interface relaxation is a step beyond non-overlapping domain decomposition; it follows Southwell’s
relaxation of the 1930’s—but at the PDE instead of the linear algebra level—to formulate relaxation
as iterated interface smoothing procedures. A complex physical phenomenon consists of a collection of
simple parts with each one of them obeying a single physical law locally and adjusting its interface
conditions with neighbors. Interface relaxation partitions the domain on a set of non-overlapping
subdomains, imposes some boundary conditions on the interface among subdomains lines. Given an
initial guess, it imitates the physics of the real world by solving the local problems exactly on each
subdomain and relaxing boundary values to get better estimates of correct interface conditions. This is
illustrated in Fig. 1 where the generic relaxation formulagi,j (based on the current solutionsUNew

i and
UNew
j of the two local to the neighboring subdomainsΩi andΩj ) calculates successive approximations

bNew
i,j to the solution on the interfaceΓi,j between them.
To formally describe this method we consider the differential problem

Du= f in Ω, Bu= c on∂Ω, (1)
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Fig. 1. The interface relaxation mechanism.

whereD is an elliptic, non-linear in general, differential operator andB a condition operator defined
on the boundary∂Ω of a domainΩ ∈ Rd, d = 1,2, . . . . This domain is partitioned intop subdomains

Ωi, i = 1, . . . , p, such thatΩ = ⋃pi=1Ωi and
⋂p
i=1

◦
Ωi= ∅. For reasons related either to the physical

characteristics of this problem or to the computing resources available, one would like to replace (1) with
the following system of loosely coupled differential problems:

Diu= fi in Ωi, Giu= 0 on∂Ωi\∂Ω, Biu= ci on ∂Ωi ∩ ∂Ω, (2)

wherei = 1, . . . , p. These differential problems are coupled through the interface conditionsGiu = 0
and involve the restrictionsDi and Bi of the global differential and boundary operators,D andB,
respectively, on each subdomain with some of them possibly linear and some others nonlinear. The
functions fi and ci are similar restrictions of functionsf and c. The local interface operatorGi is
associated with the interface relaxation method and different selections for theGi ’s lead to different
relaxation schemes. In this study we consider several interface relaxation methods that have the following
characteristics:

– They first decompose the problem (1) at differential level and then discretize the resulting
differential subproblems (2).

– They have the versatility to use the most appropriate discretization scheme for each subproblem.
– They do not overlap the subdomainsΩi .
– Using good relaxation parameters inGi , they are fast enough so no preconditioning is needed.
– They simplify the geometry and physics of the computation by considering the subproblems (2)

instead of the global differential problem (1).
– They can utilize software parts technology by reusing existing “legacy” software parts for solving

the individual subproblems (2).
– They are general and robust.
There are several challenging questions concerning practical applications of such methods (e.g., find

the most suitable relaxer for a particular problem of application, determine what is the domain of
applicability of each one of them, explain the interaction between the mathematical iteration and the
numerical solving method, select “good” or “optimal” values for the relaxation parameters involved, etc.).
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It is worth to point out that since all the methods decompose and relax interface values at continuum level
the convergence analysis of these methods need to be carried out at PDE (continuum) level and therefore
is a mathematical and not a numerical analysis problem (see [24] for a discussion).

3. Interface relaxation methods

Due to the inherent abstraction, it is relatively easy to describe the various interface smoothing methods
at both the conceptual and algorithmic level. Next we present the seven methods, give their high level
algorithmic description and briefly present the known theoretical results. Detailed algorithms to define
all schemes are given in the Appendix. For simplicity in the presentation of algorithms, we consider
only one-way (along thex-axis) partition of the domain. Therefore each subdomain has two interface
lines with the two neighboring subdomains. The basic building block for our algorithms is the procedure
u = solve_pde(ui,dui) which calculates the solutionu of the local to a subdomain PDE problem with
Dirichlet, Neumann or Robin boundary conditions on the interface using as the interface valuesui and
its gradient dui. The subscriptsR andL denote left and right subdomains or interfaces, respectively, and
ui denotes the solution of the problem associated with subdomainΩi .

The Dirichlet/Neumann averaging(AVE ) method

We start by presenting one of the simplest schemes which consists of two PDE solving sweeps coupled
with two smoothing interface relaxation steps. In the first sweep, the Dirichlet problem is solved on all
subdomains. Then the relaxation procedure smoothes the derivatives along all interfaces by estimating
the normal derivative as a convex combination of the previously computed normal derivatives of the two
adjacent subdomains. These estimates are then used as boundary conditions in the second PDE solving
sweep where the Neumann problem is solved on all subdomains. The second relaxation step follows
and computes estimates of the unknown function on the interfaces taking a convex combination of the
previously computed solutions on the adjacent subdomains. These estimates are to be passed to the next
iteration’s Dirichlet sweep. This method, which we classify as atwo-stepmethod, can be algorithmically
described by

for k = 0,1,2, . . .
u(k+1/2) = solve_pde(ui) in each subdomain,

dui = β ∂u
(k+1/2)
R

∂x
+ (1− β)∂u

(k+1/2)
L

∂x
on each interface,

u(k+1) = solve_pde(dui) in each subdomain,

ui = αu(k+1)
R + (1− α)u(k+1)

L on each interface,

where α,β ∈ (0,1) are relaxation parameters. There have been a few theoretical studies on the
convergence of the above scheme which are discussed in [25]. In particular, in [34] a convergence analysis
of the method is carried out at a differential level using Hilbert space techniques. In [36] the Galerkin
finite element method and the hybrid mixed finite element method are employed to give discrete versions
of this method. Fourier analysis is used in [31] to obtain sharp convergence results and to estimate
optimum values for the relaxation parameters involved for simple model problems.
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The geometric(GEO) contraction based method

GEO estimates the new solution for each subdomain by solving a Dirichlet problem and is classified
as aone-stepmethod. The values on the interfaces are obtained by adding to the old ones, a geometrically
weighted combination of the normal boundary derivatives of the adjacent subdomains. Specifically, we
assume in Fig. 2 thatuL anduR are the solutions of the PDE problems associated with the left and right
subdomains, respectively, of the interface pointI . They are equal alongI and we denote bySL andSR
their slopes atI . As it can be easily seen geometrically,m is the correction needed to be added touL and
uR so as to match the normal derivatives atI . To calculatem we consider the two right trianglesIAB
andCDI whose heights are given multiplying the corresponding tangent with the base of the triangle,
or equivalently multiplying the normal derivative with the base. The baseswL andwR are the widths
assumed for the validity of the slope values; these can be arbitrarily selected and play the role of the
relaxation parameters. The new interface values are now given by adding the weighted average of the
heights to the old interface valuesuL anduR . One can intuitively view this as grabbing the functionu
at I and stretching it up bym until its derivative becomes continuous. Numerical experiments show that
the convergence rate does not seem to depend much on the widthswL andwR. In case thatuR 6= uL on
I we simply use their average.GEO is given algorithmically by

for k = 0,1,2, . . .

ui(k+1) = ui(k) − wLwR

wL +wR
(
∂u

(k)
L

∂x
− ∂u

(k)
R

∂x

)
on each interface,

u(k+1) = solve_pde(ui(k+1)) in each subdomain.

To the best of our knowledge this method has not been considered in any previous studies.

Fig. 2. Cross-section perpendicular to the interface whereuL anduR have slopesSL andSR at the interface pointI .
Changing the values ofuL anduR bym makes these slopes equal.
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The Newton’s(NEW) method

Another new idea is to use discrete Newton’s method to update the values at the interface according to
the following procedure:

Step0. Fori = 1,2, guessu(i)R , u(i)L on interfaces and compute∂u(i)R /∂x, ∂u
(i)
L /∂x.

Step1. Consider finding forδL andδR so that on all interfaces we have(
u
(2)
L + δL

)− (u(2)R + δR)= 0,

∂u
(2)
L

∂x

(
u
(2)
L + δL

)− ∂u(2)R
∂x

(
u
(2)
R + δR

)= 0.

Step2. Apply linearization to solve the equations approximately:(
u
(2)
L + δL

)− (u(2)R + δR)= 0,

∂u
(2)
L

∂x

(
u
(2)
L

)[
1+ ∂

∂uL

(
∂uL

∂x

)
δL

]
− ∂u

(2)
R

∂x

(
u
(2)
R

)[
1+ ∂

∂uR

(
∂uR

∂x

)
δR

]
= 0.

Step3. Approximate the unknown derivatives by differences:

∂

∂uL

(
∂uL

∂x

)
= ∂u

(2)
L /∂x − ∂u(1)L /∂x
u
(2)
L − u(1)L

=AL,
∂

∂uR

(
∂uR

∂x

)
= ∂u

(2)
R /∂x − ∂u(1)R /∂x
u
(2)
R − u(1)R

=AR.
Step4. Solve forδR andδL from

δL − δR = u(2)R − u(2)L = 0,

ALδL −ARδR = ∂u
(2)
R

∂x
− ∂u

(2)
L

∂x
,

so the

δR = δR = δ = [∂u
(2)
R /∂x − ∂u(2)L /∂x]
AL −AR .

The values of∂uL/∂x and ∂uR/∂x depend onuL anduR throughout the differential equations given
above. In the spirit of the above procedureNEW can be described as follows:

for k = 2,3,4. . .
Solve for correctionsδL = δR = δ from the interface system as above:(
u
(k)
L + δL

)− (u(k)R + δR)= 0,

∂u
(k)
L

∂x

(
u
(k)
L + δL

)− ∂u(k)R
∂x

(
u
(k)
R + δR

)= 0,

ui(k+1) = ui(k) + δ on each interface,
u(k+1) = solve_pde(ui(k+1)) in each subdomain.

There is no general convergence analysis for this new single step scheme which does not involve any
relaxation parameters. Like most applications of Newton’s method, it should converge very rapidly in
some neighborhood of the true solution.
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The Robin relaxation(ROB) method

An even simpler interface relaxation is the one based on Robin interface conditions to transmit
information across subdomain boundaries. It was first proposed in [23] and analyzed later in [10,18].
One solves the local PDE on the subdomains using Robin conditions on the interface lines by matching
a convex combination of Dirichlet and Neumann data from the neighboring subdomains.

for k = 0,1,2, . . .
On each sub-domain solve:Lu(k+1) = f ∈Ω with

−∂u
(k+1)

∂x
+ ρu(k+1) =−∂u

(k)
L

∂x
+ ρu(k)L on subdomain’s left interface,

∂u(k+1)

∂x
+ ρu(k+1) = ∂u

(k)
R

∂x
+ ρu(k)R on subdomain’s right interface.

Hereρ is a relaxation parameter. The convergence of this method was analyzed in [23] at the differential
level assuming arbitrary decompositions and using “energy” estimates. The determination of effective
choices forλ was marked as “by large an open problem”. Variations of the above described method
have appeared in the literature lately. Specifically in [17] an ADI-based modification for accelerating
the convergence of theROB scheme is proposed and analyzed. A modification ofROB that extends
its applicability and frees it from the cross-point trouble is formulated and analyzed in [8]. Another
variation that uses the tangential derivatives in addition to the normal derivative for smoothing is given
in [32] where optimal values for the relaxation parameters are obtained for a model problem.

The Schur complement(SCO) method

Among the first interface relaxation procedures that captured the attention of researchers is the one
analyzed in [14] (see also the references therein). It alternates Dirichlet and Neumann interface conditions
in space and can be described by

for k = 0,1,2, . . .
u1L = u, u1R = θ1u

(k)
2 + (1− θ1)u

(k)
1 ,

u
(k+1)
1 = solve_pde(u1L,u1R),

for i = 2, . . . , p− 1

duiL = ∂u
(k+1)
i−1

∂x
,

uiR = θiu(k)i+1+ (1− θi)u(k)i ,

u
(k+1)
i = solve_pde(uiR,duiL),

upR = u, dupL = ∂u
(k+1)
p−1

∂x
,

u(k+1)
p = solve_pde(upR,dupL).

Hereθ ∈ (0,1) is a relaxation parameter. The convergence analysis at the differential level for the case
of Helmholtz equation in two variables and 1-dimensional decompositions at differential level is given
in [14] together with expressions that lead to optimum values forθ . A method for dynamically determine,
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at each iteration, values forθ for the spectral collocation approximation of the differential problems is
also given. To the best of our knowledge,SCO is the only interface relaxation technique that has so far
been successfully extended and applied to fourth order elliptic problems [15].

The Shooting(SHO) method

This method is proposed in [21] where it is formulated primarily for 1-dimensional boundary value
problems. A convergence analysis was carried out and optimum values for the relaxation parameters
were obtained for model problems. The basic idea is to couple the problems on the subdomains by
solving the defect equationD(ui(k)) ≡ ∂u(k)L /∂x − ∂u(k)R /∂x = 0 on the interfaces using a fixed point
(Picard) iteration scheme to obtain new values.

for k = 0,1,2, . . .

α(k+1) = α(k)|D(ui(k+1))|
|D(ui(k))−D(ui(k+1))| on each interface,

ui(k+2) = ui(k) − α(k+1)D(ui(k)) on each interface,

u(k+2) = solve_pde(ui(k+2)) in each subdomain.

The Steklov–Poincaré operator(SPO) method

This method was first mentioned in [22] but analyzed from the preconditioning viewpoint only. It
uses the Steklov–Poincaré operator to carry the procedure of smoothing the normal derivatives at the
interfaces, it is atwo-stepmethod described by the following algorithm:

for k = 0,1,2, . . .

u(k+1/2) = solve_pde(ui) in each subdomain,

dui = 1

2

(
∂u

(k+1/2)
R

∂x
+ ∂u

(k+1/2)
L

∂x

)
on each interface,

u(k+1) = solve_pde0(dui) (Lu= 0) in each subdomain,

ui = ui − 1
2ρ
(
u
(k+1)
R + u(k+1)

L

)
on each interface.

No theoretical results, from the interface relaxation viewpoint, are available forSPO.

3.1. Methods not considered

As mentioned in the introduction, powerful interface relaxation methods can be constructed using
spectral expansions of a trace operator. In this approach operators like Lagrange multipliers or Steklov–
Poincaré operator, which can be interpreted as the interface flux, are solved to determine an improved
value of the unknown function on the interface. Specifically, in [26] and [27] an independent low
dimensional set of interfacial basis functions are used to meet interdomain continuity requirements on the
solution. These functions are derived locally in each subdomain by solving an eigenvalue problem of the
Steklov–Poincare operator on the complementary region. An idea similar to the above approach is used
in [11] and [12] where a different set of basis functions is used to smooth across interfaces. It is shown that
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a relatively small basis set for the Lagrange multiplier has certain significant advantages. In particular
trigonometric functions, orthogonal polynomials, and one-dimensional Lagrange finite elements have
been suggested as approximating basis set on the interface.

We have also investigated a new method which simply makes a least square fit to approximately satisfy
the over determined interface conditions at each iteration. This method seems to be very much slower
than any other interface relaxation method so we do not present our data for it.

4. Numerical experiments

An extensive and systematic performance evaluation study of all the interface relaxation schemes
presented above is under way for general 2-dimensional decompositions using the SciAgents [13] system.
In this section we present and discuss numerical performance data mainly for 1-dimensional problems.
These problems might be too simple to be of practical importance, but these experiments can be very
illuminating for understanding the nature of the interface relaxation method. They might be useful to
show the physical meaning and importance of the various characteristics and parameters involved in the
relaxers in particular for general unstructured decompositions.

We consider the differential equationu′′ − γ u = f in [0,1], wheref is selected such thatu(x) =
ex+4x(x − 1)(x − 0.7) and we assume Dirichlet boundary conditions. All interface relaxation schemes
are implemented in a unified way using MATLAB on a SUN workstation. The MATLAB code for the
algorithms given in the Appendix can be obtained from our web page.2 Central differences are used
to discretize the differential equation. The interval[0,1] is partitioned into subdomains with interface
conditions taken to be continuous value and derivative. Unless otherwise stated, we start all iterations
from a zero initial guess and we select the values for the various parameters involved in the relaxation
schemae in a straight forward and naive way. In particular, we setα = β = 1

2 in AVE , wL = wR = half
the length of the associated subdomain inGEO, ρ = 1

2 in ROB andSPO, andθ = 1
2 in SCO. We also

setγ = 20 for all data except Fig. 8. We select this, not very common, value ofγ in order to increase the
experimental data (see the discussion of Figs. 3 and 4) that can be fitted into the plots (in particular, in
Figs. 3 and 8) so a clear qualitative comparison picture can be easily drawn.

We have verified that the convergence rate of all methods is independent of the local grid size. A very
representative set of data is given in Table 1 where we present the convergence factor

φk = k

√
‖Du(k) − f ‖∞
‖Du(0) − f ‖∞ for k = 2,4,6,8,10 (3)

and the associated error norm‖u(k) − u‖∞ for all methods and for the cases of 80 and 160 equally
distributed in[0,1] discretization points. It is easily seen thatφk does not depend on the number of grids.

For the rest of the experiments we use 160 equally distributed grid points to discretize the domain
Ω ≡ [0,1].

We start with Fig. 3 where the convergence rate of all relaxers is presented for 2, 4, 5 and 8 subdomains.
We plot the logarithm of the max-norm of the error (on they-axis) of the computed solution at the first 20
iterations versus the iteration number. For 8 subdomainsSPO is the fastest andAVE the second slowest
(not seen in Fig. 3). Nevertheless,AVE is the fastest for 2 and 4 subdomains.NEWandSHO behave in

2 http: //www.cs.purdue.edu/homes/mav/projects/dom_dec_code
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Table 1
The convergence factor and the error for several iterations of seven relaxers in a 4 sub-domain uniform
decomposition using a total of 80 or 160 grid points in[0,1]

2nd iteration 4th iteration 6th iteration 8th iteration 10th iteration

error φk error φk error φk error φk error φk

AVE N = 80 6.27E−1 0.11 4.89E−2 0.33 7.53E−3 0.48 4.56E−3 0.58 4.3E−3 0.64

N = 160 6.24E−1 0.11 4.57E−2 0.33 4.23E−3 0.48 1.25E−3 0.58 1.0E−3 0.64

GEO N = 80 2.74E−0 0.08 8.42E−1 0.32 2.99E−1 0.48 1.06E−1 0.58 3.7E−2 0.64

N = 160 2.74E−0 0.08 8.40E−1 0.32 2.99E−1 0.48 1.06E−1 0.58 3.7E−2 0.64

NEW N = 80 6.10E−0 0.03 7.20E−1 0.33 1.57E−1 0.48 1.97E−1 0.58 1.7E−1 0.64

N = 160 6.10E−0 0.02 7.22E−1 0.33 1.58E−1 0.48 1.08E−1 0.58 7.8E−2 0.64

ROB N = 80 5.43E−0 0.15 3.21E−0 0.36 1.96E−0 0.50 1.23E−0 0.59 7.9E−1 0.64

N = 160 5.45E−0 0.15 3.24E−0 0.36 2.00E−0 0.50 1.27E−0 0.59 8.1E−1 0.64

SCO N = 80 2.09E−0 0.13 4.83E−1 0.34 8.22E−2 0.48 2.04E−2 0.58 1.1E−2 0.64

N = 160 2.09E−0 0.13 4.90E−1 0.34 8.41E−2 0.48 1.49E−2 0.58 3.4E−3 0.64

SHO N = 80 5.40E−0 0.04 3.82E−1 0.33 1.12E−1 0.48 6.96E−2 0.58 4.5E−3 0.64

N = 160 5.40E−0 0.04 3.83E−1 0.33 1.13E−1 0.48 6.79E−2 0.58 3.9E−3 0.64

SPO N = 80 2.31E−0 0.09 3.74E−1 0.33 6.59E−2 0.48 1.25E−2 0.58 2.3E−3 0.64

N = 160 2.31E−0 0.09 3.73E−1 0.33 6.57E−2 0.48 1.26E−2 0.58 2.6E−3 0.64

a similar and rather erratic way. We also plot in Fig. 5 the convergence factorφk (formula (3)) versusk
for 2, 4, 5 and 8 subdomains.AVE clearly diverge for 8 subdomains while the rest of the methods exhibit
the same pattern of convergence.

As it was previously mentioned, we decided to fixγ = 20 for most of our experiments. The main
reason for this choice was the fact that at least two of the methods considered (AVE and SPO) are
expected to behave poorly for small values ofγ . This is due to the fact that during their Neumann sweep,
they both need to solve on the internal subdomains the Helmholtz operator with Neumann boundary
conditions on both end points. In such a case the PDE becomes singular asγ approximates zero. This is
clearly reflected in Fig. 4, where we present the convergence rate data, as in Fig. 3 but now forγ = 1.
Besides the break down ofAVE and SPO for more than two subdomains, it is also seen a general
decrease, relatively to theγ = 20 case, on the rates of convergence.

We believe that the specific convergence pattern might give important information about the
convergence characteristics. To explore this, Fig. 6 shows, for all relaxers and for a uniform
decomposition ofΩ into 4 subdomains, the exact solution and the computed solutions associated with
the first three iterations. Three of the schemes (GEO, SHO andSPO) approach the exact solution in a
monotonic (or nearly so) and smooth way while the rest do not seem to exhibit a specific pattern.

We next examine the convergence history of thetwo step schemesin more detail. The plots associated
with the two-step methods (AVE and SPO) in Fig. 6 correspond to their Dirichlet sweeps. In Fig. 7
we present, in the same way, the history for their Neumann steps as well. We therefore see that some
methods (GEO, SPO) converge in a monotonic and systematic way. This suggests that their convergence
could be accelerated by some extrapolation procedure. Other methods exhibit oscillatory convergence so
averaging might improve the convergence. Still others show no obvious patterns of convergence.
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Fig. 3. Convergence plots for 2 (+), 4 (∗), 5 (×) and 8 (◦) subdomains, forγ = 20. On thex-axis we have the
iteration number and on they-axis the logarithm of the max-norm of the error.
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Fig. 4. Convergence plots for 2 (+), 4 (∗), 5 (×) and 8 (◦) subdomains, forγ = 1. On thex-axis we have the
iteration number and on they-axis the logarithm of the max-norm of the error.
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Fig. 5. The convergence factorφk versus iterations for all methods, for 2 (+), 4 (∗), 5 (×) and 8 (◦) subdomains.
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Fig. 6. Convergence history of the seven relaxers in a 4 subdomain decomposition andγ = 20. The true solution
(solid line) is plotted along with the first (dotted line), second (dot-dashed line), and third (dashed line) computed
solutions.
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Fig. 7. Convergence history of the two-step relaxers,AVE andSPO, during the Neumann sweep.

As it is obviously expected, and already seen in Figs. 3 and 4, the convergence of the interface
relaxation depends on the differential operator. To obtain a preliminary idea about this dependence we
systematically vary the coefficientγ (= 10−3,10−2,10−1,1,10,20,30) in the operator and observe the
convergence for a 4 subdomain uniform partition ofΩ . Our data are presented in Fig. 8 which uses the
same axes as in Fig. 3. Asγ becomes larger there is a general trend for the convergence rate to become
faster (AVE , GEO, NEW, SCO, SHO) or to be nearly unchanged (ROB, SPO). Note thatAVE and
SPOdiverge forγ 6 1 while the data for the rest methods are split in two groups, one forγ = 10,20
and 30 and one forγ = 0.1,0.01 and 0.001 with the case ofγ = 1 in the later group except for theROB
method.

Recall that all the data presented so far correspond to uniform partitions of the interval[0,1]. We next
test the effect of non-uniform partitions by moving the interface point (denoted byip) from 0.2 to 0.4,
0.6 and 0.8. In Fig. 9, where we consider the four different 2 subdomain partitions, we clearly see that
none of the schemes is very is sensitive to this change. Again the axes are as in Fig. 3.

Recall that two (NEW, SHO) of the seven methods are parameter-free. The rest involve parameters
of various kind whose values were selected in a naive and straight forward way for the experiments
described above. In Fig. 10 we systematically vary the values of these parameters and present
convergence plots for the 2 subdomain case with the interface point at 0.8. In those two methods (AVE ,
GEO) with two parameters, their values are made equal in this experiment. Note that for theGEO
method,wL = α ∗ `L andwR = α ∗ `R where`L, `R are the lengths of the left and right subdomain,
respectively, andα takes the values shown on the symbol legend. We see that the parameter choices
have a strong affect on the convergence behavior. The best parameter choices for Fig. 10 are:AVE
(α = β = 0.3), GEO (wL = wR = 0.6), ROB (ρ = 0.9), SCO (θ = 0.5) andSPO(ρ = 0.9). These data
show clearly that there is an important open question for these methods:How does one choose optimal
(or good) parameter values?

Among all the relaxation methods considered in this study onlySCO appears to be sensitive on the
order the various subdomains are processed during the interface relaxation process. We experimented for
SCOas follows: Select a subdomainq as the first for an iteration and then process the others in sequence
(left to right, wrapping around at the right end of the interval). In Table 2 we present the number of
iterations required by this scheme to reduce the norm of the difference of two successive iterants below
10−5 (i.e., ‖u(k+1) − u(k)‖∞ < 10−5) as a function of the starting subdomainq. Specifically, for Table 2
we use a uniform decomposition of 8 subdomains and we start the domain decomposition scheme from
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Fig. 8. The effect of the coefficientγ on the convergence rate of the relaxation schemes with a four subdomain
partition of[0,1]. The legends and the value ofγ are given in the lower right.
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Fig. 9. The convergence of the relaxation schemes for non-uniform 2 subdomain decompositions. The interface
point ip is placed at 0.2 (+), 0.4 (∗), 0.6 (×) and 0.8 (◦).
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Fig. 10. The effect of the parameter selection on the convergence behavior of five relaxation methods forγ = 1.
The legends and parameter values used are given in the lower right, the two parameters ofAVE andGEO are both
set equal to the value shown.
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Fig. 11. The history of convergence of four relaxation methods foru′′ + sin(2πx)u = f (on the left) and
u′′ + cos(2πx)u= f (on the right) in the case of 5 sub-domains of equal size.

Table 2
Number of iterationsk to achieve‖u(k+1) − u(k)‖∞ < 10−5 for
various starting subdomains in theSCOmethod

Starting subdomain 1 2 3 4 5 6 7 8

Number of iterations 48 40 32 24 25 34 40 42

subdomainq = 1,2, . . . ,8. We see that the selection of the starting subdomain significantly affects the
rate of convergence of theSCO interface relaxation method.

Finally, we test if the convergence of the methods depends on the definiteness of the PDE operator.
We decompose the domain uniformly into 5 sub-domains and consider the following two differential
equations,−u′′ + sin(2πx)u= f and−u′′ + cos(2πx)u= f , that do not satisfy the ellipticity condition
and appear (in a 2-dimensional form) in practical applications. Only four methods (GEO, NEW, SCO,
SHO) converge for these indefinite problems. Fig. 11 shows the convergence behavior of these methods
for both problems. We see that the convergence rate is comparable to that seen in Fig. 3. The rest either
diverge or oscillate. Such behavior has been already noticed for some of the methods [10]. We are unable
to formally explain why theSCO convergence stagnates at 10−2. One possibility is that the asymptotic
error constant involved in this method [24] is greatly affected by the particular form of these problems.

We should add that we have implemented most of the relaxation schemes presented above for
2-dimensional problems using Ellpack [29] assuming “skyline” domains (a string of rectangles of
different heights and widths).3 This leads to 1-dimensional decompositions and we performed some
selective experiments, all of these were in good agreement with both the quantitative and qualitative
conclusions we draw from the 1-dimensional experiments presented above. The detailed presentation
of our performance is beyond the scope of this article. Nevertheless, in the right plot of Fig. 12 we
give the history of convergence of theAVE , SCO, and ROB methods for the differential equation
1u−10u= f ∈Ω wheref is selected such thatu(x)= ey(x+4)x(x−1)(x−0.7)y(y−0.5). We assume

3 This Ellpack code is also available from our web page.
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Fig. 12. The history of convergence ofAVE (+ symbols),ROB (∗) andSCO (×) methods for1u− 10u= f (on
the right) assuming the PDE domain and its partition given on the left.

Dirichlet boundary conditions. The PDE domain and its 1-dimensional partition into 4 subdomains
Ω ≡ ⋂4

i=1Ωi is depicted in left plot of Fig. 12. The 5-point star Ellpack discretization module was
used. The similarity of the convergence behavior of the three methods in 1-dimension (Fig. 8) and in
2-dimensions (Fig. 12) is easily observed.

5. Conclusions

We present a wide class of non-overlapping domain decomposition, interface relaxation methods
for elliptic differential equations. A set of experiments are described which explore the convergence
properties of these methods in several directions. The qualitative conclusions are categorized in Fig. 13.
This figure also summarizes the mathematical and computational properties of the methods. It is seen that
the speed of convergence of the interface relaxation methods can be of high, moderate or low, that the
iterates can approach the exact solution monotonically or not, and there can be two, one or no relaxation
parameters to accelerate the convergence. Some single or two step interface relaxation methods use
“history” (the new value on the interface is explicitly set to be the old one plus a correction term), some
do not. It is natural to expect that the rate of convergence of all interface relaxation methods is affected,
to some extend, by certain problem parameters. Some of the most important of these parameters are the
fineness of the mesh or grid discretization of the domains (column “domain discretization” in Fig. 13),
the particular method (finite element, finite difference, etc.) used to discretize the PDE operators (column
“PDE discretization”) and the geometric characteristics (rectangular or not, holes, wide angles, etc.) of
the domains (column “PDE domain”). The theory and the experimental data available to explain all these
cases and phenomena is very limited. In Fig. 13, we present our conclusions about the effect of these
parameters drawn for either the existing theoretical studies or from our preliminary experiments with
various PDE problems.

We start our iterations with a zero initial guess. Nevertheless, we expect that for many problems with
discontinuities or for 2-dimensional problems a more reasonable initial guess will be needed. Such a
guess can be obtained by various approximation methods that extend the boundary conditions into the
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Fig. 13. Categorization of the properties of the seven interface relaxation methods. A blank entry indicates an
“average” evaluation (for numerical properties) or absence of a property. Those evaluations considered to be
positive are given in larger, bolder type.

interior of the domain using either a blending technique [29] or a wavelet approach [16]. In any case,
better initial guesses provide faster solutions and more robust computations.

The principal conclusions of this study are:
(1) There are many interface relaxation methods that seem to have the potential to work effectively.
(2) There is still much to be learned about their behavior and about how to choose among them or to

choose their parameters.

Appendix

In this appendix we give the detailed algorithms for the seven relaxation methods in the 1-dimensional
case.

Algorithm 1. The Dirichlet/Neumann averaging (AVE ) method

gii = βi
du(2k)i

dx

∣∣∣∣
x=xi
+ (1− βi)du

(2k)
i+1

dx

∣∣∣∣
x=xi

, i = 1, . . . , p− 1,
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Algorithm 2. The Geometric (GEO) contraction based method
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Algorithm 3. The Newton’s (NEW) method
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Algorithm 4. The Robin relaxation (ROB) method
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Algorithm 5. The Schur complement (SCO) method
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Algorithm 6. The Shooting (SHO) method
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Algorithm 7. The Steklov–Poincaré operator (SPO) method
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