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the inverse image or preimage of  A under f 

a divides b 
the greatest common divisor of a, b 

also the ideal generated by a, b 

the order of the set A, the order of the element x 
the integers, the positive integers 

the rational numbers, the positive rational numbers 

the real numbers, the positive real numbers 

the complex numbers, the nonzero complex numbers 

the integers modulo n 
the (multiplicative group of) invertible integers modulo n 
the direct or Cartesian product of A and B 
H is a subgroup of G 
the cyclic group of order n 
the dihedral group of order 2n 
the symmetric group on n letters, and on the set Q 
the alternating group on n letters 
the quaternion group of order 8 
the Klein 4-group 

the finite field of N elements 

the general linear groups 

the special linear group 

A is isomorphic to B 
the centralizer, and normalizer in G of A 
the center of the group G 
the stabilizer in the group G of s 
the group generated by the set A, and by the element x 
generators and relations (a presentation) for G 
the kernel, and the image of the homomorphism fP 
N is a normal subgroup of G 
the left coset, and right coset of H with coset representative g 
the index of the subgroup H in the group G 
the automorphism group of the group G 
the set of Sylow p-subgroups of G 
the number of Sylow p-subgroups of G 
the commutator of x, y 
the semidirect product of H and K 
the real Hamilton Quaternions 

the multiplicative group of units of the ring R 
polynomials in x, and in xr, .. . , Xn with coefficients in R 
the group ring of the group G over the ring R, and over the field F 
the ring of integers in the number field K 
the direct, and the inverse limit of the family of groups A; 
the p-adic integers, and the p-adic rationals 
the direct sum of A and B 
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the leading term of the polynomial f, the ideal of leading terms 
the 17 x 17, and the 17 x m matrices over R 
the matrix of the linear transformation rp 

with respect to bases l3 (domain) and£ (range) 
the trace of the matrix A 
the R-module homomorphisms from A to B 
the endomorphism ring of the module M 
the torsion submodule of M 
the annihilator of the module M 
the tensor product of modules M and N over R 
the kth tensor power, and the tensor algebra of M 
the kth symmetric power, and the symmetric algebra of M 
the kth exterior power, and the exterior algebra of M 
the minimal, and characteristic polynomial of T 
the characteristic of the field F 
the field K is an extension of the field F 
the degree of the field extension KIF 
the field generated over F by a or a, {3, etc. 
the minimal polynomal of a over the field F 
the group of automorphisms of a field K 
the group of automorphisms of a field K fixing the field F 
the Galois group of the extension KIF 
affine 17-space 
the coordinate ring of A", and of the affine algebraic set V 
the locus or zero set of I, the locus of an element f 
the ideal of functions that vanish on A 
the radical of the ideal I 
the associated primes for the module M 
the support of the module M 
the ring of fractions Oocalization) of R with respect to D 
the localization of R at the prime ideal P, and at the element f 
the local ring, and the tangent space of the variety V at the point v 
the unique maximal ideal of Ov, v 

the prime spectrum, and the maximal spectrum of R 
the structure sheaf of X = Spec R 
the ring of sections on an open set U in Spec R 
the stalk of the structure sheaf at P 
the Jacobson radical of the ring R 
the 17th cohomology group derived from HomR 
the 17th cohomology group derived from the tensor product over R 
the fixed points of G acting on the G-module A 
the 17th cohomology group of G with coefficients in A 
the restriction, and corestriction maps on cohomology 
the stability group of the series l � A � G 
the norm of the character e 
the character of the representation 1/f induced from H to G 
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Preface to the Third Edition 

The principal change from the second edition i s  the addition of Grobner bases to this 
edition. The basic theory is introduced in a new Section 9.6. Applications to solving 
systems of polynomial equations (elimination theory) appear at the end of this section, 
rounding it out as a self-contained foundation in the topic. Additional applications and 
examples are then woven into the treatment of affine algebraic sets and k-algebra homo
morphisms in Chapter 15. Although the theory in the latter chapter remains independent 
of Grobner bases, the new applications, examples and computational techniques sig
nificantly enhance the development, and we recommend that Section 9.6 be read either 
as a segue to or in parallel with Chapter 15 .  A wealth of exercises involving Grobner 
bases, both computational and theoretical in nature, have been added in Section 9.6 
and Chapter 15 .  Preliminary exercises on Grobner bases can (and should, as an aid to 
understanding the algorithms) be done by hand, but more extensive computations, and 
in particular most of the use of Grobner bases in the exercises in Chapter 15, will likely 
require computer assisted computation. 

Other changes include a streamlining of the classification of simple groups of order 
168 (Section 6.2), with the addition of a uniqueness proof via the projective plane of 
order 2. Some other proofs or portions of the text have been revised slightly. A number 
of new exercises have been added throughout the book, primarily at the ends of sections 
in order to preserve as much as possible the numbering schemes of earlier editions. 
In particular, exercises have been added on free modules over noncommutative rings 
( 10.3), on Krull dimension (15 .3), and on flat modules ( 10.5 and 17.1). 

As with previous editions, the text contains substantially more than can normally 
be covered in a one year course. A basic introductory (one year) course should probably 
include Part I up through Section 5.3, Part II through Section 9.5, Sections 10. 1 , 10.2, 
1 0.3, 1 1. 1 ,  11.2 and Part IV. Chapter 12 should also be covered, either before or after 
Part IV. Additional topics from Chapters 5, 6, 9, 1 0  and 1 1  may be interspersed in such 
a course, or covered at the end as time permits. 

Sections 10.4 and 10.5 are at a slightly higher level of difficulty than the initial 
sections of Chapter 10, and can be deferred on a first reading for those following the text 
sequentially. The latter section on properties of exact sequences, although quite long, 
maintains coherence through a parallel treatment of three basic functors in respective 
subsections. 

Beyond the core material, the third edition provides significant flexibility for stu
dents and instructors wishing to pursue a number of important areas of modem algebra, 

xi 



either in the form of independent study or courses. For example, well integrated one
semester courses for students with some prior algebra background might include the 

following: Section 9.6 and Chapters 15 and 16; or Chapters 10 and 17; or Chapters 5, 
6 and Part VI. Each of these would also provide a solid background for a follow-up 
course delving more deeply into one of many possible areas: algebraic number theory, 

algebraic topology, algebraic geometry, representation theory, Lie groups, etc. 

The choice of new material and the style for developing and integrating it into the 
text are in consonance with a basic theme in the book: the power and beauty that accrues 

from a rich interplay between different areas of mathematics. The emphasis throughout 
has been to motivate the introduction and development of important algebraic concepts 

using as many examples as possible. We have not attempted to be encyclopedic, but 
have tried to touch on many of the centra] themes in elementary algebra in a manner 

suggesting the very natural development of these ideas. 
A number of important ideas and results appear in the exercises. This is not because 

they are not significant, rather because they did not fit easily into the flow of the text 
but were too important to leave out entirely. Sequences of exercises on one topic 
are prefaced with some remarks and are structured so that they may be read without 

actually doing the exercises. In some instances, new material is introduced first in 
the exercises--often a few sections before it appears in the text-so that students may 

obtain an easier introduction to it by doing these exercises (e.g., Lagrange's Theorem 
appears in the exercises in Section 1.7 and in the text in Section 3.2). All the exercises 
are within the scope of the text and hints are given [in brackets] where we felt they were 
needed. Exercises we felt might be less straightforward are usually phrased so as to 

provide the answer to the exercise; as well many exercises have been broken down into 
a sequence of more routine exercises in order to make them more accessible. 

We have also purposely minimized the functorial language in the text in order to 

keep the presentation as elementary as possible. We have refrained from providing 

specific references for additional reading when there are many fine choices readily 
available. Also, while we have endeavored to include as many fundamental topics as 

possible, we apologize if for reasons of space or personal taste we have neglected any 
of the reader's particular favorites. 

We are deeply grateful to and would like here to thank the many students and 
colleagues around the world who, over more than 15 years, have offered valuable 

comments, insights and encouragement-their continuing support and interest have 
motivated our writing of this third edition. 

xii 

David Dummit 

Richard Foote 

June,2003 
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Pre l i m i naries 

Some results and notation that are used throughout the text are collected in this chapter 
for convenience. Students may wish to review this chapter quickly at first and then read 
each section more carefully again as the concepts appear in the course of the text. 

0.1 BASICS 

The basics of set theory: sets, n, U, E, etc. should be familiar to the reader. Our 
notation for subsets of a given set A will be 

B = {a E A I . . .  (conditions on a) . . . } .  

The order or cardinality of a set A will be denoted by lA I .  If  A i s  a finite set the order 
of A is simply the number of elements of A. 

It is important to understand how to test whether a particular x E A lies in  a subset 
B of A (cf. Exercises 1-4). The Cartesian product of two sets A and B is the collection 
A x  B = { (a , b) I a E A, b E  B}, of ordered pairs of elements from A and B. 

We shall use the following notation for some common sets of numbers: 
(1) Z = {0, ±1, ±2, ±3, . . .  } denotes the integers (the Z is for the German word for 

numbers: "Zahlen"). 
(2) Ql = {afb I a , b E Z, b =f:. 0} denotes the rational numbers (or rationals). 
(3) IR = { all decimal expansions ± d1d2 . . . dn .a1a2a3 . . .  } denotes the real numbers 

(or reals). 
(4) CC = {a + bi I a , b E IR, i2 = -1 } denotes the complex numbers. 
(5) z+, Q+ and JR+ will denote the positive (nonzero) elements in Z, Ql and IR, respec

tively. 

We shall use the notation f : A -+ B or A � B to denote a function f from A 
to B and the value off at a is denoted f(a) (i.e., we shall apply all our functions on 
the left). We use the words function and map interchangeably. The set A is called the 
domain off and B is called the codomain off. The notation f : a H- b or a H- b iff 
is understood indicates that f(a) = b, i.e., the function is being specified on elements. 

If the function f is not specified on elements it is important in general to check 
that f is well defined, i.e., is unambiguously determined. For example, if the set A 
is the union of two subsets A1 and A2 then one can try to specify a function from A 
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to the set (0, 1} by declaring that f is to map everything in A 1 to 0 and is to map 

everything in A2 to L This unambiguously defines f unless At and A2 have elements 
in common (in which case it is not clear whether these elements should map to 0 or to 

1 ). Checking that this f is well defined therefore amounts to checking that At  and A2 
have no intersection. 

The set 

f(A) = (b E B I b = f(a) , for some a E A}  
is a subset of B, called the range or image of f (or the image of A under f). For each 

subset C of B the set 
f-1 (C) = {a E A I f(a) E C} 

consisting of the elements of  A mapping into C under f is called the pre image or inverse 
image of C under f. For each b E B, the preimage of {b} under f is called the .fiber of 

f over b. Note that f-1 is not in general a function and that the fibers off generally 
contain many elements since there may be many elements of A mapping to the element 

b. 
If f : A -+ B and g : B -+ C, then the composite map g o f : A -+ C is defined 

by 
(g o f) (a) = g(f(a)) . 

Let f :  A -+  B. 
(1) f is injective or is an injection if whenever a1 I a2, then f(at) I f(a2) . 
(2) f is surjective or is a surjection if for all b E B there is some a E A such that 

f(a) = b, i.e., the image off is all of B. Note that since a function always maps 
onto its range (by definition) it is necessary to specify the codomain B in order for 

the question of swjectivity to be meaningful. 

(3) f is bijective or is a bijection if it is both injective and swjective. If such a bijection 
f exists from A to B, we say A and Bare in bijective correspondence. 

(4) f has a left inverse if there is a function g : B -+ A such that g o f : A -+ A is 

the identity map on A, i.e., (go f)(a) = a, for all a E A. 
(5) f has a right inverse if there is a function h : B -+ A such that f o h : B -+ B is 

the identity map on B. 

Proposition 1. Let f : A -+ B. 

(1) The map f is injective if and only if f  has a left inverse. 

(2) The map f is surjective if and only if f has a right inverse. 

(3) The map f is a bijection if and only if there exists g : B -+ A such that f o g 
is the identity map on B and g o f is the identity map on A.  

(4) I f  A and B are finite sets with the same number o f  elements (i.e., !A I = IBI), 

then f : A -+ B is bijective if and only if f is injective if and only if f is 

surjective. 

Proof: Exercise. 

In the situation of part (3) of the proposition above the map g is necessarily unique 

and we shall say g is the 2-sided inverse (or simply the inverse) of f. 
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A permutation of a set A is simply a bijection from A to itself. 
If A s; Band f : B---+ C, we denote the restriction of f to A by !lA· When the 

domain we are considering is understood we shall occasionally denote f lA again simply 
as f even though these are formally different functions (their domains are different). 

If A s; B and g : A ---+ C and there is a function f : B ---+ C such that !lA = g, 
we shall say f is an extension of g to B (such a map f need not exist nor be unique). 

Let A be a nonempty set. 
(1) A binary relation on a set A is a subset R of Ax A and we write a"' b if(a , b) E R. 
(2) The relation "' on A is said to be: 

(a) reflexive if a "'a, for all a E A, 
(b) symmetric if a "'b implies b ""'a for all a, b E A, 
(c) transitive if a "' b and b ""' c implies a ""' c for all a ,  b, c E A. 
A relation is an equivalence relation if it is reflexive, symmetric and transitive. 

(3) If "' defines an equivalence relation on A, then the equivalence class of a E A is 
defined to be {x E A I x "' a} .  Elements of the equivalence class of a are said 
to be equivalent to a. If C is an equivalence class, any element of C is called a 
representative of the class C. 

(4) A partition of A is any collection {A; I i E I} of nonempty subsets of A (I some 
indexing set) such that 
(a) A= U;eJA;, and 
(b) A; n Ai = 0, for all i ,  j E I with i '# j 

i.e., A is the disjoint union of the sets in the partition. 

The notions of an equivalence relation on A and a partition of A are the same: 

Proposition 2. Let A be a nonempty set. 
(1) If""' defines an equivalence relation on A then the set of equivalence classes of 

""' form a partition of A. 
(2) If {A; I i E I} is a partition of A then there is an equivalence relation on A 

whose equivalence classes are precisely the sets A;, i E I. 

Proof: Omitted. 

Finally, we shall assume the reader is familiar with proofs by induction. 

E X E R C I S E S  

In Exercises 1 to 4 let A be the set of 2 x 2 matrices with real number entries. Recall that 
matrix multiplication is defined by 

(: :) ( � �) = ( �;! :� �=! ::) 
Let 

M
= (� D 
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and let 
B ={X E A I MX = XM}. 

1. Determine which of the following elements of A lie in B: 

2. Prove that if P, Q E B, then P+ Q E B(where +denotes the usual sum of two matrices). 

3. Prove that if P, Q E B, then P · Q E B (where· denotes the usual product of two matrices). 

4. Find conditions on p, q, r, s which determine precisely when ( � ; ) E B. 

5. Determine whether the following functions f are well defined : 
(a) f : Q-+ Z defined by f(ajb) =a. 
(b) f: Q-+ Qdefined by f(afb) =a2jb2• 

6. Determine whether the function f : JR.+ -+ Z defined by mapping a real number r to the 
first digit to the right of the decimal point in a decimal expansion of r is well defined . 

7. Let f : A -+ B be a surjective map of sets. Prove that the relation 

a � b if and only if j(a) = f(b) 

is an equivalence relation whose equivalence classes are the fibers of f. 

0.2 PROPERTI ES OF TH E INTEGERS 

The following properties of the integers Z (many familiar from elementary arithmetic) 
will be proved in a more general context in the ring theory of Chapter 8, but it will 
be necessary to use them in Part I (of course, none of the ring theory proofs of these 
properties will rely on the group theory) . 
(1) (Well Ordering of Z) If A is any non empty subset of z+, there is some element 

m E A such that m ::=:: a, for all a E A (m is called a minimal element of A). 
(2) If a ,  b E Z with a =I 0, we say a divides b if there is an element c E Z such that 

b = ac. In this case we write a I b; if a does not divide b we write a f b. 

(3) If a ,  bE Z- {0}, there is a unique positive integer d, called the greatest common 
divisor of a and b (or g.c.d. of a and b), satisfying: 

(a) d I a and d I b (so d is a common divisor of a and b), and 
(b) if e I a and e I b, then e I d (sod is the greatest such divisor). 
The g.c.d. of a and b will be denoted by (a , b). If (a, b)= 1, we say that a and b 

are relatively prime. 
(4) If a ,  b E Z - {0}, there is a unique positive integer l, called the least common 

multiple of a and b (or l.c.m. of a and b), satisfying: 
(a) a 11 and b 11 (sol is a common multiple of a and b), and 
(b) if a I m and b 1 m, then I I m (so I is the least such multiple). 
The connection between the greatest common divisor d and the least common 
multiple l of two integers a and b is given by dl = ab. 

(5) The Division Algorithm: if a,  b E Z - {0}, then there exist unique q, r E Z such 
that 

a =  qb + r and 0 ::=:: r < lbl, 
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where q is the quotient and r the remainder. This is the usual "long division" 
familiar from elementary arithmetic. 

(6) The Euclidean Algorithm is an important procedure which produces a greatest 
common divisor of two integers a and b by iterating the Division Algorithm: if 
a, b E  Z - {0}, then we obtain a sequence of quotients and remainders 

a =  qob + ro 
b = q1 ro + r1 
ro = q2r1 + r2 
r1 = q3r2 + r3 

rn-2 = Qnrn- l + rn 
rn-1 = Qn+l rn 

(0) 
( 1 )  

(2) 
(3) 

(n) 
(n+l) 

where rn is the last nonzero remainder. Such an rn exists since lbl > lro l > l r1 l > 

· · · > lrn I is a decreasing sequence of strictly positive integers if the remainders 
are nonzero and such a sequence cannot continue indefinitely. Then rn is the g.c.d. 
(a , b) of a and b. 

Example 

Suppose a = 57970 and b = 10353. Then applying the Euclidean Algorithm we obtain : 

57970 = (5)10353 + 6205 

10353 = (1)6205 + 4148 

6205 = (1)4148 + 2057 

4148 = (2)2057 + 34 

2057 = (60)34 + 17 

34 = (2)17 

which shows that (57970, 10353) = 17. 

(7) One consequence of the Euclidean Algorithm which we shall use regularly is the 
following: if a ,  b E Z - {0}, then there exist x, y E Z such that 

(a ,  b) = ax + by 

that is, the g. c. d. of a and b is a Z-linear combination of a and b. This follows 
by recursively writing the element rn in the Euclidean Algorithm in terms of the 
previous remainders(namely, use equation (n) above to solve for rn = rn_2 -qnrn-l 
in terms of the remainders rn-l and rn-2. then use equation (n- 1) to write rn in 
terms of the remainders rn-2 and rn-3• etc., eventually writing rn in terms of a and 
b). 
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Example 
Suppose a= 57970 andb = 10353, whose greatest common divisorwe computed above to 
be 17. From the fifth equation (the next to last equation ) in the Euclidean Algorithm applied 
to these two integers we solve for their greatest common divisor: 17 = 2057 - (60)34. 
The fourth equation then shows that 34 = 4148 - (2)2057, so substituting this expression 
for the previous remainder 34 gives the equation 17 = 2057- (60)[4148- (2)2057], i.e. , 
17 = (121)2057- (60)4148. Solving the third equation for 2057 and substituting gives 
17 = (121)[6205- (1)4148]- (60)4148 = (121)6205- (181)4148. Using the second 
equation to solve for 4148 and then the first equation to solve for 6205 we finally obtain 

17 = (302)57970- (169 1)10353 

as can easily be checked directly. Hence the equation ax + by = (a, b) for the greatest 
common divisor of a and bin this example has the solution x = 302 and y = -169 1 .  Note 
that it is relatively unlikely that this relation would have been found simply by guessing. 

The integers x and y in (7) above are not unique. In the example w ith a = 57970 
and b = 1 0353 we determined o ne solution to be x = 302 and y = - 1 691 ,  for 
i nstance, and it is relatively simple to check that x = -307 and y = 1719 also 
satisfy 57970x + 1 0353y = 17.  The general solutio n for x and y is known (c f. the 
exer cises below and i n  Chapter 8). 

(8) An element p of z+ is called a prime if p > 1 and the o nly positive divisors of p are 
1 and p (initially, the word prime will refer only to positive integers). An integer 
n > 1 which is not prime is called composite. For example, 2,3,5,7, 1 1 , 1 3,17, 19, . . .  
are p rimes and 4,6,8,9, 1 0, 1 2, 1 4, 15 , 16, 1 8, ... are composite. 
An important property of primes (which in fact can be used to define the primes 
(cf. Exercise 3)) is the following: if p is a prime and p I ab, for some a, b E Z, 
the n either p I a or p I b. 

(9) The Fundamental Theorem of Arithmetic says : if n E Z, n > 1 ,  the n n can 
be factored uniquely into the product of primes, i.e., there are distinct primes 

6 

P1, P2 • . . .  , Ps and positive integers a1, a2, ... , as such that 

n = prJ p�2 ... p�'. 

This factorizatio n is unique in the sense that if q1 , q2, ... , q1 are any disti nct primes 
and fh, fh, . . . , {31 positive integers such that 

/31 /32 {3, n = ql q2 · · .qt • 

the n s = t and if we arrange the two sets of primes in increasing order, the n q; = p; 
and a; = {3;, 1 ::::: i::::: s .  For example, n = 1 852423848 = 2332 1 12 1933 1  and this 
decomposition into the product of primes is unique. 

Suppose the positive integers a and bare expressed as products of prime powers : 

a = p�l p�2 ... p�s' b = pfl p� ... pfs 

where p1, P2 • . . .  , Ps are disti nct and the exponentsare � O (we allow the expone nts 
to be 0 here so that the products are take n over the same set of primes - the expo nent 
will be 0 if that prime is not ac tually a div isor) . The n the greatest common divisor 
of a and b is 
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(and the least common multiple is obtained by instead taking the maximum of the 
ai and fh instead of the minimum). 

Example 

In the example above, a = 57970 and b = I 0353 can be factored as a = 2 · 5 · II · I7 · 3I 
and b = 3 · 7 · I7- 29, from which we can immediately conclude that their greatest common 
divisor is 17. Note, however, that for large integers it is extremely difficult to determine 
their prime factorizations (several common codes in current use are based on this difficulty, 
in fact), so that this is not an effective method to determine greatest common divisors in 
general. The Euclidean Algorithm will produce greatest common divisors quite rapidly 
without the need for the prime factorization of a and b. 

(10) The Euler rp-function is defined as follows: for n e z+ let rp(n) be the number of 
positive integers a _::::: n with a relatively prime to n, i.e., (a ,  n) = 1. For example, 
rp(12) = 4 since 1 ,  5, 7 and 1 1  are the only positive integers less than or equal 
to 12 which have no factors in common with 12. Similarly, rp( l) = 1, rp(2) = 1 ,  
rp (3) = 2, rp(4) = 2 ,  rp(S) = 4 ,  rp(6) = 2, etc. For primes p,  rp(p) = p- 1,  and, 
more generally, for all a =::: 1 we have the formula 

rp(pa) = pa _pa-l 
= pa-l (p _ 1) . 

The function rp is multiplicative in the sense that 

rp(ab) = rp(a)rp(b) if (a , b) = 1 
(note that it is important here that a and b be relatively prime). Together with the for
mula above this gives a general formula for the values of rp : if n = p�1 p�2 . . .  p�s, 
then 

rp(n) = rp(p�I)rp(p�2) . . .  rp(p�s) 
= P�1-1 (PI - 1)p�2-1 (pz - 1) . . .  p�s-l (Ps - 1). 

For example, rp(12) = rp(22)rp (3) = 21 (2 - 1)3°(3 - 1)  = 4. The reader should 
note that we shall use the letter rp for many different functions throughout the text 
so when we want this letter to denote Euler's function we shall be careful to indicate 
this explicitly. 

E X E R C I S E S 

l. For each of the following pairs of integers a and b, determine their greatest common 
divisor, their least common multiple, and write their greatest common divisor in the form 
ax + by for some integers x and y. 
(a) a = 20, b = 13. 
(b) a= 69, b = 372. 
(c) a = 792, b = 275. 
(d) a = Il39I, b = 5673. 
(e) a= I76I, b = I567. 
(f) a = 507885, b = 60808. 

2. Prove that if the integer k divides the integers a and b then k divides as + bt for every pair 
of integers s and t. 
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3. Prove that if n is composite then there are integers a and b such that n divides ab but n 
does not divide either a or b. 

4. Let a, b and N be fixed integers with a and b nonzero and let d = (a, b) be the greatest 
common divisor of a and b. Suppose xo and YO are particular solutions to ax + by = N 
(i.e., axo + byo = N). Prove for any integer t that the integers 

b a 
X = XO + dt and y = YO - d' 

are also solutions to ax + by = N (this is in fact the general solution). 

5. Determine the value ({l(n) for each integer n :::: 30 where ({I denotes the Euler ({!-function. 

6. Prove the Well Ordering Property of Z by induction and prove the minimal element is 
unique. 

7. If p is a prime prove that there do not exist nonzero integers a and b such that a2 = pb2 

(i.e., �is not a rational number). 

8. Let p be a prime, n E z+. Find a formula for the largest power of p which divides 
n! = n(n - l) (n - 2 )  . . .  2 · 1 ( it involves the greatest integer function). 

9. Write a computer program to determine the greatest common divisor (a, b) of two integers 
a and b and to express (a, b) in the form ax + by for some integers x and y. 

10. Prove for any given positive integer N there exist only finitely many integers n with 
({l(n) = N where ({I denotes Euler's ({!-function. Conclude in particular that ({l(n) tends to 
infinity as n tends to infinity. 

11. Prove that if d divides n then ({!(d) divides ({l(n) where ({I denotes Euler's ({!-function. 

0.3 Zjn Z: THE I NTEGERS MODULO n 
Let n be a fixed positive integer. Define a relation on Z by 

a '"'"'b if and only if n I (b- a). 
Clearly a "' a, and a '"'"' b implies b ""' a for any integers a and b, so this 

relation is trivially reflexive and symmetric. If a ""' b and b '"'"' c then n divides a - b 
and n divides b - c so n also divides the sum of these two integers, i.e., n divides 
(a -b) + (b-c) = a - c, so a '"'"' c and the relation is transitive. Hence this is an 
equivalence relation. Write a = b (mod n) (read: a is congruent to b mod n) if a '"'"'b. 
For any k E Z we shall denote the equivalence class of a by a - this is called the 
congruence class or residue class of a mod n and consists of the integers which differ 
from a by an integral multiple of n, i.e., 

a = {a + kn I k E Z} 

= {a , a ±  n, a ±  2n, a ±  3n, . . .  }. 

There are precisely n distinct equivalence classes mod n, namely 

0, 1, 2, . . . , n - 1 

determined by the possible remainders after division by n and these residue classes 
partition the integers Z. The set of equivalence classes under this equivalence relation 
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will be denoted by ZjnZ and called the integers modulo n (or the integers mod n). 
The motivation for this notation will become clearer when we discuss quotient groups 
and quotient rings. Note that for different n's the equivalence relation and equivalence 
classes are different so we shall always be careful to fix n first before using the bar 
notation. The process of finding the equivalence class mod n of some integer a is often 
referred to as reducing a mod n .  This terminology also frequently refers to finding the 
smallest nonnegative integer congruent to a mod n (the least residue of a mod n ). 

We can define an addition and a multiplication for the elements of ZjnZ, defining 
modular arithmetic as follows: for ii, b E Z/ nZ, define their sum and product by 

and ii · b = ab. 
What this means is the following: given any two elements ii and b in Z/ nZ, to compute 
their sum (respectively, their product) take any representative integer a in the class 
ii and any representative integer b in the class b and add (respectively, multiply) the 
integers a and b as usual in Z and then take the equivalence class containing the result. 
The following Theorem 3 asserts that this is well defined, i.e., does not depend on the 
choice of representatives taken for the elements ii and b of ZjnZ. 

Example 

Suppose n = 12 and consider Z/12Z, which consists of the twelve residue classes 

o, 1,2, ... . IT 
determined by the twelve possible remainders of an integer after division by 12. The 
elements in the residue class 5, for example, are the integers which leave a remainder of 5 
when divided by 12 (the integers congruent to 5 mod 12). Any integer congruent to 5 mod 
12 (such as 5, 17, 29, ... or -7, -19, ... ) will serve as a representative for the residue class 
5. Note that Z/12Z consists of the twelve elements above (and each of these elements of 

Z / 12Z consists of an infinite number of usual integers). 

Suppose now that ii = 5 and b = 8. The most obvious representative for ii is the integer 
5 and similarly 8 is the most obvious representative for b. Using these representatives for 
the residue classes we obtain 5 + 8 = 13 = I since 13  and 1 lie in the same class modulo 
n = 12. Had we instead taken the representative 17, say, for ii (note that 5 and 17 do lie in 
the same residue class modulo 12) and the representative -28, say, forb, we would obtain 

5 + 8 = (17 - 28) = - 1 1  = I and as we mentioned the result does not depend on the 
choice ofrepresentatives chosen. The productofthese two classes isii·

b = 5 · 8 = 40 = 4, 
also independent of the representatives chosen. 

Theorem 3. The operations of addition and multiplication on ZjnZ defined above 
are both well defined, that is, they do not depend on the choices of representatives for 

the classes involved. More precisely, if a1 , a2 E Z and b1 , b2 E Z with a1 = b1 and 

a2 = b2, then a, + a2 = b, + b2 and a1a2 = b1b2 , i.e. , if 

a1 = b1 (mod n) and a2 = b2 (mod n) 
then 
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Proof: Suppose a1 = b1 (mod n ), i.e., a1 -b1 is divisible by n. Then a1 = b1 + sn 
for some integers. Similarly, a2 = b2 (mod n) means a2 = b2 + tn for some integer t. 
Thena1 +a2 = (b1 + h2)+ (s+ t)n sothata1 +a2 = ht + b2 (mod n), which shows that 
the sum of the residue classes is independent of the representatives chosen. Similarly, 
a1a2 = (bt+sn)(�+tn) = btb2+(ht t+ b2s+stn)n shows thatata2 = b1b2 (mod n) 
and so the product of the residue classes is also independent of the representatives 
chosen, completing the proof. 

We shall see later that the process of adding equivalence classes by adding their 
representatives is a special case of a more general construction (the construction of 
a quotient). This notion of adding equivalence classes is already a familiar one in 
the context of adding rational numbers: each rational number a j b is really a class of 
expressions: ajb = 2aj2b = -3aj- 3b etc. and we often change representatives 
(for instance, take common denominators) in order to add two fractions (for example 
1 /2 + 1/3 is computed by taking instead the equivalent representatives 3/6 for 1 /2 
and 2/6 for 1/3 to obtain 1 /2 + 1/3 = 3j6 + 2/6 = 5/6). The notion of modular 
arithmetic is also familiar: to find the hour of day after adding or subtracting some 
number of hours we reduce mod 12 and find the least residue. 

It is important to be able to think of the equivalence classes of some equivalence 
relation as e lements which can be manipulated (as we do, for example, with fractions) 
rather than as sets. Consistent with this attitude, we shall frequently denote the elements 
of 'll/ n'll simply by {0, 1 ,  ... , n -1} where addition and multiplication are reduced mod 
n. It is important to remember, however, that the elements of 'llf n'll are not integers, but 
rather collections of usual integers, and the arithmetic is quite different. For example, 
5 + 8 is not 1 in the integers 7l as it was in the example of 7l/ 127l above. 

The fact that one can define arithmetic in 'lljn'll has many important applications 
in elementary number theory. As one simple example we compute the last two digits in 
the number 21000• First observe that the last two digits give the remainder of21000 after 
we divide by 100 so we are interested in the residue class mod 100 containing 21000. 
We compute 210 = 1024 = 24 (mod 100), so then 220 = (210)2 = 242 = 576 = 76 
(mod 100) . Then 240 = (220)2 = 762 = 5776 = 76 (mod 100) .  Similarly 280 = 
21 60 = 2320 = 2640 = 76 (mod 100). Finally, 21000 = 26402320240 = 76 . 76 . 76 = 76 
(mod 100) so the final two digits are 76. 

An important subset of 'llj n'll consists of the collection of residue classes which 
have a multiplicative inverse in 'll/ n'll: 

('lljn'll)x = {a E 'llfn'lll there exists c E 'll/n'll with a · c = l}. 

Some of the following exercises outline a proof that ('lljn'll)x is also the collection 
of residue classes whose representatives are relatively prime to n, which proves the 
following proposition. 

Proposition 4. ('lljn'll)x = {a E 'llfn'lll (a, n) = 1}. 

It is easy to see that if any representative of a is relatively prime to n then all 
representatives are relatively prime to n so that the set on the right in the proposition is 
well defined. 
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Example 

For n = 9 we obtain (7Lj9u'Y = (f, 2, 4, 5, 7, 8) from the proposition. The multiplicative 
inverses of these elements are {I, 5, 7, 2, 4, 8}, respectively. 

If a is an integer relatively prime to n then the Euclidean Algorithm produces integers 
x and y satisfying ax + ny = 1, hence ax = 1 (mod n), so that .X is the multiplicative 
inverse of ii in Z/ nZ. This gives an efficient method for computing multiplicative 
inverses in ZjnZ. 

Example 

Suppose n = 60 and a = 17 .  Applying the Euclidean Algorithm we obtain 

60 = (3)17+9 
17= (1 )9+8 
9 = (1)8 + 1 

so that a and n are relatively prime, and (-7) 17 + (2)60 = 1. Hence -7 = 53 is the 
multiplicative inverse of 17 in 7Lj607L. 

E X E R C I S E S  

1. Write down explicitly all the elements in the residue classes of Z/187L. 
2. Prove that the distinct equivalence classes in Zj n'lL are precisely 0, i, 2, ... , n - 1 ( use 

the Division Algorithm). 

3. Prove that if a = a,. 10n + a11-tl0n-t + · · · +arlO+ ao is any positive integer then 
a = a,. + an-1 + · · · + a1 + ao (mod 9) (note that this is the usual arithmetic rule that 
the remainder after division by 9 is the same as the sum of the decimal digits mod 9 - in 
particular an integer is divisible by 9 if and only if the sum of its digits is divisible by 9) 
[note that 10 = 1 (mod 9)]. 

4. Compute the remainder when 37100 is divided by 29. 
5. Compute the last two digits of 9I500. 
6. Prove that the squares of the elements in Z/ 47L are just 0 and I. 
7. Prove for any integers a and b that a2 + b2 never leaves a remainder of 3 when divided by 

4 (use the previous exercise). 

8. Prove that the equation a2 + b2 = 3c2 has no solutions in nonzero integers a, b and c. 
[Consider the equation mod 4 as in the previous two exercises and show that a, b and c 
would all have to be divisible by 2. Then each of a2, b2 and c2 has a factor of 4 and by 
dividing through by 4 show that there would be a smaller set of solutions to the original 
equation. Iterate to reach a contradiction.] 

9. Prove that the square of any odd integer always leaves a remainder of 1 when divided by 
8. 

10. Prove that the number of elements of ('lL/n'lL) x  is cp(n) where cp denotes the Euler cp
function. 

11. Prove that if a, bE (7Ljn7L)x , then a· bE (7Ljn7LY. 
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U. Let n E Z, n > 1 ,  and let a E Z with 1 � a � n .  Prove if a and n are not relatively prime, 
there exists an integer b with 1 � b < n such that ab = 0 (mod n) and deduce that there 
cannot be an integer c such that ac = 1 (mod n) .  

13. Let n E Z, n > 1, and let a E Z with 1 � a � n.  Prove that if a and n are relatively prime 
then there is an integer c such that ac = I (mod n) ;[use the fact that the g.c.d. of two 
integers is a Z-linear combination of the integers] . 

14. Conclude from the previous two exercises that (Z/nZ) x is the set of elements ii of ZfnZ 
with (a , n) = 1 and hence prove Proposition 4. Verify this directly in the case n = 12. 

15. For each of the following pairs of integers a and n,  show that a is relatively prime to n and 
determine the multiplicative inverse of ii in Z/ nZ. 
(a) a = 13, n = 20. 
(b) a = 69, n = 89. 
(c) a = 1891 ,  n = 3797. 
(d) a = 6003722857, n = 77695236973. [The Euclidean Algorithm requires only 3 

steps for these integers.] 
16. Write a computer program to add and multiply mod n, for any n given as input. The output 

of these operations should be the least residues of the sums and products of two integers. 
Also include the feature that if (a , n) = 1 ,  an integer c between 1 and n - 1 such that 
ii · c = 1 may be printed on request. (Your program should not, of course, simply quote 
"mod" functions already built into many systems). 

, 
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Pa rt I 

G RO U P TH EO RY 

The modem treatment of abstract algebra begins with the disarmingly simple abstract 
definition of a group. This simple definition quickly leads to difficult questions involving 
the structure of such objects. There are many specific examples of groups and the power 
of the abstract point of view becomes apparent when results for all of these examples 
are obtained by proving a single result for the abstract group. 

The notion of a group did not simply spring into existence, however, but is rather the 
culmination of a long period of mathematical investigation, the first formal definition 
of an abstract group in the form in which we use it appearing in 1882. 1 The definition 
of an abstract group has its origins in extremely old problems in algebraic equations, 
number theory, and geometry, and arose because very similar techniques were found 
to be applicable in a variety of situations. As Otto Holder (1 859-1937) observed, one 
of the essential characteristics of mathematics is that after applying a certain algorithm 
or method of proof one then considers the scope and limits of the method. As a result, 
properties possessed by a number of interesting objects are frequently abstracted and 
the question raised: can one determine all the objects possessing these properties? 
Attempting to answer such a question also frequently adds considerable understanding 
of the original objects under consideration. It is in this fashion that the definition of an 
abstract group evolved into what is, for us, the starting point of abstract algebra. 

We illustrate with a few of the disparate situations in which the ideas later formalized 
into the notion of an abstract group were used. 

(1) In number theory the very object of study, the set of integers, is an example of a 
group. Consider for example what we refer to as "Euler's Theorem" (cf. Exercise 
22 of Section 3.2), one extremely simple example of which is that a40 has last two 
digits 01 if a is any integer not divisible by 2 nor by 5 .  This was proved in 1761 
by Leonhard Euler (1707-1783) using "group-theoretic" ideas of Joseph Louis 
Lagrange ( 1736-1 8 1 3), long before the first formal definition of a group. From 
our perspective, one now proves "Lagrange's Theorem" (cf. Theorem 8 of Section 
3.2), applying these techniques abstracted to an arbitrary group,.and then recovers 
Euler's Theorem (and many others) as a special case. 
1 For most of the historical comments below, see the excellent book A History of Algebra, by B. L. 

van der Waerden, Springer-Verlag, 1980 and the references there, particularly The Genesis of the Abstract 
Group Concept: A Contribution to the History of the Origin of Abstract Group Theory (translated from 
the German by Abe Shenitzer), by H. Wussing, MIT Press, 1984. See also Number Theory, An Approach 
Through History from Hammurapai to Legendre, by A. Weil, Birkhii.user, 1984. 
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(2) Investigations into the question of rational solutions to algebraic equations of the 
form y2 

= x3 - 2x (there are infinitely many, for example (0, 0) , ( - 1 ,  1) ,  (2, 2) , 
(914, -2118) , ( - 11169, 23912 197)) showed that connecting any two solutions by 
a straight line and computing the intersection of this line with the curve y2 = 

x3 - 2x produces another solution. Such ''Diophantine equations," among others, 
were considered by Pierre de Fermat ( 1 601-1655) (this one was solved by him in 
1644), by Euler, by Lagrange around 1777, and others. In 1730 Euler raised the 

question of determining the indefinite integral J dx I J 1 - x4 of the "lemniscatic 

differential" dx I J 1 - x4, used in determining the arc length along an ellipse (the 
question had also been considered by Gottfried Wilhelm Leibniz ( 1646-17 16) and 
Johannes Bernoulli ( 1667 -17 48) ). In 17 52 Euler proved a "multiplication formula" 
for such elliptic integrals (using ideas of G.C. di Fagnano ( 1682-1766), received 
by Euler in 175 1  ), which shows how two elliptic integrals give rise to a third, 
bringing into existence the theory of elliptic functions in analysis. In 1 834 Carl 
Gustav Jacob Jacobi ( 1 804-1 85 1) observed that the work of Euler on solving certain 
Diophantine equations amounted to writing the multiplication formula for certain 
elliptic integrals. Today the curve above is referred to as an "elliptic curve" and 
these questions are viewed as two different aspects of the same thing - the fact 
that this geometric operation on points can be used to give the set of points on an 
elliptic curve the structure of a group. The study of the "arithmetic" of these groups 
is an active area of current research. 2 

(3) By 1824 it was known that there are formulas giving the roots of quadratic, cubic 
and quartic equations (extending the familiar quadratic formula for the roots of 
ax2 + bx + c = 0). In 1 824, however, Niels Henrik Abel ( 1802-1829) proved 
that such a formula for the roots of a quintic is impossible ( cf. Corollary 40 of 
Section 14.7). The proof is based on the idea of examining what happens when 
the roots are permuted amongst themselves (for example, interchanging two of the 
roots). The collection of such permutations has the structure of a group (called, 
naturally enough, a "permutation group"). This idea culminated in the beautiful 
work of Evariste Galois ( 18 1 1-1 832) in 1 830-32, working with explicit groups 
of "substitutions." Today this work is referred to as Galois Theory (and is the 
subject of the fourth part of this text). Similar explicit groups were being used 
in geometry as collections of geometric transformations (translations, reflections, 
etc.) by Arthur Cayley ( 1 821-1 895) around 1 850, Camille Jordan ( 1838-1922) 
around 1 867, Felix Klein ( 1 849-1925) around 1 870, etc., and the application of 
groups to geometry is still extremely active in current research into the structure of 
3-space, 4-space, etc. The same group arising in the study of the solvability of the 
quintic arises in the study of the rigid motions of an icosahedron in geometry and 
in the study of elliptic functions in analysis. 

The precursors of today's abstract group can be traced back many years, even 
before the groups of "substitutions" of Galois. The formal definition of an abstract 
group which is our starting point appeared in 1 882 in the work of Walter Dyck ( 1 856-
1 934), an assistant to Felix Klein, and also in the work of Heinrich Weber ( 1 842-1913) 

2See The Arithmetic of Elliptic Curves by J. Silvennan. Springer-Verlag, 1986. 
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in the same year. 
It is frequently the case in mathematics research to find specific application of 

an idea before having that idea extracted and presented as an item of interest in its 
own right (for example, Galois used the notion of a "quotient group" implicitly in his 
investigations in 1 830 and the definition of an abstract quotient group is due to HOlder in 
1889). It is important to realize, with or without the historical context, that the reason the 
abstract definitions are made is because it is useful to isolate specific characteristics and 
consider what structure is imposed on an object having these characteristics. The notion 
of the structure of an algebraic object (which is made more precise by the concept of 
an isomorphism - which considers when two apparently different objects are in some 
sense the same) is a major theme which will recur throughout the t�xt. 
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CHAPTER 1 

I ntrod u cti o n  to G ro u ps 

1 .1 BASIC AXIOMS AN D EXAMPLES 

In this section the basic algebraic structure to be studied in Part I is introduced and some 
examples are given. 

Definition. 
(1) A binary operation * on a set G is a function * : G x G ---+ G. For any a, b E G 

we shall write a * b for *(a , b) . 
(2) A binary operation * on a set G is associative if for all a, b, c E G we have 

a • (b • c) = (a • b) • c. 
(3) If * is a binary operation on a set G we say elements a and b of G commute if 

a • b  = b •a .  We say * (or G) is commutative if for all a, b E G, a • b  = b • a. 

Examples 

(1) + (usual addition) is a commutative binary operation on IZ (or on Q, IR, or C respec
tively). 

(2) x (usual multiplication) is a commutative binary operation on IZ (or on Q, IR, or C 
respectively). 

(3) - (usual subtraction) is a noncommutative binary operation on IZ, where -(a,  b) = 
a - b. The map a �---+ -a is not a binary operation (not binary). 

(4) - is not a binary operation on z+ (nor Q+ , JR+) because for a, b E z+ with a < b, 
a - b f}!' z+, that is, - does not map z+ X z+ into z+. 

(5) Taking the vector cross-product of two vectors in 3-space JR3 is a binary operation 
which is not associative and not commutative. 

Suppose that * is a binary operation on a set G and H is a subset of G. If the 
restriction of * to H is a binary operation on H, i.e., for all a, b E H, a * b E H, 
then H is said to be closed under *· Observe that if * is an associative (respectively, 
commutative) binary operation on G and * restricted to some subset H of G is a binary 
operation on H, then * is automatically associative (respectively, commutative) on H 
as well. 

Definition. 
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(1) A group is an ordered pair (G, *) where G is a set and * is a binary operation 
on G satisfying the following axioms: 



(i) (a * b) *  c = a *  (b * c) , for all a ,  b, c E G, i.e., * is associative, 
(ii) there exists an element e in G, called an identity of G, such that for all 

a E G we have a * e  = e * a  = a, 
(iii) for each a E G there is an element a-1 of G, called an inverse of a, 

such that a * a-1 = a-1 * a = e. 
(2) The group ( G, *) is called abelian (or commutative ) if a * b = b * a for all 

a, b E G. 

We shall immediately become less formal and say G is a group under * if (G, *) is 
a group (or just G is a group when the operation * is clear from the context). Also, we 
say G is a finite group if in addition G is a finite set. Note that axiom (ii) ensures that 
a group is always nonempty. 

Examples 

(1) &::, Q, lR and C are groups under + with e = 0 and a- 1 = -a, for all a.  

(2) Q - {0}, lR - {0} , C - {0}, Q+ , JR+ are groups under x with e = 1 and a- 1 = �. 
a 

for all a. Note however that Z - {0} is not a group under x because although x is an 
associative binary operation on Z - {0}, the element 2 (for instance) does not have an 
inverse in Z - {0} . 

We have glossed over the fact that the associative law holds in these familiar ex
amples. For Z under + this is a consequence of the axiom of associativity for addition 
of natural numbers. The associative law for Q under + follows from the associative 
law for Z - a proof of this will be outlined later when we rigorously construct Q from 
Z (cf. Section 7.5).  The associative laws for JR. and, in tum, C under + are proved 
in elementary analysis courses when JR. is constructed by completing Q - ultimately, 
associativity is again a consequence of associativity for Z. The associative axiom for 
multiplication may be established via a similar development, starting first with Z. Since 
JR. and C will be used largely for illustrative purposes and we shall not construct JR. from 
Q (although we shall construct C from JR.) we shall take the associative laws (under + 
and x ) for JR. and C as given. 

Examples (continued) 

(3) The axioms for a vector space V include those axioms which specify that (V, +) is an 
abelian group (the operation + is called vector addition). Thus any vector space such 
as lRn is, in particular, an additive group. 

(4) For n E z+, ZjnZ is an abelian group under the operation + of addition of residue 
classes as described in Chapter 0. We shall prove in Chapter 3 (in a more general 
context) that this binary operation + is well defined and associative; for now we take 

this for granted. The identity in this group is the element 6 and for each ii E ZjnZ, 
the inverse of ii is -a. Henceforth, when we talk about the group ZjnZ it will be 
understood that the group operation is addition of classes mod n. 

(5) For n E z+, the set (ZjnZ)x of equivalence classes ii which have multiplicative 
inverses mod n is an abelian group under multiplication of residue classes as described 
in Chapter 0. Again, we shall take for granted (for the moment) that this operation 

is well defined and associative. The identity of this group is the element 1 and, by 
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'definition of (Z/ nZ) x , each element has a multiplicative inverse. Henceforth, when 
we talk about the group (Z/nZ) x it will be understood that the group operation is 
multiplication of classes mod n. 

(6) If (A , *) and (B,  <>) are groups, we can form a new group A x B, called their direct 
product, whose elements are those in the Cartesian product 

A x B = {(a ,  b) I a E A ,  b E  B )  

and whose operation i s  defined componentwise: 

(at , bt ) (az , bz) = (a t * az ,  b1 <> bz) .  

For example, i f  we take A = B = lR (both operations addition), lR x lR i s  the familiar 
Euclidean plane. The proof that the direct product of two groups is again a group is 
left as a straightforward exercise (later) - the proof that each group axiom holds in 
A x B is a consequence of that axiom holding in both A and B together with the fact 
that the operation in A x B is defined componentwise. 

There should be no confusion between the groups 'lL/n'lL (under addition) and 
('1/., / n'lL) x (under multiplication), even though the latter is a subset of the former - the 
superscript x will always indicate that the operation is multiplication. 

Before continuing with more elaborate examples we prove two basic results which 
in particular enable us to talk about the identity and the inverse of an element. 

Proposition 1. If G is a group under the operation * , then 
(1) the identity of G is unique 
(2) for each a E G, a-1 is uniquely determined 
(3) (a-1 )- 1 = a  for all a E G 
(4) (a * b)-1 = (b- 1 ) * (a- 1 ) 
(5) for any a1 , a2 , • • •  , an E G the value of a1 * az * · · · * an is independent of how 

the expression is bracketed (this is called the generalized associative law). 

Proof" (1 ) If f and g are both identities, then by axiom (ii) of the definition of a 
group f * g = f (take a = f and e = g). By the same axiom f * g = g (take a = g 
and e = f). Thus f = g, and the identity is unique. 

(2) Assume b and c are both inverses of a and let e be the identity of G .  By axiom 
(iii), a *  b = e and c * a  = e. Thus 

= c • (a • b) 
= (c • a) • b  
= e • b 
= b  

(definition of e - axiom (ii)) 

(since e = a * b )  
(associative law) 

(since e = c * a ) 
(axiom (ii)). 

(3) To show (a-1 )- 1 = a  is exactly the problem of showing a is the inverse of a-1 
(since by part (2) a has a unique inverse). Reading the definition of a-1 , with the roles 
of a and a-1 mentally interchanged shows that a satisfies the defining property for the 
inverse of a-1 , hence a is the inverse of a-1 • 
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(4) Let c = (a *  b)-1 so by definition of c, (a * b) * c = e. By the associative law 

a * (b * c) = e. 

Multiply both sides on the left by a-1 to get 

a-1 * (a *  (b * c)) = a-1 * e. 

The associative law on the left hand side and the definition of e on the right give 

(a-1 * a) * (b * c) = a-1 

so 
e * (b * c) = a-1 

hence 

Now multiply both sides on the left by b-1 and simplify similarly: 

b-1 * (b * c) = b-1 * a-1 

(b-1 * b) *  c = b- 1 * a-1 

e * C  = b-l * a-1 

C = b-l * a- 1 ,  

as claimed. 
(5) This is left as a good exercise using induction on n. First show the result is true 

for n = 1 ,  2, and 3. Next assume for any k < n that any bracketing of a product of k 
elements, b1 * b2 * · · · * bk can be reduced (without altering the value of the product) to 
an expression of the form 

Now argue that any bracketing of the product a1 * a2 * · · · * an must break into 2 
subproducts, say (at * a2 * · · · * ak) * (ak+1 * ak+2 * · · · * an), where each sub-product 
is bracketed in some fashion. Apply the induction assumption to each of these two 
sub-products and finally reduce the result to the form a1 * (a2 * (a3 * (· · · * an)) . . .  ) to 
complete the induction. 

Note that throughout the proof of Proposition 1 we were careful not to change 
the order of any products (unless permitted by axioms (ii) and (iii)) since G may be 
non-abelian. 

Notation: 
(1) For an abstract group G it is tiresome to keep writing the operation * throughout 

our calculations. Henceforth (except when necessary) our abstract groups G, H,  
etc. will always be  written with the operation as  · and a · b will always be  written 
as ab. In view of the generalized associative law, products of three or more group 
elements will not be bracketed (although the operation is still a binary operation). 
Finally, for an abstract group G (operation ·) we denote the identity of G by L 
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(2) For any group G (operation · implied) and x E G and n E z+ since the product 
xx · · · x (n terms) does not depend on how it is bracketed, we shall denote it by xn . 
Denote x-•x-1 · · · x-I  (n terms) by x-n .  Let x0 = 1 ,  the identity of G. 
This new notation i s  pleasantly concise. Of  course, when we are dealing with 

specific groups, we shall use the natural (given) operation. For example, when the 
operation is +. the identity will be denoted by 0 and for any element a, the inverse a-1 
will be written -a and a +  a + ·  · · + a  (n > 0 terms) will be written na; -a - a · · · - a 
(n terms) will be written -na and Oa = 0. 

Proposition 2. Let G be a group and let a, b E  G .  The equations ax = b and ya = b 
have unique solutions for x ,  y E G. In particular, the left and right cancellation laws 
hold in G, i.e., 

(1) if au = av, then u = v, and 
(2) if ub = vb, then u = v. 

Proof: We can solve ax = b by multiplying both sides on the left by a -1 and 
simplifying to get x = a-1b. The uniqueness of x follows because a-1 is unique. 
Similarly, if ya = b, y = ba-1 • If au = av, multiply both sides on the left by a-1 and 
simplify to get u = v .  Similarly, the right cancellation law holds. 

One consequence of Proposition 2 is that if a is any element of G and for some 
b E G, ab = e or ba = e, then b = a-1 , i.e., we do not have to show both equations 
hold. Also, if for some b E G, ab = a  (or ba = a), then b must be the identity of G, 
i.e., we do not have to check bx = xb = x for all x E G. 

Definition. For G a group and x E G define the order of x to be the smallest positive 
integer n such that xn = 1 ,  and denote this integer by lx 1 .  In this case x is said to be of 
order n. If no positive power of x is the identity, the order of x is defined to be infinity 
and x is said to be of infinite order. 

The symbol for the order of x should not be confused with the absolute value symbol 
(when G � lR we shall be careful to distinguish the two). It may seem injudicious to 
choose the same symbol for order of an element as the one used to denote the cardinality 
(or order) of a set, however, we shall see that the order of an element in a group is the 
same as the cardinality of the set of all its (distinct) powers so the two uses of the word 
"order" are naturally related. 

Examples 

20 

(1) An element of a group has order 1 if and only if it is the identity. 
(2) In the additive groups Z, Q, JR. or C every nonzero (i.e., nonidentity) element has 

infinite order. 
(3) In the multiplicative groups JR. - {0} or Q - {0} the element -1  has order 2 and all 

other nonidentity elements have infinite order. 

(4) In the additive group Z/9Z the element 6 has order 3, since 6 # 6, 6+6 = 12 = 3 # 6, 
but 6 + 6 + 6 = 18 = 6, the identity in this group. Recall that in an additive group the 
powers of an element are the integer multiples of the element. Similarly, the order of 

the element 5 is 9, since 45 is the smallest positive multiple of 5 that is divisible by 9. 
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(5) In the multiplicative group (7l/77l) x ,  the powers of the element 2 are 2. 4. 8 = 1, the 
identity in this group, so 2 has order 3. Similarly, the element 3 has order 6, since 36 

is the smallest positive power of 3 that is congruent to 1 modulo 7. 

Definition. Let G = {gi ,  gz , . . .  , gn }  be a finite group with g1 = 1. The multiplica
tion table or group table of G is the n x n matrix whose i, j entry is the group element 
g; gj. 

For a finite group the multiplication table contains, in some sense, all the information 
about the group. Computationally, however, it is an unwieldly object (being of size the 
square of the group order) and visually it is not a very useful object for determining 
properties of the group. One might think of a group table as the analogue of having a 
table of all the distances between pairs of cities in the country. Such a table is useful 
and, in essence, captures all the distance relationships, yet a map (better yet, a map with 
all the distances labelled on it) is a much easier tool to work with. Part of our initial 
development of the theory of groups (finite groups in particular) is directed towards a 
more conceptual way of visualizing the internal structure of groups. 

E X E R C I S E S  

Let G be a group. 

1. Determine which of the following binary operations are associative: 
(a) the operation * on 7l defined by a * b = a - b 
(b) the operation * on IR defined by a * b = a + b + ab 

( )  h · ffll d fi  d b  b 
a + b 

c t e operatmn • on � e ne y a • = -5 -
(d) the operation * on 7l x 7l defined b y  (a , b) * (c. d) = (ad + be, bd) 

(e) the operation * on Q - {0} defined by a * b = � ·  
2 .  Decide which of the binary operations i n  the preceding exercise are commutative. 

3. Prove that addition of residue classes in 7lfn7l is associative (you may assume it is well 
defined). 

4. Prove that multiplication of residue classes in 7lfn7l is associative (you may assume it is 
well defined). 

5. Prove for all n > 1 that 7lf n7l is not a group under multiplication of residue classes. 

6. Determine which of the following sets are groups under addition: 
(a) the set of rational numbers (including 0 = 0/1 )  in lowest terms whose denominators 

are odd 
(b) the set of rational numbers (including 0 = 0/1 )  in lowest terms whose denominators 

are even 
(c) the set of rational numbers of absolute value < 1 
(d) the set of rational numbers of absolute value � 1 together with 0 
(e) the set of rational numbers with denominators equal to 1 or 2 
(t) the set of rational numbers with denominators equal to 1 ,  2 or 3 .  

7.  Let G = {x  E IR I 0 � x < 1 }  and for x ,  y E G let x * y be  the fractional part of  x + y 
(i.e., x * y = x + y - [x + y] where [a] is the greatest integer less than or equal to a). 
Prove that * is a well defined binary operation on G and that G is an abelian group under 
* (called the real numbers mod 1).  
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8. Let G = {z E c I zn = 1 for some n E z+ } .  
(a) Prove that G is a group under multiplication (called the group of roots of unity in C). 
(b) Prove that G is not a group under addition. 

9. Let G = {a + b.J2 E lR I a, b E  Q}. 
(a) Prove that G is a group under addition. 
(b) Prove that the nonzero elements of G are a group under multiplication. ["Rationalize 

the denominators" to find multiplicative inverses.] 

10. Prove that a finite group is abelian if and only if its group table is a symmetric matrix. 

11. Find the orders of each element of the additive group /Z I 12/Z. 

12. Find the orders of the following elements of the multiplicative group (IZ/1 2/ZV : I, - 1 ,  
5, 7, --7, TI. 

13. Find the orders of the following elements of the additive group /Zj36/Z: I, 2, 6, 9, 10, 1 2, 
- 1 , - 10. - 18. 

14. Find the orders of the following elements of the multiplicative group (/Zj361ZV : I, - 1 ,  
5, TI, - 1 3, 17 . 

15 Pr h ( )-t -t -t -t c 11 G . ove t at ataz . . . an = an an_1 • • • a1 10r a at , az, . . .  , an E . 
16. Let x be an element of G. Prove that x2 = 1 if and only if lx I is either 1 or 2. 

17. Letx be an element of G. Prove thatif lx l  = n for some positive integern then x-t = xn-t . 
18. Let x and y be elements of G. Prove that xy = yx if and only if y-t xy = x if and only if 

x-ty-txy = 1 .  

19. Let X E G and let a,  b E z+. 
(a) Prove that xa+h = xaxh and (x0)h = xah . 
(b) Prove that (x0)- 1 = x-a .  
(c) Establish part (a) for arbitrary integers a and b (positive, negative or zero). 

20. For x an element in G show that x and x-t have the same order. 

21. Let G be a finite group and let x be an element of G of order n.  Prove that if n is odd, then 
x = (x2)k for some k. 

22. Ifx and g are elements of the group G, prove that lx l = lg-1xg l .  Deduce that labl = lha l 
for all a, b E  G. 

23. Suppose x E G and lx l = n < oo. If n = st for some positive integers s and t, prove that 
lxs l = t .  

24. If a and b are commuting elements of G, prove that (ab)n = anbn for all n E /Z. [Do this 
by induction for positive n first.] 

25. Prove that if x2 = 1 for all x E G then G is abelian. 

26. Assume H is a nonempty subset of (G, •) which is closed under the binary operation on 
G and is closed under inverses, i.e., for all h and k E H, hk and h -t E H. Prove that H is 
a group under the operation * restricted to H (such a subset H is called a subgroup of G). 

27. Prove that if x is an element of the group G then {xn I n E /Z} is a subgroup (cf. the 
preceding exercise) of G (called the cyclic subgroup of G generated by x). 

28. Let (A ,  •) and (B, <>) be groups and let A x B be their direct product (as defined in Example 
6). Verify all the group axioms for A x B :  

22 

(a) prove that the associative law holds: for all (a; , b; ) E A x B, i = 1 ,  2, 3 
(at .  ht)[(az , bz) (a3 , b3)] = [(at . bt )(az.  bz)] (a3 , b3 ) , 
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(b) prove that ( 1 ,  1) is the identity of A x B, and 
(c) prove that the inverse of (a , b) is (a - 1 , b-1 ) . 

29. Prove that A x B is an abelian group if and only if both A and B are abelian. 

30. Prove that the elements (a , 1 )  and ( 1 ,  b) of A x B commute and deduce that the order of 
(a, b) is the least common multiple of Ia I and lb l .  

31. Prove that any finite group G of even order contains an element of order 2 .  [Let t (G) be 
the set {g E G 1 g =ft g-1 }. Show that t (G) has an even number of elements and every 
nonidentity element of G - t (G) has order 2.] 

· 
32. If x is an element of finite order n in G, prove that the elements 1 ,  x ,  x2 , . . .  , xn-1 are all 

distinct. Deduce that lx I � I G 1 .  

33. Let x be an element of finite order n i n  G .  
(a) Prove that i f  n i s  odd then xi =ft x-i for all i = 1 ,  2 ,  . . .  , n - 1 .  
(b) Prove that i f  n = 2k and 1 � i < n then xi = x-i if and only i f  i = k. 

34. If x is an element of infinite order in G, prove that the elements xn , n E Z are all distinct. 

35. If x is an element of finite order n in G, use the Division Algorithm to show that any 
integral power of x equals one of the elements in the set { 1 ,  x ,  x2 , • • •  , xn- 1 }  (so these are 
all the distinct elements of the cyclic subgroup ( cf. Exercise 27 above) of G generated by 
x). 

36. Assume G = { 1 ,  a, b, c} is a group of order 4 with identity 1 .  Assume also that G has no 
elements of order 4 (so by Exercise 32, every element has order � 3). Use the cancellation 
laws to show that there is a unique group table for G. Deduce that G is abelian. 

1 .2 DIHEDRAL GROUPS 

An important family of examples of groups is the class of groups whose elements are 
symmetries of geometric objects. The simplest subclass is when the geometric objects 
are regular planar figures. 

For each n E z+, n ::=: 3 let D211 be the set of symmetries of a regular n-gon, where 
a symmetry is any rigid motion of the n-gon which can be effected by taking a copy 
of the n-gon, moving this copy in any fashion in 3-space and then placing the copy 
back on the original n-gon so it exactly covers it. More precisely, we can describe the 
symmetries by first choosing a labelling of the n vertices, for example as shown in the 
following figure. 

2 

3 
/ 

/ 
/ 
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Then each symmetry s can be described uniquely by the corresponding permutation a 
of { 1 ,  2, 3 ,  . . . , n }  where if the symmetry s puts vertex i in the place where vertex j 
was originally, then a is the permutation sending i to j. For instance, if s is a rotation 
of 2rr In radians clockwise about the center of the n -gon, then a is the permutation 
sending i to i + 1, 1 � i � n - 1, and a (n) = 1 .  Now make D2n into a group by 
defining s t for s ,  t E D2n to be the symmetry obtained by first applying t then s to 
the n-gon (note that we are viewing symmetries as functions on the n-gon, so st is just 
function composition - read as usual from right to left). If s, t effect the permutations 
a ,  r, respectively on the vertices, then st effects a o -r .  The binary operation on D2n 
is associative since composition of functions is associative. The identity of D2n is the 
identity symmetry (which leaves all vertices fixed), denoted by 1, and the inverse of 
s E D2n is the symmetry which reverses all rigid motions of s (so if s effects permutation 
a on the vertices, s -1  effects a-1  ). In the next paragraph we show 

ID2n l  = 2n 

and so D2n is called the dihedral group of order 2n. In some texts this group is written 
Dn ; however, D2n (where the subscript gives the order of the group rather than the 
number of vertices) is more common in the group theory literature. 

To find the order I D2n I observe that given any vertex i ,  there is a symmetry which 
sends vertex 1 into position i .  Since vertex 2 is adjacent to vertex 1 ,  vertex 2 must 
end up in position i + 1 or i - 1 (where n + 1 is 1 and 1 - 1 is n, i.e., the integers 
labelling the vertices are read mod n ). Moreover, by following the first symmetry by a 
reflection about the line through vertex i and the center of the n-gon one sees that vertex 
2 can be sent to either position i + 1 or i - 1 by some symmetry. Thus there are n · 2 
positions the ordered pair of vertices 1 ,  2 may be sent to upon applying symmetries. 
Since symmetries are rigid motions one sees that once the position of the ordered pair 
of vertices 1, 2 has been specified, the action of the symmetry on all remaining vertices 
is completely determined. Thus there are exactly 2n symmetries of a regular n-gon. We 
can, moreover, explicitly exhibit 2n symmetries. These symmetries are the n rotations 
about the center through 2rr i In radian, 0 � i � n - 1 ,  and the n reflections through the 
n lines of symmetry (if n is odd, each symmetry line passes through a vertex and the 
mid-point of the opposite side; if n is even, there are n 12 lines of symmetry which pass 
through 2 opposite vertices and nl2 which perpendicularly bisect two opposite sides). 
For example, if n = 4 and we draw a square at the origin in an x, y plane, the lines of 
symmetry are 

' 
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the lines x = 0 (y-axis), y = 0 (x-axis), y = x and y = -x (note that "reflection" 
through the origin is not a reflection but a rotation of n radians). 

Since dihedral groups will be used extensively as an example throughout the text 
we fix some notation and mention some calculations which will simplify future com
putations and assist in viewing D2n as an abstract group (rather than having to return to 
the geometric setting at every instance). Fix a regular n-gon centered at the origin in an 
x ,  y plane and label the vertices consecutively from 1 to n in a clockwise manner. Let r 
be the rotation clockwise about the origin through 2n j n radian. Let s be the reflection 
about the line of symmetry through vertex 1 and the origin (we use the same letters for 
each n, but the context will always make n clear). We leave the details of the following 
calculations as an exercise (for the most part we shall be working with D6 and Ds, so 
the reader may wish to try these exercises for n = 3 and n = 4 first): 

(1) 1 ,  r, r2 , • . .  , rn-I are all distinct and rn = 1 ,  so lr l = n. 
(2) ls i = 2. 
(3) s f=. r; for any i .  
(4) sri f=. sri , for all 0 _:::: i ,  j _:::: n - 1 with i f=. j ,  so 

i.e., each element can be written uniquely in the form skri for some k = 0 or 
1 and 0 _:::: i _:::: n - 1 .  

(5) rs = sr-1 • [First work out what permutation s effects on { 1 ,  2, . . .  , n }  and 
then work out separately what each side in this equation does to vertices I 
and 2.] This shows in particular that r and s do not commute so that D2n is 
non-abelian. 

(6) ri s = sr-i , for all 0 _:::: i _:::: n. [Proceed by induction on i and use the fact that 
ri+I s = r (ri s) together with the preceding calculation.] This indicates how to 
commute s with powers of r .  

Having done these calculations, we now observe that the complete multiplication 
table of D2n can be written in terms r and s alone, that is, all the elements of D2n have a 
(unique) representation in the form skri , k = 0 or 1 and 0 :::: i _:::: n - I ,  and any product 
of two elements in this form can be reduced to another in the same form using only 
"relations" ( 1 ), (2) and (6) (reducing all exponents mod n). For example, if n = 12, 

(sr9) (sr6) = s (r9s)r6 
= s (sr-9)r6 

= s
2
r-9+6 = r-3 = r9 . 

Generators and Relations 

The use of the generators r and s for the dihedral group provides a simple and succinct 
way of computing in D2n. We can similarly introduce the notions of generators and 
relations for arbitrary groups. It is useful to have these concepts early (before their 
formal justification) since they provide simple ways of describing and computing in 
many groups. Generators will be discussed in greater detail in Section 2.4, and both 
concepts will be treated rigorously in Section 6.3 when we introduce the notion of free 
groups. 
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A subset S of elements of a group G with the property that every element of G 
can be written as a (finite) product of elements of S and their inverses is called a set of 
generators of G. We shall indicate this notationally by writing G = ( S ) and say G 
is generated by S or S generates G. For example, the integer 1 is a generator for the 
additive group Z of integers since every integer is a sum of a finite number of + 1 's and 
- 1 's, so Z = ( 1 ) .  By property (4) of D2n the set S = {r, s } is a set of generators of 
Dzn , so Dzn = ( r, s ) . We shall see later that in a finite group G the set S generates 
G if every element of G is a finite product of elements of S (i.e., it is not necessary to 
include the inverses of the elements of S as well). 

Any equations in a general group G that the generators satisfy are called relations 
in G. Thus in D2n we have relations: rn = I ,  s2 = 1 and rs = sr- 1 • Moreover, in 
D2n these three relations have the additional property that any other relation between 
elements of the group may be derived from these three (this is not immediately obvious; 
-it follows from the fact that we can determine exactly when two group elements are 
equal by using only these three relations). 

In general, if some group G is generated by a subset S and there is some collection 
of relations, say R1 . Rz, . . . •  Rm (here each R; is an equation in the elements from 
S U { 1 } )  such that any relation among the elements of S can be deduced from these, we 
shall call these generators and relations a presentation of G and write 

G = ( S I R1 , Rz , . . .  , Rm ) . 
One presentation for the dihedral group D2n (using the generators and relations above) 
is then 

D2n = ( r, s I rn = s2 = I .  rs = sr-I ) . (1 . 1 )  

We shall see that using this presentation to describe D2n (rather than always reverting 
to the original geometric description) will greatly simplify working with these groups. 

Presentations give an easy way of describing many groups, but there are a number of 
subtleties that need to be considered. One of these is that in an arbitrary presentation it 
may be difficult (or even impossible) to tell when two elements of the group (expressed 
in terms of the given generators) are equal. As a result it may not be evident what the 
order of the presented group is, or even whether the group is finite or infinite� For 
example, one can show that ( Xt ,  Yt I xf = yf = (XtYt )2 = 1 )  is a presentation of a 

group of order 4, whereas ( xz , yz I xi_ = y:j_ = (xzyz)3 = 1 ) is a presentation of an 
infinite group (cf. the exercises). 

Another subtlety is that even in quite simple presentations, some "collapsing" may 
occur because the relations are intertwined in some unobvious way, i.e. , there may be 
"hidden," or implicit, relations that are not explicitly given in the presentation but rather 
are consequences of the specified ones. This collapsing makes it difficult in general to 
determine even a lower bound for the size of the group being presented. For example, 
suppose one mimicked the presentation of Dzn in an attempt to create another group by 
defining: 

X 2n = ( X ' y I xn 
= y2 = 1 ' xy = y x2 ) • ( 1 .2) 

The "commutation" relation xy = yx2 determines how to commute y and x (i.e., how 
to "move" y from the right of x to the left), so that just as in the group D2n every element 
in this group can be written in the form yk xi with all the powers of y on the left and all 
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the powers of x on the right. Also, by the first two relations any powers of x and y can be 
reduced so that i lies between 0 and n - 1 and k is 0 or 1 .  One might therefore suppose 
that X2n is again a group of order 2n . This is not the case because in this group there is 
a "hidden" relation obtained from the relation x = xy2 (since y2 = 1 ) by applying the 
commutation relation and the associative law repeatedly to move the y's to the left: 

x = xl = (xy)y = (yx2)y = (yx) (xy) = (yx) (yx2) 
= y(xy)x2 = y(yx2)x2 = lx4 = x4. 

Since x4 
= X it follows by the cancellation laws that x3 = 1 in x2n . and from the 

discussion above it follows that X 2n has order at most 6 for any n .  Even more collapsing 
may occur, depending on the value of n (see the exercises). 

As another example, consider the presentation 

( 1 .3) 

In this case it is tempting to guess that Y is a group of order 12, but again there are 
additional implicit relations. In fact this group Y degenerates to the trivial group of 
order 1 ,  i.e., u and v satisfy the additional relations u = 1 and v = 1 (a proof is outlined 
in the exercises). 

This kind of collapsing does not occur for the presentation of D2n because we 
showed by independent (geometric) means that there is a group of order 2n with gen
erators r and s and satisfying the relations in ( 1 ). As a result, a group with only these 
relations must have order at least 2n . On the other hand, it is easy to see (using the 
same sort of argument for X2n above and the commutation relation rs = sr-1 ) that any 
group defined by the generators and relations in ( 1 )  has order at most 2n . It follows that 
the group with presentation ( 1 ) has order exactly 2n and also that this group is indeed 
the group of symmetries of the regular n-gon. 

The additional information we have for the presentation ( 1 )  is the existence of a 
group of known order satisfying this information. In contrast, we have no independent 
knowledge about any groups satisfying the relations in either (2) or (3). Without such 
independent "lower bound" information we might not even be able to determine whether 
a given presentation just describes the trivial group, as in (3). 

While in general it is necessary to be extremely careful in prescribing groups by 
presentations, the use of presentations for known groups is a powerful conceptual and 
computational tool. Additional results about presentations, including more elaborate 
examples, appear in Section 6.3. 

E X E R C I S E S  

In these exercises, D2n has the usual presentation D2n = ( r, s I rn = s2 = I ,  r s = s r -1  ) . 
1. Compute the order of each of the elements in the following groups: 

(a) D6 (b) Ds (c) Dw. 

2. Use the generators and relations above to show that if  x is  any element of D2n which is 
not a power of r, then rx = xr- 1 •  

3. Use the generators and relations above to show that every element of D2n which i s  not a 
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power of r has order 2. Deduce that D2n is generated by the two elements s and sr, both 
of which have order 2. 

4. If n = 2k is even and n :::: 4, show that z = rk is an element of order 2 which commutes 
with all elements of D2n .  Show also that z is the only nonidentity element of D2n which 
commutes with all elements of D2n · [cf. Exercise 33 of Section 1 .] 

S. If n is odd and n :::: 3, show that the identity is the only element of D2n which commutes 
with all elements of D2n ·  [cf. Exercise 33 of Section 1 .] 

6. Let x and y  be elements of order 2 in any group G. Prove that if t = xy then tx = xt-1 
(so that if n = lxy l < oo then x, t satisfy the same relations in G as s, r do in D2n). 

7. Show that ( a, b I a2 = b2 = (ab)n = I ) gives a presentation for D2n in terms of the two 
generators a = s and b = sr of order 2 computed in Exercise 3 above. [Show that the 
relations for r and s follow from the relations for a and b and, conversely, the relations for 
a and b follow from those for r and s . ]  

8. Find the order of the cyclic subgroup of D2n generated by r (cf. Exercise 27 of Section I) .  

In each of Exercises 9 to 13  you can find the order of the group of rigid motions in R3 (also called 
the group of rotations) of the given Platonic solid by following the proof for the order of D2n : 
find the number of positions to which an adjacent pair of vertices can be sent. Alternatively, 
you can find the number of places to which a given face may be sent and, once a face is fixed, 
the number of positions to which a vertex on that face may be sent. 

9. Let G be the group of rigid motions in R3 of a tetrahedron. Show that IG I  = 12. 

10. Let G be the group of rigid motions in R3 of a cube. Show that IG I  = 24. 

11. Let G be the group of rigid motions in R3 of an octahedron. Show that 1 G 1 = 24. 

12. Let G be the group of rigid motions in R3 of a dodecahedron. Show that IG I  = 60. 

13. Let G be the group of rigid motions in R3 of an icosahedron. Show that IG I  = 60. 

14. Find a set of generators for Z. 

15. Find a set of generators and relations for Z/ n/Z. 

16. Show that the group ( XJ ,  YI I Xf = Yf = (xi Yd = 1 )  is the dihedral group D4 (where 
XJ may be replaced by the letter r and y1 by s ) . [Show that the last relation is the same as: 

-1 ] XJYI = YIXJ · 
17. Let X2n be the group whose presentation is displayed in (1 .2). 

(a) Show that if n = 3k, then X2n has order 6, and it has the same generators and relations 
as D6 when x is replaced by r and y by s. 

(b) Show that if (3, n) = 1 ,  then x satisfies the additional relation: x = 1 .  In this case 
deduce that X2n has order 2. [Use the facts that xn = 1 and x3 = 1 .] 

18. Let Y be the group whose presentation is displayed in ( 1 .3). 
(a) Show that v2 = v-1 • [Use the relation: v3 = 1 .] 

28 

(b) Show that v commutes with u3 . [Show that v2u3v = u3 by writing the left hand side 
as (v2u2) (uv) and using the relations to reduce this to the right hand side. Then use 
part (a).] 

(c) Show that v commutes with u.  [Show that u9 = u and then use part (b).] 
(d) Show that uv = 1 .  [Use part (c) and the last relation.] 
(e) Show that u = 1, deduce that v = 1, and conclude that Y = 1 .  [Use part (d) and the 

equation u4v3 = 1 .] 
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1 .3 SYM METRIC GROUPS 

Let Q be any nonempty set and let Sn be the set of all bijections from Q to itself (i.e. , 
the set of all permutations of Q). The set Sn is a group under function composition: o .  
Note that o is  a binary operation on Sn since if cr : Q � Q and r : Q � Q are both 
bijections, then cr o T is also a bijection from Q to Q. Since function composition is 
associative in general, o is associative. The identity of Sn is the permutation 1 defined 
by l (a) = a, for all a E Q. For every permutation cr there is a (2-sided) inverse 
function, cr -t : Q � Q satisfying cr o cr -t = cr-t  o cr  = 1 .  Thus, all the group axioms 
hold for (Sn ,  o) .  This group is called the symmetric group on the set Q. It is important 
to recognize that the elements of Sn are the permutations of Q, not the elements of Q 
itself. 

In the special case when Q = { 1 ,  2, 3 ,  . . . , n} ,  the symmetric group on Q is de
noted Sn , the symmetric group of degree n. 1 The group Sn will play an important role 
throughout the text both as a group of considerable interest in its own right and as a 
means of illustrating and motivating the general theory. 

First we show that the order of Sn is n ! . The permutations of { 1 ,  2, 3 ,  . . .  , n} are 
precisely the injective functions of this set to itself because it is finite (Proposition 0. 1 )  
and we can count the number of injective functions. A n  injective function cr can send 
the number 1 to any of the n elements of { 1 ,  2, 3 ,  . . .  , n } ;  cr (2) can then be any one of 
the elements of this set except cr ( l ) (so there are n - 1 choices for cr (2)); cr (3) can be 
any element except cr ( l )  or cr (2) (so there are n - 2 choices for cr (3)), and so on. Thus 
there are precisely n · (n - 1 )  · (n - 2) . . .  2 · 1 = n ! possible injective functions from 
{ 1 ,  2, 3 ,  . . . , n }  to itself. Hence there are precisely n !  permutations of { 1 ,  2, 3 ,  . . . , n} 
so there are precisely n !  elements in Sn . 

We now describe an efficient notation for writing elements cr of Sn which we shall 
use throughout the text and which is called the cycle decomposition. 

A cycle is a string of integers which represents the element of Sn which cyclically 
permutes these integers (and fixes all other integers). The cycle (a1 a2 . . •  am ) is the 
permutation which sends a; to ai+l •  1 ,::: i ,::: m - 1 and sends am to a1 . For example 
(2 1 3) is the permutation which maps 2 to 1 ,  1 to 3 and 3 to 2. In general, for each 
cr E Sn the numbers from 1 to n will be rearranged and grouped into k cycles of the 
form 

from which the action of cr on any number from 1 to n can easily be read, as follows. 
For any x E { 1 ,  2, 3 ,  . . . , n} first locate x in the above expression. If x is not followed 
immediately by a right parenthesis ( i.e., x is not at the right end of one of the k cycles), 
then cr (x) is the integer appearing immediately to the right of x. If x is followed by a 
right parenthesis, then cr (x) is the number which is at the start of the cycle ending with 
x ( i.e., if x = amp for some i ,  then cr (x) = am1_ 1 +t (where mo is taken to be 0)). We 
can represent this description of cr by 

1 We shall see in Section 6 that the structure of Sn depends only on the cardinality of !.1 , not on the 
particular elements of !.1 itself, so if !.1 is any finite set with n elements, then Sn "looks like" S, . 
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C 
al  � a2 � . . .  � ami "") 

The product of all the cycles is called the cycle decomposition of a .  
We now give an algorithm for computing the cycle decomposition of an element a 

of S" and work through the algorithm with a specific permutation. We defer the proof 
of this algorithm and full analysis of the uniqueness aspects of the cycle decomposition 
until Chapter 4. 

Let n = 1 3  and let a E S13 be defined by 
a (l )  = 1 2, a (2) = 13 ,  a (3) = 3 ,  

a (6) = 9, a (7) = 5,  a (8) = 10, 

a (l l) = 7, a ( 1 2) = 8,  a (1 3) = 2. 

a (4) = 1 ,  

a (9) = 6, 

a (5) = 1 1 , 

a ( lO) = 4, 

Cycle Decomposition Algorithm 

Method Example 

To start a new cycle pick the smallest element of { 1 ,  2, . . . .  n}  ( 1  
which h as  not yet appeared in a previous cycle - call it a (if 
you arc just starting, a = 1) ;  begin the new cycle: (a 

Read off a (a) from the given description of a - call it b. If a(l )  = 12 = b, 12 # 1 so write: 
b = a, close the cycle with a rifcht parenthesis (without writing 
b down); this completes a eye e - return to step 1 .  If b # a, ( 1 12  

write b next to  a in this cycle: (a  b 

Read off a (b) from the given description of a - call it c. If a ( l2) = 8, 8 # 1 so continue the 
c = a, close the cycle with a right parenthesis to comElete the cycle as: ( 1 12  8 
cycle - return to step 1 .  If c # a, write c next to in this 
cycle: (a b c  Repeat this step using the number c as the new 
value for b until the cycle closes. 

Naturally this process stops when all the numbers from { 1 ,  2, . . . , n }  have appeared 
in some cycle. For the particular a in the example this gives 

a = ( 1  1 2  8 10 4) (2 1 3)(3) (5 1 1  7) (6 9) . 

The length of a cycle is the number of integers which appear in it. A cycle of length 
t is called a t-cycle. Two cycles are called disjoint if they have no numbers in common. 
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Thus the element a above is the product of 5 (pairwise) disjoint cycles: a 5-cycle, a 
2-cycle, a 1 -cycle, a 3-cycle, and another 2-cycle. 

Henceforth we adopt the convention that 1-cycles will not be written. Thus if some 
integer, i ,  does not appear in the cycle decomposition of a permutation r it is understood 
that r(i )  = i ,  i.e., that r fixes i .  The identity permutation of Sn has cycle decomposition 
( 1 ) (2) . . .  (n) and will be written simply as 1 .  Hence the final step of the algorithm is: 

Cycle Decomposition Algorithm (cont.) 

Final Step: Remove all cycles of length 1 

The cycle decomposition for the particular a in the example is therefore 

a = ( 1 12 8 10  4) (2 1 3)(5 1 1  7) (6 9) 

This convention has the advantage that the cycle decomposition of an element r of 
Sn is also the cycle decomposition of the permutation in Sm for m :=:: n which acts as r 
on { 1 ,  2, 3, . . .  , n} and fixes each element of {n + 1 ,  n + 2, . . . , m} .  Thus, for example, 
( 1 2) is the permutation which interchanges 1 and 2 and fixes all larger integers whether 
viewed in s2. s3 or s4. etc. 

As another example, the 6 elements of S3 have the following cycle decompositions: 

The group S3 

Values of a; Cycle Decomposition of a; 

01 (1)  = 1 ,  01 (2) = 2, 0} (3) = 3 1 
az (1)  = 1 ,  o"2 (2) = 3, az (3) = 2 (2 3)  
03 ( 1) = 3,  OJ (2) = 2, OJ (3) = } (I 3) 
a4( 1 )  = 2, a4 (2) = I ,  a4(3) = 3 ( 1 2) 
a5 (1 )  = 2, as (2) = 3, a5 (3) = 1 ( 1 2 3) 

For any a E Sn , the cycle decomposition of a - 1 is obtained by writing the num
bers in each cycle of the cycle decomposition of a in reverse order. For example, if 
a = ( 1 12  8 10 4) (2 1 3) (5 1 ]  7) (6 9) is the element of sl3 described before then 

a -1 = (4 10 8 1 2  1 ) ( 1 3  2) (7 1 1  5) (9 6) . 

Computing products in Sn is straightforward, keeping in mind that when computing 
a o r in Sn one reads the permutations from right to left. One simply "follows" the 
elements under the successive permutations. For example, in the product ( 1  2 3) o 
( 1  2) (3 4) the number 1 is sent to 2 by the first permutation, then 2 is sent to 3 by 
the second permutation, hence the composite maps 1 to 3. To compute the cycle 
decomposition of the product we need next to see what happens to 3. It is sent first to 4, 
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then 4 is fixed, so 3 is mapped to 4 by the composite map. Similarly, 4 is first mapped to 
3 then 3 is mapped to 1 ,  completing this cycle in the product: ( 1  3 4) . Finally, 2 is sent 
to 1 ,  then 1 is sent to 2 so 2 is fixed by this product and so ( 1  2 3) o ( 1  2)(3 4) = ( 1  3 4) 
is the cycle decomposition of the product 

As additional examples, 

( 12) 0 ( 13) = (1 3 2) 

In particular this shows that 

and (1 3) 0 ( 1 2) = (1 2 3) . 

S" is a non-abelian group for all n � 3. 

Each cycle (a!  a2 . . . am ) in a cycle decomposition can be viewed as the permutation 
which cyclically permutes a1 , az , . . .  , am and fixes all other integers. Since disjoint 
cycles permute numbers which lie in disjoint sets it follows that 

disjoint cycles commute. 

Thus rearranging the cycles in any product of disjoint cycles (in particular, in a cycle 
decomposition) does not change the permutation. 

Also, since a given cycle, (a!  a2 . . .  am) .  permutes {a! , az , . . .  , am } cyclically, the 
numbers in the cycle itself can be cyclically permuted without altering the permutation, 
i.e., 

(a!  az . . . am ) = (az a3 . . .  am a1 ) = (a3 a4 . . . am a1 az) = . . . 

= (am a1 az . . . am-! ) . 

Thus, for instance, ( 1  2) = (2 1) and ( 1  2 3 4) = (3 4 1 2) . By convention, the smallest 
number appearing in the cycle is usually written first 

One must exercise some care working with cycles since a permutation may be 
written in many ways as an arbitrary product of cycles. For instance, in S3 , (1 2 3) = 

( 1 2)(2 3) = ( 1  3) ( 1  3 2) ( 1  3) etc. But, (as we shall prove) the cycle decomposition of 
each permutation is the unique way of expressing a permutation as a product of disjoint 
cycles (up to rearranging its cycles and cyclically permuting the numbers within each 
cycle). Reducing an arbitrary product of cycles to a product of disjoint cycles allows 
us to determine at a glance whether or not two permutations are the same. Another 
advantage to this notation is that it is an exercise (outlined below) to prove that the order 

of a permutation is the l. c.m. of the lengths of the cycles in its cycle decomposition. 

1. Let a be the permutation 

1 1--+ 3 

and let r be the permutation 

E X E R C I S E S 

1 I--+ 5 2 I--+ 3 5 I--+ 1 .  

Find the cycle decompositions of each of the following permutations: a ,  r ,  a2, a r ,  ra, 
and r2a .  
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2. Let a be the permutation 

1 t-+ 13  2 r-+ 2 3 t-+ 15 4 t-+ 14 5 t-+ 10 

6 r-+ 6 7 t-+ 1 2  8 r-+ 3  9 r-+ 4  10 t-+ 1 

1 1  t-+ 7 1 2  t-+ 9 1 3  t-+ 5 14 t-+ 1 1  15  t-+ 8 

and let T be the permutation 

1 t-+ 14 2 r-+ 9 3 t-+ 10  4 r-+ 2  5 t-+ 1 2  

6 r-+ 6 7 r-+ 5  8 t-+ 1 1  9 t-+ 1 5  10 r-+ 3  

1 1  t-+ 8 12 t-+ 7 13 t-+ 4 14 t-+ 1 1 5  t-+ 13 .  

Find the cycle decompositions of the following permutations: a,  T, a2, aT ,  ra, and r2a .  
3. For each of the permutations whose cycle decompositions were computed in the preceding 

two exercises compute its order. 

4. Compute the order of each of the elements in the following groups: (a) S3 (b) S4. 

5. Find the order of ( 1  1 2  8 1 0  4) (2 13) (5 1 1  7) (6 9) . 

6. Write out the cycle decomposition of each element of order 4 in S4. 

7. Write out the cycle decomposition of each element of order 2 in S4. 

8. Prove that if Q = { 1 .  2, 3, . . .  } then Sn is an infinite group (do not say oo !  = oo). 
9. (a) Let a be the 12-cycle ( 1  2 3 4 5 6 7 8 9 1 0  1 1  1 2) .  For which positive integers i is 

ai also a 12-cycle? 
(b) Let r be the 8-cycle (1 2 3 4 5 6 7 8). For which positive integers i is ri also an 

8-cycle? 
(c) Let w be the 14-cycle ( 1  2 3 4 5 6 7 8 9 10 1 1  12 13 14). For which positive integers 

i is wi also a 14-cycle? 

10. Prove that if a is the m-cycle (a I az . . .  am ),  then for all i E { 1 ,  2, . . .  , m},  ai (ak) = ak+i • 
where k + i is replaced by its least residue mod m when k + i > m. Deduce that Ia I = m. 

11. Let a be the m-cycle ( 1  2 . . .  m).  Show that ai is also an m-cycle if and only if i is 
relatively prime to m. 

12. (a) If r = ( 1  2)(3 4) (5 6) (7 8)(9 10) determine whether there is a n-cycle a (n :=:::: 10) 
with r = ak for some integer k. 

(b) If r = (1 2)(3 4 5) determine whether there is an n-cycle a (n ::::: 5) with r = ak for 
some integer k. 

13. Show that an element has order 2 in Sn if and only if its cycle decomposition is a product 
of commuting 2-cycles. 

14. Let p be a prime. Show that an element has order p in Sn if and only if its cycle decom
position is a product of commuting p-cycles. Show by an explicit example that this need 
not be the case if p is not prime. 

15. Prove that the order of an element in Sn equals the least common multiple of the lengths 
of the cycles in its cycle decomposition. [Use Exercise 10 and Exercise 24 of Section 1 .] 

16. Show that if n :=:::: m then the number of m-cycles in Sn is given by 

n (n - l ) (n - 2) . . .  (n - m + 1 )  

m 
[Count the number of ways of forming an m-cycle and divide by the number of represen
tations of a particular m-cycle.] 
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17. Show that if n ::::: 4 then the number of permutations in Sn which are the product of two 
disjoint 2-cycles is n (n - 1)(n - 2) (n - 3)/8. 

18. Find all numbers n such that Ss contains an element of order n .  [Use Exercise 15.] 

19. Find all numbers n such that S7 contains an element of order n.  [Use Exercise 15.] 

20. Find a set of generators and relations for S3 . 

1 .4 MATRIX GROUPS 

In this section we introduce the notion of matrix groups where the coefficients come 
from fields. This example of a family of groups will be used for illustrative purposes 
in Part I and will be studied in more detail in the chapters on vector spaces. 

A field is the "smallest" mathematical structure in which we can perform all the 
arithmetic operations +, -, x ,  and 7 (division by nonzero elements), so in particular 
every nonzero element must have a multiplicative inverse. We shall study fields more 
thoroughly later and in this part of the text the only fields F we shall encounter will 
be Q, � and 'll/ p'll, where p is a prime. The example 'll/ p'll is a finite field, which, to 
emphasize that it is a field, we shall denote by F p · For the sake of completeness we 
include here the precise definition of a field. 

Definition. 
(1) Afield is a set F together with two binary operations + and · on F such that 

(F, +) is an abelian group (call its identity 0) and (F - {0} , ·) is also an abelian 
group, and the following distributive law holds: 

a · (b + c) = (a · b) + (a · c) , 

(2) For any field F let Fx = F - {0} . 
for all a, b, c E F. 

All the vector space theory, the theory of matrices and linear transformations and 
the theory of determinants when the scalars come from � is true, mutatis mutandis, 
when the scalars come from an arbitrary field F. When we use this theory in Part I we 
shall state explicitly what facts on fields we are assuming. 

For each n E z+ let G Ln (F) be the set of all n x n matrices whose entries come 
from F and whose determinant is nonzero, i.e., 

G Ln (F) = {A I A is an n x n matrix with entries from F and det(A) =F 0 }. 
where the determinant of any matrix A with entries from F can be computed by the 
same formulas used when F = �- For arbitrary n x n matrices A and B let AB be the 
product of these matrices as computed by the same rules as when F = R This product 
is associative. Also, since det(AB) = det(A) · det(B), it follows that if det(A) =F 0 
and det(B) =F 0, then det(AB) =F 0, so G Ln (F) is closed under matrix multiplication. 
Furthermore, det(A) =F 0 if and only if A has a matrix inverse (and this inverse can be 
computed by the same adjoint formula used when F = �). so each A E GLn (F) has 
an inverse, A-1 , in GLn (F) : 

AA-1 = A-1 A = /, 
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where I is the n x n identity matrix. Thus GL11 (F) is a group under matrix multipli
cation, called the general linear group of degree n.  

The following results will be proved in Part III but are recorded now for convenience: 
(1) if F is a field and I F I < oo, then I F I = pm for some prime p and integer m 
(2) if I F I  = q < oo, then I GLn (F) I = (q" - l ) (q" - q) (qn - q2) • • •  (q" - q"-1 ) .  

Let F b e  a field and let n E z+ . 
l. Prove that I GL2 (IF2) I  = 6. 

E X E R C I S E S 

2. Write out all the elements of G L2 (IF 2) and compute the order of each element. 

3. Show that GL2(IF2) is non-abelian. 

4. Show that if n is not prime then Z/ nZ is not a field. 

5. Show that GL11 (F) is a finite group if and only if F has a finite number of elements. 

6. If IF I  = q is finite prove that IGL11 (F) I < q"2 • 
7. Let p be a prime. Prove that the order of G L2 (IF P) is p4 - p3 - p2 + p (do not just quote 

the order formula in this section). [Subtract the number of 2 x 2 matrices which are not 
invertible from the total number of 2 x 2 matrices over IF P . You may use the fact that a 
2 x 2 matrix is not invertible if and only if one row is a multiple of the other.] 

8. Show that GL11 (F) is non-abelian for any n :=::: 2 and any F. 
9. Prove that the binary operation of matrix multiplication of 2 x 2 matrices with real number 

entries is associative. 

10. Let G = { (  � ; ) I a, b, c E lR, a #  0, c # 0}. 

(a) Compute the product of ( � !: ) and ( � 
matrix multiplication. 

b2 ) to show that G is closed under 
C2 

(b) Find the matrix inverse of ( � ; ) and deduce that G is closed under inverses. 

(c) Deduce that G is a subgroup of GL2(IR) (cf. Exercise 26, Section 1 ). 
(d) Prove that the set of elements of G whose two diagonal entries are equal (i.e., a = c) 

is also a subgroup of GL2(IR) . 

The next exercise introduces the Heisenberg group over the field F and develops some of its 
basic properties. When F = lR this group plays an important role in quantum mechanics 
and signal theory by giving a group theoretic interpretation (due to H. Weyl) of Heisenberg's 
Uncertainty Principle. Note also that the Heisenberg group may be defined more generally 
for example, with entries in Z. 

l l. Let H(F) = { (� � ! ) 1 a, b, c E F} - called the Heisenberg group over F. Let 

0 0 1 

X =  (� � ! ) and Y = ( � � ; ) be clements of H(F).  
0 0 1 0 0 1 

(a) Compute the matrix product XY and deduce that H (F) is closed under matrix mul
tiplication. Exhibit explicit matrices such that XY # YX (so that H(F) is always 
non-abelian). 
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(b) Find an explicit formula for the matrix inverse x-1 and deduce that H(F) is closed 
under inverses. 

(c) Prove the associative law for H(F) and deduce that H(F) is a group of order I FI 3 . 
(Do not assume that matrix multiplication is associative.) 

(d) Find the order of each element of the finite group H (Z/2Z) . 
(e) Prove that every nonidentity element of the group H (JR) has infinite order. 

1 .5 TH E QUATERNION GROUP 

The quatemion group, Q8, is  defined by 

Qg = { 1 ,  - 1 ,  i, -i, j, -j, k, -k} 
with product · computed as follows: 

1 · a = a  · I  = a , for all a E Qs 

(- 1) . (- 1) = 1 ,  (- 1 )  · a = a · (- 1 )  = -a , for all a E Q8 

i · i = j · j = k · k = - 1  

; . j = k, 
j · k  = i , 
k .  i = j, 

j . i = -k 
k .  j = -i 
i . k = -j. 

As usual, we shall henceforth write ab for a · b. It is tedious to check the associative 
law (we shall prove this later by less computational means), but the other axioms are 
easily checked. Note that Qs is a non-abelian group of order 8. 

E X E R C I S E S 

1. Compute the order of each of the elements in Qg. 

2. Write out the group tables- for S3 , Ds and Qg. 

3. Find a set of generators and relations for Qg. 

1 .6 HOMOMORPH ISMS AND ISOMORPH ISMS 

In this section we make precise the notion of when two groups .. look the same," that is, 
have exactly the same group-theoretic structure. This is the notion of an isomorphism 
between two groups. We first define the notion of a homomorphism about which we 
shall have a great deal more to say later. 

Definition. Let (G,  •) and (H, o) be groups. A map qJ :  G � H such that 

({J(X * y) = ({J(X) ¢ qJ (y) , 

is called a homomorphism. 

36 

for all x ,  y E G 
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When the group operations for G and H are not explicitly written, the homomor
phism condition becomes simply 

cp(xy) = cp(x)cp(y) 
but it is important to keep in mind that the product xy on the left is computed in G 
and the product cp(x)cp(y) on the right is computed in H. Intuitively, a map cp is a 
homomorphism if it respects the group structures of its domain and codomain. 

Definition. The map cp : G -+ H is called an isomorphism and G and H are said to 
be isomorphic or of the same isomorphism type, written G � H, if 

(1) cp is a homomorphism (i.e., cp(xy) = cp(x)cp(y)), and 
(2) cp is a bijection. 

In other words, the groups G and H are isomorphic if there is a bijection between 
them which preserves the group operations. Intuitively, G and H are the same group 
except that the elements and the operations may be written differently in G and H. 
Thus any property which G has which depends only on the group structure of G (i.e., 
can be derived from the group axioms - for example, commutativity of the group) also 
holds in H. Note that this formally justifies writing all our group operations as · since 
changing the symbol of the operation does not change the isomorphism type. 

Examples 

(1) For any group G, G � G. The identity map provides an obvious isomorphism but 
not, in general, the only isomorphism from G to itself. More generally, let Q be 
any nonempty collection of groups. It is easy to check that the relation � is an 
equivalence relation on Q and the equivalence classes are called isomorphism classes. 
This accounts for the somewhat symmetric wording of the definition of"isomorphism." 

(2) The exponential map exp : JR. �  JR.+ defined by exp(x) = e, where e is the base of 
the natural logarithm, is an isomorphism from (JR., +) to (JR.+ , x ) .  Exp is a bijection 
since it has an inverse function (namely loge ) and exp preserves the group operations 
since ex+y = ex eY .  In this example both the elements and the operations are different 
yet the two groups are isomorphic, that is, as groups they have identical structures. 

(3) In this example we show that the isomorphism type of a symmetric group depends 

only on the cardinality of the underlying set being permuted. 

Let n and Q be nonempty sets. The symmetric groups S"' and Sn are isomorphic 

if I n  I = I Q I . We can see this intuitively as follows: given that I n  I = IQ I ,  there is a 

bijection () from n onto Q. Think of the elements of n and Q as being glued together 

via 8, i.e., each x E n is glued to 8(x) E Q. To obtain a map 9 : S"' � Sn let a E S"' 
be a permutation of n and let 9(a) be the permutation of Q which moves the elements 

of Q in the same way a moves the corresponding glued elements of n; that is, if 

a (x) = y, for some x, y E n ,  then 9(a) (8 (x)) = ()(y) in Q. Since the set bijection () 

has an inverse, one can easily check that the map between symmetric groups also has 

an inverse. The precise technical definition of the map 9 and the straightforward, albeit 

tedious, checking of the properties which ensure 9 is an isomorphism are relegated to 

the following exercises. 

Conversely, if S"' � So_, then 1 n 1  = IQ I ;  we prove this only when the underlying 
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sets are finite (when both 11 and Q are infinite sets the proof is harder and will be 
given as an exercise in Chapter 4). Since any isomorphism between two groups G 
and H is, a priori, a bijection between them, a necessary condition for isomorphism 
is I SA I = i Sn i .  When 11 is a finite set of order n, then ! SA l  = n ! . We actually only 
proved this for Sn , however the same reasoning applies for s,.., . Similarly, if Q is a 
finite set of order m, then I Sn i = m ! .  Thus if s,.., and Sn are isomorphic then n !  = m !, 
so m = n, i.e., 1 11 1  = lfl l .  

Many more examples of isomorphisms will appear throughout the text. When 
we study different structures (rings, fields, vector spaces, etc.) we shall formulate 
corresponding notions of isomorphisms between respective structures. One of the 
central problems in mathematics is to determine what properties of a structure specify 
its isomorphism type ( i.e. ,  to prove that if G is an object with some structure (such as a 
group) and G has property P, then any other similarly structured object (group) X with 
property P is isomorphic to G). Theorems of this type are referred to as classification 
theorems. For example, we shall prove that 

any non-abelian group of order 6 is isomorphic to s3 

(so here G is the group S3 and P is the property "non-abelian and of order 6"). From 
this classification theorem we obtain D6 � S3 and G Lz (W z) � S3 without having to 
find explicit maps between these groups. Note that it is not true that any group of order 
6 is isomorphic to S3 . In fact we shall prove that up to isomorphism there are precisely 
two groups of order 6: S3 and 7lj67l (i.e., any group of order 6 is isomorphic to one 
of these two groups and S3 is not isomorphic to 7lj67l). Note that the conclusion is 
less specific (there are two possible types); however, the hypotheses are easier to check 
(namely, check to see if the order is 6). Results of the latter type are also referred to as 
classifications. Generally speaking it is subtle and difficult, even in specific instances, 
to determine whether or not two groups (or other mathematical objects) are isomorphic 
- constructing an explicit map between them which preserves the group operations 
or proving no such map exists is, except in tiny cases, computationally unfeasible as 
indicated already in trying to prove the above classification of groups of order 6 without 
further theory. 

It is occasionally easy to see that two given groups are not isomorphic. For example, 
the exercises below assert that if <p : G -+ H is an isomorphism, then, in particular, 

(a) I G I = I H I 
(b) G is abelian if and only if H is abelian 
(c) for all x E G, lx l  = l<p (x) l . 

Thus S3 and 7lj67l are not isomorphic (as indicated above) since one is abelian and the 
other is not. Also, (JR-{ 0}, x )  and (JR, +) cannot be isomorphic because in (JR-{ 0} , x )  

the element - 1  has order 2 whereas (lR, +) has no element of order 2 ,  contrary to (c). 
Finally, we record one very useful fact that we shall prove later (when we discuss 

free groups) dealing with the question of homomorphisms and isomorphisms between 
two groups given by generators and relations: 

Let G be a finite group of order n for which we have a presentation and let 
S = {st , . . .  , sm } be the generators. Let H be another group and {rt , . . . , rm } be el
ements of H. Suppose that any relation satisfied in G by the s; is also satisfied in H 
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when each s; is replaced by r; . Then there is a (unique) homomorphism q; : G --+ H 
which maps s; to r; . If we have a presentation for G, then we need only check the 
relations specified by this presentation (since, by definition of a presentation, every 
relation can be deduced from the relations given in the presentation). If H is generated 
by the elements {rt . . . .  , rm }, then q; is surjective (any product of the r; 's is the image 
of the corresponding product of the s; 's). If, in addition, H has the same (finite) or
der as G, then any surjective map is necessarily injective, i.e., q; is an isomorphism: 
G � H. Intuitively, we can map the generators of G to any elements of H and obtain 
a homomorphism provided that the relations in G are still satisfied. 

Readers may already be familiar with the corresponding statement for vector spaces. 
Suppose V is a finite dimensional vector space of dimension n with basis S and W is 
another vector space. Then we can specify a linear transformation from V to W by 
mapping the elements of S to arbitrary vectors in W (here there are no relations to 
satisfy). If W is also of dimension n and the chosen vectors in W span W (and so are a 
basis for W) then this linear transformation is invertible (a vector space isomorphism). 

Examples 

(1) Recall that D2n = ( r, s I rn = s2 = 1 ,  sr = r- 1 s ) . Suppose H is a group containing 
elements a and b with an = 1 ,  b2 = 1 and ba = a-1 b. Then there is a homomorphism 
from D2n to H mapping r to a and s to b. For instance, let k be an integer dividing n 
with k � 3 and let D2k = { r1 .  s1 I r� = sf = 1 , s1 r1 = r}1 s1 ) . Define 

q; : D2n � D2k by q;(r) = r1 and q;(s) = s1 . 

If we write n = km, then since r� = 1, also r� = (r� )m = 1 .  Thus the three relations 
satisfied by r, s in Dln are satisfied by n ,  s1 in Dlk · Thus q; extends (uniquely) to a 
homomorphism from D2n to D2k ·  Since {r1 , si } generates D2k . q; is surjective. This 
homomorphism is not an isomorphism if k < n. 

(2) Following up on the preceding example, let G = D6 be as presented above. Check 
that in H = S3 the elements a = (1 2 3) and b = ( 1 2) satisfy the relations : a3 = 1 ,  
b2 = 1 and ba = ab-1 • Thus there is a homomorphism from D6 to S3 which sends 
r �--+ a and s �--+ b. One may further check that S3 is generated by a and b, so this 
homomorphism is surjective. Since D6 and S3 both have order 6, this homomorphism 
is an isomorphism: D6 � S3 . 

Note that the element a in the examples above need not have order n ( i.e., n need 
not be the smallest power of a giving the identity in H) and similarly b need not have 
order 2 (for example b could well be the identity if a = a-1 ). This allows us to more 
easily construct homomorphisms and is in keeping with the idea that the generators and 
relations for a group G constitute a complete set of data for the group structure of G. 

E X E R C I S E S  

Let G and H be groups. 

1. Let q; : G � H be a homomorphism. 
(a) Prove that q;(xn ) = q;(x )n for all n E ::2';+. 
(b) Do part (a) for n = - 1  and deduce that q;(xn) = q;(x)n for all n E ::2':. 
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2. If q; :  G ----* H is an isomorphism, prove that lq;(x) l = lx l for all x E G. Deduce that any 
two isomorphic groups have the same number of elements of order n for each n E z+ . Is 
the result true if q; is only assumed to be a homomorphism? 

3. If q; : G """"* H is an isomorphism, prove that G is abelian if and only if H is abelian. If 
q; : G """"* H is a homomorphism, what additional conditions on q; (if any) are sufficient to 
ensure that if G is abelian, then so is H? 

4. Prove that the multiplicative groups IR - {0} and C - {0} are not isomorphic. 

5. Prove that the additive groups IR and (Q are not isomorphic. 

6. Prove that the additive groups Z and (Q are not isomorphic. 

7. Prove that Ds and Qs are not isomorphic. 

8. Prove that if n i= m, Sn and Sm are not isomorphic. 

9. Prove that D24 and S4 are not isomorphic. 

10. Fill in the details of the proof that the symmetric groups S"' and Sn are isomorphic if 
l b. I = lfll as follows: let e : b. """"* f2 be a bijection. Define 

(/J : s"' """"* Sn by q;(a) = e 0 a 0 e - 1 for all a E s"' 
and prove the following: 
(a) q; is well defined, that is, if a is a permutation of b. then 8 o a o e-I is a permutation 

of fl. 
(b) q; is a bijection from S"' onto Sn. [Find a 2-sided inverse for q;.] 
(c) q; is a homomorphism, that is,  q;(a o r) = q;(a) o q;(r) . 

Note the similarity to the change of basis or similarity transformations for matrices (we 
shall see the connections between these later in the text). 

11. Let A and B be groups. Prove that A x B � B x A.  
12. Let A , B, and C be groups and let G = A x B and H = B x C. Prove that G x C � A x H. 

13. Let G and H be groups and let q; : G """"* H be a homomorphism. Prove that the image 
of rp, q;(G) , is a subgroup of H (cf. Exercise 26 of Section 1 ). Prove that if q; is injective 
then G � q; (G) . 

14. Let G and H be groups and let q; : G """"* H be a homomorphism. Define the kernel of 
rp to be {g E G 1 q;(g) = 1 H }  (so the kernel is the set of elements in G which map to 
the identity of H, i.e., is the fiber over the identity of H). Prove that the kernel of q; is a 
subgroup ( cf. Exercise 26 of Section 1 )  of G. Prove that q; is injective if and only if the 

kernel of q; is the identity subgroup of G. 

15. Define a map ]'{ : JR2 """"* IR by ]'{((X ,  y)) = x .  Prove that ]'{ is a homomorphism and find 
the kernel of ]'{ (cf. Exercise 14). 

16. Let A and B be groups and let G be their direct product, A x B. Prove that the maps 
]'{I : G """"* A and 1'{2 : G """"* B defined by 1'{1 ((a , b)) = a and ]'{z ((a , b)) = b are 
homomorphisms and find their kernels (cf. Exercise 14). 

17. Let G be any group. Prove that the map from G to itself defined by g � g-1 is a 
homomorphism if and only if G is abelian. 

18. Let G be any group. Prove that the map from G to itself defined by g � g2 is a homo
morphism if and only if G is abelian. 

19. Let G = {z E c I zn = 1 for some n E z+ }.  Prove that for any fixed integer k > 1 
the map from G to itself defined by z � zk is a swjective homomorphism but is not an 
isomorphism. 
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20. Let G be a group and let Aut( G) be the set of all isomorphisms from G onto G. Prove that 
Aut( G) is a group under function composition (called the automorphism group of G and 
the elements of Aut( G) are called automorphisms of G). 

21. Prove that for each fixed nonzero k E Q the map from Q to itself defined by q r+ kq is an 
automorphism of Q (cf. Exercise 20). 

22. Let A be an abelian group and fix some k E Z. Prove that the map a r+ ak is a homomor
phism from A to itself. If k = - 1 prove that this homomorphism is an isomorphism (i.e., 
is an automorphism of A). 

23. Let G be a finite group which possesses an automorphism a (cf. Exercise 20) such that 
a (g) = g if and only if g = I .  If a2 is the identity map from G to G, prove that G is 
abelian (such an automorphism a is called fixed point free of order 2). [Show that every 
element of G can be written in the form x - 1a (x) and apply a to such an expression.] 

24. Let G be a finite group and let x and y be distinct elements of order 2 in G that generate 
G. Prove that G � D2n . where n = ixy i .  [See Exercise 6 in Section 2.] 

25. Let n E z+. let r and s be the usual generators of Dzn and let e = 2n In. 
( ) p  th th 

. ( cos e - sin e ) . th 
. f h  li c · a rove at e matnx . n n ts e matnx o t e near tmns1onnatton Slll u COS u 

which rotates the x ,  y plane about the origin in a counterclockwise direction by e 
radians. 

(b) Prove that the map cp : Dzn � GL2 (IR) defined on generators by 

- sin e ) cos e 
and 

extends to a homomorphism of Dzn into GL2 (IR) . 

cp(s) = ( � �) 
(c) Prove that the homomorphism cp in part (b) is injective. 

26. Let i and j be the generators of Qs described in Section 5. Prove that the map cp from Qs 
to G Lz (C) defined on generators by 

. ( R o ) cp(l ) = o -R and 

extends to a homomorphism. Prove that cp is injective. 

1 .7 GROUP ACTIONS 

In this section we introduce the precise definition of a group acting on a set and present 
some examples. Group actions will be a powerful tool which we shall use both for 
proving theorems for abstract groups and for unravelling the structure of specific ex
amples. Moreover, the concept of an "action" is a theme which will recur throughout 
the text as a method for studying an algebraic object by seeing how it can act on other 
structures. 

Definition. A group action of a group G on a set A is a map from G x A to A (written 
as g -a, for all g E G and a E A) satisfying the following properties: 

(1) 81 · (gz · a) = (8182) -a, for all 81 . 82 E G, a E A, and 
(2) 1 - a  = a, for all a E A. 
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We shall immediately become less formal and say G is a group acting on a set A. 
The expression g · a will usually be written simply as  ga when there is no danger of 
confusing this map with, say, the group operation (remember, · is not a binary operation 
and ga is always a member of A). Note that on the left hand side of the equation in 
property ( 1 )  g2 · a is an element of A so it makes sense to act on this by g1 • On the 
right hand side of this equation the product (g1gz) is taken in G and the resulting group 
element acts on the set element a. 

Before giving some examples of group actions we make some observations. Let 
the group G act on the set A. For each fixed g E G we get a map erg defined by 

erg : A �  A 

erg (a) = g ·a .  
We prove two important facts: 

(i) for each fixed g E G, erg is a permutation of A, and 
(ii) the map from G to SA defined by g �----+ erg is a homomorphism. 

To see that erg is a permutation of A we show that as a set map from A to A it has a 
2-sided inverse, namely erg-' (it is then a permutation by Proposition 1 of Section 0. 1 ). 
For all a E A 

(erg-' o erg) (a) = erg-' (erg (a)) 
= g-I · (g ·a) 
= (g-lg) ·a  
= 1 -a = a  

(by definition of function composition) 

(by definition of erg-' and erg) 
(by property ( 1 )  of an action) 

(by property (2) of an action). 

This proves erg-' o erg is the identity map from A to A. Since g was arbitrary, we may 
interchange the roles of g and g-1 to obtain erg o erg-' is also the identity map on A.  
Thus erg has a 2-sided inverse, hence i s  a permutation of A.  

To check assertion (ii) above let cp : G � SA be defined by cp(g) = erg . Note that 
part (i) shows that erg is indeed an element of SA . To see that cp is a homomorphism 
we must prove cp(g1g2) = cp(g1 ) o cp(g2) (recall that SA is a group under function 
composition). The permutations cp(g1 gz) and cp(g1 ) o cp(gz) are equal if and only if their 
values agree on every element a E A. For all a E A 

cp(gigz) (a) = erg, g2 (a) 
= (gigz) · a 
= gi · (gz · a) 
= erg, (erg2 (a)) 
= (cp(gi ) o cp(gz))(a) 

This proves assertion (ii) above. 

(by definition of cp) 
(by definition of erg, g) 
(by property ( 1 )  of an action) 

(by definition of erg, and erg2 ) 
(by definition of cp ). 

Intuitively, a group action of G on a set A just means that every element g in G acts 
as a permutation on A in a manner consistent with the group operations in G; assertions 
(i) and (ii) above make this precise. The homomorphism from G to SA given above is 
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called the permutation representation associated to the given action. It is easy to see 
that this process is reversible in the sense that if ({J : G ---+ SA is any homomorphism 
from a group G to the symmetric group on a set A, then the map from G x A to A 
defined by 

g · a  = ({J(g) (a) for all g E G, and all a E A 

satisfies the properties of a group action of G on A.  Thus actions of a group G on a 
set A and the homomorphisms from G into the symmetric group SA are in bijective 
correspondence (i.e., are essentially the same notion, phrased in different terminology). 

We should also note that the definition of an action might have been more precisely 
named a left action since the group elements appear on the left of the set elements. We 
could similarly define the notion of a right action. 

Examples 

Let G be a group and A a nonempty set. In each of the following examples the check of 
properties ( 1 )  and (2) of an action are left as exercises. 
(1) Let ga = a, for all g E G , a E A. Properties ( 1 )  and (2) of a group action follow 

immediately. This action is called the trivial action and G is said to act trivially on 
A. Note that distinct elements of G induce the same permutation on A (in this case 
the identity permU1ation). The associated permutation representation G ---* SA is the 
trivial homomorphism which maps every element of G to the identity. 

If G acts on a set B and distinct elements of G induce distinct permutations of 
B, the action is said to be faithful. A faithful action is therefore one in which the 
associated permutation representation is injective. 

The kernel of the action of G on B is defined to be {g E G I gb = b for all b E B}, 
namely the elements of G which fix all the elements of B. For the trivial action, the 
kernel of the action is all of G and this action is not faithful when IG I  > 1 .  

(2) The axioms for a vector space V over a field F include the two axioms that the 
multiplicative group px act on the set V.  Thus vector spaces are familiar examples 
of actions of multiplicative groups of fields where there is even more structure (in 
particular, V must be an abelian group) which can be exploited. In the special case 
when V = m.n and F = IR the action is specified by 

a(r1 , rz . . . . , rn)  = (ar1 , arz , . . . .  arn ) 

for all a E IR, (r1 ,  rz ,  . . . , rn ) E m.n , where ar; is just multiplication of two real 
numbers. 

(3) For any nonempty set A the symmetric group SA acts on A by a · a = a (a) ,  for all 
a E SA , a E A.  The associated permutation representation is the identity map from 
SA to itself. 

(4) If we fix a labelling of the vertices of a regular n-gon, each element a of Dzn gives 
rise to a permutation aa of { 1 ,  2, . . . , n} by the way the symmetry a permutes the 
corresponding vertices. The map of D2n x { 1 ,  2, . . .  , n} onto { 1 ,  2, . . . , n } defined 
by (a, i ) ---* aa (i) defines a group action of Dzn on { 1 ,  2, . . .  , n} .  In keeping with 
our notation for group actions we can now dispense with the formal and cumbersome 
notation a a (i )  and write ai in its place. Note that this action is faithful: distinct 
symmetries of a regular n-gon induce distinct permutations of the vertices. 

When n = 3 the action of D6 on the three (labelled) vertices of a triangle gives 
an injective homomorphism from D6 to S3 . Since these groups have the same order, 
this map must also be smjective, i.e., is an isomorphism: D6 � S3 . This is another 
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proof of the same fact we established via generators and relations in the preceding 
section. Geometrically it says that any permutation of the vertices of a triangle is a 
symmetry. The analogous statement is not true for any n-gon with n � 4 Gust by order 
considerations we cannot have D2n isomorphic to Sn for any n � 4). 

(5) Let G be any group and let A =  G. Define a map from G x A to A by g ·a = ga, 
for each g E G and a E A, where ga on the right hand side is the product of g and 
a in the group G. This gives a group action of G on itself, where each (fixed) g E G 
permutes the elements of G by left multiplication: 

g :  a r+ ga for all a E G 

(or, if G is written additively, we get a r+ g + a  and call this left translation). This 
action is called the left regular action of G on itself. By the cancellation laws, this 
action is faithful (check this). 

Other examples of actions are given in the exercises. 

E X E R C I S E S  

I. Let F be a field. Show that the multiplicative group of nonzero elements of F (denoted 
by Fx ) acts on the set F by g ·a = ga, where g E px , a E F and ga is the usual product 
in F of the two field elements (state clearly which axioms in the definition of a field are 
used). 

2. Show that the additive group Z acts on itself by z ·a = z + a  for all z, a E Z. 

3. Show that the additive group IR acts on the x ,  y plane IR x IR by r · (x ,  y) = (x + ry, y) . 
4. Let G be a group acting on a set A and fix some a E A. Show that the following sets are 

subgroups of G ( cf. Exercise 26 of Section 1 ): 
(a) the kernel of the action, 
(b) {g E G I ga = a}  - this subgroup is called the stabilizer of a in G. 

5. Prove that the kernel of an action of the group G on the set A is the same as the kernel of 
the corresponding permutation representation G --+  SA (cf. Exercise 14 in Section 6). 

6. Prove that a group G acts faithfully on a set A if and only if the kernel of the action is the 
set consisting only of the identity. 

7. Prove that in Example 2 in this section the action is faithful. 

8. Let A be a nonempty set and let k be a positive integer with k :::; I A 1 .  The symmetric group 
SA acts on the set B consisting of all subsets of A of cardinality k by cr · {at , . . . , ak } = 
{cr (at ) , . . . , cr (ak) } .  
(a) Prove that this is a group action. 
(b) Describe explicitly how the elements (1 2) and (1 2 3) act on the six 2-element subsets 

of { 1 ,  2, 3, 4}. 

9. Do both parts of the preceding exercise with "ordered k-tuples" in place of "k-element 
subsets," where the action on k-tuples is defined as above but with set braces replaced by 
parentheses (note that, for example, the 2-tuples ( 1 ,2) and (2, 1 )  are different even though 
the sets { 1 ,  2} and {2, 1 }  are the same, so the sets being acted upon are different). 

10. With reference to the preceding two exercises determine: 
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(a) for which values of k the action of Sn on k-element subsets is faithful, and 
(b) for which values of k the action of Sn on ordered k-tuples is faithful. 

Chap. 1 I ntroduction to Groups 



11. Write out the cycle decomposition of the eight permutations in S4 corresponding to the 
elements of Ds given by the action of Ds on the vertices of a square (where the vertices 
of the square are labelled as in Section 2). 

12. Assume n is an even positive integer and show that D2n acts on the set consisting of pairs 
of opposite vertices of a regular n-gon. Find the kernel of this action (label vertices as 
usual). 

13. Find the kernel of the left regular action. 

14. Let G be a group and let A = G. Show that if G is non-abelian then the maps defined by 
g ·a = ag for all g, a E G do not satisfy the axioms of a (left) group action of G on itself. 

15. Let G be any group and let A = G. Show that the maps defined by g · a  = ag-1 for all 
g, o E G do satisfy the axioms of a (left) group action of G on itself. 

16. Let G be any group and let A = G. Show that the maps defined by g ·a = gag-1 for all 
g, a E G do satisfy the axioms of a (left) group action (this action of G on itself is called 
conjugation). 

17. Let G be a group and let G act on itself by left conjugation, so each g E G maps G to G 
by 

x r+ gxg-1 • 

For fixed g E G, prove that conjugation by g is an isomorphism from G onto itself (i.e. , 
is an automorphism of G - cf. Exercise 20, Section 6). Deduce that x and gxg-1 have 
the same order for all x in G and that for any subset A of G, IA I  = l gAg-1 1 (here 
gAg-1 = {gag-1 I a E A}). 

18. Let H be a group acting on a set A. Prove that the relation � on A defined by 

a � b if and only if a = hb for some h E H 

is an equivalence relation. (For each x E A the equivalence class of x under � is called 
the orbit of x under the action of H. The orbits under the action of H partition the set A.) 

19. Let H be a subgroup (cf. Exercise 26 of Section 1 )  of the finite group G and let H act on 
G (here A = G) by left multiplication. Let x E G and let 0 be the orbit of x under the 
action of H. Prove that the map 

H � 0 defined by h �-+ hx 

is a bijection (hence all orbits have cardinality I H I  ). From this and the preceding exercise 
deduce Lagrange's Theorem: 

ifG is a finite group and H is a subgroup ofG then I H I  divides IG I . 

20. Show that the group of rigid motions of a tetrahedron is isomorphic to a subgroup (cf. 
Exercise 26 of Section 1 )  of S4 . 

21. Show that the group of rigid motions of a cube is isomorphic to S4 . [This group acts on 
the set of four pairs of opposite vertices.] 

22. Show that the group of rigid motions of an octahedron is isomorphic to a subgroup ( cf. 
Exercise 26 of Section 1 )  of S4 . [This group acts on the set offour pairs of opposite faces.] 
Deduce that the groups of rigid motions of a cube and an octahedron are isomorphic. (These 
groups are isomorphic because these solids are "dual" - see Introduction to Geometry 
by H. Coxeter, Wiley, 1961 .  We shall see later that the groups of rigid motions of the 
dodecahedron and icosahedron are isomorphic as well - these solids are also dual.) 

23. Explain why the action of the group of rigid motions of a cube on the set of three pairs of 
opposite faces is not faithful. Find the kernel of this action. 
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CHAPTER 2 

Su bgro u ps 

2.1 DEFIN ITION AND EXAMPLES 

One basic method for unravelling the structure of any mathematical object which is 
defined by a set of axioms is to study subsets of that object which also satisfy the 
same axioms. We begin this program by discussing subgroups of a group. A second 
basic method for unravelling structure is to study quotients of an object; the notion of 
a quotient group, which is a way (roughly speaking) of collapsing one group onto a 
smaller group, will be dealt with in the next chapter. Both of these themes will recur 
throughout the text as we study subgroups and quotient groups of a group, subrings and 
quotient rings of a ring, subspaces and quotient spaces of a vector space, etc. 

Definition. Let G be a group. The subset H of G is a subgroup of G if H is nonempty 
and H is closed under products and inverses (i.e ., x ,  y E H implies x-1 E H and 
xy E H). If H is a subgroup of G we shall write H :::::: G. 

Subgroups of G are just subsets of G which are themselves groups with respect 
to the operation defined in G, i.e., the binary operation on G restricts to give a binary 
operation on H which is associative, has an identity in H, and has inverses in H for all 
the elements of H. 

When we say that H is a subgroup of G we shall always mean that the operation 
for the group H is the operation on G restricted to H (in general it is possible that the 
subset H has the structure of a group with respect to some operation other than the 
operation on G restricted to H, cf. Example 5(a) following). As we have been doing for 
functions restricted to a subset, we shall denote the operation for G and the operation 
for the subgroup H by the same symbol. If H :::::: G and H =/= G we shall write H < G 
to emphasize that the containment is proper. 

If H is a subgroup of G then, since the operation for H is the operation for G 
restricted to H, any equation in the subgroup H may also be viewed as an equation in 
the group G. Thus the cancellation laws for G imply that the identity for H is the same 
as the identity of G (in particular, every subgroup must contain 1 ,  the identity of G) 
and the inverse of an element x in H is the same as the inverse of x when considered 
as an element of G (so the notation x -1 is unambiguous). 
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Examples 

(1) /Z � Q and Q � JR. with the operation of addition. 
(2) Any group G has two subgroups: H = G and H = { 1 } ;  the latter is called the trivial 

subgroup and will henceforth be denoted by 1 .  

(3) If G = Dzn is the dihedral group of order 2n, let H be { 1 ,  r, r2 , . . . , rn- 1 }, the set of 
all rotations in G. Since the product of two rotations is again a rotation and the inverse 
of a rotation is also a rotation it follows that H is a subgroup of Dzn of order n. 

( 4) The set of  even integers is a subgroup of the group of  all integers under addition. 
(5) Some examples of subsets which are not subgroups: 

(a) Q - {0} under multiplication is not a subgroup of JR. under addition even though 
both are groups and Q - {0} is a subset of JR.; the operation of multiplication on 
Q - {0} is not the restriction of the operation of addition on JR.. 

(b) z+ (under addition) is not a subgroup of /Z (under addition) because although 
z+ is closed under +, it does not contain the identity, 0, of /Z and although each 
X E z+ has an additive inverse, -X, in /Z, -X f/ z+ , i .e., z+ is not closed under 
the operation of taking inverses (in particular, z+ is not a group under addition). 
For analogous reasons, (/Z - {0} , x )  is not a subgroup of (Q - {0} , x) .  

(c) D6 is  not a subgroup of Ds since the former is  not even a subset of the latter. 
(6) The relation "is a subgroup of' is transitive: if H is a subgroup of a group G and K 

is a subgroup of H, then K is also a subgroup of G. 

As we saw in Chapter 1 ,  even for easy examples checking that all the group axioms 
(especially the associative law) hold for any given binary operation can be tedious at 
best. Once we know that we have a group, however, checking that a subset of it is (or 
is not) a subgroup is a much easier task, since all we need to check is closure under 
multiplication and under taking inverses. The next proposition shows that these can be 
amalgamated into a single test and also shows that for finite groups it suffices to check 
for closure under multiplication. 

Proposition 1. (The Subgroup Criterion) A subset H of a group G is a subgroup if and 
only if 

(1) H 1- 0, and 
(2) for all x ,  y E H, xy-1 E H. 

Furthermore, if H is finite, then it suffices to check that H is nonempty and closed 
under multiplication. 

Proof" If H is a subgroup of G, then certainly ( 1 )  and (2) hold because H contains 
the identity of G and the inverse of each of its elements and because H is closed under 
multiplication. 

It remains to show conversely that if H satisfies both ( 1 )  and (2), then H � G. Let 
x be any element in H (such x exists by property ( 1 )) .  Let y = x and apply property 
(2) to deduce that 1 = xx -1  E H, so H contains the identity of G. Then, again by (2), 
since H contains 1 and x, H contains the element 1x- 1 , i.e., x- 1 E H and H is closed 
under taking inverses. Finally, if x and y are any two elements of H, then H contains 
x and y- 1 by what we have just proved, so by (2), H also contains x (y-1)- 1  = xy. 
Hence H is also closed under multiplication, which proves H is a subgroup of G. 
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Suppose now that H is finite and closed under multiplication and let x be any 
element in H. Then there are only finitely many distinct elements among x ,  x2 ,  x3 ,  • • •  
and so xa = xh for some integers a ,  b with b > a .  If n = b - a ,  then xn 

= I so in 
particular every element x E H is of finite order. Then xn-1 = x-1  is an element of H ,  
so H i s  automatically also closed under inverses. 

E X E R C I S E S  
Let G be a group. 

1. In each of (a) - (e) prove that the specified subset is a subgroup of the given group: 
(a) the set of complex numbers of the form a + ai ,  a E IR (under addition) 
(b) the set of complex numbers of absolute value 1 ,  i.e., the unit circle in the complex 

plane (under multiplication) 
(c) for fixed n E z+ the set of rational numbers whose denominators divide n (under 

addition) 
(d) for fixed n E z+ the set of rational numbers whose denominators are relatively prime 

to n (under addition) 
(e) the set of nonzero real numbers whose square is a rational number (under multiplica

tion). 

2. In each of (a) - (e) prove that the specified subset is not a subgroup of the given group: 
(a) the set of 2-cycles in Sn for n � 3 
(b) the set of reflections in D2n for n � 3 
(c) for n a composite integer > 1 and G a group containing an element of order n, the set 

{x E G l lx l = n} U { 1 } 
(d) the set of (positive and negative) odd integers in Z together with 0 
(e) the set of real numbers whose square is a rational number (under addition). 

3. Show that the following subsets of the dihedral group Ds are actually subgroups: 
(a) { 1 , r2 ,  s, sr2}, (b) { 1 ,  r2 ,  sr, sr3} . 

4. Give an explicit example of a group G and an infinite subset H of G that is closed under 
the group operation but is not a subgroup of G. 

5. Prove that G cannot have a subgroup H with IHI  = n - 1 ,  where n = I G I > 2.  

6. Let G be an abelian group. Prove that {g E G I l g l  < oo} is  a subgroup of G (called the 
torsion subgroup of G). Give an explicit example where this set is not a subgroup when 
G is non-abelian. 

7. Fix some n E Z with n > I .  Find the torsion subgroup (cf. the previous exercise) of 
Z x (Z/nZ) . Show that the set of elements of infinite order together with the identity is 
not a subgroup of this direct product. 

8. Let H and K be subgroups of G. Prove that H U K is a subgroup if and only if either 
H £  K or K £  H. 

9. Let G = GLn (F), where F is any field. Define 

SLn (F) = {A E GLn (F) I det(A) = 1 } 
(called the special linear group). Prove that SLn (F) :::; GLn (F). 

10. (a) Prove that if H and K are subgroups of G then so is their intersection H n K. 
(b) Prove that the intersection of an arbitrary nonempty collection of subgroups of G is 

again a subgroup of G (do not assume the collection is countable). 

11. Let A and B be groups. Prove that the following sets are subgroups of the direct product 
A X B:  
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(a) { (a ,  1 )  I a E A} 
(b) {(1 ,  b) I b E B} 
(c) { (a, a) I a E A} ,  where here we assume B = A  (called the diagonal subgroup). 

12. Let A be an abelian group and fix some n E 2.. Prove that the following sets are subgroups 
of A: 
(a) {a" I a E A} 
(b) {a E A I a" = 1 }. 

13. Let H be a subgroup of the additive group of rational numbers with the property that 
1 /x E H for every nonzero element x of H. Prove that H = 0 or Q. 

14. Show that {x E D2n I x2 = 1 }  is not a subgroup of D2n (here n ::: 3). 

15. Let Ht ::;: H2 ::;: · · · be an ascending chain of subgroups of G .  Prove that u�1 H; is a 
subgroup of G.  

16. Let n E z+ and let F be a field. Prove that the set {(a;j ) E GL, (F) I a;j = O for all i > j} 
i s  a subgroup of GL, (F) (called the group of upper triangular matrices). 

17. Let n E z+ and let F be a field. Prove that the set {(aij ) E GL, (F) I aij = 0 for all i > j ,  
and a; ; = 1 for all i }  is a subgroup of GL, (F) . 

2.2 CENTRALIZERS AN D NORMALIZERS, STABILIZERS AND KERNELS 

We now introduce some important families of subgroups of an arbitrary group G which 
in particular provide many examples of subgroups. Let A be any nonempty subset 
of G. 

Definition. Define Cc (A) = {g E G I gag- 1 = a  for all a E A} .  This subset of G 
is called the centralizer of A in G. Since gag-1 = a  if and only if ga = ag, Cc (A) is 
the set of elements of G which commute with every element of A. 

We show Cc (A) is a subgroup of G. First of all, Cc (A) =f:. I2J because 1 E Cc (A) :  
the definition of the identity specifies that la = al ,  for all a E G (in particular, for 
all a E A) so 1 satisfies the defining condition for membership in Cc (A) .  Secondly, 
assume x, y E Cc (A), that is, for all a E A, xax-1 = a and yay-1 = a (note that 
this does IWt mean xy = yx). Observe first that since yay- l = a, multiplying both 
sides of this first on the left by y- 1 , then on the right by y and then simplifying gives 
a = y-1ay, i.e., y-1 E Cc (A) so that Cc (A) is closed under taking inverses. Now 

(xy)a (xy)-1 = (xy)a (y- lx-1 ) 
= x (yay-1 )x- 1 
= xax-1 

(by Proposition 1 . 1 (4) applied to (xy)-1 ) 

(by the associative law) 

(since y E Cc (A) ) 
= a  (since x E Cc (A) ) 

so xy E Cc (A) and Cc (A) is closed under products, hence Cc (A) ::::; G. 
In the special case when A = {a} we shall write simply Cc (a) instead of Cc ({a}) . 

In this case a" E Cc (a) for all n E Z. 
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For example, in an abelian group G, CG (A) = G, for all subsets A.  One can 
check by inspection that CQ8 (i ) = { ± 1 .  ±i } .  Some other examples are specified in the 
exercises. 

We shall shortly discuss how to minimize the calculation of commutativities be
tween single group elements which appears to be inherent in the computation of cen
tralizers (and other subgroups of a similar nature). 

Definition. Define Z(G) = {g E G I gx = xg for all x E G}, the set of elements 
commuting with all the elements of G.  This subset of G is called the center of G .  

Note that Z(G) = CG (G), so the argument above proves Z(G) :'S G as a special 
case. As an exercise, the reader may wish to prove Z (G) is a subgroup directly. 

Definition. Define gAg-1 = {gag- I I a E A } .  Define the normalizer of A in G to 
be the set NG (A) = {g E G I gAg-1 = A} .  

Notice that if  g E CG (A), then gag- I = a  E A for all a E A so Cc (A) :'S Nc (A) .  
The proof that N c (A)  i s  a subgroup of  G follows the same steps which demonstrated 
that Cc (A) :'S G with appropriate modifications. 

Examples 
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(1) If G is abelian then all the elements of G commute, so Z(G) = G. Similarly, Cc (A) = 
Nc (A) = G for any subset A of G since gag- I = gg-1a = a  for every g E G and 
every a E A. 

(2) Let G = Dg be the dihedral group of order 8 with the usual generators r and s and 
let A =  { 1 ,  r, r2 , r3 } be the subgroup of rotations in Dg. We show that CD8 (A) = A. 
Since all powers of r commute with each other, A :::; CD8 (A) . Since sr = r-1 s i= rs 
the element s does not commute with all members of A, i.e., s fl. C Ds (A). Finally, the 
elements of Ds that are not in A are all of the form sri for some i E {0, I ,  2, 3} .  If 
the element sri were in C Ds (A) then since C Ds (A) is a subgroup which contains r we 
would also have the element s = (sr; ) (r-i ) in CD8 (A), a contradiction. This shows 
CD8 (A) = A. _ 

(3) As in the preceding example let G = Ds and let A = { 1 ,  r, r2 , r3 } .  We show that 
N Ds (A) = Dg. Since, in general, the centralizer of a subset is contained in its nor
malizer,

. 
A :::; N Ds (A) .  Next compute that 

sAs-I = {s ls-1 , srs-1 , sr2s-1 , sr3s- 1 } = { 1 ,  r3 , r2 , r} = A , 

so that s E ND8 (A) . (Note that the set sAs-1 equals the set A even though the elements 
in these two sets appear in different orders - this is because s is in the normalizer of 
A but not in the centralizer of A.) Now both r and s belong to the subgroup ND8 (A) 
and hence s; ri E N Ds (A) for all integers i and j,  that is, every element of Dg is in 
N D8 (A) (recall that r and s generate Ds).  Since Ds :::; NDR (A) we have ND8 (A) = Ds 
(the reverse containment being obvious from the definition of a normalizer). 

(4) We show that the center of D8 is the subgroup { 1 ,  r2} .  First observe that the center 
of any group G is contained in Cc (A) for any subset A of G. Thus by Example 2 
above Z(Ds) :::; CD8 (A) = A, where A = { 1 ,  r, r2 , r3 } .  The calculation in Example 
2 shows that r and similarly r3 are not in Z(Ds), so Z(Ds) :::; { 1 ,  r2 } .  To show the 
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reverse inclusion note that r commutes with r2 and calculate that s also commutes 
with r2 . Since r and s generate Ds, every element of Ds commutes with r2 (and 1), 
hence { 1 , r2} :::0 Z(Ds) and so equality holds. 

(5) Let G = S3 and let A be the subgroup { l ,  ( 1 2) }. We explain why Cs3 {A) = Ns3 (A) = 
A. One can compute directly that Cs3 (A) = A, using the ideas in Example 2 above to 
minimize the calculations. Alternatively, since an element commutes with its powers, 
A :::0 Cs3 (A) . By Lagrange's Theorem (Exercise 19 in Section 1 .7) the order of the 
subgroup Cs3 (A) of S3 divides I S3 I = 6. Also by Lagrange's Theorem applied to the 
subgroup A of the group Cs3 (A) we have that 2 I 1Cs3 (A) I .  The only possibilities 
are: 1 Cs3 (A) I = 2 or 6. If the latter occurs, Cs3 (A) = S3, i.e., A :::0 Z (S3);  this is a 
contradiction because ( 1 2) does not commute with ( 1 2 3) . Thus 1 Cs3 (A) I = 2 and so 
A =  Cs3 (A). 
Next note that Ns3 (A) =  A because a E Ns3 (A) if and only if 

{a 1a-1 , a ( 1 2)a-1 } = { 1 , ( 1 2) } . 

Since a 1a-1 = 1, this equality of sets occurs if and only if a(1 2)a-1 = ( 1 2) as 
well, i.e., if and only if a E Cs3 (A). 
The center of S3 is the identity because Z(S3) :::0 Cs3 (A) = A and ( 1 2) ¢ Z(S3) . 

Stabilizers and Kernels of Group Actions 

The fact that the normalizer of A in G, the centralizer of A in G, and the center of G 
are all subgroups can be deduced as special cases of results on group actions, indicating 
that the structure of G is reflected by the sets on which it acts, as follows: if G is a 
group acting on a set S and s is some fixed element of S, the stabilizer of s in G is the 
set 

Gs = {g E G I g · s = s }  
(see Exercise 4 in Section 1 .7). We show briefly that Gs � G: first 1 E Gs by axiom 
(2) of an action. Also, if y E Gs, 

s = 1 . s = (y-1 y) . s 
= y-1 . (y . s) (by axiom ( 1 )  of an action ) 

(since y E Gs) 

so y-1 E Gs as well. Finally, if x, y E Gs. then 

(xy) · s = x · (y · s) (by axiom (1 )  of an action) 

= X  · S  
= S 

(since y E Gs) 

(since x E Gs). 

This proves Gs is a subgroup1 of G.  A similar (but easier) argument proves that the 
kernel of an action is a subgroup, where the kernel of the action of G on S is defined as 

{g E G I g · s = s ,  for all s E S} 
(see Exercise 1 in Section 1 .7). 

1 Notice how the steps to prove G, is a subgroup are the same as those to prove CG (A) ::::; G with 
axiom ( 1) of an action taking the place of the associative law. 

Sec. 2.2 Centra l izers and Normal izers, Stabi l izers and Kernels 51 



Examples 

(1) The group G = Ds acts on the set A of four vertices of a square (cf. Example 4 in 
Section 1 .7). The stabilizer of any vertex a is the subgroup { 1 ,  t } of Ds, where t is 
the reflection about the line of symmetry passing through vertex a and the center of 
the square. The kernel of this action is the identity subgroup since only the identity 
symmetry fixes every vertex. 

(2) The group G = Ds also acts on the set A whose elements are the two unordered pairs 
of opposite vertices (in the labelling of Figure 2 in Section 1 .2, A =  { { 1 ,  3} , {2, 4} }). 
The kernel of the action of Ds on this set A is the subgroup { 1, s ,  r2 , sr2 } and for either 
element a E A the stabilizer of a in Ds equals the kernel of the action. 

Finally, we observe that the fact that centralizers, normalizers and kernels are sub
groups is a special case of the facts that stabilizers and kernels of actions are subgroups 
(this will be discussed further in Chapter 4). Let S = P(G), the collection of all subsets 
of G, and let G act on S by conjugation, that is, for each g E G and each B � G let 

g : B -+  gBg-1 where gBg-1 = {gbg-1 I b E  B}  
(see Exercise 1 6  in Section 1 .7). Under this action, it i s  easy to check that NG (A) is 
precisely the stabilizer of A in G (i .e., NG (A) = Gs where s = A E P(G)), so NG (A) 
is a subgroup of G. 

Next let the group NG (A) act on the set S = A by conjugation, i.e., for all g E 
NG (A) and a E A 

g : a �  gag-1 • 
Note that this does map A to A by the definition of NG (A) and so gives an action on 
A. Here it is easy to check that CG (A) is precisely the kernel of this action, hence 
CG (A) ::;: NG (A); by transitivity of the relation "::;:," CG (A) ::;: G. Finally, Z(G) is the 
kernel of G acting on S = G by conjugation. so Z(G) ::;: G. 

E X E R C I S E S 

1. Prove that CG (A) = {g E G I g-1ag = a  for all a E A}. 
2. Prove that CG (Z(G)) = G and deduce that NG (Z(G)) = G . 
3. Prove that if A and B are subsets of G with A �  B then CG (B) is a subgroup of CG (A). 
4. For each of S3, Ds, and Qs compute the centralizers of each element and find the center of 

each group. Does Lagrange's Theorem (Exercise 19 in Section 1 .7) simplify your work? 

5. In each of parts (a) to (c) show that for the specified group G and subgroup A of G, 
CG (A) = A and NG (A) = G. 
(a) G = S3 and A =  { 1 ,  ( 1 2 3) ,  ( 1 3 2) } .  
(b) G = Ds and A =  { 1 , s , r2 , sr2 } . 
(c) G = Dto and A =  { 1 ,  r, r2 , r\ r4 } .  

6. Let H be a subgroup of the group G. 
(a) Show that H _:::: NG (H) .  Give an example to show that this is not necessarily true if 

H is not a subgroup. 
(b) Show that H _:::: CG (H) if and only if H is abelian. 

7. Let n E Z with n :::_ 3. Prove the following: 
(a) Z(D2n ) = 1 if n is odd 
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(b) Z(D2n) = { 1 ,  rk } if n = 2k. 
8. Let G = Sn , fix an i E { 1 ,  2, . . .  , n} and let G; = {a E G I a (i) = i } (the stabilizer of i in 

G). Use group actions to prove that G; is a subgroup of G. Find IG; 1 .  

9 .  For any subgroup H of G and any nonempty subset A of  G define NH (A) to  be  the set 
{h E H 1 hAh-1 = A} .  Show that NH (A) = Nc (A) n H and deduce that Nu (A) is a 
subgroup of H (note that A need not be a subset of H).  

10. Let H be a subgroup of order 2 in G.  Show that Nc (H) = Cc (H). Deduce that if 
Nc (H) = G then H � Z(G). 

11. Prove that Z(G) � Nc (A) for any subset A of G.  

12. Let R be the set of all polynomials with integer coefficients in  the independent variables 
Xt , x2 , X3, X4 i.e., the members of R are finite sums of elements of the form ax�' x;2 x;3 x�4 , 
where a is any integer and rt , . . .  , r4 are nonnegative integers. For example, 

12 5 7 1 8  3 1 1  6 3 23 XI X2X4 - X2X3 + XI X2X3X4 
is a typical element of R. Each a E s4 gives a permutation of {xt • . . .  ' X4} by defining 
a ·  x; = Xcr(i) ·  This may be extended to a map from R to R by defining 

a · p(Xl , X2 , X3 , X4) = p(Xcr( l) , Xcr (2) , Xcr (3) ,  Xcr (4) ) 

for all p(x1 , x2 , X3 , x4) E R (i.e., a simply permutes the indices of the variables). For 
example, if a =  ( 1  2)(3 4) and p(XJ , . . . , x4) is the polynomial in (*) above, then 

a · p(xt , X2 , X3 , X4) = 12x�xjx3 - 18xjx4 + 1 1x�xtxlx�3 

12 7 5 18  3 1 1  6 23 3 = XI x2X3 - Xt X4 + X]X2x3 x4 . 

(a) Let p = p(xt • . . .  , x4) be the polynomial in (*) above, let a = (1 2 3 4) and let 
-r = ( 1 2 3) . Compute a ·  p, -r · (a · p), (-r o a) · p, and (a o -r) ·  p. 

(b) Prove that these definitions give a (left) group action of S4 on R.  
(c) Exhibit all permutations in  s4 that stabilize X4 and prove that they form a subgroup 

isomorphic to s3 . 
(d) Exhibit all permutations in s4 that stabilize the element Xt + X2 and prove that they 

form an abelian subgroup of order 4. 
(e) Exhibit all permutations in s4 that stabilize the element X}X2 + X3X4 and prove that 

they form a subgroup isomorphic to the dihedral group of order 8. 
(f) Show that the permutations in s4 that stabilize the element (Xl + X2) (X3 + X4) are 

exactly the same as those found in part (e). (The two polynomials appearing in parts 
(e) and (f) and the subgroup that stabilizes them will play an important role in the 
study of roots of quartic equations in Section 14.6.) 

13. Let n be a positive integer and let R be the set of all polynomials with integer coefficients in 
the independent variables XJ , x2 , . . . , Xn , i.e., the members of R are finite sums of elements 
of the form ax�' x;2 • • • x�" , where a is any integer and rt , . . .  , r n are nonnegative integers. 
For each a E Sn define a map 

a :  R � R by a · p(Xt , X2 , . . .  , Xn) = p(Xcr (l) • Xcr (2) • . . .  , Xcr (n) ) · 
Prove that this defines a (left) group action of Sn on R.  

14. Let H(F) be the Heisenberg group over the field F introduced in Exercise 11 of Section 
1 .4. Determine which matrices lie in the center of H(F) and prove that Z(H(F)) is 
isomorphic to the additive group F. 
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2.3 CYCLIC GROUPS AND CYCLIC SUBGROUPS 

Let G be any group and let x be any element of G. One way of  forming a subgroup H 
of G is by letting H be the set of all integer (positive, negative and zero) powers of x 
(this guarantees closure under inverses and products at least as far as x is concerned). 
In this section we study groups which are generated by one element. 

Definition. A group H is cyclic if H can be generated by a single element, i.e. , there 
is some element x E H such that H = {xn I n E Z} (where as usual the operation is 
multiplication). 

In additive notation H is cyclic if H = { nx I n E Z}. In both cases we shall write 
H = ( x ) and say H is generated by x (and x is a generator of H). A cyclic group 
may have more than one generator. For example, if H = ( x ) , then also H = ( x-1 ) 
because (x-I )n = x-n and as n runs over all integers so does -n so that 

{xn I n  E Z} = { (x-1 )n I n  E Z}. 

We shall shortly show how to determine all generators for a given cyclic group H. One 
should note that the elements of ( x ) are powers of x (or multiples of x, in groups 
written additively) and not integers. It is not necessarily true that all powers of x are 
distinct. Also, by the laws for exponents (Exercise 19  in Section 1 . 1 )  cyclic groups are 
abelian. 

Examples 
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(1) Let G = D2n = ( r, s I rn = s2 = 1 ,  rs = sr - 1 ), n � 3 and let H be the subgroup 
of all rotations of the n-gon. Thus H = ( r ) and the distinct elements of H are 
1 ,  r, r2 , . . .  , rn-I (these are all the distinct powers of r). In particular, I H I  = n and 
the generator, r, of H has order n. The powers of r "cycle" (forward and backward) 
with period n, that is, 

rn = 1 , rn+l = r, rn+2 = r2 , . . .  

r-1  = rn - l , r-2 = rn-2 , . . . etc. 

In general, to write any power of r, say r1 ,  in the form rk , for some k between 0 and 
n - 1 use the Division Algorithm to write 

t = nq + k, where 0 :::: k < n, 

so that 
rt = rnq+k = (rn)qrk = 1qrk = rk . 

For example, in Ds, r4 = 1 so r105 = r4<26H1 = r and r-42 = r4<- l lH2 = r2 . 
Observe that D2n itself is not a cyclic group since it is non-abelian. 

(2) Let H = Z with operation +. Thus H = ( 1 )  (here 1 is the integer 1 and the identity 
of H is 0) and each element in H can be written uniquely in the form n · 1 ,  for some 
n E Z. In contrast to the preceding example, multiples of the generator are all distinct 
and we need to take both positive, negative and zero multiples of the generator to 
obtain all elements of H. In this example I H I  and the order of the generator 1 are 
both oo. Note also that H = ( - 1 ) since each integer x can be written (uniquely) as 
(-x)(- 1).  
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Before discussing cyclic groups further we prove that the various properties of finite 
and infinite cyclic groups we observed in the preceding two examples are generic. This 
proposition also validates the claim (in Chapter 1 ) that the use of the terminology for 
"order" of an element and the use of the symbol I I are consistent with the notion of 
order of a set 

Proposition 2. If H = ( x  ) , then I H I  = lx l (where if one side of this equality is 
infinite, so is the other). More specifically 

(1) if I H I  = n < oo, then xn = 1 and 1 ,  x ,  x2 , • . .  , xn- I are all the distinct elements 
of H, and 

(2) if I H I  = oo, then xn ::f. 1 for all n ::f. 0 and xa ::f. xb for all a ::f. b in Z. 

Proof- Let lx I = n and first consider the case when n < oo. The elements 
1 ,  x ,  x2 , • • •  , xn-I  are distinct because if xa = xb, with, say, 0 _::: a < b < n, then 
xb-a = x0 = 1 ,  contrary to n being the smallest positive power of x giving the identity. 
Thus H has at least n elements and it remains to show that these are all of them. As we 
did in Example 1 ,  if x1 is any power of x, use the Division Algorithm to write t = nq + k, 
where 0 _::: k < n, so 

x1 = xnq+k = (xn )qxk = 1 qxk = xk E { l , x , x2 , . . • , xn-I } , 

as desired. 
Next suppose lx I = oo so no positive power of x is the identity. If xa = xb,  for 

some a and b with, say, a < b, then xb-a = 1 ,  a contradiction. Distinct powers of x 
are distinct elements of H so 1 HI  = oo. This completes the proof of the proposition. 

Note that the proof of the proposition gives the method for reducing arbitrary 
powers of a generator in a finite cyclic group to the "least residue" powers. It is not a 
coincidence that the calculations of distinct powers of a generator of a cyclic group of 
order n are carried out via arithmetic in Z/ nZ. Theorem 4 following proves that these 
two groups are isomorphic. 

First we need an easy proposition. 

Proposition 3. Let G be an arbitrary group, x E G and let m,  n E Z. If xn = 1 and 
xm = 1 ,  then xd = 1 ,  where d = (m, n ) . In particular, if xm = 1 for some m E Z, then 
lx I divides m. 

Proof- By the Euclidean Algorithm (see Section 0.2 (6)) there exist integers r and 
s such that d = mr + ns , where d is the g.c.d. of m and n. Thus 

xd = xmr+ns = (xm)r (xn y = 1r 1s = 1 . 

This proves the first assertion. 
If xm = 1 ,  let n = lx 1 - If m = 0, certainly n I m, so we may assume m ::f. 0. Since 

some nonzero power of x is the identity, n < oo. Let d = (m, n) so by the preceding 
result xd = 1 .  Since 0 < d _::: n and n is the smallest positive power of x which gives 
the identity, we must have d = n, that is, n I m, as asserted. 
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Theorem 4. Any two cyclic groups of the same order are isomorphic. More specifically, 
(1) if n E z+ and ( x ) and ( y ) are both cyclic groups of order n, then the map 

({! : ( x ) -+ ( y )  

xk � l  

is well defined and is an isomorphism 
(2) if ( x ) is an infinite cyclic group, the map 

({! : IZ -+ ( x )  

k �  xk 

is well defined and is an isomorphism. 

Proof" Suppose ( x ) and ( y ) are both cyclic groups of order n. Let ({! : ( x ) ---+ ( y )  
be defined by ({!(xk) = yk ; we must first prove ({! is well defined, that is, 

if xr = xs , then ({!(Xr) = ({! (Xs) .  

Since xr-s = 1 ,  Proposition 3 implies n I r - s . Write r = tn + s so 

({! (Xr) = ({!(Xtn+s) 

= (yn)tys 

= Ys = ({!(Xs) .  

This proves ({! is  well defined. It is  immediate from the laws of exponents that ({!(Xa xh)  = 

({!(xa)({! (xb) (check this), that is, ({! is a homomorphism. Since the element yk of ( y )  
is the image of xk under ({!, this map is sutjective. Since both groups have the same 
finite order, any sutjection from one to the other is a bijection, so ({! is an isomorphism 
(alternatively, ({! has an obvious two-sided inverse). 

If ( x ) is an infinite cyclic group, let ({! : IZ ---+ ( x )  be defined by ({!(k) = xk . Note 
that this map is already well defined since there is no ambiguity in the representation 
of elements in the domain. Since (by Proposition 2) xa =P xb, for all distinct a, b E /Z, 
({! is injective. By definition of a cyclic group, ({! is sutjective. As above, the laws of 
exponents ensure ({! is a homomorphism, hence ({! is an isomorphism, completing the 
proof. 

We chose to use the rotation group ( r ) as our prototypical example of a finite cyclic 
group of order n (instead of the isomorphic group /Zfn/Z) since we shall usually write 
our cyclic groups multiplicatively: 

Notation: For each n E z+ , let Zn be the cyclic group of order n (written multiplica
tively). 

Up to isomorphism, Zn is the unique cyclic group of order n and Zn � /Zf nil. On 
occasion when we find additive notation advantageous we shall use the latter group as 
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our representative of the isomorphism class of cyclic groups of order n .  We shall occa
sionally say "let { x ) be the infinite cyclic group" (written multiplicatively), however 
we shall always use IZ (additively) to represent the infinite cyclic group. 

As noted earlier, a given cyclic group may have more than one generator. The next 
two propositions determine precisely which powers of x generate the group { x ) . 

Proposition 5. Let G be a group, let x E G and let a E IZ - {0} . 
(1) If lx I = oo, then lxa I = oo. 

n (2) If lx l = n < oo, then lxa l = -- . 
(n , a) 

(3) In particular, if lx l = n < oo and a is a positive integer dividing n, then 
a - � lx 1 - . a 

Proof" (1 )  By way of contradiction assume lx l = oo but lxa l = m < oo. By 
definition of order 

Also, 

Now one of am or -am is positive (since neither a nor m is 0) so some positive power of 
x is the identity. This contradicts the hypothesis lx I = oo, so the assumption lxa 1 < oo 

must be false, that is, ( 1 ) holds. 
(2) Under the notation of (2) let 

y = xa , (n , a) = d and write n = db, a = de , 

for suitable b, c E IZ with b > 0. Since d is the greatest common divisor of n and a, 
the integers b and c are relatively prime: 

(b, c) = 1 .  
To establish (2) we must show I Y I  = b. First note that 

yb = xab = xdcb 
= (xdb)c = (xn )" = I" = l 

so, by Proposition 3 applied to { y } ,  we see that I Y I  divides b .  Let k = l y l .  Then 

xak = yk = 1 

so by Proposition 3 applied to { x ) , n I ak, i.e., db I dck. Thus b j ck . Since b and c 
have no factors in common, b must divide k .  Since b and k are positive integers which 
divide each other, b = k, which proves (2). 

(3) This is a special case of (2) recorded for future reference. 

Proposition 6. Let H = { x ) . 
(1) Assume lx l = oo. Then H = { xa ) if and only if a =  ± 1 .  
(2) Assume lx l = n < oo .  Then H = { xa ) if and only if (a, n) = 1 . In particular, 

the number of generators of H is <p(n) (where <p is Euler's <p-function). 
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Proof: We leave (1 )  as an exercise. In (2) if lx l = n < oo, Proposition 2 says x0 
generates a subgroup of H of order lxa 1 - This subgroup equals all of H if and only if 
lxa l = lx l . By Proposition 5, 

n 
lx0 l  = lx l if and only if -- = n, i.e. if and only if (a , n) = 1 .  (a , n) 

Since cp(n) is, by definition, the number of a E { 1 ,  2, . . . , n} such that (a , n) = 1, this 
is the number of generators of H. 

Example 
Proposition 6 tells precisely which residue classes mod n generate '11../ n7!..: namely, ii gen
erates 7!..fn7!.. if and only if (a, n) = 1 .  For instance, L 5, 7 and IT are the generators of 
71..f l27!.. and rp(12) = 4. 

The final theorem in this section gives the complete subgroup structure of a cyclic 
group. 

Theorem 7. Let H = { x )  be a cyclic group. 
(1) Every subgroup of H is cyclic. More precisely, if K .:::; H, then either K = { 1 } 

or K = { xd ) ,  where d is the smallest positive integer such that xd E K.  
(2) If  I H I = oo, then for any distinct nonnegative integers a and b,  { x0 ) =j:. 

{ xb ) . Furthermore, for every integer m, { xm ) = { x lm l ) , where lm I denotes 
the absolute value of m ,  so that the nontrivial subgroups of H correspond 
bijectively with the integers 1 , 2, 3 , . . . .  

(3) If I H I = n < oo, then for each positive integer a dividing n there is a unique n 
subgroup of H of order a .  This subgroup is the cyclic group { xd ) , where d = - .  a 
Furthermore, for every integer m ,  { xm ) = ( x <n.m) ) ,  so that the subgroups of 
H correspond bijectively with the positive divisors of n. 

Proof: ( 1 )  Let K ::: H. If K = { 1 }, the proposition is true for this subgroup, so we 
assume K =j:. { 1 } . Thus there exists some a =j:. 0 such that x0 E K. If a < 0 then since 
K is a group also x-a = (x0)-1 E K. Hence K always contains some positive power 
of x .  Let 

p = {b I b E z+ and xb E K}.  

By the above, P is a nonempty set of positive integers. By the Well Ordering Principle 
(Section 0.2) P has a minimum element - call it d. Since K is a subgroup and xd E K, 
{ xd ) ::: K .  Since K is a subgroup of H, any element of K is of the form xa for some 
integer a. By the Division Algorithm write 

a = qd + r 0 .:::; r < d. 

Then x' = x<a-qd) = x0 (xd)-q is an element of K since both x0 and xd are elements of 
K .  By the minimality of d it follows that r = O, i.e . , a = qd and so x0 = (xd)q E { xd ) .  
This gives the reverse containment K .:::; { xd ) which proves (1  ) . 

We leave the proof of (2) as an exercise (the reasoning is similar to and easier than 
the proof of (3) which follows). 
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n 
(3) Assume I H I = n < oo and a I n. Let d = - and apply Proposition 5(3) to a 

obtain that ( xd ) is a subgroup of order a, showing the existence of a subgroup of order 
a. To show uniqueness, suppose K is any subgroup of H of order a. By part ( 1 )  we 
have 

where b is the smallest positive integer such that xh E K. By Proposition 5 

n b n - = a  = I K I = lx I = --. 
d �. � 

so d =  (n, b) . In particular, d I b. Since b is a multiple of d, xh E ( xd ) ,  hence 

K = ( xb ) ::: ( xd ) . 

Since l ( xd ) I = a = I K I , we have K = ( xd ) .  
The final assertion of (3) follows from the observation that ( xm ) is a subgroup of 

( x (n ,m) }  (check this) and, it follows from Proposition 5(2) and Proposition 2 that they 
have the same order. Since (n , m) is certainly a divisor of n, this shows that every 
subgroup of H arises from a divisor of n,  completing the proof. 

Examples 
(1) We can use Proposition 6 and Theorem 7 to list all the subgroups of 'll.jn'll. for any 

given n. For example, the subgroups of 'll./127!.. are 
(a) 'll./127!.. = ( I )  = ( 5 ) = ( 7 ) = (ff ) (order 12) 
(b) ( 2 )  = ( 10 )  (order 6) 
(c) ( 3 )  = ( 9 )  (order 4) 
(d) ( 4 )  = ( S )  (order 3) 
(e) ( 6 )  (order 2) 
(t) ( 6 )  (order 1) .  

The inclusions between them ar e  given by 

( a )  :::: ( ii )  if and only if (b , 12) J (a, 12} ,  1 :::: a, b :::: 12. 

(2) We can also combine the results of this section with those of the preceding one. For 
example, we can obtain subgroups of a group G by forming Cc (( x )) and Nc ( (x  )}, 
for each x E G.  One can check that an element g in G commutes with x if and only 
if g commutes with all powers of x, hence 

Cc(( x )} = Cc(x) .  

As noted in  Exercise 6 ,  Section 2 ,  ( x ) :::: N G ( ( x ) ) but equality need not hold. For 
instance, if G = Qs and x = i , 

Cc ( { i ) ) = {±1 , ±i } = ( i ) and Nc( ( i )} = Qs. 

Note that we already observed the first of the above two equalities and the second is 
most easily computed using the result of Exercise 24 following. 
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E X E R C I S E S  

1. Find all subgroups of Z45 = ( x ) , giving a generator for each. Describe the containments 
between these subgroups. 

2. If x is an element of the finite group G and lx I = 1 G I, prove that G = ( x ) . Give an 
explicit example to show that this result need not be true if G is an infinite group. 

3. Find all generators for Zj48Z. 

4. Find all generators for Z/202Z. 

5. Find the number of generators for Zj49000Z. 

6. In Zj48Z write out all elements of ( ii )  for every ii. Find all inclusions between subgroups 
in Zj48Z. 

7. Let Z4s = ( x ) and use the isomorphism Zj48Z � Z4s given by l r+  x to list all subgroups 
of Z4s as computed in the preceding exercise. 

8. Let Z4s = ( x ) . For which integers a does the map ({Ja defined by ({Ja : 1 r+ xa extend to 
an isomorphism from Zj48Z onto Z4g . 

9. Let Z36 = ( x  ) .  For which integers a does the map 1/Ja defined by 1/Ja : l r+  xa extend 
to a well defined homomorphism from Zj48Z into Z36 ·  Can 1/Ja ever be a surjective 
homomorphism? 

10. What is the order of 30 in Zj54Z? Write out all of the elements and their orders in ( 30 ) .  

11. Find all cyclic subgroups o f  Dg. Find a proper subgroup of D8 which i s  not cyclic. 

12. Prove that the following groups are not cyclic: 
(a) Zz x Zz 
(b) z2 x Z 
(c) Z x Z. 

13. Prove that the following pairs of groups are not isomorphic: 
(a) Z x Zz and Z 
(b) Q x Zz and Q. 

14. Let a = ( 1  2 3 4 5 6  7 8 9 1 0  1 1  12) .  For each of the following integers a compute aa : 
a = 13,  65, 626, 1 195, -6, -81 ,  -570 and - 12 1 1 .  

15. Prove that Q x Q i s  not cyclic. 

16. Assume lx l  = n and ly l = m .  Suppose that x and y commute: xy = yx . Prove that 
lxy l divides the least common multiple of m and n .  Need this be true if x and y do not 
commute? Give an example of commuting elements x, y such that the order of xy is not 
equal to the least common multiple of lx l  and ly l .  

17. Find a presentation for Zn with one generator. 

18. Show that if H is any group and h is an element of H with hn = 1 ,  then there is a unique 
homomorphism from Zn = ( x ) to H such that x 1-+ h .  

19. Show that if H is any group and h i s  an element of  H, then there is a unique homomorphism 
from Z to H such that 1 r+  h. 

20. Let p be a prime and let n be a positive integer. Show that if x is an element of the group 
G such that xP" = 1 then lx l  = pm for some m � n .  

21. Let p be an odd prime and let n be a positive integer. Use the Binomial Theorem to show 
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n - 1  n-2 
that ( 1  + p)P = 1 (mod pn ) but ( 1  + p)P =/= 1 (mod pn) .  Deduce that 1 + p is an 
element of order pn- l in the multiplicative group (Z/ pnz)x . 
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22. Let n be an integer � 3. Use the Binornial Thcorem to show that (l + 22)2"-2 
= l (mod 2n) 

but ( 1  + 22)2"-
' 

¢ l (mod 2n) .  Deduce that 5 is an element of order 2n-2 in the multi
plicative group (7!./2nz)x .  

23. Show that (7!./2nz) x is not cyclic for any n � 3 .  [Find two distinct subgroups of order 2.] 

24. Let G be a finite group and let x E G. 
(a) Prove that if g E NG (( x ) )  then gxg-1 = x0 for some a E 7!.. 
(b) Prove conversely that if gxg-1 = x0 for some a E 7!. then g E NG ( ( x  )). [Show 

first that gxkg- 1 = (gxg-l)k = xak for any integer k, so that g ( x ) g-1 � ( x  ) . If 
x has order n, show the elements gxi g-1 , i = 0, 1 ,  . . .  , n - l are distinct, so that 
lg ( x ) g-1 1 = l ( x ) l = n and conclude that g ( x ) g-1 = ( x ) .] 

Note that this cuts down some of the work in computing normalizers of cyclic subgroups 
since one docs not have to check ghg-1 E ( x ) for every h E  ( x  ) .  

25. Let G be a cyclic group of order n and let k b e  an integer relatively prime to n.  Prove 
that the map x � xk is surjective. Use Lagrange's Theorem (Exercise 19, Section 1 .7) 
to prove the same is true for any finite group of order n. (For such k each element has a 
kth root in G. It follows from Cauchy's Theorem in Section 3.2 that if k is not relatively 
prime to the order of G then the map x � xk is not surjective.) 

26. Let Zn be a cyclic group of order n and for each integer a let 

by a0 (x) = X0 for all x E Zn . 

(a) Prove that aa is an automorphism of Zn if and only if a and n are relatively prime 
(automorphisms were introduced in Exercise 20, Section 1 .6). 

(b) Prove that a a = ab if and only if a = b (mod n) . 
(c) Prove that every automorphism of Zn is equal to a a for some integer a .  
(d) Prove that aa oab = Uab ·  Deduce that the map a � aa is an isomorphism of (7!.jn7!.) x 

onto the automorphism group of Zn (so Aut(Zn) is an abelian group of order qJ(n)). 

2.4 SUBGROUPS GENERATED BY SU BSETS OF A GROU P 

The method of forming cyclic subgroups of a given group is a special case of the general 
technique where one forms the subgroup generated by an arbitrary subset of a group. In 
the case of cyclic subgroups one takes a singleton subset {x } of the group G and forms 
all integral powers of x ,  which amounts to closing the set {x } under the group operation 
and the process of taking inverses. The resulting subgroup is the smallest subgroup of 
G which contains the set (x} (smallest in the sense that if H is any subgroup which 
contains { x} ,  then H contains ( x ) ). Another way of saying this is that ( x ) is the unique 
minimal element of the set of subgroups of G containing x (ordered under inclusion). 
In this section we investigate analogues of this when {x } is replaced by an arbitrary 
subset of G. 

Throughout mathematics the following theme recurs: given an object G (such as 
a group, field, vector space, etc.) and a subset A of G, is there a unique minimal 
subobject of G (subgroup, subfield, subspace, etc.) which contains A and, if so, how 
are the elements of this subobject computed? Students may already have encountered 
this question in the study of vector spaces. When G is a vector space (with, say, real 
number scalars) and A = {v i , v2 , . . .  , Vn } ,  then there is a unique smallest subspace of 
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G which contains A, namely the (linear) span of v1 , v2 , • • •  , vn and each vector in this 
span can be written as k1 v1 + kzvz + · · · + knvn , for some k1 , . . .  , kn E JR. When A is 
a single nonzero vector, v, the span of { v } is simply the 1-dimensional subspace or line 
containing v and every element of this subspace is of the form kv for some k E JR. This 
is the analogue in the theory of vector spaces of cyclic subgroups of a group. Note that 
the 1 -dimensional subspaces contain kv, where k E �. not just kv, where k E Z; the 
reason being that a subspace must be closed under all the vector space operations (e.g., 
scalar multiplication) not just the group operation of vector addition. 

Let G be any group and let A be any subset of G. We now make precise the notion 
of the subgroup of G generated by A. We prove that because the intersection of any set 
of subgroups of G is also a subgroup of G, the subgroup generated by A is the unique 
smallest subgroup of G containing A; it is " smallest" in the sense of being the minimal 
element of the set of all subgroups containing A. We show that the elements of this 
subgroup are obtained by closing the given subset under the group operation (and taking 
inverses). In succeeding parts of the text when we develop the theory of other algebraic 
objects we shall refer to this section as the paradigm in proving that a given subset 
is contained in a unique smallest subobject and that the elements of this subobject are 
obtained by closing the subset under the operations which define the object. Since in the 
latter chapters the details will be omitted, students should acquire a solid understanding 
of the process at this point. 

In order to proceed we need only the following. 

Proposition 8. If A is any nonempty collection of subgroups of G, then the intersection 
of all members of A is also a subgroup of G. 

Proof: This is  an easy application of the subgroup criterion (see also Exercise 10, 
Section 1 ). Let 

K = n H. 
HeA 

Since each H E A is a subgroup, 1 E H, so 1 E K, that is, K =I QJ. If a, b E K, 
then a, b E H, for all H E A. Since each H is a group, ab- 1 E H, for all H, hence 
ab- 1 E K.  Proposition 1 gives that K � G. 

Definition. If A is any subset of the group G define 

{ A ) = n H. 
ACH H?:;G 

This is called the subgroup of G generated by A. 

Thus { A )  is the intersection of all subgroups of G containing A. It is a subgroup 
of G by Proposition 8 applied to the set A = {H � G I A � H} (A is nonempty since 
G E A). Since A lies in each H E A, A is a subset of their intersection, { A ) . Note that 
{ A ) is the unique minimal element of A as follows: { A ) is a subgroup of G containing 
A, so { A ) E A; and any element of A contains the intersection of all elements in A, 
i.e., contains { A ) . 
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When A is the finite set {ai ,  az , . . .  , an } we write ( a1 , az, . . .  , an ) for the group 
generated by a1 , az , . . .  , an instead of ( {a1 , az, . . . , an } ) .  If A and B are two subsets 
of G we shall write ( A , B )  in place of ( A U B ) . 

This "top down" approach to defining ( A ) proves existence and uniqueness of the 
smallest subgroup of G containing A but is not too enlightening as to how to construct 
the elements in it. As the word "generates" suggests we now define the set which is the 
closure of A under the group operation (and the process of taking inverses) and prove 
this set equals ( A ) . Let 

A = {a�•a;2 • • •  a�" I n E Z, n � O and a; E A , E; = ± 1  for each i }  

where A = { 1 } if A = 0 ,  so that A i s  the set of all finite products (called words) of 
elements of A and inverses of elements of A. Note that the a; 's need not be distinct, 
so a2 is written aa in the notation defining A. Note also that A is not assumed to be a 
finite (or even countable) set. 

Proposition 9. A = ( A ) . 

Proof" We first prove A is a subgroup. Note that A =f. 0 (even if A = 0). If 
a ,  b E A with a = a�' a;2 • • •  a�" and b = b� ' b� . . .  b� , then 

b-1 Et E2 En b-�b-�m- 1 b-� 1 a = al az . . .  an . m m-1 . . . 1 

(where we used Exercise 15  of Section 1 . 1  to compute b-1 ). Thus ab-1 is a product 
of elements of A raised to powers ±1 , hence ab-1 E A. Proposition I implies A is a 
subgroup of G.  

Since each a E A may be  written a1 , i t  follows that A � A,  hence ( A  ) � A. But 
( A ) is a group containing A and, since it is closed under the group operation and the 
process of taking inverses, ( A ) contains each element of the form a�' a;2 • • •  a�" , that 
is, A � ( A ) . This completes the proof of the proposition. 

We now use ( A ) in place of A and may take the definition of A as an equivalent 
definition of ( A ) . As noted above, in this equivalent definition of ( A ) , products of the 
form a ·  a, a ·  a · a, a ·  a- 1 ,  etc. could have been simplified to a2, a3,  1 ,  etc. respectively, 
so another way of writing ( A ) is 

( A )  = {a�' a�2 • • •  a�" 1 for each i, a; E A ,  a; E Z, a; =f. a;+ I and n E z+} .  

In  fact, when A = {x } this was our definition of ( A ) . 
If G is abelian, we could commute the a; 's and so collect all powers of a given 

generator together. For instance, if A were the finite subset {a1 , az , . . .  , ak } of the 
abelian group G, one easily checks that 

( A )  = {a�' a�2 • • •  a�k I a; E Z for each i } .  

If in this situation we further assume that each a; has finite order d; , for all i ,  then 
since there are exactly d; distinct powers of a; , the total number of distinct products of 
the form a�• a�2 • • •  a�k is at most d1 dz . . .  db that is, 
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It may happen that a" b/3 = a Y b� even though a" =f:. a Y and b/3 =f:. b� . We shall explore 
exactly when this happens when we study direct products in Chapter 5.  

When G is non-abelian the situation is much more complicated. For example, let 
G = D8 and let r and s be the usual generators of Ds (note that the notation D8 = ( r, s ) 
is consistent with the notation introduced in Section 1 .2). Let a = s, let b = r s and 
let A = {a , b} . Since both s and r (= rs · s) belong to ( a , b ) , G = ( a, b ) , i.e., G is 
also generated by a and b. Both a and b have order 2, however D8 has order 8. This 
means that it is not possible to write every element of Ds in the form a" b/3 , a, f3 E Z. 
More specifically, the product aha cannot be simplified to a product of the form a" b/3 . 
In fact, if G = D2n for any n > 2, and r, s ,  a ,  b are defined in the same way as above, 
it is still true that 

la l = l h l  = 2, Dzn = ( a, b )  and I Dzn l = 2n.  

This means that for large n, long products of the form abab . . .  ab cannot be further 
simplified. In particular, this illustrates that, unlike the abelian (or, better yet, cyclic) 
group case, the order of a (finite) group cannot even be bounded once we know the 
orders of the elements in some generating set. 

Another example of this phenomenon is Sn : 

Sn = ( (1 2) ,  ( 1 2 3  . . . n) ) . 
Thus Sn is generated by an element of order 2 together with one of order n, yet I Sn I = n !  
(we shall prove these statements later after developing some more techniques). 

One final example emphasizes the fact that if G is non-abelian, subgroups of G 

generated by more than one element of G may be quite complicated. Let 

G = GLz (R) , a = ( � �) . h = ( 1�2 �) 
so a2 = b2 = 1 but ab = ( 1�2 �) . It is easy to see that ab has infinite order, so 

( a, b ) is an infinite subgroup of G L2 (R) which is generated by two elements of order 
2. 

These examples illustrate that when lA I � 2 it is difficult, in general, to compute 
even the order of the subgroup generated by A, let alone any other structural properties. 
It is therefore impractical to gather much information about subgroups of a non-abelian 
group created by taking random subsets A and trying to write out the elements of (or 
other information about) ( A ) . For certain "well chosen" subsets A, even of a non
abelian group G, we shall be able to make both theoretical and computational use of 
the subgroup generated by A. One example of this might be when we want to find 
a subgroup of G which contains ( x ) properly; we might search for some element y 
which commutes with x (i.e., y E Cc (x)) and form ( x ,  y ) .  It is easy to check that 
the latter group is abelian, so its order is bounded by lx l ly l . Alternatively, we might 
instead take y in N c ( ( x ) ) - in this case the same order bound holds and the structure 
of ( x,  y )  is again not too complicated (as we shall see in the next chapter). 

The complications which arise for non-abelian groups are generally not quite as 
serious when we study other basic algebraic systems because of the additional algebraic 
structure imposed. 
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E X E R C I S E S  

1. Prove that if H is a subgroup of G then ( H } = H. 

2. Prove that if A is a subset of B then ( A }  ::::= ( B } .  Give an example where A 5; B with 
A =/- B but ( A }  = ( B } .  

3.  Prove that i f  H is an abelian subgroup of  a group G then ( H,  Z(G) } is abelian. Give an 
explicit example of an abelian subgroup H of a group G such that ( H, CG (H) } is not 
abelian. 

4. Prove that if H is a subgroup of G then H is generated by the set H - { 1 } . 

5. Prove that the subgroup generated by any two distinct elements of order 2 in S3 is all of 
S3 . 

6. Prove that the subgroup of S4 generated by ( 1  2) and ( 1  2) (3 4) is a noncyclic group of 
order 4. 

7. Prove that the subgroup of S4 generated by (1 2) and (1 3) (2 4) is isomorphic to the 
dihedral group of order 8. 

8. Prove that S4 = ( (1 2 3 4) , ( 1  2 4 3) } .  

9. Prove that S L z  ( lF  3) i s  the subgroup o f  G L z  (lF 3) generated by ( � � ) and ( � �) . [Re

call from Exercise 9 of Section 1 that SL2(1F3) is the subgroup of matrices of determinant 
1 .  You may assume this subgroup has order 24 - this will be an exercise in Section 3.2.] 

10. Prove that the subgroup of SLz(lF3) generated by ( � � 1 ) and ( � � 
1
) is isomorphic 

to the quatemion group of order 8. [Use a presentation for Qg.)  

11. Show that SLz(lF3) and S4 are two nonisomorphic groups of order 24. 

12. Prove that the subgroup of upper triangular matrices in GL3 (lF2) is isomorphic to the 
dihedral group of order 8 ( cf. Exercise 16, Section 1 ). [First find the order of this subgroup.] 

13. Prove that the multiplicative group of positive rational numbers is generated by the set 

{ f, I p is a prime } .  

14. A group H is called finitely generated if there is a finite set A such that H = ( A } . 
(a) Prove that every finite group is finitely generated. 
(b) Prove that Z is finitely generated. 
(c) Prove that every finitely generated subgroup of the additive group Q is cyclic. [If H 

is a finitely generated subgroup of Q, show that H ::::= ( � } , where k is the product of 

all the denominators which appear in a set of generators for H .] 

(d) Prove that Q is not finitely generated. 

15. Exhibit a proper subgroup of Q which is not cyclic. 

16. A subgroup M of a group G is called a maximal subgroup if M =1- G and the only subgroups 
of G which contain M are M and G. 
(a) Prove that if  H is a proper subgroup of the finite group G then there is  a maximal 

subgroup of G containing H. 
(b) Show that the subgroup of all rotations in a dihedral group is a maximal subgroup. 
(c) Show that if G = ( x }  is a cyclic group of order n ::=-:: 1 then a subgroup H is maximal 

if and only H = ( x P } for some prime p dividing n. 
17. This is an exercise involving Zorn's Lemma (see Appendix I) to prove that every nontrivial 

finitely generated group possesses maximal subgroups. Let G be a finitely generated 
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group, say G = ( gt , g2 , . . .  , gn ) , and let S be the set of all proper subgroups of G. Then 
S is partially ordered by inclusion. Let C be a chain in S. 
(a) Prove that the union, H, of all the subgroups in C is a subgroup of G. 
(b) Prove that H is a proper subgroup. [If not, each g; must lie in H and so must lie in 

some element of the chain C. Use the definition of a chain to arrive at a contradiction.] 
(c) Use Zorn's Lemma to show that S has a maximal element (which is, by definition, a 

maximal subgroup). 
18. Let p be a prime and let Z = { z E C 1 z P" = 1 for some n E z+ } (so Z is the multiplicative 

group of all p-power roots of unity in C). For each k E z+ let Hk = {z E Z 1 zPk = 1 }  
(the group of pkth roots of unity). Prove the following: 
(a) Hk � Hm if and only if k � m 
(b) Hk is cyclic for all k (assume that for any n E z+, {e2JTitjn I t = 0, 1 ,  . . .  , n - 1 }  is 

the set of all nth roots of 1 in C) 
(c) every proper subgroup of Z equals Hk for some k E z+ (in particular. every proper 

subgroup of Z is finite and cyclic) 
(d) Z is not finitely generated. 

19. A nontrivial abelian group A (written multiplicatively) is called divisible if for each element 
a E A and each nonzero integer k there is an element x E A such that xk 

= a, i.e., each 
element has a kth root in A (in additive notation, each element is the kth multiple of some 
element of A). 
(a) Prove that the additive group of rational numbers, Q, is divisible. 
(b) Prove that no finite abelian group is divisible. 

20. Prove that if A and B are nontrivial abelian groups, then A x B is divisible if and only if 
both A and B are divisible groups. 

2.5 THE LATTICE OF SUBGROUPS OF A GROUP 

In this section we describe a graph associated with a group which depicts the relation
ships among its subgroups. This graph, called the lattice2 of subgroups of the group, is 
a good way of "visualizing" a group - it certainly illuminates the structure of a group 
better than the group table. We shall be using lattice diagrams, or parts of them, to 
describe both specific groups and certain properties of general groups throughout the 
chapters on group theory. Moreover, the lattice of subgroups of a group will play an 
important role in Galois Theory. 

The lattice of subgroups of a given finite group G is constructed as follows: plot 
all subgroups of G starting at the bottom with 1 ,  ending at the top with G and, roughly 
speaking, with subgroups of larger order positioned higher on the page than those of 
smaller order. Draw paths upwards between subgroups using the rule that there will 
be a line upward from A to B if A :::: B and there are no subgroups properly between 
A and B. Thus if A :S: B there is a path (possibly many paths) upward from A to B 
passing through a chain of intermediate subgroups (and a path downward from B to 
A if B 2: A). The initial positioning of the subgroups on the page, which is, a priori, 
somewhat arbitrary, can often (with practice) be chosen to produce a simple picture. 
Notice that for any pair of subgroups H and K of G the unique smallest subgroup 

2The term "lattice" has a precise mathematical meaning in terms of partially ordered sets. 
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which contains both of them, namely { H, K )  (called the join of H and K), may be 
read off from the lattice as follows: trace paths upwards from H and K until a common 
subgroup A which contains H and K is reached (note that G itself always contains all 
subgroups so at least one such A exists). To ensure that A = { H, K )  make sure there is 
no A 1 :::: A (indicated by a downward path from A to A 1 ) with both H and K contained 
in A 1 (otherwise replace A with A t  and repeat the process to see if A t = { H, K ) ). By 
a symmetric process one can read off the largest subgroup of G which is contained in 
both H and K, namely their intersection (which is a subgroup by Proposition 8). 

There are some limitations to this process, in particular it cannot be carried out per 
se for infinite groups. Even for finite groups of relatively small order, lattices can be 
quite complicated (see the book Groups of Order 211 , n :::: 6 by M. Hall and J. Senior, 
Macmillan, 1964, for some hair-raising examples). At the end of this section we shall 
describe how parts of a lattice may be drawn and used even for infinite groups. 

Note that isomorphic groups have the same lattices (i.e., the same directed graphs). 
Nonisomorphic groups may also have identical lattices (this happens for two groups of 
order 16 - see the following exercises). Since the lattice of subgroups is only part of 
the data we shall carry in our descriptors of a group, this will not be a serious drawback 
(indeed, it might even be useful in seeing when two nonisomorphic groups have some 
common properties). 

Examples 
Except for the cyclic groups (Example 1 )  we have not proved that the following lattices 
are correct (e.g., contain all subgroups of the given group or have the right joins and 
intersections). For the moment we shall take these facts as given and, as we build up more 
theory in the course of the text, we shall assign as exercises the proofs that these are indeed 
correct 
(1) For G = Z11 � 'll/ n'll, by Theorem 7 the lattice of subgroups of G is the lattice of 

divisors of n (that is, the divisors of n are written on a page with n at the bottom, 1 at 
the top and paths upwards from a to b if b I a). Some specific examples for various 
values of n follow. 

'll/27!. = ( 1 }  
I 

( 2 }  = {0} 

'll/47!. = ( 1 }  (note: ( 1 }  = ( 3  } )  
I 

( 2 }  
I 

( 4 }  = {0} 

7lj87l = ( 1 } (note: ( 1 } = ( 3 } = ( 5 } = ( 7 } ) 
I 

( 2 }  
I 

( 4 } 
I 

( 8 }  {0} 
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In general, if p is a prime, the lattice of 7'./ p'l?'. is 

Z;pnz 
I 

( p )  
I 

( p2 ) 
I 

( p3 ) 

I 

= ( 1 )  

= {0} 

(2) The Klein 4-group (Viergruppe), V4, is the group of order 4 with multiplication table 

1 a b c 
1 1 a b c 
a a 1 c b 
b b c 1 a 
c c b a 1 

and lattice 

V4 

/ I �  
( a )  ( b )  ( c )  

� I /  
Note that V4 is abelian and is not isomorphic to Z4 (why?). We shall see that Ds has 
an isomorphic copy of V4 as a subgroup, so it will not be necessary to check that the 
associative law holds for the binary operation defined above. 

Chap. 2 Subgroups 



(3) The lattice of S3 is 

�s3 �23) J 
( ( !� / 

1 

(4) Using our usual notation for Ds = ( r, s } , the lattice of Ds is 

(5) The lattice of subgroups of Qs is 

Qg 

/ I �  
( i } ( j )  ( k ) 
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(6) The lattice of D16 is not a planar graph (cannot be drawn on a plane without lines 
crossing). One way of drawing it is 

7 \  
( sr5 ) ( sr ) 

In many instances in both theoretical proofs and specific examples we shall be 
interested only in information concerning two (or some small number of) subgroups of 
a given group and their interrelationships. To depict these graphically we shall draw a 
sublattice of the entire group lattice which contains the relevant joins and intersections. 
An unbroken line in such a sub lattice will not, in general, mean that there is no subgroup 
in between the endpoints of the line. These partial lattices for groups will also be used 
when we are dealing with infinite groups. For example, if we wished to discuss only 
the relationship between the subgroups ( sr2 , r4 } and ( r2 } of D16 we would draw the 
sub lattice 

1 
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Note that ( s ,  r2 ) and ( r4 ) are precisely the join and intersection, respectively, of these 
two subgroups in Dt6 · 

Finally, given the lattice of subgroups of a group, it is relatively easy to compute 
normalizers and centralizers. For example, in Ds we can see that C Ds (s) = ( s ,  r2 ) be
cause we first calculate that r2 E C Ds (s) (see Section 2). This proves ( s, r2 ) _:::: C Ds (s) 
(note that an element always belongs to its own centralizer). The only subgroups which 
contain ( s ,  r2 ) are that subgroup itself and all  of  D8. We cannot have C Ds (s) = D8 

because r does not commute with s (i.e . , r ¢ C Ds (s) ) . This leaves only the claimed 
possibility for C Ds (s) .  

E X E R C I S E S  

1. Let H and K be subgroups of G. Exhibit all possible sublattices which show only G, 1 ,  
H, K and their joins and intersections . What distinguishes the different drawings? 

2. In each of (a) to (d) list all subgroups of Dt6 that satisfy the given condition. 
(a) Subgroups that are contained in ( sr2 , r4 ) 
(b) Subgroups that are contained in ( sr 7, r4 ) 
(c) Subgroups that contain ( r4 ) 
(d) Subgroups that contain ( s ) . 

3. Show that the subgroup ( s, r2 ) of D8 is isomorphic to V4 .  
4. Use the given lattice to find all pairs of elements that generate Ds (there are 12 pairs). 

5. Use the given lattice to find all elements x E Dt6 such that Dt6 = ( x, s )  (there are 16 
such elements x ) . 

6. Use the given lattices to help find the centralizers of every element in the following groups: 
(a) Ds (b) Qs (c) S3 (d) Dt6·  

7. Find the center of Dt6·  

8. In each of the following groups find the normalizer of each subgroup: 
(a) S3 (b) Qs. 

9. Draw the lattices of subgroups of the following groups: 
(a) Z/ 16/Z (b) Z/24/Z (c) Zj48Z. [See Exercise 6 in Section 3.] 

10. Classify groups of order 4 by proving that if I G I  = 4 then G � Z4 or G � V4. [See 
Exercise 36, Section L . l .] 

11. Consider the group of order 16 with the following presentation: 

QD16 = ( a, T I a8 
= T2 

= 1 ,  aT = Ta3 ) 

(called the quasidihedral or semidihedral group of order 1 6). This group has three sub
groups of order 8: ( T, a2 ) � D8, ( a ) � Z8 and ( a2 , aT ) � Q8 and every proper 
subgroup is contained in one of these three subgroups. Fill in the missing subgroups in the 
lattice of all subgroups of the quasidihedral group on the following page, exhibiting each 
subgroup with at most two generators. (This is another example of a nonplanar lattice.) 

The next three examples lead to two nonisomorphic groups that have the same lattice of sub
groups. 

12. The group A = z2 X Z4 = ( a , b I a2 = b4 
= 1 ,  ab = ba ) has order 8 and has 

three subgroups of order 4: ( a , b2 ) � V4, ( b )  � Z4 and ( ab ) � Z4 and every proper 
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G 

/ �  
( ** )  ( o.4 , r ) ( ** ) ( ** ) ( ** )  

1 \  /� � 
( ra2 ) ( ** ) ( ** ) ( r ) ( a4 ) 

� 
1 

subgroup is contained in one of these three. Draw the lattice of all subgroups of A, giving 
each subgroup in terms of at most two generators. 

13. The group G = Z2 x Zg = ( x , y I x2 = y8 = 1 ,  xy = yx ) has order 16 and has three 
subgroups of order 8: ( x ,  y2 ) � Z2 x Z4, ( y )  � Z8 and ( xy ) � Z8 and every proper 
subgroup is contained in one of these three. Draw the lattice of all subgroups of G, giving 
each subgroup in terms of at most two generators (cf. Exercise 12).  

14. Let M be the group of order 16 with the following presentation: 

( u, v I u2 = v8 = 1 ,  vu = uv5 ) 

(sometimes called the modular group of order 16). It has three subgroups of order 8: 
( u ,  v2 ) , ( v )  and ( uv ) and every proper subgroup is  contained in  one of these three. 
Prove that ( u, v2 ) � z2 X Z4, ( v )  � Zg and ( uv ) � Zg . Show that the lattice of 
subgroups of M is the same as the lattice of subgroups of Z2 x Zg (cf. Exercise 13) but 
that these two groups are not isomorphic. 

15. Describe the isomorphism type of each of the three subgroups of D16 of order 8. 
16. Use the lattice of subgroups of the quasidihedral group of order 16 to show that every 

element of order 2 is contained in the proper subgroup ( r, a2
) (cf. Exercise 1 1 ). 

17. Use the lattice of subgroups of the modular group M of order 16 tb show that the set 
{x E M  1 x2 = 1 }  is a subgroup of M isomorphic to the Klein 4-group (cf. Exercise 14). 

18. Use the lattice to help find the centralizer of every element of Q D16 ( cf. Exercise 1 1  ). 
19. Use the lattice to help find Nv16 ( { s , r4 ) ) .  
20. Use the lattice of subgroups of Q D16 ( cf. Exercise 1 1) to help find the normalizers 

(a) NQv16 ( ( ra )) (b) NQv16 (( r, a4 )) . 
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CHAPTER 3 

Q u oti e n t  Gro u ps a nd 
H o m o m orp h i s m s  

3.1 DEFIN ITIONS AND EXAM PLES 

In this chapter we introduce the notion of a quotient group of a group G, which is 
another way of obtaining a "smaller" group from the group G and, as we did with 
subgroups, we shall use quotient groups to study the structure of G.  The structure of 
the group G is reflected in the structure of the quotient groups and the subgroups of G. 
For example, we shall see that the lattice of subgroups for a quotient of G is reflected 
at the "top" (in a precise sense) of the lattice for G whereas the lattice for a subgroup 
of G occurs naturally at the "bottom." One can therefore obtain information about the 
group G by combining this information and we shall indicate how some classification 
theorems arise in this way. 

The study of the quotient groups of G is essentially equivalent to the study of the 
homomorphisms of G, i.e., the maps of the group G to another group which respect 
the group structures. If cp is a homomorphism from G to a group H recall that the 
fibers of cp are the sets of elements of G projecting to single elements of H, which we 
can represent pictorially in Figure 1 ,  where the vertical line in the box above a point a 
represents the fiber of cp over a. 

. . . • • • 

1 1 1 � 1 j 
G 

H Fig. l 
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The group operation in H provides a way to multiply two elements in the image 
of cp (i .e., two elements on the horizontal line in Figure 1) . This suggests a natural 
multiplication of the fibers lying above these two points making the set of fibers into 
a group: if X a is the fiber above a and Xb is the fiber above b then the product of Xa 
with Xb is defined to be the fiber Xab above the product ab, i.e., XaXb = Xab · This 
multiplication is associative since multiplication is associative in H, the identity is the 
fiber over the identity of H, and the inverse of the fiber over a is the fiber over a -l , 
as is easily checked from the definition. For example, the associativity is proved as 
follows: (XaXb)Xc = (Xab)Xc = Xcablc and Xa (XbXc) = Xa (Xbc) = Xa(bcJ · Since 
(ab)c = a (bc) in H, (XaXb)Xc = Xa (XbXc) . Roughly speaking, the group G is 
partitioned into pieces (the fibers) and these pieces themselves have the structure of a 
group, called a quotient group of G (a formal definition follows the example below). 

Since the multiplication of fibers is defined from the multiplication in H, by con
struction the quotient group with this multiplication is naturally isomorphic to the image 
of G under the homomorphism cp (fiber Xa is identified with its image a in H). 

Example 
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Let G = Z, let H = Zn = ( x } be the cyclic group of order n and define q; : Z ---+ Zn by 
q;(a) = xa . Since 

it follows that q; is a homomorphism (note that the operation in Z is addition and the 
operation in Zn is multiplication). Note also that q; is surjective. The fiber of q; over xa is 
then 

q;-1 (xa) = {m E Z I xm = xa } = {m E Z I xm-a = 1 }  

= { m  E Z I n  divides m - a} (by Proposition 2.3) 

= {m E Z I m = a  (mod n)} = ii, 

i.e., the fibers of q; are precisely the residue classes modulo n. Figure 1 here becomes: 

0 1 a n - 1  
±n l±n a±n (n- l)±n 
±2n 1±2n . . .  a±2n . . .  (n- 1)±2n 
±3n 1 ±3n a±3n (n- 1)±3n 

1 1 1 1 
Zn xo xl xa xn-1 

Fig. 2 
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The multiplication in Zn isjust x0 xb = xa+b . The corresponding fibers are a,  b, and a +  b, 
so the corresponding group operation for the fibers is ii · b = a + b. This is just the group 
'l.fn'l. under addition, a group isomorphic to the image of f1! (all of Zn). 

The identity of this group (the fiber above the identity in Zn) consists of all the multiples 
of n in '!., namely n'l., a subgroup of '!., and the remaining fibers are just translates, a + n'l., 
of this subgroup. The group operation can also be defined directly by taking representatives 
from these fibers, adding these representatives in '!. and taking the fiber containing this sum 
(this was the original definition of the group '!./ n'l.). From a computational point of view 
computing the product of ii and b by simply adding representatives a and b is much easier 
than first computing the image of these fibers under f/! (namely, x0 and xh), multiplying 
these in H (obtaining xa+b) and then taking the fiber over this product. 

We first consider some basic properties of homomorphisms and their fibers. The 
fiber of a homomorphism (/) : G � H lying above the identity of H is given a name: 

Definition. If (/) is a homomorphism (/) : G � H, the kernel of (/) is the set 

{g E G I ({J(g) = l }  
and will be denoted by ker (/) (here 1 is the identity of H). 

Proposition 1. Let G and H be groups and let (/) : G � H be a homomorphism. 
(1) ({J( l c )  = 1 H, where 1 c  and l H  are the identities of G and H, respectively. 
(2) ({J(g-1) = ({J(g)-1 for all g E G. 
(3) ({J(gn) = ({J(g)n for all n E Z. 
( 4) ker (/) is a subgroup of G. 
(5) im ( (/) ), the image of G under (/), is  a subgroup of H.  

Proof" ( 1 )  Since qJ( 1 c )  = ({J( l c 1 c )  = qJ( 1 c )({J( l c ), the cancellation laws show 
that ( 1 )  holds. 

(2) ({J( l c) = qJ(gg-1 ) = qJ(g)qJ (g-1 ) and, by part ( 1 ), ({J( l c)  = 1 H, hence 

lH = (/J(g)qJ(g-1 ) .  

Multiplying both sides on the left by ({J(g)-1 and simplifying gives (2) . 
(3) This is an easy exercise in induction for n E z+. By part (2), conclusion (3) 

holds for negative values of n as well. 
(4) Since 1 c  E ker qJ, the kernel of (/) is not empty. Let x, y E ker qJ, that is 

({J(x) = ({J(y) = l H .  Then 

({J(xy-1) = ({J(X)({J(y-1 ) = ({J(X)({J(y)- 1 = 1 H 1 [/ = l H  

that is, xy-1 E ker qJ .  B y  the subgroup criterion, ker (/) :::; G .  
(5) Since (/) ( 1 c )  = l H, the identity of H lies in the image of(/), s o  im( (/)) is nonempty. 

If x and y are in im(qJ), say x = ({J(a), y = qJ(b), then y-1 = qJ(b-1) by (2) so that 
xy-1 = qJ(a)qJ(b-1 ) = qJ (ab-1) since (/)  is a homomorphism. Hence also xy-I is in 
the image of (/), so im(({J) is a subgroup of H by the subgroup criterion. 

We can now define some terminology associated with quotient groups. 
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Definition. Let cp : G ---+ H be a homomorphism with kernel K .  The quotient group 
or factor group, G I K (read G modulo K or simply G mod K), is the group whose 
elements are the fibers of cp with group operation defined above: namely if X is the 
fiber above a and Y is the fiber above b then the product of X with Y is defined to be 
the fiber above the product ab. 

The notation emphasizes the fact that the kernel K is a single element in the group 
G I K and we shall see below (Proposition 2) that, as in the case of Zl nZ above, the 
other elements of G I K are just the "translates" of the kernel K.  Hence we may think 
of G I K as being obtained by collapsing or "dividing out" by K (or more precisely, by 
equivalence modulo K). This explains why G I K is referred to as a "quotient" group. 

The definition of the quotient group G I K above requires the map cp explicitly, 
since the multiplication of the fibers is performed by first projecting the fibers to H 
via cp, multiplying in H and then determining the fiber over this product. Just as for 
ZlnZ above, it is also possible to define the multiplication of fibers directly in terms 
of representatives from the fibers. This is computationally simpler and the map cp does 
not enter explicitly. We first show that the fibers of a homomorphism can be expressed 
in terms of the kernel of the homomorphism just as in the example above (where the 
kernel was nZ and the fibers were translates of the form a + nZ). 

Proposition 2. Let cp : G ---+ H be a homomorphism of groups with kernel K. Let 
X E GIK be the fiber above a, i.e., X = cp- 1 (a) .  Then 

(1) For any u E X, X =  {uk I k E  K} 
(2) For any u E X, X =  {ku I k E  K}. 

Proof We prove ( 1 )  and leave the proof of (2) as an exercise. Let u E X so, by 
definition of X, cp(u) = a. Let 

u K = { uk I k E K} .  

We first prove uK � X. For any k E K, 

cp(uk) = cp(u)cp(k) 
= cp(u) l 
= a, 

(since cp is a homomorphism) 

(since k E ker cp) 

that is, uk E X. This proves uK � X. To establish the reverse inclusion suppose 
g E X and let k = u - l g. Then 

cp(k) = cp(u-1 )cp(g) = cp(u)-1cp(g) (by Proposition 1)  
= a-1a = 1 .  

Thus k E ker cp. Since k = u-1g, g = u k  E uK, establishing the inclusion X �  uK. 
This proves (1) .  

The sets arising in Proposition 2 to describe the fibers of a homomorphism cp are 
defined for any subgroup K of G, not necessarily the kernel of some homomorphism 
(we shall determine necessary and sufficient conditions for a subgroup to be such a 
kernel shortly) and are given a name: 
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Definition. For any N _::::: G and any g E G let 

g N = {gn I n E N} and N g = {ng I n E N} 

called respectively a left coset and a right coset of N in G. Any element of a coset is 
called a representative for the coset. 

We have already seen in Proposition 2 that if N is the kernel of a homomorphism 
and gi is any representative for the coset gN then g1N = gN (and if gi E Ng then 
N gi = N g). We shall see that this fact is valid for arbitrary subgroups N in Proposition 
4 below, which explains the terminology of a representative. 

If G is an additive group we shall write g + N and N + g for the left and right 
cosets of N in G with representative g, respectively. In general we can think of the left 
coset, g N, of N in G as the left translate of N by g. (The reader may wish to review 
Exercise 1 8  of Section 1 .7 which proves that the right cosets of N in G are precisely 
the orbits of N acting on G by left multiplication.) 

In terms of this definition, Proposition 2 shows that the fibers of a homomorphism 
are the left cosets of the kernel (and also the right cosets of the kernel), i.e., the elements 
of the quotient GIK are the left cosets gK, g E G. In the example of 7L.In7L. the 
multiplication in the quotient group could also be defined in terms of representatives 
for the cosets. The following result shows the same result is true for G I K in general 
(provided we know that K is the kernel of some homomorphism), namely that the 
product of two left cosets X and Y in G I K is computed by choosing any representative 
u of X, any representative v of Y, multiplying u and v in G and forming the coset 
(uv)K .  

Theorem 3 .  Let G be a group and let K be the kernel of some homomorphism from 
G to another group. Then the set whose elements are the left cosets of K in G with 
operation defined by 

u K  o vK = (uv)K 

forms a group, G I K.  I n  particular, this operation is well defined i n  the sense that i f  u I is 
any element in u K  and VI is any element in vK, then UI VI E uvK, i.e., U tVI K = uvK 
so  that the multiplication does not depend on the choice of  representatives for the cosets. 
The same statement is true with "right coset" in place of "left coset." 

Proof: Let X, Y E Gl K and let Z = XY in Gl K, so that by Proposition 2(1 )  X, 
Y and Z are (left) cosets of K. By assumption, K is the kernel of some homomorphism 
ffJ : G --+ H so X = f/J-I (a) and Y = f{J-1 (b) for some a, b E H .  By definition of 
the operation in GIK, Z = f{J-I (ab) . Let u and v be arbitrary representatives of X, 
Y, respectively, so that f{J(u) = a, f{J(v) = b and X =  uK,  Y = vK. We must show 
uv  E Z. Now 

UV E Z {} U V  E f{J-I (ab) 
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Since the latter equality does hold, uv e Z hence Z is the (left) coset uvK. (Exercise 
2 below shows conversely that every z e Z can be written as uv ,  for some u e X and 
v e Y.) This proves that the product of X with Y is the coset uvK for any choice 
of representatives u e X, v e Y completing the proof of the first statements of the 
theorem. The last statement in the theorem follows immediately since, by Proposition 
2, uK = Ku and vK = Kv for all u and v in G .  

In  terms of Figure 1 ,  the multiplication in  G I K via representatives can be pictured 
as in the following Figure 3 .  

u 
' - - - - ..... -

v ...... 
\ 

\ 
v 

j j j 
,.. � -- - - - -- ........ 

� '\ ...... . 
a b ab 

uv 

G 

H 

Fig. 3 

We emphasize the fact that the multiplication is independent of the panicular rep
resentatives chosen. Namely, the product (or sum, if the group is written additively) of 
two cosets X and Y is the coset uvK containing the product uv where u and v are any 
representatives for the cosets X and Y, respectively. This process of considering only 
the coset containing an element, or "reducing mod K" is the same as what we have been 
doing, in particular, in ZlnZ. A useful notation for denoting the coset uK containing 
a representative u is u .  With this notation (which we introduced in the Preliminaries in 
dealing with Zl nZ), the quotient group G I K is denoted G and the product of elements 
u and ii is simply the coset containing uv ,  i.e., uv .  This notation also reinforces the fact 
that the cosets uK in G I K are elements u in G I K .  

Examples 
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(1) The first example in this chapter of the homomorphism rp from ll to Zn has fibers the 
left (and also the right) cosets a + nil of the kernel nil. Theorem 3 proves that these 
cosets form a group under addition of representatives, namely Ill nil, which explains 
the notation for this group. The group is naturally isomorphic to its image under rp, so 
we recover the isomorphism llf nil � Zn of Chapter 2. 

(2) If rp : G � H is an isomorphism, then K = 1 ,  the fibers of rp are the singleton 
subsets of G and so G/1 � G. 
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(3) Let G be any group, let H = I be the group of order I and define cp : G � H by 
cp(g) = I ,  for all g E G. It is immediate that cp is a homomorphism. This map is called 
the trivial homomorphism. Note that in this case ker cp = G and G f G is a group with 
the single element, G, i.e., GfG ;::::: Z1 = { I } . 

(4) Let G = IR2 (operation vector addition), let H = IR (operation addition) and define 
cp : JR2 � lR by cp( (x , y) ) = x. Thus cp is projection onto the x-axis. We show cp is a 
homomorphism: 

cp( (XJ ,  Y I)  + (X2, Y2) ) = cp( (XI + X2 , YI + Y2) )  

= XJ + X2 = cp( (XJ , YI ) )  + ({!( (X2 , Y2) ) .  

Now 

ker cp = { (x ,  y) I cp( (x , y) ) = 0} 

= { (x , y) I x = 0} = the y-axis. 

Note that ker cp is indeed a subgroup of JR2 and that the fiber of cp over a E lR is the 
translate of the y-axis by a, i.e., the line x = a.  This is also the left (and the right) coset 
of the kernel with representative (a , 0) (or any other representative point projecting to 
a) : 

(a , 0) = (a,  0) + y-axis. 

Hence Figure I in this example becomes 

y 

- I  0 

j j .  j 
- 1  0 

- - - - - - - - _ _ _ _  .,. 
a X 

j 
a 

IR.2 

Fig. 4 

The group operation (written additively here) can be described either by using the map 
cp: the sum of the line (x = a) and the line (x = b) is the line (x = a +b); or directly in 
terms of coset representatives: the sum of the vertical line containing the point (a , YI)  
and the vertical line containing the point (b ,  Y2) is  the vertical line containing the point 
(a + b, y1 + Y2) . Note in particular that the choice of representatives of these vertical 
lines is not important (i.e., the y-coordinates are not important). 

(5) (An example where the group G is non-abelian.) Let G = Qg and let H = V4 be the 
Klein 4-group (Section 2.5, Example 2). Define cp : Qg � V4 by 

cp(± I )  = I ,  cp(±i) = a, cp(±j) = b, cp(±k) = c. 
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The check that q; is a homomorphism is left as an exercise - relying on symmetry 
minimizes the work in showing q;(xy) = q;(x)q;(y) for all x and y in Qg. It is clear 
that q; is smjective and that ker q; = { ± 1 } .  One might think of q; as an "absolute value" 
function on Qs so the fibers of q; are the sets E = {±1 }, A = {±i } ,  B = {±j } and 
C = {±k}, which are collapsed to 1 ,  a, b, and c respectively in Qs/( ± 1 ) and these 
are the left (and also the right) cosets of ker q; (for example, A =  i · ker q; = {i ,  -i }  = 

ker q; . i) .  

By Theorem 3, if we are given a subgroup K of a group G which we know is the 
kernel of some homomorphism, we may define the quotient G I K without recourse to 
the homomorphism by the multiplication u K v K  = uvK.  This raises the question of 
whether it is possible to define the quotient group GIN similarly for any subgroup N 
of G. The answer is no in general since this multiplication is not in general well defined 
( cf. Proposition 5 later). In fact we shall see that it is possible to define the structure 
of a group on the cosets of N if and only if N is the kernel of some homomorphism 
(Proposition 7). We shall also give a criterion to determine when a subgroup N is such 
a kernel - this is the notion of a normal subgroup and we shall consider non-normal 
subgroups in subsequent sections. 

We first show that the cosets of an arbitrary subgroup of G partition G (i.e., their 
union is all of G and distinct cosets have trivial intersection). 

Proposition 4. Let N be any subgroup of the group G. The set of left cosets of N in G 
form a partition of G. Furthermore, for all u ,  v E G, uN = vN if and only if v-1 u E N  
and in particular, u N = v N if and only if u and v are representatives of the same coset. 

Proof First of all note that since N is a subgroup of G, 1 E N. Thus g = g · 1 E g N 
for all g E G, i.e., 

G = U gN. 
geG 

To show that distinct left cosets have empty intersection, suppose uN n vN ¥- 0. We 
show uN = vN.  Let x E uN n vN. Write 

x = un = vm , for some n, m E N. 

In the latter equality multiply both sides on the right by n-1 to get 

where m1  = mn-1 E N. 

Now for any element ut of uN (t E N), 

ut = (vm 1 )t = v (m 1 t) E vN. 

This proves u N f; v N. By interchanging the roles of u and v one obtains similarly that 
vN f; uN. Thus two cosets with nonempty intersection coincide. 

By the first part of the proposition, uN = v N  if and only if u E vN if and only 
if u = vn , for some n E N if and only if v- 1u E N, as claimed. Finally, v E u N  is 
equivalent to saying v is a representative for uN, hence uN = vN if and only if u and 
v are representatives for the same coset (namely the coset uN = vN). 
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Proposition 5. Let G be a group and let N be a subgroup of G. 
(1) The operation on the set of left cosets of N in G described by 

uN · vN = (u v)N 

is well defined if and only if gng-I E N  for all g E G and all n E N. 
(2) If the above operation is well defined, then it makes the set of left cosets of N 

in G into a group. In particular the identity of this group is the coset lN and 
the inverse of gN is the coset g-1 N i.e., (gN)-1  = g-I N. 

Proof: ( 1)  Assume first that this operation is well defined, that is, for all u ,  v E G, 

if u ,  U I E uN and v ,  VI E vN then u vN = u 1 v1 N. 

Let g be an arbitrary element of G and let n be an arbitrary element of N. Letting 
u = 1 , u 1 = n and v = VI = g-1 and applying the assumption above we deduce that 

lg-1 N = ng-IN i.e., g-I N =  ng-I N. 

Since 1 E N, ng-1 · 1 E ng-1 N. Thus ng-1 E g- I N, hence ng-1 = g-Ini>  for some 
n 1 E N. Multiplying both sides on the left by g gives gng -I  = n 1 E N, as claimed. 

Conversely, assume gng-I E N for all g E G and all n E N. To prove the operation 
stated above is well defined let u ,  u i  E uN and v ,  v1 E vN. We may write 

U I = un and VI = vm, for some n ,  m E N. 

We must prove that U I VI E u vN:  

U I VI = (un) (vm) = u(vv- 1 )nvm 

= (u v) (v- 1 nv)m = (u v) (nim) ,  

where ni = v-Inv = (v-I)n(v- 1 )- I  i s  an element of  N by assumption. Now N is  
closed under products, so n 1m E N. Thus 

U I V1 = (u v)n2 , for some n2 E N. 

Thus the left cosets uvN and u i v1 N contain the common element u i v1 . By the pre
ceding proposition they are equal. This proves that the operation is well defined. 

{2) If the operation on cosets is well defined the group axioms are easy to check 
and are induced by their validity in G.  For example, the associative law holds because 
for all u ,  v, w E G, 

(uN) (vNwN) = uN(v wN) 

= u (v w)N 

= (u v)wN = (uNvN)(wN), 

since u (v w) = (uv)w in G. The identity in GjN is the coset IN and the inverse of 
g N is g-I N as is immediate from the definition of the multiplication. 

As indicated before, the subgroups N satisfying the condition in Proposition 5 for 
which there is a natural group structure on the quotient G j N are given a name: 
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Definition. The element gng-1 is called the conjugate of n E N by g. The set 
gNg-1 = {gng-1 I n E N} is called the conjugate of N by g. The element g is 
said to nonnalize N if gN g-1 = N. A subgroup N of a group G is called nonnal if 
every element of G normalizes N, i.e., if gNg-1 = N for all g E G. If N is a normal 
subgroup of G we shall write N � G. 

Note that the structure of G is reflected in the structure of the quotient G 1 N when 
N is a normal subgroup (for example, the associativity of the multiplication in GIN is 
induced from the associativity in G and inverses in G 1 N are induced from inverses in 
G). We shall see more of the relationship of G to its quotient G 1 N when we consider 
the Isomorphism Theorems later in Section 3 .  

We summarize our results above as Theorem 6. 

Theorem 6. Let N be a subgroup of the group G. The following are equivalent: 
(1) N � G 
(2) Nc (N) = G (recall Nc (N) is the normalizer in G of N) 
(3) g N = N g for all g E G 
(4) the operation on

.
left cosets of N in G described in Proposition 5 makes the set 

of left cosets into a group 
(5) gNg-1 £;; N for all g E G. 

Proof" We have already done the hard equivalences; the others are left as exercises. 

As a practical matter, one tries to minimize the computations necessary to determine 
whether a given subgroup N is normal in a group G. In particular, one tries to avoid as 
much as possible the computation of all the conjugates gng-1 for n E N and g E G. For 
example, the elements of N itself normalize N since N is a subgroup. Also, if one has a 
set of generators for N, it suffices to check that all conjugates of these generators lie in 
N to prove that N is a normal subgroup (this is because the conjugate of a product is the 
product of the conjugates and the conjugate of the inverse is the inverse of the conjugate) 
- this is Exercise 26 later. Similarly, if generators for G are also known, then it suffices 
to check that these generators for G normalize N. In particular, if generators for both 
N and G are known, this reduces the calculations to a small number of conjugations 
to check. If N is a finite group then it suffices to check that the conjugates of a set 
of generators for N by a set of generators for G are again elements of N (Exercise 
29). Finally, it is often possible to prove directly that Nc (N) = G without excessive 
computations (some examples appear in the next section), again proving that N is a 
normal subgroup of G without mindlessly computing all possible conjugates gng-1 • 

We now prove that the normal subgroups are precisely the same as the kernels of 
homomorphisms considered earlier. 

Proposition 7. A subgroup N of the group G is normal if and only if it is the kernel of 
some homomorphism. 

Proof" If N is the kernel of the homomorphism cp, then Proposition 2 shows that 
the left cosets of N are the same as the right cosets of N (and both are the fibers of the 
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map cp). By (3) of Theorem 6, N is then a normal subgroup. (Another direct proof of 
this from the definition of normality for N is given in the exercises). 

Conversely, if N ::::1 G, let H = GIN and define rr : G -+ GIN by 

rr(g) = gN for all g E G. 

By definition of the operation in GIN, 

rr(gtgz) = (gt gz)N = g1N gzN = rr(gt )rr(gz) .  
This proves rr i s  a homomorphism. Now 

ker rr = {g E G I rr(g) = IN} 
= {g E G I gN = IN} 
= {g E G I g E N} = N. 

Thus N is the kernel of the homomorphism rr. 
The homomorphism rr constructed above demonstrating the normal subgroup N 

as the kernel of a homomorphism is given a name: 

Definition. Let N ::::1 G. The homomorphism rr : G -+ GIN defined by rr (g) = g N 
is called the natural projection ( homomorphism)1 of G onto GIN. If H :::: GIN is a 
subgroup of GIN, the complete preimage Of H in G is the preimage of H under the 
natural projection homomorphism. 

The complete pre image of a subgroup of GIN is a subgroup of G ( cf. Exercise 1)  
which contains the subgroup N since these are the elements which map to the identity 
1 E H. We shall see in the Isomorphism Theorems in Section 3 that there is a natural 
correspondence between the subgroups of G that contain N and the subgroups of the 
quotient GIN . 

We now have an "internal" criterion which determines precisely when a subgroup 
N of a given group G is the kernel of some homomorphism, namely, 

NG(N) = G. 

We may thus think of the normalizer of a subgroup N of G as being a measure of 
"how close" N is to being a normal subgroup (this explains the choice of name for this 
subgroup). Keep in mind that the property of being normal is an embedding property, 
that is, it depends on the relation of N to G, not on the internal structure of N itself 
(the same group N may be a normal subgroup of G but not be normal in a larger group 
containing G). 

We began the discussion of quotient groups with the existence of a homomorphism 
cp of G to H and showed the kernel of this homomorphism is a normal subgroup N of 
G and the quotient GIN (defined in terms of fibers originally) is naturally isomorphic 

1 The word "natural" has a precise mathematical meaning in the theory of categories; for our 
purposes we use the term to indicate that the definition of this homomorphism is a "coordinate free" 
projection i.e., is described only in terms of the elements themselves, not in terms of generators for G 
or N (cf. Appendix II). 
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to the image of G under q; in H. Conversely, if N :s:J G, we can find a group H 
(namely, GIN) and a homomorphism n: : G -+ H such that ker n: = N (namely, 
the natural projection). The study of homomorphic images of G (i.e., the images of 
homomorphisms from G into other groups) is thus equivalent to the study of quotient 
groups of G and we shall use homomorphisms to produce normal subgroups and vice 
versa. 

We developed the theory of quotient groups by way of homomorphisms rather than 
simply defining the notion of a normal subgroup and its associated quotient group to 
emphasize the fact that the elements of the quotient are subsets (the fibers or cosets of the 
kernel N) of the original group G.  The visualization in Figure I also emphasizes that N 
(and its cosets) are projected (or collapsed) onto single elements in the quotient Gl N. 
Computations in the quotient group GIN are performed by taking representatives from 
the various cosets involved. 

Some examples of normal subgroups and their associated quotients follow. 

Examples 
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Let G be a group. 
(1) The subgroups 1 and G are always normal in G; Gil � G and GI G � 1 .  
(2) If G i s  an abelian group, any subgroup N of G i s  normal because for all g E G and 

all n E N, 
gng-1 = gg-1n = n E N. 

Note that it is important that G be abelian, not just that N be abelian. The structure of 
G 1 N may vary as we take different subgroups N of G. For instance, if G = Z, then 
every subgroup N of G is cyclic: 

N = { n ) = { -n ) = nZ, for some n E Z 

and GIN = ZlnZ is a cyclic group with generator I = 1 + nZ (note that 1 is a 
generator for G). 

Suppose now that G = Zk is the cyclic group of order k. Let x be a generator of 
G and let N � G. By Proposition 2.6 N = { xd ) ,  where d is the smallest power of x 
which lies in N. Now 

GIN = {gN I g E G} = {xa N I a E Z} 

and since xa N = (xN)a (see Exercise 4 below), it follows that 

GIN = { xN ) i.e., G 1 N is cyclic with x N as a generator. 

By Exercise 5 below, the order of xN in GIN equals d. By Proposition 2.5, d = :�: . 
In summary, 

quotient groups of a cyclic group are cyclic 

and the image of a generator g for G is a generator g for the quotient. If in addition G 

is a finite cyclic group and N � G, then I GI N l  = :�: gives a formula for the order 

of the quotient group. 
(3) If N � Z(G), then N � G because for all g E G and all n E N, gng-1 = n E N, 

generalizing the previous example (where the center Z(G) is all of G). Thus, in 
particular, Z(G) � G. The subgroup { - 1 ) of Qs was previously seen to be the kernel 
of a homomorphism but since { - 1 ) = Z(Qs) we obtain normality of this subgroup 
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now in another fashion. We already saw that Qsl( - 1 ) � V4. The discussion for 
Ds in the next paragraph could be applied equally well to Qs to give an independent 
identification of the isomorphism type of the quotient. 

Let G = Ds and let Z = ( r2 ) = Z(Ds) .  Since Z = { 1 ,  r2} ,  each coset, gZ, 
consists of the two element set {g, gr2} .  Since these cosets partition the 8 elements of 
Ds into pairs, there must be 4 (disjoint) left cosets of Z in Ds : 

I = 1Z,  r = rZ, s = sZ,  and rs = rsZ. 

Now by the classification of groups of order 4 (Exercise 10, Section 2.5) we know that 
DsiZ(Ds) � Z4 or V4. To determine which of these two is correct (i.e., determine 
the isomorphism type of the quotient) simply observe that 

(r)2 = r2Z =  l Z = I 
(s)2 = s2Z =  l Z = I 

(rs)2 = (rs)2 Z = 1 Z  = I  
so every nonidentity element in DsiZ has order 2. In particular there is no element 
of order 4 in the quotient, hence Ds 1 Z is not cyclic so Ds 1 Z ( Ds) � V4. 

E X E R C I S E S 

Let G and H be groups. 

1. Let rp : G � H be a homomorphism and let E be a subgroup of H. Prove that rp-1 (E) ::::: G 
(i.e., the preimage or pullback of a subgroup under a homomorphism is a subgroup). If 
E � H prove that rp- 1 (£) � G. Deduce that ker rp � G . 

2. Let rp : G � H be a homomorphism of groups with kernel K and let a, b E rp(G) . 

Let X E GIK be the fiber above a and let Y be the fiber above b, i.e. , X = rp-1 (a),  
Y = rp-1 (b) .  Fix an element u of X (so rp(u) = a). Prove that if XY = Z in the quotient 
group G I K and w is any member of Z, then there is some v E Y such that uv = w. [Show 
u-1 w E Y.] 

3. Let A be an abelian group and let B be a subgroup of A. Prove that A 1 B is abelian. Give 
an example of a non-abelian group G containing a proper normal subgroup N such that 
GIN is abelian. 

4. Prove that in the quotient group GIN, (g N)a = ga N for all a E Z. 

5. Use the preceding exercise to prove that the order of the element g N in G 1 N is n, where 
n is the smallest positive integer such that gn E N (and g N has infinite order if no such 
positive integer exists) . Give an example to show that the order of gN in GIN may be 
strictly smaller than the order of g in G. 

6. Define rp : !Rx --+ {±1 }  by letting rp(x) be x divided by the absolute value of x. Describe 
the fibers of rp and prove that rp is a homomorphism. 

7. Define rr : JR2 � IR by rr(  (x , y) ) = x + y. Prove that rr is a sutjective homomorphism 
and describe the kernel and fibers of rr geometrically. 

8. Let rp : !Rx --+ !Rx be the map sending x to the absolute value of x. Prove that rp is a 
homomorphism and find the image of rp. Describe the kernel and the fibers of rp. 

9. Define rp : ex � JRX by rp(a + hi) = a2 + b2 . Prove that rp is a homomorphism and find 
the image of rp. Describe the kernel and the fibers of rp geometrically (as subsets of the 
plane). 
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10. Let cp : '7lf87l � 7lj47l by cp(a) = a. Show that this is a well defined, suljective 
homomorphism and describe its fibers and kernel explicitly (showing that cp is well defined 
involves the fact that a has a different meaning in the domain and range of cp ). 

11. Let F be a field and let G = { ( � � )  I a, b, c E F, ac -=/; 0} � GLz(F). 

(a) Prove that the map cp : ( � � ) 1-+ a is a suljective homomorphism from G onto 

Fx (recall that F x  is the multiplicative group of nonzero elements in F). Describe 
the fibers and kernel of cp. 

(b) Prove that the map 1/r : ( � � )  1-+ (a , c) is a suljective homomorphism from G 

onto F x x F x .  Describe the fibers and kernel of 1/r .  

(c) Let H = { ( � � ) I b E  F}.  Prove that H is isomorphic to the additive group F.  

12. Let G be the additive group of real numbers, let H be  the multiplicative group of  complex 
numbers of absolute value 1 (the unit circle S1 in the complex plane) and let cp : G � H 

be the homomorphism cp : r 1-+ e2rrir . Draw the points on a real line which lie in the 
kernel of cp. Describe similarly the elements in the fibers of cp above the points - 1, i ,  and 
e4n:if3 of H.  (Figure 1 of the text for this homomorphism cp is usually depicted using the 
following diagram.) 

l cp 

� H�S' Fig. S 

13. Repeat the preceding exercise with the map cp replaced by the map cp : r 1-+ e4n:ir . 

14. Consider the additive quotient group Qf'll. 
(a) Show that every coset of 7l in Q contains exactly one representative q E Q in the 

range O � q  < 1 .  
(b) Show that every element of Qj'll has finite order but that there are elements of arbi

trarily large order. 
(c) Show that Qf'll is the torsion subgroup of Rj'll (cf. Exercise 6, Section 2.1 ) .  
(d) Prove that Qj'll is isomorphic to the multiplicative group of  root of unity in  e x .  

15. Prove that a quotient of a divisible abelian group by any proper subgroup i s  also divisible. 
Deduce that Qf'll is divisible (cf. Exercise 19, Section 2.4). 

16. Let G be a group, let N be a normal subgroup of G and let G = GfN. Prove that if 
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G = ( x , y ) then G = ( :X, y ) .  Prove more generally that if G = ( S ) for any subset S of 
G, then G = ( S ) .  

17. Let G be the dihedral group of order 1 6  (whose lattice appears in Section 2.5): 

G = ( r, s I r8 = s2 = l ,  rs = sr- 1 ) 

and let G = G I ( r4 ) be the quotient of G by the subgroup generated by r4 (this subgroup 
is the center of G, hence is normal). 
(a} Show that the order of G is 8.  
(b) Exhibit each element of G in the form sarh, for some integers a and b.  
(c) Find the order of each of the elements of G exhibited in (b). 
(d) Write each of the following elements of G in the form s<'rb, for some integers a and 

b as in (b): rs, sr-2s, s - 1 r-1 sr . 
(e) Prove that H = { s, r2 ) is a normal subgroup of G and H is isomorphic to the Klein 

4-group. Describe the isomorphism type of the complete preimage of H in G. 
(f) Find the center of G and describe the isomorphism type of GIZ(G). 

18. Let G be the quasidihedral group of order 16 (whose lattice was computed in Exercise 1 1  
of Section 2.5): 

G = ( a, 1: I a 8  = -r 2 = 1, a-r = -r a 3 ) 

and let G = G I ( a4 ) be the quotient of G by the subgroup generated by a4 (this subgroup 
is the center of G, hence is normal). 
(a) Show that the order of G is 8.  
(b) Exhibit each element of G in the form "Fob, for some integers a and b. 
(c) Find the order of each of the elements of G exhibited in (b). 
(d) Write each of the following elements of G in the form "Fob, for some integers a and 

b as in (b): a -r, -r a -2 -r ,  -r - 1 a -1 -r a .  
(e) Prove that G � Dg . 

19. Let G be the modular group of order 16 (whose lattice was computed in Exercise 14 of 
Section 2.5): 

G = ( u ,  v I  u2 = v8 = I , vu = u v5 ) 

and let G = G 1 ( v4 ) be the quotient of G by the subgroup generated by v4 (this subgroup 
is contained in the center of G, hence is normal). 
(a) Show that the order of G is 8.  
(b) Exhibit each element of G in the form ua vb' for some integers a and b.  
(c) Find the order of each of the elements of G exhibited in (b). 
(d) Write each of the following elements of G in the form uavh, for some integers a and 

b as in (b): vu, uv-2u, u - 1 v-1 u v. 
(e) Prove that G is abelian and is isomorphic to Z2 x Z4 . 

20. Let G � ZI24Z and let G = G I ( 1 2  ) ,  where for each integer a we simplify notation by 
writing a as a. 
(a) Show that G = {o, T, . . . , fi } . 
(b) Find the order of each element of G. 
(c) Prove that G � ZI 12Z. (Thus (ZI24Z)/(12ZI24Z) � ZI1 2Z, just as if we inverted 

and cancelled the 24/f.'s.) 
21. Let G = z4 X z4 be given in terms of the following generators and relations: 

G = ( x ,  y I x4 = y4 = 1 , xy = yx ) . 
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Let G = G f ( x2y2 ) (note that every subgroup of the abelian group G is normal). 
(a) Show that the order of G is 8 .  
(b) Exhibit each element of G in the form X"yb,  for some integers a and b .  
(c) Find the order o f  each o f  the elements of G exhibited i n  (b). 
(d) Prove that G � z4 X Zz. 

22. (a) Prove that if H and K are normal subgroups of a group G then their intersection 
H n K is also a normal subgroup of G. 

(b) Prove that the intersection of an arbitrary nonempty collection of normal subgroups 
of a group is a normal subgroup (do not assume the collection is countable). 

23. Prove that the join ( cf. Section 2.5) of any nonempty collection of normal subgroups of a 
group is a normal subgroup. 

24. Prove that if N � G and H is any subgroup of G then N n H � H. 

25. (a) Prove that a subgroup N of  G is  normal if  and only if  gNg-1  c:; N for all g E G. 
(b) Let G = GLz (Q) , let N be the subgroup of upper triangular matrices with integer 

entries and I 's on the diagonal, and let g be the diagonal matrix with entries 2, 1 .  Show 
that g N g -! c:; N but g does not normalize N. 

26. Let a , b E G. 
(a) Prove that the conjugate of the product of a and b is the product of the conjugate of 

a and the conjugate of b. Prove that the order of a and the order of any conjugate of 
a are the same. 

(b) Prove that the conjugate of a-1 is the inverse of the conjugate of a. 
(c) Let N = ( S )  for some subset S of G. Prove that N � G if gSg - 1  c:; N for all g E G. 
(d) Deduce that if N is the cyclic group ( x ) , then N is normal in G if and only if for each 

g E G, gxg-1  = xk for some k E Z. 
(e) Let n be a positive integer. Prove that the subgroup N of G generated by all the 

elements of G of order n is a normal subgroup of G. 

27. Let N be a finite subgroup of a group G. Show that g N g -! c:; N if and only if g N g -! = N. 
Deduce that NG (N) = {g  E G I gNg-1 c:; N}. 

28. Let N be a finite subgroup of a group G and assume N = ( S )  for some subset S of G. 
Prove that an element g E G normalizes N if and only if gSg-1 c:; N. 

29. Let N be a finite subgroup of G and suppose G = ( T )  and N = ( S )  for some subsets S 
and T of G. Prove that N is normal in G if and only if t st- 1 c:; N for all t E T.  

30. Let N � G and let g E G. Prove that gN = N g if  and only if  g E NG (N) . 

31. Prove that if H � G and N is a normal subgroup of H then H � NG (N). Deduce that 
NG (N) is the largest subgroup of G in which N is normal (i.e., is the join of all subgroups 
H for which N � H). 

32. Prove that every subgroup of Qs is normal. For each subgroup find the isomorphism type 
of its corresponding quotient. [You may use the lattice of subgroups for Qs in Section 
2.5.] 

33. Find all normal subgroups of Ds and for each of these find the isomorphism type of its 
corresponding quotient. [You may use the lattice of subgroups for Ds in Section 2.5.] 

34. Let Dzn = ( r, s I rn = s2 = 1 , rs = sr- 1 ) be the usual presentation of the dihedral 
group of order 2n and let k be a positive integer dividing n.  
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(a) Prove that ( rk ) is a normal subgroup of Dzn . 
(b) Prove that Dzn / ( rk ) � Dzk -
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35. Prove that SLn (F) � GLn (F) and describe the isomorphism type of the quotient group 
(cf. Exercise 9.,Section 2. 1 ). 

36. Prove that if G/Z(G) is cyclic then G is abelian. [If G/Z(G) is cyclic with generator 
xZ(G), show that every element of G can be written in the form xaz for some integer 
a e Z and some element z e Z(G).] 

37. Let A and B be groups. Show that { (a,  1 )  I a e A} is a normal subgroup of A x B and the 
quotient of A x B by this subgroup is isomorphic to B. 

38. Let A be an abelian group and let D be the (diagonal) subgroup { (a ,  a) 1 a e A}  of A x  A. 
Prove that D is a normal subgroup of A x A and (A x A)/ D � A. 

39. Suppose A is the non-abelian group S3 and D is the diagonal subgroup 
{(a , a) I a e A} of A x  A. Prove that D is not normal in A x A. 

40. Let G be a group, let N be a normal subgroup of G and let G = G f N. Prove that x and 
y commute in G if and only if x-1 y-1xy e N. (The element x-1 y- 1xy is called the 
commutator of x and y and is denoted by [x , y ] .)  

41. Let G be a group. Prove that N = ( x-1 y-1 xy I x ,  y e G }  is a normal subgroup of G and 
G f N is abelian (N is called the commutator subgroup of G). 

42. Assume both H and K are normal subgroups of G with H n K = 1. Prove that xy = yx 
for all x e H and y e K. [Show x-1 y-1xy e H n K.] 

43. Assume P = {A; I i e I}  is any partition of G with the property that P is a group under 
the "quotient operation" defined as follows: to compute the product of A; with Aj take any 
element a; of A; and any element aj of Aj and let A; Aj be the element ofP containing a;aj 
(this operation is assumed to be well defined). Prove that the element of P that contains 
the identity of G is a normal subgroup of G and the elements of P are the cosets of this 
subgroup (so P is just a quotient group of G in the usual sense). 

3.2 MORE ON COSETS AND LAGRANGE•s THEOREM 

In this section we continue the study of quotient groups. Since for finite groups one 
of the most important invariants of a group is its order we first prove that the order of 

a quotient group of a finite group can be readily computed: I G/N I  = _!g_ In fact 
I N I  

we derive this as a consequence of a more general result, Lagrange's Theorem (see 
Exercise 19, Section 1 .7). This theorem is one of the most important combinatorial 
results in finite group theory and will be used repeatedly. After indicating some easy 
consequences of Lagrange 's Theorem we study more subtle questions concerning cosets 
of non-normal subgroups. 

The proof of Lagrange's Theorem is straightforward and important. It is the same 
line of reasoning we used in Example 3 of the preceding section to compute IDs/ Z (D8) 1 . 

Theorem 8. (Lagrange 's Theorem) If G is a finite group and H is a subgroup of G, 
then the order of H divides the order of G (i.e., I HI I I  G I )  and the number of left cosets 

. I G I 
of H m G equals 

I H I . 

Proof" Let I H I = n and let the number of left cosets of H in G equal k. By 
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Proposition 4 the set of left cosets of H in G partition G. By definition of a left coset 
the map: 

H -+  gH defined by h I--* gh 

is a surjection from H to the left coset g H .  The left cancellation law implies this map 
is injective since gh1 = gh2 implies ht  = h2.  This proves that H and gH have the 
same order: 

lgH I  = I H I = n .  
Since G i s  partitioned into k disjoint subsets each of  which has cardinality n, I G I  = kn . 

I G I  I G I . 
Thus k = - = - , completmg the proof. n I H I  

Definition. If G is a group (possibly infinite) and H � G ,  the number of left cosets 
of H in G is called the index of H in G and is denoted by I G : H 1 .  

In the case of finite groups the index of H in G i s  :�: . For G an infinite group 

the quotient 
I G I  

does not make sense. Infinite groups may have subgroups of finite 
I H I  

or infinite index (e.g., {0} is of infinite index in Z and ( n ) is of index n in Z for every 
n > 0). 

We now derive some easy consequences of Lagrange's Theorem. 

Corollary 9. If G is a finite group and x E G, then the order of x divides the order of 
G.  In particular x iG I = 1 for all x in G. 

Proof" By Proposition 2.2, lx I = I ( x ) I ·  The first part of the corollary follows from 
Lagrange's Theorem applied to H = ( x ) . The second statement is clear since now I G I  
is a multiple of the order of x .  

Corollary 10. If G is a group of prime order p ,  then G i s  cyclic, hence G � Zp . 

Proof: Let x E G, x f::. 1 .  Thus l ( x  ) I  > 1 and l ( x  ) I  divides I G I .  Since I G I  
i s  prime we must have I ( x ) I = I G 1 .  hence G = ( x ) i s  cyclic (with any nonidentity 
element x as generator). Theorem 2.4 completes the proof. 

With Lagrange's Theorem in hand we examine some additional examples of normal 
subgroups. 

Examples 
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(1) Let H = ( ( 1  2 3) ) � S3 and let G = S3 . We show H � S3 . As noted in Section 2.2, 

H � Nc (H) � G. 

By Lagrange's Theorem, the order of H divides the order of Nc (H) and the order 
of Nc (H) divides the order of G. Since G has order 6 and H has order 3, the only 
possibilities for Nc (H) are H or G. A direct computation gives 

( 1  2)( 1 2 3) ( 1  2) = (1 3 2) = ( 1 2 3)-1 . 
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Since ( 1 2) = (1 2)-1 ,  this calculation shows that ( 1 2) conjugates a generator of H to 
another generator of H. By Exercise 24 of Section 2.3 this is sufficient to prove that 
( 1 2) E NG (H). Thus NG (H) ":f H so NG (H) = G, i.e., H � S3, as claimed. This 
argument illustrates that checking normality of a subgroup can often be reduced to a 
small number of calculations. A generalization of this example is given in the next 
example. 

(2) Let G be any group containing a subgroup H of index 2. We prove H � G. Let 
g E G - H so, by hypothesis, the two left cosets of H in G are l H  and gH. Since 
1 H = H and the cosets partition G, we must have gH = G - H. Now the two right 
cosets of H in G are H 1 and H g. Since H 1 = H, we again must have H g = G - H. 
Combining these gives g H = H g, so every left coset of H in G is a right coset. By 
Theorem 6, H � G. By definition of index, IG/H I = 2, so that G/H � Z2. One 
must be careful to appreciate that the reason H is normal in this case is not because we 
can choose the same coset representatives 1 and g for both the left and right cosets of 
H but that there is a type of pigeon-hole principle at work: since I H  = H = H I for 
any subgroup H of any group G, the index assumption forces the remaining elements 
to comprise the remaining coset (either left or right). We shall see that this result is 
itself a special case of a result we shall prove in the next chapter. 

Note that this result proves that ( i ) , ( j ) and ( k )  are normal subgroups of Qg 

and that ( s , r2 ), ( r ) and ( sr, r2 ) are normal subgroups of Dg. 
(3) The property "is a normal subgroup of' is not transitive. For example, 

( s ) � ( s, r2 ) � Ds 

(each subgroup is of index 2 in the next), however, ( s ) is not normal in Ds because 
rsr-1  = sr2 ¢ ( s  ) . 

We now examine some examples of non-normal subgroups . Although in abelian 
groups every subgroup is normal, this is not the case in non-abelian groups (in some 
sense Q8 is the unique exception to this). In fact, there are groups G in which the 
only normal subgroups are the trivial ones: 1 and G. Such groups are called simple 
groups (simple does not mean easy, however). Simple groups play an important role 
in the study of general groups and this role will be described in Section 4. For now 
we emphasize that not every subgroup of a group G is normal in G;  indeed, normal 
subgroups may be quite rare in G.  The search for normal subgroups of a given group 
is in general a highly nontrivial problem. 

Examples 

(1) Let H = ( ( 1 2) ) _:::: S3 . Since H is of prime index 3 in S3 , by Lagrange's Theorem 
the only possibilities for N s3 (H) are H or S3 . Direct computation shows 

( 1 3) ( 1 2) ( 1 3)-l = ( 1 3) ( 1  2) (1 3) = (2 3) ¢ H 

so N s3 (H) # S3, that is, H is not a normal subgroup of S3 . One can also see this by 
considering the left and right cosets of H; for instance 

(1 3)H = { ( 1 3) ,  (1 2 3)} and H(l  3) = { ( 1 3), ( 1 3 2)} .  
Since the left coset (1 3)H is the unique left coset of H containing ( 1 3), the right 
coset H(l  3) cannot be a left coset (see also Exercise 6). Note also that the "group 
operation" on the left cosets of H in S3 defined by multiplying representatives is not 
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even well defined. For example, consider the product of the two left cosets I H and ( 1 3) H. 
The elements 1 and (1 2) are both representatives for the coset 1 H ,  yet I · (1 3) = (1 3) 
and (1 2) · ( 1 3) = ( 1 3 2) are not both elements of the same left coset as they should be if 
the product of these cosets were independent of the particular representatives chosen. This 
is an example of Theorem 6 which states that the cosets of a subgroup form a group only 
when the subgroup is a normal subgroup. 
(2) Let G = Sn for some n E z+ and fix some i E { I ,  2, . . . , n} .  As in Section 2.2 let 

G; = {a E G I a (i)  = i }  

b e  the stabilizer of the point i .  Suppose r E G and r (i) = j .  It follows directly 
from the definition of G; that for all a E G; , ra(i) = j. Furthermore, if J.L E G and 
J.L(i) = j ,  then r -1 J.L(i) = i ,  that is, r -1 J.L E G; , so J.L E rG; .  This proves that 

rG; = {J.L E G I J.L(i) = j} ,  

i.e., the left coset rG; consists of the permutations in  Sn which take i to j .  We can 
clearly see that distinct left cosets have empty intersection and that the number of 
distinct left cosets equals the number of distinct images of the integer i under the 
action of G, namely there are n distinct left cosets. Thus I G  : Gi l = n. Using the 
same notation let k = r-1 (i), so that r (k) = i .  By similar reasoning we see that 

G; r = {). E G I ).(k) = i } , 

i .e., the right coset G; -r consists of the permutations in Sn which take k to i .  If n > 2, for 
some nonidentity element r we have r G; ::f. G; r since there are certainly permutations 
which take i to j but do not take k to i .  Thus G; is not a normal subgroup. In fact 
NG (G;) = G; by Exercise 30 of Section 1 ,  so G; is in some sense far from being 
normal in Sn . This example generalizes the preceding one. 

(3) In Ds the only subgroup of order 2 which is normal is the center { r2 ) . 

We shall see many more examples of non-normal subgroups as we develop the 
theory. 

The full converse to Lagrange 's Theorem is not true: namely, if G is a finite group 
and n divides I G I ,  then G need not have a subgroup of order n .  For example, let A be the 
group of symmetries of a regular tetrahedron. By Exercise 9 of Section 1 .2, IA I  = 12. 

Suppose A had a subgroup H of order 6. Since 
I A I  

= 2, H would be of index 2 in IH I  
A ,  hence H :g A and A/  H � Zz . Since the quotient group has order 2, the square of 
every element in the quotient is the identity, so for all g E A, (g H)2 = 1 H, that is, for 
all g E A, g2 E H. If g is an element of A of order 3, we obtain g = (g2)2 E H, that 
is, H must contain all elements of A of order 3. This is a contradiction since IH I  = 6 
but one can easily exhibit 8 rotations of a tetrahedron of order 3. 

There are some partial converses to Lagrange's Theorem. For finite abelian groups 
the full converse of Lagrange is true, namely an abelian group has a subgroup of order 
n for each divisor n of I G I  (in fact, this holds under weaker assumptions than "abelian"; 
we shall see this in Chapter 6). A partial converse which holds for arbitrary finite groups 
is the following result: 
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Theorem 11. (Cauchy 's Theorem) If G is a finite group and p is a prime dividing I G I , 
then G has an element of order p. 

Proof" We shall give a proof of this in the next chapter and another elegant proof 
is outlined in Exercise 9. 

The strongest converse to Lagrange's Theorem which applies to arbitrary finite 
groups is the following: 

Theorem 12. (Sylow) If G is a finite group of order pam , where p is a prime and p 
does not divide m, then G has a subgroup of order pa . 

We shall prove this theorem in the next chapter and derive more information on the 
number of subgroups of order pa . 

We conclude this section with some useful results involving cosets. 

Definition. Let H and K be subgroups of a group and define 

H K = {hk I h E H, k E K}.  

Proposition 13. If H and K are finite subgroups of a group then 

I H K l  = 
I H I I K I 

. I H n K I 

Proof" Notice that H K is a union of left cosets of K, namely, 

Since each coset of K has I K I elements it suffices to find the number of distinct left 
cosets of the form hK , h E H .  But h 1 K = h2K for h 1 , h2 E H if and only if 

h21hl  E K. Thus 

h 1K = h2K {} h"21h1 E H n K {} h 1 (H n K) = h2 (H n K). 

Thus the number of distinct cosets of the form hK, for h E H is the number of distinct 
cosets h (H n K), for h E H .  The latter number, by Lagrange's Theorem, equals 

I H I  
. Thus H K consists of 

I H I  
distinct cosets of K (each of which has I K I 

I H n K I I H n K I 
elements) which gives the formula above. 

Notice that there was no assumption that H K be a subgroup in Proposition 13 .  
For example, if G = S3, H = ( ( 1 2) )  and K = ( (2 3) ) ,  then I H I = I K I  = 2 and 
I H  n K l  = 1 ,  so I H K l  = 4. By Lagrange's Theorem H K cannot be a subgroup. As a 
consequence, we must have S3 = ( ( 1 2) ,  (2 3) ) . 
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Proposition 14. If H and K are subgroups of a group, H K is a subgroup if and only 
if H K = K H. 

Proof: Assume first that H K = K H and let a ,  b E H K .  We prove ab- 1 E H K 
so H K is a subgroup by the subgroup criterion. Let 

and 

for some h 1 , h2 E H and k1 . k2 E K .  Thus b- 1 = k2 1 h2. 1 • so ab- 1 
= h ! k1 k2 1 h2. 1 . 

Let k3 = k1 ki 1 E K and h3 = h2.
1 . Thus ab- 1 = h 1 k3h3 . Since H K = K H, 

k3h3 = h4k4 , for some h4 E H, k4 E K. 

Thus ab-1 = h 1 h4k4, and since h 1 h4 E H, k4 E K , we obtain a b- 1 E H K , as desired. 
Conversely, assume that H K is a subgroup of G. Since K :S: H K and H :S: H K ,  

by the closure property of subgroups, K H � H K .  To show the reverse containment 
let hk E H K .  Since H K is assumed to be a subgroup, write hk = a- 1 , for some 
a E H K .  If a = h 1 k1 . then 

hk = (h ! kd - 1 = k} 1 h}1 E K H, 

completing the proof. 

Note that H K = K H does not imply that the elements of H commute with those 
of K (contrary to what the notation may suggest) but rather that every product hk is of 
the form k'h' (h need not be h' nor k be k') and conversely. For example, if G = D2n , 
H = ( r } and K = ( s } , then G = H K = K H so that H K is a subgroup and 
rs = sr-1 so the elements of H do not commute with the elements of K. This is an 
example of the following sufficient condition for H K to be a subgroup: 

Corollary 15. If H and K are subgroups of G and H :S: N c ( K),  then H K is a subgroup 
of G.  In particular, if K ::::) G then H K :S: G for any H :S: G. 

Proof: We prove H K = K H.  Let h E H, k E K .  By assumption, hkh-1 E K ,  
hence 

hk = (hkh -1 )h E K H. 

This proves H K � K H. Similarly, kh = h (h -1 kh) E H K , proving the reverse 
containment. The corollary follows now from the preceding proposition. 

Definition. If A is any subset of Nc ( K )  (or Cc (K)), we shall say A normalizes K 
(centralizes K, respectively). 

With this terminology, Corollary 15 states that H K is a subgroup if H normalizes 
K (similarly, H K is a subgroup if K normalizes H). 

In some instances one can prove that a finite group is a product of two of its 
subgroups by simply using the order formula in Proposition 13 .  For example, let 
G = S4, H = Ds and let K = ( ( 1 2 3) } ,  where we consider Ds as a subgroup of 
S4 by identifying each symmetry with its permutation on the 4 vertices of a square 
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(under some fixed labelling). By Lagrange's Theorem, H n K = 1 (see Exercise 8). 
Proposition 13 then shows I H K l  = 24 hence we must have H K = S4. Since H K is 
a group, H K = K H. We leave as an exercise the verification that neither H nor K 
normalizes the other (so Corollary 15 could not have been used to give H K = K H). 

Finally, throughout this chapter we have worked with left cosets of a subgroup. 
The same combinatorial results could equally well have been proved using right cosets. 
For normal subgroups this is trivial since left and right cosets are the same, but for non
normal subgroups some left cosets are not right cosets (for any choice of representative) 
so some (simple) verifications are necessary. For example, Lagrange's Theorem gives 
that in a finite group G 

the number of right cosets of the subgroup H is I G I 
. 

IH I 

Thus in a finite group the number of left cosets of H in G equals the number of right 
cosets even though the left cosets are not right cosets in general. This is also true for 
infinite groups as Exercise 12 below shows. Thus for purely combinatorial purposes 
one may use either left or right cosets (but not a mixture when a partition of G is 
needed). Our consistent use of left cosets is somewhat arbitrary although it will have 
some benefits when we discuss actions on cosets in the next chapter. Readers may 
encounter in some works the notation H \ G to denote the set of right cosets of H in G. 

In some papers one may also see the notation G f H used to denote the set of left 
cosets of H in G even when H is not normal in G (in which case G j H is called the 
coset space of left cosets of H in G). We shall not use this notation. 

E X E R C I S E S  

Let G be a group. 

1. Which of the following are permissible orders for subgroups of a group of order 1 20: 1 ,  
2, 5, 7, 9, 15, 60, 240? For each permissible order give the corresponding index. 

2. Prove that the lattice of subgroups of S3 in Section 2.5 is correct (i.e., prove that it contains 
all subgroups of S3 and that their pairwise joins and intersections are correctly drawn). 

3. Prove that the lattice of subgroups of Qs in Section 2.5 is correct. 

4. Show that if I G I  = pq for some primes p and q (not necessarily distinct) then either G is 
abelian or Z(G) = 1 .  [See Exercise 36 in Section 1 .] 

5. Let H be a subgroup of G and fix some element g E G. 
(a) Prove that gHg-1 is a subgroup of G of the same order as H. 
(b) Deduce that if n E z+ and H is the unique subgroup of G of order n then H ':S) G. 

6. Let H � G and let g E G. Prove that if the right coset H g equals some left coset of H in 
G then it equals the left coset gH and g must be in NG (H) . 

7. Let H � G and define a relation '""' on G by a '""' b if and only if b-1 a E H. Prove 
that '""' is an equivalence relation and describe the equivalence class of each a E G. Use 
this to prove Proposition 4. 

8. Prove that if H and K are finite subgroups of G whose orders are relatively prime then 
H n K = l . 
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9. This exercise outlines a proof of Cauchy's  Theorem due to James McKay (Another proof 
of Cauchy 's group theorem, Amer. Math. Monthly, 66(1959), p. 1 19). Let G be a finite 
group and let p be a prime dividing I G I .  Let S denote the set of p-tuples of elements of 
G the product of whose coordinates is 1 : 

S = { (x1 , x2 , . . . , Xp) I x; E G and XJX2 · · · Xp = 1 } .  

(a) Show that S has IG ip- l elements, hence has order divisible by  p. 

Define the relation � on S by letting a � f3 if f3 is a cyclic permutation of a. 
(b) Show that a cyclic permutation of an element of S is again an element of S. 
(c) Prove that � is an equivalence relation on S. 
(d) Prove that an equivalence class contains a single element if and only if it is of the 

form (x, x , . . .  , x) with xP = 1 . 
(e) Prove that every equivalence class has order 1 or p (this uses the fact that p is a prime). 

Deduce that IG ip-l = k + pd, where k is the number of classes of size 1 and d is the 
number of classes of size p. 

(f) Since { ( 1 , 1, . . .  , 1)} is an equivalence class of size 1 ,  conclude from (e) that there 
must be a nonidentity element x in G with xP = 1 ,  i.e., G contains an element of 
order p. [Show p I k and so k > 1.] 

10. Suppose H and K are subgroups of finite index in the (possibly infinite) group G with 
IG : H I  = m and IG : K l  = n. Prove that Lc.m. (m , n) ::: I G  : H n Kl  ::: mn. Deduce 
that if m and n are relatively prime then I G : H n K l  = I G : H I ·  I G : K l .  

11. Let H ::: K ::: G. Prove that I G : H I  = IG : K l · I K :  H I  ( do  not assume G i s  finite). 

12. Let H ::: G. Prove that the map x r+ x-1 sends each left coset of H in G onto a right 
coset of H and gives a bijection between the set of left cosets and the set of right cosets of 
H in G (hence the number of left cosets of H in G equals the number of right cosets). 

13. Fix any labelling of the vertices of a square and use this to identify Ds as a subgroup of 
S4. Prove that the elements of Ds and { ( 1 2 3) ) do not commute in S4 . 

14. Prove that S4 does not have a normal subgroup of order 8 or a normal subgroup of order 3.  

15. Let G = S
n and for fixed i E { 1 . 2, . . .  , n } let G; be the stabilizer ofi .  Prove that G; � Sn-1 · 

16. Use Lagrange's Theorem in the multiplicative group (7!./pZ) x to prove Fermat's Little 
Theorem: if p is a prime then aP = a(mod p) for all a E 7!.. 

17. Let p be a prime and let n be a positive integer. Find the order of p in (7!./(pn - 1 )7/.)x and 
deduce that n I q;(pn - 1) (here q; is Euler's function). 

18. Let G be a finite group, let H be a subgroup of G and let N :.:::1 G. Prove that if I H I  and 
I G : Nl are relatively prime then H ::: N. 

19. Prove that if N is a normal subgroup of the finite group G and ( IN I ,  I G : Nl)  = 1 then N 
is the unique subgroup of G of order I N I . 

20. If A is an abelian group with A :.:::1 G and B is any subgroup of G prove that A n  B :.:::1 AB. 
21. Prove that Q has no proper subgroups of finite index. Deduce that Q/7!. has no proper 

subgroups of finite index. [Recall Exercise 21 ,  Section 1 .6 and Exercise 15, Section 1 .] 

22. Use Lagrange's Theorem in the multiplicative group (7!./nZ) x to prove Euler's Theorem: 
a"'<n> = 1 mod n for every integer a relatively prime to n, where <p denotes Euler's q;
function. 

23. Determine the last two digits of 33uXJ . [Determine 3 100 mod q; (100) and use the previous 
exercise.] 
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3.3 THE ISOMORPH ISM TH EOREMS 

In this section we derive some straightforward consequences of the relations between 
quotient groups and homomorphisms which were discussed in Section 1 .  In particular 
we consider the relation between the lattice of subgroups of a quotient group, GIN , 
and the lattice of subgroups of the group G. The first result restates our observations in 
Section 1 on the relation of the image of a homomorphism to the quotient by the kernel 
(sometimes called the Fundamental Theorem of Homomorphisms): 

Theorem 16. (The First Isomorphism Theorem) If q; : G � H is a homomorphism of 
groups, then ker q; � G and Gj ker q;  � q;(G). 

Corollary 17. Let q; : G � H be a homomorphism of groups. 
(1) q; is injective if and only if ker q; = 1 .  
(2) I G : ker q; l  = iq; (G) I .  

Proof" Exercise. 

When we consider abstract vector spaces we shall see that Corollary 17(2) gives 
a formula possibly already familiar from the theory of linear transformations: if 
q; : V � W is a linear transformation of vector spaces, then dim V = rank q; +nullity q; .  

Theorem 18. (The Second or Diamond Isomorphism Theorem) Let G be a group, let 
A and B be subgroups of G and assume A :::: NG (B). Then AB is a subgroup of G,  
B � AB, A n  B � A  and ABjB � A/A n B .  

Proof" B y  Corollary 1 5 ,  AB is a subgroup of G.  Since A ::'S NG(B) by assumption 
and B :::: NG(B) trivially, it follows that AB :::: NG (B), i .e., B is a normal subgroup of 
the subgroup AB. 

Since B i s  normal in  A B,  the quotient group A BIB i s  well defined. Define the map 
q; : A � A B / B by q;(a) = a B .  Since the group operation in A B / B is well defined it 
is easy to see that q; is a homomorphism: 

q;(a1a2) = (a1a2)B = a1B · a2B = q; (a1 )q;(a2) . 

Alternatively, the map q; is just the restriction to the subgroup A of the natural projection 
homomorphism rr : A B � A B / B, so is also a homomorphism. It is clear from the 
definition of AB that q; is smjective. The identity in AB / B is the coset 1 8 ,  so the kernel 
of q; consists of the elements a E A with aB = 1 B, which by Proposition 4 are the 
elements a E B, i.e., ker q; = A n B .  By the First Isomorphism Theorem, A n B � A 
and A I A n B � A BIB, completing the proof. 

Note that this gives a new proof of the order formula in Proposition 13  in the special 
case that A :::: NG (B) .  The reason this theorem is called the Diamond Isomorphism is 
because of the portion of the lattice of subgroups of G involved (see Figure 6). The 
markings in the lattice lines indicate which quotients are isomorphic. The "quotient" 
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AB I A need not be a group (i.e., A need not be normal in AB), however we still have 
lAB : A I = IB  : A n  B l . 

G 
I 

AB 

/ ""'  
A B 

""' /  
A n B  

I 
1 

Fig. 6 

The third Isomorphism Theorem considers the question of taking quotient groups 
of quotient groups. 

Theorem 19. (The Third Isomorphism Theorem) Let G be a group and let H and K be 
normal subgroups of G with H :;: K .  Then K I H � G I H and 

(GIH)I(KIH) � GIK. 
If we denote the quotient by H with a bar, this can be written 

GIK � GIK. 

Proof" We leave as an easy exercise the verification that K I H � G I H.  Define 

q; :  GIH --+ GIK 
(gH) �--+ gK. 

To show q; is well defined suppose g1 H = g2H. Then g1 = g2h ,  for some h E H. 
Because H :;: K, the element h is also an element of K, hence g1 K = g2K i.e., 
q;(g1 H) = q;(g2H), which shows q; is well defined. Since g may be chosen arbitrarily 
in G, q; is a surjective homomorphism. Finally, 

ker q; = {gH E GIH I q;(gH) = lK )  
= {gH E GIH I gK = l K} 
= {gH E GIH I g E K} = KIH. 

By the First Isomorphism Theorem, (GI H)I(KI H) � Gl K. 

An easy aid for remembering the Third Isomorphism Theorem is: "invert and 
cancel" (as one would for fractions). This theorem shows that we gain no new structural 
information from taking quotients of a quotient group. 

The final isomorphism theorem describes the relation between the lattice of sub
groups of the quotient group GIN and the lattice of subgroups of G. The lattice for 
GIN can be read immediately from the lattice for G by collapsing the group N to the 
identity. More precisely, there is a one-to-one correspondence between the subgroups 
of G containing N and the subgroups of GIN, so that the lattice for GIN (or rather, 
an isomorphic copy) appears in the lattice for G as the collection of subgroups of G 
between N and G. In particular, the lattice for GIN appears at the "top" of the lattice 
for G, a result we mentioned at the beginning of the chapter. 
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Theorem 20. (The Fourth or Lattice Isomorphism Theorem) Let G be a group and let 
N be a normal subgroup of G. Then there is a bijection from the set of subgroups A of 
G which contain N onto the set of subgroups A = A IN of GIN. In particular, every 

subgroup of G is of the form AIN for some subgroup A of G containing N (namely, 
its preimage in G under the natural projection homomorphism from G to GIN). This 
bijection has the following properties: for all A,  B :S G with N :s A  and N :S B, 

(1) A :S B if and only if A :S B, 
(2) if A :s B, then I B : AI = IB : A I ,  
(3) ( A , B ) = ( A, B ) , 
(4) A n B = A n B, and 
(5) A � G if and only if A � G. 

Proof: The complete preimage of a subgroup in GIN is a subgroup of G by 
Exercise 1 of Section 1 .  The numerous details of the theorem to check are all completely 
straightforward. We therefore leave the proof of this theorem to the exercises. 

Examples 

(1) Let G = Qs and let N be the normal subgroup ( - 1 ) . The (isomorphic copy of the) 
lattice of G 1 N consists of the double lines in the lattice of G below. Note that we 
previously proved that Qs/( - 1 ) � v4 and the two lattices do indeed coincide (see 
Section 2.5 for the lattices of Qg and V4). 

Qg 

/ II ' 
( i )  ( j )  ( k )  

' II /  
( - 1 ) 

I 

(2) The same process gives us the lattice of Ds/( r2 ) (the double lines) in the lattice of 
Ds: 

Note that in the second example above there are subgroups of G which do not 
directly correspond to subgroups in the quotient group GIN, namely the subgroups 
of G which do not contain the normal subgroup N. This is because the subgroup 
N projects to a point in GIN and so several subgroups of G can project to the same 
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subgroup in the quotient. The image of the subgroup H of G under the natural projection 
homomorphism from G to GIN is the same as the image of the subgroup H N of G, 
and the subgroup H N of G contains N. Conversely, the preimage of a subgroup H of 
GIN contains N and is the unique subgroup of G containing N whose image in GIN 
is H. It is the subgroups of G containing N which appear explicitly in the lattice for 
GIN. 

The two lattices of groups of order 8 above emphasize the fact that the isomorphism 
type of a group cannot in general be determined from the knowledge of the isomorphism 
types of GIN and N, since Q81 ( - 1  ) � D81 ( r2 ) and ( - 1  ) � ( r2 ) yet Q8 and D8 
are not isomorphic. We shall discuss this question further in the next section. 

We shall often indicate the index of one subgroup in another in the lattice of sub
groups, as follows: 

A 

I n 
B 

where the integer n equals lA : B l .  For example, all the unbroken edges in the lattices 
of Qs and D8 would be labelled with 2. Thus the order of any subgroup, A, is the 
product of all integers which label any path upward from the identity to A. Also, by 
Theorem 20(2) these indices remain unchanged in quotients of G by normal subgroups 
of G contained in B, i.e., the portion of the lattice for G corresponding to the lattice of 
the quotient group has the correct indices for the quotient as well. 

Finally we include a remark concerning the definition of homomorphisms on quo
tient groups. We have, in the course of the proof of the isomorphism theorems, encoun
tered situations where a homomorphism <p on the quotient group GIN is specified by 
giving the value of <p on the coset g N in terms of the representative g alone. In each 
instance we then had to prove <p was well defined, i.e., was independent of the choice 
of g. In effect we are defining a homomorphism, <P ,  on G itself by specifying the value 
of <p at g. Then independence of g is equivalent to requiring that <P be trivial on N, so 
that 

<p is well defined on GIN if and only if N :::: ker <P.  

This gives a simple criterion for defining homomorphisms on quotients (namely, define 
a homomorphism on G and check that N is contained in its kernel). In this situation we 
shall say the homomorphism <P factors through N and <p is the induced homomorphism 
on GIN. This can be denoted pictorially as in Figure 7, where the diagram indicates 
that <P = <p o n, i.e. , the image in H of an element in G does not depend on which path 
one takes in the diagram. If this is the case, then the diagram is said to commute. 

1T G GjN �l� 
Fig. 7 

At this point we have developed all the background material so that Section 6.3 on 
free groups and presentations may now be read. 
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E X E R C I S E S 

Let G be a group. 

l. Let F be a finite field of order q and let n E z+ 0 Prove that I G Ln (F) : s Ln (F) I = q - 1 .  
[See Exercise 35, Section 1 .] 

2. Prove all parts of the Lattice Isomorphism Theorem. 

3. Prove that if H is a normal subgroup of G of prime index p then for all K -:; G either 
(i) K -:; H or 

(ii) G = HK and I K : K n HI = p. 

4. Let C be a normal subgroup of the group A and let D be a normal subgroup of the group 
B .  Prove that (C x D) �  (A x B) and (A x B)j(C x D) � (A/C) x (B/D). 

5. Let QD16 = ( a, r }  be the quasidihedral group described in Exercise 1 1  of Section 2.5 . 

Prove that ( a4 } is normal in QDt6 and use the Lattice Isomorphism Theorem to draw the 
lattice of subgroups of Q Dt6 1 ( a4 } . Which group of order 8 has the same lattice as this 
quotient? Use generators and relations for QDt6/(  a4 } to decide the isomorphism type 
of this group. 

6. Let M = ( v, u }  be the modular group of order 16 described in Exercise 14 of Section 
2.5 . Prove that ( v4 } is normal in M and use the Lattice Isomorphism Theorem to draw 
the lattice of subgroups of M I ( v4 } . Which group of order 8 has the same lattice as this 
quotient? Use generators and relations for M 1 ( v4 } to decide the isomorphism type of this 
group. 

7. Let M and N be normal subgroups of G such that G = M N. Prove that 
Gj(M n N) � (G/M) X (G/N). [Draw the lattice.] 

8. Let p be a prime and let G be the group of p-power roots of 1 in C (cf. Exercise 18,  
Section 2.4). Prove that the map z �--+ zP is a surjective homomorphism. Deduce that G 
is isomorphic to a proper quotient of itself. 

9. Let p be a prime and let G be a group of order pam, where p does not divide m.  Assume 
P is a subgroup of G of order pa and N is a normal subgroup of G of order pbn, where 
p does not divide n.  Prove that I P n N l  = ph and 1 P N IN I = pa -b . (The subgroup P 
of G is called a Sylow p-subgroup of G. This exercise shows that the intersection of any 
Sylow p-subgroup of G with a normal subgroup N is a Sylow p-subgroup of N .) 

10. Generalize the preceding exercise as follows. A subgroup H of a finite group G is called 
a Hall subgroup of G if its index in G is relatively prime to its order: ( IG  : H I ,  I H I) = 1 .  
Prove that if H i s  a Hall subgroup of G and N � G ,  then H n N i s  a Hall subgroup of N 
and HN jN is a Hall subgroup of GjN. 

3.4 COMPOSITION SERIES AN D THE HOLDER PROGRAM 

The remarks in the preceding section on lattices leave us with the intuitive picture that 
a quotient group G / N is the group whose structure (e.g . , lattice) describes the structure 
of G "above" the normal subgroup N. Although this is somewhat vague, it gives at least 
some notion of the driving force behind one of the most powerful techniques in finite 
group theory (and even some branches of infinite group theory): the use of induction. In 
many instances the application of an inductive procedure follows a pattern similar to the 
following proof of a special case of Cauchy's Theorem. Although Cauchy's Theorem is 
valid for arbitrary groups ( cf. Exercise 9 of Section 2), the following is a good example 
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of the use of information on a normal subgroup N and on the quotient GIN to determine 
information about G,  and we shall need this particular result in Chapter 4. 

Proposition 21. If G is a finite abelian group and p is a prime dividing I G I, then G 
contains an element of order p.  

Proof· The proof proceeds by induction on I G I ,  namely, we assume the result 
is valid for every group whose order is strictly smaller than the order of G and then 
prove the result valid for G (this is sometimes referred to as complete induction). Since 
I G I  > 1 , there is an element x E G with x "I 1 .  If IG I = p then x has order p by 
Lagrange's Theorem and we are done. We may therefore assume I G I  > p. 

Suppose p divides lx I and write lx I = pn. By Proposition 2.5(3), lxn I = p, and 
again we have an element of order p. We may therefore assume p does not divide lx l . 

Let N = ( x ) . Since G is abelian, N � G. By Lagrange's Theorem, I GIN I = : �: 
and since N -::j:. l , I GIN I < I G I .  Since p does not divide i N I , we must have p I I GINI .  
We can now apply the induction assumption to the smaller group GIN to conclude it 
contains an element, y = yN, of order p. Since y ¢ N (y -=I l) but yP E N  (yP = l), 
we must have ( yP )  -=I ( y ) , that is, lyP I < I Y I ·  Proposition 2.5(2) implies p I I Y I ·  We 
are now in the situation described in the preceding paragraph, so that argument again 
produces an element of order p. The induction is complete. 

The philosophy behind this method of proof is that if we have a sufficient amount of 
information about some normal subgroup, N,  of a group G and sufficient information 
on GIN, then somehow we can piece this information together to force G itself to have 
some desired property. The induction comes into play because both N and G 1 N have 
smaller order than G.  In general, just how much data are required is a delicate matter 
since, as we have already seen, the full isomorphism type of G cannot be determined 
from the isomorphism types of N and GIN alone. 

Clearly a basic obstruction to this approach is the necessity of producing a normal 
subgroup, N, of G with N -=f. 1 or G. In the preceding argument this was easy since 
G was abelian. Groups with no nontrivial proper normal subgroups are fundamental 
obstructions to this method of proof. 

Definition. A (finite or infinite) group G is called simple if IG I  > 1 and the only 
normal subgroups of G are 1 and G.  

By Lagrange's Theorem if  I G I i s  a prime, its only subgroups (let alone normal ones) 
are 1 and G, so G is simple. In fact, every abelian simple group is isomorphic to Zp, 
for some prime p ( cf. Exercise 1 ). There are non-abelian simple groups (of both finite 
and infinite order), the smallest of which has order 60 (we shall introduce this group as 
a member of an infinite family of simple groups in the next section). 

Simple groups, by definition, cannot be "factored" into pieces like N and GIN and 
as a result they play a role analogous to that of the primes in the arithmetic of Z. This 
analogy is supported by a "unique factorization theorem" (for finite groups) which we 
now describe. 
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Definition. In a group G a sequence of subgroups 

1 = No :::: N1 :::: Nz :::: · · · :::: Nk-l :::: Nk = G 
is called a composition series if N; � N;+l and N;+ll N; a simple group, 0 ::=:: i ::=:: k - 1 .  
If the above sequence is a composition series, the quotient groups N; +l f N; are called 
composition factors of G. 

Keep in mind that it  is not assumed that each N; � G, only that N; � N;+l · Thus 

1 � ( s } � ( s ,  r2 } � Ds and 1 � ( r2 } � ( r } � Ds 

are two composition series for D8 and in each series there are 3 composition factors, 
each of which is isomorphic to (the simple group) Z2. 

Theorem 22. (Jordan-Holder) Let G be a finite group with G =P 1 . Then 
(1) G has a composition series and 
(2) The composition factors in a composition series are unique, namely, if 

1 = No :::: N1 :::: · · · :::: Nr = G and 1 = Mo :::: M1 :::: · · · :::: Ms = G are 
two composition series for G, then r = s and there is some permutation, rr ,  of 
{ 1 , 2, . . .  , r} such that 

1 ::=:: i ::=:: r. 

Proof" This is fairly straightforward. Since we shall not explicitly use this theorem 
to prove others in the text we outline the proof in a series of exercises at the end of this 
section. 

Thus every finite group has a "factorization" (i.e., composition series) and although 
the series itself need not be unique (as D8 shows) the number of composition factors and 
their isomorphism types are uniquely determined. Furthermore, nonisomorphic groups 
may have the same (up to isomorphism) list of composition factors (see Exercise 2). 
This motivates a two-part program for classifying all finite groups up to isomorphism: 

The Holder Program 

(1) Classify all finite simple groups. 
(2) Find all ways of ''putting simple groups together" to form other groups. 

These two problems form part of an underlying motivation for much of the development 
of group theory. Analogues of these problems may also be found as recurring themes 
throughout mathematics. We include a few more comments on the current status of 
progress on these problems. 

The classification of finite simple groups (part ( 1 ) of the Holder Program) was 
completed in 1980, about 100 years after the formulation of the HOlder Program. Efforts 
by over 100 mathematicians covering between 5,000 and 10,000 journal pages (spread 
over some 300 to 500 individual papers) have resulted in the proof of the following 
result: 
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Theorem. There is a list consisting of 1 8  (infinite) families of simple groups and 26 
simple groups not belonging to these families (the sporadic simple groups) such that 
every finite simple group is isomorphic to one of the groups in this list. 

One example of a family of simple groups is {Zp I p a prime}. A second infinite 
family in the list of finite simple groups is: 

{SLn (.IF)fZ(SLn (lF)) I n  E z,+ ,  n 2: 2 and IF a finite field } .  

These groups are all simple except for SLz(IFz) and SLz (IF3) where IF2 is the finite field 
with 2 elements and IF3 is the finite field with 3 elements. This is a 2-parameter family 
(n and IF being independent parameters). We shall not prove these groups are simple 
(although it is not technically beyond the scope of the text) but rather refer the reader to 
the book Finite Group Theory (by M. Aschbacher, Cambridge University Press, 1986) 
for proofs and an extensive discussion of the simple group problem. A third family of 
finite simple groups, the alternating groups, is discussed in the next section; we shall 
prove these groups are simple in the next chapter. 

To gain some idea of the complexity of the classification of finite simple groups the 
reader may wish to peruse the proof of one of the cornerstones of the entire classification: 

Theorem. (Feit-Thompson) If G is a simple group of odd order. then G � Z P for some 
prime p. 

This proof takes 255 pages of hard mathematics. 2 

Part (2) of the HOlder Program, sometimes called the extension problem, was rather 
vaguely formulated. A more precise description of "putting two groups together" is: 
given groups A and B, describe how to obtain all groups G containing a normal subgroup 
N such that N � B and GfN � A . For instance, if A =  B = Zz, there are precisely 
two possibilities for G, namely, Z4 and V4 (see Exercise 10  of Section 2.5) and the 
Holder program seeks to describe how the two groups of order 4 could have been built 
from two Z2 's without a priori knowledge of the existence of the groups of order 4. This 
part of the HOlder Program is extremely difficult, even when the subgroups involved 
are of small order. For example, all composition factors of a group G have order 2 
if and only if I G I = 2" , for some n (one implication is easy and we shall prove both 
implications in Chapter 6). It is known, however, that the number of nonisomorphic 
groups of order 2" grows (exponentially) as a function of 2" , so the number of ways 
of putting groups of 2-power order together is not bounded. Nonetheless, there are a 
wealth of interesting and powerful techniques in this subtle area which serve to unravel 
the structure of large classes of groups. We shall discuss only a couple of ways of 
building larger groups from smaller ones (in the sense above) but even from this limited 
excursion into the area of group extensions we shall construct numerous new examples 
of groups and prove some classification theorems. 

One class of groups which figures prominently in the theory of polynomial equations 
is the class of solvable groups: 

2 Solvability of groups of odd order, Pacific Journal of Mathematics, 13(  1963), pp. 775-1029. 
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Definition. A group G is solvable if there is a chain of subgroups 

1 = Go � Gt � G2 � . . .  � Gs = G 

such that G;+t f G; is abelian for i = 0, 1 ,  . . . , s - 1 .  

The terminology comes from the correspondence in Galois Theory between these 
groups and polynomials which can be solved by radicals (which essentially means there 
is an algebraic formula for the roots). Exercise 8 shows that finite solvable groups are 
precisely those groups whose composition factors are all of prime order. 

One remarkable property of finite solvable groups is the following generalization 
of Sylow's Theorem due to Philip Hall (cf. Theorem 6. 1 1  and Theorem 19 .8). 

Theorem. The finite group G is solvable if and only if for every divisor n of I G I  such 
I G I 

that (n, - ) = 1 ,  G has a subgroup of order n. n 

As another illustration of how properties of a group G can be deduced from com
bined information from a normal subgroup N and the quotient group GIN we prove 

if N and GIN are solvable, then G is solvable. 

To see this let G = GIN, let l = No � Nt � . . . � Nn = N be a chain of subgroups 
of N such that Ni+tl N; is abelian, 0 .:::: i < n and let I = Go � Gt � . . .  � Gm = G 
be a chain of subgroups of G such that Gi+t iG; is abelian, 0 .:::: i < m. By the Lattice 
Isomorphism Theorem there are subgroups G; of G with N .:::: G; such that G; IN = G; 
and G; � G;+I , 0 .:::: i < m. By the Third Isomorphism Theorem 

Thus 
1 = No � Nt � . . . � Nn = N = Go � Gt � . . . � Gm = G 

is a chain of subgroups of G all of whose successive quotient groups are abelian. This 
proves G is solvable. 

It is inaccurate to say that finite group theory is concerned only with the HOlder 
Program. It is accurate to say that the Holder Program suggests a large number of 
problems and motivates a number of algebraic techniques. For example, in the study 
of the extension problem where we are given groups A and B and wish to find G and 
N � G with N � B and GIN � A, we shall see that (under certain conditions) we 
are led to an action of the group A on the set B . Such actions form the crux of the next 
chapter (and will result in information both about simple and non-simple groups) and 
this notion is a powerful one in mathematics not restricted to the theory of groups. 

The final section of this chapter introduces another family of groups and although in 
line with our interest in simple groups, it will be of independent importance throughout 
the text, particularly in our study later of determinants and the solvability of polynomial 
equations. 
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E X E R C I S E S  

1. Prove that if G is an abelian simple group then G � Zp for some prime p (do not assume 
G is a finite group). 

2. Exhibit all 3 composition series for Qs and all 7 composition series for D8. List the 
composition factors in each case. 

3. Find a composition series for the quasidihedral group of order 16 (cf. Exercise 1 1 , Section 
2.5). Deduce that QD16 is solvable. 

4. Use Cauchy's Theorem and induction to show that a finite abelian group has a subgroup 
of order n for each positive divisor n of its order. 

5. Prove that subgroups and quotient groups of a solvable group are solvable. 

6. Prove part ( 1 )  of the Jordan-HOlder Theorem by induction on I G 1 .  

7. If G i s  a finite group and H :::;1 G prove that there i s  a composition series of G ,  one of 
whose terms is H. 

8.  Let G be a finite group. Prove that the following are equivalent: 
(i) G is solvable 

(ii) G has a chain of subgroups: 1 = Ho :::;1 Ht :::;1 Hz :::;1 . . . :::;1 Hs = G such that Hi+ 1 I Hi 
is cyclic, 0 :S i :s s - 1 

(iii) all composition factors of G are of prime order 
(iv) G has a chain of subgroups: 1 = No :::;1 Nt :::;1 Nz :::;1 • • •  :::;1 N, = G such that each M 

is a normal subgroup of G and Ni+ 1 I M is abelian, 0 :s i :s t - 1 .  

[For (iv), prove that a minimal nontrivial normal subgroup M of G i s  necessarily abelian 
and then use induction. To see that M is abelian, let N :::;1 M be of prime index (by (iii)) and 
show that x- 1y- 1xy E N  for all x ,  y E M  (cf. Exercise 40, Section 1 ) .  Apply the same 
argument to gNg- 1 to show that x-ly-1 xy lies in the intersection of all G-conjugates of 
N, and use the rninimality of M to conclude that x-I y -I xy = 1 .] 

9. Prove the following special case of part (2) of the Jordan-HOlder Theorem: assume the 
finite group G has two composition series 

1 = No :::;1 Nt :::;1 . . .  :::;1 Nr = G and 1 = Mo :::;1 Mt :::;1 Mz = G. 

Show that r = 2 and that the list of composition factors is the same. [Use the Second 
Isomorphism Theorem.] 

10. Prove part (2) of the Jordan-HOlder Theorem by induction on rnin{r, s} .  [Apply the 
inductive hypothesis to H = Nr- 1  n Ms-1 and use the preceding exercises.] 

11. Prove that if H is a nontrivial normal subgroup of the solvable group G then there is a 
nontrivial subgroup A of H with A :::;1 G and A abelian. 

12. Prove (without using the Feit-Thompson Theorem) that the following are equivalent: 
(i) every group of odd order is solvable 

(ii) the only simple groups of odd order are those of prime order. 

3.5 TRANSPOSITIONS AN D TH E ALTERNATING GROUP 

Transpositions and Generation of Sn 
As we saw in Section 1 .3 (and will prove in the next chapter) every element of Sn can 
be written as a product of disjoint cycles in an essentially unique fashion. In contrast, 
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every element of S, can be written in many different ways as a (nondisjoint) product of 
cycles. For example, even in S3 the element a = ( 1  2 3) may be written 

a = ( 1  2 3) = ( 1 3) (1 2) = (1 2) ( 1 3) ( 1 2) ( 1 3) = ( 1 2) (2 3) 

and, in fact, there are an infinite number of different ways to write a .  Not requiring the 
cycles to be disjoint totally destroys the uniqueness of a representation of a permutation 
as a product of cycles. We can, however, obtain a sort of "parity check" from writing 
permutations (nonuniquely) as products of 2-cycles. 

Definition. A 2-cycle is called a transposition. 

Intuitively, every permutation of { 1 , 2, . . .  , n} can be realized by a succession of 
transpositions or simple interchanges of pairs of elements (try this on a small deck of 
cards sometime !). We illustrate how this may be done. First observe that 

(at a2 . . . am ) = (at am) (at am-t ) (at am-2) . . .  (at a2) 
for any m-cycle. Now any permutation in S, may be written as a product of cycles (for 
instance, its cycle decomposition). Writing each of these cycles in turn as a product of 
transpositions by the above procedure we see that 

every element of S, may be written as a product of transpositions 
or, equivalently, 

S, = { T )  where T = {(i j) I 1 ::::: i < j ::::: n} .  
For example, the permutation a in  Section 1 .3 may be  written 

a = ( 1 1 2 8 1 0 4) (2 13) (5 1 1  7) (6 9) 
= ( 1 4) ( 1 10) ( 1  8) ( 1 12) (2 13)(5 7)(5 1 1 ) (6 9) . 

The Alternating Group 

Again we emphasize that for any a E S, there may be many ways of writing a as a 
product of transpositions. For fixed a we now show that the parity (i.e., an odd or even 
number of terms) is the same for any product of transpositions equaling a .  

Let Xt , . • .  , x, be independent variables and let tl be the polynomial 

11 = n (X; - Xj ) ,  
t::;i<j:Sn 

i.e., the product of all the terms x; - Xj for i < j .  For example, when n = 4, 

11 = (Xt - X2) (Xt - XJ) (Xt - X4) (x2 - X3) (x2 - X4) (X3 - X4) . 
For each a E S, let a act on 11 by permuting the variables in the same way it permutes 
their indices: 

a (11) = n (Xa (i )  - Xa (j) ) . 
t::;i <j :Sn 
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For example, if n = 4 and a = ( 1  2 3 4) then 

a (Do) = (X2 - X3) (X2 - X4) (X2 - Xt) (X3 - X4) (X3 - Xt ) (X4 - Xt) 

(we have written the factors in the same order as above and applied a to each factor to 
get a (D.)). Note (in general) that D. contains one factor x; - x1 for all i < j ,  and since 
a is a bijection of the indices, a (D.) must contain either x; - xi or x1 - x; , but not both 
(and certainly no x; - x; terms), for all i < j .  If a (D.) has a factor x1 - x; where j > i ,  
write this term as - (x; - x1) .  Collecting all the changes in  sign together we  see that D. 
and a (D.) have the same factors up to a product of - 1 's, i.e., 

a (D.) = ± D. ,  for all a E Sn . 

For each a E Sn let { + 1 ,  
E (a)  = - 1 , 

if a (D.) = D. 

if (j (D.) = - D.  . 

In the example above with n = 4 and a = (1 2 3 4) , there are exactly 3 factors of the 
form x1 - x; where j > i in a (D.), each of which contributes a factor of - 1 .  Hence 

( 1 2 3 4)(D.) = (- 1)\D.) = - D. ,  

so 
E((1 2 3 4)) = - 1 .  

Definition. 
(1) E (a) is called the sign of a .  
(2) a is called an evenpennutation ifE(a) = 1 and an oddpennutation ifE (a) = - 1 

The next result shows that the sign of a permutation defines a homomorphism. 

Proposition 23. The map E : Sn -+ {± 1}  is a homomorphism (where {± 1}  is a 
multiplicative version of the cyclic group of order 2). 

Proof: By definition, 

( ra)(D,) = n (Xrcr (i) - Xrcr(j) ) . 
1-::;i <jsn 

Suppose that a (D.) has exactly k factors of the form x1 - x; with j > i ,  that is 
E (a) = ( - l )k .  When calculating (ra) (D.), after first applying a to the indices we see 
that (ra) (D.) has exactly k factors of the form Xr(J) - Xr(i)  with j > i .  Interchanging 
the order of the terms in these k factors introduces the sign change (- 1 )k = E (a),  and 
now all factors of (ra) (D.) are of the form x, (p} - Xr(q) •  with p < q .  Thus 

(ra)(Do) = E (a) n (Xr(p} - Xr(q) ) . 
1-::;p<qsn 

Since by definition of E 
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we have (rcr) (�) = E (cr)E (r)�. Thus E(rcr) = E (cr)E (r) = E (r)E(cr), as claimed. 

To see the proof in action, let n = 4, cr = ( 1 2  3 4) , r = (4 2 3) so rcr = ( 1 3 2 4) . 
By definition (using the explicit � in this case), 

(rcr)(�) = ( 1 3 2 4)(�) 

= (X3 - X4) (x3 - X2)(x3 - XI ) (X4 - X2) (x4 - XI )(X2 - XI )  

= (- 1)5 � 

where all factors except the first one are flipped to recover � . This shows E ( r cr) = - 1 .  
On the other hand, since we already computed cr(�) 

(rcr)(�) = r (cr(�)) 

= (Xr(2) - Xr(3j ) (Xr(2) - Xr(4j ) (Xr(2) - Xr( l j ) (Xr(3) - Xr(4) ) X 

X (Xr(3) - Xr( l ) ) (Xr (4) - Xr( l ) ) 

= ( - 1)3 n (Xr(p) - Xr(q) ) = ( - 1)3r (�) 
I::;p<q::;4 

where here the third, fifth, and sixth factors need to have their terms interchanged in 
order to put all factors in the form Xr(pJ - Xr(qJ with p < q .  We already calculated that 
E(cr) = ( - 1)3 = - 1 and, by the same method, it is easy to see that E(r) = ( - 1)2 = 1 
so E (rcr) = - 1  = E(r)E(cr) .  

The next step is  to compute E ((i j)), for any transposition ( i  j) .  Rather than 
compute this directly for arbitrary i and j we do it first for i = 1 and j = 2 and reduce 
the general case to this. It is clear that applying ( 1  2) to � (regardless of what n is) will 
flip exactly one factor, namely XI - x2 ; thus E((l 2)) = - 1 . Now for any transposition 
(i j) let )... be the permutation which interchanges 1 and i ,  interchanges 2 and j, and 
leaves all other numbers fixed (if i = 1 or j = 2, )... fixes i or j, respectively). Then 
it is easy to see that (i j) = J... ( l  2)J... (compute what the right hand side does to any 
k E { 1 ,  2, . . .  , n }). Since E is a homomorphism we obtain 

This proves 

E ((i j)) = E (J...( 1 2)J...) 
= E (A)E ((l 2))E(A) 

= (- l)E(J...P 
= - 1 . 

Proposition 24. Transpositions are all odd permutations and E is a smjective homo
morphism. 

Definition. The alternating group of degree n, denoted by All , is the kernel of the 
homomorphism E (i .e., the set of even permutations). 

Note that by the First Isomorphism Theorem Sll j All � E (Sil ) = {± 1 } , so that the 
l 1 

order of All is easily determined: lAil i = z 1 Sil l = l (n !) .  Also, Sll - All is the coset of 
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An which is not the identity coset and this is the set of all odd permutations. The signs 
of permutations obey the usual 'll/27l laws: 

(even)(even) = (odd)(odd) = even 
(even)( odd) = (odd)( even) = odd. 

Moreover, since E is a homomorphism and every u E Sn is a product of transpositions, 
say rr = 'l'J 'l'z · · · 'l'k . then E(rr) = E('l'J ) · · · E (rk) ; since E (r; )  = - 1 ,  for i =  1 ,  2, . . .  , k, 

E( u) = ( - 1  )k . Thus the class of k (mod 2), i.e., the parity of the number of transposi
tions in the product, is the same no matter how we write u as a product of transpositions: 

E (rr) = 
{ + 1 ,  

-1 ,  
if u is a product of an even number of transpositions 

if u is a product of an odd number of transpositions. 

Finally we give a quick way of computing E(rr) from the cycle decomposition of u .  
Recall that an m-cycle may be written as a product of m - 1 transpositions. Thus 

an m-cycle is an odd permutation if and only if m is even. 

For any permutation u let a1a2 · · · ak be its cycle decomposition. Then E(rr) is 
given by E (a1)  · · · E (ak) and E (a; ) = - 1  if and only if the length of a; is even. It 
follows that for E (rr) to be - 1  the product of the E (a;) ' s  must contain an odd number 
of factors of ( - 1) . We summarize this in the following proposition: 

Proposition 25. The permutation u is odd if and only if the number of cycles of even 
length in its cycle decomposition is odd. 

For example, u = ( 1 2 3 4 5 6)(7 8 9) ( 10 1 1) ( 1 2  1 3  14 15) (16 17 18) has 3 cycles 
of even length, so E (rr)  = -1 .  On the other hand, r = ( 1 12 8 10 4) (2 1 3) (5 1 1  7)(6 9) 
has exactly 2 cycles of even length, hence E ( r) = 1 .  

B e  careful not to confuse the terms "odd" and "even" for a permutation u with the 
parity of the order of u .  In fact, if u is of odd order, all cycles in the cycle decomposition 
of u have odd length so u has an even (in this case 0) number of cycles of even length 
and hence is an even permutation. If lrr I is even, u may be either an even or an odd 
permutation; e.g., ( 1  2) is odd, ( 1  2) (3 4) is even but both have order 2. 

As we mentioned in the preceding section, the alternating groups An will be im
portant in the study of solvability of polynomials. In the next chapter we shall prove: 

An is a non-abelian simple group for all n ::: 5. 

For small values of n, An is already familiar to us: A 1 and Az are both the trivial 
group and I AJ I  = 3 (so A3 = ( ( 1 2 3) ) � Z3). The group A4 has order 12. Exercise 7 
shows A4 is isomorphic to the group of symmetries of a regular tetrahedron. The lattice 
of subgroups of A4 appears in Figure 8 (Exercise 8 asserts that this is its complete 
lattice of subgroups). One of the nicer aspects of this lattice is that (unlike "virtually 
all groups") it is a planar graph (there are no crossing lines except at the vertices; see 
the lattice of D16 for a nonplanar lattice). 
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A4 

( ( 1 2)(3 4),(� � 4 / 2 � ( (1 2 3) ) ( (1 2 4)) ( (1 3 4) ) ((2 3 4))  

{(1 2)(3 4)) {( 1 3)(2 4)) { ( 1 4)(2 3)) 

2 � 
1 

Fig. 8 

E X E R C I S E S  

1. In Exercises 1 and 2 of Section 1 .3 you were asked to find the cycle decomposition of some 
permutations. Write each of these permutations as a product of transpositions. Determine 
which of these is an even permutation and which is an odd permutation. 

2. Prove that a2 is an even permutation for every permutation a .  
3. Prove that Sn i s  generated by {(i i + 1)  I 1 � i � n - 1 } .  [Consider conjugates, viz. 

(2 3) (1  2)(2 3)- 1 .] 

4. Show that Sn = ( ( 1 2), (1 2 3 . . . n) } for all n :::: 2. 

5. Show that if p is prime, Sp = ( a, T } where a is any transposition and T is any p-cycle. 

6. Show that { (1 3) , (1 2 3 4) } is a proper subgroup of S4. What is the isomorphism type of 
this subgroup? 

7. Prove that the group of rigid motions of a tetrahedron is isomorphic to A4. [Recall Exercise 
20 in Section 1 .7.] 

8. Prove the lattice of subgroups of A4 given in the text is correct. [By the preceding exercise 
and the comments following Lagrange's Theorem, A4 has no subgroup of order 6.] 

9. Prove that the (unique) subgroup of order 4 in A4 is normal and is isomorphic to V4. 
10. Find a composition series for A4. Deduce that A4 is solvable. 

11. Prove that S4 has no subgroup isomorphic to Qg. 
12. Prove that An contains a subgroup isomorphic to Sn-2 for each n :::: 3.  

13. Prove that every element of order 2 in An is  the square of an element of order 4 in Sn . [An 
element of order 2 in An is a product of 2k commuting transpositions.] 

14. Prove that the subgroup of A4 generated by any element of order 2 and any element of 
order 3 is all of A4 .  

15. Prove that i f  X and y are distinct 3-cycles in  s4 with X # y-1
' then the subgroup of  s4 

generated by x and y  is A4. 

16. Let x and y be  distinct 3-cycles in  Ss with x # y-1 . 
(a) Prove that if x and y fix a common element of { 1 ,  . . . , 5} ,  then { x , y }  � A4 .  
(b) Prove that i f  x and y do not fi x  a common element o f  { 1  • . . .  , 5 } ,  then { x, y}  = A5 . 

17. If X and y are 3-cycles in Sn . prove that ( x , y }  is isomorphic to ZJ, A4. As or z3 X ZJ . 
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CHAPTER 4 

Gro u p Actio ns 

In this chapter we consider some of the consequences of a group acting on a set. It is 
an important and recurring idea in mathematics that when one object acts on another 
then much information can be obtained on both. As more structure is added to the 
set on which the group acts (for example, groups acting on groups or groups acting 
on vector spaces (considered in Chapter 1 8)), more information on the structure of the 
group becomes available. This study of group actions culminates here in the proof of 
Sylow's Theorem and the examples and classifications which accrue from it. 

The concept of an action will recur as we study modules, vector spaces, canonical 
forms for matrices and Galois Theory, and is one of the fundamental unifying themes 
in the text. 

4. 1 GROUP ACTIONS AN D PERM UTATION REPRESENTATIONS 

In  this section we give the basic theory of group actions and then apply this theory to 
subgroups of Sn acting on { 1 , 2,  . . . , n }  to prove that every element of Sn has a unique 
cycle decomposition. In Sections 2 and 3 we apply the general theory to two other 
specific group actions to derive some important results. 

Let G be a group acting on a nonempty set A.  Recall from Section 1 .7 that for each 
g E G the map 

defined by 

is a permutation of A. We also saw in Section 1 .7  that there is a homomorphism 
associated to an action of G on A: 

defined by 

called the permutation representation associated to the given action. Recall some 
additional terminology associated to group actions introduced in Sections 1 .7 and 2.2. 

Definition. 
(1) The kernel of the action is the set of elements of G that act trivially on every 

element of A :  {g E G I g · a = a for all a E A} .  
(2) For each a E A the stabilizer of a in G i s  the set of elements of G that fix the 

element a :  {g E G I g · a = a}  and is denoted by Ga . 
(3) An action is faithful if its kernel is the identity. 
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Note that the kernel of an action is precisely the same as the kernel of the associated 
permutation representation; in particular, the kernel is a normal subgroup of G.  Two 
group elements induce the same permutation on A if and only if they are in the same coset 
of the kernel (if and only if they are in the same fiber of the permutation representation 
cp ) . In particular an action of G on A may also be viewed as a faithful action of the 
quotient group G I ker cp on A.  Recall from Section 2.2 that the stabilizer in G of an 
element a of A is a subgroup of G. If a is a fixed element of A, then the kernel of 
the action is contained in the stabilizer G a since the kernel of the action is the set of 
elements of G that stabilize every point, namely naeA Ga . 

Examples 

(1) Let n be a positive integer. The group G = S11 acts on the set A = { I ,  2, . . .  , n} 
by a · i = a (i) for all i E {I , . . .  , n} .  The permutation representation associated 
to this action is the identity map cp : S11 � S11 • This action is faithful and for each 
i E { I ,  . . .  , n} the stabilizer G; (the subgroup of all permutations fixing i) is isomorphic 
to S11- J  (cf. Exercise IS ,  Section 3.2). 

(2) Let G = Ds act on the set A consisting of the four vertices of a square. Label these 
vertices 1 ,2,3,4 in a clockwise fashion as in Figure 2 of Section 1 .2. Let r be the 
rotation of the square clockwise by :n: j2 radians and let s be the reflection in the line 
which passes through vertices 1 and 3. Then the permutations of the vertices given by 
r and s are 

ar = (1  2 3 4) and as =  (2 4) . 

Note that since the permutation representation is a homomorphism, the permutation 
of the four vertices corresponding to sr is asr = asar = (1 4) (2 3). The action of Ds 
on the four vertices of a square is faithful since only the identity symmetry fixes all 
four vertices. The stabilizer of any vertex a is the subgroup of Ds of order 2 generated 
by the reflection about the line passing through a and the center of the square (so, for 
example, the stabilizer of vertex I is ( s ) ). 

(3) Label the four vertices of a square as in the preceding example and now let A be the set 
whose elements consist ofunorderedpairs ofopposite vertices: A =  { { 1 ,  3} , {2, 4} }. 
Then Ds also acts on this set A since each symmetry of the square sends a pair of 
opposite vertices to a pair of opposite vertices. The rotation r interchanges the pairs 
{ I ,  3} and {2, 4}; the reflection s fixes both unordered pairs of opposite vertices. Thus 
if we label the pairs { I ,  3} and {2, 4} as 1 and 2, respectively, then the permutations of 
A given by r and s are 

ar = (1 2) and as = the identity permutation. 

This action of Ds is not faithful: its kernel is ( s, r2 ) • Moreover, for each a E A the 
stabilizer in Ds of a is the same as the kernel of the action. 

(4) Label the four vertices of a square as in Example 2 and now let A be the following set 
of unordered pairs of vertices: { { I ,  2}, {3 , 4} }. The group Ds does not act on this set 
A because { 1 ,  2} E A but r · { I ,  2} = {2, 3} ¢ A. 

The relation between actions and homomorphisms into symmetric groups may be 
reversed. Namely, given any nonempty set A and any homomorphism cp of the group 
G into SA we obtain an action of G on A by defining 

g · a = cp(g)(a) 
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for all g E G and all a E A. The kernel of this action is the same as ker �. The permu
tation representation associated to this action is precisely the given homomorphism �
This proves the following result. 

Proposition 1. For any group G and any nonempty set A there is a bijection between 
the actions of G on A and the homomorphisms of G into SA .  

In view of Proposition 1 the definition of a permutation representation may be 
rephrased. 

Definition. If G is a group, a permutation representation of G is any homomorphism 
of G into the symmetric group SA for some nonempty set A. We shall say a given action 
of G on A affords or induces the associated permutation representation of G. 

We can think of a permutation representation as an analogue of the matrix repre
sentation of a linear transformation. In the case where A is a finite set of n elements we 
have SA � Sn (cf. Section 1 .6), so by fixing a labelling of the elements of A we may 
consider our permutations as elements of the group Sn (which is exactly what we did in 
Examples 2 and 3 above), in the same way that fixing a basis for a vector space allows 
us to view a linear transformation as a matrix. 

We now prove a combinatorial result about group actions which will have important 
consequences when we apply it to specific actions in subsequent sections. 

Proposition 2. Let G be a group acting on the nonempty set A. The relation on A 
defined by 

a ""' b if and only if a = g · b for some g E G 

is an equivalence relation. For each a E A, the number of elements in the equivalence 
class containing a is I G : G a I ,  the index of the stabilizer of a . 

Proof" We first prove ""' is an equivalence relation. By axiom 2 of an action, a = 1 ·a 
for all a E A, i.e., a ""' a and the relation is reflexive. If a ""' b, then a = g · b for some 
b E G  so that 

g -I . a = g -l . (g . b) = (g- Ig) · b = 1 · b = b 

that is, b ""' a and the relation is symmetric. Finally, if a ""' b and b ""' c, then a = g · b 
and b = h · c, for some g, h E G so 

a = g · b = g · (h · c) = (gh) · c 
hence a ""' c, and the relation is transitive. 

To prove the last statement of the proposition we exhibit a bijection between the 
left cosets of G a in G and the elements of the equivalence class of a .  Let Ca be the class 
of a, so 

Ca = {g · a I g E G} . 

Suppose b = g · a E Ca . Then gG a is a left coset of G a in G. The map 

b = g · a t--7 gGa 
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is a map from Ca to the set of left cosets of G a in G. This map is surjective since for 
any g E G the element g · a is an element of Ca . Since g · a = h · a if and only if 
h-1g E Ga if and only if gGa = hGa . the map is also injective, hence is a bijection. 
This completes the proof. 

By Proposition 2 a group G acting on the set A partitions A into disjoint equivalence 
classes under the action of G. These classes are given a name: 

Definition. Let G be a group acting on the nonempty set A. 
(1)  The equivalence class {g · a I g E G}  is called the orbit of G containing a .  

(2) The action of G on A is  called transitive if  there is  only one orbit, i.e., given 
any two elements a ,  b E  A there is some g E G such that a =  g · b. 

Examples 

Let G be a group acting on the set A.  
(1) If G acts trivially on A then Ga = G for all a E A and the orbits are the elements of 

A. This action is transitive if and only if I A I  = 1 .  
(2) The symmetric group G = Sn acts transitively in its usual action as permutations on 

A = { 1 ,  2, . . . , n} .  Note that the stabilizer in G of any point i has index n = I A I  in Sn . 
(3) When the group G acts on the set A, any subgroup of G also acts on A. If G is 

transitive on A a subgroup of G need not be transitive on A. For example, if G = 
( ( 1  2) , (3 4) } � S4 then the orbits of G on { 1 ,  2, 3 ,  4} are { 1 ,  2} and (3 ,  4} and there 
is no element of G that sends 2 to 3 .  The discussion below on cycle decompositions 
shows that when ( a  } is any cyclic subgroup of Sn then the orbits of ( a  } consist of 
the sets of numbers that appear in the individual cycles in the cycle decomposition of 
a (for example, the orbits of ( ( 1  2)(3 4 5) } are { 1 ,  2} and { 3 ,  4, 5}). 

(4) The group Dg acts transitively on the four vertices of the square and the stabilizer of 
any vertex is the subgroup of order 2 (and index 4) generated by the reflection about 
the line of symmetry passing through that point. 

(5) The group Dg also acts transitively on the set of two pairs of opposite vertices. In this 
action the stabilizer of any point is ( s, r2 } (which is of index 2). 

Cycle Decompositions 

We now prove that every element of the symmetric group Sn has the unique cycle 
decomposition described in Section 1 .3 .  Let A = { 1 ,  2, . . .  , n } ,  let a be an element 
of Sn and let G = ( a } . Then ( a } acts on A and so, by Proposition 2, it partitions 
{ 1 ,  2, . . .  , n} into a unique set of (disjoint) orbits. Let 0 be one of these orbits and let 
x E 0. By (the proof of) Proposition 2 applied to A = 0 we see that there is a bijection 
between the left cosets of G x in G and the elements of 0, given explicitly by 

Since G is a cyclic group, Gx � G and GfGx is cyclic of order d, where d is the 
smallest positive integer for which ad E Gx (cf. Example 2 following Proposition 7 in 
Section 3 . 1) .  Also, d = I G  : Gx l = 10 1 .  Thus the distinct cosets of Gx in G are 
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This shows that the distinct elements of 0 are 

x , a (x) , a2 (x) , . . .  , ad-1 (x) .  
Ordering the elements of  0 in  this manner shows that <1 cycles the elements of 0,  
that is, on an orbit of size d, <1 acts as a d -cycle. This proves the existence of a cycle 
decomposition for each <1 E Sn . 

The orbits of ( a ) are uniquely determined by <1 .  The only latitude is in which 
order the orbits are listed. Within each orbit, 0, we may begin with any element as a 
representative. Choosing ai (x) instead of x as the initial representative simply produces 
the elements of 0 in the order 

ai (x),  ai+l (x) ,  . . .  , ad-1 (x) , x , a (x) ,  . . .  , ai-1 (x) , 

which is a cyclic permutation (forward i - 1 terms) of the original list. It follows that 
the cycle decomposition above is unique up to a rearrangement of the cycles and up to 
a cyclic permutation of the integers within each cycle. 

Subgroups of symmetric groups are called pennutation groups. For any subgroup 
G of Sn the orbits of G will refer to its orbits on { 1 ,  2, . . . , n} .  The orbits of an element 
<1 in Sn will mean the orbits of the group ( <1 } (namely the sets of integers comprising 
the cycles in its cycle decomposition). 

The exercises below further illustrate how group theoretic information can be ob
tained from permutation representations. 

E X E R C I S E S 

Let G be a group and let A be a nonempty set. 

1. Let G act on the set A. Prove that if a, b E A and b = g · a  for some g E G, then 
Gb = gGag-1 (Ga is the stabilizer of a). Deduce that if G acts transitively on A then the 
kernel of the action is ngEG gGag-1 • 

2. Let G be a pennutation group on the set A (i.e., G :::; SA), let a E G and let a E A. Prove 
that a Gaa- 1 = Gu (a) · Deduce that if G acts transitively on A then 

n a Gaa- 1 = 1 .  
<rEG 

3. Assume that G is an abelian, transitive subgroup of SA . Show that a (a) =f. a for all 
a E G - { 1 }  and all a E A. Deduce that I G I  = I A I . [Use the preceding exercise.] 

4. Let S3 act on the set Q of ordered pairs: { (i , j }  1 1  ::==; i , j :::; 3 } by a ((i, j)} = (a(i} , a (j)).  
Find the orbits of S3 on Q. For each a E S3 find the cycle decomposition of a under this 
action (i .e., find its cycle decomposition when a is considered as an element of S9 - first 
fix a labelling of these nine ordered pairs). For each orbit 0 of S3 acting on these nine 
points pick some a E 0 and find the stabilizer of a in S3 . 

5. For each of parts (a) and (b) repeat the preceding exercise but with S3 acting on the specified 
set: 
(a) the set of 27 triples { (i ,  j, k) 1 1  :::; i, j, k :::; 3} 
(b) the set P({ 1 ,  2, 3}) - {0} of all 7 nonempty subsets of { 1 ,  2, 3} .  

6. As in Exercise 12  of Section 2.2 let R be the set of all polynomials with integer coefficients 
in the independent variables XJ , xz , x3 , x4 and let S4 act on R by permuting the indices of 
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the four variables: 

a · p(Xt , X2 , X] , X4) = p(Xu(l) •  Xu(2) •  Xu(3) • Xu (4) ) 

for all a E S4. 
(a) Find the polynomials in the orbit of S4 on R containing Xt + x2 (recall from Exercise 

12 in Section 2.2 that the stabilizer of this polynomial has order 4). 
(b) Find the polynomials in the orbit of S4 on R containing XtX2 + X3X4 (recall from 

Exercise 1 2  in Section 2.2 that the stabilizer of this polynomial has order 8). 
(c) Find the polynomials in the orbit of s4 on R containing (Xt + X2) (X3 + X4) .  

7. Let G be a transitive permutation group on the finite set A. A block is a nonempty subset 
B of A such that for all a E G either a (B) = B or a (B) n B = 0 (here a (B) is the set 
{a (b) I b E  B}).  
(a) Prove that if B is a block containing the element a of A, then the set G B defined by 

GB = {a E G I a (B) = B }  is a subgroup of G containing Ga . 
(b) Show that if B is a block and at (B) ,  a2 (B) , . . .  , an (B) are all the distinct images of 

B under the elements of G, then these form a partition of A. 
(c) A (transitive) group G on a set A is said to be primitive if the only blocks in A 

are the trivial ones: the sets of size 1 and A itself. Show that S4 is primitive on 
A = { 1 , 2, 3, 4} . Show that Ds is not primitive as a permutation group on the four 
vertices of a square. 

(d) Prove that the transitive group G is primitive on A if and only if for each a E A, the 
only subgroups of G containing Ga are Ga and G (i.e., Ga is a maximal subgroup of 
G, cf. Exercise 16, Section 2.4). [Use part (a).] 

8. A transitive permutation group G on a set A is called doubly transitive if for any (hence 
all) a E A the subgroup Ga is transitive on the set A - {a}. 
(a) Prove that Sn is doubly transitive on { 1, 2, . . .  , n }  for all n ::: 2. 
(b) Prove that a doubly transitive group is primitive. Deduce that D8 is not doubly 

transitive in its action on the 4 vertices of a square. 

9. Assume G acts transitively on the finite set A and let H be a normal subgroup of G. Let 
01 . 02 , . . .  , 0, be the distinct orbits of H on A.  
(a) Pro�e that G permutes the sets Ot , 02 , . . .  , 0, in the sense that for each g E G and 

each i E { 1 , . . . •  r} there is a j such that gO; = oj . where gO = {g . a I a E O} (i.e., 
in the notation of Exercise 7 the sets 01 , . . .  , 0, are blocks). Prove that G is transitive 
on {Ot , . . .  , 0, }. Deduce that all orbits of H on A have the same cardinality. 

(b) Prove that if a E Ot then l Ot i  = IH  : H n Ga l and prove that r = IG  : HGa l ·  
[Draw the sublattice describing the Second Isomorphism Theorem for the subgroups 
H and Ga of G. Note that H n Ga = Ha . ]  

10. Let H and K be subgroups of the group G. For each x E G define the H K double coset 
of x in G to be the set 

HxK = {hxk I h E  H, k E K } . 

(a) Prove that HxK is the union of the left cosets XtK • . . .  , Xn K where {xt K, . . .  , Xn K }  
i s  the orbit containing x K of H acting by left multiplication on the set o f  left cosets 
of K.  

(b) Prove that H x K is  a union of  right cosets of H. 
(c) Show that HxK and HyK are either the same set or are disjoint for all x ,  y E G. 

Show that the set of H K double cosets partitions G. 
(d) Prove that IHxK I  = I K I  · I H : H n xKx- 1 1 . 
(e) Prove that IHxK I  = I HI · IK : K n x-1 Hx i .  
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4.2 GROUPS ACTING ON THEMSELVES BY LEFT MULTIPLICATION 
- CAYLEY'S THEOREM 

In this section G is any group and we first consider G acting on itself (i.e., A = G) by 
left multiplication: 

g - a =  ga for all g E G, a E G 
where ga denotes the product of the two group elements g and a in G (if G is written 
additively, the action will be written g - a = g + a and called left translation). We saw 
in Section 1 .7 that this satisfies the two axioms of a group action. 

When G is a finite group of order n it is convenient to label the elements of G with 
the integers 1 ,  2, . . . , n in order to describe the permutation representation afforded by 
this action. In this way the elements of G are listed as g1 . g2 , . . . •  gn and for each 
g E G the permutation a g may be described as a permutation of the indices 1 ,  2, . . . . n 
as follows: 

ag (i) = j if and only if 

A different labelling of the group elements will give a different description of ag as a 
permutation of { 1 ,  2, . . .  , n }  (cf. the exercises). 

Example 

Let G = { 1 ,  a ,  b, c} be the Klein 4-group whose group table is written out in Section 
2.5. Label the group elements 1 ,  a ,  b, c with the integers 1 ,2,3,4, respectively. Under this 
labelling we compute the permutation aa induced by the action of left multiplication by 
the group element a:  

a ·  1 = a 1  = a  and so aa O)  = 2 
a · a = aa = 1 and so a a (2) = 1 
a ·  b = ab = c and so aa (3) = 4 and 
a ·  c = ac = b and so aa (4) = 3. 

With this labelling of the elements of G we see that aa = ( 1  2) (3 4). In the permutation 
representation associated to the action of the Klein 4-group on itself by left multiplication 
one similarly computes that 

a H- aa = ( 1  2)(3 4) b H- ab = ( 1  3) (2 4) c H- ac = ( 1  4) (2 3) , 

which explicitly gives the permutation representation G � S4 associated to this action 
under this labelling. 

It is easy to see (and we shall prove this shortly in a more general setting) that the 
action of a group on itself by left multiplication is always transitive and faithful, and 
that the stabilizer of any point is the identity subgroup (these facts can be checked by 
inspection for the above example). 

We now consider a generalization of the action of a group by left multiplication on 
the set of its elements. Let H be any subgroup of G and let A be the set of all left cosets 
of H in G. Define an action of G on A by 

g - aH = gaH for all g E G, aH E A 
where gaH is the left coset with representative ga . One easily checks that this satisfies 
the two axioms for a group action, i.e., that G does act on the set of left cosets of H 
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by left multiplication. In the special case when H is the identity subgroup of G the 
coset a H is just {a} and if we identify the element a with the set {a}, this action by left 
multiplication on left cosets of the identity subgroup is the same as the action of G on 
itself by left multiplication. 

When H is of finite index m in G it is convenient to label the left cosets of H with the 
integers 1 ,  2, . . . , m in order to describe the permutation representation afforded by this 
action. In this way the distinct left cosets of H in G are listed as a1 H, azH, . . .  , amH 
and for each g E G the permutation ag may be described as a permutation of the indices 
1 ,  2, . . . , m as follows: 

ag (i) = j  if and only if ga; H = aj H. 

A different labelling of the group elements will give a different description of ag as a 
permutation of { 1 ,  2, . . . , m} (cf. the exercises). 

Example 

Let G = Ds and let H = ( s ) . Label the distinct left cosets 1 H, r H, r2 H, r3 H with the 
integers 1 ,2,3,4 respectively. Under this labelling we compute the permutation as induced 
by the action of left multiplication by the group element s on the left cosets of H: 

s · 1 H  = sH = 1H and so asO) = I 
s · rH = srH = r3 H and so as (2) = 4 
s · r2 H = sr2 H = r2 H and so as (3) = 3 
s · r3 H = sr3H = rH and so as (4) = 2. 

With this labelling of the left cosets of H we obtain as = (2 4) . In the permutation 
representation associated to the action of Ds on the left cosets of ( s ) by left multiplication 
one similarly computes that ar = ( 1  2 3 4). Note that the permutation representation is a 
homomorphism, so once its value has been determined on generators for Ds its value on 
any other element can be determined (e.g., asr2 = as a;). 

Theorem 3. Let G be a group, let H be a subgroup of G and let G act by left multi
plication on the set A of left cosets of H in G.  Let rr H be the associated permutation 
representation afforded by this action. Then 

(1) G acts transitively on A 
(2) the stabilizer in G of the point 1 H E A is the subgroup H 
(3) the kernel of the action (i.e., the kernel of 7TH) is nxeG x Hx-1 ,  and ker 7TH is 

the largest normal subgroup of G contained in H.  

Proof To see that G acts transitively on A, let aH and bH be any two elements 
of A,  and let g = ba-1 • Then g · aH = (ba-1 )aH = bH, and so the two arbitrary 
elements aH and bH of A lie in the same orbit, which proves ( 1 ). For (2), the stabilizer 
ofthe point l H is, by definition, {g E G I g · l H  = l H}, i.e., {g E G I gH = H} = H. 

By definition of 7TH we have 

ker rrH = {g E G I gxH = xH for all x E G} 

= {g E G I (x-1gx) H  = H for all x E G} 

= {g E G I x- 1 gx E H for all x E G} 

= {g  E G I g  E xHx-l for all x E G} = n xHx-1 , 
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which proves the first assertion of (3 ). The second assertion of (3) comes from observing 
first thatker rr H ::::) G and ker rr H ::::: H. If now N is any normal subgroup of G contained 
in H then we have N = xNx-1 ::::: xHx-1 for all x E G so that 

N ::::: n xHx-1 = ker rr11 . 
XEG 

This shows that ker rr H is the largest normal subgroup of G contained in H. 

Corollary 4.  (Cayley 's Theorem) Every group is  isomorphic to a subgroup of some 
symmetric group. If G is a group of order n, then G is isomorphic to a subgroup of Sn . 

Proof" Let H = 1 and apply the preceding theorem to obtain a homomorphism of 
G into Sc (here we are identifying the cosets of the identity subgroup with the elements 
of G). Since the kernel of this homomorphism is contained in H = 1 ,  G is isomorphic 
to its image in Sc . 

Note that G is isomorphic to a subgroup of a symmetric group, not to the full sym
metric group itself. For example, we exhibited an isomorphism of the Klein 4-group 
with the subgroup ( (1 2) (3 4) , (1 3) (2 4) ) of S4. Recall that subgroups of symmetric 
groups are called permutation groups so Cayley's Theorem states that every group is 
isomorphic to a permutation group. The permutation representation afforded by left 
multiplication on the elements of G (cosets of H = 1 )  is called the left regular rep
resentation of G.  One might think that we could study all groups more effectively by 
simply studying subgroups of symmetric groups (and all finite groups by studying sub
groups of Sn , for all n ). This approach alone is neither computationally nor theoretically 
practical, since to study groups of order n we would have to work in the much larger 
group Sn (cf. Exercise 7, for example). 

Historically, finite groups were first studied not in an axiomatic setting as we have 
developed but as subgroups of Sn . Thus Cayley's Theorem proves that the historical 
notion of a group and the modem (axiomatic) one are equivalent. One advantage of 
the modem approach is that we are not, in our study of a given group, restricted to 
considering that group as a subgroup of some particular symmetric group (so in some 
sense our groups are "coordinate free"). 

The next result generalizes our result on the normality of subgroups of index 2. 

Corollary 5. If G is a finite group of order n and p is the smallest prime dividing I G I ,  
then any subgroup of index p i s  normal. 

Remark: In general, a group of order n need not have a subgroup of index p (for 
example, A4 has no subgroup of index 2). 

Proof· Suppose H ::::: G and IG : H I =  p. Let 7rH be the permutation represen
tation afforded by multiplication on the set of left cosets of H in G, let K = ker rr H 
and let I H  : K l = k. Then I G  : K l = I G : H I I H  : K l = pk. Since H has p 
left cosets, G f K is isomorphic to a subgroup of Sp (namely, the image of G under rr H )  
by the First Isomorphism Theorem. B y  Lagrange's Theorem, pk = I G/ K l  divides p ! .  
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Thus k I p !  
= (p - 1 ) ! .  But all prime divisors of (p - 1 ) !  are less than p and by 

p 
the rninimality of p, every prime divisor of k is greater than or equal to p. This forces 
k = 1 ,  so H =  K � G, completing the proof. 

E X E R C I S E S  

Let G be a group and let H be a subgroup of G.  

1. Let G = {1 ,  a ,  b, c} be the Klein 4-group whose group table is written out in Section 2.5. 
(a) Label 1, a , b, c with the integers 1 ,2,4,3, respectively, and prove that under the left 

regular representation of G into S4 the nonidentity elements are mapped as follows: 

a �---+ (l 2)(3 4) b 1--+ (1 4) (2 3) c 1--+ ( 1 3) (2 4) . 

(b) Relabel 1 ,  a ,  b, c as 1 ,4,2,3, respectively, and compute the image of each element of 
G under the left regular representation of G into S4. Show that the image of G in S4 
under this labelling is the same subgroup as the image of G in part (a) (even though 
the nonidentity elements individually map to different permutations under the two 
different labellings). 

2. List the elements of S3 as 1 ,  (l 2), (2 3), ( 1 3), (1 2 3), (1 3 2) and label these with the 
integers 1 ,2,3,4,5,6 respectively. Exhibit the image of each element of S3 under the left 
regular representation of s3 into s6. 

3. Let r and s be the usual generators for the dihedral group of order 8. 
(a) List the elements of Ds as 1 ,  r, r2, r3 , s, sr, sr2, sr3 and label these with the integers 

1 , 2, . . .  , 8 respectively. Exhibit the image of each element of Ds under the left regular 
representation of Ds into Ss . 

(b) Relabel this same list of elements of Ds with the integers 1 ,  3, 5, 7, 2, 4, 6, 8 re
spectively and recompute the image of each element of Ds under the left regular 
representation with respect to this new labelling. Show that the two subgroups of Ss 
obtained in parts (a) and (b) are different. 

4. Use the left regular representation of Qs to produce two elements of Ss which generate a 
subgroup of Ss isomorphic to the quaternion group Qs .  

5.  Let r and s be the usual generators for the dihedral group of order 8 and let H = ( s } . List 
the left cosets of H in Ds as 1 H, r H, r2 H and r3 H. 
(a) Label these cosets with the integers 1 ,2,3,4, respectively. Exhibit the image of each 

element of Ds under the representation 7rH of Ds into S4 obtained from the action 
of Ds by left multiplication on the set of 4 left cosets of H in Ds . Deduce that this 
representation is faithful (i.e., the elements of S4 obtained form a subgroup isomorphic 
to Ds). 

(b) Repeat part (a) with the list of cosets relabelled by the integers 1 ,3,2,4, respectively. 
Show that the permutations obtained from this labelling form a subgroup of S4 that 
is different from the subgroup obtained in part (a). 

(c) Let K = ( sr }, list the cosets of K in Ds as 1 K ,  r K, r2 K and r3 K, and label these 
with the integers 1 ,2,3,4. Prove that, with respect to this labelling, the image of Ds 
under the representation n K obtained from left multiplication on the cosets of K is 
the same subgroup of S4 as in part (a) (even though the subgroups H and K are 
different and some of the elements of Ds map to different permutations under the two 
homomorphisms). 
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6. Let r and s be the usual generators for the dihedral group of order 8 and let N = ( r2 ) . List 
the left cosets of N in Ds as l N, rN, sN and srN. Label these cosets with the integers 
1 ,2,3,4 respectively. Exhibit the image of each element of Ds under the representation 

rr N of Ds into S4 obtained from the action of Ds by left multiplication on the set of 4 left 
cosets of N in Ds. Deduce that this representation is not faithful and prove that rrN (Ds) 
is isomorphic to the Klein 4-group. 

7. Let Qs be the quatemion group of order 8. 
(a) Prove that Qs is isomorphic to a subgroup of Sg. 
(b) Prove that Qs is not isomorphic to a subgroup of Sn for any n � 7. [If Qs acts on 

any set A of order ::5 7 show that the stabilizer of any point a E A must contain the 
subgroup ( - 1 ) . ]  

8. Prove that if  H has finite index n then there is a normal subgroup K of G with K � H 
and I G  : Kl � n ! .  

9. Prove that i f  p i s  a prime and G i s  a group of order pa for some a E z+, then every 
subgroup of index p is normal in G. Deduce that every group of order p2 has a normal 
subgroup of order p. 

10. Prove that every non-abelian group of order 6 has a nonnormal subgroup of order 2. Use 
this to classify groups of order 6. [Produce an injective homomorphism into S3 .] 

11. Let G be a finite group and let rr : G -+ SG be the left regular representation. Prove that 
if x is an element of G of order n and I G I  = mn, then rr(x) is a product of m n-cycles. 

Deduce that rr(x) is an odd permutation if and only if lx l is even and !_g_ is odd. 
lx l 

12. Let G and rr be as in the preceding exercise. Prove that if rr (G) contains an odd permutation 
then G has a subgroup of index 2. [Use Exercise 3 in Section 3.3.] 

13. Prove that if I G I  = 2k where k is odd then G has a subgroup of index 2. [Use Cauchy's 
Theorem to produce an element of order 2 and then use the preceding two exercises.] 

14. Let G be a finite group of composite order n with the property that G has a subgroup of 
order k for each positive integer k dividing n. Prove that G is not simple. 

4.3 GROUPS ACTI NG ON THEMSELVES BY CONJUGATION 
-THE CLASS EQUATION 

In this section G is any group and we first consider G acting on itself (i.e., A = G) by 
conjugation : 

g · a = gag-1 for all g E G, a E G 

where gag-1 is computed in the group G as usual. This definition satisfies the two 
axioms for a group action because 

gl · (g2 · a) = gl · (g2ag2 1 ) = g1 (g2ag21 )g) 1 
= (g ig2)a(gig2)- 1 = (glg2) · a 

and 

1 - a =  la l-1 = a  

for all gl , g2 E G and all a E G. 
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Definition. Two elements a and b of G are said to be conjugate in G if there is some 
g E G such that b = gag-1 (i.e., if and only if they are in the same orbit of G acting 
on itself by conjugation). The orbits of G acting on itself by conjugation are called the 
conjugacy classes of G. 

Examples 

(1) If G is an abelian group then the action of G on itself by conjugation is the trivial 
action: g · a =  a, for all g, a E G, and for each a E G the conjugacy class of a is {a} .  

(2) If  I G I  > 1 then, unlike the action by left multiplication, G does not act transitively 
on itself by conjugation because { 1 } is always a conjugacy class (i.e., an orbit for this 
action). More generally, the one element subset {a} is a conjugacy class if and only if 
gag-1 = a  for all g E G if and only if a is in the center of G. 

(3) In S3 one can compute directly that the conjugacy classes are { 1 } ,  { ( 1 2) , ( 1 3) ,  (2 3)} 
and {(1 2 3),  ( 1 3 2)} . We shall shortly develop techniques for computing conjugacy 
classes more easily, particularly in symmetric groups. 

As in the case of a group acting on itself by left multiplication, the action by 
conjugation can be generalized. If S is any subset of G, define 

gSg-1 = {gsg-1 I s E S}. 
A group G acts on the set P( G) of all subsets of itself by defining g · S = g S g - I  for 
any g E G and S E P(G). As above, this defines a group action of G on P(G). Note 
that if S is the one element set {s} then g · S is the one element set {gsg-1 } and so this 
action of G on all subsets of G may be considered as an extension of the action of G 
on itself by conjugation. 

Definition. Two subsets S and T of G are said to be conjugate in G if there is some 
g E G such that T = gsg-1 (i.e., if and only if they are in the same orbit of G acting 
on its subsets by conjugation). 

We now apply Proposition 2 to the action of G by conjugation. Proposition 2 proves 
that if S is a subset of G, then the number of conjugates of S equals the index I G : G s I 
of the stabilizer G s of S. For action by conjugation 

Gs = {g E G I gSg-1 
= S} = NG (S) 

is the normalizer of S in G. We summarize this as 

Proposition 6. The number of conjugates of a subset S in a group G is the index of the 
normalizer of S, I G  : NG (S) I .  In particular, the number of conjugates of an element s 
of G is the index of the centralizer of s ,  I G  : CG (s) l .  

Proof: The second assertion of the proposition follows from the observation that 
NG ({s }) = CG (s) .  

The action of G on itself by conjugation partitions G into the conjugacy classes 
of G, whose orders can be computed by Proposition 6. Since the sum of the orders of 
these conjugacy classes is the order of G, we obtain the following important relation 
among these orders. 
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Theorem 7. (The Class Equation) Let G be a finite group and let g1 , g2 , . . .  , gr be 
representatives of the distinct conjugacy classes of G not contained in the center Z (G) 
of G. Then 

r 

I G I = I Z(G) I  + L I G : Ca (g; ) l . 
i=1  

Proof" As noted in Example 2 above the element {x} is  a conjugacy class of size 1 if 
and only if x E Z(G), since then gxg-1 = x for all g E G. Let Z(G) = { l , z2 • . . .  , zm },  
let K1 , K2 , . . .  , Kr be the conjugacy classes of G not contained in the center, and let g; 
be a representative of K; for each i . Then the full set of conjugacy classes of G is given 
by 

Since these partition G we have 
m r 

I G I = L l + L IK; I  
i=1  i=1 

= I Z(G) I + L I G : CG (g; ) l ,  
i=1  

where IK; I is given by Proposition 6. This proves the class equation. 
Note in particular that all the summands on the right hand side of the class equation 

are divisors of the group order since they are indices of subgroups of G .  This restricts 
their possible values (cf. Exercise 6, for example). 

Examples 

(1) The class equation gives no information in an abelian group since conjugation is the 
trivial action and all conjugacy classes have size 1 .  

(2) In any group G w e  have ( g ) :::; C G (g) ;  this observation helps to minimize com
putations of conjugacy classes. For example, in the quatemion group Qs we see 
that ( i ) :::; CQ8 (i) :::=: Qg. Since i ¢ Z(Qs) and I Qs : ( i ) l = 2, we must have 

CQ8 (i) = ( i ) . Thus i has precisely 2 conjugates in Qg, namely i and -i = kik-1 • 
The other conjugacy classes in Qs are determined similarly and are 

( 1 } , {- 1 } , {±i } ,  {±j } , {±k}.  

The first two classes form Z(Qs) and the class equation for this group is 

I Qs l = 2 + 2 + 2 + 2. 

(3) In Ds we may also use the fact · that the three subgroups of index 2 are abelian to 
quickly see that if x ¢ Z(Ds). then I Cn8 (x) l  = 4. The conjugacy classes of Ds are 
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{ 1 } , (r2 } , {r, r3 } , {s, sr2} , {sr, sr3 } . 
The first two classes form Z(Ds) and the class equation for this group is 

I Ds l = 2 + 2 + 2 + 2. 
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Before discussing more examples of conjugacy we give two important conse
quences of the class equation. The first application of the class equation is to show 
that groups of prime power order have nontrivial centers, which is the starting point for 
the study of groups of prime power order (to which we return in Chapter 6). 

Theorem 8. If p is a prime and P is a group of prime power order pa for some a ;:: 1 ,  
then P has a nontrivial center: Z(P) ::j:. 1 .  

Proof" B y  the class equation 
r 

i=l  

where g1 , . . •  , gr are representatives of the distinct non-central conjugacy classes. By 
definition, C p (g; ) ::j:. P for i = 1 ,  2, . . . , r so p divides I P : C p (g; ) J .  Since p also 
divides J P I  it follows that p divides J Z(P) J ,  hence the center must be nontrivial. 

Corollary 9. If I P I  = p2 for some prime p, then P is abelian. More precisely, P is 
isomorphic to either Z p2 or Z P x Z P . 

Proof" Since Z(P) ::j:. 1 by the theorem, it follows that PjZ(P) is cyclic. By 
Exercise 36, Section 3 . 1 , P is abelian. If P has an element of order p2, then P is 
cyclic. Assume therefore that every nonidentity element of P has order p.  Let x be 
any nonidentity element of P and let y E P - ( x  ). Since J ( x , y ) J  > J ( x  ) J  = p, we 
must have that P = ( x ,  y ) . Both x and y have order p so ( x ) x ( y ) = Z P x Z P . It 
now follows directly that the map (xa , yb) �---+ xa yb is an isomorphism from ( x ) x ( y ) 
onto P. This completes the proof. 

Conjugacy in  Sn 
We next consider conjugation in symmetric groups. Readers familiar with linear algebra 
will recognize that in the matrix group G Ln (F), conjugation is the same as "change of 
basis": A �---+ P AP-1 • The situation in Sn is analogous: 

Proposition 10. Let a, T be elements of the symmetric group Sn and suppose a has 
cycle decomposition 

(a1 a2 . . . ak, )  (bt bz . . . h2 ) • • • • 
Then rar-1 has cycle decomposition 

( r (a1 ) r (az) . . . r (ak, ) )  ( r (b1 ) r (bz) . . .  r(bk2 ) ) • • • , 
that is, TO'T-1 is obtained from a by replacing each entry i in the cycle decomposition 
for a by the entry r (i). 

Proof" Observe that if a (i ) = j, then 

rar-1 (r (i) ) = r (j) .  
Thus, if the ordered pair i , j appears in  the cycle decomposition of a, then the ordered 
pair r (i) , r (j) appears in the cycle decomposition of rar-1 .  This completes the proof. 
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Example 
Let a = (1 2) (3 4 5)(6 7  8 9) and let T = (1 3 5 7) (2 4 6  8). Then 

TlTT-I = (3 4) (5 6 7)(8 1 2 9) .  

Definition. 
(1) If u E Sn is the product of disjoint cycles of lengths n t ,  nz , . . .  , nr with 

n 1 � nz � · · · � nr (including its 1 -cycles) then the integers n 1 , nz, . . . , nr are 
called the cycle type of u .  

(2) If n E z+, a partition of n i s  any nondecreasing sequence of positive integers 
whose sum is n .  

Note that by the results of the preceding section the cycle type of a permutation i s  
unique. For example, the cycle type of an m-cycle in  Sn i s  1 ,  1 ,  . . .  , 1 ,  m,  where the m 
is preceded by n - m ones. 

Proposition 11. Two elements of Sn are conjugate in Sn if and only if they have the 
same cycle type. The number of conjugacy classes of Sn equals the number of partitions 
of n. 

Proof: By Proposition 1 0, conjugate permutations have the same cycle type. Con
versely, suppose the permutations O'J and O'z have the same cycle type. Order the cycles 
in nondecreasing length, including 1-cycles (if several cycles of O'J and O'z have the 
same length then there are several ways of doing this). Ignoring parentheses, each 
cycle decomposition is a list in which all the integers from 1 to n appear exactly once. 
Define r to be the function which maps the ith integer in the list for u1 to the ith integer 
in the list for u2 . Thus r is a permutation and since the parentheses which delineate the 
cycle decompositions appear at the same positions in each list, Proposition 1 0  ensures 
that rut r - 1 = u2, so that u1 and O'z are conjugate. 

Since there is a bijection between the conjugacy classes of Sn and the permissible 
cycle types and each cycle type for a permutation in Sn is a partition of n, the second 
assertion of the proposition follows, completing the proof. 

Examples 
(1) Let lTJ = ( 1 ) (3 5) (8 9) (2 4 7 6) and let az = (3) (4 7) (8 1 ) (5 2 6 9) . Then define r by 

r (l)  = 3, r(3) = 4, r (5) = 7, r (8) = 8, etc. Then 

and rat r-1 = az . 
T = (1 3 4 2 5 7 6 9) (8) 

(2) If in the previous example we had reordered az as az = (3)(8 1 ) (4 7) (5 2 6 9) by 
interchanging the two cycles of length 2, then the corresponding r described above is 
defined by r ( l )  = 3, r (3) = 8, r (5) = 1, r (8) = 4, etc. ,  which gives the permutation 
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T = ( 1  3 8 4 2 5) (6 9 7) 

again with rat r-1 = a2 , which shows that there are many elements conjugating lTJ 

into az . 
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(3) If n = 5, the partitions of 5 and corresponding representatives of the conjugacy classes 
(with 1 -cycles not written) are as given in the following table: 

Partition of 5 
1 , 1 , 1 , 1 , 1 
1 ,  1 ,  1 ,  2 
1 ,  1 ,  3 
1 ,  4 
5 
1 ,  2, 2 
2, 3 

Representative of Conjugacy Class 
1 
( 1  2) 
(1 2 3) 
(1 2 3 4) 
(1 2 3 4 5) 
(1 2)(3 4) 
(1 2)(3 4 5) 

Proposition 1 1  and Proposition 6 can be used to exhibit the centralizers of some 
elements in Sn . For example, if a is an m-cycle in Sn , then the number of conjugates 
of a (i.e., the number of m-cycles) is 

n · (n - 1 )  · · · (n - m + 1 ) 
m 

I Sn l By Proposition 6 this is the index of the centralizer of a :  Since I Sn l = n !  
I Cs,(a) I 

we obtain 
ICsJa) l  = m · (n - m) ! .  

The element a certainly commutes with 1 ,  a ,  a2 , • • •  , am-1 • It also commutes with any 
permutation in Sn whose cycles are disjoint from a and there are (n - m) !  permutations 
of this type (the full symmetric group on the numbers not appearing in a). The product 
of elements of these two types already accounts for m · (n - m) !  elements commuting 
with a .  By the order computation above, this is the full centralizer of a in Sn . Explicitly, 

if a is an m-cycle in Sn , then Cs" (a) = {a i r I 0 :5 i :5 m - 1 , r E Sn-m } 

where Sn-m denotes the subgroup of Sn which fixes all integers appearing in the m-cycle 
a (and is the identity subgroup if m = n or m  = n - 1 ). 

For example, the centralizer of a = (1 3 5) in S7 is the subgroup 

{ ( I  3 5)i r I i = 0, 1 or 2, and r fixes 1 , 3 and 5} .  

Note that r E SA where A = {2 , 4 , 6, 7}, so there are 4 !  choices for r and the centralizer 
has order 3 · 4 !  = 72. 

We shall discuss centralizers of other elements of Sn in the next exercises and in 
Chapter 5 .  

We can use this discussion of the conjugacy classes in  Sn to give a combinatorial 
proof of the simplicity of A5 • We first observe that normal subgroups of a group G are 
the union of conjugacy classes of G, i.e., 

if H <::::1 G, then for every conjugacy class K of G either K � H or K n H = 0. 

This is because if x E K n H, then gxg-1 E gHg -1 for all g E G. Since H is normal, 
gHg-1 = H, so that H contains all the conjugates of x ,  i.e., K � H. 
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Theorem 12. As is a simple group. 

Proof" We first work out the conjugacy classes of As and their orders. Proposition 
1 1  does not apply directly since two elements of the same cycle type (which are conjugate 
in Ss) need not be conjugate in As. Exercises 1 9  to 22 analyze the relation of classes 
in Sn to classes in An in detail. 

We have already seen that representatives of the cycle types of even permutations 
can be taken to be 

1 , ( 1  2 3) , ( 1  2 3 4 5) and ( 1 2) (3 4) . 

The centralizers of 3-cycles and 5-cycles in Ss were determined above, and checking 
which of these elements are contained in As we see that 

CAs ( ( 1  2 3)) = ( ( 1  2 3) ) and CAs ( ( 1  2 3 4 5)) = ( ( 1  2 3 4 5) ) . 

These groups have orders 3 and 5 (index 20 and 1 2), respectively, so there are 20 distinct 
conjugates of ( 1  2 3) and 1 2  distinct conjugates of ( 1  2 3 4 5) in As.  Since there are a 
total of twenty 3-cycles in Ss (Exercise 16, Section 1 .3) and all of these lie in As, we 
see that 

all twenty 3-cycles are conjugate in As. 

There are a total of twenty-four 5-cycles in As but only 12  distinct conjugates of the 
5-cycle ( 1  2 3 4 5).  Thus some 5-cycle, a ,  is not conjugate to ( 1  2 3 4 5) in As (in fact, 
( 1  3 5 2  4) is not conjugate in As to ( 1  2 3 4 5) since the method of proof in Proposition 
1 1 shows that any element of Ss conjugating ( 1  2 3 4 5) into ( 1  3 5 2 4) must be an odd 
permutation). As above we see that a also has 1 2  distinct conjugates in As , hence 

the 5-cycles lie in two conjugacy classes in As, each of which has 12 elements. 

Since the 3-cycles and 5-cycles account for all the nonidentity elements of odd order, 
the 15 remaining nonidentity elements of As must have order 2 and therefore have 
cycle type (2,2) . It is easy to see that ( 1  2) (3 4) commutes with ( 1  3) (2 4) but does not 
commute with any element of odd order in As . It follows that I CAs ((12) (34) ) 1  = 4. 
Thus ( 1  2) (3 4) has 1 5  distinct conjugates in As, hence 

all 15  elements of order 2 in As are conjugate to ( 1  2)(3 4) . 

In summary, the conjugacy classes of As have orders 1 ,  1 5, 20, 1 2  and 1 2. 
Now, suppose H were a normal subgroup of As . Then as we observed above, H 

would be the union of conjugacy classes of As.  Then the order of H would be both 
a divisor of 60 (the order of As) and be the sum of some collection of the integers 
{ 1 , 1 2, 12 ,  15 ,  20) (the sizes of the conjugacy classes in As). A quick check shows the 
only possibilities are I H I  = 1 or I H I  = 60, so that As has no proper, nontrivial normal 
subgroups. 

Right Group Actions 

As noted in Section 1 .7, in the definition of an action the group elements appear to the 
left of the set elements and so our notion of an action might more precisely be termed a 
left group action. One can analogously define the notion of a right group action of the 
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group G on the nonempty set A as a map from A x G to A, denoted by a · g for a E A 
and g E G, that satisfies the axioms: 

(1) (a · gt) · g2 = a · (gtg2) for all a E A, and g1 , g2 E G, and 
(2) a · 1 = a for all a E A. 

In  much of the literature on group theory, conjugation is  written as  a right group 
action using the following notation: 

for all g, a E G. 

Similarly, for subsets S of G one defines Sg = g-1 Sg . In this notation the two axioms 
for a right action are verified as follows: 

and 

for all gh g2 , a E G. Thus the two axioms for this right action of a group on itself take 
the form of the familiar "laws of exponentiation." (Note that the integer power an of 
a group element a is easily distinguished from the conjugate ag of a by the nature of 
the exponent: n E Z but g E G.) Because conjugation is so ubiquitous in the theory of 
groups, this notation is a useful and efficient shorthand (as opposed to always writing 
gag-1 or g · a  for action on the left by conjugation). 

For arbitrary group actions it is an easy exercise to check that if we are given a left 
group action of G on A then the map A x G --+ A defined by a ·  g = g-1 · a is a right 
group action. Conversely, given a right group action of G on A we can form a left group 
action by g · a = a ·  g-1 . Call these pairs corresponding group actions. Put another 
way, for corresponding group actions, g acts on the left in the same way that g -I acts on 
the right. This is particularly transparent for the action of conjugation because the "left 
conjugate of a by g," namely gag-1 , is the same group element as the "right conjugate 
of a by g-1 ," namely ag- ' . Thus two elements or subsets of a group are "left conjugate" 
if and only if they are "right conjugate," and so the relation "conjugacy" is the same for 
the left and right corresponding actions. More generally, it is also an exercise (Exercise 
1) to see that for any corresponding left and right actions the orbits are the same. 

We have consistently used left actions since they are compatible with the notation of 
applying functions on the left (i.e., with the notation cp(g) ); in this way left multiplication 
on the left cosets of a subgroup is a left action. Similarly, right multiplication on the 
right cosets of a subgroup is a right action and the associated permutation representation 
cp is a homomorphism provided the function cp : G --+ SA is written on the right as 
(g1g2)cp (and also provided permutations in SA are written on the right as functions 
from A to itself). There are instances where a set admits two actions by a group G: one 
naturally on the left and the other on the right, so that it is useful to be comfortable with 
both types of actions. 
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E X E R C I S E S  

Let G be a group. 

1. Suppose G has a left action on a set A, denoted by g - a for all g E G and a E A. Denote 
the corresponding right action on A by a · g. Prove that the (equivalence) relations � and 
�' defined by 

if and only if a = g · b for some g E G 

and 

a �' b if and only if a = b - g for some g E G 

are the same relation (i.e., a � b if and only if a �' b). 
2. Find all conjugacy classes and their sizes in the following groups: 

(a) Ds (b) Qs (c) A4. 

3. Find all the conjugacy classes and their sizes in the following groups: 
(a) Z2 x S3 (b) S3 x S3 (c) Z3 x A4. 

4. Prove that if S 5; G and g E G then gNG (S)g-1 = NG (gSg-1 ) and gCG (S)g-1 

CG (gSg-1 ) . 

5. If the center of G is of index n, prove that every conjugacy class has at most n elements. 

6. Assume G is a non-abelian group of order 15. Prove that Z(G) = 1 .  Use the fact that 
( g ) � C G (g) for all g E G to show that there is at most one possible class equation for 
G .  [Use Exercise 36, Section 3. 1 .] 

7. For n = 3, 4, 6 and 7 make lists of the partitions of n and give representatives for the 
corresponding conjugacy classes of S, . 

8. Prove that Z(S, ) = l for all n :::: 3 .  
9. Show that ICs" (( 1 2) (3 4) ) 1  = 8 · (n - 4) ! for all n :::: 4. Determine the elements in this 

centralizer explicitly. 

10. Let a be the 5-cycle ( 1 2 3 4 5) in Ss . In each of (a) to (c) find an explicit element -r E Ss 

which accomplishes the specified conjugation: 
(a) -ra -r -1 = a2 

(b) -ra-r-1 = a-1 

(c) -ra-r-1 = a-2 . 

11. In each of (a) - (d) determine whether a1 and a2 are conjugate. If they are, give an explicit 
permutation -r �uch that -ra1 -r- 1 = a2.  
(a) a1 = ( l 2) (3 4 5)  and a2 = (1 2 3) (4 5) 
(b) a1 = ( l 5)(3 7 2) (  lO 6 8 l l ) and a2 = (3 7 5 10) (4 9) ( 1 3  1 1  2) 
(c) a1 = (1 5)(3 7 2) ( 10 6 8 1 1) and a2 = a[ 
(d) a1 = ( 1 3) (2 4 6) and a2 = (3 5)(2 4) (5 6) .  

12. Find a representative for each conjugacy class of elements of order 4 i n  Ss and in S12 · 
13. Find all finite groups which have exactly two conjugacy classes. 

14. In Exercise 1 of Section 2 two labellings of the elements { 1 ,  a, b, c} of the Klein 4-group 
V were chosen to give two versions of the left regular representation of V into S4. Let 
1r1 be the version of regular representation obtained in part (a) of that exercise and let 
1r2 be the version obtained via the labelling in part (b). Let -r = (2 4) . Show that 
-r o 1r1 (g) o -r-1 = n2 (g) for each g E V (i.e., conjugation by -r sends the image of 1r1 to 
the image of n2 elementwise ). 
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15. Find an element of Ss which conjugates the subgroup of Ss obtained in part (a) of Exercise 
3, Section 2 to the subgroup of Ss obtained in part (b) of that same exercise (both of these 
subgroups are isomorphic to Dg). 

16. Find an element of S4 which conjugates the subgroup of S4 obtained in part (a) of Exercise 
5, Section 2 to the subgroup of S4 obtained in part (b) of that same exercise (both of these 
subgroups are isomorphic to Ds). 

17. Let A be a nonempty set and let X be any subset of SA . Let 

F(X) = {a E A I a (a) = a  for all a E X} - the fixed set of X. 

Let M(X) = A - F(X) be the elements which are moved by some element of X. Let 
D = {a E SA I IM(a ) l  < oo}. Prove that D is a normal subgroup of SA . 

18. Let A be a set, let H be a subgroup of SA and let F (H) be the fixed points of H on A as 
defined in the preceding exercise. Prove that if -r E NsA (H) then -r stabilizes the set F(H) 
and its complement A - F(H).  

19. Assume H is a normal subgroup of G, K is  a conjugacy class of G contained in H . and x E K. Prove that K is a union of k conjugacy classes of equal size in H, where 
k = I G : H Cc (x) 1 - Deduce that a conjugacy class in Sn which consists of even permuta
tions is either a single conjugacy class under the action of An or is a union of two classes 
of the same size in An . [Let A = Cc (x) and B = H so A n  B = CH(x).  Draw the lat
tice diagram associated to the Second Isomorphism Theorem and interpret the appropriate 
indices. See also Exercise 9, Section 1 .] 

20. Let a E An. Show that all elements in the conjugacy class of a in Sn (i.e., all elements 
of the same cycle type as a) are conjugate in An if and only if a commutes with an odd 
permutation. [Use the preceding exercise.] 

21. Let K be a conjugacy class in Sn and assur11.e that K � An. Show a E Sn does not 
commute with any odd permutation if and only if the cycle type of a consists of distinct 
odd integers. Deduce that K consists of two conjugacy classes in An if and only if the cycle 
type of an element of K consists of distinct odd integers. [Assume first that a E K does 
not commute with any odd permutation. Observe that a commutes with each individual 
cycle in its cycle decomposition - use this to show that all its cycles must be of odd 
length. If two cycles have the same odd length, k, find a product of k transpositions which 
interchanges them and commutes with a. Conversely, if the cycle type of a consists of 
distinct integers, prove that a commutes only with the group generated by the cycles in its 
cycle decomposition.] 

22. Show that if n is odd then the set of all n-cycles consists of two conjugacy classes of equal 
size in An . 

23. Recall ( cf. Exercise 16, Section 2.4) that a proper subgroup M of G is called maximal if 
whenever M ::=:: H ::=:: G, either H = M or H = G. Prove that if M is a maximal subgroup 
of G then either Nc (M) = M or Nc (M) = G. Deduce that if M is a maximal subgroup of 
G that is not normal in G then the number of nonidentity elements of G that are contained 
in conjugates of M is at most ( IMI  - l ) I G  : MI .  

24. Assume H is a proper subgroup of the finite group G. Prove G =I= U8EcgHg- I , i.e., G is 
not the union of the conjugates of any proper subgroup. [Put H in some maximal subgroup 
and use the preceding exercise.] 

25. Let G = GLz (C) and let H = {( � �) I a, b, c E C, ac =f. 0} . Prove that every element 

of G is conjugate to some element of the subgroup H and deduce that G is the union of 
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conjugates of H.  [Show that every element of GL2 (C) has an eigenvector.] 

26. Let G be a transitive permutation group on the finite set A with I A I > 1 .  Show that there 
is some a E G such that a (a) =/= a  for all a E A (such an element a is called fixed point 
free). 

27. Let g1 . g2 • . . .  , gr be representatives of the conjugacy classes of the finite group G and 
assume these elements pairwise commute. Prove that G is abelian. 

28. Let p and q be primes with p < q. Prove that a non-abelian group G of order pq has a 
nonnormal subgroup of index q, so that there exists an injective homomorphism into Sq . 
Deduce that G is isomorphic to a subgroup of the normalizer in Sq of the cyclic group 
generated by the q-cycle ( 1 2 . . .  q ) . 

29. Let p be a prime and let G be a group of order pa . Prove that G has a subgroup of order 
p/3 , for every {3 with 0 :::; {3 :::; a. [Use Theorem 8 and induction on a .] 

30. If G is a group of odd order, prove for any nonidentity element x E G that x and x -1 are 
not conjugate in G. 

31. Using the usual generators and relations for the dihedral group D2n (cf. Section 1 .2) show 
that for n = 2k an even integer the conjugacy classes in D2n are the following: { 1 }, {rk}, 
{r±1 }, {r±2} ,  . . .  , {r±(k-1) } , {sr2h 1 b = 1, . . . , k} and {sr2h-l  1 b = I , . . . , k}. Give 
the class equation for D2n . 

32. For n = 2k + 1 an odd integer show that the conjugacy classes in �n are { 1}, {r±1 }, 
{r±2}, . . .  , {r±k },  {srh I b = 1 , . . . , n } .  Give the class equation for D2n · 

33. This exercise gives a formula for the size of each conjugacy class in Sn . Let a be a 
permutation in Sn and let m1 . m2 , . . .  , ms be the distinct integers which appear in the 
cycle type of a (including 1-cycles). For each i E { 1 , 2, . . . , s }  assume a has k; cycles of 
length m; (so that 'I:,f=1k;m; = n). Prove that the number of conjugates of a is 

. 
n !  

(k I kl ) (k I k2 ) (k I k, ) . 1 -m1 2 -m2 . . .  s ·ms 

[See Exercises 6 and 7 in Section 1 .3 where this formula was given in some special cases.] 

34. Prove that if p is a prime and P is a subgroup of Sp of order p, then INs/P) I = p(p - 1 ) .  
[Argue that every conjugate of P contains exactly p - 1 p-cycles and use the formula for 
the number of p-cycles to compute the index of NsP (P) in Sp .] 

35. Let p be a prime. Find a formula for the number of conjugacy classes of elements of order 
p in Sn (using the greatest integer function). 

36. Let n : G � Sc be the left regular representation afforded by the action of G on itself by 
left multiplication. For each g E G denote the permutation rr(g) by ag , so that ag (x) = gx 
for all x E G. Let ). : G � Sc be the permutation representation afforded by the 
corresponding right action of G on itself, and for each h E G denote the permutation A.(h) 
by rh . Thus rh (x) = xh- 1 for all x E G (A. is called the right regular representation of 
G). 
(a) Prove that ag and rh commute for all g ,  h E G. (Thus the centralizer in Sc of rr(G) 

contains the subgroup A.( G) , which is isomorphic to G). 
(b) Prove that a g = rg if and only if g is an element of order I or 2 in the center of G. 
(c) Prove that ag = rh if and only if g and h lie in the center of G. Deduce that 

n (G) n A.( G) = rr(Z(G)) = A.(Z(G)) . 
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4.4 AUTOMORPHISMS 

Definition. Let G be a group. An isomorphism from G onto itself is called an 
automorphism of G.  The set of all automorphisms of G is denoted by Aut( G) .  

We leave as an exercise the simple verification that Aut( G) is a group under compo
sition of automorphisms, the automorphism group of G (composition of automorphisms 
is defined since the domain and range of each automorphism is the same). Notice that 
automorphisms of a group G are, in particular, permutations of the set G so Aut( G) is 
a subgroup of SG . 

One of the most important examples of an automorphism of a group G is provided 
by conjugation by a fixed element in G. The next result discusses this in a slightly more 
general context. 

· 

Proposition 13. Let H be a normal subgroup of the group G. Then G acts by con
jugation on H as automorphisms of H. More specifically, the action of G on H by 
conjugation is defined for each g E G by 

h 1-+ ghg-1 for each h E H. 
For each g E G, conjugation by g is an automorphism of H. The permutation rep
resentation afforded by this action is a homomorphism of G into Aut( H) with kernel 
Ca(H) . In particular, G / Ca(H) is isomorphic to a subgroup of Aut( H). 

Proof' ( cf. Exercise 17, Section 1.  7) Let f/Jg be conjugation by g. Note that because 
g normalizes H, (/Jg maps H to itself. Since we have already seen that conjugation 
defines an action, it follows that f/Jt = 1 (the identity map on H) and f/Ja o f/Jb = f/Jab 
for all a, b E G. Thus each f/Jg gives a bijection from H to itself since it has a 2-sided 
inverse f/Jg-I . Each f/Jg is a homomorphism from H to H because 

(/Jg (hk) = g(hk)g- ! = gh(gg-1 )kg-! = (ghg-1 ) (gkg-1 ) = f/Jg (h)({Jg (k) 
for all h ,  k E H. This proves that conjugation by any fixed element of G defines an 
automorphism of H. 

By the preceding remark, the permutation representation 1/1 : G --+  SH defined by 
1/J(g) = f/Jg (which we have already proved is a homomorphism) has image contained 
in the subgroup Aut( H) of S II · Finally, 

ker 1/1 = {g E G I f/Jg = id} 

= {g E G I ghg-1 = h for all h E H} 

= CG (H). 
The First Isomorphism Theorem implies the final statement of the proposition. 

Proposition 13  shows that a group acts by conjugation on a normal subgroup as 
structure preserving permutations, i.e., as automorphisms. In particular, this action 
must send subgroups to subgroups, elements of order n to elements of order n, etc. Two 
specific applications of this proposition are described in the next two corollaries. 
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Corollary 14. If K is any subgroup of the group G and g E G, then K � g Kg-1 • 
Conjugate elements and conjugate subgroups have the same order. 

Proof" Letting G = H in the proposition shows that conjugation by g E G is an 
automorphism of G,  from which the corollary follows. 

Corollary 15. For any subgroup H of a group G, the quotient group Nc (H)/Cc (H) 
is isomorphic to a subgroup of Aut(H).  In particular, G/Z(G) is isomorphic to a 
subgroup of Aut( G).  

Proof· Since H is a normal subgroup of the group N c (H),  Proposition 13  (applied 
with Nc (H) playing the role of G) implies the first assertion. The second assertion is 
the special case when H = G, in which case Nc(G) = G and Cc (G) = Z(G). 

Definition. Let G be a group and let g E G. Conjugation by g is called an inner 
automorphism of G and the subgroup of Aut( G) consisting of all inner automorphisms 
is denoted by Inn( G).  

Note that the collection of inner automorphisms of G is in fact a subgroup of Aut( G) 
and that by Corollary 15, Inn( G) � G/Z(G). Note also that if H is a normal subgroup 
of G, conjugation by an element of G when restricted to H is an automorphism of H 
but need not be an inner automorphism of H (as we shall see). 

Examples 

(1) A group G is abelian if and only if every inner automorphism is trivial. If H is an 
abelian normal subgroup of G and H is not contained in Z(G), then there is some 
g E G such that conjugation by g restricted to H is not an inner automorphism of 
H. An explicit example of this is G = A4, H is the Klein 4-group in G and g is any 
3-cycle. 

(2) Since Z(Qs)  = ( - 1 } we have lnn( Qs) � V4. 
(3) Since Z(Ds) = ( r2

} we have lnn(Ds) � V4. 
(4) Since for all n 2':: 3, Z(Sn )  = 1 we have lnn(Sn ) � Sn . 

Corollary 1 5  shows that any information we have about the automorphism group 
of a subgroup H of a group G translates into information about Nc (H)/Cc (H).  For 
example, if H � Z2, then since H has unique elements of orders 1 and 2, Corollary 14 
forces Aut(H) = 1. Thus if H � Z2, Nc (H) = Cc (H); if in addition H is a normal 
subgroup of G,  then H :=: Z(G) (cf. Exercise 10, Section 2.2). 

Although the preceding example was fairly trivial, it illustrates that the action of 
G by conjugation on a normal subgroup H can be restricted by knowledge of the 
automorphism group of H. This in tum can be used to investigate the structure of G 
and will lead to some classification theorems when we consider semidirect products in 
Section 5.5. 

A notion which will be used in later sections most naturally warrants introduction 
here: 
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Definition. A subgroup H of a group G is called characteristic in G, denoted H char G, 
if every automorphism of G maps H to itself, i.e., u (H) = H for all u E Aut( G). 

Results concerning characteristic subgroups which we shall use later (and whose 
proofs are relegated to the exercises) are 

(1) characteristic subgroups are normal, 
(2) if H is the unique subgroup of G of a given order, then H is characteristic in G, 

and 
(3) if K char H and H � G, then K � G (so although "normality" is not a transitive 

property (i.e., a normal subgroup of a normal subgroup need not be normal), a 
characteristic subgroup of a normal subgroup is normal). 

Thus we may think of characteristic subgroups as "strongly normal" subgroups. For 
example, propeny (2) and Theorem 2.7 imply that every subgroup of a cyclic group is 
characteristic. 

We close this section with some results on automorphism groups of specific groups. 

Proposition 16. The automorphism group of the cyclic group of order n is isomorphic 
to (ZjnZ)x ,  an abelian group of order q?(n) (where 9? is Euler's function). 

Proof" Letx be a generator ofthe cyclic group Zn . lf 'ljr E Aut(Zn) ,  then 1/r (x) = xa 

for some a E Z and the integer a uniquely determines 1/r . Denote this automorphism 
by Vra · As usual, since lx l = n, the integer a is only defined mod n. Since 1/ra is an 
automorphism, x and xa must have the same order, hence (a , n) = 1 .  Furthermore, for 
every a relatively prime to n, the map x 1-+ xa is an automorphism of Zn . Hence we 
have a surjective map 

\11 : Aut(Zn) � (ZjnZ) x 

Vra 1-+ a (mod n) . 

The map \11 is a homomorphism because 

Vra o 1/rb (x) = 1/ra (Xb) = (xb)a = Xab = Vrab (X) 

for all l/ra , Vrb E Aut(Zn) ,  so that 

\11 (1/ra o 1/rb) = \11 (1/rab ) = ab (mod n) = \11 (1/ra) \11 (1/rb) . 

Finally, \11 is clearly injective, hence is an isomorphism. 

A complete description of the isomorphism type of Aut(Zn) is given at the end of 
Section 9.5. 

Example 

Assume G is a group of order pq, where p and q are primes (not necessarily distinct) with 
p � q. If p f q - 1 ,  we prove G is abelian. 

If Z(G) =f. 1 ,  Lagrange's Theorem forces G/Z(G) to be cyclic, hence G is abelian by 
Exercise 36, Section 3.1 . Hence we may assume Z(G) = 1 . 
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If every nonidentity element of G has order p, then the centralizer of every nonidentity 
element has index q, so the class equation for G reads 

pq = I  + kq . 
This is impossible since q divides pq and kq but not I .  Thus G contains an element, x, of 
order q.  

Let H = (x ) . Since H has index p and p is the smallest prime dividing IGI ,  the 
subgroup H is normal in G by Corollary 5. Since Z(G) = I ,  we must have Cc (H) = H. 
Thus G I H = N c (H) I Cc (H) is a group of order p isomorphic to a subgroup of Aut(H) 
by Corollary I5 .  But by Proposition I6, Aut(H) has order q;(q) = q - I ,  which by 
Lagrange's Theorem would imply p I q - I, contrary to assumption. This shows that G 
must be abelian. 

One can check that every group of order pq, where p and q are distinct primes 
with p < q and p f q - 1 is cyclic (see the exercises). This is the first instance where 
there is a unique isomorphism type of group whose order is composite. For instance, 
every group of order 15  is cyclic. 

The next proposition summarizes some results on automorphism groups of known 
groups and will be proved later. Part 3 of this proposition illustrates how the theory of 
vector spaces comes into play in group theory. 

Proposition 17. 
(1) If p is an odd prime and n E z+, then the automorphism group of the cyclic 

group of order p is cyclic of order p - 1 .  More generally, the automorphism 
group of the cyclic group of order pn is cyclic of order pn-l (p- 1) ( cf. Corollary 
20, Section 9.5). 

(2) For all n � 3 the automorphism group of the cyclic group of order 2n is iso
morphic to z2 X Z2n-2 . and in particular is not cyclic but has a cyclic subgroup 
of index 2 (cf. Corollary 20, Section 9.5). 

(3) Let p be a prime and let V be an abelian group (written additively) with the 
property that pv = 0 for all v E V .  If I V  I = pn , then V is an n-dimensional 
vector space over the field IF P = Z/ pZ. The automorphisms of V are precisely 
the nonsingular linear transformations from V to itself, that is 

Aut(V) � GL(V) � GLn (IFp) .  
In particular, the order of Aut(V) is  as given in Section 1 .4 (cf. the examples in 
Sections 10.2 and 1 1 . 1). 

(4) For all n I 6 we have Aut(Sn) = Inn(Sn) � Sn (cf. Exercise 18). For n = 6 we 
have IAut(S6) : Inn(S6) I = 2 (cf. the following Exercise 19 and also Exercise 
10 in Section 6.3). 

(5) Aut(Ds) � Ds and Aut( Q8) � S4 (cf. the following Exercises 4 and 5 and also 
Exercise 9 in Section 6.3). 

The group V described in Part 3 of the proposition is called the elementary abelian 
group of order pn (we shall see in Chapter 5 that it is uniquely determined up to 
isomorphism by p and n ) . The Klein 4-group, V4, is the elementary abelian group of 
order 4. This proposition asserts that 

Aut(V4) � GL2(IF2). 
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By the exercises in Section 1 .4, the latter group has order 6. But Aut(V4) permutes 
the 3 nonidentity elements of V4, and this action of Aut(V4) on V4 - { 1 }  gives an 
injective permutation representation of Aut(V4) into S3 • By order considerations, the 
homomorphism is onto, so 

Aut(V4) � GL2 (lF2) � S3 . 

Note that V4 is abelian, so Inn(V4) = 1 .  
For any prime p ,  the elementary abelian group of order p2 is Zp x Zp . Its auto

morphism group, GL2(1Fp) , has order p(p - 1)2 (p + 1 ) .  Thus Corollary 9 implies that 
for p a prime 

if I P I = p2• IAut(P) I = p(p - 1) or p(p - 1)2 (p + 1) 
according to whether P is cyclic or elementary abelian, respectively. 

Example 

Suppose G is a group of order 45 = 325 with a normal subgroup P of order 32. We show 
that G is necessarily abelian. 

The quotient G/CG (P) is isomorphic to a subgroup of Aut(P) by Corollary 15, and 
Aut(P) has order 6 or 48 (according to whether P is cyclic or elementary abelian, respec
tively) by the preceding paragraph. On the other hand, since the order of P is the square 
of a prime, P is an abelian group, hence P :::; CG (P). It follows that ICG (P) I is divisible 
by 9, which implies IG/CG (P) I is 1 or 5. Together these imply IG/CG (P)I  = 1 ,  i.e., 
CG (P) = G and P :::; Z(G). Since then G/Z(G) is cyclic, G must be an abelian group. 

E X E R C I S E S  

Let G be a group. 

1. If a E Aut( G) and cp8 is conjugation by g prove acp8a-1 
= fPa(g) · Deduce that Inn( G) .:::) 

Aut( G). (The group Aut( G) /Inn( G) is called the outer automorphism group of G.) 

2. Prove that if G is an abelian group of order pq, where p and q are distinct primes, then G 
is cyclic. [Use Cauchy's Theorem to produce elements of order p and q and consider the 
order of their product.] 

3. Prove that under any automorphism of Ds , r has at most 2 possible images and s has at 
most 4 possible images (r and s are the usual generators - cf. Section 1 .2). Deduce that 
IAut(Ds) l :::; 8. 

4. Use arguments similar to those in the preceding exercise to show IAut( Qs)l  :::; 24. 

5. Use the fact that Ds .:::) Dt6 to prove that Aut(Ds) ;:: Ds . 

6. Prove that characteristic subgroups are nofi11al. Give an example of a normal subgroup 
that is not characteristic. 

7. If H is the unique subgroup of a given order in a group G prove H is characteristic in G.  

8. Let G be a group with subgroups H and K with H :::; K. 
(a) Prove that if H is characteristic in K and K is normal in G then H is normal in G.  
(b) Prove that if  H is characteristic in K and K is characteristic in G then H is charac

teristic in G. Use this to prove that the Klein 4-group V4 is characteristic in S4. 
(c) Give an example to show that if H is normal in K  and K is characteristic in G then 

H need not be normal in G.  
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9. If r, s are the usual generators for the dihedral group D2n .  use the preceding two exercises 
to deduce that every subgroup of ( r ) is normal in D2n . 

10. Let G be a group, let A be an abelian normal subgroup of G, and write G = G I A. Show 
that G acts (on the left) by conjugation on A by g-a = gag-1 , where g is any representative 
of the coset g (in particular, show that this action is well defined). Give an explicit example 
to show that this action is not well defined if A is non-abelian. 

11. If p is a prime and P is a subgroup of Sp of order p, prove NsP (P)/Csp (P) � Aut(P) . 
[Use Exercise 34, Section 3.] 

12. Let G be a group of order 3825. Prove that if H is a normal subgroup of order 17 in G 
then H � Z(G). 

13. Let G be a group of order 203. Prove that if H is a normal subgroup of order 7 in G then 
H � Z(G). Deduce that G is abelian in this case. 

14. Let G be a group of order 1575. Prove that if H is a normal subgroup of order 9 in G then 
H � Z(G) . 

15. Prove that each of the following (multiplicative) groups is cyclic: (Z/5Z) x ,  (Z/9Z) x and 
(Z/18Z) x .  

16. Prove that (Z/24Z) x is an elementary abelian group of order 8. (yVe shall see later that 
(Z/ nZ) x is an elementary abelian group if and only if n I 24.) 

17. Let G = ( x ) be a cyclic group of order n. For n = 2, 3 ,  4, 5, 6 write out the elements 
of Aut( G) explicitly (by Proposition 16 above we know Aut( G) � (ZjnZ) x ,  so for each 
element a E (Z/ nZ) x ,  write out explicitly what the automorphism 1/f a does to the elements 
{ 1 , x, x2,  . . .  , xn- l }  of G) . 

18. This exercise shows that for n :f= 6 every automorphism of Sn is inner. Fix an integer n ?:: 2 
with n :f= 6. 
(a) Prove that the automorphism group of a group G permutes the conjugacy classes of 

G, i.e., for each a E Aut( G) and each conjugacy class K of G the set a (K) is also a 
conjugacy class of G. 

(b) Let K be the conjugacy class of transpositions in Sn and let K' be the conjugacy class 
of any element of order 2 in Sn that is not a transposition. Prove that IK I :f= IK' I 
Deduce that any automorphism of Sn sends transpositions to transpositions.  [See 
Exercise 33 in Section 3.] 

(c) Prove that for each a E Aut(Sn) 

a : (1 2) � (a b2) ,  a : ( 1  3)  � (a  b3) ,  a : (1 n) � (a  bn) 

for some distinct integers a ,  b2 , b3 , . . .  , bn E { 1 ,  2, . . . , n}. 
(d) Show that ( 1  2), ( 1  3) ,  . . .  , ( 1  n) generate Sn and deduce that any automorphism 

of Sn is uniquely determined by its action on these elements. Use (c) to show that Sn 
has at most n !  automorphisms and conclude that Aut(Sn) = Inn(Sn)  for n :f= 6. 

19. This exercise shows that 1Aut(S6) : Inn(S6) 1  � 2 (Exercise 10 in Section 6.3 shows that 
equality holds by exhibiting an automorphism of S6 that is not inner). 
(a) Let K be the conjugacy class of transpositions in S6 and let K' be the conjugacy class 

of any element of order 2 in S6 that is not a transposition. Prove that I K 1 :f= I K' l unless 
K' is the conjugacy class of products of three disjoint transpositions. Deduce that 
Aut(S6) has a subgroup of index at most 2 which sends transpositions to transpositions. 

(b) Prove that 1Aut(S6) : Inn(S6) 1 � 2. [Follow the same steps as in (c) and (d) of 
the preceding exercise to show that any automorphism that sends transpositions to 
transpositions is inner.] 
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The next exercise introduces a subgroup, J(P),  which (like the center of P) is defined for an 
arbitrary finite group P (although in most applications P is a group whose order is a power of 
a prime). This subgroup was defined by J. Thompson in I964 and it now plays a pivotal role 
in the study of finite groups, in particular, in the classification of finite simple groups. 

20. For any finite group P let d(P) be the minimum number of generators of P (so, for 
example, d (P) = I  if and only if P is a nontrivial cyclic group and d(Qs) = 2). Let m(P) 
be the maximum of the integers d(A) as  A runs over all abelian subgroups of P (so, for 
example, m( Qs) = 1 and m(Ds) = 2). Define 

J (P) = ( A  I A is an abelian subgroup of P with d(A) = m(P) ) .  

(J(P) is called the Thompson subgroup of P.) 
(a) Prove that J (P) is a characteristic subgroup of P. 
(b) For each of the following groups P list all abelian subgroups A of P that satisfy 

d(A) = m(P):  Qs, Ds, D16 and QD16 (where Q D16 is the quasidihedral group 
of order I6  defined in Exercise I I  of Section 2.5). [Use the lattices of subgroups for 
these groups in Section 2.5 .] 

(c) Show that J ( Qs) = Qs, J(Ds) = Ds, J (DI6) = D16 and J(QDI6) is a dihedral 
subgroup of order 8 in QDI6 · 

(d) Prove that if Q ::;  P and J(P) is a subgroup of Q, then J(P) = J (Q).  Deduce that if 
P is a subgroup (not necessarily normal) of the finite group G and J (P) is contained 
in some subgroup Q of P such that Q ::)  G, then J (P) ::) G. 

4.5 SYLOW'S TH EOREM 

In this section we prove a partial converse to Lagrange's Theorem and derive numerous 
consequences, some of which will lead to classification theorems in the next chapter. 

Definition. Let G be a group and let p be a prime. 

(1) A group of order pa for some a :::: 1 is called a p-group. Subgroups of G which 
are p-groups are called p-subgroups. 

(2) If G is a group of order pam,  where p f m, then a subgroup of order pa is called 
a Sylow p-subgroup of G. 

(3) The set of Sylow p-subgroups of G will be denoted by Sylp (G) and the number 
of Sylow p-subgroups of G will be denoted by np(G) (or just np when G is 
clear from the context). 

Theorem 18. (Sylow 's Theorem) Let G be a group of order pam, where p is a prime 
not dividing m.  

(1) Sylow p-subgroups of G exist, i.e.,  Sylp(G) f= 0. 
(2) If P is a Sylow p-subgroup of G and Q is any p-subgroup of G, then there 

exists g E G such that Q � g Pg-1 , i.e., Q is contained in some conjugate of 
P.  In particular, any two Sylow p-subgroups of G are conjugate in G.  

(3) The number of Sylow p-subgroups of G i s  of the fonn 1 + kp, i.e. , 

np = 1 (mod p) . 
Further, n P is the index in G of the nonnalizer N c (  P) for any Sylow p-subgroup 
P, hence np divides m. 
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We first prove the following lemma: 

Lemma 19. Let P E Sylp (G). If Q is any p-subgroup of G, then QnNc (P) = Q n P. 

Proof" Let H = Nc(P) n Q.  Since P � Nc (P) it is clear that P n Q � H, so 
we must prove the reverse inclusion. Since by definition H � Q, this is equivalent to 
showing H � P .  We do this by demonstrating that PH is a p-subgroup of G containing 
both P and H; but P is a p-subgroup of G of largest possible order, so we must have 
P H  = P, i.e., H � P. 

Since H ::; Nc(P), by Corollary 1 5  in Section 3.2, PH is a subgroup. By Propo
sition 13  in the same section 

I P H I = 
I P I I H I 

. ! P n H ! 
All the numbers in the above quotient are powers of p, so PH is a p-group. Moreover, 
P is a subgroup of PH so the order of PH is divisible by pa , the largest power of 
p which divides I G I .  These two facts force I P  H I = pa = ! P l . This in tum implies 
P = PH and H � P .  This establishes the lemma. 

Proof of Sylow 's Theorem ( 1 )  Proceed by induction on I G I .  If I G I  = 1 ,  there is nothing 
to prove. Assume inductively the existence of Sylow p-subgroups for all groups of 
order less than I G 1 -

If p divides I Z(G) ! ,  then by Cauchy's Theorem for abelian groups (Proposition 2 1 ,  
Section 3 .4) Z(G) has a subgroup, N, of order p.  Let G = GjN, so that I G I  = pa-lm.  
By induction, G has a subgroup P of order pa- l . I f  we let P be the subgroup of G 
containing N such that PfN = P then I P I = I P/N I · !N I  = pa and P is a Sylow 
p-subgroup of G. We are reduced to the case when p does not divide 1 Z (G) j .  

Let g1 , g2 , . . .  , g, be representatives of the distinct non-central conjugacy classes 
of G. The class equation for G is 

r 

I G I  = IZ(G) I + L I G  : Cc(g; ) l .  
i=l 

If p I I G  : Cc(g; ) l for all i ,  then since p I I G I ,  we would also have p I I Z(G) I ,  
a contradiction. Thus for some i ,  p does not divide I G  : Cc(g; ) l .  For this i let 
H = Cc (g; ) so that 

! H I =  pak , where p f k. 
Since g; rj. Z(G), ! H I  < I G I .  By induction, H has a Sylow p-subgroup, P, which of 
course is also a subgroup of G. Since I P I = pa , P is a Sylow p-subgroup of G.  This 
completes the induction and establishes ( 1 ). 

Before proving (2) and (3) we make some calculations. By ( 1 )  there exists a Sylow 
p-subgroup, P, of G. Let 

{P. ,  P2 , . . .  , Pr } = S 
be the set of all conjugates of P (i.e., S = {gPg-1 1 g E G}) and let Q be any p
subgroup of G. By definition of S, G, hence also Q, acts by conjugation on S. Write 
S as a disjoint union of orbits under this action by Q:  

S = 01 U 02 U · · . U Os 
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where r = I Ot l + · · · + I Os 1 - Keep in mind that r does not depend on Q but the number 
of Q-orbits s does (note that by definition, G has only one orbit on S but a subgroup Q of 
G may have more than one orbit). Renumber the elements of S if necessary so that the 
first s elements of S are representatives of the Q-orbits: P; E 0; ,  1 � i � s .  It follows 
from Proposition 2 that I Od = I Q : NQ (P; ) I . By definition, NQ (P; )  = Nc (P; )  n Q 
and by Lemma 19, Nc (P; )  n Q = P; n Q. Combining these two facts gives 

1 0d = I Q :  P; n Q I , 1 � i � s .  (4. 1 )  

We are now in a position to prove that r = 1 (mod p). Since Q was arbitrary we 
may take Q = Pt above, so that ( 1 )  gives 

Now, for all i > 1 ,  Pt =f. P; , so Pt n P; < Pt . By ( 1 )  

I Od = I Pt : Pt n Pd > 1 ,  2 � i � s . 

Since Pt is a p-group, I Pt : Pt n P; I must be a power of p, so that 

p I I Od . 2 � i � s. 

Thus 

r = l Ot i + ( 1 02 1  + . . . + I Os D = 1 (mod p) . 

We now prove parts (2) and (3). Let Q be any p-subgroup of G. Suppose Q is 
not contained in P; for any i E { 1 ,  2 • . . .  , r} (i.e., Q 1: g Pg-t for any g E G). In this 
situation, Q n P; < Q for all i ,  so by ( 1 )  

- --

I Od = I Q :  Q n P; 1 > 1 , 

Thus p I I O; I for all i ,  so p divides lOt i + . . .  + l Os I = r .  This contradicts the fact that 
r = 1 (mod p) (remember, r does not depend on the choice of Q). This contradiction 
proves Q � gPg-1 for some g E G. 

To see that all Sylow p-subgroups of G are conjugate, let Q be any Sylow p
subgroup of G. By the preceding argument, Q � gPg-t 

for some g E G. Since 
lg Pg- t l = I Q l  = pa , we must have g Pg- t = Q. This establishes part (2) of the 
theorem. In particular, S = Sylp (G) since every Sylow p-subgroup of G is conjugate 
to P, and so n P = r = 1 (mod p ), which is the first part of (3). 

Finally, since all Sylow p-subgroups are conjugate, Proposition 6 shows that 

np = I G : Nc (P) I for any P E Sylp (G) , 

completing the proof of Sylow's Theorem. 

Note that the conjugacy part of Sylow's Theorem together with Corollary 14 shows 
that any two Sylow p-subgroups of a group (for the same prime p) are isomorphic. 
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Corollary 20. Let P be a Sylow p-subgroup of G.  Then the following are equivalent: 
(1) P is the unique Sylow p-subgroup of G, i.e., np = 1 
(2) P is normal in G 
(3) P is characteristic in G 
(4) All subgroups generated by elements of p-power order are p-groups, i.e., if X 

is any subset of G such that jx I is a power of p for all x E X, then { X ) is a 
p-group. 

Proof" lf (l) holds, then gPg-1 = P for all g E G since gPg-1 E Sylp (G), i.e. , P 
is normal in G.  Hence (l ) implies (2). Conversely, if F � G and Q E Sylp (G), then by 
Sylow's Theorem there exists g E G such that Q = gPg-1 = P. Thus Sylp (G) = {P}  
and (2) implies ( 1) .  

Since characteristic subgroups are normal, (3) implies (2). Conversely, if P � G, 
we just proved P is the unique subgroup of G of order pa , hence P char G.  Thus (2) 
and (3) are equivalent. 

Finally, assume ( 1 )  holds and suppose X is a subset of G such that l x l  is a power 
of p for all x E X. By the conjugacy part of Sylow's Theorem, for each x E X there 
is some g E G such that x E g P g-1  = P.  Thus X s; P, and so ( X ) ::=: P, and ( X ) 
is a p-group. Conversely, if (4) holds, let X be the union of all Sylow p-subgroups of 
G .  If P is any Sylow p-subgroup, P is a subgroup of the p-group ( X ) . Since P is a 
p-subgroup of G of maximal order, we must have P = ( X ) , so ( 1 ) holds. 

Examples 

Let G be a finite group and let p be a prime. 
(1) If p does not divide the order of G, the Sylow p-subgroup of G is the trivial group 

(and all pans of Sylow's Theorem hold trivially). If IG I  = pa , G is the unique Sylow 
p-subgroup of G. 

(2) A finite abelian group has a unique Sylow p-subgroup for each prime p.  This subgroup 
consists of all elements x whose order is a power of p. This is sometimes called the 
p-primary component of the abelian group. 

(3) S3 has three Sylow 2-subgroups: { ( 1 2) }, { (2 3) } and { ( 1 3) } .  It has a unique (hence 
normal) Sylow 3-subgroup: { ( 1 2 3) } = A3 . Note that 3 = 1 (mod 2) . 

(4) A4 has a unique Sylow 2-subgroup: { ( 1 2) (3 4) , (1 3) (2 4) } � V4. It has four Sylow 
3-subgroups: { ( 1 2 3) ) ,  { ( 1 2 4) } , { ( 1 3 4) }  and { (2 3 4) } .  Note that 4 = 1 (mod 3).  

(5) S4 has n2 = 3 and n3 = 4. Since S4 contains a subgroup isomorphic to Ds, every 
Sylow 2-subgroup of S4 is isomorphic to Ds. 

Applications of Sylow's Theorem 

We now give some applications of Sylow's Theorem. Most of the examples use Sylow's 
Theorem to prove that a group of a particular order is not simple. After discussing 
methods of constructing larger groups from smaller ones (for example, the formation 
of semi direct products) we shaH be able to use these results to classify groups of some 
specific orders n (as we already did for n = 15). 

Since Sylow's Theorem ensures the existence of p-subgroups of a finite group, it 
is worthwhile to study groups of prime power order more closely. This will be done in 
Chapter 6 and many more applications of Sylow's Theorem will be discussed there. 

1 42 Chap. 4 Group Actions 



For groups of small order, the congruence condition of Sylow's Theorem alone 
is often sufficient to force the existence of a nonnal subgroup. The first step in any 
numerical application of Sylow's Theorem is to factor the group order into prime powers. 
The largest prime divisors of the group order tend to give the fewest possible values for 
n P (for example, the congruence condition on n2 gives no restriction whatsoever), which 
limits the structure of the group G .  In the following examples we shall see situations 
where Sylow's Theorem alone does not force the existence of a normal subgroup, 
however some additional argument (often involving studying the elements of order p 
for a number of different primes p) proves the existence of a normal Sylow subgroup. 

Example: (Groups of order pq, p and q primes with p < q) 
Suppose IG I = pq for primes p and q with p < q.  Let P E Sylp (G) and let Q E Sylq (G). 
We show that Q is normal in G and if P is also normal in G, then G is cyclic. 

Now the three conditions: nq = 1 + kq for some k ::: 0, nq divides p and p < q, 
together force k = 0. Since nq = 1 ,  Q '::! G. 

Since np divides the prime q,  the only possibilities are np = 1 or q .  In particular, if 
p f q - I ,  (that is,  if q ¢ 1 (mod p)), then np cannot equal q, so P '::! G. 

Let P = ( x ) and Q = ( y ) . If P '::! G, then since GfCc (P) is isomorphic to a 
subgroup of Aut(Zp) and the latter group has order p - 1 ,  Lagrange's Theorem together 
with the observation that neither p nor q can divide p - 1 implies that G = Cc (P).  In 
this case x E P .:::; Z(G) so .x and y commute. (Alternatively, this follows immediately 
from Exercise 42 of Section 3 . 1 .) This means lxy l  = pq (cf. the exercises in Section 2.3), 
hence in this case G is cyclic: G � Zpq · 

If p I q - 1 ,  we shall see in Chapter 5 that there is a unique non-abelian group of order 
pq (in which, necessarily, np = q) .  We can prove the existence of this group now. Let Q be 
a Sylow q-subgroup of the symmetric group of degree q, Sq . By Exercise 34 in Section 3, 

INsq (Q) I = q(q - 1) . By assumption, p I  q - 1 so by Cauchy's Theorem Nsq (Q) has a 
subgroup, P, of order p. By Corollary 15 in Section 3.2, P Q is a group of order pq. Since 
Csq ( Q) = Q (Example 2, Section 3), P Q  is a non-abelian group. The essential ingredient 
in the uniqueness proof of P Q is Theorem 17 on the cyclicity of Aut(Zq ) . 

Example: (Groups of order 30) 

Let G be a group of order 30. We show that G has a normal subgroup isomorphic to 
Z1s - We shall use this information to classify groups of order 30 in the next chapter. Note 
that any subgroup of order 15 is necessarily normal (since it is of index 2) and cyclic 
(by the preceding result) so it is only necessary to show there exists a subgroup of order 
15 .  The quickest way of doing this is to quote Exercise 1 3  in Section 2. We give an 
alternate argument which illustrates how Sylow's Theorem can be used in conjunction 
with a counting of elements of prime order to produce a normal subgroup. 

Let P E Syls (G) and let Q E Syl3 (G) . If either P or Q is normal in G, by Corollary 
15, Chapter 3, PQ is a group of order 15 .  Note also that if either P or Q is normal, then 
both P and Q are characteristic subgroups of P Q, and since P Q  '::! G, both P and Q are 
normal in G (Exercise 8(a), Section 4). Assume therefore that neither Sylow subgroup is 
normal. The only possibilities by Part 3 of Sylow's Theorem are ns = 6 and n3 = 10. 
Each element of order 5 lies in a Sylow 5-subgroup, each Sylow 5-subgroup contains 4 
nonidentity elements and, by Lagrange's Theorem, distinct Sylow 5-subgroups intersect 
in the identity. Thus the number of elements of order 5 in G is the number of nonidentity 
elements in one Sylow 5-subgroup times the number of Sylow 5-subgroups. This would 
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be 4 · 6 = 24 elements of order 5. By similar reasoning, the number of elements of order 3 
would be 2 · 10 = 20. This is absurd since a group of order 30 cannot contain 24 + 20 = 44 
distinct elements. One of P or Q (hence both) must be normal in G. 

This sort of counting technique is frequently useful (cf. also Section 6.2) and works 
particularly well when the Sylow p-subgroups have order p (as in this example), since then 
the intersection of two distinct Sylow p-subgroups must be the identity. If the order of the 
Sylow p-subgroup is pa. with a :::: 2, greater care is required in counting elements, since 
in this case distinct Sylow p-subgroups may have many more elements in common, i.e., 
the intersection may be nontrivial. 

Example: (Groups of order 12) 

Let G be a group of order 12. We show that either G has a normal Sylow 3-subgroup or 
G � A4 (in the latter case G has a normal Sylow 2-subgroup). We shall use this information 
to classify groups of order 12 in the next chapter. 

Suppose n3 # 1 and let P E Syl3 (G).  Since n3 j 4 and n3 = 1 (mod 3), it follows that 
n3 = 4. Since distinct Sylow 3-subgroups intersect in the identity and each contains two 
elements oforder 3,  G contains 2-4 = 8 elements oforder 3.  Since IG : NG (P) I = n3 = 4, 
NG (P) = P .  Now G acts by conjugation on its four Sylow 3-subgroups, so this action 
affords a permutation representation 

(note that we could also act by left multiplication on the left cosets of P and use Theorem 3). 
The kernel K of this action is the subgroup of G which normalizes all Sylow 3-subgroups 
of G .  In particular, K ::: NG (P) = P. Since P is not normal in G by assumption, K = 1,  
i.e., ({J is injective and 

Since G contains 8 elements of order 3 and there are precisely 8 elements of order 3 in 
S4, all contained in A4, it follows that f/J( G) intersects A4 in a subgroup of order at least 8. 
Since both groups have order 12 it follows that f/J(G) = A4,  so that G � A4. 

Note that A4 does indeed have 4 Sylow 3-subgroups (see Example 4 following Corol
lary 20), so that such a group G does exist. Also, let V be a Sylow 2-subgroup of A4. 
Since IV I = 4, it  contains all of the remaining elements of A4. In particular, there cannot 
be another Sylow 2-subgroup. Thus n2 (A4) = 1 ,  i.e., V � A4 (which one can also see 
directly because V is the identity together with the three elements of � which are products 
of two disjoint transpositions, that is, V is a union of conjugacy classes). 

Example: (Groups of order p2q, p and q distinct primes) 

Let G be a group of order p2q .  We show that G has a normal Sylow subgroup (for either 
p or q). We shall use this information to classify some groups of this order in the next 
chapter (cf. Exercises 8 to 12 of Section 5.5). Let P E Sylp (G) and let Q E Sylq (G) . 

Consider first when p > q. Since np I q and np = 1 + kp, we must have np = 1 .  
Thus P :'Sl G. 

Consider now the case p < q .  If  nq = 1 ,  Q is normal in  G .  Assume therefore that 

nq > 1 ,  i .e., nq = 1 + tq , for some t > 0. Now nq divides p2 so nq = p or p2 . Since 
q > p we cannot have nq = p, hence nq = p2• Thus 

tq = p
2 

- 1 = (p - 1)(p + 1) .  
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Since q is prime, either q I p - 1 or q I p + l .  The former is impossible since q > p so 
the latter holds. Since q > p but q I p + 1 , we must have q = p + 1 .  This forces p = 2, 
q = 3 and I G I  = 12. The result now follows from the preceding example . 

Groups of Order 60 
We illustrate how Sylow's Theorems can be used to unravel the structure of groups of 
a given order even if some groups of that order may be simple. Note the technique of 
changing from one prime to another and the inductive process where we use results on 
groups of order < 60 to study groups of order 60. 

Proposition 21. If I G I  = 60 and G has more than one Sylow 5-subgroup, then G is 
simple. 

Proof: Suppose by way of contradiction that IG I = 60 and ns > 1 but that there 
exists H a normal subgroup of G with H -:f. 1 or G. By Sylow's Theorem the only 
possibility for ns is 6. Let P E Syls (G), so that INc (P) I = 10 since its index is ns . 

If 5 I IH I  then H contains a Sylow 5-subgroup of G and since H is normal, it 
contains all 6 conjugates of this subgroup. In particular, I H I  � 1 + 6 · 4 = 25, and the 
only possibility is I H I = 30. This leads to a contradiction since a previous example 
proved that any group of order 30 has a normal (hence unique) Sylow 5-subgroup. This 
argument shows 5 does not divide I H I  for any proper normal subgroup H of G. 

If I H I = 6 or 12, H has a normal, hence characteristic, Sylow subgroup, which is 
therefore also normal in G. Replacing H by this subgroup if necessary, we may assume 

IH I  = 2, 3 or 4. Let G = Gj H, so IG I = 30, 20 or 1 5 .  In each case, G has a normal 
subgroup P of order 5 by previous results. If we let H1 be the complete preimage of 

P in G, then H1 � G, H 1 "I G and 5 I I  H1 1 .  This contradicts the preceding paragraph 
and so completes the proof. 

Corollary 22. As is simple. 

Proof" The subgroups ( ( 1 2 3 4 5) ) and ( ( 1 3 2 4 5) ) are distinct Sylow 5-subgroups 
of As so the result follows immediately from the proposition. 

The next proposition shows that there is a unique simple group of order 60. 

Proposition 23. If G is a simple group of order 60, then G � As . 

Proof" Let G be a simple group of order 60, so n2 = 3, 5 or 1 5 .  Let P E Syh(G) 
and let N = Nc(P), so IG : N l  = n2 . 

First observe that G has no proper subgroup H of index less that 5, as follows: if 
H were a subgroup of G of index 4, 3 or 2, then, by Theorem 3, G would have a normal 
subgroup K contained in H with Gj K isomorphic to a subgroup of S4, S3 or S2 . Since 
K -:f. G, simplicity forces K = l .  This is impossible since 60 ( = 1 G I) does not divide 
4! .  This argument shows, in particular, that n2 -:f. 3. 

If n2 = 5,  then N has index 5 in G so the action of G by left multiplication on 
the set of left cosets of N gives a permutation representation of G into Ss . Since (as 
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above) the kernel of this representation is a proper normal subgroup and G is simple, 
the kernel is 1 and G is isomorphic to a subgroup of Ss . Identify G with this isomorphic 
copy so that we may assume G � Ss . If G is not contained in As, then Ss = GAs 
and, by the Second Isomorphism Theorem, As n G is of index 2 in G.  Since G has no 
(normal) subgroup of index 2, this is a coat[adiction. This argument proves G � As. 
Since [G [ = [ As [ , the isomorphic copy of G in Ss coincides with As, as desired. 

Finally, assume n2 = 15. If for every pair of distinct Sylow 2-subgroups P and Q 
of G, P n Q = 1 ,  then the number of nonidentity elements in Sylow 2-subgroups of G 
would be (4 - 1) · 15 = 45 . But ns = 6 so the number of elements of order 5 in G is 
(5 - 1) · 6 = 24, accounting for 69 elements. This contradiction proves that there exist 
distinct Sylow 2-subgroups P and Q with [ P  n Q l = 2. Let M = Nc(P n Q). Since 
P and Q are abelian (being groups of order 4), P and Q are subgroups of M and since 
G is simple, M f:. G. Thus 4 divides [ M I  and [ M [  > 4 (otherwise, P = M = Q). The 
only possibility is [M [  = 12, i.e., M has index 5 in G (recall M cannot have index 3 
or 1) .  But now the argument of the preceding paragraph applied to M in place of N 
gives G � As .  This leads to a contradiction in this case because n2CAs) = 5 (cf. the 
exercises). The proof is complete. 

E X E R C I S E S 

Let G be a finite group and let p be a prime. 

1. Prove that if P E Sylp (G) and H is a subgroup of G containing P then P E Sylp (H). 
Give an example to show that, in general, a Sylow p-subgroup of a subgroup of G need 
not be a Sylow p-subgroup of G. 

2. Prove that if H is a subgroup of G and Q E Sylp (H) then g Qg-1 E Sylp (gHg-1 ) for all 
g E G. 

3. Use Sylow's Theorem to prove Cauchy's Theorem. (Note that we only used Cauchy's 
Theorem for abelian groups - Proposition 3.21 - in the proof of Sylow's Theorem so 
this line of reasoning is not circular.) 

4. Exhibit all Sylow 2-subgroups and Sylow 3-subgroups of D12 and S3 x SJ . 

5. Show that a Sylow p-subgroup of D2n is cyclic and normal for every odd prime p. 

6. Exhibit all Sylow 3-subgroups of A4 and all Sylow 3-subgroups of S4 . 

7. Exhibit all Sylow 2-subgroups of S4 and find elements of S4 which conjugate one of these 
into each of the others. 

8. Exhibit two distinct Sylow 2-subgroups of Ss and an element of Ss that conjugates one 
into the other. 

9. Exhibit all Sylow 3-subgroups of SL2(lF3) (cf. Exercise 9, Section 2. 1) .  

10. Prove that the subgroup of SL2 (lF3) generated by ( � �1 ) and ( � �
1
) is the unique 

Sylow 2-subgroup of SL2 (lFJ) (cf. Exercise 10, Section 2.4). 

11. Show that the center of SL2(lF3) is the group of order 2 consisting of ±I, where I is the 
identity matrix. Prove that SL2(lF3)/Z(SL2 (lF3)) � A4. [Use facts about groups of order 
12.] 

12. Let 2n = 2ak where k is odd. Prove that the number of Sylow 2-subgroups of D2n is k .  
[Prove that if P E Syh(D2n ) then Nn2" (P) = P .] 

1 46 Chap. 4 Group Actions 



13. Prove that a group of order 56 has a normal Sylow p-subgroup for some prime p dividing 
its order. 

14. Prove that a group of order 312  has a normal Sylow p-subgroup for some prime p dividing 
its order. 

15. Prove that a group of order 351  has a normal Sylow p-subgroup for some prime p dividing 
its order. 

16. Let IG I  = pqr, where p, q and r are primes with p < q < r. Prove that G has a normal 
Sylow subgroup for either p, q or r. 

17. Prove that if IG I = 105 then G has a normal Sylow 5-subgroup and a normal Sylow 
?-subgroup. 

18. Prove that a group of order 200 has a normal Sylow 5-subgroup. 

19. Prove that if IG I  = 6545 then G is not simple. 

20. Prove that if IG I  = 1365 then G is not simple. 

21. Prove that if IG I  = 2907 then G is not simple. 

22. Prove that if IG I  = 132 then G is not simple. 

23. Prove that if IG I  = 462 then G is not simple. 

24. Prove that if G is a group of order 231 then Z (G) contains a Sylow 1 1-subgroup of G and 
a Sylow ?-subgroup is normal in G. 

25. Prove that if G is a group of order 385 then Z(G) contains a Sylow ?-subgroup of G and 
a Sylow 1 1-subgroup is normal in G. 

26. Let G be a group of order 105.  Prove that if a Sylow 3-subgroup of G is normal then G is 
abelian. 

27. Let G be a group of order 3 15  which has a normal Sylow 3-subgroup. Prove that Z(G) 
contains a Sylow 3-subgroup of G and deduce that G is abelian. 

28. Let G be a group of order 1575. Prove that if a Sylow 3-subgroup of G is normal then a 
Sylow 5-subgroup and a Sylow ?-subgroup are normal. In this situation prove that G is 
abelian. 

29. If G is a non-abelian simple group of order < 100, prove that G ;:::::: As. [Eliminate all 
orders but 60.] 

30. How many elements of order 7 must there be in a simple group of order 168? 

31. For p = 2, 3 and 5 find np (As)  and np (Ss ) . [Note that A4 .::::: A5 .] 

32. Let P be a Sylow p-subgroup of H and let H be a subgroup of K. If P � H and 
H � K,  prove that P is normal in K. Deduce that if P E Sylp (G) and H = Nc (P), then 
Nc (H) = H (in words: normalizers of Sylow p-subgroups are self-normalizing). 

33. Let P be a normal Sylow p-subgroup of G and let H be any subgroup of G. Prove that 
P n H is the unique Sylow p-subgroup of H. 

34. Let P E Sylp (G) and assume N � G. Use the conjugacy part of Sylow's Theorem to 
prove that P n N is a Sylow p-subgroup of N. Deduce that P N 1 N is a Sylow p-subgroup 
of G 1 N (note that this may also be done by the Second Isomorphism Theorem - cf. 
Exercise 9, Section 3.3). 

35. Let P E Sylp (G) and let H .::::: G. Prove that gPg-1 n H is a Sylow p-subgroup of H 
for some g E G. Give an explicit example showing that hPh-1 n H is not necessarily a 
Sylow p-subgroup of H for any h E H (in particular, we cannot always take g = 1 in the 
first part of this problem, as we could when H was normal in G). 

Sec. 4.5 Sylow's Theorem 1 47 



36. Prove that if N is a normal subgroup of G then np (G J N) :S np (G). 

37. Let R be a normal p-subgroup of G (not necessarily a Sylow subgroup). 
(a) Prove that R is contained in every Sylow p-subgroup of G _ 
(b) If S is another normal p-subgroup of G, prove that R S is also a normal p-subgroup 

of G.  
(c) The subgroup Op (G) is defined to be the group generated by all normal p-subgroups 

of G. Prove that Op (G) is the unique largest normal p-subgroup of G and Op (G) 
equals the intersection of all Sylow p-subgroups of G _ 

(d) Let G = G/Op (G). Prove that Op(l}) = I (i.e., G has no nontrivial normal p
subgroup). 

38. Use the method of proof in Sylow's Theorem to show that if np is not congruent to 

l (mod p2) then there are distinct Sylow p-subgroups P and Q of G such that 
I P : P n Q l = I Q : P n Q l = P-

39. Show that the subgroup of strictly upper triangular matrices in G Ln (JF P) ( cf. Exercise 17, 
Section 2. 1)  is a Sylow p-subgroup of this finite group. [Use the order formula in Section 
L4 to find the order of a Sylow p-subgroup of G Ln (lFp)-1 

40. Prove that the number of Sylow p-subgroups of G Lz (lF p) is p + 1. [Exhibit two distinct 
Sylow p-subgroups.] 

41. Prove that SLz (lF4) � As (cf. Exercise 9, Section 2. 1 for the definition of SL2 (JF4)). 

42. Prove that the group of rigid motions in JR3 of an icosahedron is isomorphic to As _ [Recall 
that the order of this group is 60: Exercise 13 ,  Section 1 .2.] 

43. Prove that the group of rigid motions in JR3 of a dodecahedron is isomorphic to As - (As 
with the cube and the tetrahedron, the icosahedron and the dodecahedron are dual solids.) 
[Recall that the order of this group is 60: Exercise 12, Section L2.] 

44. Let p be the smallest prime dividing the order of the finite group G. If P E Sylp (G) and 
P is cyclic prove that Nc(P) = Cc(P)_ 

45. Find generators for a Sylow p-subgroup of Szp . where p is an odd prime. Show that this 

is an abelian group of order p2 • 

46. Find generators for a Sylow p-subgroup of Spz ,  where p is a prime. Show that this is a 

non-abelian group of order pP+ 1 _ 
47. Write and execute a computer program which 

(i) gives each odd number n < 10, 000 that is not a power of a prime and that has some 
prime divisor p such that np is not forced to be 1 for all groups of order n by the 
congruence condition of Sylow's Theorem, and 

(ii) gives for each n in (i) the factorization of n into prime powers and gives the list of all 
permissible values of np for all primes p dividing n (i.e., those values not ruled out 
by Part 3 of Sylow's Theorem). 

48. Carry out the same process as in the preceding exercise for all even numbers less than 
1000. Explain the relative lengths of the lists versus the number of integers tested. 

49. Prove that if IG I = 2nm where m is odd and G has a cyclic Sylow 2-subgroup then G has 
a normal subgroup of order m. [Use induction and Exercises 1 1  and 12 in Section 2.] 

50. Prove that if U and W are normal subsets of a Sylow p-subgroup P of G then U is conjugate 
to W in G  if and only if U is conjugate to W in Nc(P). Deduce that two elements in the 
center of P are conjugate in G if and only if they are conjugate in Nc(P). (A subset U of 
P is normal in P if Np (U) = P.) 
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51. Let P be a Sylow p-subgroup of G and let M be any subgroup of G which contains Na (P). 
Prove that IG  : M l  = l (mod p). 

The following sequence of exercises leads to the classification of all numbers n with the property 
that every group of order n is cyclic (for example, n = 15 is such an integer). These arguments 
are a vastly simplified prototype for the proof that every group of odd order is solvable in the 
sense that they use the structure (commutativity) of the proper subgroups and their embedding 
in the whole group (we shall see that distinct maximal subgroups intersect in the identity) to 
obtain a contradiction by counting arguments. In the proof that groups of odd order are solvable 
one uses induction to reduce to the situation in which a minimal counterexample is a simple 
group - but here every proper subgroup is solvable (not abelian as in our situation). The 
analysis of the structure and embedding of the maximal subgroups in this situation is much 
more complicated and the counting arguments are (roughly speaking) replaced by character 
theory arguments (as will be discussed in Part VI). 

52. Suppose G is a finite simple group in which every proper subgroup is abelian. If M and 
N are distinct maximal subgroups of G prove M n N = 1 .  [See Exercise 23 in Section 3 .] 

53. Use the preceding exercise to prove that if G is any non-abelian group in which every proper 
subgroup is abelian then G is not simple. [Let G be a counterexample to this assertion and 
use Exercise 24 in Section 3 to show that G has more than one conjugacy class of maximal 
subgroups. Use the method of Exercise 23 in Section 3 to count the elements which lie in 
all conjugates of M and N, where M and N are nonconjugate maximal subgroups of G; 
show that this gives more than IG I  elements.] 

54. Prove the following classification: if G is a finite group of order Pl pz . . .  Pr where the 
Pi 's are distinct primes such that Pi does not divide Pj - 1 for all i and j ,  then G is 
cyclic. [By induction, every proper subgroup of G is cyclic, so G is not simple by the 
preceding exercise. If N is a nontrivial proper normal subgroup, N is cyclic and GIN acts 
as automorphisms of N.  Use Proposition 16 to show that N :=:: Z(G) and use induction to 
show G 1 Z( G) is cyclic, hence G is abelian by Exercise 36 of Section 3 . 1 .] 

55. Prove the converse to the preceding exercise: if n � 2 is an integer such that every group 
of order n is cyclic, then n = Pl P2 . . .  Pr is a product of distinct primes and Pi does not 
divide Pj - 1 for all i, j. [If n is not of this form, construct noncyclic groups of order n 

using direct products of noncyclic groups of order p2 and pq, where p I q - 1 .] 

56. If G is a finite group in which every proper subgroup is abelian, show that G is solvable. 

4.6 THE SIM PLICITY OF An 
There are a number of proofs of the simplicity of An , n ::: 5. The most elementary 
involves showing An is generated by 3-cycles . Then one shows that a normal subgroup 
must contain one 3-cycle hence must contain all the 3-cycles so cannot be a proper 
subgroup. We include a less computational approach. 

Note that A3 is an abelian simple group and that A4 is not simple (nz (A4) = 1) .  

Theorem 24. An is  simple for all n ::: 5 .  

Proof By induction on n .  The result has already been established for n = 5 ,  
so assume n ::: 6 and let G = An . Assume there exists H <J G with H =/::- 1 or G.  
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For each i E { 1 ,  2, . . . , n }  let Gi be the stabilizer of i in the natural action of G on 
i E { 1 ,  2, . . . , n} .  Thus Gi :S G and Gi � An- I ·  By induction, Gi is simple for 
1 :S i :S n .  

Suppose first that there i s  some r E H with r I 1 but r (i) = i for some 
i E { 1 ,  2, . . .  , n} .  Since r E H n Gi and H n Gi ::::) Gi , by the simplicity of Gi 
we must have H n G i = G i , that is 

Gi :S H. 

By Exercise 2 of Section 1, aGia-1  = Ga(i ) •  so for all i, a Gia-1  :S a Ha - 1 
= H. 

Thus 

Gj :S H, for all j E { 1 ,  2, . . . , n} . 

Any ), E An may be written as a product of an even number, 2t, of transpositions, so 

where J...k is a product of two transpositions. Since n > 4 each J...k E G j ,  for some j ,  
hence 

G = ( Gt . G2 , . . .  , Gn )  :S H, 

which is a contradiction. Therefore if r 1 1 is an element of H then r (i)  1 i for all 
i E { 1 ,  2, . . . , n} ,  i.e., no nonidentity element of H fixes any element of { 1 ,  2, . . .  , n} .  

It follows that if  Tt . r2 are elements of H with 

r1 (i) = r2 (i) for some i, then r1 = r2 (4.2) 

since then rz
1
it (i) = i .  

Suppose there exists a i E H such that the cycle decomposition of i contains a 
cycle of length :;:: 3, say 

i = (at a2 a3 . . .  ) (ht h2 . . . ) . . . . 

Let a E G be an element with a (at )  = a1 ,  a (a2) = a2 but a (a3) I a3 (note that such 
a a exists in An since n :;:: 5). By Proposition 10 

it = a ia -
1 

= (at a2 a (a3) . . .  )(a (ht) a (b2) . . . ) . . . 

so i and i1 are distinct elements of H with i (at) = it (a1)  = a2, contrary to (2). This 
proves that only 2-cycles can appear in the cycle decomposition of nonidentity elements 
of H. 

Let i E H with i I 1 ,  so that 

r = (at a2)(a3 a4) (as a6) . . .  

(note that n :;:: 6 is used here). Let a = (a1 a2) (a3 a5) E G. Then 

it = a ia - 1 
= (ai a2)(as �){a3 a6) . . . , 

hence i and it are distinct elements of H with i (a1)  = i1 (a1 )  = a2, again contrary to 
(2). This completes the proof of the simplicity of An . 
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E X E R C I S E S 

Let G be a group and let n be an infinite set. 

1. Prove that An does not have a proper subgroup of index < n for all n � 5.  

2. Find all normal subgroups of Sn for all n � 5. 

3. Prove that An is the only proper subgroup of index < n in Sn for all n � 5. 

4. Prove that An is generated by the set of all 3-cycles for each n � 3.  

5. Prove that if there exists a chain of subgroups Gt .:S G2 .:S . . . .:::: G such that G = u�1 G; 
and each G; is simple then G is simple. 

6. Let D be the subgroup of Sn consisting of permutations which move only a finite number 
of elements of n (described in Exercise 17  in Section 3) and let A be the set of all elements 
a E D such that a acts as an even permutation on the (finite) set of points it moves. Prove 
that A is an infinite simple group. [Show that every pair of elements of D lie in a finite 
simple subgroup of D.] 

7. Under the notation of the preceding, exercise prove that if H ::;1 Sn and H =/= 1 then 
A .:S H, i.e., A is the unique (nontrivial) minimal normal subgroup of Sn. 

8. Under the notation of the preceding two exercises prove that I D I  = lA I = 1 r.1 1 .  Deduce 
that 

if Sn :;:::: S11 then lr.l l  = 1 � 1 -
[Use the fact that D is generated by transpositions. You may assume that countable unions 
and finite direct products of sets of cardinality l r.l l also have cardinality l r.l l .] 
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CHAPTER 5 

D irect a nd Se m idirect Products 
a nd Abe l ia n Gro u ps 

In this chapter we consider two of the easier methods for constructing larger groups 
from smaller ones, namely the notions of direct and semidirect products. This allows 
us to state the Fundamental Theorem on Finitely Generated Abelian Groups, which in 
particular completely classifies all finite abelian groups. 

5.1 DIRECT PRODUCTS 

We begin with the definition of the direct product of a finite and of a countable number 
of groups (the direct product of an arbitrary collection of groups is considered in the 
exercises) . 

Definition. 
(1) The direct product GI X G2 X . . . X ell of the groups G I . G2 ,  . . .  ' Gn with 

operations *I · *2 · . . .  , *n •  respectively, is the set of n-tuples (8I · 82 • . . .  , 8n ) 
where 8; E G; with operation defined componentwise: 

(8I , 82 • · · · , 8n ) * (h i ,  h2 ,  · · · , hn) = (8I *I  h i , 82 *2 h2 ,  · · · , 8n *n hn ) .  

(2) Similarly, the direct product G I  x G2 x · · · of the groups GI , G2 ,  . . . with 
operations *I ,  *2 · . . . , respectively, is the set of sequences (8I ,  82 • . . .  ) where 

8; E G; with operation defined componentwise: 

Although the operations may be different in each of the factors of a direct product, 
we shall, as usual, write all abstract groups multiplicatively, so that the operation in ( 1 )  
above, for example, becomes simply 
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Examples 

(1) Suppose G; = IR (operation addition) for i = 1 ,  2, . . .  , n. Then IR x IR x · · · x IR 
(n-factors) is the familiar Euclidean n-space !Rn with usual vector addition: 

(at . a2 , . . .  , an ) + (bt , bz , . . .  , bn ) = (at + bt , az + bz , . . . , an + bn ) -
(2) To illustrate that groups forming the direct product (and corresponding operations) 

may be completely general, let Gt = Z, let Gz = S3 and let G3 = GLz(IR) , where the 
group operations are addition, composition, and matrix multiplication, respectively. 
Then the operation in Gt x Gz x G3 is defined by 

(n , a. (a db ) ) (m , r, (p q ) ) = (n + m, a o r, (ap + dbr aq +dbs ) ) . c r s cp + r cq + s 

Proposition 1. If Gt , . . . , Gn are groups, their direct product is a group of order 
IG t i iGz l  · · · IGn l (if any G; is infinite, so is the direct product). 

Proof: Let G = Gt x Gz x · · · x Gn . The proof that the group axioms hold 
for G is straightforward since each axiom is a consequence of the fact that the same 
axiom holds in each factor, G;,  and the operation on G is defined componentwise. For 
example, the associative law is verified as follows: 

Let (at . a2 , . . . , an). (bt , bz ,  . . .  , bn ). and (ct . c2 , . . .  , en) E G. Then 

(at , az ,  . . .  , an) [ (bt , bz , . . . , bn) (ct , c2 , . . .  , Cn )] 
= (at , az ,  . . .  , an) (btCt . bzCz , . . .  , bnCn) 
= (at (bt Ct) ,  az(bzc2) ,  . . .  , an (bncn)) 
= ( (atbt )Ct , (azbz)Cz , . . .  , (anbn)Cn) 
= [(at , az , · · · , an) (bt , bz ,  · · · , bn ) ] (ct , C2 , . . .  , Cn) ,  

where in the third step we have used the associative law in each component. The 
remaining verification that the direct product is a group is similar: the identity of 
G is the n-tuple ( l t , 12 • . . .  , 1n ) ,  where 1; is the identity of G; and the inverse of 

( ) . (g-t - t -t) h -t . h . f 
. G gt . gz , . . .  , gn ts t , g2 , . . .  , gn , w ere g; ts t e mverse o g; m ; .  

The formula for the order of G is clear. 

If the factors of the direct product are rearranged, the resulting direct product is 
isomorphic to the original one ( cf. Exercise 7). 

The next proposition shows that a direct product, Gt x G2 x · · · x Gn , contains an 
isomorphic copy of each G; . One can think of these specific copies as the "coordinate 
axes" of the direct product since, in the case of lR x IR, they coincide with the x and y 

axes. One should be careful, however, not to think of these "coordinate axes" as the only 
copies of the groups G; in the direct product. For example in lR x lR any line through 
the origin is a subgroup of !R x lR isomorphic to lR (and lR x lR has infinitely many pairs 
oflines which are coordinate axes, viz. any rotation of a given coordinate system). The 
second part of the proposition shows that there are projection homomorphisms onto 
each of the components. 

Sec. 5.1 Direct Products 1 53 



Proposition 2. Let G t . Gz ,  . . . , Gn be groups and let G = G1  x · · · x Gn be their 
direct product. 

(1) For each fixed i the set of elements of G which have the identity of G j in the ph 
position for all j =ft i and arbitrary elements of G; in position i is a subgroup 
of G isomorphic to G; : 

G; � {( 1 . 1 ,  . . .  , l , g; ,  1 ,  . . . , 1) I g; E G ; } , 
(here g; appears in the ;th position). If we identify G; with this subgroup, then 
G; � G and 

GjG; � G1  X · · · X G;- 1 X Gi+l  X · · ·  X Gn .  

(2) For each fixed i define rr; : G � G; by 

rr; ((gJ , gz ,  . . · , gn)) = g; . 

Then rr; is a surjective homomorphism with 

ker rr; = {(gJ , . . .  , g;-J , 1 ,  gi+l ·  . . . , gn) I gj E Gj for all j =ft i } 
� G1  X · · · X G;-1 X Gi+l X · • • X Gn 

(here the 1 appears in position i). 
(3) Under the identifications in part ( 1  ) , if x E G; and y E G j for some i :f: j ,  then 

xy = yx. 

Proof: ( 1) Since the operation in G is defined componentwise, it follows easily 
from the subgroup criterion that {( 1 ,  1 ,  . . . , 1 ,  g; , 1 , . . . , 1) I g; E G; } is a subgroup of 
G. Furthermore, the map g; � ( 1 ,  1 ,  . . .  , 1, g; , 1 ,  . . . , 1) is seen to be an isomorphism 
of G; with this subgroup. Identify G; with this isomorphic copy in G. 

To prove the remaining parts of ( 1) consider the map 

cp : G --+ Gt X · · · X Gi- l X Gi+l X • • · X Gn 

defined by 
cp(gJ , gz , · · · , gn ) = (gJ , · · · , g;- J , gi+l • · · · ,  gn) 

(i.e. ,  cp erases the ; th component of G). The map cp is a homomorphism since 

cp((gJ , . . . , gn) (h J ,  . . . , hn)) = cp((glh J , . . .  , gnhn )) 

= (g!h J , . . .  , g;- !hi- J , gi+l hi+l • · . · , gnhn) 

= (gJ , · · · ,  g;- J , gi+l • · · . , gn) (h t , . . · , h;-J , hi+l • · . . , hn) 
= cp((gJ , · · . ,  gn))cp((h t , . . . , hn)) . 

Since the entries in position j are arbitrary elements of G j for all j, cp is surjective. 
Furthermore, 

ker cp = { (gJ , . . . , gn ) I gj = 1 for all j :f: i }  = G; .  

This proves that G ;  is a normal subgroup of G (in particular, it again proves this copy 
of G; is a subgroup) and the First Isomorphism Theorem gives the final assertion of 
part ( 1). 
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In (2) the argument that rr; is a surjective homomorphism and the kernel is the 
subgroup described is very similar to that in part ( 1 ), so the details are left to the reader. 

In part (3) if x = ( 1 ,  . . .  , 1 , g; ,  1 , . . . , 1) and y = ( 1 , . . .  , 1 . gj . 1 ,  . . .  , 1 ) , where 
the indicated entries appear in positions i ,  j respectively, then 

xy = ( 1 ,  . . .  , 1 , g; , 1 , . . .  , 1 ,  gj . 1 ,  . . . , 1 ) = yx 

(where the notation is chosen so that i < j). This completes the proof. 

A generalization of this proposition appears as Exercise 2. 
We shall continue to identify the "coordinate axis" subgroups described in part (1 ) 

of the proposition with their isomorphic copies, the G; 's. The ith such subgroup is often 
called the ith component or ith factor of G. For instance, when we wish to calculate in 
Zn x Zm we can let x be a generator of the first factor, let y be a generator of the second 
factor and write the elements of Zn x Zm in the form xa yb . This replaces the formal 
ordered pairs (x ,  1) and ( 1 ,  y) with x and y (so xa yb replaces (xa

, yb) ) . 

Examples 

(1) Under the notation of Proposition 2 it follows from part (3) that if x; E G; , 1 ::S i ::S n, 
then for all k E Z 

Since the order of Xt x2 . . .  Xn is the smallest positive integer k such that xf = 1 for all 
i, we see that 

(where this order is infinite if and only if one of the x; 's has infinite order). 
(2) Let p be a prime and for n E z+ consider 

(n factors) .  

Then E !"' is  an abelian group of order pn with the property that x P = 1 for all x E E p" • 
This group is the elementary abelian group of order pn 

described in Section 4.4. 
(3) For p a prime, we show that the elementary abelian group oforder p2 has exactly p+ 1 

subgroups of order p (in particular, there are more than the two obvious ones). Let 
E = E p2 .  Since each nonidentity element of E has order p, each of these generates a 
cyclic subgroup of E of order p. By Lagrange's Theorem distinct subgroups of order 
p intersect trivially. Thus the p2 - 1 nonidentity elements of E are partitioned into 
subsets of size p - 1 (i.e., each of these subsets consists of the nonidentity elements 
of some subgroup of order p ) . There must therefore be 

p2 - 1  -- = p + l 
p - 1  

subgroups of order p. When p = 2, E is the Klein 4-group which we have already 
seen has 3 subgroups of order 2 (cf. also Exercises 10 and 1 1) . 
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E X E R C I S E S  

1. Show that the center of a direct product is the direct product of the centers: 

Z(al x a2 x · · · X an) = Z(ai ) x Z(G2) X · · · x Z(an) .  

Deduce that a direct product of groups i s  abelian i f  and only i f  each of the factors i s  abelian. 

2. Let a 1 . a2 • . . .  , an be groups and let a =  a 1  x · · · x an .  Let I be a proper, nonempty 
subset of { 1 ,  . . .  , n} and let J = { 1 ,  . . . • n} - I . Define a I to be the set of elements of a 
that have the identity of a j in position j for all j E J.  
(a) Prove that a I is isomorphic to  the direct product of the groups a; , i E I. 
(b) Prove that a I is a normal subgroup of a and a I a I � a 1 .  
(c) Prove that a � a I x aJ . 

3. Under the notation of the preceding exercise let I and K be any disjoint nonempty subsets 
of { 1 ,  2, . . . , n} and let a I and a K be the subgroups of a defined above. Prove that 
xy = yx for all x E a I and all y E a K .  

4 .  Let A and B be finite groups and let p be a prime. Prove that any Sylow p-subgroup 
of A x B is of the form P x Q, where P E Sylp (A) and Q E Sylp (B). Prove that 
np (A x B) = np (A)np (B). Generalize both of these results to a direct product of any 
finite number of finite groups (so that the number of Sylow p-subgroups of a direct product 
is the product of the numbers of Sylow p-subgroups of the factors). 

5. Exhibit a nonnormal subgroup of Qs x Z4 (note that every subgroup of each factor is 
normal). 

6. Show that all subgroups of Qs x E2" are normal. 

7. Let a 1 .  a2 , . . .  , an .be groups and let n be a fixed element of Sn . Prove that the map 

({Jrr : a 1 X a2 X • • • X an � arr-1 ( 1 ) X arr-1 (2) X • • · X arr-1 (n) 

defined by 

({Jrr (gl , 82 • · · · • Kn ) = (grr-1 (1) • Krr- 1 (2) •  · · · ' Krr-1 (n)) 

is an isomorphism (so that changing the order of the factors in a direct product does not 
change the isomorphism type). 

8. Let a1 = a2 = · · · = an and let a = a 1 x · · · x an . Under the notation of the 
preceding exercise show that ({Jrr E Aut(a). Show also that the map n t-+ ({Jrr is an 
injective homomorphism of Sn into Aut( a). (In particular, ({Jrr1 o ({Jrr2 = ({Jrr1rrz · It is at this 

point that the n -1 •s in the definition of ({Jrr are needed. The underlying reason for this is 
because if e; is the n-tuple with 1 in position i and zeros elsewhere, l :::: i :::: n, then Sn 
acts on fe1 , . . .  , en } by n · e; = err(i) ; this is a left group action. If the n-tuple (gi , . . . , Kn) 
is represented by g1 e1 + · · · + gn en ,  then this left group action on {ei , . . .  , en } extends to 
a left group action on sums by 

n · (g1e1 + g2e2 + · · · + Kn en )  = g1 err(l) + 82err(2) + · · · + gn err(n) · 

The coefficient of err(i) on the right hand side is g; ,  so the coefficient of e; is Krr-1 (i ) .  Thus 
the right hand side may be rewritten as Krr- 1 (I )el + K:rr-1 (2) e2 + · · · + Krr-1 (n) en , which is 
precisely the sum attached to the n-tuple (g:rr- 1 (l) • Krr-1 (2) , . . .  , Krr-1 (n)> · In other words, 
any permutation of the "position vectors" e1 , . . . •  en (which fixes their coefficients) is the 
same as the inverse permutation on the coefficients (fixing the e; ' s). If one uses n 's in place 
of n - � >s in the definition of ({Jrr then the map n t-+ ({Jrr is not necessarily a homomorphism 
- it corresponds to a right group action.) 
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9. Let G; be a field F for all i and use the preceding exercise to show that the set of n x n 
matrices with one 1 in each row and each column is a subgroup of G Ln (F) isomorphic to 
Sn (these matrices are called permutation matrices since they simply permute the standard 
basis e1 • . . .  , en (as above) of the n-dimensional vector space F x F x · · · x F). 

10. Let p be a prime. Let A and B be two cyclic groups of order p with generators x and y, 

respectively. Set E = A x  B so that E is the elementary abelian group of order p2: EP2 .  
Prove that the distinct subgroups of E of order p are 

( x } , ( xy } , ( xi } ,  ( xyp- t } ,  ( y } 

(note that there are p + 1 of them). 

11. Let p be a prime and let n E z+ . Find a formula for the number of subgroups of order p 
in the elementary abelian group E p" • 

12. Let A and B be groups. Assume Z(A) contains a subgroup Zt and Z(B) contains a 
subgroup Zz with Zt � Zz . Let this isomorphism be given by the map x; r+ y; for all 
x; E Z t ·  A central product of A and B is a quotient 

(A x B)/Z where Z = { (x; , yj
1 ) I x; E Zl } 

and is denoted by A * B - it is not unique since it depends on Z 1 ,  Zz and the isomorphism 
between them. (Think of A * B as the direct product of A and B "collapsed" by identifying 
each element x; E Zt with its corresponding element y; E Zz.) 
(a) Prove that the images of A and B in the quotient group A * B are isomorphic to A 

and B, respectively, and that these images intersect in a central subgroup isomorphic 
to Zt . Find lA  * B l .  

(b) Let Z4 = ( x  } .  Let Ds = ( r, s }  and Q s  = ( i ,  j }  be given by their usual generators 
and relations. Let Z4 * Ds be the central product of Z4 and Ds which identifies 
x2 and r2 (i.e., Zt = ( x2 } ,  Z2 = ( r2 } and the isomorphism is x2 r+ r2) and let 
Z4 * Qs be the central product of Z4 and Qs which identifies x2 and - 1 .  Prove that 
Z4 * Ds � Z4 * Qg . 

13. Give presentations for the groups Z4 * Ds and Z4 * Qs constructed in the preceding exercise. 

14. Let G = At x Az x · · · x An and for each i let B; be a normal subgroup of A; . Prove that 
Bt x Bz x · · · x Bn :9 G and that 

(At X Az X · · ·  X An)f(Bt X Bz X · · · X Bn) � (A t /Bt ) X (Az/Bz) X · · · x (AnfBn ) . 

The following exercise describes the direct product of an arbitrary collection of groups. The 
terminology for the Cartesian product of an arbitrary collection of sets may be found in the 
Appendix. 

15. Let I be any nonempty index set and let ( G; , *i ) be a group for each i E I. The direct 
product of the groups G; , i E I is the set G = 0iE! G; (the Cartesian product of the G; 's) 
with a binary operation defined as follows: if 0 a; and 0 b; are elements of G, then their 
product in G is given by 

(i .e., the group operation in the direct product is defined componentwise). 
(a) Show that this binary operation is well defined and associative. 
(b) Show that the element 0 l; satisfies the axiom for the identity of G, where l; is the 

identity of G; for all i .  
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(c) Show that the element 0 aj1 is the inverse of 0 a; , where the inverse of each com-
ponent element a; is taken in the group G; . 

Conclude that the direct product is a group. 
(Note that if I = { 1 ,  2, . . . , n} ,  this definition of the direct product is the same as the 
n-tuple definition in the text.) 

16. State and prove the generalization of Proposition 2 to arbitrary direct products. 

17. Let I be any nonempty index set and let G; be a group for each i E I. The restricted 
direct product or direct sum of the groups G; is the set of elements of the direct product 
which are the identity in all but finitely many components, that is, the set of all elements 
n a; E niE/ G; such that a; = 1; for all but a finite number of i  E I .  
(a) Prove that the restricted direct product i s  a subgroup of the direct product. 
(b) Prove that the restricted direct product is normal in the direct product. 
(c) Let I = z+ and let p; be the ;th integer prime. Show that if G; = Zjp; Z for all 

i E z+, then every element of the restricted direct product of the G; 's has finite order 
but 0; Ell+ G; has elements of infinite order. Show that in this example the restricted 
direct product is the torsion subgroup of the direct product (cf. Exercise 6, Section 
2. 1 ). 

18. In each of (a) to (e) give an example of a group with the specified properties: 
(a) an infinite group in which every element has order 1 or 2 
(b) an infinite group in which every element has finite order but for each positive integer 

n there is an element of order n 
(c) a group with an element of infinite order and an element of order 2 
(d) a group G such that every finite group is isomorphic to some subgroup of G 
(e) a nontrivial group G such that G � G x G. 

5.2 THE FUN DAM ENTAL THEOREM OF FIN ITELY GENERATED 
ABELIAN GROUPS 

Definition. 
(1) A group G is finitely generated if there is a finite subset A of G such that 

G = ( A ) . 
(2) For each r E 2:. with r ::::: 0, let zr = 2:. X 2:. X · • • X 2:. be the direct product of 

r copies of the group Z, where 2:.0 = I .  The group zr is called the free abelian 
group of rank r.  

Note that any finite group G is, a fortiori, finitely generated: simply take A = G 
as a set of generators. Also, zr is finitely generated by e 1 , e2 , . . .  , en where e; is the 
n-tuple with 1 in position i and zeros elsewhere. We can now state the fundamental 
classification theorem for (finitely generated) abelian groups. 

Theorem 3. (Fundamental Theorem of Finitely Generated Abelian Groups) Let G be 
a finitely generated abelian group. Then 

(1) 
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(a) r :::: 0 and nj :::: 2 for all j ,  and 
(b) ni+1 I ni for 1 :::: i :::: s - 1 

(2) the expression in ( 1 )  is unique: if G � 71./ x Zm1 x Zm2 x · · · x Zm. ,  where t and 
m. ,  mz ,  . . .  , mu satisfy (a) and (b) (i.e., t :::: 0, mj :::: 2 for all j and mi+l I mi 
for ' 1  :::: i :::: u - 1 ), then t = r, u = s and mi = ni for all i .  

Proof We shall derive this theorem in Section 12. 1 as a consequence of a more 
general classification theorem. For finite groups we shall give an alternate proof at the 
end of Section 6. 1 .  

Definition. The integer r i n  Theorem 3 i s  called the free rank or Betti number of G 
and the integers n 1 ,  nz ,  . . .  , ns are called the invariant factors of G. The description of 
G in Theorem 3( 1 )  is called the invariant factor decomposition of G. 

Theorem 3 asserts that the free rank and (ordered) list of invariant factors of an 
abelian group are uniquely determined, so that two finitely generated abelian groups 
are isomorphic if and only if they have the same free rank and the same list of invariant 
factors. Observe that a finitely generated abelian group is a finite group if and only if 
its free rank is zero. 

The order of a finite abelian group is just the product of its invariant factors (by 
Proposition 1 ). If G is a finite abelian group with invariant factors n 1 , n2 , • • •  , n s ,  where 
ni+l I ni , 1 :::: i :::: s - 1 ,  then G is said to be of type (n. ,  nz ,  . . .  , ns) .  

Theorem 3 gives an effective way of listing all finite abelian groups of a given 
order. Namely, to find (up to isomorphism) all abelian groups of a given order n one 
must find all finite sequences of integers n t , nz , . . .  , ns such that 

(1) nj :::: 2 for all j E { 1 . 2, . . . , s} ,  
(2) ni+l I ni ,  1 :::: i :::: s - 1 ,  and 
(3) ntnz · · · ns = n .  

Theorem 3 states that there is a bijection between the set of such sequences and 
the set of isomorphism classes of finite abelian groups of order n (where each sequence 
corresponds to the list of invariant factors of a finite abelian group). 

Before illustrating how to find all such sequences for a specific value of n we make 
some general comments. First note that nt :::: nz :::: · · · :::: ns , so nt is the largest 
invariant factor. Also, by property (3) each ni divides n .  If p is any prime divisor of n 
then by (3) we see that p must divide ni for some i .  Then, by (2), p also divides nj for 
all j :::: i .  It follows that 

every prime divisor of n must divide the first invariant factor n 1 • 
In particular, if n is the product of distinct primes (all to the first power)1 we see that 
n I n 1 , hence n = n 1 • This proves that if n is squarefree, there is only one possible list 
of invariant factors for an abelian group of order n (namely, the list n1 = n): 

1 Such integers are called squarefree since they are not divisible by any square > 1 .  
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Corollary 4. If n is the product of distinct primes, then up to isomorphism the only 
abelian group of order n is the cyclic group of order n, Zn . 

The factorization of n into prime powers is the first step in determining all possible 
lists of invariant factors for abelian groups of order n .  

Example 

Suppose n = 180 = 22 · 32 · 5. As noted above we must have 2 · 3 · 5 I n t , so possible 
values of n 1 are 

n 1 = 22 · 32 · 5, 22 · 3 · 5, 2 . 32 . 5, or 2 . 3 . 5. 

For each of these one must work out all possible n2 's (subject to n2 l n t  and n 1 n2 l n). For 
each resulting pair n 1 ,  n2 one must work out all possible n3 's etc. until all lists satisfying 
( 1 )  to (3) are obtained. 

For instance, if n1 = 2 · 32 · 5, the only number n2 dividing nt with n 1 n2 dividing n 
is n2 = 2. In this case n 1 n2 = n, so this list is complete: 2 · 32 · 5, 2. The abelian group 
corresponding to this list is Z90 X Z2. 

If nt = 2 · 3 · 5, the only candidates for n2 are n2 = 2, 3 or 6. If n2 = 2 or 3, then 
since n3 I n2 we would necessarily have n3 = n2 (and there must be a third term in the 
list by property (3)). This leads to a contradiction because n 1 n2n3 would be divisible by 
23 or 33 respectively, but n is not divisible by either of these numbers. Thus the only list 
of invariant factors whose first term is 2 · 3 · 5 is 2 · 3 · 5, 2 · 3. The corresponding abelian 
group is Z3o x Z6. 

Similarly, all permissible lists of invariant factors and the corresponding abelian groups 
of order 1 80 are easily seen to be the following: 

Invariant Factors 

22 . 3
2 . 5 

2 . 32 0 5. 2 
22 0 3 ° 5, 3 

2 ° 3 . 5, 2 ° 3 

Abelian Groups 

Ztso 

Z90 x z2 
Z60 X Z3 

Z3o x Z6 

The process we carried out above was somewhat ad hoc, however it indicates that 
the determination of lists of invariant factors of all abelian groups of a given order n 

relies strongly on the factorization of n .  The following theorem (which we shall see 
is equivalent to the Fundamental Theorem in the case of finite abelian groups) gives a 
more systematic and computationally much faster way of determining all finite abelian 
groups of a given order. More specifically, if the factorization of n is 

a1 a2 ak n = P1 P2 · · · Pk • 
it shows that all permissible lists of invariant factors for abelian groups of order n may 
be determined by finding permissible lists for groups of order p�j for each i .  For a 
prime power, pa , we shall see that the problem of determining all permissible lists is 
equivalent to the determination of all partitions of a (and does not depend on p). 
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Theorem 5. Let G be an abelian group of order n > 1 and let the unique factorization 
of n into distinct prime powers be 

Then 

Ct) Ct2 01_ n = Pt Pz · · · Pk · 

(1) G � A t x Az x · · · x Ako where l A I = p�' 
(2) for each A E {A t , Az, . . .  , Ad with l A  I = pa , 

with fit :;:: fiz ::: · · · ::: fir ::: 1 and fit + fiz + · · · + fir = a (where t and 
fit , . . . , fir depend on i ) 

(3) the decomposition in ( 1 )  and (2) is unique, i.e., if G � Bt x Bz x · · · x Bm, 
with I B; I = p�' for all i ,  then B; � A; and B; and A; have the same invariant 
factors. 

Definition. The integers p/3j described in the preceding theorem are called the ele
mentary divisors of G. The description of G in Theorem 5( 1 )  and 5(2) is called the 
elementary divisor decomposition of G .  

The subgroups A ;  described i n  part ( 1 )  of the theorem ar e  the Sylow p; -subgroups 
of G. Thus ( 1) says that G is isomorphic to the direct product of its Sylow subgroups 
(note that they are normal - since G is abelian - hence unique). Part 1 is often referred 
to as The Primary Decomposition Theorem for finite abelian groups. 2 As with Theorem 
3, we shall prove this theorem later. 

Note that for p a prime, p/3 I pY if and only if fi :::=: y .  Furthermore, p/31 • • • p/3' = pa 
if and only if fit + · · · + fir = a. Thus the decomposition of A appearing in part 
(2) of Theorem 5 is the invariant factor decomposition of A with the "divisibility" 
conditions on the integers p/3j translated into "additive" conditions on their exponents. 
The elementary divisors of G are now seen to be the invariant factors of the Sylow 
p-subgroups as p runs over all prime divisors of G.  

By Theorem 5, in  order to find all abelian groups of order n = p�' p�2 • • •  p�k 
one must find for each i ,  1 :::=: i :::=: k, all possible lists of invariant factors for groups 
of order p�' . The set of elementary divisors of each abelian group is then obtained 
by taking one set of invariant factors from each of the k lists. The abelian groups are 
the direct products of the cyclic groups whose orders are the elementary divisors (and 
distinct lists of elementary divisors give non isomorphic groups). The advantage of this 
process over the one described following Theorem 2 is that it is easier to systematize 
how to obtain all possible lists of invariant factors, p/3' , pf3z , . . .  , p/3, , for a group of 
prime power order p/3 . Conditions ( 1 )  to (3) for invariant factors described earlier then 
become 

(1) fii :;:: 1 for all j E { 1 ,  2, . . .  , t} , 
(2) fi; ::: fii+t for all i ,  and 
(3) fit + fiz + · · · + fir = fi.  

2Recall that for abelian groups the Sylow p-subgroups are sometimes called the p-primary components. 
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Hence, each list of invariant factors in this case is simply a partition of fJ (ordered in 
descending order). In particular, the number of nonisomorphic abelian groups of order 
pfJ ( = the number of distinct lists) equals the number of partitions of fJ .  This number is 
independent of the prime p. For example the number of abelian groups of order p5 is 
obtained from the list of partitions of 5:  

Invariant Factors 

5 
4, 1 
3 , 2 

3, 1 , 1 
2, 2, 1 

2, 1 , 1 , 1 
1 , 1 , 1 ,  1 ,  1 

Abelian Groups 

Zp5 
Zp4 X Zp 
Zp3 X Zpz 

Zp3 X Zp X Zp 
Zp2 X Zpz X Zp 

Zpz X Zp X Zp X Zp 
Zp X Zp X Zp X Zp X Zp 

Thus there are precisely 7 nonisomorphic groups of order p5, the first in the list being 
the cyclic group, Z Ps ,  and the last in the list being the elementary abelian group, E Ps .  

If n = p� ' p�2 • • • p�• and q; is the number of partitions of a; , we see that the 
number of (distinct, nonisomorphic) abelian groups of order n equals q1q2 · • · qk . 

Example 

If n = 1800 = 233252 we list the abelian groups of this order as follows: 

Order pP Partitions of fJ 
3; 2. 1 ;  l '  1 '  1 

2; 1 ,  1 
2; 1 ,  1 

Abelian Groups 

Zs . Z4 x Z2 .  Z2 x Z2 x Z2 
Z9 , Z3 x Z3 
z25 ,  Z5 x z5 

We obtain the abelian groups of order 1800 by taking one abelian group from each of the 
three lists (right hand column above) and taking their direct product. Doing this in all 
possible ways gives all isomorphism types: 

� x � x �  � x � x � x � x �  
� x � x � x � � x � x � x � x � x � 
� x � x � x �  � x � x � x � x �  
� x � x � x � x �  � x � x � x � x � x � 
� x � x � x � � x � x � x � x � x � 
� x � x � x � x �  � x � x � x � x � x � x �. 

By the Fundamental Theorems above, this is a complete list of all abelian groups of order 
1800 - every abelian group of this order is isomorphic to precisely one of the groups 
above and no two of the groups in this list are isomorphic. 

We emphasize that the elementary divisors of G are not invariant factors of G (but 
invariant factors of subgroups of G). For instance, in case 1 above the elementary 
divisors 8, 9, 25 do not satisfy the divisibility criterion of a list of invariant factors. 
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Our next aim is to illustrate how to pass from a list of invariant factors of a finite 
abelian group to its list of elementary divisors and vice versa We show how to determine 
these invariants of the group no matter how it is given as a direct product of cyclic groups. 
We need the following proposition. 

Proposition 6. Let m ,  n E z+. 
(1) Zm x Zn � Zmn if and only if (m, n) = 1 .  
(2) If n = p�1 p�2 

· · · p�k then Zn � ZP71 x ZP;2 x · · · x ZP;k . 

Proof" Since (2) is an easy exercise using ( 1 ) and induction on k, we concentrate 
on proving (1 ). Let Zm = ( x ) , Zn = ( y )  and let I = l.c.m.(m,  n) . Note that I = mn 

if and only if (m , n) = 1 .  Let x0 yh be a typical element of Zm x Zn . Then (as noted 
in Example 1 ,  Section 1) 

(xa li = X fa ylb 

= 1° 1 b = 1 (because m I I  and n I I) . 
If (m , n) #- 1 ,  every element of Zm x Zn has order at most I, hence has order strictly 
less than mn, so Zm x Zn cannot be isomorphic to Zmn . 

Conversely, if (m , n) = 1 ,  then ixy i = l.c.m. ( lx l ,  ly l ) = mn . Thus, by order 
considerations, Zm x Zn = ( xy ) is cyclic, completing the proof. 

Obtaining Elementary Divisors from Invariant Factors 

Suppose G is given as an abelian group of type (n t ,  n2 , . . .  , n5 ) , that is 

G � Zn 1 X Zn2 X • • • X Zns• 

Let n = p�1 p�2 · · · p�k = n 1 n2 • • • n • .  Factor each n1 as 

n; = pfn pf'2 · · · pt'k , where f3iJ :::: 0. 

By the proposition above, 

for each i .  If f3iJ = 0, Z �ij = 1 and this factor may be deleted from the direct 
Pj 

product without changing the isomorphism type. Then the elementary divisors of G 
are precisely the integers 

� k R p1 , 1 :S j :S , 1 :S i :S s such that 1-'ii #- 0. 

For example, if I G I  = 2
3 · 32 · 52 

and G is of type (30, 30, 2), then 

G � Z3o X Z3o X z2. 

Since Z3o � z2 X z3 X Zs, G � z2 X z3 X Zs X z2 X z3 X Zs X z2. The elementary 
divisors of G are therefore 2, 3, 5, 2, 3, 5, 2, or, grouping like primes together (note that 
rearranging the order of the factors in a direct product does not affect the isomorphism 
type (Exercise 7 of Section 1 )), 2, 2, 2, 3, 3, 5, 5. In particular, G is isomorphic to 
the last group in the list in the example above. 
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If for each j one collects all the factors Z �'i together, the resulting direct product 
P, 

forms the Sylow Prsubgroup, Aj, of G.  Thus the Sylow 2-subgroup of the group in 
the preceding paragraph is isomorphic to Z2 x Z2 x Z2 (i.e., the elementary abelian 
group of order 8). 

Obtaining Elementary Divisors from any cyclic decomposition 

The same process described above will give the elementary divisors of a finite abelian 
group G whenever G is given as a direct product of cyclic groups (not just when the 
orders of the cyclic components are the invariant factors). For example, if G = Z6 x Z15 , 
the list 6, 15 is neither that of the invariant factors (the divisibility condition fails) nor 
that of elementary divisors (they are not prime powers). To find the elementary divisors, 
factor 6 = 2 · 3 and 15  = 3 · 5. Then the prime powers 2, 3, 3, 5 are the elementary 
divisors and 

Obtaining I nvariant Factors from Elementary Divisors 

Suppose G is an abelian group of order n, where n = p�1 p�2 · · · p�k and we are given 
the elementary divisors of G. The invariant factors of G are obtained by following these 
steps: 
(1) First group all elementary divisors which are powers of the same prime together. 

In this way we obtain k lists of integers (one for each Pj ) .  
(2) In each of these k lists arrange the integers in nonincreasing order. 
(3) Among these k lists suppose that the longest (i.e., the one with the most terms) con

sists of t integers. Make each of the k lists of length t by appending an appropriate 
number of 1 's at the end of each list. 

(4) For each i E { 1 ,  2, . . . , t} the ; th invariant factor, n; , is obtained by taking the 
product of the i1h integer in each of the t (ordered) lists. 

The point of ordering the lists in this way is to ensure that we have the divisibility 
condition »i+l I n; . 

Suppose, for example, that the elementary divisors of G are given as 2, 3, 2, 25, 3, 
2 (so I G I = 23 

· 32 
· 52 ) . Regrouping and increasing each list to have 3 (= t) members 

gives: 
p = 2 

2 
2 
2 

3 
3 
1 

p = 5 
25 
1 
1 

so the invariant factors of G are 2 · 3 · 25 , 2 · 3 · 1 ,  2 · l · 1 and 

G ::;:: ZlsO X z6 X Zz.  
Note that this is  the penultimate group in  the list classifying abelian groups of order 
1 800 computed above. 

The invariant factor decompositions of the abelian groups of order 1800 are as 
follows, where the i 1h group in this list is isomorphic to the ;th group computed in the 
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previous list: 
Ztsoo 
z360 X Zs 
Z60o X z3 
Z12o x Zts 
Z9oo x Zz 
Z1so x Z10 

Z3oO X z6 
Z6o x Z3o 
z450 X Zz X Zz 
Z9o x Z10 x Zz 
Ztso X z6 X Zz 
z30 X Z3o X Zz . 

Using the uniqueness statements of the Fundamental Theorems 3 and 5, we can use 
these processes to determine whether any two direct products of finite cyclic groups are 
isomorphic. For instance, if one wanted to know whether z6 X Zts � Zw X z9. first 
determine whether they have the same order (both are of order 90) and then (the easiest 
way in general) determine whether they have the same elementary divisors: 

z6 X Zts has elementary divisors 2, 3, 3, 5 and is isomorphic to Zz X z3 X z3 X Zs 
Zw X z9 has elementary divisors 2, 5, 9 and is isomorphic to Zz X Zs X Z9 . 

The lists of elementary divisors are different so (by Theorem 5) they are not isomorphic. 
Note that z6 X Zts has no element of order 9 whereas Zw X z9 does (cf. Exercise 5). 

The processes we described above (with some elaboration) form a proof (via Propo
sition 6) that for finite abelian groups Theorems 3 and 5 are equivalent (i.e., one implies 
the other). We leave the details to the reader. 

One can now better understand some of the power and some of the limitations of 
classification theorems. On one hand, given any positive integer n one can explicitly 
describe all abelian groups of order n, a significant achievement. On the other hand, 
the amount of information necessary to determine which of the isomorphism types of 
groups of order n a particular group belongs to may be considerable (and is large if n 
is divisible by large powers of primes). 

We close this section with some terminology which will be useful in later sections. 

Definition. 
(1) If G is a finite abelian group of type (n 1 , nz , . . . , n1) , the integer t is called the 

rank of G (the free rank of G is 0 so there will be no confusion). 
(2) If G is any group, the exponent of G is the smallest positive integer n such that 

xn = 1 for all x E G (if no such integer exists the exponent of G is oo ). 

E X E R C I S E S 

1. In each of parts (a) to (e) give the number of nonisomorphic abelian groups of the specified 
order - do not list the groups: (a) order 100, (b) order 576, (c) order 1 155, (d) order 
42875, (e) order 2704. 

2. In each of parts (a) to (c) give the lists of invariant factors for all abelian groups of the 
specified order: 
(a) order 270, (b) order 9801, (c) order 320, (d) order 105, (e) order 44100. 

3. In each of parts (a) to (e) give the lists of elementary divisors for all abelian groups of the 
specified order and then match each list with the corresponding list of invariant factors 
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found in the preceding exercise: 
(a) order 270, (b) order 9801 ,  (c) order 320, (d) order 105, (e) order 44100. 

4. In each of parts (a) to (d) determine which pairs of abelian groups listed are isomorphic 
(here the expression {at , a2 , . . . , ak } denotes the abelian group Za1 x Za2 x · · · x Zak) .  
(a) {4 , 9}, {6 , 6} ,  {8 , 3 }, {9 , 4} , {6 , 4}, {64} . 
(b) {22 ' 2 . 32} , {22 . 3 ' 2 . 3}, {23 . 32 }, {22 . 32 ' 2}. 
(c) {52 · 72 , 32 • 5 · 7} , {32 · 52 · 7 , 5 · 72} , {3 · 52 , 72 , 3 · 5 · 7}, 

{52 . 7 ' 32 . 5 ' 72} .  
(d) {22 . 5 . 7 '  23 . 53 ' 2 .  52} ,  {23 . 53 . 7 '  23 • 53 } , {22 ' 2 .  7 '  23 ' 53 ' 53 }, 

{2 . 53 , 22 . 53 ' 23 ' 7} .  

5.  Let G be a finite abelian group of type (n t ,  n2 , . . .  , n1 ) .  Prove that G contains an element 
of order m if and only if m I n l · Deduce that G is of exponent n l · 

6. Prove that any finite group has a finite exponent. Give an example of an infinite group with 
finite exponent. Does a finite group of exponent m always contain an element of order m? 

7. Let p be a prime and let A = ( x t ) x ( x2 ) x · · · x ( xn )  be an abelian p-group, where 
lx; l = pa' > 1 for all i .  Define the p

th
-power map 

by (/) : X  1---+ xP . 

(a) Prove that ({) is a homomorphism. 
(b) Describe the image and kernel of ({) in terms of the given generators. 
(c) Prove both ker ({) and A jim ({) have rank n (i.e. , have the same rank as A) and prove 

these groups are both isomorphic to the elementary abelian group, E P" , of order pn . 

8. Let A be a finite abelian group (written multiplicatively) and let p be a prime. Let 

AP = (aP I a E A} and Ap = {x I  xP = 1 }  

(so AP and A p  are the image and kernel of the p
th-power map, respectively). 

(a) Prove that A/ AP :;:;: Ap. [Show that they are both elementary abelian and they have 
the same order.] 

(b) Prove that the number of subgroups of A of order p equals the number of subgroups 
of A of index p. [Reduce to the case where A is an elementary abelian p-group .] 

9. Let A = Z6o x Z45 x Z 12 x Z36· Find the number of elements of order 2 and the number 
of subgroups of index 2 in A. 

10. Let n and k be positive integers and let A be the free abelian group of rank n (written 
additively). Prove that Af kA is isomorphic to the direct product of n copies of 7lf k7l 
(here kA = {ka I a E A}). [See Exercise 14, Section 1 .] 

11. Let G be a nontrivial finite abelian group of rank t .  
(a) Prove that the rank of  G equals the maximum of the ranks of  its Sylow subgroups. 
(b) Prove that G can be generated by t elements but no subset with fewer than t elements 

generates G. [One way of doing this is by using part (a) together with Exercise 7.] 
12. Let n and m be positive integers with d = (n, m). Let Zn = ( x ) and Zm = ( y ) . Let A 

be the central product of ( x ) and ( y ) with an element of order d identified, which has 

presentation ( x , y I x
n 

= ym = 1 , xy = yx, x � = y ';f ) . Describe A as a direct product 
of two cyclic groups. 

13. Let A = ( x1 ) x · · · x ( Xr ) be a finite abelian group with lx; l = n; for l ::::; i ::::; r. 

Find a presentation for A. Prove that if G is any group containing commuting elements 
El , . . .  , Er such that g�' = l for 1 ::::; i ::::: r, then there is a unique homomorphism from A 
to G which sends x; to g; for all i .  
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14. For any group G define the dual group of G (denoted G) to be the set of all homomorphisms 
from G into the multiplicative group of roots of unity in C. Define a group operation in 
G by pointwise multiplication of functions: if x ,  l/1 are homomorphisms from G into the 
group of roots of unity then x l/1  is the homomorphism given by (X l/l)(g) = x (g) l/f(g) for 
all g E G, where the latter multiplication takes place in C. 
(a) Show that this operation on G makes G into an abelian group. [Show that the identity 

is the map g r+ 1 for all g E G and the inverse of x E G is the map g r+ x (g)-1 .] 
(b) If G is a finite abelian group, prove that G � G. [Write G as ( x1 } x · · · x ( Xr } and 

if n; = ix; I define Xi to be the homomorphism which sends x; to e2rri/n; and sends 
Xj to 1, for all j # i. Prove Xi has order n; in G and G = ( XI } x · · · x ( Xr } .] 

(This result is often phrased: a finite abelian group is self-dual. It implies that the lattice 
diagram of a finite abelian group is the same when it is turned upside down. Note however 
that there is no natural isomorphism between G and its dual (the isomorphism depends on 
a choice of a set of generators for G). This is frequently stated in the form: a finite abelian 
group is noncanonically isomorphic to its dual.) 

15. Let G = ( x } x ( y } where lx l  = 8 and I Y I  = 4. 
(a) Find all pairs a, b in G such that G = ( a }  x ( b }  (where a and b are expressed in 

terms of x and y). 
(b) Let H = ( x2y , y2 } � z4 X z2 . Prove that there are no elements a, b of G such that 

G = ( a  } x ( b }  and H = ( a2 } x ( b2 } (i.e., one cannot pick direct product generators 
for G in such a way that some powers of these are direct product generators for H). 

16. Prove that no finitely generated abelian group is divisible (cf. Exercise 19, Section 2.4). 

5.3 TABLE OF GROUPS OF SMALL ORDER 

At this point we can give a table of the isomorphism types for most of the groups of 
small order. 

Each of the unfamiliar non-abelian groups in the table on the following page will 
be constructed in Section 5 on semidirect products (which will also explain the notation 
used for them). For the present we give generators and relations for each of them (i.e., 
presentations of them). 

The group z3 )<1 z4 of order 12 can be described by the generators and relations: 

( x , y I x
4 = l = 1 ,  x-1 yx = y- 1 ) , 

namely, it has a normal Sylow 3-subgroup ( ( y ) ) which is inverted by an element of 
order 4 (x) acting by conjugation (x2 centralizes y). 

The group (Z3 X Z3) )<1 z2 has generators and relations: 

( I 2 3 3 1 -1 -1 I -1 ) X,  y , Z X = y = Z = , yz = zy, X yx = Y , X- ZX = Z , 

namely, it has a normal Sylow 3-subgroup isomorphic to Z3 x Z3 ( { y, z ) ) inverted by 
an element of order 2 (x) acting by conjugation. 

The group Zs >1 Z4 of order 20 has generators and relations: 

{ x , Y I x
4 

= l = 1 , x -1 yx = y-1 ) , 

namely, it has a normal Sylow 5-subgroup ( { y )) which is inverted by an element of 
order 4 (x) acting by conjugation (x2 centralizes y ) .  
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7 1 z1 none 

8 5 Zs , z4 X Zz, 
Ds, Qs Zz x Zz x Zz 

9 2 Z9 , z3 x Z3 none 
10  2 Zw Dw 
1 1  1 Zn none 
12  5 Ztz. z6 X Zz A4, D1z .  Z3 )<J z4 
1 3  1 zl3 none 
14 2 Z14 D14 
1 5 1 Z1s none 

zl6· Zs X Zz,  
1 6  14 z4 X Z4, z4 X Zz X Zz, not listed 

Zz x Zz x Zz x Zz 

1 7  1 Zn none 

1 8  5 Z1s . z6 x Z3 Dis. s3 X ZJ , 
(Z3 x Z3) ><J Zz 

1 9 1 Z19 none 

20 5 Z20, Z10 x Z2 
Dzo 

Zs ><J Z4, Fzo 

The group F20 of order 20 has generators and relations: 

( I 4 5 1 -1  2
) x , y x = y = , xyx = y , 

unely, it has a normal Sylow 5-subgroup ( ( y ) ) which is squared by an element of order 
(x) acting by conjugation. One can check that this group occurs as the normalizer of 
Sylow 5-subgroup in S5 , e.g., 

Fzo =  ( (2 3 5 4) , ( 1 2 3 4 5) ) . 

his group is called the Frobenius group of order 20. 
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E X E R C I S E  

1. Prove that Dt6. Z2 x Ds, Z2 x Qs, Z4 * Ds, QD16 and M are nonisomorphic non-abelian 
groups of order 16 (where Z4 * Ds is described in Exercise 12, Section 1 and QD16 and 
M are described in the exercises in Section 2.5). 

5.4 RECOGNIZING D IRECT PRODUCTS 

So far we have seen that direct products may be used to both construct "larger" groups 
from "smaller'' ones and to decompose finitely generated abelian groups into cyclic 
factors. Even certain non-abelian groups, which may be given in some other form, may 
be decomposed as direct products of smaller groups. The purpose of this section is 
to indicate a criterion to recognize when a group is the direct product of some of its 
subgroups and to illustrate the criterion with some examples. 

Before doing so we introduce some standard notation and elementary results on 
commutators which will streamline the presentation and which will be used again in 
Chapter 6 when we consider nilpotent groups. 

Definition. Let G be a group, let x , y E G and let A, B be nonempty subsets of G. 
(1) Define [x , y] = x-1 y-1 xy, called the commutator of x and y .  
(2) Define [A , B] = { [a ,  b] I a E A ,  b E B ) , the group generated by commuta

tors of elements from A and from B.  

(3) Define G' = { [x , y]  I x , y E G ) , the subgroup of G generated by commutators 
of elements from G, called the commutator subgroup of G.  

The commutator of x and y i s  1 if and only if x and y commute, which explains 
the terminology. The following proposition shows how commutators measure the "dif
ference" in G between xy and yx . 

Proposition 7. Let G be a group, let x , y E G and let H .:=: G. Then 
(1) xy = yx [x , y] (in particular, xy = yx if and only if [x , y] = 1 ). 
(2) H � G if and only if [H, G] .:S H. 
(3) a [x , y] = [a (x) , a (y)] for any automorphism a of G, G'  char G and GI G' is 

abelian. 
(4) GIG' is the largest abelian quotient of G in the sense that if H � G and G 1 H 

is abelian, then G' .:=: H. Conversely, if G' .:=: H, then H � G and G I H is 
abelian. 

(5) If ({J : G ---+ A is any homomorphism of G into an abelian group A, then ({J 
factors through G' i.e., G' .:=: ker ({J and the following diagram commutes: 

G GI G' �j A 

Proof: ( 1 )  This is immediate from the definition of [x , y] .  
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(2) By definition, H � G if and only if g-1hg E H for all g E G and all h E H .  
For h E H, g-1 hg E H if and only if h-1 g- 1 hg E H ,  so that H � G if and only if 
[h , g] E H for all h E H and all g E G. Thus H � G if and only if [H, G] :::: H, 
which is (2). 

(3) Let a E Aut( G) be an automorphism of G and let x, y E G. Then 

a ([x, y]) = a (x-1 y- 1xy) 

= a (x)-1a(y)-1 a (x)a (y) 

= [a (x) , a (y)] .  

Thus for every commutator [x , y] of  G', a ([x , y ] )  i s  again a commutator. Since a has 
a 2-sided inverse, it follows that it maps the set of commutators bijectively onto itself. 
Since the commutators are a generating set for G', a (G') = G', that is, G' char G. 

To see that GI G' is  abelian, let xG' and yG' be arbitrary elements of GI G' . By 
definition of the group operation in GI G' and since [x , y] E G' we have 

(xG')(yG') = (xy)G' 

= (yx [x ,  y]) G' 

= (yx)G' = (y G') (xG') ,  

which completes the proof of (3). 
(4) Suppose H � G and Gl H is abelian. Then for all x,  y E G we have 

(xH)(y H) = (y H)(xH), so 

l H = (xH)-1 (y H)-1 (xH)(y H) 

= x-1y-1xy H  

= [x , y]H. 

Thus [x , y] E H for all x,  y E G, so that G' :::: H. 
Conversely, if G' :::: H, then since GIG' is abelian by (3), every subgroup of GIG' 

is normal. In particular, HI G' � GI G'. By the Lattice Isomorphism Theorem H � G. 
By the Third Isomorphism Theorem 

GIH � (GIG')I(HIG') 

hence G I H is abelian (being isomorphic to a quotient of the abelian group GI G'). This 
proves (4). 

(5) This is (4) phrased in terms of homomorphisms. 

Passing to the quotient by the commutator subgroup of G collapses all commutators 
to the identity so that all elements in the quotient group commute. As (4) indicates, a 
strong converse to this also holds: a quotient of G by H is abelian if and only if the 
commutator subgroup is contained in H (i.e., if and only if G' is mapped to the identity 
in the quotient G I H). 

We shall exhibit a group (of order 96) in the next section with the property that one 
of the elements of its commutator subgroup cannot be written as a single commutator 
[ x ,  y] for any x and y.  Thus G' does not necessarily consist only of the set of (single) 
commutators (but is the group generated by these elements). 

1 70 Chap. 5 Direct and Semidirect Products and Abel ian Groups 



Examples 

(1) A group G is abelian if and only if G' = 1 .  
(2) Sometimes it is possible to compute the commutator subgroup of a group without 

actually calculating commutators explicitly. For instance, if G = Ds , then since 
Z(Ds) = ( r2 ) � Ds and Ds/Z(Ds) is abelian (the Klein 4-group), the commutator 
subgroup D� is a subgroup of Z(Ds) .  Since Ds is not itself abelian its commutator 
subgroup is nontrivial. The only possibility is thar D� = Z(Dg).  By a similar 
argument, Q� = Z(Qs) = ( - 1  ) . More generally, if G is any non-abelian group of 
order p3 , where p is a prime, G' = Z(G) and I G' I  = p (Exercise 7). 

(3) Let D2n = ( r, s  I rn = s2 = 1 , s-1 rs = r-1 ) . Since [r, s] = r-2, we have 
( r-2 ) = ( r2 ) � Dzn . Furthermore, ( r2 ) � D2n and the images of r and s in 
Dzn f ( r2 ) generate this quotient. They are commuting elements of order � 2, so the 
quotient is abelian and Dzn � ( r2 ) . Thus Dzn = ( r2 ) . Finally, note that if n (= l r l )  
i s  odd, ( r2 ) = ( r )  whereas if  n i s  even, ( r2 ) i s  of index 2 in  ( r ) . Hence D2n i s  of 
index 2 or 4 in Dzn according to whether n is odd or even, respectively. 

( 4) Since conjugation by g E G is an automorphism of G, [ ag , b.'.' ] = [a , b ]g for all a ,  b E 
G by (3) of the proposition, i.e., conjugates of commutators are also commutators. 
For example, once we exhibit an element of one cycle type in Sn as a commutator, 
every element of the same cycle type is also a commutator (cf. Section 4.3) . For 
example, every 5-cycle is a commurator in Ss as follows: labelling the vertices of a 
pentagon as 1 ,  . . . , 5 we see that Dw � Ss (a subgroup of As in fact). By the preceding 
example an element of order 5 is a commutator in Dw, hence also in Ss . Explicitly, 
( 1 4 2 5  3) = [(1 2 3 4 5) , (2 5) (4 3)]. 

The next result actually follows from the proof of Proposition 3 . 13  but we isolate 
it explicitly for reference: 

Proposition 8. Let H and K be subgroups of the group G. The number of distinct 
ways of writing each element of the set H K in the form hk, for some h E H and k E K 
is I H  n K l .  In particular, if H n K = 1 ,  then each element of H K can be written 
uniquely as a product hk, for some h E H and k E K .  

Proof" Exercise. 

The main result of this section is the following recognition theorem. 

Theorem 9. Suppose G is a group with subgroups H and K such that 

(1) H and K are normal in G, and 
(2) H n K = 1 .  

Then H K  � H x K .  

Proof" Observe that by hypothesis ( 1 ), H K is a subgroup of G (see Corollary 3. 1 5). 
Let h E H and let k E K. Since H � G, k-1 hk E H, so that h- 1 (k-1 hk) E H. 
Similarly, (h -1 k-1h)k E K. Since H n K = 1 it follows that h - 1 k -1 hk = 1, i.e. , 
hk = kh so that every element of H commutes with every element of K. 
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By the preceding proposition each element of H K can be written uniquely as a 
product hk, with h E H and k E K. Thus the map 

q; : H K __,. H x K  

hk I-+ (h ,  k) 

is well defined. To see that q; is a homomorphism note that if h 1 ,  h2 E H and k1 ,  k2 E K, 
then we have seen that h2 and k1 commute. Thus 

(h tkt ) (hzkz) = (h t hz) (kt kz) 

and the latter product is the unique way of writing (h 1 k1 ) (hzkz) in the form hk with 
h E H and k E K .  This shows that 

q; (h t kt hzkz) = q; (h t hzkt kz) 

= (h t hz , ktkz) 

= (h t , kt ) (hz , kz) = q; (h t kt )q; (hzkz)  

so that q; is  a homomorphism. The homomorphism q; is a bijection since the represen
tation of each element of H K as a product of the form hk is unique, which proves that 

q; is an isomorphism. 

Definition. If G is a group and H and K are normal subgroups of G with H n K = 1 ,  
we call H K the internal direct product of H and K. We shall (when emphasis is called 
for) call H x K the external direct product of H and K .  

The distinction between internal and external direct product i s  (by Theorem 9) 
purely notational: the elements of the internal direct product are written in the form 
hk, whereas those of the external direct product are written as ordered pairs (h , k) . We 
have in previous instances passed between these. For example, when Zn = { a  } and 
Zm = { b }  we wrote x = (a, 1 )  and y = ( 1 ,  b) so that every element of Zn x Zm was 
written in the form xr 

y
s
. 

Examples 

(1) If n is a positive odd integer, we show D4n � Dzn x Zz . To see this let 

D4n = ( r, s  I r2n = s2 = 1 ,  srs = r-l } 

be the usual presentation of D4n . Let H = ( s, r2 } and let K = ( rn } . Geometrically, 
if D4n is the group of symmetries of a regular 2n-gon, H is the group of symmetries of 
the regular n-gon inscribed in the 2n-gon by joining vertex 2i to vertex 2i + 2, for all 
i mod 2n (and if one lets TJ = r2 , H has the usual presentation of the dihedral group 
of order 2n with generators TJ and s). Note that H :'9 D4n (it has index 2). Since 
lr I = 2n, l rn I = 2. Since sr s = r - l ,  we have srn s = r -n = rn, that is, s centralizes 
rn . Since clearly r centralizes rn , K ::::; Z(D4n) .  Thus K :'9 D4n . Finally, K 1:. H 
since r2 has odd order (or because rn sends vertex i into vertex i + n, hence does 
not preserve the set of even vertices of the 2n-gon). Thus H n K = 1 by Lagrange. 
Theorem 9 now completes the proof. 

(2) Let I be a subset of { 1 , 2, . . .  , n} and let G be the setwise stabilizer of I in Sn , i.e., 
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Let J = { 1 ,  2, . . .  , n} - I be the complement of I and note that G is also the setwise 
stabilizer of J .  Let H be the pointwise stabilizer of I and let K be the pointwise 
stabilizer of { 1 ,  2, . . . , n} - I, i .e., 

H = {a E G I a (i) = i for all i E I } 

K = {T E G I r (j) = j for all j E J}.  

It is easy to see that H and K are normal subgroups of G (in fact they are kernels of 
the actions of G on I and J, respectively). Since any element of H n K fixes all of 
{ 1 ,  2, . . .  , n} ,  we have H n K = 1 . Finally, since every element a of G stabilizes the 
sets I and J,  each cycle in the cycle decomposition of a involves only elements of I 
or only elements of J. Thus a may be written as a product a1a J ,  where a1 E H and 
a 1 E K .  This proves G = H K. By Theorem 9, G � H x K.  Now any permutation 
of J can be extended to a permutation in Sn by letting it act as the identity on I .  
These are precisely the permutations in H (and similarly the permutations in K are 
the permutations of I which are the identity on J), so 

H � Sj K � sf and G � Sm X Sn-m . 

where m = 1 1 1  (and, by convention, s0 = 1) .  
(3) Let a E Sn and let I be the subset of { 1 ,  2, . . .  , n} fixed pointwise by a: 

I =  {i E {1 ,  2, . . . , n}  I a (i) = i } .  

If C = Cs" (a), then by Exercise 18  of Section 4.3,  C stabilizes the set I and its 
complement J. By the preceding example, C is isomorphic to a subgroup of H x K, 
where H is the subgroup of all permutations in Sn fixing I pointwise and K is the set 
of all permutations fixing J pointwise. Note that a E H. Thus each element, a, of C 
can be written (uniquely) as a = a1a1 , for some a1 E H and a1 E K.  Note further 
that if T is any permutation of { 1 ,  2, . . .  , n} which fixes each j E J (i.e., any element 
of K), then a and T commute (since they move no common integers). Thus C contains 
all such T ,  i .e., C contains the subgroup K. This proves that the group C consists of 
all elements a1a1 E H x K such that a1 is arbitrary in K and a1 commutes with a 
in H: 

Cs, (a) = CH (a) x K 

� Cs1 (a) x S1 . 

In particular, if a is an m-cycle in Sn , 

Csn (a) = ( a }  X Sn-m · 

The latter group has order m(n - m) !, as computed in Section 4.3. 

E X E R C I S E S 

Let G be a group. 

1. Prove that if x ,  y E G then [y, x] = [x , y]-1 . Deduce that for any subsets A and B of G, 
[A , B] = [B, A] (recall that [A ,  B] is the subgroup of G generated by the commutators 
[a , b]). 

2. Prove that a subgroup H of G is normal if and only if [ G, H] � H. 

3. Let a , b, c E G. Prove that 
(a) [a , be] =  [a , c](c-1 [a , b]c) 
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(b) [ab, c] = (b-1 [a, c]b) [b, c]. 

4. Find the commutator subgroups of S4 and A4. 

5. Prove that An is the commutator subgroup of Sn for all n :::: 5. 

6. Exhibit a representative of each cycle type of As as a commutator in Ss . 

7. Prove that if p is a prime and P is a non-abelian group of order p
3 

then P' = Z(P). 

8. Assume x ,  y E G and both x and y commute with [x ,  y] . Prove that for all n E z+, 
n (n- l )  

(xy)n = xn yn [y , x] -2 - . 

9. Prove that if p is an odd prime and P is a group of order p
3 

then the p1h 
power map 

x � xP is a homomorphism of P into Z(P).  If P is not cyclic, show that the kernel of the 
p1h 

power map has order p2 or p
3

. Is the squaring map a homomorphism in non-abelian 
groups of order 8? Where is the oddness of p needed in the above proof? [Use Exercise 8.] 

10. Prove that a finite abelian group is the direct product of its Sylow subgroups. 

11. Prove that if G = H K where H and K are characteristic subgroups of G with H n K = 1 
then Aut( G) � Aut(H) x Aut(K). Deduce that if G is an abelian group of finite order 
then Aut( G) is isomorphic to the direct product of the automorphism groups of its Sylow 
subgroups. 

12. Use Theorem 4. 17 to describe the automorphism group of a finite cyclic group. 

13. Prove that Dsn is not isomorphic to D4n x Zz. 

14. Let G = { (a;j ) E GLn (F) I aij = O if i > j, and au = a22 = · · ·  = ann l . where F is 
a field, be the group of upper triangular matrices all of whose diagonal entries are equal. 
Prove that G � D x U, where D is the group of all nonzero multiples of the identity 
matrix and U is the group of upper triangular matrices with 1 's down the diagonal. 

15. If A and B are normal subgroups of G such that G I A and G 1 B are both abelian, prove 
that GI(A n B) is abelian. 

16. Prove that if K is a normal subgroup of G then K' :Sl G. 

17. If K is a normal subgroup of G and K is cyclic, prove that G' ::::; Cc (K). [Recall that the 
automorphism group of a cyclic group is abelian. ]  

18. Let Kt , Kz, . . .  , Kn be non-abelian simple groups and let G = Kt x Kz x · · · x Kn . 
Prove that every normal subgroup of G is of the form G 1 for some subset I of { 1 ,  2, . . .  , n }  
(where G 1 i s  defined i n  Exercise 2 of Section 1 ). [If N :Sl G and x = (at , . . .  , an) E N 
with some a; -:f. 1 ,  then show that there is some g; E G; not commuting with a; . Show 
[( 1 , . . .  , g; , . . . , 1) ,  x] E K; n N and deduce K; ::::; N.] 

19. A group H is called perfect if H' = H (i.e., H equals its own commutator subgroup). 
(a) Prove that every non-abelian simple group is perfect. 
(b) Prove that if H and K are perfect subgroups of a group G then ( H, K }  is also perfect. 

Extend this to show that the subgroup of G generated by any collection of perfect 
subgroups is perfect. 

(c) Prove that any conjugate of a perfect subgroup is perfect. 
(d) Prove that any group G has a unique maximal perfect subgroup and that this subgroup 

is normal. 

20. Let H(F) be the Heisenberg group over the field F, cf. Exercise 1 1  of Section 1 .4. Find 
an explicit formula for the commutator [X, Y], where X, Y E H(F), and show that the 
commutator subgroup of H(F) equals the center of H(F) (cf. Section 2.2, Exercise 14). 
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5. 5 SEM IDIRECT PRODUCTS 

In this section we study the "semidirect product" of two groups H and K,  which is a 
generalization of the notion of the direct product of H and K obtained by relaxing the 
requirement that both H and K be normal. This construction will enable us (in certain 
circumstances) to build a "larger" group from the groups H and K in such a way that 
G contains subgroups isomorphic to H and K,  respectively, as in the case of direct 
products. In this case the subgroup H will be normal in G but the subgroup K will not 
necessarily be normal (as it is for direct products). Thus, for instance, we shall be able 
to construct non-abelian groups even if H and K are abelian. This construction will 
allow us to enlarge considerably the set of examples of groups at our disposal. As in 
the preceding section, we shall then prove a recognition theorem that will enable us to 
decompose some familiar groups into smaller "factors," from which we shall be able to 
derive some classification theorems. 

By way of motivation suppose we already have a group G containing subgroups H 
and K such that 

(a) H ::9 G (but K is not necessarily normal in G), and 
(b) H n K = 1 .  

It is still true that H K is a subgroup of G (Corollary 3 . 15) and, by Proposition 8, 
every element of H K can be written uniquely as a product hk, for some h E H and 
k E K,  i.e., there is a bijection between H K and the collection of ordered pairs (h , k ),  
given by hk !---')- (h , k) (so the group H appears as the set of elements (h , 1 )  and K 
appears as the set of elements { 1 ,  k)). Given two elements h1k1 and hzkz of H K, we 
first see how to write their product (in G) in the same form: 

(h tkd(hzkz) = htkthz(k[1ki )kz 
= ht (kthzk11 )ktkz 
= h3kJ , 

(5 . 1 )  

where h3 = h t (kthzk[ 1) and k3 = ktkz . Note that since H ::9 G, kthzk11 E H, so 
h3 E H and k3 E K .  

These calculations were predicated on the assumption that there already existed a 
group G containing subgroups H and K with H <:::] G and H n K = 1 .  The basic 
idea of the semidirect product is to tum this construction around, namely start with two 
(abstract) groups H and K and try to define a group containing (an isomorphic copy 
of) them in such a way that (a) and (b) above hold. To do this, we write equation ( 1 ), 
which defines the multiplication of elements in our group, in a way that makes sense 
even if we do not already know there is a group containing H and K as above. The 
point is that k3 in equation ( 1 )  is obtained only from multiplication in K (namely ktkz) 
and h3 is obtained from multiplying h 1 and k1hzk11 in H. If we can understand where 

the element k1 h2k]1 arises (in terms of H and K and without reference to G), then the 
group H K will have been described entirely in terms of H and K. We can then use 
this description to define the group H K using equation ( 1 )  to define the multiplication. 
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Since H is normal in G, the group K acts on H by conjugation: 

k · h = khk-1 for h E H, k E K 

(we use the symbol · to empli;�iz� �
,
tion) so that (1) can be written 

(h 1k1 ) (h2k2) �(h 1 k1 · h2) (k1k2)· (5 .2) 

The action of K on H by conjugation gives a homomorphism (/J of K into Aut( H), so 
(2) shows that the multiplication in H K depends only on the multiplication in H, the 
multiplication in K and the homomorphism (/J, hence is defined intrinsically in terms 
of H and K .  

We now use this interpretation to define a group given two groups H and K and a 
homomorphism lfJ from K to Aut( H) (which will tum out to define conjugation in the 
resulting group). 

Theorem 10. Let H and K be groups and let (/J be a homomorphism from K into 
Aut(H). Let · denote the (left) action of K on H determined by f/J· Let G be the set of 
ordered pairs (h , k) with h E H and k E K and define the following multiplication on 
G: 

(h 1 , k1) (h2 ,  k2) = (ht kt · h2 '  k1k2). 

(1) This multiplication makes G into a group of order I G I = I H I I  K 1 . 
(2) The sets { (h ,  1 )  I h E H} and { ( 1 ,  k) I k E K} are subgroups of G and the 

maps h � (h , 1 )  for h E H and k � (1 , k) for k E K are isomorphisms of 
these subgroups with the groups H and K respectively: 

H � { (h , 1 )  I h E H} and K � { ( 1 , k) I k E  K}. 

Identifying H and K with their isomorphic copies in G described in (2) we have 
(3) H � G 
(4) H n K = 1 
(5) for all h E H and k E K, khk-1  = k · h  = ({J(k) (h) . 

Proof" It is straightforward to check that G is a group under this multiplication 
using the fact that · is an action of K on H. For example, the associative law is verified 
as follows: 

((a , x)(b, y)) (c, z) = (a x · h , xy)(c, z) 
= (a x · b  (xy) · c , xyz) 
= (a x · b  x · (y · c) , xyz) 
= (a x · (b y · c) , xyz) 
= (a, x)(b y · c , yz) 
= (a , x) ((b, y) (c, z)) 

for all (a , x), (b, y), (c, z) E G. We leave as an exercise the verification that ( 1 , 1 )  is 
the identity of G and that 
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for each (h , k) E G. The order of the group G is clearly the product of the orders of H 
and K, which proves ( 1  ) . 

Let H = { (h, 1 ) I h E H } and K = { ( 1 , k) I k E  K }. We have 

(a , 1 ) (b, 1 )  = (a 1 · b ,  1 ) = (ab, 1 ) 

for all a, b E H and 
( 1 , x) ( l ,  y) = ( 1 ,  xy) 

for all x, y E K, which show that H and K are subgroups of G and that the maps in 
(2) are isomorphisms. 

It is clear that H n K = 1 ,  which is (4). Now, 

(1 , k)(h, 1 ) ( 1 , k)-
1 = (0 . k)(h, 1 )) ( 1 , k-1 ) 

= (k · h ' k) (l . k-1 ) 

= (k · h  k · 1 ' kk- 1 ) 

= (k ·h ,  1) 
so that identifying (h , 1 )  with h and (1 , k) with k by the isomorphisms in (2) we have 
khk- 1 = k ·h, which is (5). 

Finally, we have just seen that (under the identifications in (2)) K :::=: Nc (H). Since 
G = H K and certainly H :::=: Nc (H), we have Nc (H) = G, i.e., H � G, which 
proves (3) and completes the proof. 

Definition. Let H and K be groups and let cp be a homomorphism from K into Aut( H). 
The group described in Theorem 10 is called the semidirect product of H and K with 
respect to cp and will be denoted by H ><l 9  K (when there is no danger of confusion we 
shall simply write H ><l K). 

The notation is chosen to remind us that the copy of H in H ><l K is the normal 
"factor'' and that the construction of a sernidirect product is not symmetric in H and 
K (unlike that of a direct product). Before giving some examples we clarify exactly 
when the sernidirect product of H and K is their direct product (in particular, we see 
that direct products are a special case of sernidirect products). See also Exercise 1 .  

Proposition 1 1. Let H and K be groups and let cp : K � Aut( H) be a homomorphism. 
Then the following are equivalent: 

(1) the identity (set) map between H ><l K and H x K is a group homomorphism 
(hence an isomorphism) 

(2) cp is the trivial homomorphism from K into Aut( H) 
(3) K � H ><l K . 

Proof: ( 1 ) => (2) By definition of the group operation in H ><l K 

(h l , kt ) (h2 . k2) = (h t kt ·h2 , ktk2) 

for all h 1 , h2 E H and k1 , k2 E K. By assumption ( I ) , (h t , kt ) (h2, k2) = (h t h2 , ktk2) .  
Equating the first factors of these ordered pairs gives k1 ·h2 = h2 for all h2 E H and all 
k1 E K, i.e., K acts trivially on H. This is (2). 
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(2) => (3) If ({J is trivial, then the action of K on H is trivial, so that the elements of 
H commute with those of K by Theorem 10(5). In particular, H normalizes K. Since 
K normalizes itself, G = H K normalizes K, which is (3). 

(3) => (1) If K is normal in H ><1 K then (as in the proof of Theorem 9) for all 
h E H and k E K, [h , k] E H n K = 1 .  Thus hk = kh and the action of K on H 
is trivial. The multiplication in the semidirect product is then the same as that in the 
direct product: 

for all h 1 , h2 E H and kt . k2 E K. This gives (1)  and completes the proof. 

Examples 

In all examples H and K are groups and 9 is a homomorphism from K into Aut (H) with 
associated action of K on H denoted by a dot. Let G = H ><J K and as in Theorem 10 we 
identify H and K as subgroups of G. We shall use Propositions 4. 16 and 4. 17  to determine 
homomorphisms 9 for some specific groups H. In each of the following examples the 
proof that 9 is a homomorphism is easy (since K will often be cyclic) so the details are 
omitted. 
(1) Let H be any abelian group (even of infinite order) and let K = ( x ) � Z2 be the 

group of order 2. Define 9 : K -----+ Aut(H) by mapping x to the automorphism of 
inversion on H so that the associated action is x · h = h - 1 , for all h E H. Then G 
contains the subgroup H of index 2 and 

for all h E H. 

Of particular interest is the case when H is cyclic: if H = Zn , one recognizes G as 
D2n and if H = Z we denote G by D00• 

(2) We can generalize the preceding example in a number of ways. One way is to let H be 
any abelian group and to let K = ( x ) � Z2n be cyclic of order 2n. Define 9 again by 
mapping x to inversion, so that x2 acts as the identity on H. In G, xhx-1 = h-1  and 
x2hx -2 = h for all h E H. Thus x2 E Z(G) . In particular, if H = Z3 and K = Z4, 
G is a non-abelian group of order 1 2  which is not isomorphic to A4 or D12 (since its 
Sylow 2-subgroup, K, is cyclic of order 4). 

(3) Following up on the preceding example let H = ( h ) � Z2• and let K = ( x ) � Z4 
with xhx-1 = h - 1 in G. As noted above, x2 E Z(G) . Since x inverts h (i.e., inverts 

H), x inverts the unique subgroup ( z )  of order 2 in H, where z = h2"-
1
• Thus 

xzx-1 = z-1 
= z, so x centralizes z. It follows that z E Z(G) . Thus x2z E Z(G) 

hence ( x2 z ) :SJ G. Let G = G I ( x2 z ) . Since x2 and z are distinct commuting 
elements of order 2, the order of x2z is 2, so IG I  = � I G I  = 2n+1 . By factoring out the 

product x2z to form G we identify x2 and h2"-
1 

in the quotient. In particular, when 
n = 2, both x and h have order 4, x inverts h and P = x2 . It follows that G � Qs in 
this case. In general, one can check that G has a unique subgroup of order 2 (namely 
( x2 ) ) which equals the center of G. The group G is called the generalized quatemion 
group of order 2n+1 and is denoted by Q2n+l : 

2" 4 - 1 -1 2"- 1 2 Q2•+I = ( h , x l h  = x  = l , x  hx = h  , h  = x  ) .  

(4) Let H = <Q (under addition) and let K = ( x ) � Z. Define 9 by mapping x to the 
map "multiplication by 2" on H, so that x acts on h E H by x · h = 2h . Note that 
multiplication by 2 is an automorphism of H because it has a 2-sided inverse, namely 
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multiplication by ! - In the group G, Z ::: Q and the conjugate xzx-1 of Z is a 
proper subgroup of Z (namely 2Z). Thus x ft Nc (Z) even though xzx- 1 ::: Z (note 
that x -1 Zx is not contained in Z). This shows that in order to prove an element g 
normalizes a subgroup A in an infinite group it is not sufficient in general to show that 
the conjugate of A by g is just contained in A (which is sufficient for finite groups). 

(5) For H any group let K = Aut( H) with cp the identity map from K to Aut( H). The 
sernidirect product H ><l Aut( H) is called the holomorph of H and will be denoted by 
Hol(H). Some holomorphs are described below; verifications of these isomorphisms 
are given as exercises at the end of this chapter. 

(a) Hol(Zz x Zz) � S4. 
(b) If IG I  = n and rr : G � Sn is the left regular representation (Section 4.2), then 

Ns. (rr(G)) � Hol(G) . In particular, since the left regular representation of a 
generator of Zn is an n-cycle in Sn we obtain that for any n-cycle ( 1 2 . . .  n) :  

Ns. ( ( (1 2 . . .  n) )) � Hol(Zn) = Zn ><l Aut(Zn) . 
Note that the latter group has order ncp(n). 

(6) Let p and q be primes with p < q, let H = Zq and let K = Zp . We have already seen 
that if p does not divide q - I then every group of order pq is cyclic (see the example 
following Proposition 4. I6). This is consistent with the fact that if p does not divide 
q - 1 ,  there is no nontrivial homomorphism from Z P into Aut( Zq) (the latter group is 
cyclic of order q - I by Proposition 4. I7). Assume now that p I q - 1 .  By Cauchy's 
Theorem, Aut( Zq ) contains a subgroup of order p (which is unique because Aut( Zq ) 
is cyclic). Thus there is a nontrivial homomorphism, cp, from K into Aut( H). The 
associated group G = H ><l K has order pq and K is not normal in G (Proposition 1 1  ) .  
In particular, G is non-abelian. We shall prove shortly that G is (up to isomorphism) 
the unique non-abelian group of order pq . If p = 2, G must be isomorphic to Dzq . 

(7) Let p be an odd prime. We construct two nonisomorphic non-abelian groups of order 
p3 (we shall later prove that any non-abelian group of order p3 is isomorphic to one 
of these two). 

Let H = Zp x Zp and let K = Zp . By Proposition 4. I7, Aut(H) � GLz(lFp) 
and i GLz (lFp) l  = (p2 - I ) (p2 - p). Since p I IAut(H) I , by Cauchy's  Theorem H 
has an automorphism of order p. Thus there is a nontrivial homomorphism, cp, from 
K into Aut( H) and so the associated group H ><l K is a non-abelian group of order p3 . 
More explicitly, if H = ( a )  x ( b ) , and x is a generator for K then x acts on a and b 
by 

x ·a = ab and x · b  = b 

which defines the action of x on all of H. With respect to the lF p-basis a ,  b of the 
2-dimensional vector space H the action of x (which can be considered in additive 
notation as a nonsingular linear transformation) has matrix c �) E GLz(lFp) .  

The resulting sernidirect product has the presentation 

( x , a, b l xP = aP = bP = I , ab = ba ,  xax-1 = ab, xbx-1 = b ) 

(in fact, this group is generated by {x , a}, and is called the Heisenberg group over 
Z/ pZ, cf. Exercise 25).  

Next let H = Zpz and K = Zp . Again by Proposition 4.17, Aut( H) � Zp(p-l) • 
so H admits an automorphism of order p. Thus there is a nontrivial homomorphism, 
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({!, from K into Aut( H) and so the group H ><1 K is non-abelian and of order p3 . More 
explicitly, if H = ( y }, and x is a generator for K then x acts on y by 

X · Y = yl+P . 
The resulting semidirect product has the presentation 

( x , y I xP = yP2 = 1 ,  xyx-1 = yl+P ) . 

These two groups are not isomorphic (the former contains no element of order 
p2, cf. Exercise 25, and the latter clearly does, namely y). 

(8) Let H = Qg x (Z2 x Z2) = ( i , j ) x ( ( a )  x ( b )) and let K = ( y )  � Z3 . The map 
defined by 

j H k = ij a H b b H  ab 

is easily seen to give an automorphism of H of order 3. Let ({! be the homomorphism 
from K to Aut(H) defined by mapping y to this automorphism, and let G be the 
associated semidirect product, so that y E G acts by 

y · i  = j y · j  = k y ·a = b y ·b  = ab. 

The group G = H ><1 K is a non-abelian group of order 96 with the property that the 
element i2a E G' but i2a cannot be expressed as a single commutator [x , y ], for any 
x, y E G (checking the latter assertion is an elementary calculation). 

As in the case of direct products we now prove a recognition theorem for semidirect 
products. This theorem will enable us to "break down" or "factor" all groups of certain 
orders and, as a result, classify groups of those orders. The strategy is discussed in 
greater detail following this theorem. 

Theorem 12. Suppose G is a group with subgroups H and K such that 
(1) H ::;1 G, and 
(2) H n K = 1 .  

Let cp : K --+ Aut(H) be the homomorphism defined by mapping k E K to the 
automorphism of left conjugation by k on H. Then H K � H ><1 K. In particular, if 
G = H K with H and K satisfying ( 1) and (2), then G is the semidirect product of H 
and K. 

Proof Note that since H ::;1 G, H K is  a subgroup of G. By Proposition 8 every 
element of H K can be written uniquely in the form hk, for some h E H and k E K. 
Thus the map hk t-+ (h , k) is  a set bijection from H K onto H ><1 K. The fact that this 
map is a homomorphism is the computation at the beginning of this section which led 
us to the formulation of the definition of the semidirect product. 

Definition. Let H be a subgroup of the group G. A subgroup K of G is called a 
complement for H in G if G = H K and H n K = 1 .  

With this terminology, the criterion for recognizing a semidirect product i s  simply 
that there must exist a complement for some proper nonnal subgroup of G. Not every 
group is the semidirect product of two of its proper subgroups (for example, if the group 
is simple), but as we have seen, the notion of a semidirect product greatly increases our 
list of known groups. 
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Some Classifications 

We now apply Theorem 12 to classify groups of order n for certain values of n.  The 
basic idea in each of the following arguments is to 
(a) show every group of order n has proper subgroups H and K satisfying the hypoth-

esis of Theorem 12  with G = H K 
(b) find all possible isomorphism types for H and K 
(c) for each pair H, K found in (b) find all possible homomorphisms (/) : K -...+ Aut( H) 
(d) for each triple H, K,  (/) found in (c) form the sernidirect product H ><1 K (so any 

group G of order n is isomorphic to one of these explicitly constructed groups) and 
among all these sernidirect products determine which pairs are isomorphic. This 
results in a list of the distinct isomorphism types of groups of order n. 
In order to start this process we must first find subgroups H and K (of an arbitrary 

group G of order n) satisfying the above conditions. In the case of "small" values 
of n we can often do this by Sylow's Theorem. To show nonnality of H we use the 
conjugacy part of Sylow's Theorem or other normality criteria established in Chapter 4 
(e.g., Corollary 4.5). Some of this work has already been done in the examples in 
Section 4.5. In many of the examples that follow, I H I  and I K I  are relatively prime, so 
H n K = 1 holds by Lagrange's Theorem. 

Since H and K are proper subgroups of G one should think of the determination 
of H and K as being achieved inductively. In the examples we discuss, H and K will 
have sufficiently small order that we shall know all possible isomorphism types from 
previous results. For example, in most instances H and K will be of prime or prime 
squared order. 

There will be relatively few possible homomorphisms (/) : K -...+ Aut(H) in our 
examples, particularly after we take into account certain symmetries (such as replacing 
one generator of K by another when K is cyclic). 

Finally, the sernidirect products which emerge from this process will, in our exam
ples, be small in number and we shall find that, for the most part, they are (pairwise) not 
isomorphic. In general, this can be a more delicate problem, as Exercise 4 indicates. 

We emphasize that this approach to "factoring" every group of some given order 
n as a sernidirect product does not work for arbitrary n. For example, Q8 is not a 
sernidirect product since no proper subgroup has a complement (although we saw that 
it is a quotient of a sernidirect product). Empirically, this process generally works well 
when the group order n is not divisible by a large power of any prime. At the other 
extreme, only a small percentage of the groups of order pa for large a (p a prime) are 
nontrivial sernidirect products. 

Example: (Groups of Order pq, p and q primes with p < q) 
Let G be any group of  order pq, let P E Sylp(G) and let Q E Sylq (G). In Example 1 of the 
applications of Sylow's Theorems we proved that G � Q ><1 P, for some ({! : P --+ Aut( Q). 
Since P and Q are of prime order, they are cyclic. The group Aut( Q) is cyclic of order 
q - 1. If p does not divide q - 1 ,  the only homomorphism from P to Aut(Q) is the trivial 
homomorphism, hence the only semidirect product in this case is the direct product, i.e .. 
G is cyclic. 

Consider now the case when p J q - 1 and let P = ( y } . Since Aut( Q) is cyclic it 
contains a unique subgroup of order p, say ( y } , and any homomorphism ({! : P --+ Aut( Q) 
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must map y to a power ofy .  There are therefore p homomorphisms qJ; : P � Aut(Q) given 
by qJ; (y) = yi , 0 :::; i :::; p - 1 .  Since 9'0 is the trivial homomorphism, Q ><�q>o P � Q x P 
as before. Each qJ; for i =f. 0 gives rise to a non-abelian group, G; , of order pq . It is 
straightforward to check that these groups are all isomorphic because for each qJ; , i > 0, 
there is some generator y; of P such that qJ; (y; ) = y .  Thus, up to a choice for the 
(arbitrary) generator of P, these semidirect products are all the same (see Exercise 6. See 
also Exercise 28 of Section 4.3). 

Example: (Groups of Order 30) 

By the examples following Sylow's Theorem every group G of order 30 contains a subgroup 
H of order 15.  By the preceding example H is cyclic and H is normal in G (index 2). By 
Sylow's Theorem there is a subgroup K of G of order 2. Thus G = H K and H n K = 1 
so G � H ><J K, for some qJ :  K � Aut(H).  By Proposition 4.16, 

Aut(Zts) � (IZ/ 15/Z) x � Z4 x Zz. 

The latter isomorphism can be computed directly, or one can use Exercise 1 1  of the pre
ceding section: writing H as ( a )  x ( b )  � Zs x Z3, we have (since these two subgroups 
are characteristic in H) 

Aut(H) � Aut(Zs) x Aut(Z3).  

In particular, Aut(H) contains precisely three elements of order 2,  whose actions on the 
group H = ( a  ) x ( b ) are the following: { a r+ a } 

b t-+ b-1 
{ a r+ a-1 } 

b t-+ b 
Thus there are three nontrivial homomorphisms from K into Aut( H) given by sending the 
generator of K into one of these three elements of order 2 (as usual, the trivial homomor
phism gives the direct product: H x K � Z3o). 

Let K = ( k ) . If the homomorphism 9'1 : K � Aut(H) is defined by mapping k to 
the first automorphism above (so that k ·a  = a  and k · b  = b-1 gives the action of k on H) 
then G 1 = H ><Jq>1 K is easily seen to be isomorphic to Zs x D6 (note that in this semidirect 
product k centralizes the element a of H of order 5, so the factorization as a direct product 
is ( a ) x ( b, k )) .  

If 9'2 is  defined by mapping k to the second automorphism above, then Gz = H ><1 911 K 

is easily seen to be isomorphic to Z3 x Dw (note that in this semidirect product k centralizes 
the element b of H of order 3, so the factorization as a direct product is ( b )  x ( a, k )  ). 

If 9'3 is defined by mapping k to the third automorphism above then G3 = H ><Jq>3 K is 
easily seen to be isomorphic to D3o .  

Note that these groups are all nonisomorphic since their centers have orders 30 (in the 
abelian case), 5 (for Gt  ), 3 (for Gz), and 1 (for G3). 

We emphasize that although (in hindsight) this procedure does not give rise to any 
groups we could not already have constructed using only direct products, the argument 
proves that this is the complete list of isomorphism types of groups of order 30. 

Example: (Groups of Order 12) 

Let G be a group of order 12, let V E Sy[z(G) and let T E Syl3 (G). By the discussion of 
groups of order 12 in Section 4.5 we know that either V or T is normal in G (for purposes 
of illustration we shall not invoke the full force of our results from Chapter 4, namely that 
either T � G or G � A4). By Lagrange's Theorem V n T = 1 .  Thus G is a semidirect 
product. Note that v � z4 or Zz X Zz and T � ZJ. 
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Case 1: V � G 
We must determine all possible homomorphisms from T into Aut( V). If V � Z4, 

then Aut(V) � Zz and there are no nontrivial homomorphisms from T into Aut(V). Thus 
the only group of order 12 with a normal cyclic Sylow 2-subgroup is Z12. 

Assume therefore that V � Z2 x Zz. In this case Aut(V) � S3 and there is a unique 
subgroup of Aut( V) of order 3, say ( y ) . Thus if T = ( y ) , there are three possible 
homomorphisms from T into Aut(V) : 

q;; : T � Aut(V) defined by rp; (y) = yi . i = 0, I , 2. 
As usual, rpo is the trivial homomorphism, which gives rise to the direct product 

Zz x Zz x Z3 . Homomorphisms 91 and 92 give rise to isomorphic semidirect products 
because they differ only in the choice of a generator for T (i.e., 91 (y) = y and rpz (y') = y, 
where y' = y2 and y' is another choice of generator for T - see also Exercise 6). The 
unique non-abelian group in this case is A4. 

Case 2: T � G 
We must determine all possible homomorphisms from V into Aut(T).  Note that 

Aut(T) = ( A )  � Zz, where A inverts T. If v = ( X  ) � z4. there are precisely two 
homomorphisms from V into Aut(T):  the trivial homomorphism and the homomorphism 
which sends x to A. As usual, the trivial homomorphism gives rise to the direct product: 
Z3 x Z4 � Z12 - The nontrivial homomorphism gives the semidirect product which was 
discussed in Example 2 following Proposition I I  of this section. 

Finally, assume V = ( a )  x ( b )  � Zz x Zz. There are precisely three nontrivial 
homomorphisms from V into Aut(T) determined by specifying their kernels as one of the 
three subgroups of order 2 in V. For example, 91 (a) = A and 91 (b) = A has kernel ( ab ) ,  
that is, in  this semi direct product both a and b act by inverting T and ab centralizes T. If 
rpz and 93 have kernels ( a )  and ( b ) , respectively, then one easily checks that the resulting 
three semidirect products are all isomorphic to s3 X Zz, where the Zz direct factor is the 
kernel of q;; . For example, 

T YJrp1 V = ( a,  T )  x ( ab ) . 

In summary, there are precisely 5 groups of order I 2, three of which are non-abelian. 

Example: (Groups of Order p3, p an odd prime) 

Let G be a group of order p3, p an odd prime, and assume G is not cyclic. By Exercise 9 
of the previous section the map x t-+ xP is a homomorphism from G into Z(G) and the 
kernel of this homomorphism has order p2 or p3 . In the former case G must contain an 
element of order p2 and in the latter case every nonidentity element of G has order p. 

Case 1 :  G has an element of order p2 

Let x be an element of order p2 and let H = ( x ) . Note that since H has index 
p, H is normal in G by Corollary 4.5. If E is the kernel of the p1h power map, then in 
this case E � Zp x Zp and E n  H = ( xP ). Let y be any element of E - H and let 
K = ( y ) . By construction, H n K = I and so G is isomorphic to ZP2 YJ Zp , for some 
rp : K � Aut(H). If rp is the trivial homomorphism, G � ZP2 x Zp , so we need only 
consider the nontrivial homomorphisms. By Proposition 4. I 7  Aut( H) � Zp(p-1) is cyclic 
and so contains a unique subgroup of order p, explicitly given by ( y ) where 

y (x) = xl+P _ 
As usual, up to choice of a generator for the cyclic group K, there is only one nontrivial 
homomorphism, rp, from K into Aut(H), given by rp(y) = y ;  hence up to isomorphism 
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there is a unique non-abelian group H � K in this case. This group is described in Example 7 
above. 

Case 2: every nonidentity element of G has order p 
In this case let H be any subgroup of G of order p2 (see Exercise 29, Section 4.3). 

Necessarily H � Zp x Zp . Let K = { y )  for any element y of G - H. Since H has index 
p, H :::1 G and since K has order p but is not contained in H, H n K = 1 .  Then G is 
isomorphic to (Zp x Zp) � Zp. for some q� : K -+  Aut(H}. Ifq� is trivial, G � Zp x Zp x Zp 
(the elementary abelian group), so we may assume q� is nontrivial. By Proposition 4. 17, 

Aut(H} � GL2(lFp) 

so IAut(H} I = (p2 - 1}(p2 - p) . Note that a Sylow p-subgroup of Aut(H) has order 
p so all subgroups of order p in Aut( H) are conjugate in Aut(H) by Sylow's Theorem. 
Explicitly, (as discussed in Example 7 above) every subgroup of order p in Aut(H} is 
conjugate to { y } ,  where if H = { a }  x { b } ,  the automorphism y is defined by 

y (a) = ab and y (b) = b. 

With respect to the lF p-basis a, b of the 2-dimensional vector space H the automorphism 
has matrix 

( � �) e GL2(lFp) .  

Thus (again quoting Exercise 6) there is  a unique isomorphism type of semidirect product 
in this case. 

Finally, since the two non-abelian groups have different orders for the kernels of the 
pth power maps, they are not isomorphic. A presentation for this group is also given in 
Example 7 above. 

E X E R C I S E S 

Let H and K be groups, let q� be a homomorphism from K into Aut( H) and, as usual, identify 
H and K as subgroups of G = H �� K. 

1.  Prove that CK (H) = ker q� (recall that CK (H) = CG (H) n K). 

2. Prove that Cn (K) = Nn (K). 

3. In Example 1 following the proof of Proposition 1 1  prove that every element of G - H 
has order 2. Prove that G is abelian if and only if h2 = 1 for all h e H. 

4. Let p = 2 and check that the construction of the two non-abelian groups of order p3 is  
valid in this case. Prove that both resulting groups are isomorphic to Dg. 

S. Let G = Hol(Z2 x Z2) .  
(a) Prove that G = H � K where H = z2 X z2 and K � s3 . Deduce that I G I  = 24. 
(b) Prove that G is isomorphic to S4. [Obtain a homomorphism from G into &t by letting 

G act on the left cosets of K .  Use Exercise 1 to show this representation is faithful.] 

6. Assume that K is a cyclic group, H is an arbitrary group and 9'11 and 9'12 are homomorphisms 
from K into Aut( H) such that 9'11 (K) and 9'12 ( K) are conjugate subgroups of Aut( H). If K is 
infinite assume 9'11 and 9'12 are injective. Prove by constructing an explicit isomorphism that 
H ��� K � H ��2 K (in particular, if the subgroups q11 (K} and q�2 (K) are equal in Aut(H}, 
then the resulting semidirect products are isomorphic). [Suppose u q�1 (K)u -1 = 9'2 (K) 
so that for some a e Z we have u 9'11 (k)u -1 = q12 (k)a for all k e K. Show that the map 
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1/1 : H XJ"'' K --+ H XJ"'2 K defined by 1/f((h ,  k)) = (a (h) ,  ka ) is a homomorphism. Show 
1/1 is bijective by constructing a 2-sided inverse.] 

7. This exercise describes thirteen isomorphism types of groups of order 56. (It is not too 
difficult to show that every group of order 56 is isomorphic to one of these.) 
(a) Prove that there are three abelian groups of order 56. 
(b) Prove that every group of order 56 has either a normal Sylow 2-subgroup or a normal 

Sylow 7-subgroup. 
(c) Construct the following non-abelian groups of order 56 which have a normal Sylow 

7-subgroup and whose Sylow 2-subgroup S is as specified: 
one group When S ::;:: Z2 X Z2 X Z2 
twO nonisomorphic groups When S ::;:: Z4 X Z2 
one group when S ::;:: Zs 
two nonisomorphic groups when S ::;:: Qs 
three nonisomorphic groups when S ::;:: Ds. 

[For a particular S, two groups are not isomorphic if the kernels of the maps from S 
into Aut(Z7) are not isomorphic.] 

(d) Let G be a group of order 56 with a nonnormal Sylow 7-subgroup. Prove that if S is 
the Sylow 2-subgroup of G then S ::;:: Z2 x Z2 x Z2 . [Let an element of order 7 act 
by conjugation on the seven nonidentity elements of S and deduce that they all have 
the same order.] 

(e) Prove that there is a unique group of order 56 with a nonnormal Sylow 7-subgroup. 
[For existence use the fact that IGL3(lF2) I = 1 68;  for uniqueness use Exercise 6.] 

8. Construct a non-abelian group of order 75. Classify all groups of order 75 (there are three 
of them). [Use Exercise 6 to show that the non-abelian group is unique.] (The classification 
of groups of order pq2, where p and q are primes with p < q and p not dividing q - 1 ,  
i s  quite similar.) 

9. Show that the matrix ( � -!) is an element of order 5 in G L2 (1Ft9) .  Use this matrix 

to construct a non-abelian group of order 1 805 and give a presentation of this group. 
Classify groups of order 1 805 (there are three isomorphism types). [Use Exercise 6 to 
prove uniqueness of the non-abelian group.] (A general method for finding elements 
of prime order in G Ln (lF p) is described in the exercises in Section 12.2; this particular 
matrix of order 5 in GL2ClFt9) appears in Exercise 16 of that section as an illustration of 
the method.) 

10. This exercise classifies the groups of order 147 (there are six isomorphism types). 
(a) Prove that there are two abelian groups of order 147. 
(b) Prove that every group of order 147 has a normal Sylow 7-subgroup. 
(c) Prove that there is a unique non-abelian group whose Sylow 7-subgroup is cyclic. 

(d) Let t1 = ( � �) and t2 = ( � �) be elements of GL2 (lF7) . Prove P = ( t1 . t2 ) is 

a Sylow 3-subgroup of G L2 (lF7) and that P ::;:: Z3 x Z3 . Deduce that every subgroup 
of GL2 (1F7) of order 3 is conjugate in GL2 (lF7) to a subgroup of P. 

(e) By Example 3 in Section 1 the group P has four subgroups of order 3 and these 
are: Pt = ( tt ) , P2 = { t2 ) , P3 = { t1 t2 ) , and P4 = ( t1 t� ) . For i = 1 , 2, 3, 4 let 
G; = (Z7 x Z7) XJ"'' Z3, where q;; is an isomorphism of Z3 with the subgroup P; of 
Aut(Z7 x Z7) . For each i describe G; in terms of generators and relations. Deduce 
that Gt ::;:: G2 . 

(f) Prove that Gt is not isomorphic to either G3 or G4. [Show that the center of Gt  has 
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order 7 whereas the centers of G3 and G4 are trivial.] 
(g) Prove that G3 is not isomorphic to G4. [Show that every subgroup of order 7 in G3 

is normal in G3 but that G4 has subgroups of order 7 that are not normal.] 
(h) Classify the groups of order 147 by showing that the six nonisomorphic groups de

scribed above (two from part (a), one from part (c) and GI ,  G3, and G4) are all the 
groups of order 147. [Use Exercise 6 and part (d).] (The classification of groups of 
order pq

2
, where p and q are primes with p < q and p I q - 1, is quite similar.) 

11. Oassify groups of order 28 (there are four isomorphism types). 

12. Classify the groups of order 20 (there are five isomorphism types). 

13. Classify groups of order 4 p, where p is a prime greater than 3. [There are four isomorphism 
types when p = 3(mod 4) and five isomorphism types when p = 1 (mod 4) .] 

14. This exercise classifies the groups of order 60 (there are thirteen isomorphism types). 
Let G be a group of order 60, let P be a Sylow 5-subgroup of G and let Q be a Sylow 
3-subgroup of G. 
(a) Prove that if P is not normal in G then G � A5 . [See Section 4.5.] 
(b) Prove that if P :'Sl G but Q is not normal in G then G � A4 x Z5. [Show in this case 

that P � Z(G), Gf P � A4, a Sylow 2-subgroup T of G is normal and T Q � A4 .] 
(c) Prove that if both P and Q are normal in G then G � ZI5 >1 T where T � Z4 or 

z2 X z2 . Show in this case that there are six isomorphism types when T is cyclic 
(one abelian) and there are five isomorphism types when T is the Klein 4-group (one 
abelian). [Use the same ideas as in the classifications of groups of orders 30 and 20.] 

15. Let p be an odd prime. Prove that every element of order 2 in G L2 (lF P) is conjugate to a 
diagonal matrix with ± 1  's on the diagonal. Classify the groups of order 2p2 . [If A is a 
2 x 2 matrix with A2 = I and VI , v2 is a basis for the underlying vector space, look at A 
acting on the vectors WI = VI + v2 and w2 = VI - v2 .] 

16. Show that there are exactly 4 distinct homomorphisms from Z2 into Aut(Zg) .  Prove that 
the resulting sernidirect products are the groups: Zg x Z2, DI6 . the quasi dihedral group 
QDI6 and the modular group M (cf. the exercises in Section 2.5). 

17. Show that for any n � 3 there are exactly 4 distinct homomorphisms from Z2 into Aut( Z2" ) .  
Prove that the resulting sernidirect products give 4 nonisomorphic groups of  order 2n+I . 
[Recall Exercises 21 to 23 in Section 2.3.] (These four groups together with the cyclic 
group and the generalized quaternion group, Q2n+J , are all the groups of order 2n+ I which 
possess a cyclic subgroup of index 2.) 

18. Show that if H is any group then there is a group G that contains H as a normal sub
group with the property that for every automorphism a of H there is an element g E G 
such that conjugation by g when restricted to H is the given automorphism a ,  i.e., every 
automorphism of H is obtained as an inner automorphism of G restricted to H. 

19. Let H be a group of order n, let K = Aut( H) and form G = Hol(H) = H >1 K (where cp 
is the identity homomorphism). Let G act by left multiplication on the left cosets of K in 
G and let rr be the associated permutation representation rr : G � Sn . 
(a) Prove the elements of H are cosetrepresentatives fortheleft cosets of K in G  and with 

this choice of coset representatives rr restricted to H is the regular representation of H.  
(b) Prove rr(G) is the normalizer in  Sn of rr (H).  Deduce that under the regular repre

sentation of any finite group H of order n, the normalizer in Sn of the image of H is 
isomorphic to Hol(H). [Show I G I  = I Ns., (rr(H)) I using Exercises 1 and 2 above.] 

(c) Deduce that the normalizer of the group generated by an n-cycle in Sn is isomorphic 
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20. Let p be an odd prime. Prove that if P is a non-cyclic p-group then P contains a normal 
subgroup U with U � Zp x Zp. Deduce that for odd primes p a p-group that contains 
a unique subgroup of order p is cyclic. (For p = 2 it is a theorem that the generalized 
quaternion groups Qz .. are the only non-cyclic 2-groups which contain a unique subgroup 
of order 2) . [Proceed by induction on I P l . Let Z be a subgroup of order p in Z(P) and 
let P = PfZ. If p is cyclic then P is abelian by Exercise 36 in Section 3 . 1 - show the 
result is true for abelian groups. When P is not cyclic use induction to produce a normal 
subgroup H of P with H � Zp x Zp. Let H be the complete preimage of H in P, so 
I H I  = p3 . Let Ho = {x E H I xP = 1 }  so that Ho is a characteristic subgroup of H of 
order p2 or p3 by Exercise 9 in Section 4. Show that a suitable subgroup of Ho gives the 
desired normal subgroup U.] 

21. Let p be an odd prime and let P be a p-group. Prove that if every subgroup of P is normal 
then P is abelian. (Note that Qs is a non-abelian 2-group with this property, so the result 
is false for p = 2.) [Use the preceding exercises and Exercise 15 of Section 4.] 

22. Let F be a field let n be a positive integer and let G be the group of upper triangular 
matrices in GLn (F) (cf. Exercise 16, Section 2. 1 )  
(a) Prove that G i s  the sernidirect product U ><l D where U i s  the set of upper triangular 

matrices with 1 's down the diagonal ( cf. Exercise 1 7, Section 2. 1 )  and D is the set of 
diagonal matrices in GLn (F). 

(b) Let n=2. Recall that U � F and D � F x  x F x  (cf. Exercise 1 1  in Section 3 . 1 ) .  
Describe the homomorphism from D into Aut(U) explicitly in terms of these isomor
phisms (i.e., show how each element of Fx x F x  acts as an automorphism on F). 

23. Let K and L be groups, let n be a positive integer, let p : K -+ Sn be a homomorphism 
and let H be the direct product of n copies of L. In Exercise 8 of Section 1 an injective 
homomorphism 1/r from Sn into Aut(H) was constructed by letting the elements of Sn 
permute the n factors of H. The composition 1/r o p is a homomorphism from G into 
Aut( H).  The wreath product of L by K is the semidirect product H ><l K with respect to 
this homomorphism and is denoted by L 1 K (this wreath product depends on the choice 
of permutation representation p of K - if none is given explicitly, p is assumed to be the 
left regular representation of K). 
(a) Assume K and L are finite groups and p is the left regular representation of K. Find 

I L 1 K l  in terms of I K I and I L l .  
(b) Let p be a prime, let K = L = Zp and let p be the left regular representation of K. 

Prove that Zp 1 Zp is  a non-abelian group of order pP+l and is isomorphic to a Sylow 
p-subgroup of SP2 .  [The p copies of Zp whose direct product makes up H may be 
represented by p disjoint p-cycles; these are cyclically permuted by K .] 

24. Let n be an integer > 1 .  Prove the following classification: every group of order n is 
abelian if and only if n = pf ' p�2 • • •  p�' , where PI , . . .  , Pr are distinct primes, a; = 1 or 
2 for all i E { 1 ,  . . . , r }  and p; does not divide p ;1 - 1 for all i and j .  [See Exercise 56 in 
Section 4.5.] 

25. Let H (IF P) be the Heisenberg group over the finite field IF P = 7!./ p7!. (cf. Exercise 20 in 
Section 4). Prove that H(IFz) � Ds, and that H(IFp) has exponent p and is isomorphic to 
the first non-abelian group in Example 7. 
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CHAPTER 6 

Fu rt h e r  To p ics in G ro u p Theory 

6.1 p-GROUPS. N ILPOTENT GROUPS. AND SOLVABLE GROUPS 

Let p be a prime and let G be a finite group of order pan, where p does not divide 
n.  Recall that a (finite) p-group is any group whose order is a power of p. Sylow's 
Theorem shows that p-groups abound as subgroups of G and in order to exploit this 
phenomenon to unravel the structure of finite groups it will be necessary to establish 
some basic properties of p-groups. In the next section we shall apply these results in 
many specific instances. 

Before giving the results on p-groups we first recall a definition that has appeared 
in some earlier exercises. 

Definition. A maximal subgroup of a group G is a proper subgroup M of G such that 
there are no subgroups H of G with M < H < G. 

By order considerations every proper subgroup of a finite group is  contained in 
some maximal subgroup. In contrast, infinite groups may or may not have maximal 
subgroups. For example, p'll is a maximal subgroup of 7l whereas Q (under +) has no 
maximal subgroups (cf. Exercise 16 at the end of this section). 

We now collect all the properties of p-groups we shall need into an omnibus theo
rem: 

Theorem 1. Let p be a prime and let P be a group of order pa, a � 1 .  Then 
(1) The center of P is nontrivial: Z(P) =f. 1 .  
(2) If H is a nontrivial normal subgroup of P then H intersects the center non

trivially: H n Z(P) =f. 1 .  In particular, every normal subgroup of order p is 
contained in the center. 

(3) If H is a normal subgroup of P then H contains a subgroup of order ph that is 
normal in P for each divisor ph of I H 1. In particular, P has a normal subgroup 
of order ph for every b E  {0, 1 ,  . . .  , a} .  

(4) If H < P then H < Np (H) (i.e., every proper subgroup of P is a proper 
subgroup of its normalizer in P). 

(5) Every maximal subgroup of P is of index p and is normal in P. 

Proof: These results rely ultimately on the class equation and it  may be useful for 
the reader to review Section 4.3. 
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Part 1 is Theorem 8 of Chapter 4 and is also the special case of part 2 when H = P.  
We therefore begin by proving (2); we shall not quote Theorem 8 of Chapter 4 although 
the argument that follows is only a slight generalization of the one in Chapter 4. Let 
H be a nontrivial normal subgroup of P .  Recall that for each conjugacy class C of P, 
either C � H or C n H = l2l because H is normal (this easy fact was shown in a remark 
preceding Theorem 4. 12). Pick representatives of the conjugacy classes of P :  

with a1 , . . . , ak E H and ak+l • . . .  , ar fj. H. Let C; be the conjugacy class of a; i n  P,  
for all  i .  Thus 

C; � H, 1 :::::: i :::::: k and C; n H = 12!, k + 1 :::::: i :::::: r. 

By renumbering a1 , . . . , ak if necessary we may assume a1 , . . .  , as represent classes of 
size 1 (i.e. ,  are in the center of P) and as+ I . . . .  , ak represent classes of size > 1 .  Since 
H is the disjoint union of these we have 

k 
I P I 

I H I  = I H n Z(P) I + L 
i=s+l I Cp (a; ) l  

Now p divides I H I  and p divides each term i n  the sum L�=s+l I P  : Cp (a; ) l  so p 
divides their difference: I H n Z(P) I . This proves H n Z(P) f 1 .  If I H I  = p, since 
H n Z(P) f 1 we must have H :::::: Z(P).  This completes the proof of (2). 

Next we prove (3) by induction on a.  If a :::::: 1 or H = 1, theresult is trivial. Assume 
therefore that a > 1 and H f 1 .  By part 2, H n Z(P) f 1 so by Cauchy's Theorem 
H n Z(P) contains a (normal) subgroup Z of order p. Use bar notation to denote 
passage to the quotient group PI Z. This quotient has order pa- l and H � P.  By 
induction, for every nonnegative integer b such that pb divides I H I  there is a subgroup 
K of H of order pb that is normal in P .  If K is the complete preirnage of K in P then 
I K I  = pb+l . The set of all subgroups of H obtained by this process together with the 
identity subgroup provides a subgroup of H that is normal in P for each divisor of I H 1 -
The second assertion of part 3 i s  the special case H = P.  This establishes p art  3. 

We prove (4) also by induction on I P l .  If P is abelian then all subgroups of P 
are normal in P and the result is trivial. We may therefore assume I P 1 > p (in fact, 
I P I > p2 by Corollary 4.9). Let H be a proper subgroup of P.  Since all elements 
of Z(P) commute with all elements of P, Z(P) normalizes every subgroup of P.  By 
part 1 we have that Z(P) f 1. If Z(P) is not contained in H, then H is properly 
contained in { H, Z(P) ) and the latter subgroup is contained in N p (H) so (4) holds. 
We may therefore assume Z(P) :::::: H. Use bar notation to denote passage to the 
quotient PI Z ( P) .  Since P has smaller order than P by ( 1 ), by induction H is properly 
contained in Np-(H). It follows directly from the Lattice Isomorphism Theorem that 

N p (H) is the complete preirnage in P of Np-(H), hence we obtain proper containment 
of H in its normalizer in this case as well. This completes the induction. 

To prove (5) let M be a maximal subgroup of P .  By definition, M < P so by part 
4, M < Np (M). By definition of maximality we must therefore have Np (M) = P, 
i.e., M � P .  The Lattice Isomorphism Theorem shows that PI M is a p-group with 
no proper nontrivial subgroups because M is a maximal subgroup. By part 3, however, 
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P/M has subgroups ofevery order dividing I P/MI .  The only possibility is I P/MI = p .  
This proves (5) and completes the proof of the theorem. 

Definition. 
(1) For any (finite or infinite) group G define the following subgroups inductively: 

Zo(G) = 1 , 

and Zi+t (G) is the subgroup of G containing Z; (G) such that 

Zi+t (G)/Z; (G) = Z(G/Z; (G)) 

(i.e., Z;+1 (G) is the complete preimage in G of the center of G/Z; (G) under 
the natural projection). The chain of subgroups 

is called the upper central series of G. (The use of the term "upper" indicates 
that Z; (G) � Zi+t (G) .) 

(2) A group G is called nilpotent if Zc (G) = G for some c E Z. The smallest such 
c is called the nilpotence class of G. 

One of the exercises at the end of  this section shows that Z; (G) is a characteristic 
(hence normal) subgroup of G for all i .  We use this fact freely from now on. 

Remarks: 
(1) If G is abelian then G is nilpotent (of class 1 , provided I G I > 1 ), since in this 

case G = Z(G) = Z1 (G). One should think of nilpotent groups as lying between 
abelian and solvable groups in the hierarchy of structure (recall that solvable groups 
were introduced in Section 3.4; we shall discuss solvable groups further at the end 
of this section): 

cyclic groups C abelian groups C nilpotent groups C solvable groups C all groups 
(all of the above containments are proper, as we shall verify shortly). 

(2) For any finite group there must, by order considerations, be an integer n such that 

Zn (G) = Zn+t (G) = Zn+2 (G) = · · · .  
For example, Zn (S3) = 1 for all n E z+. Once two terms in the upper central 
series are the same, the chain stabilizes at that point (i.e., all terms thereafter are 
equal to these two). For example, if G = z2 X SJ , 

Z(G) = Z1 (G) = Z2 (G) = Zn (G) has order 2 for all n .  

By definition, Zn (G) i s  a proper subgroup of  G for all n for non-nilpotent groups. 
(3) For infinite groups G it may happen that all Z; (G) are proper subgroups of G (so 

G is not nilpotent) but 
00 

G = U Z; (G) . 
i=O 
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Groups for which this hold are called hypernilpotent - they enjoy some (but 
not all) of the properties of nilpotent groups. While we shall be dealing mainly 
with finite nilpotent groups, results that do not involve the notion of order, Sylow 
subgroups etc. also hold for infinite groups. Even for infinite groups one of the 
main techniques for dealing with nilpotent groups is induction on the nilpotence 
class. 

Proposition 2. Let p be a prime and let P be a group of order pa
. Then P is nilpotent 

of nilpotence class at most a - 1 .  

Proof For each i ;:: 0, P I  Zi ( P )  is a p-group, so 

if I P  IZ; ( P) I > 1 then Z(P IZ; (P)) "f:. 1  

by Theorem 1 ( 1 ). Thus if Z; (P) "I G then I Zi+t (P) I :::: p i Zi (P) I and so I Zi+t (P) I ;:: 

p
i+ 1 • In particular, I Za ( P) I ;:: p

a
, so P = Za ( P) .  Thus P is nilpotent of class � a .  

The only way P could be of nil potence class exactly equal to a would be if I Zi ( P)  1 = pi 

for all i .  In this case, however, Za-z (P) would have index p2 in P, so PIZa_2(P) 
would be abelian (by Corollary 4.9). But then P IZa-z (P) would equal its center and 
so Za- l  (P) would equal P, a contradiction. This proves that the class of P is � a - 1 .  

Example 

Both Ds and Qs are nilpotent of class 2. More generally, Dzn is nilpotent of class n - 1 .  
This can b e  proved inductively by showing that I Z ( Dz" ) I = 2 and Dzn f Z ( Dzn ) � Dzn-I 
for n :::: 3 (the details are left as an exercise). If n is not a power of 2, Dzn is not nilpotent 
(cf. Exercise 10).  

We now give some equivalent (and often more workable) characterizations of nil po
tence for finite groups: 

Theorem 3. Let G be a finite group, let Pt , pz , . . .  , Ps be the distinct primes dividing 
its order and let P; E Sylp, (G) , 1 � i � s .  Then the following are equivalent: 

(1) G is nilpotent 
(2) if H < G then H < Nc (H), i.e., every proper subgroup of G is a proper 

subgroup of its normalizer in G 
(3) Pi � G for 1 � i � s, i.e., every Sylow subgroup is normal in G 
(4) G � Pt X Pz X · · · X Ps . 

Proof The proof that ( 1 ) implies (2) is the same argument as for p-groups - the 
only fact we needed was if G is nilpotent then so is G I Z (G) - so the details are omitted 
(cf. the exercises). 

To show that (2) implies (3) let P = P; for some i and let N = Nc (P) .  Since 
P � N, Corollary 4.20 gives that P is characteristic in N. Since P char N � Nc (N) 
we get that P � Nc (N). This means Nc (N) � N and hence Nc (N) = N. By (2) we 
must therefore have N = G, which gives (3) . 

Next we prove (3) implies (4). For any t, 1 � t � s we show inductively that 

Pt Pz · · · Pt � Pt x Pz x · · · x Pt .  
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Note first that each P; is normal in G so PI · · · P, is a subgroup of G. Let H be the 
product PI · · ·  P,_I and let K = P1 , so by induction H � PI x · · ·  x P1- I . In particular, 
I H I = ! PI I · I P2 l ·  · · I Pt-I l · Since I K I = I P, l ,  the orders of H and K are relatively 
prime. Lagrange's Theorem implies H n K = 1 .  By definition, PI · · · P, = H K, 
hence Theorem 5.9 gives 

H K � H X K = (PI X . . .  X P,_I ) X P, � PI X . . • X P, 
which completes the induction. Now take t = s to obtain (4). 

Finally, to prove (4) implies ( 1 )  use Exercise 1 of Section 5. 1 to obtain 

Z(P1 X • • • X Ps) � Z(P1 ) X • · • X Z(P8) .  

By Exercise 14  in Section 5. 1 ,  

G/Z(G) = (P1 /Z(P1 )) X · · · X (P5 /Z(P5)) .  
Thus the hypotheses of (4) also hold for G/Z(G). By Theorem 1 ,  if  P; =j:. 1 then 
Z(P; ) =j:. 1 , so if G =j:. 1 , !G/Z(G) I < ! G ! .  By induction, GjZ(G) is nilpotent, so by 
Exercise 6, G is nilpotent. This completes the proof. 

Note that the first part of the Fundamental Theorem of Finite Abelian Groups 
(Theorem 5 in Section 5.2) follows immediately from the above theorem (we shall give 
another proof later as a consequence of the Chinese Remainder Theorem): 

Corollary 4. A finite abelian group is the direct product of its Sylow subgroups. 

Next we prove a proposition which will be used later to show that the multiplicative 
group of a finite field is cyclic (without using the Fundamental Theorem ofFiniteAbelian 
Groups). 

Proposition 5. If G is a finite group such that for all positive integers n dividing its 
order, G contains at most n elements x satisfying xn = 1 ,  then G is cyclic. 

Proof Let I G I = p�1 • • • p�· and let P; be a Sylow p; -subgroup of G for 

i = 1 ,  2, . . . , s .  Since p�; I ! G I  and the p�; elements of P; are solutions of xP�; = 1 ,  
by hypothesis P; must contain all solutions to this equation in G. It follows that P; is 
the unique (hence normal) Sylow p; -subgroup of G. By Theorem 3, G is the direct 
product of its Sylow subgroups. By Theorem 1 ,  each P; possesses a normal subgroup 

M; of index p; . Since I M; I = p�; - 1 and G has at most p�; - 1 solutions to xP�; - 1 
= 1,  

by Lagrange's Theorem (Corollary 9, Section 3.2) M contains all elements x of G 
a · - 1  a ·  

satisfying xP;
' = 1. Thus any element of P; not contained in M; satisfies xP'

' = 1 
but xP�, - 1 

=j:. l, i.e., x is an element of order p�; .  This proves P; is cyclic for all i ,  so G 
is the direct product of cyclic groups of relatively prime order, hence is cyclic. 

The next proposition is called Frattini's Argument. We shall apply it to give another 
characterization of finite nilpotent groups. It will also be a valuable tool in the next 
section. 
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Proposition 6. ( Frattini 's Argument) Let G be a finite group, let H be a normal subgroup 
of G and let P be a Sylow p-subgroup of H.  Then G = HNc (P) and I G  : H I  divides 
I Nc (P) I . 

Proof" By Corollary 3 . 15 ,  H Nc (P) is a subgroup of G and H Nc (P) = Nc (P)H 
since H is a normal subgroup of G. Let g E G. Since pg :::S Hg = H, both P and pg 

are Sylow p-subgroups of H. By Sylow's Theorem applied in H, there exists x E H 
such that Pg = px _ Thus gx-1 E Nc (P) and so g  E Nc (P)x. Since g was an arbitrary 
element of G, this proves G = Nc (P)H. 

Apply the Second Isomorphism Theorem to G =  Nc (P)H to conclude that 

I G  : H I = I Nc (P) : Nc (P) n H I  

so I G  : H I  divides I Nc (P) I ,  completing the proof. 

Proposition 7. A finite group is nilpotent if and only if every maximal subgroup is 
normal. 

Proof" Let G be a finite nilpotent group and let M be a maximal subgroup of G. 
As in the proof of Theorem 1 ,  since M < Nc (M) (by Theorem 3(2)) maximality of M 
forces Nc (M) = G, i.e., M :'::J G.  

Conversely, assume every maximal subgroup of the finite group G is  normal. Let 
P be a Sylow p-subgroup of G. We prove P :'::J G and conclude that G is nilpotent by 
Theorem 3(3). If P is not normal in G let M be a maximal subgroup of G containing 
Nc (P).  By hypothesis, M :'::J G hence by Frattini's Argument G = MNc (P).  Since 
Nc (P) :::S M we have MNc (P) = M, a contradiction. This establishes the converse. 

Commutators and the Lower Central Series 

For the sake of completeness we include the definition of the lower central series of a 
group and state its relation to the upper central series. Since we shall not be using these 
results in the future, the proofs are left as (straightforward) exercises. 

Recall that the commutator of two elements x, y in a group G is defined as 

[x , y] = x-1y-1xy, 
and the commutator of two subgroups H and K of G is 

[H, K] = ( [h , k] I h E H, k E K ) .  
Basic properties of commutators and the commutator subgroup were established in 
Section 5.4. 

Definition. For any (finite or infinite) group G define the following subgroups induc
tively: 

The chain of groups 

G1 = [G, G] and Gi+1 = [G, Gt 
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is called the lower central series of G. (The term "lower" indicates that Gi :::: Gi+1 .) 

As with the upper central series we include in the exercises at the end of this section 
the verification that G; is a characteristic subgroup of G for all i .  The next theorem 
shows the relation between the upper and lower central series of a group. 

Theorem 8. A group G is nilpotent if and only if G" = I for some n :::: 0. More 
precisely, G is nilpotent of class c if and only if c is the smallest nonnegative integer 
such that Gc = 1 .  If G is nilpotent of class c then 

Z; (G) _::: Gc-i-t _::: Z;+t (G) for all i E {0, 1 ,  . . . , c - 1 } .  

Proof" This is proved by a straightforward induction on the length of either the 
upper or lower central series. 

The terms of the upper and lower central series do not necessarily coincide in 
general although in some groups this does occur. 

Remarks: 
(1) If G is abelian, we have already seen that G' = G 1 = 1 so the lower central series 

terminates in the identity after one term. 
(2) As with the upper central series, for any finite group there must, by order consid

erations, be an integer n such that 

G" = G"+t = on+2 = . . . .  
For non-nilpotent groups, G" is a nontrivial subgroup of G. For example, in 
Section 5 .4 we showed that S� = S� = A3 •  Since S3 is not nilpotent, we must have 
Sr = A3 . In fact 

( 123) = [( 12) , ( 1 32)) E [S3 , Sl J = Si . 

Once two terms in the lower central series are the same, the chain stabilizes at that 
point i.e., all terms thereafter are equal to these two. Thus S� = A3 for all i :::: 2. 
Note that S3 is an example where the lower central series has two distinct terms 
whereas all terms in the upper central series are equal to the identity (in particular, 
for non-nilpotent groups these series need not have the same length). 

Solvable Groups and the Derived Series 

Recall that in Section 3.4 a solvable group was defined as one possessing a series: 

such that each factor H;+t f H; is abelian. We now give another characterization of 
solvability in terms of a descending series of characteristic subgroups. 
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Definition. For any group G define the following sequence of subgroups inductively: 

G<0> = G, G(l) = [G, G] and G<i+1> = [G<n .  G<n] for all i ::: 1 .  
This series of subgroups is called the derived or commutator series of G. 

The terms ofthis series are also often written as: G<1> = G', G<2> = G", etc. Again 
it is left as an exercise to show that each G(i) is characteristic in G for all i .  

It i s  important to note that although G<0> = G 0  and G<1>  = G1 , it i s  not in general 
true that G(i) = G; . The difference is that the definition of the i+1 st term in the lower 
central series is the commutator of the ;th term with the whole group G whereas the 
i +1st term in the derived series is the commutator of the ;th term with itself. Hence 

G<n ::; G; for all i 

and the containment can be proper. For example, in G = S3 we have already seen that 
G1 = G' = A3 and G2 = [8:3 , A3] = A3, whereas G<2> = [A3 , A3] = 1 (A3 being 
abelian). 

Theorem 9. A group G is solvable if and only if G<n> = 1 for some n ::: 0. 

Proof: Assume first that G is solvable and so possesses a series 

1 = Ho :'9 H1 :'9 · · · :'9 Hs = G 

such that each factor H;+ 1 I H; is abelian. We prove by induction that G<n .::: Hs-i . This 
is true for i = 0, so assume G(i) .::: Hs-i . Then 

G<i+1> = [G<i> , G<i) ] .::: [Hs-i • Hs-; ]. 

Since Hs-dHs-i-1 is abelian, by Proposition 5.7(4), [Hs-i • Hs-i 1  .::: Hs-i-1 ·  Thus 
G<i+1> .::: Hs-i-t . which completes the induction. Since Ho = 1 we have G<s> = 1 .  

Conversely, if G<n> = 1 for some n ::: 0, Proposition 5 .7(4) shows that if we take 
H; to be G<n-i) then H; is a normal subgroup of Hi+l with abelian quotient, so the 
derived series itself satisfies the defining condition for solvability of G. This completes 
the proof. 

If G is solvable, the smallest nonnegative n for which G<n> = 1 is called the 
solvable length of G. The derived series is a series of shortest length whose successive 
quotients are abelian and it has the additional property that it consists of subgroups that 
are characteristic in the whole group (as opposed to each just being normal in the next 
in the initial definition of solvability). Its "intrinsic" definition also makes it easier to 
work with in many instances, as the following proposition (which reproves some results 
and exercises from Section 3.4) illustrates. 

Proposition 10. Let G and K be groups, let H be a subgroup of G and let q; : G -+ K 
be a surjective homomorphism. 

(1) H(i) .::: G(i) for all i ::: 0. In particular, if G is solvable, then so is H, i.e., 
subgroups of solvable groups are solvable (and the solvable length of H is less 
than or equal to the solvable length of G). 
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(2) q; (G <i) ) = K (i) . In particular, homomorphic images and quotient groups of 
solvable groups are solvable (of solvable length less than or equal to that of the 
domain group). 

(3) If N is normal in G and both N and GIN are solvable then so is G. 

Proof Part 1 follows from the observation that since H ::::: G ,  by definition of 
commutator subgroups, [H, H] ::::: [G, G], i.e., H(l) ::::: G(l) .  Then, by induction, 

H(il ::S: c<il for all i E z+ . 
In particular, if c<n> = 1 for some n, then also H(n) = 1 .  This establishes ( 1 ). 

To prove (2) note that by definition of commutators, 

q; ([x , y]) = [q; (x) ,  q; (y)] 

so by induction q; (G(il ) ::::: K U) . Since q; is smjective, every commutator in K is the 
image of a commutator in G, hence again by induction we obtain equality for all i . 
Again, if c<n> = 1 for some n then K<n> = 1 .  This proves (2). 

Finally, if GIN and N are solvable, of lengths n and m respectively then by (2) 
applied to the natural projection q; : G --+ GIN we obtain 

q; (G <n> ) = (GIN) <n> = 1 N  

i.e. , c<n> _::::: N. Thus c<n+m) = (G<n> ) <m> ::::: N<m> = 1 .  Theorem 9 shows that G is 
solvable, which completes the proof. 

Some additional conditions under which finite groups are solvable are the following: 

Theorem 11. Let G be a finite group. 
(1) (Burnside) If I G I  = p0qb for some primes p and q, then G is solvable. 
(2) (Philip Hall) If for every prime p dividing I G I  we factor the order of G as 

I G I  = p0m where (p, m) = 1 ,  and G has a subgroup of order m, then G is 
solvable (i.e., if for all primes p, G has a subgroup whose index equals the order 
of a Sylow p-subgroup, then G is solvable - such subgroups are called Sylow 
p-complements). 

(3) (Feit-Thompson) If I G I  is odd then G is solvable. 
(4) (Thompson) If for every pair of elements x ,  y E G, { x, y ) is a solvable group, 

then G is solvable. 

We shall prove Burnside's Theorem in Chapter 1 9  and deduce Philip Hall's gener
alization of it. As mentioned in Section 3.5, the proof of the Feit-Thompson Theorem 
takes 255 pages. Thompson's Theorem was first proved as a consequence of a 475 page 
paper (that in tum relies ultimately on the Feit-Thompson Theorem). 

A Proof of the Fundamental  Theorem of Finite Abelian Groups 

We sketch a group-theoretic proof of the result that every finite abelian group is a 
direct product of cyclic groups (i.e., Parts 1 and 2 of Theorem 5, Section 5.2) - the 
Classification of Finitely Generated Abelian Groups (Theorem 3, Section 5.2) will be 
derived as a consequence of a more general theorem in Chapter 1 2. 
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By Corollary 4 it suffices to prove that for p a prime, any abelian p-group is a direct 
product of cyclic groups (the divisibility condition in Theorem 5.5 is trivially achieved 
by reordering factors). Let A be an abelian p-group. We proceed by induction on ! A I .  

If E is an elementary abelian p-group (i.e., xP = l for all x E E), we first prove 
the following result: 

for any x E E,  there exists M :=:: E with E = M x ( x  ) . 

If x = 1 ,  let M = E. Otherwise let M be a subgroup of E of maximal order subject to 
the condition that x not be an element of M. If M is not of index p in E, let E = E j M. 
Then E is elementary abelian and there exists y E E - ( :X ) .  Since y has order p, we 
also have :X ¢ ( y ) .  The complete preimage of ( y )  in E is a subgroup of E that does 
not contain x and whose order is larger than the order of M, contrary to the choice of 
M. This proves I E  : Ml = p, hence 

E = M ( x ) and M n ( x ) = l .  
By the recognition theorem for direct products, Theorem 5 .9, E = M x ( x ) , as asserted. 

Now let <p : A ---+ A be defined by q;(x) = xP (see Exercise 7, Section 5.2). Then 
<p is a homomorphism since A is abelian. Denote the kernel of <p by K and denote the 
image of <p by H. By definition K = {x E A I xP = 1 }  and H is the subgroup of A 
consisting of p1h powers. Note that both K and A/ H are elementary abelian. By the 
First Isomorphism Theorem 

lA : H I = I K I .  

B y  induction, 

H = ( h! } X · · · X ( hr )  

� zp"l X • • • X Zp"r a; � 1 ,  i = 1 , 2, . . . ' r. 

By definition of <p, there exist elements g; E A such that gf = h; ,  1 :=:: i :=:: r .  Let 
Ao = ( gl ,  · · · , gr ) . It is an exercise to see that 

(a) Ao = ( gl ) x · · · x ( gr ) , 
(b) Aof H = ( gl H ) x · · · x ( grH ) is elementary abelian of order p

r
, and 

t.q - J  ar -1  
(c) H n K = ( hf ) x · · · x ( hf ) is elementary abelian of order pr. 

If K is contained in H, then I K I  = IK n HI = pr = lAo : H I . In this case by 
comparing orders we see that A0 = A and the theorem is proved. Assume therefore 
that K is not a subgroup of H and use the bar notation to denote passage to the quotient 
group A j H. Let x E K - H, so I :XI = lx I = p. By the initial remark of the proof 
applied to the elementary abelian p-group E = A, there is a subgroup M of A such 
that 

A =  M X { :X ) . 

If M is the complete preimage in A of M, then since x has order p and x ¢ M, we have 
( x ) n M = 1 .  By the recognition theorem for direct products, 

A = M x ( x ) . 
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By induction, M is a direct product of cyclic groups, hence so is A. This completes the 
proof. 

The uniqueness of the decomposition of a finite abelian group into a direct product 
of cyclic groups (Part 3 of Theorem 5.5) can also be proved by induction using the pth
power map (i.e., using Exercise 7, Section 5.2). This is essentially the procedure we 
follow in Section 1 2. 1  for the uniqueness part of the proof of the Fundamental Theorem 
of Finitely Generated Abelian Groups. 

E X E R C I S E S 

1. Prove that Z; (G) is a characteristic subgroup of G for all i .  
2. Prove Parts 2 ·and 4 of Theorem 1 for G a finite nilpotent group, not necessarily a p-group. 

3. If G is finite prove that G is nilpotent if and only if it has a normal subgroup of each order 
dividing I G I ,  and is cyclic if and only if it has a unique subgroup of each order dividing I G 1 .  

4 .  Prove that a maximal subgroup o f  a finite nilpotent group has prime index. 

5. Prove Parts 2 and 4 of Theorem 1 for G an infinite nilpotent group. 

6. Show that if G I Z (G) is nilpotent then G is nilpotent. 

7. Prove that subgroups and quotient groups of nilpotent groups are nilpotent (your proof 
should work for infinite groups). Give an explicit example of a group G which possesses 
a normal subgroup H such that both H and G I H are nilpotent but G is not nilpotent. 

8. Prove that if p is a prime and P is a non-abelian group of order p3 then I Z(P) I = p and 
PIZ(P) � Zp x Zp. 

9. Prove that a finite group G is nilpotent if and only if whenever a ,  b E G  with ( la l , lb l )  = 1 
then ab = ba . [Use Part 4 of Theorem 3.] 

10. Prove that Dzn is nilpotent if and only if n is a power of 2. [Use Exercise 9.] 

11. Give another proof of Proposition 5 under the additional assumption that G is abelian by 
invoking the Fundamental Theorem of Finite Abelian Groups. 

12. Find the upper and lower central series for A4 and S4. 

13. Find the upper and lower central series for An and Sn . n :=:: 5. 

14. Prove that Gi is a characteristic subgroup of G for all i .  
15. Prove that Z; (Dzn ) = D2"-l-i . 
16. Prove that Q has no maximal subgroups. [Recall Exercise 2 1 ,  Section 3.2.] 

17. Prove that G(i) is a characteristic subgroup of G for all i .  

18. Show that i f  G' 1 G" and G "  1 G"' are both cyclic then G "  = 1 .  [You may assume G"' = 1 .  
Then GI G" acts by conjugation on the cyclic group G" .] 

19. Show that there is no group whose commutator subgroup is isomorphic to S4. [Use the 
preceding exercise.] 

20. Let p be a prime, let P be a p-subgroup of the finite group G, let N be a normal subgroup 
of G whose order is relatively prime to p and let G = G 1 N. Prove the following: 
(a) Nc;(P) = NG(P) [Use Frattini's Argument.] 

(b) Cc;(P) = CG(P) . [Use part (a).] 

For any group G the Frattini subgroup of G (denoted by cp {G)) is defined to be the intersection 
of all the maximal subgroups of G (if G has no maximal subgroups, set cp (G) = G). The next 
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few exercises deal with this important subgroup. 

21. Prove that IP (G) is a characteristic subgroup of G. 
22. Prove that if N � G then iP (N) :::= IP (G). Give an explicit example where this containment 

does not hold if N is not normal in G. 
23. Compute IP (S3), IP (A4), IP (S4) ,  IP (A5) and IP (S5). 

24. Say an element x of G is a nongenerator if for every proper subgroup H of G, ( x ,  H ) 
is also a proper subgroup of G. Prove that 4> (G) is the set of nongenerators of G (here 
I G I > 1 ). 

25. Let G be a finite group. Prove that IP (G) is nilpotent. [Use Frattini's Argument to prove 
that every Sylow subgroup of IP (G) is normal in G .] 

26. Let p be a prime, let P be a finite p-group and let P = P I4> (P) . 
(a) Prove that P is an elementary abelian p-group. [Show that P' :::= IP(P) and that 

xP E IP (P) for all x E P .] 
(b) Prove that if N is any normal subgroup of P such that PIN is elementary abelian 

then IP (P) ::=: N. State this (universal) property in terms of homomorphisms and 
commutative diagrams. 

(c) Let P be elementary abelian of order pr (by (a)). Deduce from Exercise 24 that if 
XJ , x2 , . . .  , X

r 
are any basis for the r-dimensional vector space P over Fp and if x; 

is any element of the coset x; , then P = ( XI ,  x2 , . . .  , Xr ). Show conversely that 
if Yt . Y2 • . . .  , Ys is any set of generators for P, then s � r (you may assume that 
every minimal generating set for an r-dimensional vector space has r elements, i .e., 
every basis has r elements). Deduce Burnside 's Basis Theorem: a set YI • . . .  , Ys is 
a minimal generating set for P if and only if YI • . . .  , Ys is a basis of P = P IIP(P).  
Deduce that any minimal generating set for P has r elements. 

(d) Prove that if P I4> (P) is cyclic then P is cyclic. Deduce that if PIP' is cyclic then 
so is P.  

(e) Let a be any automorphism of P of prime order q with q =1 p. Show that if a fixes 
the coset x 4> (P) then a fixes some element of this coset (note that since IP (P) is 
characteristic in P every automorphism of P induces an automorphism of P IIP (P)). 
[Use the observation that a acts a permutation of order I or q on the pa elements in 
the coset xiP (P).] 

(f) Use parts (e) and (c) to deduce that every nontrivial automorphism of P of order 
prime to p induces a nontrivial automorphism on P IIP (P).  Deduce that any group 
of automorphisms of P which has order prime to p is isomorphic to a subgroup of 
Aut(P) = GLr (Fp).  

27. Generalize part (d) of the preceding exercise as follows: let p be a prime, let P be a p-group 
- pr - 1  

and let P = PI 4> ( P) be elementary abelian of order pr . Prove that P has exactly --
p - 1 

maximal subgroups. [Since every maximal subgroup of P contains IP (P), the maximal 
subgroups of P are, by the Lattice Isomorphism Theorem, in bijective correspondence 
with the maximal subgroups of the elementary abelian group P. It therefore suffices to 
show that the number of maximal subgroups of an elementary abelian p-group of order 
pr is as stated above. One way of doing this is to use the result that an abelian group is 
isomorphic to its dual group (cf. Exercise 14 in Section 5.2) so the number of subgroups 
of index p equals the number of subgroups of order p.J  

28. Prove that if p is a prime and P = Zp x ZP2 then I IP (P) I = p and P I4>(P) � Zp x Zp . 
Deduce that P has p + 1 maximal subgroups. 
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29. Prove that if p is a prime and P is a non-abelian group of order p3 then t!J(P) = Z(P) 
and P I<P(P) � Zp x Zp . Deduce that P has p +  1 maximal subgroups. 

30. Let p be an odd prime, let P1 = Zp x ZP2 and let P2 be the non-abelian group of order p3 

which has an element of order p2 . Prove that P1 and P2 have the same lattice of subgroups. 

31. For any group G a minimal normal subgroup is a normal subgroup M of G such that the 
only normal subgroups of G which are contained in M are 1 and M. Prove that every 
minimal normal subgroup of a finite solvable group is an elementary abelian p-group 
for some prime p. [If M is a minimal normal subgroup of G, consider its characteristic 
subgroups : M' and ( xP 1 x E M } .] 

32. Prove that every maximal subgroup of a finite solvable group has prime power index. [Let 
H be a maximal subgroup of G and let M be a minimal normal subgroup of G - cf. 
the preceding exercise. Apply induction to G I M and consider separately the two cases: 
M :::; H and M f:. H.] 

33. Let rr be any set of primes. A subgroup H of a finite group is called a Hall rr -subgroup of G 
ifthe only primes dividing I H I  are in the set rr and I H I  is relatively prime to I G  : H I .  (Note 
that if rr = {p},  Hall rr-subgroups are the same as Sylow p-subgroups. Hall subgroups 
were introduced in Exercise 10 of Section 3 .3). Prove the following generalization of 
Sylow's Theorem for solvable groups: if G is a finite solvable group then for every set rr 
of primes, G has a Hall rr -subgroup and any two Hall rr -subgroups (for the same set rr) 
are conjugate in G. [Fix rr and proceed by induction on I G I ,  proving both existence 
and conjugacy at once. Let M be a minimal normal subgroup of G, so M is a p-group for 
some prime p. If p E rr, apply induction to G I M. If p ¢ rr,  reduce to the case I G I = pan, 
where pa = IM I  and n is the order of a Hall rr-subgroup of G. In this case let N IM be 
a minimal normal subgroup of G 1M, so N I M is a q-group for some prime q # p. Let 
Q E Sylq (N). If Q :::! G argue as before with Q in place of M. If Q is not normal in G,  
use Frattini' s Argument to show N c ( Q) is  a Hall rr -subgroup of G and establish conjugacy 
in this case too.] 

The following result shows how to produce normal p-subgroups of some groups on which 
the elements of order prime to p act faithfully by conjugation. Exercise 26(f) then applies to 
restrict these actions and give some information about the structure of the group. 

34. Let p be a prime dividing the order of the finite solvable group G .  Assume G has no 
nontrivial normal subgroups of order prime to p. Let P be the largest normal p-subgroup 
of G (cf. Exercise 37, Section 4.5). Note that Exercise 3 1  above shows that P ;:f: 1 .  Prove 
that Cc(P) :::; P, i.e., Cc (P) = Z(P).  [Let N = Cc(P) and use the preceding exercise 
to show N = Z(P) x H for some Hall rr-subgroup H of N - here rr is the set of all prime 
divisors of IN I  except for p. Show H :::! G to obtain the desired conclusion: H = 1 .] 

35. Prove that if G is a finite group in which every proper subgroup is nilpotent, then G 
is solvable. [Show that a minimal counterexample is simple. Let M and N be distinct 
maximal subgroups chosen with IM n N l  as large as possible and apply Part 2 of Theorem 
3 to show that M n N = 1 .  Now apply the methods of Exercise 53 in Section 4.5.] 

36. Let p be a prime, let V be a nonzero finite dimensional vector space over the field of p 
elements and let ifJ be an element of GL(V) of order a power of p (i.e., V is a nontrivial 
elementary abelian p-group and ifJ is an automorphism of V of p-power order). Prove that 
there is some nonzero element v E V such that ifJ(v) = v, i.e., ifJ has a nonzero fixed point 
on V. 

37. Let V be a finite dimensional vector space over the field of 2 elements and let ifJ be an 
element of G L(V) of order 2. (i.e. ,  V is a nontrivial elementary abelian 2-group and ifJ is an 
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automorphism of V of order 2). Prove that the map v � v+q:>(  v) is a homomorphism from 
V to itself. Show that every element in the image of this map is fixed by q:>.  Deduce that the 
subspace of elements of V which are fixed by q:> has dimension :::: � (dimension V). (Note 
that if G is the sernidirect product of V with ( q:> ) ,  where V � G and q:> acts by conjugation 
on V by sending each v E V to q:>(v), then the fixed points of q:> on V are Cv (q:>) and the 
above map is simply the commutator map: v � [v , q:>]. In this terminology the problem 
is to show that ICv (q:>) l2 :::: l V I .) 

38. Use the preceding exercise to prove that if P is a 2-group which has a cyclic center and 
M is a subgroup of index 2 in P, then the center of M has rank ::s 2. [The group G f M of 
order 2 acts by conjugation on the IFz vector space: {z E Z(M) 1 z2 = 1 }  and the fixed 
points of this action are in the center of P . ]  

6.2 APPLICATIONS I N  GROUPS OF MEDIUM ORDER 

The purpose of this section is to work through a number of examples which illustrate 
many of the techniques we have developed. These examples use Sylow's Theorems ex
tensively and demonstrate how they are applied in the study of finite groups. Motivated 
by the Holder Program we address primarily the problem of showing that for certain 
n every group of order n has a proper, nontrivial normal subgroup (i.e .• there are no 
simple groups of order n ). In most cases we shall stop once this has been accomplished. 
However readers should be aware that in the process of achieving this result we shall 
already have determined a great deal of information about arbitrary groups of given 
order n for the n that we consider. This information could be built upon to classify 
groups of these orders (but in general this requires techniques beyond the simple use of 
semidirect products to construct groups). 

Since for p a prime we have already proved that there are no simple p-groups 
(other than the cyclic group of order p, Zp) and since the structure of p-groups can be 
very complicated (recall the table in Section 5.3), we shall not study the structure of 
p-groups explicitly. Rather, the theory of p-groups developed in the preceding section 
will be applied to subgroups of groups of non-prime-power order. 

Finally, for certain n (e.g., 60, 168, 360, 504, . . .  ) there do exist simple groups of 
order n so, of course, we cannot force every group of these orders to be nonsimple. 
As in Section 4.5 we can, in certain cases, prove there is a unique simple group of 
order n and unravel some of its internal structure (Sylow numbers, etc.). We shall study 
simple groups of order 168 as an additional test case. Thus the Sylow Theorems will 
be applied in a number of different contexts to show how groups of a given order may 
be manipulated. 

We shall end this section with some comments on the existence problem for groups, 
particularly for finite simple groups. 

For n < 10000 there are 60 odd, non-prime-power numbers for which the congru
ence conditions of Sylow's Theorems do not force at least one of the Sylow subgroups 
to be normal i.e., n P can be > 1 for all primes p I n (recall that n P denotes the number 
of Sylow p-subgroups). For example, no numbers of the form pq, where p and q are 
distinct primes occur in our list by results of Section 4.5. In contrast, for even numbers 
< 500 there are already 46 candidates for orders of simple groups (the congruence 
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conditions allow many more possibilities). Many of our numerical examples arise from 
these lists of numbers and we often use odd numbers because the Sylow congruence 
conditions allow fewer values for np . The purpose of these examples is to illustrate the 
use of the results we have proved. Many of these examples can be dealt with by more 
advanced techniques (for example, the Feit-Thompson Theorem proves that there are 
no simple groups of odd composite order). 

As we saw in the case n = 30 in Section 4.5, even though Sylow's Theorem 
permitted ns = 6 and n3 = 10, further examination showed that any group of order 30 
must have both ns = 1 and n3 = 1. Thus the congruence part of Sylow's Theorem is a 
sufficient but by no means necessary condition for normality of a Sylow subgroup. For 
many n (e.g. ,  n = 120) we can prove that there are no simple groups of order n, so there 
is a nontrivial normal subgroup but this subgroup may not be a Sylow subgroup. For 
example, Ss and SL2 (1Fs) both have order 120. The group Ss has a unique nontrivial 
proper normal subgroup of order 60 (As ) and SL2 (lFs) has a unique nontrivial proper 
normal subgroup of order 2 (Z(SL2 (1Fs)) � Z2), neither of which is a Sylow subgroup. 
Our techniques for producing normal subgroups must be flexible enough to cover such 
diverse possibilities. In this section we shall examine Sylow subgroups for different 
primes dividing n, intersections of Sylow subgroups, normalizers of p-subgroups and 
many other less obvious subgroups. The elementary methods we outline are by no 
means exhaustive, even for groups of "medium" order. 

Some Techniques 

Before listing some techniques for producing normal subgroups in groups of a given 
("medium") order we note thlilt in all the problems where one deals with groups of 
order n, for some specific n, it is first necessary to factor n into prime powers and then 
to compute the permissible values of np, for all primes p dividing n. We emphasize 
the need to be comfortable computing mod p when carrying out the last step. The 
techniques we describe may be listed as follows: 

(1) Counting elements. 
(2) Exploiting subgroups of small index. 
(3) Permutation representations. 
(4) Playing p-subgroups off against each other for different primes p .  
(5) Studying normalizers of  intersections of  Sylow p-subgroups. 

Counting Elements 

Let G be a group of order n, let p be a prime dividing n and let P E Sylp (G). If 
I P I  = p, then every nonidentity element of P has order p and every element of G of 
order p lies in some conjugate of P. By Lagrange's Theorem distinct conjugates of P 
intersect in the identity, hence in this case the number of elements of G of order p is 
np (P - 1 ) .  

If Sylow p-subgroups for different primes p have prime order and we assume none 
of these is normal, we can sometimes show that the number of elements of prime order 
is > IG I .  This contradiction would show that at least one of the np's must be 1 (i.e., 
some Sylow subgroup is normal in G). 

This is the argument we used (in Section 4.5) to prove that there are no simple 
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groups of order 30. For another example, suppose I G I  = 1 05 = 3 · 5 · 7. If G were 
simple, we must have n3 = 7, n5 = 2 1  and n7 = 15 .  Thus 

the number of elements of order 3 is 7 · 2 
the number of elements of order 5 is 2 1  · 4 
the number of elements of order 7 is 1 5  · 6 

the number of elements of prime order is 188  

14 
= 84 

90 

> I G I . 

Sometimes counting elements of prime order does not lead to too many elements. 
However, there may be so few elements remaining that there must be a normal subgroup 
involving these elements. This was (in essence) the technique used in Section 4.5 to 
show that in a group of order 12  either n2 = 1 or n3 = 1. This technique works 
particularly well when G has a Sylow p-subgroup P of order p such that Nc (P) = P. 
For example, let IG I  = 56. I f  G were simple, the only possibility for the number of 
Sylow ?-subgroups is 8, so 

the number of elements of order 7 is 8 · 6 = 48. 

Thus there are 56 - 48 = 8 elements remaining in G. Since a Sylow 2-subgroup 
contains 8 elements (none of which have order 7), there can be at most one Sylow 
2-subgroup, hence G has a normal Sylow 2-subgroup. 

Exploiting Subgroups of Small Index 

Recall that the results of Section 4.2 show that if G has a subgroup H of index k, 
then there is a homomorphism from G into the symmetric group Sk whose kernel is 
contained in H. If k > 1 ,  this kernel is a proper normal subgroup of G and if we are 
trying to prove that G is not simple, we may, by way of contradiction, assume that this 
kernel is the identity. Then, by the First Isomorphism Theorem, G is isomorphic to a 
subgroup of Sk . In particular, the order of G divides k ! .  This argument shows that if k 
is the smallest integer with I G I  dividing k !  for a finite simple group G then G contains 
no proper subgroups of index less than k. This smallest permissible index k should be 
calculated at the outset of the study of groups of a given order n.  In the examples we 
consider this is usually quite easy: n will often factor as 

and as is usually equal to 1 or 2 in our examples. In this case the minimal index of a 
proper subgroup will have to be at least Ps (respectively 2ps) and this is often its exact 
value. 

For example, there is no simple group of order 3393, because if n = 3393 = 
32 

• 13  · 29, then the minimal index of a proper subgroup is 29 (n does not divide 28 ! 
because 29 does not divide 28 !). However any simple group of order 3393 must have 
n3 = 13 ,  so for P E SyfJ (G), Nc (P) has index 13 ,  a contradiction. 

Permutation Representations 

This method is a refinement of the preceding one. As above, if G is a simple group of 
order n with a proper subgroup of index k, then G is isomorphic to a subgroup of Sk. 
We may identify G with this subgroup and so assume G _:::: Sk . Rather than relying only 
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on Lagrange's Theorem for our contradiction (this was what we did for the preceding 
technique) we can sometimes show by calculating within Sk that Sk contains no simple 
subgroup of order n .  Two restrictions which may enable one to show such a result are 

(1) if G contains an element or subgroup of a particular order, so must Sk. and 
(2) if P E Sylp (G) and if P is also a Sylow p-subgroup of Sk. then ING(P) i must 

divide INsk (P) i .  
Condition (2) arises frequently when p is a prime, k = p or p + 1 and G has a 

subgroup of index k. In this case p2 does not divide k!,  so Sylow p-subgroups of G are 
also Sylow p-subgroups of Sk . Since now Sylow p-subgroups of Sk are precisely the 
groups generated by a p-cycle, and distinct Sylow p-subgroups intersect in the identity, 

the no. of p-cycles 
the no. of Sylow p-subgroups of Sk = _______ __::...._.:..__ ____ _ 

the no. of p-cycles in a Sylow p-subgroup 

k . (k - 1 )  . . . (k - p + 1) 
= -----------

p(p - 1 )  
This number gives the index in Sk of the normalizer of a Sylow p-subgroup of Sk . Thus 
for k = p or p + 1 

(k = p or k  = p + 1)  

( cf. also the corresponding discussion for centralizers of elements in symmetric groups 
in Section 4.3 and the last exercises in Section 4.3). This proves, under the above 
hypotheses, that ING(P) I  must divide p (p - 1 ) .  

For example, i f  G were a simple group of order 396 = 22 · 32 · 1 1 , w e  must have 
nu = 12, so if P E Sylu (G), i G  : NG(P) I = 1 2  and ING (P) i = 33. Since G has 
a subgroup of index 12, G is isomorphic to a subgroup of S12 • But then (considering 
G as actually contained in Su) P E Sylu (St2) and 1Ns1 2 (P) I  = 1 10. Since NG(P) :S 
Ns,2 (P), this would imply 33 I 1 10, clearly impossible, so we cannot have a simple 
group of order 396. 

We can sometimes squeeze a little bit more out of this method by working in Ak 
rather than Sk . This slight improvement helps only occasionally and only for groups of 
even order. It is based on the following observations (the first of which we have made 
earlier in the text). 

Proposition 12. 
(1) If G has no subgroup of index 2 and G :S Sk. then G =s Ak . 
(2) If P E Sylp (Sk) for some odd prime p, then P E Sylp(Ak) and iNAk (P) i = 

� iNsk (P) i .  

Proof" The first assertion follows from the Second Isomorphism Theorem: if G is 
not contained in Ak. then Ak < G Ak so we must have G Ak = Sk . But now 

2 =  i Sk : Ak i = iGAk : Ak i = IG : G n Ak i 
so G has a subgroup, G n Ab of index 2. 
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To prove (2) note that if P E Sylp (Sk), for some odd prime p, by ( 1 )  (or order con
siderations) P ::::: Ak> hence P E Sylp (Ak) as well. By Frattini's Argument (Proposition 
6) 

Sk = Nsk (P)Ak 
so, in particular, N sk ( P) is not contained in Ak . This forces N sk ( P) n Ak ( = N Ak ( P)) 
to be a subgroup of index 2 in N St. (P). 

For example, there is no simple group of order 264. Suppose G were a simple 
group of order 264 = 23 • 3 · 1 1 . We must have n n = 12. As usual, G would be 
isomorphic to a subgroup of S12 . Since G is simple (hence contains no subgroup of 
index 2), G ::::: A 12 · Let P E Sylu (G). Since n u  = 12 = IG : Nc (P} I ,  we have 
INc (P) I  = 22. As above, 

INA ,2 (P) I = ! 1Ns,2 (P) I = ! 1 1 ( 1 1 - 1 )  = 55; 

however, 22 does not divide 55, a contradiction to Nc(P) ,::::: NA,2 (P). 
Finally, we emphasize that we have only barely touched upon the combinatorial 

information available from certain permutation representations. Whenever possible in 
the remaining examples we shall illustrate other applications of this technique. 

Playing p-Subgroups Off Against Each Other for Different Primes p 

Suppose p and q are distinct primes such that every group of order pq is cyclic. This 
is equivalent to p f q - 1, where p < q .  If G has a Sylow q-subgroup Q of order 
q and p I INc (Q} I ,  applying Cauchy's Theorem in Nc(Q) gives a group P of order 
p normalizing Q (note that P need not be a Sylow p-subgroup of G). Thus P Q is a 
group and if P Q is abelian, we obtain 

PQ ::::: Nc (P) and so q I INc (P) I .  
(A symmetric argument applies if Sylow p-subgroups of G have order p and q divides 
the order of a Sylow p-normalizer). This numerical information alone may be sufficient 
to force Nc (P) = G (i.e., P � G), or at least to force Nc(P) to have index smaller than 
the minimal index permitted by permutation representations, giving a contradiction by 
a preceding technique. 

For example, there are no simple groups of order 1785. If there were, let G be 
a simple group of order 1785 = 3 · 5 · 7 · 17.  The only possible value for n17 is 
35, so if Q is a Sylow 17-subgroup, I G : Nc (Q) I  = 35. Thus INc (Q) I  = 3 · 17.  
Let P be a Sylow 3-subgroup of Nc(Q). The group P Q  is  abelian since 3 does not 
divide 17 - 1 ,  so Q ,::::: Nc (P) and 17 I INc (P) I .  In this case P E Syl3 (G). The 

permissible values of n3 are 7, 85 and 595; however, since 17  I INc (P) I ,  we cannot 

have 17 I I G  : Nc (P) I = n3 . Thus n3 = 7. But G has no proper subgroup of index 
< 17  (the minimal index of a proper subgroup is 17  for this order), a contradiction. 
Alternatively, if n3 = 7, then INc (P) I = 3 · 5 · 17, and by Sylow's Theorem applied in 
Nc(P) we have Q � Nc (P}. This contradicts the fact that INc (Q) I  = 3 · 17 .  

We can refine this method by not requiring P and Q to be of prime order. Namely, 
if p and q are distinct primes dividing I G I such that Q E Sylq (G) and p I INc(Q) I , 
let P E Sylp (Nc (Q)) . We can then apply Sylow's Theorems in Nc(Q) to see whether 
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P � Na ( Q), and if so, force Nc (P) to be of small index. If P is a Sylow p-subgroup of 
the whole group G, we can use the congruence part of Sylow's Theorem to put further 
restrictions on I Nc (P) I (as we did in the preceding example).  If P is not a Sylow 
p-subgroup of G, then by the second part of Sylow's Theorem P ::=: P"' E Sylp (G) . In 
this case since P < P*,  Theorem 1 (4) shows that P < Np· (P) .  Thus NG (P) (which 
contains N p• ( P)) has order divisible by a larger power of p than divides I P  1 (as well 
as being divisible by I Q 1 ) .  

For example, there are no simple groups of order 3675. If there were, let G be 
a simple group of order 3675 = 3 · 52 · 72 . The only possibility for n7 is 15 ,  so for 
Q E Syl7 (G), I G : Nc ( Q ) I  = 1 5 and I NG ( Q) I  = 245 = 5 · 72 . Let N = Nc ( Q) and 
let P E Syls (N). By the congruence conditions of Sylow's Theorem applied in N we 
get P � N. Since I P I  = 5, P is not itself a Sylow 5-subgroup of G so P is contained 
in some Sylow 5-subgroup P* of G. Since P is of index 5 in the 5-group P*,  P � P* 
by Theorem 1, that is P* ::=: Nc (P) .  This proves 

(N. P*) :::: Nc (P) so 72 · 52 J I Nc (P) I .  

Thus I G  : NG (P) I J 3 ,  which is impossible since P is not normal and G has no 
subgroup of index 3.  

Studying Normal izers of Intersections of Sylow p-Subgroups 

One of the reasons the counting arguments in the first method above do not immediately 
generalize to Sylow subgroups which are not of prime order is because if P E Sylp ( G) 
for some prime p and I P I  = pa , a � 2, then it need not be the case that distinct 
conjugates of P intersect in the identity subgroup. If distinct conjugates of P do 
intersect in the identity, we can again count to find that the number of elements of 
p-power order is np( I P I  - 1 ) . 

Suppose, however, there exists R E Sylp(G) with R f:. P and P n R f:. 1 .  Let 
Po = P n R.  Then Po < P and Po < R, hence by Theorem 1 

Po < Np ( Po) and Po < NR (Po) .  

One can try to use this to prove that the normalizer in G of Po is  sufficiently large (i.e., 
of sufficiently small index) to obtain a contradiction by previous methods (note that this 
normalizer is a proper subgroup since Po f:. 1 ) . 

One special case where this works particularly well is when I Po l  = pa-t i.e., the 
two Sylow p-subgroups R and P have large intersection. In this case set N = Nc ( P0) .  
Then by the above reasoning (i.e. ,  since Po is  a maximal subgroup of the p-groups P 
and R), P0 � P and P0 � R, that is, 

N has 2 distinct Sylow p-subgroups: P and R.  

In particular, I N I  = pak, where (by Sylow's Theorem) k � p + 1 .  
Recapitulating, if Sylow p-subgroups pairwise intersect in the identity, then count

ing elements of p-power order is possible; otherwise there is some intersection of Sylow 
p-subgroups whose normalizer is "large." Since for an arbitrary group order one cannot 
necessarily tell which of these two phenomena occurs, it may be necessary to split the 
nonsimplicity argument into two (mutually exclusive) cases and derive a contradiction 
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in each. This process is especially amenable when the order of a Sylow p-subgroup is 
p2 (for example, this line of reasoning was used to count elements of 2-power order in 
the proof that a simple group of order 60 is isomorphic to A5 - Proposition 23, Section 
4.5). 

Before proceeding with an example we state a lemma which gives a sufficient 
condition to force a nontrivial Sylow intersection. 

Lemma 13. In a finite group G if np ¢. 1 (mod p2), then there are distinct Sylow 
p-subgroups P and R of G such that P n R is of index p in both P and R (hence is 
normal in each). 

Proof" The argument is an easy refinement of the proof of the congruence part of 
Sylow's Theorem ( cf. the exercises at the end of Section 4.5). Let P act by conjugation 
on the set Sylp (G). Let 01 , • • •  , 0., be the orbits under this action with 01 = {P} .  If 
p2 divides I P : P n R l  for all Sylow p-subgroups R of G different from P, then each 
(')i has size divisible by p2, i = 2, 3, . . .  , s .  In this case, since np is the sum of the 
lengths of the orbits we would have nP = 1 + kp2, contrary to assumption. Thus for 
some R E Sylp (G), I P  : P n R l = p. 

For example, there are no simple groups of order 1053 . If there were, let G be a 
simple group of order 1053 = 34 · 13 and let P E Syl3 (G). We must have n3 = 13 .  
But 13  ¢. 1 (mod 32) so there exist P,  R E Syl3 (G) such that IP n R l  = 33 . Let 
N = NG(P n R), so by the above arguments P ,  R � N. Thus 34 I IN I and IN I  > 34• 
The only possibility is N = G, i.e., P n R ::9 G, a contradiction. 

Simple Groups of Order 1 68 

We now show how many of our techniques can be used to unravel the structure of 
and then classify certain simple groups by classifying the simple groups of order 168. 
Because there are no nontrivial normal subgroups in simple groups, this process departs 
from the methods in Section 5.5, but the overall approach typifies methods used in the 
study of finite simple groups. 

We begin by assuming there is a simple group G of order 168 = 23 • 3 · 7. We 
first worl< out many of its properties: the number and structure of its Sylow subgroups, 
the conjugacy classes, etc. All of these calculations are based only on the order and 
simplicity of G. We use these results to first prove the uniqueness of G; and ultimately 
we prove the existence of the simple group of order 168. 

Because I G I does not divide 6!  we have 

( 1 )  G has no proper subgroup of index less than 7, 

since otherwise the action of G on the cosets of the subgroup would give a (necessarily 
injective since G is simple) homomorphism from G into some Sn with n � 6. 

The simplicity of G and Sylow's Theorem also immediately imply that 

(2) n1 = 8, so the normalizer of a Sylow ?-subgroup has order 21. In particular, no 
element of order 2 normalizes a Sylow ?-subgroup and G has no elements of order 14. 
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If G had an element of order 21  then the normalizer of a Sylow 3-subgroup of G would 
have order divisible by 7. Thus n3 would be relatively prime to 7. Since then n3 I 8 we 
would have n3 = 4 contrary to ( 1 ). This proves: 

(3) G has no elements of order 21. 
By Sylow's Theorem n3 = 7 or 28; we next rule out the former possibility. Assume 
n3 = 7, let P E Syl3 (G) and let T be a Sylow 2-subgroup of the group Nc (P) of order 
24. Each Sylow 3-subgroup normalizes some Sylow ?-subgroup of G so P normalizes 
a Sylow ?-subgroup R of G. For every t E T we also have that P = t Pr1 normalizes 
t Rt-1 • The subgroup T acts by conjugation on the set of eight Sylow ?-subgroups of G 
and since no element of order 2 in G normalizes a Sylow ?-subgroup by (2), it follows 
that T acts transitively, i.e. , every Sylow ?-subgroup of G is one of the t Rt-1 . Hence 
P normalizes every Sylow ?-subgroup of G, i.e., P is contained in the intersection 
of the normalizers of all Sylow ?-subgroups. But this intersection is a proper normal 
subgroup of G, so it must be trivial. This contradiction proves: 

(4) n3 = 28 and the normalizer of a Sylow 3-subgroup has order 6. 

Since n2 = 7 or 2 1 ,  we have n2 ¢ 1 mod 8. so by Exercise 21 there is a pair of distinct 
Sylow 2-subgroups that have nontrivial intersection; over all such pairs let T1 and T2 
be chosen with U = Tt n T2 of maximal order. We next prove 

(5) U is a Klein 4-group and Nc (U) � S4. 

Let N = Nc (U).  Since l U I  = 2 or 4 and N permutes the nonidentity elements of 
U by conjugation, a subgroup of order 7 in N would commute with some element of 
order 2 in U, contradicting (2). It follows that the order of N is not divisible by 7. By 
Exercise 13 ,  N has more than one Sylow 2-subgroup, hence I N I  = 2a · 3, where a =  2 
or 3. Let P E Syl3 (N). Since P is a Sylow 3-subgroup of G, by (4) the group NN (P) 
has order 3 or 6 (with P as its unique subgroup of order 3) .  Thus by Sylow's Theorem 
N must have four Sylow 3-subgroups, and these are permuted transitively by N under 
conjugation. Since any group of order 12 must have either a normal Sylow 2-subgroup 
or a normal Sylow 3-subgroup (cf. Section 4.5), I N I  = 24. Let K be the kernel of N 
acting by conjugation on its four Sylow 3-subgroups, so K is the intersection of the 
normalizers of the Sylow 3-subgroups of N. If K = 1 then N � S4 as asserted; so 
consider when K =I 1 .  Since K ::'S NN (P), the group K has order dividing 6, and 
since P does not normalize another Sylow 3-subgroup, P is not contained in K. It 
follows that I K I = 2. But now N f K is a group of order 12 which is seen to have more 
than one Sylow 2-subgroup and four Sylow 3-subgroups, contrary to the property of 
groups of order 12  cited earlier. This proves N � S4 . Since S4 has a unique nontrivial 
normal 2-subgroup, V4, (5) holds. Since N � S4 , it follows that N contains a Sylow 
2-subgroup of G and also that NN (P) � S3 (so also Nc (P) � S3 by (4)). Hence we 
obtain 

(6) Sylow 2-subgroups ofG are isomorphic to D8, and 

(7) the normalizer in G of a Sylow 3-subgroup is isomorphic to S3 and so G has no 
elements of order 6. 
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By (2) and (7), no element of order 2 commutes with an element of odd prime order. 
If T E Syl2 (G), then T � D8 by (6), so Z(T) = ( z )  where z is an element of order 
2. Then T � CG (z) and I Cc (z) l has no odd prime factors by what was just said, 
so CG (Z) = T. Since any element normalizing T would normalize its center, hence 
commute with z, it follows that Sylow 2-subgroups of G are self-normalizing. This 
gives 

(8) n2 = 21 and CG (z) = T, where T E Syl2 (G) and Z(T) = ( z ) . 
Since I CG (z) l = 8, the element z in (8) has 21 conjugates. By (6), G has one conjugacy 
class of elements of order 4, which by ( 6) and (8) contains 42 elements. By (2) there are 
48 elements of order 7, and by (4) there are 56 elements of order 3 .  These account for 
all l 67 nonidentity elements of G, and so every element of order 2 must be conjugate 
to z, i.e. , 

(9) G has a unique conjugacy class of elements of order 2. 
Continuing with the same notation, let T E Syh (G) with U � T and let W be the other 
Klein 4-group in T .  It follows from Sylow's Theorem that U and W are not conjugate 
in G since they are not conjugate in Nc (T) = T (cf. Exercise 50 in Section 4.5). We 
argue next that 

( lO) NG (W) � s4. 

To see this let W = ( z, w )  where, as before, ( z )  = Z(T). Since w is conjugate in 
G to z, CG (w) = To is another Sylow 2-subgroup of G containing W but different 
from T .  Thus W = T n To. Since U was an arbitrary maximal intersection of Sylow 
2-subgroups of G, the argument giving (5) implies ( 10). 

We now record results which we have proved or which are easy consequences of 
( 1 )  to ( 10). 

Proposition 14. If G is a simple group of order 168, then the following hold: 
(1) n2 = 21 ,  n3 = 7 and n1 = 8 
(2) Sylow 2-subgroups of G are dihedral, Sylow 3- and ?-subgroups are cyclic 
(3) G is isomorphic to a subgroup of A 7 and G has no subgroup of index � 6 
(4) the conjugacy classes of G are the following: the identity; two classes of el

ements of order 7 each of which contains 24 elements (represented by any 
element of order 7 and its inverse); one class of elements of order 3 containing 
56 elements; one class of elements of order 4 containing 42 elements; one class 
of elements of order 2 containing 21 elements 
(in particular, every element of G has order a power of a prime) 

(5) if T E Syh (G) and U, W are the two Klein 4-groups in T, then U and W are 
not conjugate in G and Nc (U) � Nc (W) � S4 

(6) G has precisely three conjugacy classes of maximal subgroups, two of which 
are isomorphic to S4 and one of which is isomorphic to the non-abelian group 
of order 2 1 .  

All of the calculations above were predicated on the assumption that there exists a 
simple group of order 168. The fact that none of these arguments leads to a contradiction 
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does not prove the existence of such a group, but rather just gives strong evidence that 
there may be a simple group of this order. We next illustrate how the internal subgroup 
structure of G gives rise to a geometry on which G acts, and so leads to a proof that a 
simple group of order 1 68 is unique, if it exists (which we shall also show). 

Continuing the above notation let U1 , • • •  , U1 be the conjugates of U and let 
Wt • . . .  , W1 be the conjugates of W. Call the U; points and the Wj lines. Define 
an "incidence relation" by specifying that 

the point U; is on the line Wj if and only if U; normalizes Wj. 

Note that U; normalizes Wj if and only if U; Wj � D8, which in tum occurs if and 
only if W; normalizes U; . In each point or line stabilizer-which is isomorphic to S4-
there is a unique normal 4-group, V, and precisely three other (nonnormal) 4-groups 
A t .  A2. A3. The groups VA; are the three Sylow 2-subgroups of the S4• We therefore 
have: 

( 1 1 )  each line contains exactly 3 points and each point lies on exactly 3 lines. 
Since any two nonnormal 4-groups in an S4 generate the S4, hence uniquely determine 
the other two Klein groups in that s4. we obtain 

( 12) any 2 points on a line uniquely determine the line (and the third point on it). 
Since there are 7 points and 7 lines, elementary counting now shows that 

( 13) each pair of points lies on a unique line, and each pair of lines intersects in a 
unique point. 
(This configuration of points and lines thus satisfies axioms for what is termed a projec
tive plane.) It is now straightforward to show that the incidence geometry is uniquely 
determined and may be represented by the graph in Figure 1 ,  where points are ver
tices and lines are the six sides and medians of the triangle together with the inscribed 
circle-see Exercise 27. This incidence geometry is called the projective plane of order 
2 or the Fano Plane, and will be denoted by :F. (Generally, a projective plane of"order" 
N has N2 + N + 1 points, and the same number of lines.) Note that at this point the 
projective plane :F does exist-we have explicitly exhibited points and lines satisfying 
(1 1 )  to ( 13)--even though the group G is not yet known to exist. 

Figure 1 
An automorphism of this plane is any permutation of points and lines that preserves 

the incidence relation. For example, any of the six symmetries of the triangle in Figure I 
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give automorphisms of :F, but we shall see that :F has many more automorphisms than 
these. 

Each g E G acts by conjugation on the set of points and lines, and this action 
preserves the incidence relation. Only the identity element in G fixes all points and so 
via this action the group G would be isomorphic to a subgroup of the group of Aut( F), 
the group of all automorphisms of :F. 

Any automorphism of :F that fixes two points on a line as well as a third point not 
on that line is easily seen to fix all points. Thus any automorphism of :F is uniquely 
determined by its action on any three noncollinear points. Since one easily computes 
that there are 168 such triples, :F has at most 168 automorphisms. This proves 

if the simple group G exists it is unique and G � Aut(:F). 

Two steps in the classification process yet remain: to prove that :F does have 168 
automorphisms and to prove Aut(:F) is indeed a simple group. Although one can do 
these graph-theoretically, we adopt an approach following ideas from the theory of 
"algebraic groups." Let V be a 3-dimensional vector space over the field of 2 elements, 
IF 2· so v is the elementary abelian 2-group z2 X z2 X z2 of order 8. By Proposition 17 
in Section 4.4, Aut(V) = GL(V) � GL3 (lF2) has order 168. Call the seven !
dimensional subs paces (i.e., the nontrivial cyclic subgroups) of V points, call the seven 
2-dimensional subspaces (i.e., the subgroups of order 4) lines, and say the point p is 
incident to the line L if p C L. Then the points and lines are easily seen to satisfy the 
same axioms ( 1 1 )  to ( 13) above, hence to represent the Fano Plane. Since G L( V) acts 
faithfully on these points and lines preserving incidence, Aut(:F) has order at least 168. 
In light of the established upper bound for IAut(:F) I this proves 

Aut(:F) � GL(V) � GL3 (lF2) and Aut(:F) has order 168. 

Finally we prove that G L(V) is a simple group. By way of contradiction assume 
H is a proper nontrivial normal subgroup of G L(V). Let Q be the 7 points and let N be 
the stabilizer in G L(V) of some point in Q. Since G L(V) acts transitively on Q, N has 
index 7. Since the intersection of all conjugates of N fixes all points, this intersection is 
the identity. Thus H 1:. N, and so GL(V) = HN. Since IH : H n Nl  = IHN : N l  
we have 7 I IH I .  Since GL(V) is isomorphic to a subgroup of S1 and since Sylow 
7-subgroups of S7 have normalizers of order 42, G L (V) does not have a normal Sylow 
7-subgroup, so by Sylow's Theorem n7(G L(V)) = 8. A normal Sylow 7-subgroup of 
H would be characteristic in H, hence normal in G L(V), so also H does not have a 
unique Sylow 7-subgroup. Since n7 (H) = 1 mod 7 and n7 (H) :::;: n7 (GL(V)) = 8 we 
must have n7(H) = 8. This implies I H I  is divisible by 8, so 56 I IH I , and since H 
is proper we must have I H I = 56. By usual counting arguments ( cf. Exercise 7 (b) of 
Section 5.5) H has a normal, hence characteristic, Sylow 2-subgroup, which is therefore 
normal in GL(V). But then GL(V) would have a unique Sylow 2-subgroup. Since 
the set of upper triangular matrices and the set of lower triangular matrices are two 
subgroups of G L3 (IF 2) each of order 8, we have a contradiction. In summary we have 
now proven the following theorem. 
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Theorem 15. Up to isomorphism there is a unique simple group of order 168, G L3 (IB' 2) ,  
which is also the automorphism group of the projective plane F. 

Note that we might just as well have called the Wj points and the U; lines. This 
"duality" between points and lines together with the uniqueness of a simple group of 
order 168 may be used to prove the existence of an outer automorphism of G that 
interchanges points and lines i.e., conjugates U to W. 

Many families of finite simple groups can be classified by analogous methods. 
In more general settings geometric structures known as buildings play the role of the 
projective plane (which is a special case of a building of type A2). In this context the 
subgroups NG(U) and NG(W) are parabolic subgroups ofG, and U, W are their unipo
tent radicals respectively. In particular, all the simple linear groups (cf. Section 3 .4) 
are characterized by the structure and intersections of their parabolic subgroups, or 
equivalently, by their action on an associated building. 

Remarks on the Existence Problem for Groups 

As in other areas of mathematics (such as the theory of differential equations) one 
may hypothesize the existence of a mathematical system (e.g. ,  solution to an equation) 
and derive a great deal of information about this proposed system. In general, if after 
considerable effort no contradiction is reached based on the initial hypothesis one begins 
to suspect that there actually is a system which does satisfy the conditions hypothesized. 
However, no amount of consistent data will prove existence. Suppose we carried out 
an analysis of a hypothetical simple group G of order 33 · 7 · 1 3  · 409 analogous to our 
analysis of a simple group of order 168 (which we showed to exist). After a certain 
amount of effort we could show that there are unique possible Sylow numbers: 

n3 = 7 · 409 n 13 = 32 · 7 · 409 n4o9 = 32 • 7 · 1 3. 

We could further show that such a G would have no elements of order pq , p and 
q distinct primes, no elements of order 9, and that distinct Sylow subgroups would 
intersect in the identity. We could then count the elements in Sylow p-subgroups for 
all primes p and we would find that these would total to exactly IG I . At this point 
we would have the complete subgroup structure and class equation for G. We might 
then guess that there is a simple group of this order, but the Feit-Thompson Theorem 
asserts that there are no simple groups of odd composite order. (Note, however, that 
the configuration for a possible simple group of order 33 · 7 · 1 3  · 409 is among the 
cases that must be dealt with in the proof of the Feit-Thompson Theorem, so quoting 
this result in this instance is actually circular. We prove no simple group of this order 
exists in Section 1 9.3; see also Exercise 29.) The point is that even though we have as 
much data in this case as we had in the order 168 situation (i.e., Proposition 14), we 
cannot prove existence without some new techniques. 

When we are dealing with nonsimple groups we have at least one method of building 
larger groups from smaller ones: semidirect products. Even though this method is fairly 
restrictive it conveys the notion that nonsimple groups may be built up from smaller 
groups in some constructive fashion. This process breaks down completely for simple 
groups; and so this demarcation of techniques reinforces our appreciation for the Holder 
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Program: determining the simple groups, and finding how these groups are put together 
to form larger groups. 

The study of simple groups, as illustrated in the preceding discussion of groups of 
order 168, uses many of the same tools as the study of nonsimple groups (to unravel their 
subgroup structures, etc.) but also requires other techniques for their construction. As 
we mentioned at the end of that discussion, these often involve algebraic or geometric 
methods which construct simple groups as automorphisms of mathematical structures 
that have intrinsic interest, and thereby link group theory to other areas of mathematics 
and science in fascinating ways. Thus while we have come a long way in the analysis 
of finite groups, there are a number of different areas in this branch of mathematics on 
which we have just touched. 

The analysis of infinite groups generally involves quite different methods, and in 
the next section we introduce some of these. 

E X E R C I S E S 

Counting elements: 

1. Prove that for fixed P E Sylp (G) if P n R = 1 for all R E Sylp (G) - {P} ,  then Pt n Pz = I 
whenever Pt and Pz are distinct Sylow p-subgroups of G. Deduce in this case that the 
number of nonidentity elements of p-power order in G is (I P I - 1 ) I G  : Nc (P) i . 

2. In the group s3 X s3 exhibit a pair of Sylow 2-subgroups that intersect in the identity and 
exhibit another pair that intersect in a group of order 2. 

3. Prove that if IG I  = 380 then G is not simple. [Just count elements of odd prime order.] 

4. Prove that there are no simple groups of order 80, 35 1 ,  3875 or 53 13 .  

5 .  Let G be a solvable group of order pm, where p i s  a prime not dividing m, and let 
P E Sylp (G) . If Nc (P) = P, prove that G has a normal subgroup of order m.  Where 
was the solvability of G needed in the proof? (This result is true for nonsolvable groups 
as well - it is a special case of Burnside's N!C-Theorem.) 

Exploiting subgroups of small index: 

6. Prove that there are no simple groups of order 2205, 4125, 5 1 03, 6545 or 6435.  

Permutation representations: 

7. Prove that there are no simple groups of order 1755 or 5265. [Use Sylow 3-subgroups to 
show G :::: S13 and look at the normalizer of a Sylow 13-subgroup.] 

8. Prove that there are no simple groups of order 792 or 918 .  

9.  Prove that there are no simple groups of order 336. 

Playing p-subgroups off against each other: 

10. Prove that there are no simple groups of order 4095, 4389, 53 1 3  or 6669. 

11. Prove that there are no simple groups of order 4851 or 5 145. 

12. Prove that there are no simple groups of order 9555. [Let Q E Sy/13 (G) and let P E 
Syl7 (Nc (Q)) .  Argue that Q ::::J Nc (P) - why is this a contradiction?] 

Normalizers of Sylow intersections: 

13. Let G be a group with more than one Sylow p-subgroup. Over all pairs of distinct Sylow 
p-subgroups let P and Q be chosen so that I P  n Q l  is maximal. Show that Nc (P n Q) 
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has more than one Sylow p-subgroup and that any two distinct Sylow p-subgroups of 
Nc(P n Q) intersect in the subgroup P n  Q. (Thus INc(P n Q) l  is divisible by p · IP n  Q l  
and by some prime other than p .  Note that Sylow p-subgroups of Nc (P n Q)  need not 
be Sylow in G.) 

14. Prove that there are no simple groups of order 144, 525, 2025 or 3 159. 

General exercises: 

15. Classify groups of order 1 05. 

16. Prove that there are no non-abelian simple groups of odd order < 10000. 

17. (a) Prove that there is no simple group of order 420. 
(b) Prove that there are no simple groups of even order < 500 except for orders 2, 60, 

1 68 and 360. 

18. Prove that if G is a group of order 36 then G has either a normal Sylow 2-subgroup or a 
normal Sylow 3-subgroup. 

19. Show that a group of order 12 with no subgroup of order 6 is isomorphic to A4. 

20. Show that a group of order 24 with no element of order 6 is isomorphic to S4. 

21. Generalize Lemma 13 by proving that if np ¢. l (mod pk) then there are distinct Sylow 

p-subgroups P and R of G such that P n R is of index � pk-l in both P and R.  

22. Suppose over all pairs of distinct Sylow p-subgroups of  G ,  P and R are chosen with 
I P  n R l  maximal. Prove that Nc (P n R) is not a p-group. 

23. Let A and B be normal subsets of a Sylow p-subgroup P of G. Prove that if A and B are 
conjugate in G then they are conjugate in Nc(P). 

24. Let G be a group of order pqr where p, q and r are primes with p < q < r.  Prove that a 
Sylow r-subgroup of G is normal. 

25. Let G be a simple group of order p2qr where p, q and r are primes. Prove that I G I  = 60. 

26. Prove or construct a counterexample to the assertion: if G is a group of order 168 with 
more than one Sylow ?-subgroup then G is simple. 

27. Show that if :F is any set of points and lines satisfying properties (1 1)  to ( 13) in the 
subsection on simple groups of order 1 68 then the graph of incidences for :F is uniquely 
determined and is the same as Figure 1 (up to relabeling points and lines). [Take a line 
and any point not on this line. Depict the line as the base of an equilateral triangle and 
the point as the vertex of this triangle not on the base. Use the axioms to show that the 
incidences of the remaining points and lines are then uniquely determined as in Figure 1 .] 

28. Let G be a simple group of order 33 
· 7 · 13  · 409. Compute all permissible values of np 

for each p E {3, 7, 1 3 , 409} and reduce to the case where there is a unique possible value 
for each np . 

29. Given the information on the Sylow numbers for a hypothetical simple group of order 
33 

· 7 - 1 3  · 409, prove that there is no such group. [Work with the permutation representation 
of degree 819.] 

30. Suppose G is a simple group of order 720. Find as many properties of G as you can (Sylow 
numbers, isomorphism type of Sylow subgroups, conjugacy classes, etc.). Is there such a 
group? 
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6.3 A WORD ON FREE GROUPS 

In this section we introduce the basic theory of so-called free groups. This will enable 
us to make precise the notions of generators and relations which were used in earlier 
chapters. The results of this section rely only on the basic theory of homomorphisms. 

The basic idea of a free group F(S) generated by a set S is that there are no relations 
satisfied by any of the elements in S (S is "free" of relations). For example, if S is the 
set {a , b} then the elements of the free group on the two generators a and b are of the 
form a, aa, ab, abab, bah, etc., called words in a and b, together with the inverses of 
these elements, and all these elements are considered distinct. If we group like terms 
together, then we obtain elements of the familiar form a, b-3 , aba-1b2 etc. Such 
elements are multiplied by concatenating their words (for example, the product of aha 
and b-1a3b would simply be abab-1a3b). It is natural at the outset (even before we 
know S is contained in some group) to simply define F (S) to be the set of all words in S, 
where two such expressions are multiplied in F(S) by concatenating them. Although 
in essence this is what we do, it is necessary to be more formal in order to prove that 
this concatenation operation is well defined and associative. Mter all, even the familiar 
notation an for the product a · a  · · · a (n terms) is permissible only because we know that 
this product is independent of the way it is bracketed ( cf. the generalized associative law 
in Section 1 . 1 ). The formal construction of F(S) is carried out below for an arbitrary 
set S. 

One important property reflecting the fact that there are no relations that must be 
satisfied by the generators in S is that any map from the set S to a group G can be 
uniquely extended to a homomorphism from the group F(S) to G (basically since we 
have specified where the generators must go and the images of all the other elements 
are uniquely determined by the homomorphism property - the fact that there are 
no relations to worry about means that we can specify the images of the generators 
arbitrarily). This is frequently referred to as the universal property of the free group 
and in fact characterizes the group F ( S) . 

The notion of "freeness" occurs in many algebraic systems and it may already be 
familiar (using a different terminology) from elementary vector space theory. When 
the algebraic systems are vector spaces, F (S) is simply the vector space which has S 
as a basis. Every vector in this space is a unique linear combination of the elements of 
S (the analogue of a "word"). Any set map from the basis S to another vector space 
V extends uniquely to a linear transformation (i.e., vector space homomorphism) from 
F(S) to V.  

Before beginning th e  construction of F (S) w e  mention that one often sees the 
universal property described in the language of commutative diagrams. In this form it 
reads (for groups) as follows: given any set map lfJ from the set S to a group G there is a 
unique homomorphism <P : F ( S) -+ G such that <P I s = lfJ i.e., such that the following 
diagram commutes: 
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F(S) �!� 
G 
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As mentioned above, the only difficulty with the construction of F(S) is the ver
ification that the concatenation operation on the words in F ( S) is well defined and 
associative. To prove the associative property for multiplication of words we return to 
the most basic level where all the exponents in the words of S are ± 1 .  

We first introduce inverses for elements of S and an identity. 
Let s-1 be any set disjoint from S such that there is a bijection from S to s-1 • 

For each s E S denote its corresponding element in s-1 by s-1 and similarly for each 
t E s-1 let the corresponding element of S be denoted by r1 (so (s- • )-1 = s). Take 
a singleton set not contained in S U s- • and call it { 1 } .  Let 1-1 = 1 and for any 
X E S U s-l U { 1 }  let X I = X .  

Next we describe the elements of the free group on the set S.  A word on S i s  by 
definition a sequence 

(s1 , s2 , s3 , . . . ) where s; E S U s-1 U { 1 }  and s; = 1 for all i sufficiently large 

(that is, for each sequence there is an N such that s; = 1 for all i � N). Thus we can 
think of a word as a finite product of elements of S and their inverses (where repetitions 
are allowed). Next, in order to assure uniqueness of expressions we consider only words 
which have no obvious "cancellations" between adjacent terms (such as baa- • b = bb ) . 
The word (s1 , s2 , s3 , • • •  ) is said to be reduced if 

(1) Si+I =f:. sj1 for all i with s; =f:. 1 ,  and 
(2) if Sk = 1 for some k, then s; = 1 for all i � k. 
The reduced word (1 ,  1 ,  1 ,  . . .  ) is called the empty word and is denoted by 1 .  We 
now simplify the notation by writing the reduced word (s�1 , s�2 , • • •  , s�" , 1 ,  l ,  1 ,  . . . ) , 
s; E S, €; = ± 1 ,  as s�1 s�2 • • •  s�" . Note that by definition, reduced words rf1 r�2 • • •  r� 
and s� 1 s�2 • • •  s�" are equal if and only if n = m and �; = €; , 1 :::_s i :::_s n .  Let F (S) be 
the set of reduced words on S and embed S into F (S) by 

s �---* (s, 1 , 1 ,  1 , . . .  ) . 
Under this set injection we identify S with its image and henceforth consider S as a 
subset of F(S) .  Note that if S = 0, F(S) = { 1 } . 

We are now in a position to introduce the binary operation on F(S). The principal 
technical difficulty is to ensure that the product of two reduced words is again a reduced 
word. Although the definition appears to be complicated it is simply the formal rule 
for "successive cancellation" of juxtaposed terms which are inverses of each other 
(e.g., ab- 1a times a-1ba should reduce to aa). Let rf1 r�2 • • •  r!"' and s�1 s�2 • • •  s�" be 
reduced words and assume first that m :::_s n .  Let k be the smallest integer in the range 
1 :::_s k :::S m + 1 such that s? =f:. r :�1c-=;11 •  Then the product of these reduced words is 
defined to be: 

if k :::_s m 

if k = m+ 1 :::_s n 

if k = m+1 and m = n .  

The product i s  defined similarly when m � n,  so in either case it results in a reduced 
word. 
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Theorem 16. F(S) is a group under the binary operation defined above. 

Proof" One easily checks that 1 is an identity and that the inverse of the reduced 
d Et Ez E • h d d d -E -En-l -Et Th d"ffi 1 f h f war s1 s2 . • •  sn" ts t e re uce war sn "sn-l • . .  s1 . e 1 cu t part o t e proo 

is the verification of the associative law. This can be done by induction on the "length" 
of the words involved and considering various cases or one can proceed as follows: For 
each s E S U s-t U { 1 }  define as : F(S) � F(S) by 

"f E t _J_ -1 
1 s1 1 s 
"f Et - 1 
1 s1 = s . 

Since a..- 1 o as is the identity map of F(S) � F(S), as is a permutation of F(S). Let 
A (F) be the subgroup of the symmetric group on the set F(S) which is generated by 
{as I s E S}. It is easy to see that the map 

SEt SEz SE" I-+ aEt 0 (1Ez 0 0 (1E" 1 2 • • • n St sz • • • Sn 

is a (set) bijection between F ( S) and A ( S) which respects their binary operations. Since 
A(S) is a group, hence associative, so is F(S) . 

The universal property of free groups now follows easily. 

Theorem 17. Let G be a group, S a set and q; : S � G a set map. Then there is a unique 
group homomorphism cJ> : F(S) � G such that the following diagram commutes: 

S 
inclusion 

F(S) �1� 
Proof" Such a map cJ> must satisfy cJ>(s� 1 s�2 • • •  s�" ) = q;(s1 )E1 q; (s2Y2 • • •  q;(snY" 

if it is to be a homomorphism (which proves uniqueness), and it is straightforward to 
check that this map is in fact a homomorphism (which proves existence). 

Corollary 18. F(S) is unique up to a unique isomorphism which is the identity map 
on the set S. 

Proof" This follows from the universal property. Suppose F(S) and F'(S) are 
two free groups generated by S. Since S is contained in both F ( S) and F' (S),  we have 
natural injections S "-+ F' (S) and S "-+ F(S) . By the universal property in the theorem, 
it follows that we have unique associated group homomorphisms cJ> : F(S) � F' (S) 
and cJ>' : F'(S) � F (S) which are both the identity on S. The composite cJ>'cJ> is a 
homomorphism from F(S) to F(S) which is the identity on S, so by the uniqueness 
statement in the theorem, it must be the identity map. Similarly cJ> cJ>' is the identity, so 
cJ> is an isomorphism (with inverse cJ>'), which proves the corollary. 
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Definition. The group F(S) is called the free group on the set S. A group F is afree 
group if there is some set S such that F = F (S) - in this case we call S a set of free 
generators (or a free basis) of F. The cardinality of S is called the rank of the free 
group. 

One can now simplify expressions in a free group by using exponential notation, so 
we write a3b-2 instead of the formal reduced word aaab-lb-1 • Expressions like aha, 
however, cannot be simplified in the free group on {a , b} . We mention one important 
theorem in this area. 

Theorem 19. (Schreier) Subgroups of a free group are free. 

This is not trivial to prove and we do not include a proof. There is a nice proof of 
this result using covering spaces (cf. Trees by J.-P. Serre, Springer-Verlag, 1980). 

Presentations 

Let G be any group. Then G is a homomorphic image of a free group: take S = G 
and rp as the identity map from G to G ;  then Theorem 16 produces a (surjective) 
homomorphism from F (G) onto G .  More generally, if S is any subset of G such 
that G = { S ) ,  then again there is a unique surjective homomorphism from F(S) onto 
G which is the identity on S. (Note that we can now independently formulate the 
notion that a subset generates a group by noting that G = ( S )  if and only if the map 
n : F(S) -+ G which extends the identity map of S to G is surjective.) 

Definition. Let S be a subset of a group G such that G = { S ) . 
(l) A presentation for G is apair (S, R), where R is a set of words in F(S) such that 

the normal closure of { R )  in F(S) (the smallest normal subgroup containing 
( R ) ) equals the kernel of the homomorphism 1r : F (S) -+ G (where 1r extends 
the identity map from S to S). The elements of S are called generators and those 
of R are called relations of G. 

(2) We say G is finitely generated if  there is a presentation (S, R) such that S is a 
finite set and we say G is finitely presented if there is a presentation (S, R) with 
both S and R finite sets. 

Note that if (S, R) is a presentation, the kernel of the map F(S) -+ G is not { R )  
itself but rather the (much larger) group generated by R and all conjugates of elements 
in R. Note that even for a fixed set S a group will have many different presentations (we 
can always throw redundant relations into R, for example). If G is finitely presented 
with S = {st .  s2 , • • •  , sn } and R = {wt . w2 , • • •  , wd, we write (as we have in preceding 
chapters): 

G = { St . S2 , • . • , Sn I Wt = W2 = • · · = Wk = 1 ) 

and if w is the word w1 w21 , we shall write w1 = w2 instead of w = 1 .  
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Examples 

(1) Every finite group is finitely presented. To see this let G = {gt ,  . . .  , gn }  be a finite 
group. Let S = G and let rr : F (S) --+ G be the homomorphism extending the identity 

map of S. Let Ro be the set of words gi gi gk1 , where i, j = 1 ,  . . . , n and gi gi = gk in 

G. Clearly Ro :::; ker rr. If N is the normal closure of Ro in F ( S) and G = F (S) f N, 
then G is a homomorphic image of G (i.e., rr factors through N). Moreover, the set of 
elements {gi I i = 1 ,  . . .  , n }  is closed under multiplication. Since this set generates 
G, it must equal G. Thus IG I = I G I and so N =  ker rr and (S, Ro) is a presentation 
of G. 
This illustrates a sufficient condition for (S, R) to be a presentation for a given finite 
group G :  
(i) S must b e  a generating set for G,  and 

(ii) any group generated by S satisfying the relations in R must have order :::; I G I .  
(2) Abelian groups can be presented easily. For instance 

Z � F({a}) = ( a ) , 

Z x  Z �  ( a , b I [a, b] = 1 ) , 

Zn X Zm � ( a, b I an = bm = [a , b] = 1 ) . 

(Recall [a, b] = a- 1 b-1ab). 
(3) Some fatniliar non-abelian groups introduced in earlier chapters have simple presen

tations: 

D2n = ( r, s  I rn = s2 = 1 ,  s-1 rs = r-1 ) 

Qs = ( i, j I i
4 

= 1 , / = i2
, T 1 ij = ;-1 ) . 

To check, for example, the presentation for Dzn note that the relations in the presenta
tion ( r, s 1 r" = s2 = 1 ,  s-1 rs = r- 1 ) imply that this group has a normal subgroup 
(generated by r) of order :::; n whose quotient is generated by s (which has order :::; 2). 
Thus any group with these generators and relations has order at most 2n. Since we 
already know of the existence of the group D2n of order 2n satisfying these conditions, 
the abstract presentation must equal D2n . 

(4) As mentioned in Section 1 .2, in general it is extremely difficult even to determine if a 
given set of generators and relations is or is not the identity group (let alone determine 
whether it is some other nontrivial finite group). For example, in the following two 
presentations the first group is an infinite group and the second is the identity group 
(cf. Trees, Chapter 1 ) :  

( I -1 2 -1 2 -1 2 -1 2 ) X1 , X2 , XJ , X4 X2X1 X2 = Xi , XJX2XJ = x2 , X4X3X4 = x3 , XiX4Xt = x4 
( I -] 2 -1 2 - 1  2 ) X} , X2 , X3 , X2XtX2 = Xi , XJX2XJ = x2 , XtX3Xj = X3 • 

(5) It is easy to see that Sn is generated by the transpositions ( 1 2) , (2 3) , . . .  , (n - 1  n), 
and that these satisfy the relations 

((i i + 1)(i + 1  i +2))3 = 1 and [(i i + 1) ,  (j j + 1)]  = 1 ,  whenever l i - j l  :=:: 2 

(here l i - j l  denotes the absolute value ofthe integer i - j).  One can prove by induction 
on n that these form a presentation of Sn : 

Sn � ( ti • . . .  , tn-i  I tf = 1 ,  (ti ti+I )3 
= 1 ,  and [tj , ti ] = l 

whenever l i - j l  :=:: 2, 1 :::; i, j :::; n - 1 ) .  
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As mentioned in Section 1 .6 we can use presentations of a group to find homomor
phisms between groups or to find automorphisms of a group. We did this in classifying 
groups of order 6, for example, when we proved that any non-abelian group of order 6 
was generated by an element of order 3 and an element of order 2 inverting it; thus there is 
a homomorphism from S3 onto any non-abelian group of order 6 (hence an isomorphism, 
by computing orders). More generally, suppose G is presented by, say, generators a ,  b 
with relations r1 , . . .  , rk . If a' , b' are any elements of a group H satisfying these rela
tions, there is a homomorphism from G into H. Namely, if rr : F({a, b}) --+- G is the 
presentation homomorphism, we can define rr' : F({a , b}) --+- H by rr' (a) = a' and 
rr' (b) = b' . Then ker rr ::=:: ker rr' so rr' factors through ker rr and we obtain 

G ;:: F({a, b})/ ker rr --+ H. 

In, particular, if ( a' , b' } = H = G, this homomorphism is an automorphism of G. 
Conversely, any automorphism must send a set of generators to another set of generators 
satisfying the same relations. For example, D8 = ( a , b I a2 = b4 = 1 ,  aha = b-1 } 
and any pair a' , b' of elements, where a' is a noncentral element of order 2 and b' is of 
order 4, satisfies the same relations. Since there are four noncentral elements of order 
2 and two elements of order 4, D8 has 8 automorphisms. 

Similarly, any pair of elements of order 4 in Q8 which are not equal or inverses of 
each other necessarily generate Q8 and satisfy the relations given in Example 3 above. 
It is easy to check that there are 24 such pairs, so 

IAut(Qs) l  = 24. 

Free objects can be constructed in (many, but not all) other categories. For instance, 
a monoid is a set together with a binary operation satisfying all of the group axioms 
except the axiom specifying the existence of inverses. Free objects in the category of 
monoids play a fundamental role in theoretical computer science where they model the 
behavior of machines (Turing machines, etc.). We shall encounter free algebras (i .e., 
polynomial algebras) and free modules in later chapters. 

E X E R C I S E S  

l. Let F1 and Fz be free groups of finite rank. Prove that F1 � Fz if and only if they have the 
same rank. What facts do you need in order to extend your proof to infinite ranks (where 
the result is also true)? 

2. Prove that if lS I  > I then F(S) is non-abelian. 
3. Prove that the commutator subgroup of the free group on 2 generators is not finitely gener-

ated (in particular, subgroups of finitely generated groups need not be finitely generated). 
4. Prove that every nonidentity element of a free group is of infinite order. 
5. Establish a finite presentation for A4 using 2 generators. 
6. Establish a finite presentation for S4 using 2 generators. 
7. Prove that the following is a presentation for the quatemion group of order 8: 

Qs = ( a , b I a2 
= b2 , a-1 ba = b-1  } .  

8. Use presentations to find the orders of the automorphism groups of the groups Zz x Z4 
and z4 X Z4 . 
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9. Prove that Aut( Qs) � S4 . 

10. This exercise exhibits an automorphism of S6 that is not inner (hence, together with Ex
ercise 19 in Section 4.4 it shows that 1Aut(S6) : lnn(S6) 1  = 2). Let ti = (1 2) (3 4) (5 6}, 
tz = (1 4)(2 5) (3 6), t� = (1 3)(2 4)(5 6}, t� = (1 2) (3 6)(4 5), and t� = (1 4}(2 3)(5 6). 
Show that ti , . . .  , t� satisfy the following relations: 

(tf)2 = 1 for all i , 
(t!tj)2 = 1 for all i and j with l i - j l  ::=: 2, and 

(t!ti+1 )3 = 1 for all i E { 1 , 2, 3 , 4} .  

Deduce that S6 = ( t }  , . . .  , t� ) and that the map 

o 2) f-+ tL <2 3) f-+ 12 . (3 4) f-+ t� . <4 5) f-+ t� .  <5 6) f-+ t� 
extends to an automorphism of S6 (which is clearly not inner since it does not send trans
positions to transpositions). [Use the presentation for S6 described in Example 5.] 

11. Let S be a set. The group with presentation (S, R), where R = { [s , t] I s , t E S} is called 
the free abelian group on S - denote it by A(S). Prove that A (S) has the following 
universal property: if G is any abelian group and qJ : S --+ G is any set map, then there is 
a unique group homomorphism tP : A (S) --+ G such that tP I s  = qJ. Deduce that if A is a 
free abelian group on a set of cardinality n then 

A � Z x Z x · · · x Z (n factors). 

12. Let S be a set and let c be a positive integer. Formulate the notion of a free nilpotent group 
on S of nilpotence class c and prove it has the appropriate universal property with respect 
to nilpotent groups of class � c. 

13. Prove that there cannot be a nilpotent group N generated by two elements with the property 
that every nilpotent group which is generated by two elements is a homomorphic image 
of N (i .e. ,  the specification of the class c in the preceding problem was necessary). 
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Pa rt I I  

RI N G  TH EO RY 

The theory of groups is concerned with general properties of certain objects having 
an algebraic structure defined by a single binary operation. The study of rings is 
concerned with objects possessing two binary operations (called addition and multipli
cation) related by the distributive laws. We first study analogues for the basic points 
of development in the structure theory of groups. In particular, we introduce subrings, 
quotient rings, ideals (which are the analogues of normal subgroups) and ring homo
morphisms. We then focus on questions about general rings which arise naturally from 
the presence of two binary operations. Questions concerning multiplicative inverses 
lead to the notion of fields and eventually to the construction of some specific fields 
such as finite fields. The study of the arithmetic (divisibility, greatest common divisors, 
etc.) of rings such as the familiar ring of integers, Z, leads to the notion of primes and 
unique factorizations in Chapter 8. The results of Chapters 7 and 8 are then applied to 
rings of polynomials in Chapter 9. 

The basic theory of rings developed in Part II is the cornerstone for the remaining 
four parts of the book. The theory of ring actions (modules) comprises Part III of the 
book. There we shall see how the structure of rings is reflected in the structure of the 
objects on which they act and this will enable us to prove some powerful classification 
theorems. The structure theory of rings, in particular of polynomial rings, forms the 
basis in Part IV for the theory of fields and polynomial equations over fields. There the 
rich interplay among ring theory, field theory and group theory leads to many beautiful 
results on the structure of fields and the theory of roots of polynomials. Part V continues 
the study of rings and applications of ring theory to such topics as geometry and the 
theory of extensions. In Part VI the study of certain specific kinds of rings (group rings) 
and the objects (modules) on which they act again gives deep classification theorems 
whose consequences are then exploited to provide new results and insights into finite 
groups. 
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CHAPTER 7 

I ntroduct io n to Rings 

7. 1 BASIC DEFIN ITIONS AND EXAM PLES 

Definition. 
(1) A ring R is a set together with two binary operations + and x (called addition 

and multiplication) satisfying the following axioms: 
(i) (R,  +) is an abelian group, 

(ii) x is associative : (a x b) x c = a  x (b x c) for all a, b, c E R, 
(iii) the distributive laws hold in R : for all a ,  b, c E R 

(a +b) x c = (a x c) + (b x c) and a x (b+c) = (a x b) + (a x c) . 

(2) The ring R is commutative if multiplication is commutative. 
(3) The ring R is said to have an identity (or contain a 1 )  if there is an element 

1 E R with 
l x a = a x l = a for all a E R.  

We shall usually write simply ab rather than a x b for a, b E R. The additive 
identity of R will always be denoted by 0 and the additive inverse of the ring element 
a will be denoted by -a. 

The condition that R be a group under addition is a fairly natural one, but it may 
seem artificial to require that this group be abelian. One motivation for this is that if the 
ring R has a 1 ,  the commutativity under addition is forced by the distributive laws. To 
see this, compute the product ( 1  + 1 ) (a +b) in two different ways, using the distributive 
laws (but not assuming that addition is commutative). One obtains 

( 1  + l ) (a + b) =  l (a + b) + l (a + b) =  la + lb + 1a + lb = a +  b + a +  b 

and 

( 1  + 1 ) (a + b) =  ( 1  + l)a + ( 1  + l )b = la + la + lb + lb = a +  a +  b + b. 

Since R is a group under addition, this implies b +a  = a +  b, i.e., that R under addition 
is necessarily commutative. 

Fields are one of the most important examples of rings. Note that their definition 
below is just another formulation of the one given in Section 1 .4. 
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Definition. A ring R with identity 1 ,  where 1 ::j:. 0, is called a division ring (or skew 
field) if every nonzero element a E R has a multiplicative inverse, i.e. ,  there exists 
b E R such that ab = ba = 1 .  A commutative division ring is called afield. 

More examples of rings follow. 

Examples 

(1) The simplest examples of rings are the trivial rings obtained by taking R to be any 
commutative group (denoting the group operation by +) and defining the multiplication 
x on R by a x b = 0 for all a, b E R. It is easy to see that this multiplication defines 
a commutative ring. In particular, if R = {0} is the trivial group, the resulting ring R 
is called the zero ring, denoted R = 0. Except for the zero ring, a trivial ring does 
not contain an identity (R = 0 is the only ring where 1 = 0; we shall often exclude 
this ring by imposing the condition 1 =I= 0). Although trivial rings have two binary 
operations, multiplication adds no new structure to the additive group and the theory of 
rings gives no information which could not already be obtained from (abelian) group 
theory. 

(2) The ring of integers, Z, under the usual operations of addition and multiplication is a 
commutative ring with identity (the integer 1 ). The ring axioms (as with the additive 
group axioms) follow from the basic axioms for the system of natural numbers. Note 
that under multiplication Z-{0} is not a group (in fact, there are very few multiplicative 
inverses to elements in this ring). We shall come back to the question of these inverses 
shortly. 

(3) Similarly, the rational numbers, Q, the real numbers, lR, and the complex numbers, C, 
are commutative rings with identity (in fact they are fields). The ring axioms for each 
of these follow ultimately from the ring axioms for Z. We shall verify this when we 
construct Q from Z (Section 7.5) and C from lR (Example 1 ,  Section 1 3. 1 ); both of 
these constructions will be special cases of more general processes. The construction 
of lR from Q (and subsequent verification of the ring axioms) is carried out in basic 
analysis texts. 

( 4) The quotient group Z/ nZ is a commutative ring with identity (the element 1) under the 
operations of addition and multiplication of residue classes (frequently referred to as 
"modular arithmetic"). We saw that the additive abelian group axioms followed from 
the general principles of the theory of quotient groups (indeed this was the prototypical 
quotient group). We shall shortly prove that the remaining ring axioms (in particular, 
the fact that multiplication of residue classes is well defined) follow analogously from 
the general theory of quotient rings. 

In all of the examples so far the rings have been commutative. Historically, one of the first 
noncommutative rings was discovered in 1 843 by Sir William Rowan Hamilton (1 805-
1 865). This ring, which is a division ring, was extremely influential in the subsequent 
development of mathematics and it continues to play an important role in certain areas of 
mathematics and physics. 
(5) (The (real) Hamilton Quaternions) Let !HI be the collection of elements of the form 

a + bi + cj + dk where a,  b, c, d E lR are real numbers (loosely, "polynomials in 
1 ,  i ,  j, k with real coefficients") where addition is defined "componentwise" by 
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(a+bi+cj+dk) + (a' +b' i+c' j+d'k) = (a+a') + (b+b')i + (c+c')j + (d+d')k 

and multiplication is defined by expanding (a + bi + cj + dk) (a' + b'i + c' j + d'k) 
using the distributive law (being careful about the order of terms) and simplifying 
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using the relations 

(where the real number coefficients commute with i, j and k). For example, 

( 1+i+2j) (j+k) = 1 (j+k) + i (j+k) + 2j (j+k) = j + k + ij + ik + 2j2 + 2jk 
= j + k  + k  + (-j) + 2(- 1 )  + 2(i) = -2 + 2i + 2k. 

The fact that lHI is a ring may be proved by a straightforward, albeit lengthy, check 
of the axioms (associativity of multiplication is particularly tedious). The Hamilton 
Quatemions are a noncommutative ring with identity ( 1 = 1 +Oi +0 j +Ok ) . Similarly, 
one can define the ring of rational Hamilton Quatemions by taking a ,  h, c, d to be 
rational numbers above. Both the real and rational Hamilton Quaternions are division 
rings, where inverses of nonzero elements are given by 

. . -1  a - hi - cj - dk 
(a + h1 + CJ + dk) = 2 2 2 2 . a + h + c + d 

(6) One important class of rings is obtained by considering rings of functions. Let X 
be any nonempty set and let A be any ring. The collection, R, of all (set) functions 
f : X � A is a ring under the usual definition of pointwise addition and multiplication 
of functions : (f + g) (x) = f(x) + g(x) and (fg)(x) = f(x)g(x) . Each ring axiom 
for R follows directly from the corresponding axiom for A. The ring R is commutative 
if and only if A is commutative and R has a 1 if and only if A has a 1 (in which case 
the 1 of R is necessarily the constant function 1 on X). 

If X and A have more structure, we may form other rings of functions which 
respect those structures. For instance, if A is the ring of real numbers lR and X is 
the closed interval [0, 1] in lR we may form the ring of all continuous functions from 
[0, 1]  to lR (here we need basic limit theorems to guarantee that sums and products of 
continuous functions are continuous) - this is a commutative ring with 1 .  

(7) An example of a ring which does not have an identity i s  the ring 2Z of even integers 
under usual addition and multiplication of integers (the sum and product of even 
integers is an even integer). 

Another example which arises naturally in analysis is constructed as follows. A 
function f : lR � lR is said to have compact support if there are real numbers a ,  h 
(depending on f) such that f(x) = 0 for all x ¢ [a , h] (i.e., f is zero outside some 
bounded interval). The set of all functions f : lR � lR with compact support is a 
commutative ring without identity (since an identity could not have compact support). 
Similarly, the set of all continuous functions f : lR � lR with compact support is a 
commutative ring without identity. 

In the next section we give three important ways of constructing "larger" rings 
from a given ring (analogous to Example 6 above) and thus greatly expand our list 
of examples. Before doing so we mention some basic properties of arbitrary rings. 
The ring Z is a good example to keep in mind, although this ring has a good deal 
more algebraic structure than a general ring (for example, it is commutative and has 
an identity). Nonetheless, its basic arithmetic holds for general rings as the following 
result shows. 
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Proposition 1. Let R be a ring. Then 
(1) 0a = a0 = 0 for all a E R . 
(2) (-a)b = a(-b) = - (ab) for all a, b E  R (recall -a is the additive inverse of 

a). 
(3) (-a) ( -b) = ab for all a ,  b E R. 
(4) if R has an identity 1, then the identity is unique and -a = ( - 1 )a . 

Proof" These all follow from the distributive laws and cancellation in the additive 
group R .  For example, ( 1 )  follows from Oa = (0 + O)a = Oa + Oa. The equality 
( -a)b = - (ab) in (2) follows from ab + ( -a)b = (a + ( -a))b = Ob = 0. The rest 
follow similarly and are left to the reader. 

This proposition shows that because of the distributive laws the additive and mul
tiplicative structures of a ring behave well with respect to one another, just as in the 
familiar example of the integers. 

Unlike the integers, however, general rings may possess many elements that have 
multiplicative inverses or may have nonzero elements a and b whose product is zero. 
These two properties of elements, which relate to the multiplicative structure of a ring, 
are given special names. 

Definition. Let R be a ring. 
(1) A nonzero element a of R is called a zero divisor if there is a nonzero element 

b in R such that either ab = 0 or ba = 0. 
(2) Assume R has an identity 1 =1- 0. An element u of R is called a unit in R if there 

is some v in R such that uv = vu = 1 .  The set of units in R is denoted R x .  

It is easy to see that the units in a ring R form a group under multiplication so R x 
will be referred to as the group of units of R .  In this terminology afield is a commutative 
ring F with identity 1 =1- 0 in which every nonzero element is a unit, i. e., F x  = F - {0} . 

Observe that a zero divisor can never be a unit. Suppose for example that a is a 
unit in R and that ab = 0 for some nonzero b in R .  Then va = 1 for some v E R, so 
b = 1b = (va)b = v (ab) = vO = 0, a contradiction. Similarly, if ba = 0 for some 
nonzero b then a cannot be a unit. 

This shows in particular that fields contain no zero divisors. 

Examples 

(1) The ring Z of integers has no zero divisors and its only units are ±1,  i.e., zx = {±1} .  
Note that every nonzero integer has an inverse in  the larger ring Q, so the property of 
being a unit depends on the ring in which an element is viewed. 

(2) Let n be an integer 2: 2. In the ring Z/ nZ the elements u for which u and n are 
relatively prime are units (we shall prove this in the next chapter). Thus our use ofthe 
notation (Z/ nZ) x is consistent with the definition of the group of units in an arbitrary 
ring. 

226 

If, on the other hand, a is a nonzero integer and a is not relatively prime to n then 
we show that ii is a zero divisor in Z/ nZ. To see this let d be the g.c.d. of a and n and 

n . 
let b = d .  By assumptiOn d > 1 so 0 < b < n, i.e., jj i= 0. But by construction n 
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divides ab, that is, ab = 6 in Z/nZ. This shows that every nonzero element ofZfnZ 
is either a unit or a zero divisor. Furthermore, every nonzero element is a unit if and 
only if every integer a in the range 0 < a < n is relatively prime to n. This happens 
if and only if n is a prime, i.e., Z/ nZ is a field if and only if n is a prime. 

(3) If R is the ring of all functions from the closed interval [0, 1] to lR then the units of R 
are the functions that are not zero at any point (for such f its inverse is the function J ). If f is not a unit and not zero then f is a zero divisor because if we define 

{ 0, if f(x) # 0 
g (x) = 

1 ,  if f (x) = 0 

then g is not the zero function but f(x)g(x) = 0 for all x. 
(4) If R is the ring of all continuous functions from the closed interval [0, 1 ]  to lR then 

the units of R are still the functions that are not zero at any point, but now there are 
functions that are neither units nor zero divisors. For instance, f (x) = x - ! has only 
one zero (at x = ! > so f is not a unit. On the other hand, if gf = 0 then g must 
be zero for all x # ! , and the only continuous function with this property is the zero 
function. Hence f is neither a unit nor a zero divisor. Similarly, no function with 
only a finite (or countable) number of zeros on [0, 1] is a zero divisor. This ring also 
contains many zero divisors. For instance let 

{ 0, 
f(x) = 

x _ l  2 '  

O :s x ::: ! 
� :S x :S l  

and let g(x) = f(l - x). Then f and g are nonzero continuous functions whose 
product is the zero function. 

(5) Let D be a rational number that is not a perfect square in <Q and define 

<Q(-JD) = {a +  b-JD I a ,  b E  <Q} 

as a subset of <C. This set is clearly closed under subtraction, and the identity (a + 
b-JD ) (c + d,JD) = (ac + bdD) + (ad + bc),JD shows that it is also closed under 
multiplication. Hence <Q( -JD) is a subring of <C (even a subring of lR if D > 0), so in 
particular is a commutative ring with identity. It is easy to show that the assumption 
that D is not a square implies that every element of <Q( ,JD) may be written uniquely 
in the form a + b-JD. This assumption also implies that if a and b are not both 0 then 
a2 - Db2 is nonzero, and since (a + b-JD ) (a - b,JD) = a2 - Db2 it follows that if 

� · · h 
a - b.Ji5 · h · f b � a + bv v # O (t.e., one ofa or b ts nonzero) t en 2 b2 1s t e mverse o a +  v D a - D 

in <Q( rv ) .  This shows that every nonzero element in this commutative ring is a unit, 
i.e., <Q(,JD) is a field (called a quadratic field, cf. Section 13 .2). 

The rational number D may be written D = !2 D' for some rational number f and 
a unique integer D' where D' is not divisible by the square of any integer greater than 
1 , i.e., D' is either - 1  or ±1 times the product of distinct primes in Z (for example, 
8/5 = (2/5)2 · 10). Call D' the squarefree part of D. Then -JD = Jffi, and so 
<Q( -JD) = <Q( ffi). Thus there is no loss in assuming that D is a squarefree integer 
(i.e., f = 1 )  in the definition of the quadratic field <Q( rv ). 
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Rings having some of the same characteristics as the integers Z are given a name: 

Definition. A commutative ring with identity 1 =f:. 0 is called an integral domain if it 
has no zero divisors. 

The absence of zero divisors in integral domains give these rings a cancellation 
property: 

Proposition 2. Assume a, b and c are elements of any ring with a not a zero divisor. If 
ab = ac, then either a = 0 or b = c (i.e., if a =f:. 0 we can cancel the a 's). In particular, 
if a, b, c are any elements in an integral domain and ab = ac, then either a = 0 or 
b = c. 

Proof: If ab = ac then a (b - c) = 0 so either a = 0 or b - c = 0. The second 
statement follows from the first and the definition of an integral domain. 

Corollary 3. Any finite integral domain is a field. 

Proof: Let R be a finite integral domain and let a be a nonzero element of R. By 
the cancellation law the map x � ax is an injective function. Since R is finite this map 
is also surjective. In particular, there is some b E R such that ab = 1 ,  i.e., a is a unit 
in R. Since a was an arbitrary nonzero element, R is a field. 

A remarkable result of Wedderburn is that a finite division ring is necessarily com
mutative, i.e., is a field. A proof of this theorem is outlined in the exercises at the end 
of Section 1 3.6. 

In Section 5 we study the relation between zero divisors and units in greater detail. 
We shall see that every nonzero element of a commutative ring that is not a zero divisor 
has a multiplicative inverse in some larger ring. This gives another perspective on the 
cancellation law in Proposition 2. 

Having defined the notion of a ring, there is a natural notion of a subring. 

Definition. A subring of the ring R is a subgroup of R that is closed under multipli
cation. 

In other words, a subset S of a ring R is a subring if the operations of addition and 
multiplication in R when restricted to S give S the structure of a ring. To show that a 
subset of a ring R is a subring it suffices to check that it is nonempty and closed under 
subtraction and under multiplication. 

Examples 

A number of the examples above were also subrings. 
(1) Z is a subring of Q and Q is a subring of R The property "is a subring of' is clearly 

transitive. 
(2) 2Z is a subring of Z, as is nil for any integer n. The ring ZjnZ is not a subring (or a 

subgroup) of Z for any n ;:: 2. 
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(3) The ring of all continuous functions from lR to lR is a subring of the ring of all functions 
from lR to JR. The ring of all differentiable functions from lR to lR is a subring of both 
of these. 

(4) S = Z + /Zi + /Zj + Ilk, the integral Quatemions, form a subring of either the real or 
the rational Quatemions - it is easy to check that multiplying two such quatemions 
together gives another quatemion with integer coefficients. This ring (which is not a 
division ring) can be used to give proofs for a number of results in number theory. 

(5} If R is a subring of a field F that contains the identity of F then R is an integral 
domain. The converse of this is also true, namely any integral domain is contained in 
a field (cf. Section 5). 

Example: (Quadratic Integer Rings) 

Let D be a squarefree integer. It is immediate from the addition and multiplication that the 

subset Z[ -v'n ] = {a + b-v'n I a, b E Z} forms a subring of the quadratic field Q( -v'n) 
defined earlier. If D = 1 mod 4 then the slightly larger subset 

1 + -v'n 1 + -v'n 
Z[ 

2 
] = {a + b 

2 
I a, b E Z} 

is also a subring: closure under addition is immediate and (a + b l+jD ) (c + d l+:jD) = 

(ac + bd D4l ) + (ad + be + bd) 1 +jD together with the congruence on D shows closure 
under multiplication. 

Define 

where 

0 = OIQI(.J]) ) = Z[w] = {a +  bw I a, b E  Z} ,  

I -v'n, 
w =  1 + -vfn 

2 ' 

if D = 2, 3 mod 4 

if D = 1 mod 4, 

called the ring of integers in the quadratic field Q( Ji5 ) . The terminology comes from the 

fact that the elements of the subring 0 of the field Q( -v'n) have many properties analogous 
to those of the subring of integers Z in the field of rational numbers Q (and are the integral 
closure of Z in Q( -v'n ) as explained in Section 15.3) . 

In the special case when D = -1 we obtain the ring Z[i] of Gaussian integers, which 
are the complex numbers a +  bi E C with a and b both integers. These numbers were 
originally introduced by Gauss around 1 800 in order to state the biquadratic reciprocity law 
which deals with the beautiful relations that exist among fourth powers modulo primes. 
We shall shortly see another useful application of the algebraic structure of this ring to 
number theoretic questions. 

Define the field norm N : Q( -v'n) � Q by 

N(a + b..[jj ) = (a +  hJi5 ) (a - bJi5 ) = a2 - Db2 E Q, 

which, as previously mentioned, is nonzero if a + b-vfn =1- 0. This norm gives a measure 
of "size" in the field Q( -v'n ). For instance when D = - 1  the norm of a + bi is a2 + b2, 
which is the square of the length of this complex number considered as a vector in the 
complex plane. We shall use the field norm in this and subsequent examples to establish 
many properties of the rings 0. 
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It is easy to check that N is multiplicative, i.e., that N(a{J) = N(a)N({J) for all 
a, fJ E Q( .Ji5). On the subring 0 it is also easy to see that the field norm is given by 

{ a2 - Db2 , if D = 2, 3 mod 4 
N(a + bw) = (a + bw) (a + bw) = 2 b 

1 - D
b2 t'f D = 1 mod 4 a + a  + -4- , 

where I -.Ji5, if D = 2, 3 mod 4 

(ij = 1 -.Ji5 
2 . 

if D = 1 mod 4. 

It follows that N (a) is in fact an integer for every a E 0. 
We may use this norm to characterize the units in 0. If a E 0 has field norm 

N(a) = ± 1 ,  the previous formula shows that (a + bw)-1 = ±(a + bw),  which is again 
an element of 0 and so a is a unit in 0. Suppose conversely that a is a unit in 0, say 
a{J = 1 for some fJ E 0. Then the multiplicative property of the field norm implies that 
N(a)N({J) = N(a{J) = N(l) = 1 . Since both N(a) and N(fJ) are integers, each must be 
±1 . Hence, 

the element a is a unit in 0 if and only if N(a) = ± 1 .  

In particular the determination of the integer solutions to the equation x2 - Dy2 = ±1 
(called Pell's equation in  elementary number theory) i s  essentially equivalent to the deter
mination of the units in the ring 0. 

When D = - 1 , the units in the Gaussian integers Z[i] are the elements a +  bi with 
a2 + b2 = ±1,  a, b E  Z, so the group of units consists of {±1 ,  ±i } . When D = -3, the 
units in Z[( l + H)/2] are determined by the integers a, b with a2 + ab + b2 = ± 1 ,  i.e., 
with (2a + b)2 + 3b2 = ±4, from which it is easy to see that the group of units is a group 
of order 6 given by {±1 , ±p , ±p2} where p = (- 1 + H)/2. For any other D < 0 it is 
similarly straightforward to see that the only units are {±1 }. 

By contrast, when D > 0 it can be shown that the group of units ox is always infinite. 
For example, it is easy to check that 1 + .J2 is a unit in the ring 0 = Z[.J2 ] (with field 
norm - 1 )  and that {±(1 + .J2 )n I n E Z}, is an infinite set of distinct units (in fact the full 
group of units in this case, but this is harder to prove). 

E X E R C I S E S  

Let R be a ring with 1 .  

1 .  Show that ( - 1 )2 = 1 in R. 

2.  Prove that if  u is a unit in R then so is -u. 
3. Let R be a ring with identity and let S be a subring of R containing the identity. Prove that 

if u is a unit in S then u is a unit in R. Show by example that the converse is false. 

4. Prove that the intersection of any nonempty collection of subrings of a ring is also a subring. 

5. Decide which of the following (a) - (f) are subrings of Q: 
(a) the set of all rational numbers with odd denominators (when written in lowest terms) 
(b) the set of all rational numbers with even denominators (when written in lowest terms) 
(c) the set of nonnegative rational numbers 
(d) the set of squares of rational numbers 
(e) the set of all rational numbers with odd numerators (when written in lowest terms) 
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(f) the set of all rational numbers with even numerators (when written in lowest terms). 
6. Decide which of the following are subrings of the ring of all functions from the closed 

interval [0, 1] to JR: 
(a) the set of all functions f(x) such that f(q) = 0 for all q E Q n [0, l ]  
(b) the set of all polynomial functions 
(c) the set of all functions which have only a finite number of zeros, together with the 

zero function 
(d) the set of all functions which have an infinite number of zeros 
(e) the set of all functions f such that lim f (x) = 0 

X-+ 1-
(f) the set of all rational linear combinations of the functions sinnx and cosmx, where 

m, n E {0 , 1 ,  2, . . . } . 
7. The center of a ring R is {z E R 1 zr = rz for all r E R } (i.e., is the set of all elements 

which commute with every element of R). Prove that the center of a ring is a subring that 
contains the identity. Prove that the center of a division ring is a field. 

8. Describe the center of the real Hamilton Quatemions IHI. Prove that {a + bi I a, b E JR.} is 
a subring of IHI which is a field but is not contained in the center of IHI. 

9. For a fixed element a E R define C(a) = {r E R I ra =  ar } .  Prove that C{a) is a subring 
of R containing a. Prove that the center of R is the intersection of the subrings C(a) over 
all a E R. 

10. Prove that if D is a division ring then C{a) is a division ring for all a E D  (cf. the preceding 
exercise). 

11. Prove that if R is an integral domain and x2 = 1 for some x E R then x = ± 1 .  
12. Prove that any subring of a field which contains the identity i s  an integral domain. 
13. An element X in R is called nilpotent if xm = 0 for some m E z+. 

(a) Show that if n = akb for some integers a and b then ab is a nilpotent element of 
ZjnZ. 

(b) If a E Z is an integer, show that the element a E ZjnZ is nilpotent if and only if 
every prime divisor of n is also a divisor of a. In particular, determine the nilpotent 
elements of Z/72Z explicitly. 

(c) Let R be the ring of functions from a nonempty set X to a field F. Prove that R 
contains no nonzero nilpotent elements. 

14. Let x be a nilpotent element of the commutative ring R (cf. the preceding exercise). 
(a) Prove that x is either zero or a zero divisor. 
(b) Prove that r x is nilpotent for all r E R. 
(c) Prove that 1 + x is a unit in R. 
(d) Deduce that the sum of a nilpotent element and a unit is a unit. 

15. A ring R is called a Boolean ring if a2 = a  for all a E R. Prove that every Boolean ring 
is commutative. 

16. Prove that the only Boolean ring that is an integral domain is Z/2Z. 
17. Let R and S be rings. Prove that the direct product R x S is a ring under componentwise 

addition and multiplication. Prove that R x S is commutative if and only if both R and 
S are commutative. Prove that R x S has an identity if and only if both R and S have 
identities. 

18. Prove that { (r, r) I r E  R} is a subring of R x R. 
19. Let I be any nonempty index set and let R; be a ring for each i E / .  Prove that the direct 
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product niE/ R; is a ring under componentwise addition and multiplication. 

20. Let R be the collection of sequences (at , az , a3 , . . . ) of integers a1 , az , a3 , . . .  where all 
but finitely many of the a; are 0 (called the direct sum of infinitely many copies of Z). 
Prove that R is a ring under componentwise addition and multiplication which does not 
have an identity. 

21. Let X be any nonempty set and let P(X) be the set of all subsets of X (the power set of 
X). Define addition and multiplication on P(X) by 

A + B = (A - B) U (B - A) and A x B = A n B  

i.e., addition is symmetric difference and multiplication is intersection. 
(a) Prove that P (X) is a ring under these operations (P(X) and its subrings are often 

referred to as rings of sets). 
(b) Prove that this ring is commutative, has an identity and is a Boolean ring. 

22. Give an example of an infinite Boolean ring. 

23. Let D be a squarefree integer, and let () be the ring of integers in the quadratic field Q( .J/5) .  
For any positive integer f prove that the set Ot = Z[fw] = {a + hfw I a ,  h E Z }  i s  a 
subring of 0 containing the identity. Prove that [0 : 01] = f (index as additive abelian 
groups). Prove conversely that a subring of () containing the identity and having finite 
index f in 0 (as additive abelian group) is equal to Ot . (The ring Of is called the order 

of conductor f in the field Q( .J/5 ) .  The ring of integers () is called the maximal order in 
Q(.J/5).) 

24. Show for D = 3, 5, 6, and 7 that the group of units () x of the quadratic integer ring () is 
infinite by exhibiting an explicit unit of infinite (multiplicative) order in each ring. 

25. Let I be the ring of integral Hamilton Quatemions and define 

N : l -+ Z by N(a + hi + cj + dk) = a2 + h2 + c2 + d2 

(the map N is called a norm). 
(a) Prove that N(a) = aa for all a E /, where if a a + hi + cj + dk then 

Ci = a  - hi - cj - dk. 
(b) Prove that N (af3) = N (a)N(f3) for all a, f3 E l . 
(c) Prove that an element of l is a unit if and only if it has norm + 1 .  Show that [ X is 

isomorphic to the quatemion group of order 8. [The inverse in the ring of rational 

quatemions of a nonzero element a is Ci • ] 
N (a) 

26. Let K be a field. A discrete valuation on K is a function v : K x -+ Z satisfying 
(i) v (ah) = v(a) + v (h) (i.e., v is a homomorphism from the multiplicative group of 

nonzero elements of K to Z), 
(ii) v is surjective, and 
(iii) v (x + y) ::: rnin{v (x) ,  v (y)} for all x ,  y E K x  with x + y # 0. 

The set R = {x E K x I v (x) ::: 0} U {0) is called the valuation ring of v .  
(a) Prove that R i s  a subring of K which contains the identity. (In general, a ring R is 

called a discrete valuation ring if there is some field K and some discrete valuation v 
on K such that R is the valuation ring of v.) 

(b) Prove that for each nonzero element x E K either x or x- 1 is in R.  
(c) Prove that an element x is a unit of R if and only if  v(x) = 0. 

27. A specific example of a discrete valuation ring (cf. the preceding exercise) is obtained 
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when p is a prime, K = Q and 

by 
a c 

where - = pa -
b d ' p Jc and p )'d. 

Prove that the corresponding valuation ring R is the ring of all rational numbers whose 
denominators are relatively prime to p. Describe the units of this valuation ring. 

28. Let R be a ring with 1 =f. 0. A nonzero element a is called a left zero divisor in R if there is 
a nonzero element x E R such that ax = 0. Symmetrically, b =f. 0 is a right zero divisor if 
there is a nonzero y E R such that yb = 0 (so a zero divisor is an element which is either 
a left or a right zero divisor). An element u E R has a left inverse in R if there is some 
s E R such that su = 1 .  Symmetrically, v has a right inverse if vt = 1 for some t E R. 
(a) Prove that u is a unit if and only if it has both a right and a left inverse (i.e., u must 

have a two-sided inverse). 
(b) Prove that if u has a right inverse then u is not a right zero divisor. 
(c) Prove that if u has more than one right inverse then u is a left zero divisor. 
(d) Prove that if R is a finite ring then every element that has a right inverse is a unit (i.e., 

has a two-sided inverse). 
29. Let A be any commutative ring with identity 1 =I= 0. Let R be the set of all group homo

morphisms of the additive group A to itself with addition defined as pointwise addition of 
functions and multiplication defined as function composition. Prove that these operations 
make R into a ring with identity. Prove that the units of R are the group automorphisms 
of A (cf. Exercise 20, Section 1 .6). 

30. Let A = Z x Z x Z x · · · be the direct product of copies of Z indexed by the positive integers 
(so A is a ring under componentwise addition and multiplication) and let R be the ring of 
all group homomorphisms from A to itself as described in the preceding exercise. Let qJ 
be the element of R defined by qJ(at , a2 , a3 , . . . ) = (a2 , a3 , . . . ). Let 1/f be the element of 
R defined by 1/f(at , a2 , a3 ,  . . . ) = (0, a1 ,  a2 , a3 , . . . ) . 
(a) Prove that ({Jl/f is the identity of R but 1/f({J is not the identity of R (i.e., 1/f is a right 

inverse for ({J but not a left inverse). 
(b) Exhibit infinitely many right inverses for qJ. 
(c) Find a nonzero element rr in R such that qJrr = 0 but rrqJ =f. 0. 
(d) Prove that there is no nonzero element ). E R such that A({J = 0 (i.e., qJ is a left zero 

divisor but not a right zero divisor). 

7.2 EXAMPLES: POLYNOMIAL RINGS, MATRIX RINGS, 
AN D GROUP RINGS 

We introduce here three important types of rings: polynomial rings, matrix rings, and 
group rings. We shall see in the course of the text that these three classes of rings are 
often related. For example, we shall see in Part VI that the group ring of a group G over 
the complex numbers (C is a direct product of matrix rings over C. 

These rings also have many important applications, in addition to being interesting 
in their own right. In Part Ill we shall use polynomial rings to prove some classification 
theorems for matrices which, in particular, determine when a · matrix is similar to a 
diagonal matrix. In Part VI we shall use group rings to study group actions and to prove 
some additional important classification theorems. 
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Polynomial  Rings 

Fix a commutative ring R with identity. We define the ring of polynomials in a form 
which may already be familiar, at least for polynomials with real coefficients. A defi
nition in terms of Cartesian products is given in Appendix I. Let x be an indeterminate. 
The formal sum 

with n ::: 0 and each a; E R is called a polynomial in x with coefficients a; in R. 
I f  an =J:. 0,  then the polynomial i s  said to  be of degree n, anxn is called the leading 
term, and an is called the leading coefficient (where the leading coefficient of the zero 
polynomial is taken to be 0). The polynomial is monic if an = 1 .  The set of all such 
polynomials is called the ring of polynomials in the variable x with coefficients in R 
and will be denoted R[x]. 

The operations of addition and multiplication which make R[x] into a ring are the 
same operations familiar from elementary algebra: addition is "componentwise" 

(anXn + an-lX
n-l + · · · + a1X + {lo) + (bnXn + bn-tXn-l + · · · + b1X + bo) 

= (an + bn)Xn + (an- 1 + bn-l )Xn-l + · · · + (al + b1 )x + (ao + bo) 
(here an or bn may be zero in order for addition of polynomials of different degrees 
to be defined). Multiplication is performed by first defining (axi) (bxi ) = abxi+i for 
polynomials with only one nonzero term and then extending to all polynomials by the 
distributive laws (usually referred to as "expanding out and collecting like terms"): 

(ao + a1x + a2x2 + . . .  ) x (bo + b1x + b2x2 + . . . ) 
= aobo + (aobl + a1bo)x + (aob2 + a1b1 + a2bo)x2 + . . .  

(in general, the coefficient of xk in the product will be L;=O a;bk-i ). These operations 
make sense since R is a ring so the sums and products of the coefficients are defined. 
An easy verification proves that R[x] is indeed a ring with these definitions of addition 
and multiplication. 

The ring R appears in R[x] as the constant polynomials. Note that by definition of 
the multiplication, R[x] is a commutative ring with identity (the identity 1 from R). 

The coefficient ring R above was assumed to be a commutative ring since that is the 
situation we shall be primarily interested in, but note that the definition of the addition 
and multiplication in R[x] above would be valid even if R were not commutative or 
did not have an identity. If the coefficient ring R is the integers Z (respectively, the 
rationals Q) the polynomial ring Z[x] (respectively, Q[x] ) is the ring of polynomials 
with integer (rational) coefficients familiar from elementary algebra. 

Another example is the polynomial ring Zj3/Z[x] of polynomials in x with coeffi
cients in Z/3/Z. This ring consists of nonnegative powers of x with coefficients 0, 1 ,  
and 2 with calculations on the coefficients performed modulo 3 . For example, if 

then 

234 

p(x) = x2 + 2x + 1 and q (x) = x3 + x  + 2  

p(x) + q (x) = x3 + x2 

Chap. 7 I ntroduction to Rings 



and 
p(x)q (x) = x5 + 2x4 

+ 2x3 + x2 + 2x + 2. 
The ring in which the coefficients are taken makes a substantial difference in the 

behavior of polynomials. For example, the polynomial x2 + I is not a perfect square in 
the polynomial ring Z[x ] , but is a perfect square in the polynomial ring Z/2Z[x ] , since 
(x + 1 )2 = x2 + 2x + 1 = x2 + 1 in this ring. 

Proposition 4. Let R be an integral domain and let p(x), q (x) be nonzero elements of 
R[x]. Then 

(1) degree p(x)q (x) = degree p(x) + degree q (x), 
(2) the units of R[x] are just the units of R, 
(3) R[x] is an integral domain. 

Proof: If R has no zero divisors then neither does R[x]; if p(x) and q (x) are 
polynomials with leading terms anxn and bmxm , respectively, then the leading term of 
p(x)q (x) is anbmxn+m , and anbm I 0. This proves (3) and also verifies ( 1 ) .  If p(x) is 
a unit, say p(x)q (x) = 1 in R[x], then degree p(x) + degree q(x) = 0, so both p(x) 
and q (x) are elements of R, hence are units in R since their product is  I .  This proves 
(2) . 

If the ring R has zero divisors then so does R[x], because R C R[x]. Also, if f(x) 
is a zero divisor in R[x] (i.e., f(x)g(x) = 0 for some nonzero g(x) E R[x]) then in 
fact cf(x) = 0 for some nonzero c E R (cf. Exercise 2). 

If S is a subring of R then S[x] is a subring of R[x] .  For instance, Z[x] is a subring 
of Q[x ] .  Some other examples of subrings of R[x] are the set of all polynomials in x2 
(i.e., in which only even powers of x appear) and the set of all polynomials with zero 
constant term (the latter subring does not have an identity). 

Polynomial rings, particularly those over fields, will be studied extensively in Chap
ter 9. 

Matrix Rings 

Fix an arbitrary ring R and let n be a positive integer. Let Mn (R) be the set of all n x n 
matrices with entries from R. The element (aiJ )  of Mn (R) is an n x n square array 
of elements of R whose entry in row i and column j is aij E R. The set of matrices 
becomes a ring under the usual rules by which matrices of real numbers are added and 
multiplied. Addition is componentwise: the i, j entry of the matrix (aiJ ) + (bij ) is 
aij + bij · The i, j entry of the matrix product (aiJ ) x (bij ) is :LZ=t a;khi (note that 
these matrices need to be square in order that multiplication of any two elements be 
defined). It is a straightforward calculation to check that these operations make Mn (R) 
into a ring. When R is a field we shall prove that Mn (R) is a ring by less computational 
means in Part III. 

Note that if R is any nontrivial ring (even a commutative one) and n ::: 2 then 
Mn (R) is not commutative: if ab I 0 in R let A be the matrix with a in position 1 , 1  
and zeros elsewhere and let B be the matrix with b in position 1 ,2 and zeros elsewhere; 
then ab is the (nonzero) entry in position 1 ,2 of AB whereas BA is the zero matrix. 
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These two matrices also show that Mn ( R) has zero divisors for all nonzero rings R 
whenever n ::: 2. 

An element (aij ) of Mn (R) is called a scalar matrix if for some a E R, a;; = a  
for all i E { 1 , . . . , n }  and aij = 0 for all i =f. j (i.e., all diagonal entries equal a and 
all off-diagonal entries are 0). The set of scalar matrices is a subring of Mn (R) . This 
subring is a copy of R (i.e., is "isomorphic" to R): if the matrix A has the element a 
along the main diagonal and the matrix B has the element b along the main diagonal 
then the matrix A + B has a + b along the diagonal and AB has ab along the diagonal 
(and all other entries 0). If R is commutative, the scalar matrices commute with all 
elements of Mn (R) . If R has a 1, then the scalar matrix with l 's down the diagonal 
(the n x n identity matrix) is the 1 of Mn (R). In this case the units in Mn (R) are the 
invertible n x n matrices and the group of units is denoted G Ln ( R), the general linear 
group of degree n over R. 

If S is a subring of R then M11 (S) is a subring of Mn (R) . For instance M" (Z) is a sub
ring of Mn (Q) and Mn (2Z) is a subring of both of these. Another example of a subring 
of Mn (R) is the set of upper triangular matrices: { (aij )  I apq = 0 whenever p > q}  
(the set of matrices all  of whose entries below the main diagonal are zero) - one easily 
checks that the sum and product of upper triangular matrices is upper triangular. 

Group Rings 

Fix a commutative ring R with identity 1 =/:. 0 and let G = {g1 , g2 , . . .  , g" } be any finite 
group with group operation written multiplicatively. Define the group ring, RG, of G 
with coefficients in R to be the set of all formal sums 

a; E R,  1 :::;: i :::;: n .  

If g1 i s  the identity of G we shall write a1 g1 simply as a1 . Similarly, we shall write the 
element l g for g E G simply as g. 

Addition is defined "componentwise" 

(aJgJ + a2g2 + · · · + a"gn ) + (bJgJ + �g2 + · · · + bngn) 
= (a1 + bJ )gJ + (a2 + b2)g2 + · · · + (an +  b" )g" . 

Multiplication is performed by first defining (ag; )(bgj) = (ab )gk . where the product 
ab is taken in R and g;gj = gk is the product in the group G. This product is then 
extended to all formal sums by the distributive laws so that the coefficient of gk in the 
product (a1g1 + · · · +a"g" ) x (b1g1 + · · · +b11g11 ) is Lg,gj=gk a;bj .  It is straightforward 

to check that these operations make RG into a ring (again, commutativity of R is not 
needed). The associativity of multiplication follows from the associativity of the group 
operation in G. The ring RG is commutative if and only if G is a commutative group. 

Example 

Let G = Ds be the dihedral group of order 8 with the usual generators r, s (r4 
= s2 = 1 

and rs = sr- 1 ) and let R = Z. The elements a = r + r2 - 2s and {3 = - 3r2 + rs are 
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typical members of 'l!.Dg. Their sum and product are then 

a + f3 = r - 2r2 - 2s + rs 
af3 = (r + r2 - 2s) (-3r2 + rs) 

= r (-3r2 + rs) + r2 (-3r2 + rs) - 2s (-3r2 + rs) 
= -3r3 + r2s - 3 + r3s + 6r2s - 2r3 
= -3 - 5r3 + 1r2s + r3s. 

The ring R appears in RG as the "constant" formal sums i.e., the R-multiples of the 
identity of G (note that the definition of the addition and multiplication in RG restricted 
to these elements is just the addition and multiplication in R). These elements of R 
commute with all elements of RG. The identity of R is the identity of RG. 

The group G also appears in RG (the element gi appears as 1gi - for example, 
r, s E D8 are also elements of the group ring ZDs above) - multiplication in the ring 
RG restricted to G is just the group operation. In particular, each element of G has a 
multiplicative inverse in the ring RG (namely, its inverse in G). This says that G is a 
subgroup of the group of units of RG. 

If IGI > 1 then RG always has zero divisors. For example, let g be any element 
of G of order m > 1 .  Then 

(1 - g) ( l  + g + · · · + gm-l ) = 1 - gm 
= 1 - 1 = 0 

so 1 - g is a zero divisor (note that by definition of RG neither of the formal sums in 
the above product is zero) . 

If S is a subring. of R then SG is a subring of RG. For instance, ZG (called the 
integral group ring of G) is a subring ofQG (the rational group ring of G). Furthermore, 
if H is a subgroup of G then R H is a subring of RG. The set of all elements of RG 
whose coefficients sum to zero is a subring (without identity). If IG I  > 1 ,  the set of 
elements with zero "constant term" (i.e., the coefficient of the identity of G is zero) is 
not a subring (it is not closed under multiplication). 

Note that the group ring RQ8 is not the same ring as the Hamilton Quaternions llii 
even though the latter contains a copy of the quaternion group Qs (under multiplication). 
One difference is that the unique element of order 2 in Qs (usually denoted by - 1) is not 
the additive inverse of 1 in RQ8 .  In other words, if we temporarily denote the identity 
of the group Q8 by g1 and the unique element of order 2 by gz, then g1 + gz is not zero 
in RQ8, whereas 1 + ( - 1) is zero in llil. Furthermore, as noted above, the group ring 
RQ8 contains zero divisors hence is not a division ring. 

Group rings over fields will be studied extensively in Chapter 1 8. 

E X E R C I S E S  

Let R be a commutative ring with l .  
1 .  Let p(x) = 2x3 - 3x2 + 4x

·
- 5 and let q (x) = 7x3 + 33x - 4. In each of parts (a), (b) 

and (c) compute p(x) + q (x) and p(x)q (x) under the assumption that the coefficients of 
the two given polynomials are taken from the specified ring (where the integer coefficients 
are taken mod n in parts (b) and (c) ): 
(a) R = 7!., (b) R = 7l.f27!., (c) R = '1!./3'1!.. 
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2. Let p(x) = anxn + an-!Xn-l + · · · + a1x +ao be an e1ement of the polynomial ring R[x]. 
Prove that p(x) is a zero divisor in R[x] if and only if there is a nonzero b e  R such that 
bp (x) = 0. [Let g (x) = bmxm+bm-lX

m-l + · · · +bo be a nonzero polynomial ofminimal 
degree such that g(x)p(x) = 0. Show that bman = 0 and so ang(x) is a polynomial of 
degree less than m that also gives 0 when multiplied by p(x) .  Conclude that ang(x) = 0. 
Apply a similar argument to show by induction on i that an-i g(x) = 0 for i = 0, 1, . . . • n, 
and show that this implies bmp(x) = 0.] 

3. Define the set R[[x]] of formal power series in the indeterminate x with coefficients from 
R to be all formal infinite sums 

00 

L anxn = ao + a1x + a2x2 + a3x3 + · · · .  
n=O 

Define addition and multiplication of power series in the same way as for power series 
with real or complex coefficients i.e., extend polynomial addition and multiplication to 
power series as though they were "polynomials of infinite degree": 

00 

Lanxn 
n=O 

00 

L anXn 
n=O 

+ 

X 

00 00 

L bnx
n = L(an + bn )Xn 

oo oo n 
L bnxn = L ( Lakbn-k)xn . 
n=O n=O k=O 

(The term "formal" is used here to indicate that convergence is not considered, so that 
formal power series need not represent functions on R.) 
(a) Prove that R[[x]] is a commutative ring with 1 .  
(b) Show that 1 - x is a unit in R[[x]] with inverse 1 + x + x2 + · · · . 
(c) Prove that L� anxn is a unit in R[[x]] if and only if ao is a unit in R. 

4. Prove that if R is an integral domain then the ring of formal power series R[[x]] is also an 
integral domain. 

5. Let F be a field and define the ring F ( (x)) of formal Laurent series with coefficients from 
F by 

00 
F((x)) = { L anxn I an E F and N E Z}. 

n�N 
(Every element of F ( (x)) is a power series in x plus a polynomial in 1 j x. i.e., each element 
of F((x)) has only a finite number of terms with negative powers of x.) 
(a) Prove that F((x)) is a field. 
(b) Define the map 

v : F((x)) x --+ Z by 

00 
v(L anxn) = N 

n�N 
where aN is the first nonzero coefficient of the series (i.e., N is the "order of zero or 
pole of the series at 0"). Prove that v is a discrete valuation on F ( (x)) whose discrete 
valuation ring is F[[x]], the ring of formal power series (cf. Exercise 26, Section 1) .  

6. Let S be a ring with identity 1 =f. 0. Let n e z+ and let A be an n x n matrix with entries 
from S whose i, j entry is aij · Let Eij be the element of Mn (S) whose i, j entry is 1 and 
whose other entries are all 0. 
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(a) Prove that Eij A is the matrix whose ;th row equals the jth row of A and all other rows 
are zero. 

(b) Prove that AEij is the matrix whose jth column equals the ;th column of A and all 
other columns are zero. 

(c) Deduce that Epq AErs is the matrix whose p, s entry is aqr and all other entries are 
zero. 

7. Prove that the center of the ring Mn (R) is the set of scalar matrices (cf. Exercise 7, Section 
1) . [Use the preceding exercise.] 

8. Let S be any ring and let n ::::: 2 be an integer. Prove that if A is any strictly upper triangular 
matrix in Mn (S) then An = 0 (a strictly upper triangular matrix is one whose entries on 
and below the main diagonal are all zero). 

9. Let a = r + r2 - 2s and f3 = -3r2 + rs be the two elements of the integral group ring 
ZDs described in this section. Compute the following elements of ZDs: 
(a) f3a, (b) a2, (c) af3 - f3a, (d) f3af3. 

10. Consider the following elements of the integral group ring ZS3 : 

a = 3(1  2) - 5(2 3) + 14(1 2 3) and f3 = 6(1) + 2(2 3) - 7(1 3 2) 

(where (1) is the identity of S3). Compute the following elements: 
(a) a + f3,  (b) 2a - 3{3, (c) af3, (d) f3a, (e) a2 • 

11. Repeat the preceding exercise under the assumption that the coefficients of a and f3 are in 
Zj3Z (i.e., a, f3 E Zj3ZSJ). 

12. Let G = {g1 , . . .  , gn } be a finite group. Prove that the element N = g1 + g2 + . . . + gn is 
in the center of the group ring RG (cf. Exercise 7, Section 1) . 

13. Let K = {k1 ,  . . .  , km } be a conjugacy class in the finite group G. 
(a) Prove that the element K = kt + . . .  + km is in the center of the group ring RG (cf. 

Exercise 7, Section 1). [Check that g-1 Kg =  K for all g E G.] 
(b) Let K 1 , . . .  , Kr be the conjugacy classes of G and for each K; let K; be the element 

of RG that is the sum of the members of K; .  Prove that an element a E RG is in the 
center of RG ifand only ifa = a1 K1 +a2 K2 + · · · +ar Kr for somea1 , a2 , . . . , ar E R. 

7.3 RING HOMOMORPH ISMS AND QUOTIENT RINGS 

A ring homomorphism is a map from one ring to another that respects the additive and 
multiplicative structures: 

Definition. Let R and S be rings. 
(1) A ring homomorphism is a map <p :  R --+ S satisfying 

(i) <p(a + b) = <p(a) + <p(b) for all a ,  b E  R (so <p is a group homomor
phism on the additive groups) and 

(ii) <p(ab) = <p(a)<p(b) for all a ,  b E R.  
(2) The kernel of the ring homomorphism <p, denoted ker <p, i s  the set of elements 

of R that map to 0 in S (i.e., the kernel of <p viewed as a homomorphism of 
additive groups). 

(3) A bijective ring homomorphism is called an isomorphism. 
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If the context is clear we shall simply use the term "homomorphism" instead of 
"ring homomorphism." Similarly, if A and B are rings, A � B will always mean an 
isomorphism of rings unless otherwise stated. 

- Examples 

(1) The map rp : Z --+  Z/2Z defined by sending an even integer to 0 and an odd integer 
to 1 is a ring homomorphism. The map is additive since the sum of two even or odd 
integers is even and the sum of an even integer and an odd integer is odd. The map is 
multiplicative since the product of two odd integers is odd and the product of an even 
integer with any integer is even. The kernel of rp (the fiber of rp above 0 E Z/2Z) is 

the set of even integers. The fiber of rp above 1 E Z/2Z is the set of odd integers. 
(2) For n E Z the maps ffJn : Z --+ Z defined by f{Jn (x) = nx are not in general ring homo

morphisms because ffJn (xy) = nxy whereas f{Jn (x)rpn (Y) = nxny = n2xy. Hence (/Jn 
is a ring homomorphism only when n2 = n, i.e., n = 0, 1 .  Note however that ffJn is 
always a group homomorphism on the additive groups. Thus care should be exercised 
when dealing with rings to be sure to check that both ring operations are preserved. 
Note that (/JO is the zero homomorphism and f{Jl is the identity homomorphism. 

(3) Let rp : Q[x] --+ Q be the map from the ring of polynomials in x with rational 
coefficients to the rationals defined by rp(p(x)) = p(O) (i.e., mapping the polynomial 
to its constant term). Then rp is a ring homomorphism since the constant term of the 
sum of two polynomials is the sum of their constant terms and the constant term of 
the product of two polynomials is the product of their constant terms. The fiber above 
a E Q consists of the set of polynomials with a as constant term. In particular, the 
kernel of rp consists of the polynomials with constant term 0. 

Proposition 5. Let R and S be rings and let qJ : R � S be a homomorphism. 
(1) The image of qJ is a subring of S. 
(2) The kernel of qJ is a subring of R. Furthermore, if a E ker qJ then ra and 

ar E  ker qJ for every r E R, i.e. , ker qJ is closed undermultiplication by elements 
from R. 

Proof· (1) If s1 ,  sz E im qJ then s1 = qJ(rt ) and sz = qJ(rz) for some r1 , rz E R.  
Then qJ(ri - rz) = s1 - sz and qJ(ri rz) = s1sz .  This shows s1 - sz , StSz E im qJ, so the 
image of qJ is closed under subtraction and under multiplication, hence is a subring of 
S. 

(2) If a, f3 E ker qJ then qJ(a) = qJ(fJ) = 0. Hence qJ(a - fJ) = 0 and qJ(afJ) = 0, 
so ker qJ is closed under subtraction and under multiplication, so is a subring of R. 
Similarly, for any r E R we have qJ(ra) = qJ(r)qJ(a) = qJ(r) 0 = 0, and also 
qJ(ar) = qJ(a)qJ(r) = 0 qJ(r) = 0, so ra, ar E ker qJ. 

In the case of a homomorphism qJ of groups we saw that the fibers of the homo
morphism have the structure of a group naturally isomorphic to the image of (/), which 
led to the notion of a quotient group by a normal subgroup. An analogous result is true 
for a homomorphism of rings. 

Let qJ : R � S be a ring homomorphism with kernel I. Since R and S are in 
particular additive abelian groups, qJ is in particular a homomorphism of abelian groups 
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and the fibers of (/J are the additive cosets r + I of the kernel I (more precisely, if r is 
any element of R mapping to a E S, ({J(r) = a, then the fiber of (/J over a is the coset 
r + I of the kernel I). These fibers have the structure of a ring naturally isomorphic to 
the image of (/J: if X is the fiber over a E S and Y is the fiber over b E S, then X +  Y is 
the fiber over a + b and X Y is the fiber over ab. In terms of cosets of the kernel I this 
addition and multiplication is 

(r + I) + (s + I) = (r + s) + I 
(r + I) x (s + I) = (rs) + I . 

(7 . 1 ) 

(7.2) 

As in the case for groups, the verification that these operations define a ring structure 
on the collection of cosets of the kernel I ultimately rests on the corresponding ring 
properties of S. This ring of cosets is called the quotient ring of R by I = ker (/J and 
is denoted R I I .  Note that the additive structure of the ring R I I is just the additive 
quotient group of the additive abelian group R by the (necessarily normal) subgroup 
I .  When I is the kernel of some homomorphism (/J this additive abelian quotient ·group 
also has a multiplicative structure, defined by (7 .2), which makes R I I into a ring. 

As in the case for groups, we can also consider whether ( 1 )  and (2) can be used to 
define a ring structure on the collection of cosets of an arbitrary subgroup I of R .  Note 
that since R is an abelian additive group, the subgroup I is necessarily normal so that 
the quotient Rl I of cosets of I is automatically an additive abelian group. The question 
then is whether this quotient group also has a multiplicative structure induced from the 
multiplication in R, defined by (2). The answer is no in general Gust as the answer is no 
in trying to form the quotient by an arbitrary subgroup of a group), which leads to the 
notion of an ideal in R (the analogue for rings of a normal subgroup of a group). We 
shall then see that the ideals of R are exactly the kernels of the ring homomorphisms 
of R (the analogue for rings of the characterization of normal subgroups as the kernels 
of group homomorphisms). 

Let I be an arbitrary subgroup of the additive group R. We consider when the 
multiplication of cosets in (2) is well defined and makes the additive abelian group Rl I 
into a ring. The statement that the multiplication in (2) is well defined is the statement 
that the multiplication is independent of the particular representatives r and s chosen, 
i.e., that we obtain the same coset on the right if instead we use the representatives r + a 

and s + f3 for any a, f3 E I .  In other words, we must have 

(r + a)(s + {3) + I = rs + I 

for all r, s E R and all a, f3 E I .  
Letting r = s = 0 ,  we see that I must be closed under multiplication, i.e., I must 

be a subring of R. 
Next, by letting s = 0 and letting r be arbitrary, we see that we must have rf3 E I 

for every r E R and every f3 E I, i.e., that I must be closed under multiplication on the 
left by elements from R. Letting r = 0 and letting s be arbitrary, we see similarly that 
I must be closed under multiplication on the right by elements from R. 

Conversely, if I is closed under multiplication on the left and on the right by 
elements from R then the relation ( *) is satisfied for all a, f3 E I .  Hence this is a 
necessary and sufficient condition for the multiplication in (2) to be well defined. 
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Finally, if the multiplication of cosets defined by (2) is well defined, then this 
multiplication makes the additive quotient group Rf I into a ring. Each ring axiom in 
the quotient follows directly from the corresponding axiom in R. For example, one of 
the distributive laws is verified as follows: 

(r + I)[(s + I) + (t + I)] = (r + I) [(s + t) + I] 
= r (s + t) + I =  (rs + rt) + I 
= (r s + I) + (rt + I) 
= [ (r + I) (s + I)] + [(r + I) (t + I)] . 

This shows that the quotient Rj I of the ring R by a subgroup I has a natural ring 
structure if and only if I is also closed under multiplication on the left and on the right 
by elements from R (so in particular must be a subring of R since it is closed under 
multiplication). As mentioned, such subrings I are called the ideals of R: 

Definition. Let R be a ring, let I be a subset of R and let r E R.  
(l) ri = {ra ! a E I} and Ir = {ar ! a E I}. 
(2) A subset I of R is a left ideal of R if 

(i) I is a subring of R, and 
(ii) I is closed under left multiplication by elements from R, i.e., r I � I 

for all r E R.  
Similarly I i s  a right ideal i f  (i) holds and in place of (ii) one has 

(ii)' I is closed under right multiplication by elements from R, i.e., I r � I 
for all r E R.  

(3) A subset I that i s  both a left ideal and a right ideal i s  called an ideal (or, for 
added emphasis, a two-sided ideal) of R. 

For commutative rings the notions of left, right and two-sided ideal coincide. We 
emphasize that to prove a subset I of a ring R is an ideal it is necessary to prove that I is 
nonempty, closed under subtraction and closed under multiplication by all the elements 
of R (and not just by elements of I). If R has a 1 then ( - l)a = -a so in this case I is 
an ideal if it is nonempty, closed under addition and closed under multiplication by all 
the elements of R .  

Note also that the last part of Proposition 5 proves that the kernel of any ring 
homomorphism is an ideal. 

We summarize the preceding discussion in the following proposition. 

Proposition 6. Let R be a ring and let I be an ideal of R. Then the (additive) quotient 
group Rj I is a ring under the binary operations: 

(r + I) + (s + I) = (r + s) + I and (r + I) x (s + I) = (rs) + I 

for all r, s E R. Conversely, if I is any subgroup such that the above operations are 
well defined, then I is an ideal of R. 
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Definition. When I is an ideal of R the ring Rl I with the operations in the previous 
proposition is called the quotient ring of R by I .  

Theorem 7. 
(1) (The First Isomorphism Theorem for Rings) If q; : R � S is a homomorphism 

of rings, then the kernel of q; is an ideal of R, the image of q; is a sub ring of S 
and Rl ker q; is isomorphic as a ring to q;(R). 

(2) If I is any ideal of R, then the map 

R � Rl I defined by r 1-+ r + I 
is a surjective ring homomorphism with kernel I (this homomorphism is called 
the natural projection of R onto Rl I). Thus every ideal is the kernel of a ring 
homomorphism and vice versa. 

Proof: This is just a matter of collecting previous calculations. If I is the kernel of 
q;, then the cosets (under addition) of I are precisely the fibers of q;. In particular, the 
cosets r + I , s + I and r s + I are the fibers of q; over q;(r ) ,  q;(s) and q;(r s ) , respectively. 
Since q; is a ring homomorphism q;(r)q;(s) = q;(rs), hence (r + I) (s + I) = rs + I . 
Multiplication of cosets is well defined and so I is an ideal and R I I is a ring. The 
correspondence r + I 1-+ q;(r) is a bijection between the rings Rl I and q;(R) which 
respects addition and multiplication, hence is a ring isomorphism. 

If I is any ideal, then R I I is a ring (in particular is an abelian group) and the map 
rr : r 1-+ r + I is a group homomorphism with kernel I. It remains to check that rr is a 
ring homomorphism. This is immediate from the definition of multiplication in R 1 I :  

rr : rs 1-+ rs + I = (r + I) (s + I) = n(r):rr (s) .  

As with groups we shall often use the bar notation for reduction mod I :  r = r + I .  
With this notation the addition and multiplication in the quotient ring Rl I become 
simply r + s = r + s  and rs = rs . 

Examples 

Let R be a ring. 
(1) The subrings R and {0} are ideals. An ideal I is proper if I f=- R. The ideal {0} is 

called the trivial ideal and is denoted by 0. 
(2) It is immediate that n'll., is an ideal of 7!., for any n E 7!., and these are the only ideals of 

7!., since in particular these are the only subgroups of Z. The associated quotient ring 
is Z/ nZ (which explains the choice of notation and which we have now proved is a 
ring), introduced in Chapter 0. For example, if n = 15 then the elements of Z/157!., 
are the cosets 0, I, . . . , 13, 14.  To add (or multiply) in the quotient, simply choose any 
representatives for the two cosets, add (multiply, respectively) these representatives 
in the integers Z, and take the corresponding coset containing this sum (product, 
respectively). For example, 7 + TI = 18  and 18  = 3, so 7 + TI = 3 in Z/157!.,. 
Similarly, 7 TI = 77 = 2 in Z/157!.,. We could also express this by writing 7 + 1 1  = 
3 mod 15 , 7( 1 1) = 2 mod 15 . 

The natural projection 7!., � 'll.,f n'll., is called reduction mod n and will be discussed 
further at the end of these examples. 
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(3) Let R = /Z[x] be the ring of polynomials in x with integer coefficients. Let I be the 
collection of polynomials whose terms are of degree at least 2 (i.e., having no terms 
of degree 0 or degree 1 )  together with the zero polynomial. Then I is an ideal: the 
sum of two such polynomials again has terms of degree at least 2 and the product of a 
polynomial whose terms are of degree at least 2 with any polynomial again only has 
terms of degree at least 2. Two polynomials p(x) ,  q (x) are in the same coset of I if 
and only if they differ by a polynomial whose terms are of degree at least 2. i.e., if 
and only if p(x) and q (x) have the same constant and first degree terms. For example, 
the polynomials 3 + 5x + x3 + x5 and 3 + 5x - x4 are in the same coset of I. It 
follows easily that a complete set of representatives for the quotient Rj I is given by 
the polynomials a + bx of degree at most 1 .  

Addition and multiplication in the quotient are again performed by representatives. 
For example, 

( 1 + 3x ) + ( -4 + 5x ) = -3 + Sx 

and 
( 1 + 3x )( -4 + 5x ) = ( -4 - 7x + 1 5x2) = -4 - 1x . 

Note that in this quotient ring Rj I we have x x = x2 = 0, for example, so that 
Rj I has zero divisors, even though R = /Z[x] does not. 

(4) Let A be a ring, let X be any nonempty set and let R be the ring of all functions from 
X to A.  For each fixed c E X the map 

Ec : R � A defined by Ec(f) = f(c) 
(called evaluation at c) is a ring homomorphism because the operations in R are 
pointwise addition and multiplication of functions. The kernel of Ec is given by 
{f E R I f(c) = 0} (the set of functions from X to A that vanish at c). Also, Ec is 
smjective: given any a E A the constant function f (x) = a maps to a under evaluation 
at e. Thus Rj ker Ec � A. 

Similarly, let X be the closed interval [0, 1 ]  in IR and let R be the ring of all 
continuous real valued functions on [0, 1 ] .  For each c E [0, 1 ] ,  evaluation at c is 
a smjective ring homomorphism (since R contains the constant functions) and so 
Rj ker Ec � JR. The kernel of Ec is the ideal of all continuous functions whose graph 
crosses the x-axis at c. More generally, the fiber of Ec above the real number Yo is the 
set of all continuous functions that pass through the point (c, yo) . 

(5) The map from the polynomial ring R[x] to R defined by p(x) 1--+ p(O) (evaluation at O) 
is a ring homomorphism whose kernel is the set of all polynomials whose constant term 
is zero, i.e., p(O) = 0. We can compose this homomorphism with any homomorphism 
from R to another ring S to obtain a ring homomorphism from R[x] to S. For example, 
let R = 7Z and consider the homomorphism /Z[x ] � /Zj2/Z defined by the composition 
p(x) 1--+ p(O) 1--+ p(O) mod 2 E /Zj2/Z. The kernel of this composite map is given by 
{p(x) E /Z[x] 1 p(O) E 2/Z}, i.e., the set of all polynomials with integer coefficients 
whose constant term is even. The other fiber of this homomorphism is the coset 
of polynomials whose constant term is odd, as we determined earlier. Since the 
homomorphism is clearly smjective, the quotient ring is /Zj2/Z. 

(6) Fix some n E 7Z with n :::: 2 and consider the noncommutative ring Mn (R) . If J 
is any ideal of R then Mn (l), the n x n matrices whose entries come from J, is a 
two-sided ideal of Mn (R) . This ideal is the kernel of the smjective homomorphism 
Mn (R) � Mn (RjJ) which reduces each entry of a matrix mod J, i.e., which maps 
each entry aij to aij (here bar denotes passage to Rj J). For instance, when n = 3 and 
R = /Z, the 3 x 3 matrices whose entries are all even is the two-sided ideal M3(2/Z) 
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of M3 (Z) and the quotient M3 (Z)/M3 (2Z) is isomorphic to M3 (Z/2Z) . If the ring R 
has an identity then the exercises below show that every two-sided ideal of Mn (R) is 
of the form Mn (J) for some two-sided ideal J of R .  

(7) Let R be  a commutative ring with l and let G = {g1 • . . .  , gn } be  a finite group. The 
map from the group ring RG to R defined by L7=1 a; g; 1-+ L?=l a; is easily seen to 
be a homomorphism, called the augmentation map . The kernel of the augmentation 
map, the augmentation ideal, is the set of elements of RG whose coefficients sum to 
0. For example, g; - g1 is an element of the augmentation ideal for all i, j .  Since the 
augmentation map is surjective, the quotient ring is isomorphic to R.  

Another ideal in RG is  {L7=I ag; I a E R}, i.e., the formal sums whose coeffi
cients are all equal (equivalently, all R-multiples of the element g1 + · · · + gn). 

(8) Let R be a commutative ring with identity l =f. 0 and let n E Z with n � 2. We exhibit 
some one-sided ideals in the ring Mn(R). For each j E { 1 , 2, . . .  , n} let Lj be the set 

of all n x n matrices in Mn (R) with arbitrary entries in the /h column and zeros in all 
other columns. It is clear that Lj is closed under subtraction. It follows directly from 
the definition of matrix multiplication that for any matrix T E Mn(R) and any A E Lj 
the product T A has zero entries in the ;th column for all i =f. j .  This shows L1 is a left 
ideal of Mn (R). Moreover, Lj is not a right ideal (hence is not a two-sided ideal). To 

see this, let E pq be the matrix with 1 in the p1h row and q th column and zeros elsewhere 
(p, q E { 1 , . . .  , n}). Then Eij E Lj but Eij Eji = £1; ¢ Lj if i =f. j, so Lj is not 
closed under right multiplication by arbitrary ring elements. An analogous argument 
shows that if Rj is the set of all n x n matrices in Mn (R) with arbitrary entries in the 

/h row and zeros in all other rows, then Rj is a right ideal which is not a left ideal. 
These one-sided ideals will play an important role in Part VI. 

Example: (The Reduction Homomorphism) 

The canonical projection map from Z to Z I nZ obtained by factoring out by the ideal nZ of 
Z is usually referred to as "reducing modulo n." The fact that this is a ring homomorphism 
has important consequences for elementary number theory. For example, suppose we are 
trying to solve the equation 

in integers x, y and z (such problems are frequently referred to as Diophantine equations 
after Diophantus, who was one of the first to systematically examine the existence of 
integer solutions of equations). Suppose such integers exist. Observe first that we may 
assume x ,  y and z have no factors in common, since otherwise we could divide through this 
equation by the square of this common factor and obtain another set of integer solutions 
smaller than the initial ones. This equation simply states a relation between these elements 
in the ring Z. As such, the same relation must also hold in any quotient ring as well. 
In particular, this relation must hold in ZfnZ for any integer n. The choice n = 4 is 
particularly efficacious, for the following reason: the squares mod 4 are just 02 , 12 , 22 , 32

, 
i.e., 0, 1 (mod 4) . Reading the above equation mod 4 (that is, considering this equation in 
the quotient ring Z/4Z), we must have 

where the { � } , for example, indicates that either a 0 or a 1 may be taken. Checking 

the few possibilities shows that we must take the 0 each time. This means that each 
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of x ,  y and z must be even integers (squares of the odd integers gave us 1 mod 4). But 
this contradicts the assumption of no common factors for these integers, and shows 
that this equation has no solutions in nonzero integers. 

Note that even had solutions existed, this technique gives information about the 
possible residues of the solutions mod n (since we could just as well have examined 
the possibilities mod n as mod 4) and note that for each choice of n we have only 
a finite problem to solve because there are only finitely many residue classes mod 
n. Together with the Chinese Remainder Theorem (described in Section 6), we can 
then determine the possible solutions modulo very large integers, which greatly assists 
in finding them numerically (when they exist). We also observe that this technique 
has a number of limitations - for example, there are equations which have solutions 
modulo every integer, but which do not have integer solutions. An easy example (but 
extremely hard to verify that it does indeed have this property) is the equation 

As a final example of this technique, we mention that the map from the ring 
Z[x] of polynomials with integer coefficients to the ring Z/ pZ[x] of polynomials with 
coefficients in Z/ pZ for a prime p given by reducing the coefficients modulo p is a 
ring homomorphism. This example of reduction will be used in Chapter 9 in trying to 
determine whether polynomials can be factored 

The following theorem gives the remaining Isomorphism Theorems for rings. Each 
of these may be proved as follows: first use the corresponding theorem from group 
theory to obtain an isomorphism of additive groups (or correspondence of groups, 
in the case of the Fourth Isomorphism Theorem) and then check that this group iso
morphism (or correspondence, respectively) is a multiplicative map, and so defines a 

ring isomorphism. In each case the verification is immediate from the definition of 
multiplication in quotient rings. For example, the map that gives the isomorphism 
in (2) below is defined by <p : r + I �--+ r + J. This map is multiplicative since 
(rt + l) (rz + /) = r1 r2 + I  by the definition of the multiplication in the quotient ring 
R/ I, and r1rz + I �--+ r1r2 + J = (r1 + J)(rz + J) by the definition ofthe multiplication 
in the quotient ring R/ J, i.e. ,  <p(r1rz) = <p(r1 )<p(r2) .  The proofs for the other parts of 
the theorem are similar. 

Theorem 8. Let R be a ring. 
(1) (The Second Isomorphism Theorem for Rings) Let A be a subring and let B be 

an ideal of R .  Then A + B = {a + b I a E A , b E  B}  is a subring of R, A n  B 
is an ideal of A and (A + B)/ B � Aj(A n B). 

(2) (The Third Isomorphism Theorem for Rings) Let I and J be ideals of R with 
I �  J.  Then J /I is an ideal of R/ I and (Rj I)j(J / /) � Rj J .  

(3) (The Fourth or  Lattice Isomorphism Theorem for Rings) Let I be an ideal of R.  
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The correspondence A B Aj I is an inclusion preserving bijection between the 
set of subrings A of R that contain I and the set of subrings of R j I. Furthermore, 
A (a subring containing /) is an ideal of R if and only if A j I is an ideal of R j I. 
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Let R = Z and let I be the ideal l2Z. The quotient ring R = R/ I = Zj1 2Z has 
ideals R, 2Zj12Z, 3Zj 1 2Z, 4Z/ 1 2Z, 6Zj12Z, and 0 = 1 2Zj1 2Z corresponding to 
the ideals R = Z, 2Z, 3Z, 4Z, 6Z and 12Z = I  of R containing /, respectively. 

If I and J are ideals in the ring R then the set of sums a + b with a E I and b E J 
is not only a subring of R (as in the Second Isomorphism Theorem for Rings), but is an 
ideal in R (the set is clearly closed under sums and r (a + b) = ra + rb E I +  J since 
ra E I and rb E J). We can also define the product of two ideals: 

Definition. Let I and J be ideals of R. 
(1) Define the sum of I and J by I +  J = {a + b I a E I, b E  J} .  

(2) Define the product of I and J, denoted by I J, to be the set of all finite sums of 
elements of the form ab with a E I and b E J .  

(3) For any n :;:: 1 ,  define the n th power of I, denoted by r ,  to be the set consisting 
of all finite sums of elements of the form a1 a2 · · · a

n 
with ai E I for all i .  

Equivalently, I n  is defined inductively by defining I 1 = I ,  and I n  = I r-1 for 
n = 2, 3 ,  . . . .  

It is easy to see that the sum I + J of the ideals I and J is the smallest ideal of R 
containing both I and J and that the product I J is an ideal contained in I n J (but may 
be strictly smaller, cf. the exercises). Note also that the elements of the product ideal I J 
are finite sums of products of elements ab from I and J. The set {ab I a E I, b E J}  
consisting just of products of elements from I and J is  in  general not closed under 
addition, hence is not in general an ideal. 

Examples 

(1) Let / = 6Z and J = 10Z in Z. Then I + J consists of all integers of the form 6x + lOy 
with x ,  y E Z. Since every such integer is divisible by 2, the ideal / + J is contained 
in 2Z. On the other hand, 2 = 6(2) + 10( - 1 )  shows that the ideal / +  J contains the 
ideal 2Z, so that 6Z + 1 OZ = 2Z. In general, mZ + nZ = dZ, where d is the greatest 
common divisor of m and n. The product I J consists of all finite sums of elements of 
the form (6x) ( lOy) with x ,  y E Z, which clearly gives the ideal 60Z. 

(2) Let I be the ideal in Z[x] consisting of the polynomials with integer coefficients whose 
constant term is even (cf. Example 5). The two polynomials 2 and x are contained in 
I, so both 4 = 2 · 2 and x2 = x · x are elements of the product ideal /2 = II, as is 
their sum x2 + 4. It is easy to check, however, that x2 + 4 cannot be written as a single 
product p(x)q (x) of two elements of I.  

E X E R C I S E S 

Let R be a ring with identity 1 i= 0. 

1. Prove that the rings 2Z and 3Z are not isomorphic. 

2. Prove that the rings Z[x] and Q[x] are not isomorphic. 

3. Find all homomorphic images of Z. 
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4. Find all ring homomorphisms from Z to Zj30Z. In each case describe the kernel and the 
image. 

5. Describe all ring homomorphisms from the ring Z x Z to Z. In each case describe the 
kernel and the image. 

6. Decide which of the following are ring homomorphisms from Mz(IZ) to Z: 

(a) ( ; ! ) t-->- a (projection onto the 1 , 1  entry) 

(b) ( ; ! ) t-->- a + d (the trace of the matrix) 

(c) ( ; ! ) t-->- ad - be (the detenninant of the matrix). 

7. Let R = { ( � ! ) I a, b, d E  Z} be the subring of Mz(Z) of upper triangular matrices. 

Prove that the map 

fP : R � IE x IE defined by fP : ( � ! ) t-->- (a , d) 

is a surjective homomorphism and describe its kernel. 

8. Decide which of the following are ideals of the ring IE x IE: 
(a) { (a ,  a) I a E IE} 
(b) { (2a , 2b) I a, b E  IE} 
(c) {(2a, 0) I a E IE} 
(d) {(a ,  -a) I a E IE}. 

9. Decide which of the sets in Exercise 6 of Section 1 are ideals of the ring of all functions 
from [0, 1 ]  to !R. 

10. Decide which of the following are ideals of the ring IE[x ] :  
(a) the set of  all polynomials whose constant term is  a multiple of 3 
(b) the set of all polynomials whose coefficient of x2 is a multiple of 3 
(c) the set of all polynomials whose constant term, coefficient of x and coefficient of x2 

are zero 
(d) IE[x2] (i.e., the polynomials in which only even powers of x appear) 
(e) the set of polynomials whose coefficients sum to zero 
(f) the set of polynomials p(x) such that p' (0) = 0, where p'(x) is the usual first derivative 

of p(x) with respect to x .  

l l .  Let R be the ring of all continuous real valued functions on the closed interval [0, 1 ] .  Prove 
that the map fP : R � IR defined by f{J(f) = J� f(t)dt is a homomorphism of additive 
groups but not a ring homomorphism 

12. Let D be an integer that is not a perfect square in IE and let S = { ( ;;b ! ) I a ,  b E IE}. 

(a) Prove that S is a subring of Mz (IE) . 
(b) If D is not a perfect square in IE prove that the map fP : Z[ ,JD] � S defined by 

f{J(a + b,JD ) = ( ;;
b 

! ) is a ring isomorphism. 

(c) If D = 1 mod 4 is squarefree, prove that the set { ( (D _
a
l)b/4 a

! 
b ) I a, b E  IE} 

is a subring of M2(1E) and is isomorphic to the quadratic integer ring 0. 
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13. Prove that the ring Mz(IR) contains a subring that is isomorphic to <C. 

14. Prove that the ring M4(1R) contains a subring that is isomorphic to the real Hamilton 
Quaternions, JH[. 

15. Let X be a nonempty set and let P(X) be the Boolean ring of all subsets of X defined in 
Exercise 21 of Section 1 .  Let R be the ring of all functions from X into 7lf27l. For each 
A E P(X) define the function 

XA : X -+  7lf27l by 
{ 1 ifx E A  

XA (X) = 
0 if X ¢ A  

(XA is called the characteristic function of A with values in 7lf27l). Prove that the map 
P(X) -+ R defined by A f-+ XA is a ring isomorphism. 

16. Let cp : R -+ S be a surjective homomorphism of rings. Prove that the image of the center 
of R is contained in the center of S (cf. Exercise 7 of Section 1 ). 

17. Let R and S be nonzero rings with identity and denote their respective identities by 1 R 
and 1 s. Let cp : R -+ S be a nonzero homomorphism of rings. 
(a) Prove that if cp(lR)  =1= 1s then cp(lR)  is a zero divisor in S. Deduce that if S is an 

integral domain then every ring homomorphism from R to S sends the identity of R 
to the identity of S. 

(b) Prove that if cp(h) = 1 s  then cp(u) is a unit in S and that cp(u-1) = cp(u)-1 for each 
unit u of R. 

18. (a) If I and J are ideals of R prove that their intersection I n J is also an ideal of R. 
(b) Prove that the intersection of an arbitrary nonempty collection of ideals is again an 

ideal (do not assume the collection is countable). 

19. Prove that if It s; lz s; · · · are ideals of R then u�1 In is an ideal of R.  

20. Let I be an ideal of R and let S be a subring of R. Prove that I n S  is  an ideal of S. Show 
by example that not every ideal of a subring S of a ring R need be of the form I n S for 
some ideal I of R. 

21. Prove that every (two-sided) ideal of Mn (R) is equal to Mn (J) for some (two-sided) ideal 
J of R. [Use Exercise 6( c) of Section 2 to show first that the set of entries of matrices in 
an ideal of Mn (R) form an ideal in R.] 

22. Let a be an element of the ring R. 
(a) Prove that {x E R I ax = 0} is a right ideal and {y E R I ya = 0} is a left ideal (called 

respectively the right and left annihilators of a in R). 
(b) Prove that if L is a left ideal of R then { x E R I xa = 0 for all a E L} is a two-sided 

ideal (called the left annihilator of L in R). 

23. Let S be a subring of R and let I be an ideal of R.  Prove that if S n I = 0 then S � S, 
where the bar denotes passage to Rf I. 

24. Let cp : R -+ S be a ring homomorphism. 
(a) Prove that if J is an ideal of S then cp-1 (J) is an ideal of R. Apply this to the special 

case when R is a subring of S and cp is the inclusion homomorphism to deduce that if 
J is an ideal of S then J n R is an ideal of R.  

(b) Prove that if  cp is  surjective and I i s  an ideal of R then cp(I) is an ideal of S .  Give an 
example where this fails if cp is not surjective. 

25. Assume R is a commutative ring with 1 .  Prove that the Binomial Theorem 

(a + bt = t (:)akbn-k 

k=O 
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holds in R, where the binomial coefficient (Z} is interpreted in R as the sum 1 + 1 + · · · + 1 
of the identity 1 in R taken (Z} times. 

26. The characteristic of a ring R is the smallest positive integer n such that 1 + 1 + · · · + 1 = 0 
(n times) in R; if no such integer exists the characteristic of R is said to be 0. For example, 
Z/ nZ is a ring of characteristic n for each positive integer n and Z is a ring of characteristic 
0. 
(a) Prove that the map Z � R defined by 1 1 + l + · · · + 1 (k times) 

k t-+  0 

- 1  - 1 - · · · - 1 ( -k times) 

if k > 0 

if k = 0 

if k < 0 

is a ring homomorphism whose kernel is nZ, where n is the characteristic of R (this 
explains the use of the terminology "characteristic 0" instead of the archaic phrase 
"characteristic oo" for rings in which no sum of 1 's is zero). 

(b) Determine the characteristics of the rings Q, Z[x], ZjnZ[x]. 
(c) Prove that if p is a prime and if R is a commutative ring of characteristic p, then 

(a + b)P = aP + bP for all a , b E R. 
27. Prove that a nonzero Boolean ring has characteristic 2 (cf. Exercise 15,  Section 1) .  

28. Prove that an integral domain has characteristic p, where p is either a prime or 0 (cf. 
Exercise 26). 

29. Let R be a commutative ring. Recall (cf. Exercise 13 ,  Section 1) that an element x E R 
is nilpotent if x" = 0 for some n E z+ . Prove that the set of nilpotent elements form an 
ideal - called the nilradical of R and denoted by IJl(R). [Use the Binomial Theorem to 
show IJl(R) is closed under addition.] 

30. Prove that if R is a commutative ring and IJl( R) is its nilradical ( cf. the preceding exercise) 
then zero is the only nilpotent element of RjiJl(R) i.e., prove that IJl(R/IJl(R)) = 0. 

31. Prove that the elements ( � � ) and ( � �) are nilpotent elements of M2 (Z) whose 

sum is not nilpotent (note that these two matrices do not commute). Deduce that the set 
of nilpotent elements in the noncommutative ring M2 (Z) is not an ideal. 

32. Let f/! : R � S be a homomorphism of rings. Prove that if x is a nilpotent element of R 
then f{!(X) is nilpotent in S. 

33. Assume R is commutative. Let p(x) = a,x" + a,_1 x"- 1 + · · · + a1x + ao be an element 
of the polynomial ring R[x ] .  
(a) Prove that p(x) is  a unit in  R[x] if  and only if ao i s  a unit and a1 , a2 , . . .  , a, are 

nilpotent in R. [ See Exercise 14 of Section 1 .] 
(b) Prove that p(x) is nilpotent in R[x] if and only if ao, a1 • . . .  , a, are nilpotent elements 

of R. 
34. Let I and J be ideals of R. 

(a) Prove that I + J is the smallest ideal of R containing both I and J. 
(b) Prove that I J is an ideal contained in I n J. 
(c) Give an example where I J -:f. I n  J. 
(d) Prove that if R is commutative and if I + J = R then I J = I n J. 

35. Let I, J, K be ideals of R. 
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(a) Prove that I (J + K) = I  J + I  K and (I + J)K = I K + J K .  
(b) Prove that if J � I then I n  (J + K) = J + (I n K).  
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36. Show that if I is the ideal of all polynomials in Z[x] with zero constant term then 
r = {anXn + an+!Xn+l + . . . + an+mXn+m I a; E Z, m :::: 0} is the set of polynomials 
whose first nonzero term has degree at least n. 

37. An ideal N is called nilpotent if Nn is the zero ideal for some n :=:: l .  Prove that the ideal 
pZj pfnZ is a nilpotent ideal in the ring Z/ [lnz. 

7.4 PROPERTIES OF IDEALS 

Throughout this section R is a ring with identity 1 =/:- 0. 

Definition. Let A be any subset of the ring R. 
(1) Let (A)  denote the smallest ideal of R containing A, called the ideal generated 

by A.  
(2) Let RA denote the set of all finite sums of elements of the form ra with r E R 

and a E A i .e., RA = {rial + r2a2 + . . . + rnan I r; E R, a; E A ,  n E z+} 
(where the convention is RA = 0 if A =  0). 
Similarly, AR = {a1r1 + a2r2 + · · · + an rn I r; E R, a; E A, n E £::+} and 
RAR = {r1a1r; + r2a2r2 + · · · + rnanr� I r; ,  rf E R, a; E A ,  n E £::+} .  

(3) An ideal generated by a single element is  called a principal ideal. 
(4) An ideal generated by a finite set is called a finitely generated ideal. 

When A =  {a } or {aJ , a2 , . . .  }, etc . , we shall drop the set brackets and simply write 
(a), (a1 , a2 , . . .  ) for (A), respectively. 

The notion of ideals generated by subsets of a ring is analogous to that of subgroups 
generated by subsets of a group (Section 2.4). Since the intersection of any nonempty 
collection of ideals of R is also an ideal (cf. Exercise 1 8, Section 3) and A is always 
contained in at least one ideal (namely R), we have 

(A) = n I ,  
I an ideal Ac:;I 

i .e., (A) is the intersection of all ideals of R that contain the set A. 
The left ideal generated by A is the intersection of all left ideals of R that contain 

A. This left ideal is obtained from A by closing A under all the operations that define 
a left ideal. It is immediate from the definition that R A is closed under addition and 
under left multiplication by any ring element. Since R has an identity, RA contains 
A.  Thus RA is a left ideal of R which contains A. Conversely, any left ideal which 
contains A must contain all finite sums of elements of the form ra, r E R and a E A 
and so must contain RA. Thus RA is precisely the left ideal generated by A.  Similarly, 
AR is the right ideal generated by A and RAR is the (two-sided) ideal generated by 
A. In particular, 

if R is commutative then RA = AR = RAR = (A). 

When R is a commutative ring and a E R, the principal ideal (a) generated by 
a is just the set of all R-multiples of a .  If R is not commutative, however, the set 
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{ras 1 r, s E R} is not necessarily the two-sided ideal generated by a since it need not 
be closed under addition (in this case the ideal generated by a is the ideal RaR, which 
consists of all .finite sums of elements of the form ras, r, s E R). 

The formation of principal ideals in a commutative ring is a particularly simple way 
of creating ideals, similar to generating cyclic subgroups of a group. Notice that the 
element b E R belongs to the ideal (a) if and only if b = ra for some r E R, i.e., if and 
only if b is a multiple of a or, put another way, a divides b in R. Also, b E (a) if and 
only if (b) � (a) .  Thus containment relations between ideals, in particular between 
principal ideals, is seen to capture some of the arithmetic of general commutative rings. 
Commutative rings in which all ideals are principal are among the easiest to study and 
these will play an important role in Chapters 8 and 9. 

Examples 

(1) The trivial ideal 0 and the ideal R are both principal: 0 = (0) and R = ( 1 ) .  
(2) In  IZ we have n/Z = /Zn = (n) = ( -n) for all integers n. Thus our notation for aR 

is consistent with the definition of n/Z we have been using. As noted in the preceding 
section, these are all the ideals of IZ so every ideal of IZ is principal. For positive integers 
n and m, n/Z � m/Z if and only if m divides n in /Z, so the lattice of ideals containing 
n/Z is the same as the lattice of divisors of n. Furthermore, the ideal generated by two 
nonzero integers n and m is the principal ideal generated by their greatest common 
divisor, d: (n , m) = (d) . The notation for (n , m) as the greatest common divisor of 
n and m is thus consistent with the same notation for the ideal generated by n and m 
(although a principal generator for the ideal generated by n and m is determined only 
up to a ± sign - we could make it unique by choosing a nonnegative generator). In 
particular, n and m are relatively prime if and only if (n , m) = (1 ) .  

(3) We show that the ideal (2, x) generated by 2 and x in /Z[xJ is not a principal ideal. 
Observe that (2, x) = {2p(x) + xq (x) I p (x) ,  q (x) E /Z[x]}  and so this ideal consists 
precisely of the polynomials with integer coefficients whose constant term is even 
(as discussed in Example 5 in the preceding section) - in particular, this is a proper 
ideal. Assume by way of contradiction that (2, x) = (a (x)) for some a(x) E /Z[xJ .  
Since 2 E (a(x)) there must be some p (x) such that 2 = p(x)a(x). The degree of 
p(x)a (x) equals degree p(x) + degree a (x), hence both p(x) and a (x) must be constant 
polynomials, i.e., integers. Since 2 is a prime number, a(x), p (x) E {± 1 ,  ±2}. If 
a(x) were ±1  then every polynomial would be a multiple of a(x), contrary to (a (x)) 
being a proper ideal. The only possibility is a(x) = ±2. But now x E (a (x)) = (2) = 
(-2) and so x  = 2q(x) for some polynomial q (x) with integer coefficients, clearly 
impossible. This contradiction proves that (2, x) is not principal. 

Note that the symbol (A) is ambiguous if the ring is not specified: the ideal 
generated by 2 and x in Q[xJ is the entire ring ( 1 )  since it contains the element 
!2 = 1 . 

We shall see in Chapter 9 that for any field F, all ideals of F[x] are principal. 
( 4) If R is the ring of all functions from the closed interval [0, 1]  into lR let M be the ideal 

{f I f<i > = 0} (the kernel of evaluation at i >· Let g(x) be the function which is zero 

at x = i and 1 at all other points. Then f = f g for all f E M so M is a principal 

ideal with generator g. In fact, any function which is zero at i and nonzero at all other 
points is another generator for the same ideal M. 
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On the other hand, if R is the ring of all continuous functions from [0, 1 J to lR then 

{f I f<i> = 0} is not principal nor is it even finitely generated (cf. the exercises). 
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(5) If G is a finite group and R is a commutative ring with l then the augmentation ideal 
is generated by the set {g - l I g E G}, although this need not be a minimal set of 
generators. For example, if G is a cyclic group with generator a ,  then the augmentation 
ideal is a principal ideal with generator a - l .  

Proposition 9 .  Let I be an ideal of R.  
(1) I = R if and only if I contains a unit. 
(2) Assume R is commutative. Then R is a field if and only if its only ideals are 0 

and R.  

Proof ( 1 )  I f  I = R then I contains the unit 1 .  Conversely, if u i s  a unit in I with 
inverse v, then for any r E R 

r = r · 1 = r(vu) = (rv)u E I 

hence R = I . 
(2) The ring R is a field if and only if every nonzero element is a unit. If R is a 

field every nonzero ideal contains a unit, so by the first part R is the only nonzero ideal. 
Conversely, if 0 and R are the only ideals of R let u be any nonzero element of R.  By 
hypothesis (u) = R and so 1 E (u) .  Thus there is some v E R such that 1 = vu, i.e., u 
is a unit. Every nonzero element of R is therefore a unit and so R is a field. 

Corollary 10. If R is a field then any nonzero ring homomorphism from R into another 
ring is an injection. 

Proof: The kernel of a ring homomorphism is an ideal. The kernel of a nonzero 
homomorphism is a proper ideal hence is 0 by the proposition. 

These results show that the ideal structure of fields is trivial. Our approach to 
studying an algebraic structure through its homomorphisms will still play a fundamental 
role in field theory (Part IV) when we study injective homomorphisms (embeddings) of 
one field into another and automorphisms of fields (isomorphisms of a field to itself). 

If D is a ring with identity 1 ::j:. 0 in which the only left ideals and the only right 
ideals are 0 and D, then D is a division ring. Conversely, the only (left, right or two
sided) ideals in a division ring D are 0 and D, which gives an analogue of Proposition 
9(2) if R is not commutative (see the exercises). However, if F is a field, then for 
any n � 2 the only two-sided ideals in the matrix ring Mn (F) are 0 and Mn (F), even 
though this is not a division ring (it does have proper, nontrivial, left and right ideals: 
cf. Section 3), which shows that Proposition 9(2) does not hold for noncommutative 
rings. Rings whose only two-sided ideals are 0 and the whole ring (which are called 
simple rings) will be studied in Chapter 1 8 . 

One important class of ideals are those which are not contained in any other proper 
ideal: 

Definition. An ideal M in an arbitrary ring S is called a maximal ideal if M ::j:. S and 
the only ideals containing M are M and S. 

Sec. 7.4 Properties of Ideals 253 



A general ring need not have maximal ideals. For example, take any abelian group 
which has no maximal subgroups (for example, Q - cf. Exercise 16, Section 6. 1 ) and 
make it into a trivial ring by defining ab = 0 for all a ,  b. In such a ring the ideals are 
simply the subgroups and so there are no maximal ideals. The zero ring has no maximal 
ideals, hence any result involving maximal ideals forces a ring to be nonzero. The next 
proposition shows that rings with an identity 1 =f. 0 always possess maximal ideals. 
Like many such general existence theorems (e.g., the result that a finitely generated 
group has maximal subgroups or that every vector space has a basis) the proof relies 
on Zorn's Lemma (see Appendix I). In many specific rings, however, the presence of 
maximal ideals is often obvious, independent of Zorn's Lemma. 

Proposition 11. In a ring with identity every proper ideal is contained in a maximal 
ideal 

Proof" Let R be a ring with identity and let I be a proper ideal (so R cannot be the 
zero ring, i.e. , l =f. 0). Let S be the set of all proper ideals of R which contain / .  Then 
S is nonempty (I E S) and is partially ordered by inclusion. If C is a chain in S, define 
J to be the union of all ideals in C :  

AeC 

We first show that J is an ideal. Certainly J is nonempty because C is nonempty 
- specifically, 0 E J since 0 is in every ideal A. If a, b E J, then there are ideals 
A, B E C such that a E A and b E B. By definition of a chain either A £; B or B £; A. 
In either case a - b E J, so J is closed under subtraction. Since each A E C is closed 
under left and right multiplication by elements of R, so is J. This proves J is an ideal 

If J is not a proper ideal then 1 E J .  In this case, by definition of J we must 
have l E A for some A E C. This is a contradiction because each A is a proper ideal 
(A E C £; S). This proves that each chain has an upper bound in S. By Zorn's Lemma 
S has a maximal element which is therefore a maximal (proper) ideal containing I .  

For commutative rings the next result characterizes maximal ideals by the structure 
of their quotient rings. 

Proposition 12. Assume R is commutative. The ideal M is a maximal ideal if and only 
if the quotient ring Rl M is a field. 

Proof" This follows from the Lattice Isomorphism Theorem together with Proposi
tion 9(2). The ideal M is maximal if and only if there are no ideals I with M c I c R. 
By the Lattice Isomorphism Theorem the ideals of R containing M correspond bijec
tively with the ideals of RIM, so M is maximal if and only if the only ideals of RIM 
are 0 and Rl M. By Proposition 9(2) we see that M is maximal if and only if Rl M is 
a field. 

The proposition above indicates how to construct some fields: take the quotient 
of any commutative ring R with identity by a maximal ideal in R. We shall use this 
in Part IV to construct all finite fields by taking quotients of the ring Z[x] by maximal 
ideals. 
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Examples 

(1) Let n be a nonnegative integer. The ideal n'l!, of 7/, is a maximal ideal if and only if 
7/,fn'l!, is a field. We saw in Section 3 that this is the case if and only if n is a prime 
number. This also follows directly from the containment of ideals of 7/, described in 
Example 2 above. 

(2) The ideal (2, x) is a maximal ideal in 7/,[x] because its quotient ring is the field Z/27/, 
- cf. Example 3 above and Example 5 at the end of Section 3 .  

(3) Theideal (x) in Z[x] is not a maximal ideal because (x) c (2, x) c 7/,[x] . The quotient 
ring 7/,[x]/(x) is isomorphic to 7/, (the ideal (x) in 7/,[x] is the kernel of the suijective 
ring homomorphism from 7/,[x] to 7/, given by evaluation at 0). Since 7/, is not a field, 
we see again that (x) is not a maximal ideal in 7/,[x]. 

(4) Let R be the ring of all functions from [0, 1 ]  to lR and for each a E [0, 1 ]  let Ma be the 
kernel of evaluation at a. Since evaluation is a suijective homomorphism from R to 
JR, we see that RIMa � lR and hence Ma is a maximal ideal. Similarly, the kernel of 
evaluation at any fixed point is a maximal ideal in the ring of continuous real valued 
functions on [0, 1 ] .  

(5) If F is  a field and G is  a finite group, then the augmentation ideal I i s  a maximal 
ideal of the group ring FG (cf. Example 7 at the end of the preceding section). The 
augmentation ideal is the kernel of the augmentation map which is a suijective homo
morphism onto the field F (i.e., FG/ I � F, a field). Note that Proposition 12 does 
not apply directly since FG need not be commutative, however, the implication in 
Proposition 12 that I is a maximal ideal if Rf I is a field holds for arbitrary rings. 

Definition. Assume R is commutative. An ideal P is called a prime ideal if P :j:. R 
and whenever the product ab of two elements a , b E R is an element of P, then at least 
one of a and b is an element of P. 

The notion of a maximal ideal i s  fairly intuitive but the definition of a prime ideal 
may seem a little strange. It is, however, a natural generalization of the notion of a 
"prime" in the integers Z. Let n be a nonnegative integer. According to the above 
definition the ideal n/Z is a prime ideal provided n :j:. 1 (to ensure that the ideal is 
proper) and provided every time the product ab of two integers is an element of n/Z, 
at least one of a, b is an element of n/Z. Put another way, if n :j:. 0, it must have the 
property that whenever n divides ab, n must divide a or divide b. This is equivalent to 
the ti.sual definition that n is a prime number. Thus the prime ideals of Z are just the 
ideals p/Z of/Z generated by prime numbers p together with the ideal 0. 

For the integers Z there is no difference between the maximal ideals and the nonzero 
prime ideals. This is not true in general, but we shall see shortly that every maximal 
ideal is a prime ideal. First we translate the notion of prime ideals into properties of 
quotient rings as we did for maximal ideals in Proposition 1 2. Recall that an integral 
domain is a commutative ring with identity 1 :j:. 0 that has no zero divisors. 

Proposition 13. Assume R is commutative. Then the ideal P is a prime ideal in R if 
and only if the quotient ring Rj P is an integral domain. 

Proof: This proof is simply a matter of translating the definition of a prime ideal 
into the language of quotients. The ideal P is prime if and only if P :j:. R and whenever 
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ab E P, then either a E P or b E P.  Use the bar notation for elements of RfP :  
r = r + P. Note that r E P if and only if the element r i s  zero in the quotient ring 
R f P. Thus in the terminology of quotients P is a prime ideal if and only if R =I 5 and 
whenever ab = ab = 0, then either a = 0 or b = 0, i .e. , Rf P is an integral domain. 

It follows in particular that a commutative ring with identity is an integral domain 
if and only if 0 is a prime ideal. 

Corollary 14. Assume R is commutative. Every maximal ideal of R is a prime ideal. 

Proof: If M is a maximal ideal then Rf M is a field by Proposition 12. A field is 
an integral domain so the corollary follows from Proposition 13 .  

Examples 

(1) The principal ideals generated by primes in Z are both prime and maximal ideals. The 
zero ideal in Z is prime but not maximal. 

(2) The ideal (x) is a prime ideal in Z[x] since Z[x]/(x) � Z. This ideal is not a maximal 
ideal. The ideal 0 is a prime ideal in Z[x], but is not a maximal ideal. 

E X E R C I S E S  

Let R be a ring with identity 1 i= 0. 
1. Let Lj be the left ideal of Mn(R) consisting of arbitrary entries in the /h column and zero 

in all other entries and let Eij be the element of Mn (R) whose i, j entry is 1 and whose 
other entries are all 0. Prove that Lj = Mn(R)Eij for any i .  [See Exercise 6, Section 2.] 

2. Assume R is commutative. Prove that the augmentation ideal in the group ring RG is 
generated by {g - 1 I g E G}. Prove that if G = ( a ) is cyclic then the augmentation ideal 
is generated by a - 1 .  

3. (a) Let p be a prime and let G be an abelian group of order pn . Prove that the nilradical 
of the group ring lFpG is the augmentation ideal (cf. Exercise 29, Section 3). [Use 
the preceding exercise.] 

(b) Let G = {g1 , . . . , gn } be a finite group and assume R is commutative. Prove that if r 
is any element of the augmentation ideal of RG then r (g1 + · · · + gn ) = 0. [Use the 
preceding exercise.] 

4. Assume R is commutative. Prove that R is a field if and only if 0 is a maximal ideal. 

5. Prove that if M is an ideal such that RJ M is a field then M is a maximal ideal (do not 
assume R is commutative). 

6. Prove that R is a division ring if and only if its only left ideals are (0) and R. (The analogous 
result holds when "left" is replaced by "right.") 

7. Let R be a commutative ring with 1 .  Prove that the principal ideal generated by x in the 
polynomial ring R[x] is a prime ideal if and only if R is an integral domain. Prove that 
(x) is a maximal ideal if and only if R is a field. 

8. Let R be an integral domain. Prove that (a) = (b) for some elements a, b E  R, if and only 
if a =  ub for some unit u of R. 

9.  Let R be the ring of all continuous functions on [0, 1 ]  and let I be the collection offunctions 
j(x) in R with f(1 /3) = f(1 /2) = 0. Prove that I is an ideal of R but is not a prime 
ideal. 
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10. Assume R is commutative. Prove that if P is a prime ideal of R and P contains no zero 
divisors then R is an integral domain. 

ll.  Assume R is commutative. Let I and J be ideals of R and assume P is a prime ideal of R 
that contains I J (for example, if P contains I n J). Prove either I or J is contained in P. 

12. Assume R is commutative and suppose I = (at , az , . . .  , a11 ) and J = (ht ,  bz , . . .  , bm) are 
two finitely generated ideals in R .  Prove that the product ideal / J is finitely generated by 
the elements aibj for i = 1 ,  2, . . .  , n ,  and j = 1 .  2, . . .  , m .  

13. Let � : R ---+ S be a homomorphism of commutative rings. 
(a) Prove that if P is a prime ideal of S then either �-l (P) = R or �-l (P) is a prime ideal 

of R. Apply this to the special case when R is a subring of S and � is the inclusion 
homomorphism to deduce that if P is a prime ideal of S then P n R is either R or a 
prime ideal of R.  

(b) Prove that if M is  a maximal ideal of S and � is smjective then �-1 (M) is  a maximal 
ideal of R .  Give an example to show that this need not be the case if� is not smjective. 

14. Assume R is commutative. Let x be an indeterminate, let f(x) be a monic polynomial 
in R[x] of degree n ::: 1 and use the bar notation to denote passage to the quotient ring 
R[x]j(f(x)) . 
(a) Show that every element of R[x]j(f(x)) is of the form p(x) for some polynomial 

p(x) E R[x] of degree less than n, i.e., 

R[x]j(f(x))  = {ao + atX + . . . + an-lXn- l I ao. a. , . . .  ' an-1 E R}. 

[If f(x) = X11 + hn-tX11-l + · · · + bo then X11 = -(hn-tX11-I + · · · + bo) .  Use this 
to reduce powers of x in the quotient ring.] 

(b) Prove that if p(x) and q(x) are distinct polynomials in R[x] which are both of degree 
less than n, then p(x) -:f. q(x). [Otherwise p(x) - q(x) is an R[x]-multiple of the 
monic polynomial f(x).] 

(c) If f(x) = a(x)b(x) where both a(x) and b(x) have degree less than n ,  prove that a(x) 
is a zero divisor in R[x]j(f(x)) . 

(d) If f(x) = x" - a  for some nilpotent element a E R, prove that x is nilpotent in 
R[x]j(f(x)).  

(e) Let p be a prime, assume R = Fp and f(x) = xP - a for some a E IP'p. Prove that 
x - a is nilpotent in R[x]j(f(x)) .  [Use Exercise 26(c) of Section 3.] 

15. Let x2 + x + 1 be an element of the polynomial ring E = IP'z[x] and use the bar notation 
to denote passage to the quotient ring !P'z [x]j(x2 + x  + 1 ) . 
(a) Prove that E has 4 elements: 0, T, x and x + 1 .  
(b) Write out the 4 x 4 addition table for E and deduce that the additive group E is 

isomorphic to the Klein 4-group. 
(c) Write out the 4 x 4 multiplication table for E and prove that Ex is isomorphic to the 

cyclic group of order 3. Deduce that E is a field. 

16. Let x4 - 16 be an element of the polynomial ring E = Z[x] and use the bar notation to 
denote passage to the quotient ring Z[x]j(x4 - 16) .  
(a) Find a polynomial of degree � 3 that is congruent to 7x 13 - 1 1x9 + 5x5 - 2x3 + 3 

modulo (x4 - 16) . 
(b) Prove that x - 2 and x + 2 are zero divisors in E. 

17. Let x3 - 2x + 1 be an element of the polynomial ring E = Z[x] and use the bar notation to 
denote passage to the quotientring Z[x]j(x3 -2x +  1 ) .  Let p(x) = 2x7 -7x5 +4x3 -9x + 1 
and let q(x) = (x - 1 )4. 
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(a) Express each of the following elements of E in the form f (x) for some polynomial 
f(x) of degree _::::: 2: p(x), q (x) , p(x) + q (x) and p(x)q (x).  

(b) Prove that E is not an integral domain. 
(c) Prove that :X is a unit in E. 

18. Prove that if R is an integral domain and R[[ x]] is the ring of formal power series in the 
indeterminate x then the principal ideal generated by x is a prime ideal ( cf. Exercise 3, 
Section 2). Prove that the principal ideal generated by x is a maximal ideal if and only if 
R is a field. 

19. Let R be a finite commutative ring with identity. Prove that every prime ideal of R is a 
maximal ideal. 

20. Prove that a nonzero finite commutative ring that has no zero divisors is a field (if the ring 
has an identity, this is Corollary 3, so do not assume the ring has a 1) . 

21. Prove that a finite ring with identity 1 =f. 0 that has no zero divisors is a field (you may 
quote Wedderburn's Theorem). 

22. Let p E z+ be a prime and let the F p Quaternions be defined by 

a + hi + cj + dk a , b, c, d E ZlpZ 

where addition is componentwise and multiplication is defined using the same relations 
on i, j, k as for the real Quaternions. 
(a) Prove that the F P Quaternions are a homomorphic image of the integral Quaternions 

(cf. Section 1) . 
(b) Prove that the F P Quaternions contain zero divisors (and so they cannot be a division 

ring). [Use the preceding exercise.] 
23. Prove that in a Boolean ring (cf. Exercise 15, Section 1) every prime ideal is a maximal 

ideal. 
24. Prove that in a Boolean ring every finitely generated ideal is principal. 
25. Assume R is commutative and for each a E R there is an integer n > 1 (depending on a) 

such that an = a. Prove that every prime ideal of R is a maximal ideal. 
26. Prove that a prime ideal in a commutative ring R contains every nilpotent element ( cf. 

Exercise 13, Section 1). Deduce that the nilradical of R (cf. Exercise 29, Section 3) is 
contained in the intersection of all the prime ideals of R. (It is shown in Section 15 .2 that 
the nilradical of R is equal to the intersection of all prime ideals of R.) 

27. Let R be a commutative ring with 1 =f. 0. Prove that if a is a nilpotent element of R then 
1 - ab is a unit for all b E R. 

28. Prove that if R is a commutative ring and N = (a 1 , a2 , . . .  , am ) where each a; is a nilpotent 
element, then N is anilpotent ideal ( cf. Exercise 37, Section 3). Deduce that if the nilradical 
of R is finitely generated then it is a nilpotent ideal. 

29. Let p be a prime and let G be a finite group of order a power of p (i.e., a p-group). Prove 
that the augmentation ideal in the group ring Zl pZG is a nilpotent ideal. (Note that this 
ring may be noncommutative.) [Use Exercise 2.] 

30. Let I be an ideal of the commutative ring R and define 

rad / = {r E R I rn E I for some n E z+ } 

called the radical of I. Prove that rad I is an ideal containing I and that (rad /)I I is the 
nilradical of the quotient ring R 1 I, i.e., (rad /)I I = fJt( R I I) ( cf. Exercise 29, Section 3 ). 

31. An ideal / of the commutative ring R is called a radical ideal if rad I = I. 
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(a) Prove that every prime ideal of R is a radical ideal. 
(b) Let n > 1 be an integer. Prove that 0 is a radical ideal in Zfn'll, if and only if n is a 

product of distinct primes to the first power (i.e., n is square free). Deduce that (n) is 
a radical ideal of 71, if and only if n is a product of distinct primes in Z. 

32. Let I be an ideal of the commutative ring R and define 

Jac I to be the intersection of all maximal ideals of R that contain I 

where the convention is that Jac R = R. (If I is the zero ideal, Jac 0 is called the Jacobson 
radical of the ring R, so Jac I is the preimage in R of the Jacobson radical of R/ 1 .) 
(a) Prove that Jac I is an ideal of R containing I .  

(b) Prove that rad I f: Jac I, where rad I i s  the radical of  I defined in  Exercise 30. 
(c) Let n > 1 be an integer. Describe Jac n'll, in terms of the prime factorization of n. 

33. Let R be the ring of all continuous functions from the closed interval [0, 1]  to lR. and for 
each c E [0, 1 ]  let Me = {f E R I j(c) = 0} (recall that Me was shown to be a maximal 
ideal of R). 
(a) Prove that if M is any maximal ideal of R then there is a real number c E [0, 1 ]  such 

that M = Me. 
(b) Prove that if b and c are distinct points in [0, 1 ]  then Mb =I= Me. 
(c) Prove that Me is not equal to the principal ideal generated by x - c. 
(d) Prove that Me is not a finitely generated ideal. 

The preceding exercise shows that there is a bijection between the points of the closed interval 
[0, 1]  and the set of maximal ideals in the ring R of all of continuous functions on [0, 1 ]  given 
by c � Me. For any subset X of lR. or, more generally, for any completely regular topological 
space X, the map c � Me is an injection from X to the set of maximal ideals of R, where 
R is the ring of all bounded continuous real valued functions on X and Me is the maximal 
ideal of functions that vanish at c. Let {J(X) be the set of maximal ideals of R. One can put 
a topology on {J(X) in such a way that if we identify X with its image in {J(X) then X (in its 
given topology) becomes a subspace of {J(X). Moreover, {J(X) is a compact space under this 
topology and is called the Stone-Cech compactification of X. 

34. Let R be the ring of all continuous functions from lR. to lR. and for each c E lR. let Me be 
the maximal ideal {f E R I j(c) = 0}. 
(a) Let I be the collection of functions j(x) in R with compact support (i.e., j (x) = 0 

for lx l sufficiently large). Prove that I is an ideal of R that is not a prime ideal. 
(b) Let M be a maximal ideal of R containing I (properly, by (a)). Prove that M =f. Me 

for any c E lR. (cf. the preceding exercise). 

35. Let A = (at . az , . . .  , a11 ) be a nonzero finitely generated ideal of R. Prove that there is 
an ideal B which is maximal with respect to the property that it does not contain A. [Use 
Zorn's Lemma.] 

36. Assume R is commutative. Prove that the set of prime ideals in R has a minimal element 
with respect to inclusion (possibly the zero ideal). [Use Zorn's Lemma.] 

37. A commutative ring R is called a local ring if it has a unique maximal ideal. Prove that 
if R is a local ring with maximal ideal M then every element of R - M is a unit. Prove 
conversely that if R is a commutative ring with 1 in which the set of nonunits forms an 
ideal M, then R is a local ring with unique maximal ideal M. 

38. Prove that the ring of all rational numbers whose denominators is odd is a local ring whose 
unique maximal ideal is the principal ideal generated by 2. 

39. Following the notation of Exercise 26 in Section 1 ,  let K be a field, let v be a discrete 
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valuation on K and let R be the valuation ring of v . For each integer k > 0 define 
Ak = {r E R I v(r) 2: k} U {0} . 
(a) Prove that Ak is a principal ideal and that Ao 2. At 2. A2 2. · · · . 

(b) Prove that if I is any nonzero ideal of R, then I = Ak for some k 2: 0. Deduce that 
R is a local ring with unique maximal ideal A 1 · 

40. Assume R is commutative. Prove that the following are equivalent: (see also Exercises 
13 and 14 in Section 1 )  
(i) R has exactly one prime ideal 

(ii) every element of R is either nilpotent or a unit 
(iii) R/rJ(R) is a field (cf. Exercise 29, Section 3). 

41. A proper ideal Q of the commutative ring R is called primary if whenever ab E Q and 
a ¢ Q then b" E Q for some positive integer n. (Note that the symmetry between a and 
b in this definition implies that if Q is a primary ideal and ab E Q with neither a nor b 
in Q, then a positive power of a and a positive power of b both lie in Q.) Establish the 
following facts about primary ideals. 
(a) The primary ideals of Z are 0 and (p" ), where p is a prime and n is a positive integer. 
(b) Every prime ideal of R is a primary ideal. 
(c) An ideal Q of R is primary if and only if every zero divisor in R/ Q is a nilpotent 

element of R I Q.  
(d) If Q i s  a primary ideal then rad( Q) i s  a prime ideal (cf. Exercise 30). 

7.5 RINGS OF FRACTIONS 

Throughout this section R is a commutative ring. Proposition 2 shows that if a is not 
zero nor a zero divisor and ab = ac in R then b = c. Thus a nonzero element that is not 
a zero divisor enjoys some of the properties of a unit without necessarily possessing a 
multiplicative inverse in R.  On the other hand, we saw in Section 1 that a zero divisor 
a cannot be a unit in R and. by definition, if a is a zero divisor we cannot always cance1 
the a 's in the equation ab = ac to obtain b = c (take c = 0 for example). The aim of 
this section is to prove that a commutative ring R is always a subring of a larger ring 
Q in which every nonzero element of R that is not a zero divisor is a unit in Q. The 
principal application of this will be to integral domains, in which case this ring Q will 
be a field - called its field of fractions or quotient field. Indeed, the paradigm for the 
construction of Q from R is the one offered by the construction of the field of rational 
numbers from the integral domain Z. 

In order to see the essential features of the construction of the field Q from the 
integral domain Z we review the basic properties of fractions. Each rational number 
may be represented in many different ways as the quotient of two integers (for example, 
1 2 3 - = - = - = . . . , etc.) .  These representations are related by 
2 4 6 

a c 
if and only if ad = be. b d 
a 

In more precise terms, the fraction b is the equivalence class of ordered pairs (a , b) 
of integers with b =f:. 0 under the equivalence relation: (a , b) ,...., (c, d) if and only if 
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ad = be. The arithmetic operations on fractions are given by 

a e ad + be a e ae 
b + d = bd 

and b x d = bd · 
These are well defined (independent of choice of representatives of the equivalence 
classes) and make the set of fractions into a commutative ring (in fact, a field), Q. The 

a 
integers Z are identified with the subring { l I a E Z) of Q and every nonzero integer 

h 
. 1 . ITl\ a as an mverse - m ".[· a 

It seems reasonable to attempt to follow the same steps for any commutative ring 
R, allowing arbitrary denominators. If, however, b is zero or a zero divisor in R, say 
bd = 0, and if we allow b as a denominator, then we should expect to have 

d bd 0 d = l = b = b = O  
in the "ring of fractions" (where, for convenience, we have assumed R has a 1 ). Thus 
if we allow zero or zero divisors as denominators there must be some collapsing in 
the sense that we cannot expect R to appear naturally as a subring of this "ring of 
fractions." A second restriction is more obviously imposed by the laws of addition and 
multiplication: if ring elements b and d are allowed as denominators, then bd must 
also be a denominator, i.e., the set of denominators must be closed under multiplication 
in R.  The main result of this section shows that these two restrictions are sufficient to 
construct a ring of fractions for R. Note that this theorem includes the construction of 
Q from Z as a special case. 

Theorem 15. Let R be a commutative ring. Let D be any nonempty subset of R that 
does not contain 0, does not contain any zero divisors and is closed under multiplication 
(i.e., ab E D for all a, b E D). Then there is a commutative ring Q with 1 such that 
Q contains R as a subring and every element of D is a unit in Q .  The ring Q has the 
following additional properties. 

(1) every element of Q is ofthe fonn rd-1 for some r E R and d E D. In particular, 
if D = R - {0) then Q is a field. 

(2) (uniqueness of Q) The ring Q is the ''smallest " ring containing R in which all 
elements of D become units, in the following sense. Let S be any commutative 
ring with identity and let cp : R ---+ S be any injective ring homomorphism 
such that cp(d) is a unit in S for every d E D. Then there is an injective 
homomorphism <P : Q ---+ S such that <P I R  = cp. In other words, any ring 
containing an isomorphic copy of R in which all the elements of D become 
units must also contain an isomorphic copy of Q .  

Remark: In Section 15.4 a more general construction i s  given. The proof of the general 
result is more technical but relies on the same basic rationale and steps as the proof 
of Theorem 15 .  Readers wishing greater generality may read the proof below and the 
beginning of Section 15 .4 in concert. 

Proof" Let :F = { (r, d) I r E R, d E D} and define the relation "' on :F by 

(r, d) "' (s , e) if and only if re = sd. 
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It is immediate that this relation is reflexive and symmetric. Suppose (r, d) "' (s , e) 
and (s , e) ,....., (t ,  f) . Then re - sd = 0 and sf - te = 0. Multiplying the first of these 
equations by f and the second by d and adding them gives (rf - td)e = 0. Since 
e E D is neither zero nor a zero divisor we must have r f - td = 0, i.e., (r, d) ,....., (t ,  f). 
This proves ""' is transitive, hence an equivalence relation. Denote the equivalence class 

r 
of (r, d) by d : 

r d = {(a ,  b) I a E R,  b E D  and rb = ad} . 

Let Q be the set of equivalence classes under ,....., . Note that :._ = 
r e in Q for all e E D, d de 

since D is closed under multiplication. 
We now define an additive and multiplicative structure on Q:  

a e ad + be a e ae 
b + d = bd and b x d = bd · 

In order to prove that Q is a commutative ring with identity there are a number of things 
to check: 

(1) these operations are well defined (i.e., do not depend on the choice of representatives 
for the equivalence classes), 

0 
(2) Q is an abelian group under addition, where the additive identity is d for any d E D 

and the additive inverse of � is �a , 
(3) multiplication is associative, distributive and commutative, and 

(4) Q has an identity (= � for any d E  D). 

These are all completely straightforward calculations involving only arithmetic in 
R and the definition of ,....., . Again we need D to be closed under multiplication for 
addition and multiplication to be defined. 

' 
For example, to check that addition is well defined assume � = � (i.e., ab' = a' b) b b' 
e e' . , , ad + be a' d' + b' e' . 

and - = - (t.e., ed = e d). We must show that = , t.e., d d' bd b'd' 
(ad + be) (b'd') = (a'd' + b'e') (bd) . 

The left hand side of this equation is ab' dd' + ed' bb' substituting a' b for ab' and e' d 
for ed' gives a' bdd' + e' dbb', which is the right hand side. Hence addition of fractions 
is well defined. Checking the details in the other parts of ( 1) to ( 4) involves even easier 
manipulations and so is left as an exercise. 

Next we embed R into Q by defining 

t : R ---+ Q by 
rd 

t : r � d where d is any element of D. 

rd re 
Since - = - for all d, e E D, t (r) does not depend on the choice of d E  D. Since d e 
D is closed under multiplication, one checks directly that t is a ring homomorphism. 
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Furthermore, t is injective because 

rd 0 2 t (r) = 0 ¢> - = - ¢> rd = 0 ¢> r = 0 d d 
because d (hence also �) is neither zero nor a zero divisor. The subring t (R) of Q is 
therefore isomorphic to R. We henceforth identify each r E R with t (r) and so consider 
R as a subring of Q. 

Next note that each d E D has a multiplicative inverse in Q: namely, if d is 

represented by the fraction 
de 

then its multiplicative inverse is !_. One then sees that e de 
every element of Q may be written as r · d-1 for some r E R and some d E D. In 
particular, if D = R - {0}, every nonzero element of Q has a multiplicative inverse and 
Q is a field. 

It remains to establish the uniqueness property of Q. Assume cp : R -+ S is an 
injective ring homomorphism such that cp(d) is a unit in S for all d E D. Extend cp to a 
map tP : Q -+  S by defining l/J(rd-1 ) = cp(r)cp(d)-1 for all r E R, d E  D. This map 
is well defined. since rd-1 = se- 1 implies re = sd, so cp(r)cp(e) = cp(s)cp(d), and then 

l/J (rd-1 ) = cp(r)cp(d)-1 = cp(s)cp(e)-1  = l/J(se-1 ) • 
. It is straightforward to check that tP is a ring homomorphism - the details are left as an 
exercise. Finally, tP is injective because r d-1 E ker tP implies r E ker tP n R = ker cp; 
since cp is injective this forces r and hence also rd-1 to be zero. This completes the 
proof. 

Definition. Let R, D and Q be as in Theorem 15 .  
(1) The ring Q i s  called the ring of fractions of D with respect to R and i s  denoted 

D-1 R.  
(2) If  R is an integral domain and D = R - {0} , Q is called the field of fractions 

or quotient field of R. 

If A is a subset of a field F (for example, if A is a subring of F), then the intersection 
of all the subfields of F containing A is a subfield of F and is called the subfield 
generated by A. This subfield is the smallest subfield of F containing A (namely, any 
subfield of F containing A contains the subfield generated by A). 

The next corollary shows that the smallest field containing an integral domain R is 
its field of fractions. 

Corollary 16. Let R be an integral domain and let Q be the field of fractions of R. If 
a field F contains a subring R' isomorphic to R then the subfield of F generated by R' 
is isomorphic to Q. 

Proof" Let cp : R � R' � F be a (ring) isomorphism of R to R'. In particular, 
cp : R -+ F is an injective homomorphism from R into the field F. Let tP : Q -+ F be 
the extension of cp to Q as in the theorem. By Theorem 15, tP is injective, so tP ( Q) is an 
isomorphic copy of Q in F containing cp(R) = R'. Now, any subfield of F containing 
R' = cp(R) contains the elements cp(r1 )cp(r2)- 1  = cp(r1 r,Z1 ) for all r1 , r2 E R. Since 
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every element of Q is of the form r1rz-1 for some r1 , r2 E R, it follows that any subfield 
of F containing R' contains the field cP ( Q), so that cP ( Q) is the subfield of F generated 
by R', proving the corollary. 

Examples 

(1) If R is a field then its field of fractions is just R itself. 
(2) The integers Z are an integral domain whose field of fractions is the field Q of rational 

numbers. The quadratic integer ring 0 of Section 1 is an integral domain whose field 
of fractions is the quadratic field ((£( .Ji5). 

(3) The subring 2Z of Z also has no zero divisors (but has no identity). Its field of fractions 
is also ((£. Note how an identity "appears" in the field of fractions. 

(4) If R is any integral domain, then the polynomial ring R[x] is also an integral domain. 
The associated field of fractions is the field of rational functions in the variable x 

. p(x) 
over R. The elements of thts field are of the form -- , where p(x) and q(x) are 

q (x) 
polynomials with coefficients in R with q(x) not the zero polynomial. In particular, 
p(x) and q(x) may both be constant polynomials, so the field of rational functions 

contains the field of fractions of R: elements of the form � such that a, b E R and 

b #- 0. If F is a field, we shall denote the field of rational functions by F(x). Thus if 
F is the field of fractions of the integral domain R then the field of rational functions 
over R is the same as the field of rational functions over F, namely F(x ) .  

For example, suppose R = Z,  so F = ((£ .  I f  p(x) ,  q(x) are polynomials in 
Q[xl then for some integer N, Np(x) ,  Nq(x) have integer coefficients (let N be a 
common denominator for all the coefficients in p(x) and q(x), for example). Then 
p(x) Np(x) 

b · h · f 1 "al · h ·  -- = -- can e wntten as t e quottent o two po ynoffil s Wit mteger co-
q(x) Nq(x) 
efficients, so the field of fractions of Q[x] is the same as the field of fractions of 
Z[x] . 

(5) If R is any commutative ring with identity and d is neither zero nor a zero divisor in R 
we may form the ring R[1/dl by setting D = { 1 ,  d, d2 , d3 , . . . } and defining R[lfd] 
to be the ring of fractions n-1 R. Note that R is the subring of elements of the form 
r l .  In this way any nonzero element of R that is not a zero divisor can be inverted in 

a larger ring containing R. Note that the elements of R[lfd] look like polynomials in 
1fd with coefficients in R, which explains the notation. 

E X E R C I S E S 

Let R be a commutative ring with identity 1 #- 0. 

1. Fill in all the details in the proof of Theorem 15 .  
2. Let R be an integral domain and let D be a nonempty subset of R that is  closed under 

multiplication. Prove that the ring of fractions n-1 R is isomorphic to a subring -of the 
quotient field of R (hence is also an integral domain). 

3. Let F be a field. Prove that F contains a unique smallest subfield Fo and that Fo is 
isomorphic to either Q or Zj pZ for some prime p (Fo is called the prime subjield of F). 
[See Exercise 26, Section 3.] 

4. Prove that any subfield of JR. must contain ((£. 
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5. If F is a field, prove that the field of fractions of F[[x ]] (the ring of formal power series in 
the indeterminate x with coefficients in F) is the ring F((x)) of formal Laurent series (cf. 
Exercises 3 and 5 of Section 2). Show the field of fractions of the power series ring Z[[x ]]  
is properly contained in the field of Laurent series <Ql((x)) .  [Consider the series for ex .] 

6. Prove that the real numbers, JR, contain a subring A with 1 E A and A maximal (under 
inclusion) with respect to the property that ! ¢ A. [Use Zorn's Lemma.] (Exercise 13  
in  Section 15 .3  shows lR i s  the quotient field of A, so  lR i s  the quotient field of  a proper 
subring.) 

7.6 THE CHINESE REMAIN DER THEOREM 

Throughout this section we shall assume unless otherwise stated that all rings are com
mutative with an identity 1 =f:. 0. 

Given an arbitrary collection of rings (not necessarily satisfying the conventions 
above), their (ring) direct product is defined to be their direct product as (abelian) groups 
made into a ring by defining multiplication componentwise. In particular, if R1 and R2 
are two rings, we shall denote by Rt x Rz their direct product (as rings), that is, the set 
of ordered pairs (r1 , rz) with Yt E R1 and rz E Rz where addition and multiplication 
are performed componentwise: 

(rt , rz) + (st . sz) = (rt + St , rz + Sz) and Crt , rz)(st , sz) = (rtSt , rzsz) . 

We note that a map qJ from a ring R into a direct product ring is a homomorphism if 
and only if the induced maps into each of the components are homomorphisms. 

There is a generalization to arbitrary rings of the notion in Z of two integers n and 
m being relatively prime (even to rings where the notion of greatest common divisor is 
not defined). In Z this is equivalent to being able to solve the equation nx + my = 1 
in integers x and y (this fact was stated in Chapter 0 and will be proved in Chapter 8). 
This in tum is equivalent to n/Z + m/Z = Z as ideals (in general, n/Z + m/Z = (m ,  n)IZ). 
This motivates the following definition: 

Definition. The ideals A and B of the ring R are said to be comaximal if A + B = R. 

Recall that the product, A B,  of the ideals A and B of R is the ideal consisting of all 
finite sums of elements of the form xy, x E A and y E B (cf. Exercise 34, Section 3). 
If A = (a) and B = (b) , then A B  = (ab) . More generally, the product of the ideals 
A t , Az,  . . . , Ak is the ideal of all finite sums of elements of the form XtXz · · · Xk such 
that X; E A; for all i . If A; = (a; ) ,  then A t · · · Ak = (at · · · ak) . 

Theorem 17. (Chinese Remainder Theorem) Let A t .  A2 , • • .  , Ak be ideals in R. The 
map 

R ---+ R/At  x RfAz X · · · X R/Ak defined by r �---+ (r + A t .  r + Az ,  . . . , r +Ak) 

is a ring homomorphism with kernel A t n Az n · · · n Ak . If for each i, j E { 1 ,  2, . . . , k} 
with i =f:. j the ideals A; and Aj are comaximal, then this map is smjective and 
A t n Az n · · · n Ak = A t Az · · · Ako  so 

R/(A t Az · · · Ak) = Rf(A t n Az n · · · n Ak) � R/At  x R/Az x · · · x R/Ak . 
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Proof: We first prove this for k = 2; the general case will follow by induction. 
Let A = A1 and B = A2. Consider the map if! : R -+ Rj A x Rj B defined by 

f{!(r) = (r mod A ,  r mod B), where mod A means the class in Rj A containing r (that 
is, r + A). This map is a ring homomorphism because if! is just the natural projection 
of R into Rj A and R/ B for the two components. The kernel of if! consists of all the 
elements r E R that are in A and in B, i.e., A n B. To complete the proof in this case it 
remains to show that when A and B are comaximal, if! is surjective and A n B = AB. 

Since A + B = R, there are elements x E A and y E B such that x + y = 1 .  This 
equation shows that f{J(x) = (0, 1 )  and f{J(y) = ( 1 ,  0) since, for example, x is an element 
of A and x = 1 - y E 1 + B. If now (r1 mod A ,  r2 mod B) is an arbitrary element in 
Rj A x Rj B, then the element r2x + r1 y maps to this element since 

f{!(r2x + r1 y) = f{!(r2)f/!(X) + f{!(rt )f{!(y) 

= (r2 mod A, r2 mod B)(O, 1) + (r1 mod A ,  r1 mod B) (l , 0) 

= (0, r2 mod B) + (r1 mod A ,  0) 

= (r1 mod A ,  r2 mod B).  

This shows that if! is  indeed surjective. Finally, the ideal AB is always contained in 
A n B. If A and B are comaximal and x and y are as above, then for any c E A n B, 

c = cl  = ex + cy E AB. This establishes the reverse inclusion A n  B � AB and 
completes the proof when k = 2. 

The general case follows easily by induction from the case of two ideals using 
A =  A1  and B = A2 · · · Ak once we show that A1 and A2 · · · Ak are comaximal. By 
hypothesis, for each i E {2, 3 , . . .  , k} there are elements x; E A1 and y; E A; such that 
x; + y; = 1 .  Since x; + y; = y; mod A 1 .  it follows that 1 = (x2 + Y2) · · · (xk + yd is 
an element in A 1  + (A2 · · · Ak) . This completes the proof. 

This theorem obtained its name from the special case 7/.,f mn7/., � (7/.,/ m7/.,) x (7/.,/ n7/.,) 
as rings when m and n are relatively prime integers. We proved this isomorphism just 
for the additive groups earlier. This isomorphism, phrased in number-theoretic terms, 
relates to simultaneously solving two congruences modulo relatively prime integers 
(and states that such congruences can always be solved, and uniquely). Such problems 
were considered by the ancient Chinese, hence the name. Some examples are provided 
in the exercises. 

Since the isomorphism in the Chinese Remainder Theorem is an isomorphism of 
rings, in particular the groups of units on both sides must be isomorphic. It is easy to 
see that the units in any direct product of rings are the elements that have units in each 
of the coordinates. In the case of 7/.,f mn7/., the Chinese Remainder Theorem gives the 
following isomorphism on the groups of units: 

More generally we have the following result. 
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Corollary 18. Let n be a positive integer and let PI "1 pz"2 • • •  Pk "k be its factorization 
into powers of distinct primes. Then 

'l!.jn'l!. � ('l!.jp,"l 'l!.) X ('l!./pz"27!.) X . . .  X ('l!.fpk"k'l!.) ,  
as rings, so  in  particular we  have the following isomorphism of multiplicative groups: 

('11./ n'l!.) x � (7!./ PI "1 7!.) x x ('11./ pz "2 71.) x x · · · x ('11./ Pk "k 7!.) x .  

If we compare orders on the two sides of this last isomorphism, we obtain the 
formula 

for the Euler qJ-function. This in tum implies that qJ is what in elementary number 
theory is termed a multiplicative function, namely that qJ(ab) = qJ(a)qJ(b) whenever a 
and b are relatively prime positive integers. The value of 9? on prime powers p" is easily 
seen to be qJ(p") = p"-1 (p - 1 )  (cf. Chapter 0). From this and the multiplicativity of 
9? we obtain its value on all positive integers. 

Corollary 1 8  is also a step toward a determination of the decomposition of the 
abelian group ('11./ n'l!.) x into a direct product of cyclic groups. The complete structure 
is derived at the end of Section 9.5 . 

E X E R C I S E S  

Let R be a ring with identity 1 i= 0. 

1. An element e E R is called an idempotent if e2 = e. Assume e is an idempotent in R and 
er = re for all r E R.  Prove that Re and R( 1  - e) are two-sided ideals of R and that 
R � Re x R ( l - e) . Show that e and 1 - e are identities for the subrings Re and R ( l - e) 
respectively. 

2. Let R be a finite Boolean ring with identity 1 i= 0 (cf. Exercise 15 of Section 1 ) .  Prove 
that R � 7l.j27l. x · · · x 7l.j27l.. [Use the preceding exercise.] 

3. Let R and S be rings with identities. Prove that every ideal of R x S is of the form I x J 
where I is an ideal of R and J is an ideal of S. 

4. Prove that if R and S are nonzero rings then R x S is never a field. 

5. Letn1 , nz, . . .  , nk be integers which arc relatively prime inpairs: (n; ,  nj ) = 1 for all i i= j .  
(a) Show that the Chinese Remainder Theorem implies that for any a, , . . .  , ak E 71. there 

is a solution x E 71. to the simultaneous congruences 

x = a1 mod n, , 

and that the solution x is unique mod n = n 1 n2 . . .  nk.  
(b) Let n; = njn; be the quotient ofn by n; ,  which is relatively prime to n; by assumption. 

Let t; be the inverse of n; mod n; . Prove that the solution x in (a) is given by 

x = a,r, nJ. + aztzn'z + - · · + aktkn� mod n. 

Note that the elements t; can be quickly found by the Euclidean Algorithm as described 
in Section 2 of the Preliminaries chapter (writing an; + bn; = (n; , n; ) = 1 gives 
t; = b) and that these then quickly give the solutions to the system of congruences 
above for any choice of a, , az , . . .  , ak . 
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(c) Solve the simultaneous system of congruences 

x = 1 mod 8 ,  

and the simultaneous system 

y = 5 mod 8 , 

x = 2 mod 25 , and x = 3 mod 8 1  

y = 1 2 mod 25 , and y = 47 mod 8 1 .  

6. Let ft (x) ,  f2(x) ,  . . .  , fk (x) be polynomials with integer coefficients of the same degree 
d. Let n 1 ,  n2 , . . .  , nk be integers which are relatively prime in pairs (i.e., (n; , nj ) = 1 for 
all i =/=- j).  Use the Chinese Remainder Theorem to prove there exists a polynomial f(x) 
with integer coefficients and of degree d with 

f(x} = ft (�) mod n 1  , f(x) = h(x) mod n2 , f(x) = fk (x) mod nk 

i.e. , the coefficients of f (x) agree with the coefficients of f; (x) mod n; . Show that if all 
the f; (x) are monic, then f (x) may also be chosen monic. [Apply the Chinese Remainder 
Theorem in Z to each of the coefficients separately.] 

7. Let m and n be positive integers with n dividing m. Prove that the natural surjective ring 
projection '1!./ m7!. � Z/ n7!. is also surjective on the units: ('1!./ mZ) x � ('1!./ n'1!.) x .  

The next four exercises develop the concept of direct limits and the "dual" notion of irwerse 
limits. In these exercises I is a nonempty index set with a partial order � (cf. Appendix 1) . For 
each i E I let A; be an additive abelian group. In Exercise 8 assume also that I is a directed 
set: for every i, j E I there is some k E I with i � k and j � k. 

8. Suppose for every pair of indices i, j with i � j there is a map Pij : A; � Aj such that 
the following hold: 

i. Pik o Pij = Pik whenever i � j � k, and 
ii. p;; = 1 for all i E I .  

Let B be the disjoint union of all the A; . Define a relation � on B by 

a � b if and only if there exists k with i, j � k and Pik (a) = Pjk(b) , 

for a E A; and b E Aj . 
(a) Show that � is an equivalence relation on B. (The set of equivalence classes is called 

the direct or inductive limit of the directed system {A; },  and is denoted � A; . In the 
remaining parts of this exercise let A = � A; .} 

(b) Let x denote the class of x in A and define p; : A; � A by Pi (a) = a. Show that 
if each Pij is injective, then so is p; for all i (so we may then identify each A; as a 
subset of A). 

(c) Assume all p;j are group homomorphisms. Fora E A; , b  E Aj show that the operation 

a + b = Pik (a) + Pjk (b) 

where k is any index with i, j � k, is well defined and makes A into an abelian group. 
Deduce that the maps p; in (b) are group homomorphisms from A; to A. 

(d) Show that if all A; are commutative rings with 1 and all Pij are ring homomorphisms 
that send 1 to 1 ,  then A may likewise be given the structure of a commutative ring 
with 1 such that all p; are ring homomorphisms. 

(e) Under the hypotheses in (c) prove that the direct limit has the following universal 
property: if C is any abelian group such that for each i E I there is a homomorphism 
f/Ji : A; � C with f/Ji = f/Jj o Pij whenever i � j ,  then there is a unique homomorphism 
qJ :  A � C such that qJ o p; = f{l; for all i .  
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9. Let I be the collection of open intervals U = (a, b) on the real line containing a fixed real 
number p. Order these by reverse inclusion: U :::: V if V � U (note that i is a directed set). 
For each U let Au be the ring of continuous real valued functions on U. For V � U define 
the restriction maps Puv : Au --+ A v  by f H f i v ,  the usual restriction of a function on 
U to a function on the subset V (which is easily seen to be a ring homomorphism). Let 
A = !!w Au be the direct limit. In the notation of the preceding exercise, show that the 
maps Pu : Au --+ A are not injective but are all surjective (A is called the ring of germs 
of continuous functions at p ). 

We now develop the notion of inverse limits. Continue to assume I is a partially ordered set 
(but not necessarily directed), and A; is a group for all i E I. 

10. Suppose for every pair of indices i ,  j with i :::: j there is a map IIji : Aj --+ A; such that 
the following hold: 

i. IIji o IIkj = IIki whenever i :::: j :::: k, and 
ii. IIi; = 1 for all i E 1 .  

Let P be the subset ofelements (a; )iE/ in the direct product niE/ A; such that �Iji (aj) = a; 

whenever i :::: j (here a; and aj are the ith and jth components respectively of the element 
in the direct product). The set P is called the inverse or projective limit of the system {A; }, 
and is denoted � A; .) 
(a) Assume all IIji are group homomorphisms. Show that P is a subgroup of the direct 

product group (cf. Exercise 15, Section 5.1) .  
(b) Assume the hypotheses in (a), and let 1 = z+ (usual ordering). For each i E I let 

IIi : P --+ A; be the projection of P onto its ith component. Show that if each IIji is 
surjective, then so is IIi for all i (so each A; is a quotient group of P). 

(c) Show that if all A; are commutative rings with 1 and all IIji are ring homomorphisms 
that send 1 to 1, then A may likewise be given the structure of a commutative ring 
with 1 such that all IIi are ring homomorphisms. 

(d) Under the hypotheses in (a) prove that the inverse limit has the following universal 
property: if D is any group such that for each i E 1 there is a homomorphism 
n; : D --+ A; withn; = IIji OJrj whenever i :::: j, then there is auniquehomomorphism 
n : D --+ P such that IIi o n = n; for all i .  

11 .  Let p be a prime let I =  z+, let A; = Z/ piz and let IIji be the natural projection maps 

IIji : a  (mod pj ) �----+ a(mod pi ) . 

The inverse limit � Z f pi Z is called the ring of p-adic integers, and is denoted by Zp . 
(a) Show that every element of Zp may be written uniquely as an infinite formal sum 

bo + hi P + b2p2 + h]p3 + · · · with each b; E {0, 1 ,  . . .  , p - 1 }. Describe the rules for 
adding and multiplying such formal sums corresponding to addition and multiplication 
in the ring Zp. [Write a least residue in each Z/ pi Z in its base p expansion and then 
describe the maps IIji .] (Note in particular that Zp is uncountable.) 

(b) Prove that Zp is an integral domain that contains a copy of the integers. 

(c) Prove that bo + ht p + h2p2 + h]p3 + · · · as  in (a) is a unit in Zp if and only if bo # 0. 
(d) Prove that pZp is the unique maximal ideal of Zp and Zp/PZp � ZjpZ (where 

p = 0 + 1 p + 0 p2 + 0 p3 + · · · ). Prove that every ideal of Zp is of the form pn Zp 
for some integer n 2::: 0. 

(e) Show that if at ¢ 0 (mod p) then there is an element a =  (a; ) in the direct limit Zp 
satisfying af = 1 (mod pj ) and IIj t (aj ) = at for all j .  Deduce that Zp contains 

p - 1 distinct (p - ost roots of 1 .  
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CHAPTER 8 

Eucl idea n Doma i n s, 
Pri nci pa l I dea l Do ma i ns ,  

a nd U n i q u e Facto rizati o n  Do ma i n s 

There are a number of classes of rings with more algebraic structure than generic 
rings. Those considered in this chapter are rings with a division algorithm (Euclidean 
Domains), rings in which every ideal is principal (Principal Ideal Domains) and rings in 
which elements have factorizations into primes (Unique Factorization Domains). The 
principal examples of such rings are the ring Z of integers and polynomial rings F[x] 
with coefficients in some field F. We prove here all the theorems on the integers Z 
stated in the Preliminaries chapter as special cases of results valid for more general 
rings. These results will be applied to the special case of the ring F[x] in the next 
chapter. 

All rings in this chapter are commutative. 

8.1 EUCLI DEAN DOMAI NS 

We first define the notion of a nonn on an integral domain R.  This is essentially no 
more than a measure of "size" in R. 

Definition. Any function N : R --+  tz+ U {0} with N(O) = 0 is called a nonn on the 
integral domain R. If N (a) > 0 for a -::f- 0 define N to be a positive nonn. 

We observe that this notion of a norm is fairly weak and that it is possible for the 
same integral domain R to possess several different norms. 

Definition. The integral domain R is said to be a Euclidean Domain (or possess a 
Division Algorithm) if there is a norm N on R such that for any two elements a and b 

of R with b -::f- 0 there exist elements q and r in R with 

a = qb + r with r = 0 or N(r) < N(b) . 

The element q is called the quotient and the element r the remainder of the division. 
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The importance of the existence of a Division Algorithm on an integral domain R 
is that it allows a Euclidean Algorithm for two elements a and b of R:  by successive 
"divisions" (these actually are divisions in the field of fractions of R) we can write 

a = qob + ro (0) 

b = q1 ro + r1 (1 ) 
ro = qzrt + rz (2) 

r,_z = q,r,_ l + r, (n) 
r,_ l = q,+lr, (n + 1 )  

where r, is the last nonzero remainder. Such an r, exists since N(b) > N(ro) > 

N (r1 ) > · · · > N (r, ) is a decreasing sequence of nonnegative integers if the remainders 
are nonzero, and such a sequence cannot continue indefinitely. Note also that there is 
no guarantee that these elements are unique. 

Examples 

(0) Fields are trivial examples of Euclidean Domains where any norm will satisfy the 
defining condition (e.g., N (a) = 0 for all a). This is because for every a ,  b with b =I= 0 
we have a =  qb + 0, where q = ab- 1 . 

(1) The integers Z are a Euclidean Domain with norm given by N(a) = l a l ,  the usual 
absolute value. The existence of a DivisionAlgorithm in Z (the familiar "long division" 
of elementary arithmetic) is verified as follows. Let a and b be two nonzero integers 
and suppose first that b > 0. The half open intervals [ nb , (n+ 1 )b ), n E Z partition 
the real line and so a is in one of them, say a E [ kb , (k+ I )b ) .  For q = k we have 
a - qb = r E [0, lh l )  as needed. If b < 0 (so -b > 0), by what we have just seen 
there is an integer q such that a = q (  -b) + r with either r = 0 or lr l < I - hi ;  then 
a = ( -q)b + r satisfies the requirements of the Division Algorithm for a and b. This 
argument can be made more formal by using induction on Ia I .  

Note that i f  a is not a multiple of b there are always two possibilities for the 
pair q ,  r: the proof above always produced a positive remainder r. If for example 
b > 0 and q, r are as above with r > 0, then a = q'b + r' with q' = q + I and 
r' = r - b also satisfy the conditions of the Division Algorithm applied to a ,  b. Thus 
5 = 2 .  2 + 1 = 3 · 2 - 1 are the two ways of applying the Division Algorithm in Z to 
a = 5 and b = 2. The quotient and remainder are unique if we require the remainder 
to be nonnegative. 

(2) If F is a field, then the polynomial ring F[x] is a Euclidean Domain with norm 
given by N(p(x)) = the degree of p(x) . The Division Algorithm for polynomials is 
simply "long division" of polynomials which may be familiar for polynomials with 
real coefficients. The proof is very similar to that for Z and is given in the next chapter 
(although for polynomials the quotient and remainder are shown to be unique). In 
order for a polynomial ring to be a Euclidean Domain the coefficients must come from 
a field since the division algorithm ultimately rests on being able to divide arbitrary 
nonzero coefficients. We shall prove in Section 2 that R[x] is not a Euclidean Domain 
if R is not a field. 

(3) The quadratic integer rings 0 in Section 7. 1  are integral domains with a norm defined 
by the absolute value of the field norm (to ensure the values taken are nonnegative; 
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when D < 0 the field norm is itself a norm), but in general 0 is not Euclidean with 
respect to this norm (or any other norm). The Gaussian integers Z[i] (where D = - 1  ), 
however, are a Euclidean Domain with respect to the norm N(a + bi) = a2 + b2, as 
we now show (cf. also the end of Section 3). 

Let a = a + bi,  f3 = c + di be two elements of Z[i] with f3 =I= 0. Then in the field 

Q(i) we have � = r +si where r = (ac + bd)j(c2 +d2) and s = (be - ad)j(c2 +d2) 
f3 

are rational numbers. Let p be an integer closest to the rational number r and let q be 
an integer closest to the rational number s, so that both lr - p i  and Is - q I are at most 
l /2. The Division Algorithm follows immediately once we show 

a = (p + qi){3 + y for some y E Z[i] with 
l 

N(y) :'S lN({3) 

which is even stronger than necessary. Let () = (r - p) + (s - q)i and set y = {38.  
Then y = a - (p +qi)f3, so  that y E Z[i] i s  a Gaussian integer and a =  (p +qi)f3 +y.  
Since N(8) = (r - p)2 + (s - q)2 i s  at most 1/4 + 1/4 = 1/2. the multiplicativity of 

the norm N implies that N(y) = N(8)N(f3) :'S �N(f3) as claimed. 

Note that the algorithm is quite explicit since a quotient p + qi is quickly deter
mined from the rational numbers r and s, and then the remainder y = a - (p + qi)f3 
is easily computed. Note also that the quotient need not be unique: if r (or s) is half 
of an odd integer then there are two choices for p (or for q, respectively). 

This proof that Z[i] is a Euclidean Domain can also be used to show that 0 
is a Euclidean Domain (with respect to the field norm defined in Section 7. 1) for 
D = -2, -3, -7 , - 1 1  (cf. the exercises) . We shall see shortly that Z[.J=S ] is not 
Euclidean with respect to any norm, and a proof that Z[( l + .J=T9 )/2] is not a 
Euclidean Domain with respect to any norm appears at the end of this section. 

(4) Recall (cf. Exercise 26 in Section 7. 1 )  that a discrete valuation ring is obtained as 
follows. Let K be a field. A discrete valuation on K is a function v : K x � Z 
satisfying 
(i) v (ab) = v(a) + v(b) (i.e. , v is a homomorphism from the multiplicative group of 

nonzero elements of K to Z), 
(ii) v is surjective, and 

(iii) v(x + y) ::=: min{v(x) ,  v(y)} for all x ,  y E K x with x + y =I= 0. 
The set {x E K x I v(x) ::=: 0} U {0} is a subring of K called the valuation ring of v. 
An integral domain R is called a discrete valuation ring if there is a valuation v on its 
field of fractions such that R is the valuation ring of v. 

For example the ring R of all rational numbers whose denominators are relatively 
prime to the fixed prime p E Z is a discrete valuation ring contained in Q. 

A discrete valuation ring is easily seen to be a Euclidean Domain with respect 
to the norm defined by N(O) = 0 and N = v on the nonzero elements of R. This is 
because for a, b E R with b =1= 0 
(a) if N(a) < N(b) then a =  0 · b + a, and 
(b) if N(a) ::=: N(b) then it follows from property (i) of a discrete valuation that 

q = ab-1 E R, so a = qb + 0. 

The first implication of a Division Algorithm for the integral domain R is that it 
forces every ideal of R to be principal. 
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Proposition 1. Every ideal in a Euclidean Domain is principal. More precisely, if I is 
any nonzero ideal in the Euclidean Domain R then I = (d), where d is any nonzero 
element of I of minimum norm. 

Proof: If I is the zero ideal, there is nothing to prove. Otherwise let d be any 
nonzero element of I of minimum norm (such a d  exists since the set {N(a) I a E I }  
has a minimum element by the Well Ordering of Z). Clearly (d) � I since d is an 
element of I .  To show the reverse inclusion let a be any element of I and use the 
Division Algorithm to write a = qd +r  with r = O or N(r) < N(d) . Then r = a - qd 
and both a and q d are in I ,  so r is also an element of I .  By the minimality of the norm 
of d, we see that r must be 0. Thus a = qd E (d) showing I = (d) . 

Proposition 1 shows that every ideal of Z is principal. This fundamental property 
of Z was previously determined (in Section 7.3) from the (additive) group structure of 
Z, using the classification of the subgroups of cyclic groups in Section 2.3. Note that 
these are really the same proof, since the results in Section 2.3 ultimately relied on the 
Euclidean Algorithm in Z. 

Proposition 1 can also be used to prove that some integral domains R are not 
Euclidean Domains (with respect to any norm) by proving the existence of ideals of R 
that are not principal. 

! 
Examples \ 

(1) Let R = Z[xJ: Since the ideal (2, x) is not principal (cf. Example 3 at the beginning 
of Section 7.4), it follows that the ring Z[x] of polynomials with integer coefficients 
is not a Euclidean Domain (for any choice of norm), even though the ring Q[x] of 
polynomials with rational coefficients is a Euclidean Domain. 

(2) Let R be the quadratic integer ring Z[ H ], let N be the associated field norm 
N(a+bH) = a2+5b2 and consider the ideal I =  (3, 2+..;=5) generated by 3 and 

2+H. Suppose I =  (a +bH ). a, b E  Z, were principal, i .e., 3 = a(a +bH) 
and 2+H = {j(a + b,;=5) for some a, {3 E R. Taking norms in the first equation 
gives 9 = N(a)(a2 + 5h2) and since a2 + 5b2 is a positive integer it must be 1 ,3 or 9. 
If the value is 9 then N (a) = 1 and a = ± 1 ,  so a +  bH = ±3, which is impossible 

by the second equation since the coefficients of 2+H are not divisible by 3. The 
value cannot be 3 since there are no integer solutions to a2 +5b2 = 3. If the value is 1 ,  
then a + bH = ± 1 and the ideal I would be the entire ring R. But then 1 would be 
an element of I, so 3y + (2+..;=5)8 = 1 for some y, 8 E R. Multiplying both sides 
by 2-..;=5 would then imply that 2-H is a multiple of 3 in R, a contradiction. It 
follows that I is not a principal ideal and so R is not a Euclidean Domain (with respect 
to any norm). 

One of the fundamental consequences of the Euclidean Algorithm in Z is that it 
produces a greatest common divisor of two nonzero elements. This is true in any 
Euclidean Domain. The notion of a greatest common divisor of two elements (if it 
exists) can be made precise in general rings. 
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Definition. Let R be a commutative ring and let a ,  b E R with b =J. 0. 
(1) a is said to be a multiple of b if there exists an element x E R with a = bx . In 

this case b is said to divide a or be a divisor of a, written b I a. 
(2) A greatest common divisor of a and b is a nonzero element d such that 

(i) d I a and d I b, and 

(ii) if d' I a and d' I b then d' I d. 
A greatest common divisor of a and b will be denoted by g.c.d. (a , b),  or (abusing 
the notation) simply (a , b) . 

Note that b I a in a ring R if and only if a E (b) if and only if (a) 5; (b) . In 
particular, if d is any divisor of both a and b then (d) must contain both a and b and 
hence must contain the ideal generated by a and b. The defining properties (i) and (ii) 
of a greatest common divisor of a and b translated into the language of ideals therefore 
become (respectively): 

if I is the ideal of R generated by a and b, then d is a greatest common divisor of 
a and b if 

(i) I is contained in the principal ideal (d), and 

(ii) if (d') is any principal ideal containing I then (d) 5; (d') . , . ·  
Thus a greatest common divisor of a and b (if such exists) is a generator for the uniqhe 
smallest principal ideal containing a and b. There are rings in which greatest common 
divisors do not exist. 

This discussion immediately gives the following sufficient condition for the exis
tence of a greatest common divisor. 

Proposition 2. If a and b are nonzero elements in the commutative ring R such that the 
ideal generated by a and b is a principal ideal (d) , then d is a greatest common divisor 
of a and b. 

This explains why the symbol (a , b) is often used to denote both the ideal generated 
by a and b and a greatest common divisor of a and b. An integral domain in which 
every ideal (a , b) generated by two elements is principal is called a Bezout Domain. 
The exercises in this and subsequent sections explore these rings and show that there 
are Bezout Domains containing nonprincipal (necessarily infinitely generated) ideals. 

Note that the condition in Proposition 2 is not a necessary condition. For example, 
in the ring R = Z[x] the elements 2 and x generate a maximal, nonprincipal ideal (cf. 
the examples in Section 7.4) . Thus R = { 1 )  is the unique principal ideal containing 
both 2 and x, so l is a greatest common divisor of 2 and x. We shall see other examples 
along these lines in Section 3. 

Before returning to Euclidean Domains we examine the uniqueness of greatest 
common divisors. 

Proposition 3. Let R be an integral domain. If two elements d and d' of R generate the 
same principal ideal, i.e., (d) = (d') ,  then d' = ud for some unit u in R.  In particular, 
if d and d' are both greatest common divisors of a and b, then d' = ud for some unit u .  

274 Chap. 8 Euclidean,  Pri ncipa l  Idea l ,  and Unique Factorization Domains 



Proof" This is clear if either d or d' is zero so we may assume d and d' are nonzero. 
Since d E (d') there is some x E R such that d = xd'. Since d' E (d) there is some 
y E R such that d' = yd. Thus d = xyd and so d(l - xy) = 0. Since d # 0, xy = 1 ,  
that is, both x and y are units. This proves the first assertion. The second assertion 
follows from the first since any two greatest common divisors of a and b generate the 
same principal ideal (they divide each other). 

One of the most important properties of Euclidean Domains is that greatest common 
divisors always exist and can be computed algorithmically. 

Theorem 4. Let R be a Euclidean Domain and let a and b be nonzero elements of 
R. Let d = r n be the last nonzero remainder in the Euclidean Algorithm for a and b 
described at the beginning of this chapter. Then 

(1) d is a greatest common divisor of a and b, and 
(2) the principal ideal (d) is the ideal generated by a and b. In particular, d can be 

written as an R-linear combination of a and b, i.e., there are elements x and y 
in R such that 

d = ax + by .  

Proof" B y  Proposition 1 ,  the ideal generated by a and b is principal so a, b do have 
a greatest common divisor, namely any element which generates the (principal) ideal 
(a , b) . Both parts of the theorem will follow therefore once we show d = rn generates 
this ideal, i.e., once we show that 

(i) d I a and d I b (so (a ,  b) � (d)) 
(ii) d is an R-linear combination of a and b (so (d) � (a , b)). 

To prove that d divides both a and b simply keep track of the divisibilities in the 
Euclidean Algorithm. Starting from the (n+ 1 )51 equation, rn-I = Qn+1rn . we see that 
rn I Yn- 1 · Clearly rn I rn . By induction (proceeding from index n downwards to index 
0) assume rn divides rk+I and rk . By the (k+1)51 equation, rk-1 = Qk+Irk + rk+1 · and 
since r n divides both terms on the right hand side we see that r n also divides rk-1 · From 
the P1 equation in the Euclidean Algorithm we obtain that rn divides b and then from 
the Oth equation we get that rn divides a .  Thus (i) holds. 

To prove that rn is in the ideal (a , b) generated by a and b proceed similarly by 
induction proceeding from equation (0) to equation (n) . It follows from equation (0) 
that ro E (a , b) and by equation ( 1 ) that r1 = b - q1 ro E (b, ro) � (a , b) . By induction 
assume rk-1 • rk E (a , b) . Then by the (k+ l )51 equation 

rk+I = rk- 1 - Qk+Irk E (rk-1 · rk ) � (a, b) . 
This induction shows rn E (a , b) , which completes the proof. 

Much of the material above may be familiar from elementary arithmetic in the case 
of the integers Z, except possibly for the translation into the language of ideals. For 
example, if a = 2210 and b = 1 13 1  then the smallest ideal of Z that contains both a 
and b (the ideal generated by a and b) is 13Z, since 13  is the greatest common divisor 
of 2210 and 1 1 3 1 .  This fact follows quickly from the Euclidean Algorithm: 

2210 = 1 .  1 13 1  + 1079 
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1 13 1  = 1 .  1079 + 52 

1079 = 20 . 52 + 39 

52 = 1 ·  39 + 13  

39 = 3 .  13  

so  that 1 3  = (2210, 1 1 31 )  i s  the last nonzero remainder. Using the procedure of 
Theorem 4 we can also write 13  as a linear combination of 2210 and 1 13 1  by first 
solving the next to last equation above for 13 = 52 - 1 · 39, then using previous 
equations to solve for 39 and 52, etc.,  finally writing 13  entirely in terms of 2210 and 
1 1 3 1 .  The answer in this case is 

13 = (-22) . 2210 + 43 - 1 13 1 .  

The Euclidean Algorithm in the integers Z i s  extremely fast. It is a theorem that 
the number of steps required to determine the greatest common divisor of two integers 
a and b is at worst 5 times the number of digits of the smaller of the two numbers. 
Put another way, this algorithm is logarithmic in the size of the integers. To obtain an 
appreciation of the speed implied here, notice that for the example above we would 
have expected at worst 5 · 4 = 20 divisions (the example required far fewer). If we had 
started with integers on the order of 10100 (large numbers by physical standards), we 
would have expected at worst only 500 divisions. 

There is no uniqueness statement for the integers x and y in (a , b) = ax + by. 
Indeed, x' = x + b and y' = y - a  satisfy (a , b) = ax' + by' . This is essentially 
the only possibility - one can prove that if x0 and y0 are solutions to the equation 
ax + by = N, then any other solutions x and y to this equation are of the form 

b x = xo + m (a , b) 
a y = yo - m -(a, b) 

for some integer m (positive or negative). 
This latter theorem (a proof of which is outlined in the exercises) provides a com

plete solution of the First Order Diophantine Equation ax + by = N provided we know 
there is at least one solution to this equation. But the equation ax + by = N is simply 
another way of stating that N is an element of the ideal generated by a and b. Since we 
know this ideal is just (d), the principal ideal generated by the greatest common divisor 
d of a and b, this is the same as saying N E (d) , i.e., N is divisible by d. Hence, the 
equation ax + by = N is solvable in integers x and y if and only if N is divisible by 
the g. c.d. of a and b (and then the result quoted above gives a full set of solutions of 
this equation). 

We end this section with another criterion that can sometimes be used to prove 
that a given integral domain is not a Euclidean Domain. 1 For any integral domain let 

1 The material here and in some of the following section follows the exposition by J .C. Wilson in 
A principal ideal ring that is not a Euclidean ring, Math. Mag., 46(1 973), pp. 34-38, of ideas of Th. 
Motzkin, and use a simplification by Kenneth S. Williams in Note on non-Euclidean Principal Ideal 
Domains, Math. Mag., 48(1975), pp. 176-177. 
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R = Rx U {O} denote the collection ofunits of R together with O. An element u E R - R  
is called a universal side divisor if for every x E R there is some z E R such that u 
divides x - z in R, i.e., there is a type of "division algorithm" for u :  every x may be 
written x = qu + z where z is either zero or a unit. The existence of universal side 
divisors is a weakening of the Euclidean condition: 

Proposition 5. Let R be an integral domain that is not a field. If R is a Euclidean 
Domain then there are universal side divisors in R. 

Progf: Suppose R is  Euclidean with respect to some norm N and let u be an element 
of R - R (which is nonempty since R is not a field) of minimal norm. For any x E R, 
write x = qu + r where r is either 0 or N (r) < N(u) .  In either case the minimality of 
u implies r E R. Hence u is a universal side divisor in R. 

Example 

We can use Proposition 5 to prove that the quadratic integer ring R = Z[(1 + ..;=19)/2] is 
not a Euclidean Domain with respect to any norm by showing that R contains no universal 
side divisors (we shall see in the next section that all of the ideals in R are principal, 
so the technique in the examples following Proposition 1 do not 5>ply to this ring). We 
have already determined that ±1 are the only units in R and so R = {0, ±1 } .  Suppose 
u E R is a universal side divisor and let N (a + b(1  + ..;=19)/2) = a2 + ab + 5� 

denote the field norm on R as in Section 7 . 1 .  Note that if a, b E Z and b =ft 0 then 
a2 + ab + 5b2 = (a + b j2)2 + 19  j4b2 :::: 5 and so the smallest nonzero values of N on R 
are 1 (for the units ±1)  and 4 (for ±2). Taking x = 2 in the definition of a universal side 
divisor it follows that u must divide one of 2 - 0 or 2 ± I in R, i.e., u is a nonunit divisor 
of 2 or 3 in R. If 2 = a{J then 4 = N(a)N({J) and by the remark above it follows that 
one of a or {J has norm 1 ,  i.e., equals ± 1 .  Hence the only divisors of 2 in R are {± 1 ,  ±2}. 
Similarly, the only divisors of 3 in R are {± I ,  ±3}, so the only possible values for u are 
±2 or ±3. Taking x = ( 1 + ..;=19) /2 it is easy to check that none of x , x ± 1 are divisible 
by ±2 or ±3 in R, so none of these is a universal side divisor. 

E X E R C I S E S 

1. For each of the following five pairs of integers a and b, determine their greatest common 
divisor d and write d as a linear combination ax + by of a and b. 
(a) a = 20, b = 13. 
(b) a = 69, b = 372. 
(c) a = 1 1 391 ,  b = 5673 . 
(d) a = 507885, b = 60808. 
(e) a = 91442056588823, b = 779086434385541 (the Euclidean Algorithm requires 

only 7 steps for these integers). 

2. For each of the following pairs of integers a and n, show that a is relatively prime to n and 
determine the inverse of a mod n ( cf. Section 3 of the Prelitninaries chapter). 
(a) a = 1 3, n = 20. 
(b) a = 69, n = 89. 
(c) a =  1 891 ,  n = 3797. 
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(d) a = 6003722857, n = 77695236973 (the Euclidean Algorithm requires only 3 steps 
for these integers). 

3. Let R be a Euclidean Domain. Let m be the minimum integer in the set of norms of nonzero 
elements of R. Prove that every nonzero element of R of norm m is a unit. Deduce that a 
nonzero element of norm zero (if such an element exists) is a unit. 

4. Let R be a Euclidean Domain. 
(a) Prove that if (a , b) = 1 and a divides be, then a divides c. More generally, show that 

if a divides be with nonzero a,  b then _
a
_ divides c. 

(a , b) 
(b) Consider the Diophantine Equation ax + by = N where a,  b and N are integers and 

a, b are nonzero. Suppose xo , Yo is a solution: axo + byo = N. Prove that the full set 
of solutions to this equation is given by 

b 
x = xo + m --

b
-,  

(a , ) 

a 
y = yo - m -

(a , b) 

as m ranges over the integers. [If x ,  y is a solution to ax + by 
a(x - xo) = b(yo - y) and use (a).] 

N, show that 

5. Determine all integer solutions of the following equations: 
(a) 2x + 4y = 5 
(b) 17x + 29y = 3 1 
(c) 85x + 145y = 505. 

6. (The Postage Stamp Problem) Let a and b be two relatively prime positive integers. Prove 
that every sufficiently large positive integer N can be written as a linear combination 
ax + by of a and b where x and y are both nonnegative, i.e., there is an integer No such that 
for all N 2:: No the equation ax + by = N can be solved with both x and y nonnegative 
integers. Prove in fact that the integer ab - a - b cannot be written as a posit�ve linear 
combination of a and b but that every integer greater than ab - a - b is a positive linear 
combination of a and b (so every "postage" greater than ab - a - b can be obtained using 
only stamps in denominations a and b). 

7. Find a generator for the ideal (85 , 1 + 13i ) in Z[i ] ,  i.e., a greatest common divisor for 85 
and 1 + 13i , by the Euclidean Algorithm. Do the same for the ideal (47 - 13i, 53 + 56i) .  

It is known (but not so easy to prove) that D = - 1 ,  -2, -3, -7, - 1 1 , - 1 9, -43, -67, and 
- 163 are the only negative values of D for which every ideal in 0 is principal (i.e., 0 is a P.I.D. 
in the terminology of the next section). The results of the next exercise determine precisely 
which quadratic integer rings with D < 0 are Euclidean. 

8. Let F = Q( .JD )  be a quadratic field with associated quadratic integer ring 0 and field 
norm N as in Section 7 . 1 .  
(a) Suppose D i s  - 1 ,  -2, -3, -7 or - 1 1 .  Prove that 0 i s  a Euclidean Domain with 

respect to N. [Modify the prooffor Z[i] (D = - 1 )  in the text. For D = -3,  -7, - 1 1  
prove that every element of F differs from an element in 0 by an element whose norm 
is at most ( 1  + ID I )2 f( l6 1D I), which is less than 1 for these values of D. Plotting the 
points of 0 in C may be helpful.] 

(b) Suppose that D = -43, -67, or - 163. Prove that 0 is not a Euclidean Domain with 
respect to any norm. [Apply the same proof as for D = - 19 in the text.] 

9. Prove that the ring of integers 0 in the quadratic integer ring Q( Ji) is a Euclidean Domain 
with respect to the norm given by the absolute value of the field norm N in Section 7 . 1 .  

10. Prove that the quotient ring Z[i]/ I i s  finite for any nonzero ideal I of Z[i ] .  [Use the fact 

278 Chap. 8 Eucl idean ,  Principa l  I dea l ,  and Un ique Factorization Doma ins 



that I = (a) for some nonzero a and then use the Division Algorithm in this Euclidean 
Domain to see that every coset of I is represented by an element of norm less than N(a) .] 

11. Let R be a commutative ring with I and let a and b be nonzero elements of R. A least 
common multiple of a and b is an element e of R such that 
(i) a I e and b I e, and 

(ii) if a I e' and b I e' then e I e' . 

(a) Prove that a least common multiple of a and b (if such exists) is a generator for the unique 
largest principal ideal contained in (a) n (b) . 

(b) Deduce that any two nonzero elements in a Euclidean Domain have a least common 
multiple which is unique up to multiplication by a unit. 

(c) Prove that in a Euclidean Domain the least common multiple of a and b is _!!!!___ , where 
(a , b) 

(a , b) is the greatest common divisor of a and b. 

12. (A Public Key Code) Let N be a positive integer. Let M be an integer relatively prime to 
N and let d be an integer relatively prime to q;(N) , where q; denotes Euler's q;-function. 
Prove that if M1 = Md (mod N) then M = Mf' (mod N) where d' is the inverse of d 
mod q;(N) : dd' = I (mod q;(N)). 

Remark: This result is the basis for a standard Public Key Code. Suppose N = pq is the product 
of two distinct large primes (each on the order of 100 digits, for example). If M is a message, 
then Mt = Md (mod N) is a scrambled (encoded) version of M, which can be unscrambled 
(decoded) by computing M( (mod N) (these powers can be computed quite easily even for 
large values of M and N by successive squarings). The values of N and d (but not p and q) 
are made publicly known (hence the name) and then anyone with a message M can send their 
encoded message Md (mod N). To decode the message it seems necessary to determine d', 
which requires the determination of the value q;(N) = q;(pq) = (p - I) (q - I) (no one has 
as yet proved that there is no other decoding scheme, however). The success of this method 
as a code rests on the necessity of determining the factorization of N into primes, for which 
no sufficiently efficient algorithm exists (for example, the most naive method of checking all 
factors up to -IN would here require on the order of I0100 computations, or approximately 300 
years even at 10 billion computations per second, and of course one can always increase the 
size of p and q). 

8.2 PRI NCI PAL IDEAL DOMAINS (P. I .D.s ) 

Definition. A Principal Ideal Domain (P.I.D.) is an integral domain in which every 
ideal is principal. 

Proposition 1 proved that every Euclidean Domain is a Principal Ideal Domain 
so that every result about Principal Ideal Domains automatically holds for Euclidean 
Domains. 

Examples 

(1) As mentioned after Proposition 1 ,  the integers Z are a P.I.D. We saw in Section 7.4 
that the polynomial ring Z[x] contains nonprincipal ideals, hence is not a P.I.D. 

(2) Example 2 following Proposition 1 showed that the quadratic integer ring Z[.J=S ]  
i s  not a P.I.D., i n  fact the ideal (3, 1 + .J="S) i s  a nonprincipal ideal. I t  i s  possible 
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for the product I J of two nonprincipal ideals I and J to be principal, for example the 
ideals (3 , 1 + H) and (3 , 1 - H) are both non principal and their product is the 
principal ideal generated by 3, i.e., (3 , 1 + H)(3, 1 - H) = (3) (cf. Exercise 5 
and the example preceding Proposition 12 below). 

It is not true that every Principal Ideal Domain is a Euclidean Domain. We shall 

prove below that the quadratic integer ring Z[ (1 + .J=19) /2], which was shown not 
to be a Euclidean Domain in the previous section, nevertheless is a P.I.D. 

From an ideal-theoretic point of view Principal Ideal Domains are a natural class 
of rings to study beyond rings which are fields (where the ideals are just the trivial 
ones: (0) and ( 1 )). Many of the properties enjoyed by Euclidean Domains are also 
satisfied by Principal Ideal Domains. A significant advantage of Euclidean Domains 
over Principal Ideal Domains, however, is that although greatest common divisors exist 
in both settings, in Euclidean Domains one has an algorithm for computing them. Thus 
(as we shall see in Chapter 12  in particular) results which depend on the existence 
of greatest common divisors may often be proved in the larger class of Principal Ideal 
Domains although computation of examples (i.e. , concrete applications of these results) 
are more effectively carried out using a Euclidean Algorithm (if one is available). 

We collect some facts about greatest common divisors proved in the preceding 
section. 

· 

Proposition 6. Let R be a Principal Ideal Domain and let a and b be nonzero elements 
of R. Let d be a generator for the principal ideal generated by a and b. Then 

(1) d is a greatest common divisor of a and b 
(2) d can be written as an R-linear combination of a and b, i.e. , there are elements 

x and y in R with 
d = ax + by 

(3) d is unique up to multiplication by a unit of R. 

Proof" This is just Propositions 2 and 3. 

Recall that maximal ideals are always prime ideals but the converse is not true in 
general. We observed in Section 7 .4, however, that every nonzero prime ideal of Z is 
a maximal ideal. This useful fact is true in an arbitrary Principal Ideal Domain, as the 
following proposition shows. 

Proposition 7. Every nonzero prime ideal in a Principal Ideal Domain is a maximal 
ideal. 

Proof" Let (p) be a nonzero prime ideal in the Principal Ideal Domain R and let 
I = (m) be any ideal containing (p) . We must show that I = (p) or I = R. Now 
p E (m) so p =  rm for some r E R. Since (p) is a prime ideal and rm E (p), either r 
or m must lie in (p). If m E (p) then (p) = (m) = I.  If, on the other hand, r E (p) 
write r = ps . In this case p = rm = psm, so sm = 1 (recall that R is an integral 
domain) and m is a unit so I =  R. 
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As we have already mentioned, if F is a field, then the polynomial ring F[x] is a 
Euclidean Domain, hence also a Principal Ideal Domain (this will be proved in the next 
chapter). The converse to this is also true. Intuitively, if I is an ideal in R (such as the 
ideal (2) in Z) then the ideal (I, x) in R[x] (such as the ideal (2, x) in Z[x]) requires 
one more generator than does I ,  hence in general is not principal. 

Corollary 8. If R is any commutative ring such that the polynomial ring R[x] is a 
Principal Ideal Domain (or a Euclidean Domain), then R is necessarily a field. 

Proof Assume R[x] is a Principal Ideal Domain. Since R is a subring of R[x] then 
R must be an integral domain (recall that R[x] has an identity if and only if R does). 
The ideal (x) is a nonzero prime ideal in R[x] because R[x]f(x) is isomorphic to the 
integral domain R. By Proposition 7, (x) is a maximal ideal, hence the quotient R is a 
field by Proposition 12 in Section 7.4. 

The last result in this section will be used to prove that not every P.I.D. is a Euclidean 
Domain and relates the principal ideal property with another weakening of the Euclidean 
condition. 

Definition. Define N to be a Dedekind-Hasse norm if N is a positive norm and for 
every nonzero a, b E R either a is an element of the ideal (b) or there is a nonzero 
element in the ideal (a, b) of norm strictly smaller than the norm of b (i .e., either b 
divides a in R or there exist s,  t E R with 0 < N(sa - tb) < N(b)). 

Note that R is Euclidean with respect to a positive norm N if it is always possible 
to satisfy the Dedekind-Hasse condition with s = 1 ,  so this is indeed a weakening of 
the Euclidean condition. 

Proposition 9. The integral domain R is a P.I.D. if and only if R has a Dedekind-Hasse 
norm.2 

Proof Let I be any nonzero ideal in R and let b be a nonzero element of I with N (b) 
minimal. Suppose a is any nonzero element in I ,  so that the ideal (a, b) is contained 
in I. Then the Dedekind-Hasse condition on N and the minimality of b implies that 
a E (b), so I = (b) is principal. The converse will be proved in the next section 
(Corollary 16). 

2That a Dedekind-Hasse norm on R implies that R is a P.I.D. (and is equivalent when R is a ring 
of algebraic integers) is the classical Criterion ofDedekind and Hasse, cf. Vber eindeutige Zerlegung in 
Primelemente oder in Primhauptideale in Integritlitsbereichen, Jour. fiir die Reine und Angew. Math., 
159( 1 928), pp. 3-1 2. The observation that the converse holds generally is more recent and due to 
John Greene, Principal /deal Domains are almost Euclidean, Amer. Math. Monthly, 104( 1997), pp. 
1 54-156. 
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Example 

Let R = Z[ ( 1  +.J=T9) /2] be the quadratic integer ring considered at the end of the previous 
section. We show that the positive field norm N(a + b(l + .J=T§ )/2) = a2 + ab + 5b2 
defined on R is a Dedekind-Hasse norm, which by Proposition 9 and the results of the 
previous section will prove that R is a P.I.D. but not a Euclidean Domain. 

Suppose a, f3 are nonzero elements of R and a/ f3 f/:_ R. We must show that there are 
elements s ,  t E R with 0 < N (sa - tf3) < N ({3), which by the multiplicativity of the field 
norm is equivalent to 

a D < N(fis - t) < l . 

W · 
a a +  b.J=j9 

tn\[ 117\19 ]  · h · b h 
· 

d" · d nte - = E -..: v - c" w1t mtegers a, , c avmg no common IVJsor an 
f3 c 

with c > 1 (since f3 is assumed not to divide a). Since a ,  b, c have no common divisor 
there are integers x , y , z with ax + by + cz = 1 .  Write ay - 19bx = cq + r for some 
quotient q and remainder r with J r l ::'S c/2 and let s = y + x.J=T§ and t = q - z.J=T§. 
Then a quick computation shows that 

a (ay - l9bx - cq)2 + 19(ax + by + cz)2 1 19 
0 < N(-s - t) = < - + -

f3 � - 4 � 
and so (*) is satisfied with this s and t provided c � 5. 

Suppose that c = 2. Then one of a , b is even and the other is odd (otherwise a 1 {3 E R), 

. (a - 1) + b.J=T§ 
and then a qmck check shows that s = 1 and t = 2 are elements of R 

satisfying (*)· 
Suppose that c = 3 .  The integer a2 + 19b2 is not divisible by 3 (modulo 3 this is 

a2 + b2 which is easily seen to be 0 modulo 3 if and only if a and b are both 0 modulo 3; 
but then a, b, c have a common factor). Write a2 + 19b2 = 3q + r with r = 1 or 2. Then 
again a quick check shows that s = a - b.J=T§, t = q are elements of R satisfying ( * ) .  

Finally, suppose that c = 4, so a and b are not both even. If one of a,  b is even and the 
other odd, then a2 + 19b2 is odd, so we can write a2 + 19b2 = 4q + r for some q , r E iE 
and 0 < r < 4. Then s = a - b.J=T§ and t = q satisfy (*). If a and b are both odd, then 
a2 + 19b2 = 1 + 3 mod 8, so we can write a2 + 19b2 = 8q + 4 for some q E Z. Then 

a - b.J=T§ s = 
2 and t = q are elements of R that satisfy ( * ). 

E X E R C I S E S  

1. Prove that in a Principal Ideal Domain two ideals (a) and (b) are comaximal (cf. Section 
7.6) if and only if a greatest common divisor of a and b is 1 (in which case a and b are 
said to be coprime or relatively prime). 

2. Prove that any two nonzero elements of a P.I.D. have a least common multiple ( cf. Exercise 
1 1 ,  Section 1) . 

3. Prove that a quotient of a P.I.D. by a prime ideal is again a P.I.D. 

4. Let R be an integral domain. Prove that if the following two conditions hold then R is a 
Principal Ideal Domain: 
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(i) any two nonzero elements a and b in R have a greatest common divisor which can be 
written in the form ra + sb for some r, s E R, and 
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(ii) if a1 , a2 , a3 , . . . are nonzero elements of R such that ai+I I a; for all i, then there is 
a positive integer N such that a11 is a unit times aN for all n ::: N. 

5. Let R be the quadratic integer ring Z[H ] .  Define the ideals h = (2,  1 + H ) ,  
h = (3 , 2 + -J=S ) , and /� = (3, 2 - H ) .  
(a) Prove that h. h and /� are nonprincipal ideals in  R. [Note that Example 2 following 

Proposition 1 proves this for h] 
(b) Prove that the product of two nonprincipal ideals can be principal by showing that if 

is the principal ideal generated by 2, i.e., I? = (2). 

(c) Prove similarly that hh = ( 1 -H ) and h/� = (l +H ) areprincipal. Conclude 

that the principal ideal (6) is the product of 4 ideals: (6) = I? [J l� . 

6. Let R be an integral domain and suppose that every prime ideal in R is principal. This 
exercise proves that every ideal of R is principal. i.e., R is a P.I.D. 
(a) Assume that the set of ideals of R that are not principal is nonempty and prove that 

this set has a maximal element under inclusion (which, by hypothesis, is not prime). 
[Use Zorn's Lemma.] 

(b) Let I be an ideal which is maximal with respect to being nonprincipal, and let a, b E R 
with ab E I but a f/:. I and b f/:. I. Let la = (1, a) be the ideal generated by I and a, 
let lb = (1, b) be the ideal generated by I and b, and define J = {r E R I ria s; /}. 
Prove that Ia = (a) and J = (fJ) are principal ideals in R with I s;; h s; J and 
la l = (afJ) s; I. 

(c) If x E I show that x = sa for some s E J .  Deduce that I = la l is principal, a 
contradiction, and conclude that R is a P.I.D. 

7. An integral domain R in which every ideal generated by two elements is principal (i.e. , 
for every a, b E R, (a, b) = (d) for some d E R) is called a Bezout Domain. [cf. also 
Exercise 1 1  in Section 3.]  
(a) Prove that the integral domain R is a Bezout Domain if and only if every pair of 

elements a , b of R has a g.c.d. d in  R that can be written as an R-linear combination 
of a and b, i.e., d = ax + by for some x , y E R.  

(b) Prove that every finitely generated ideal of a Bezout Domain i s  principal. [cf. the 
exercises in Sections 9.2 and 9.3 for Bezout Domains in which not every ideal is 
principal.] 

(c) Let F be the fraction field of the Bezout Domain R. Prove that every element of F can 
be written in the form ajb with a, b E  R and a and b relatively prime (cf. Exercise 1). 

8. Prove that if R is a Principal Ideal Domain and D is a multiplicatively closed subset of R, 

then v-1 R is also a P.I.D. (cf. Section 7.5). 

8.3 UNIQUE FACTORIZATION DOMAI NS (U.F.D.s ) 

In the case of the integers Z, there is another method for determining the greatest 
common divisor of two elements a and b familiar from elementary arithmetic, namely 
the notion of "factorization into primes" for a and b, from which the greatest common 
divisor can easily be determined. This can also be extended to a larger class of rings 
called Unique Factorization Domains (U.F.D.s) - these will be defined shortly. We 
shall then prove that 

every Principal Ideal Domain is a Unique Factorization Domain 
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so that every result about Unique Factorization Domains will automatically hold for 
both Euclidean Domains and Principal Ideal Domains. 

We first introduce some terminology. 

Definition. Let R be an integral domain. 
(1) Suppose r E R is nonzero and is not a unit. Then r is called irreducible in R 

if whenever r = ab with a ,  b E R, at least one of a or b must be a unit in R. 
Otherwise r is said to be reducible. 

(2) The nonzero element p E R is called prime in R if the ideal (p) generated by 
p is a prime ideal. In other words, a nonzero element p is a prime if it is not a 
unit and whenever p I ab for any a, b E R, then either p I a or p I b. 

(3) Two elements a and b of R differing by a unit are said to be associate in R (i.e., 
a = ub for some unit u in R). 

Proposition 10. In an integral domain a prime element is always irreducible. 

Proof" Suppose (p) is a nonzero prime ideal and p = ab. Then ab = p E (p), so 
by definition of prime ideal one of a or b, say a, is in (p) . Thus a = pr for some r .  
This implies p = ab = prb so rb = 1 and b is  a unit. This shows that p is  irreducible. 

It is not true in genera] that an irreducible element is necessarily prime. For 

example, consider the element 3 in the quadratic integer ring R = Z[.J=S ]. The 
computations in Section 1 show that 3 is irreducible in R, but 3 is not a prime since 

(2+H )(2-H) = 32 is divisible by 3, but neither 2+H nor 2-.J=S is divis
ible by 3 in R. 

If R is a Principal Ideal Domain however, the notions of prime and irreducible 
elements are the same. In particular these notions coincide in Z and in F[x] (where F 
is a field). 

Proposition 11. In a Principal Ideal Domain a nonzero element is a prime if and only 
if it is irreducible. 

Proof" We have shown above that prime implies irreducible. We must show con
versely that if p is irreducible, then p is a prime, i.e., the ideal (p) is a prime ideal. If 
M is any ideal containing (p) then by hypothesis M = (m) is a principal ideal. Since 
p E (m), p = rm for some r . But p is irreducible so by definition either r or m is a 
unit. This means either (p) = (m) or (m) = ( 1 ) ,  respectively. Thus the only ideals 
containing (p) are (p) or ( 1 ) ,  i.e., (p) is a maximal ideal. Since maximal ideals are 
prime ideals, the proof is complete. 

Example 

Proposition 1 1  gives another proof that the quadratic integer ring Z[ F5] is not a P.I.D. 

since 3 is irreducible but not prime in this ring. 
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The irreducible elements in the integers Z are the prime numbers (and their nega
tes) familiar from elementary arithmetic, and two integers a and b are associates of 
te another if and only if a = ±b. 

In the integers Z any integer n can be written as a product of primes (not necessarily 
stinct), as follows. If n is not itself a prime then by definition it is possible to write 
= n1n2 for two other integers n1 and n2 neither of which is a unit, i.e., neither of 
hich is ±I .  Both n 1 and n2 must be smaller in absolute value than n itself. If they are 
>th primes, we have already written n as a product of primes. If one of n 1 or n2 is not 
ime, then it in turn can be factored into two (smaller) integers. Since integers cannot 
:crease in absolute value indefinitely, we must at some point be left only with prime 
teger factors, and so we have written n as a product of primes. . 

For example, if n = 2210, the algorithm above proceeds as follows:  n is not 
;elf prime, since we can write n = 2 · 1 1 05. The integer 2 is a prime, but 1 105 is not: 
lOS = 5 · 22 1 .  The integer 5 is prime, but 221 is not: 221 = 13 · 17. Here the algorithm 
rminates, since both 13  and 17 are primes. This gives the prime factorization of 2210 
. 2210 = 2 · 5 · 1 3  · 17.  Similarly, we find 1 13 1  = 3 · 1 3 · 29. In these examples each 
ime occurs only to the first power, but of course this need not be the case generally. 

In the ring Z not only is it true that every integer n can be written as a product of 
imes, but in fact this decomposition is unique in the sense that any two prime fac
rizations of the same positive integer n differ only in the order in which the positive 
ime factors are written. The restriction to positive integers is to avoid considering 
e factorizations (3)(5) and (-3)(  -5) of 15 as essentially distinct. This unique fac
rization property of Z (which we shall prove very shortly) is extremely useful for the 
ithmetic of the integers. General rings with the analogous property are given a name. 

efinition. A Unique Factorization Domain (U .F.D.) is an integral domain R in which 
'ery nonzero element r E R which is not a unit has the following two properties: 

(i) r can be written as a finite product of irreducibles p; of R (not necessarily 
distinct): r = PI P2 · · · Pn and 

(ii) the decomposition in (i) is unique up to associates: namely, if r = q1q2 · · · qm 
is another factorization of r into irreducibles, then m = n and there is some 
renumbering of the factors so that p; is associate to q; for i = 1 ,  2, . . . , n. 

"am pies 

(1) A field F is trivially a Unique Factorization Domain since every nonzero element is a 
unit, so there are no elements for which properties (i) and (ii) must be verified. 

(2) As indicated above, we shall prove shortly that every Principal Ideal Domain is a 
Unique Factorization Domain (so, in particular, /Z and F[x] where F is a field are both 
Unique Factorization Domains). 

(3) We shall also prove in the next chapter that the ring R[x] of polynmnials is a Unique 
Factorization Domain whenever R itself is a Unique Factorization Domain (in contrast 
to the properties of being a Principal Ideal Domain or being a Euclidean Domain, which 
do not carry over from a ring R to the polynomial ring R[x ]). This result together with 
the preceding example will show that Z[x] is a Unique Factorization Domain. 

(4) The subring of the Gaussian integers R = Z[2i] = {a + 2bi I a, b E Z}, where 
i2 = - 1 ,  is an integral domain but not a Unique Factorization Domain (rings of this 
nature were introduced in Exercise 23 of Section 7. 1) .  The elements 2 and 2i are 
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irreducibles which are not associates in R since i ¢ R, and 4 = 2 · 2 = ( -2i) · (2i) 
has two distinct factorizations in R. One may also check directly that 2i is irreducible 
but not prime in R (since R/(2i) � 7lf47l). In the larger ring of Gaussian integers, 
7/,[i ] , (which is a Unique Factorization Domain) 2 and 2i are associates since i is a unit 
in this larger ring. We shall give a slightly different proof that 7l[2i] is not a Unique 
Factorization Domain at the end of Section 9.3 (one in which we do not have to check 
that 2 and 2i are irreducibles). 

(5) The quadratic integer ring 7/,[ ...,'-1 ] is another example of an integral domain that is 
not a Unique Factorization Domain, since 6 = 2 · 3 = (1 + ...,'-1) (1 - ...,'-1 ) gives 
two distinct factorizations of 6 into irreducibles. The principal ideal (6) in 7/,[ N l  
can be written as a product of 4 nonprincipal prime ideals: ( 6) = Pf P3 P� and the 
two distinct factorizations of the element 6 in 7/,f ...,'-1 ] can be interpreted as arising 
from two rearrangements of this product of ideals into products of principal ideals: 
the product of P} = (2) with P3P3 = (3), and the product of P2P3 = (1 + ...,'-1) 
with P2P3 = ( 1  - ...,'-1) (cf. Exercise 8). 

While the elements of the quadratic integer ring 0 need not have unique factor
ization, it is a theorem (Corollary 16. 16) that every ideal in 0 can be written uniquely 
as a product of prime ideals. The unique factorization of ideals into the product of 
prime ideals holds in general for rings of integers of algebraic number fields (exam
ples of which are the quadratic integer rings) and leads to the notion of a Dedekind 
Domain considered in Chapter 16. It was the failure to have unique factorization into 
irreducibles for elements in algebraic integer rings in number theory that originally 
led to the definition of an ideal. The resulting uniqueness of the decomposition into 
prime ideals in these rings gave the elements of the ideals an "ideal" (in the sense of 
"perfect" or "desirable") behavior that is the basis for the choice of terminology for 
these (now fundamental) algebraic objects. 

The first property of irreducible elements in a Unique Factorization Domain is 
that they are also primes. One might think that we could deduce Proposition 1 1  from 
this proposition together with the previously mentioned theorem (that we shall prove 
shortly) that every Principal Ideal Domain is a Unique Factorization Domain, however 
Proposition 1 1  will be used in the proof of the latter theorem. 

Proposition 12. In a Unique Factorization Domain a nonzero element is a prime if and 
only if it is irreducible. 

Proof Let R be a Unique Factorization Domain. Since by Proposition 10, primes 
of R are irreducible it remains to prove that each irreducible element is a prime. Let 
p be an irreducible in R and assume p I ab for some a,  b E R; we must show that 
p divides either a or b. To say that p divides ab is to say ab = pc for some c in R .  
Writing a and b as  a product of irreducibles, we see from this last equation and from the 
uniqueness of the decomposition into irreducibles of ab that the irreducible element p 
must be associate to one of the irreducibles occurring either in the factorization of a or 
in the factorization of b. We may assume that p is associate to one of the irreducibles 
in the factorization of a, i.e., that a can be written as a product a = (up)p2 · · · Pn for 
u a unit and some (possibly empty set of) irreducibles p2, . . .  , Pn ·  But then p divides 
a, since a =  pd with d = up2 · · · p11 , completing the proof. 
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In a Unique Factorization Domain we shall now use the terms "prime" and "irre
ducible" interchangeably although we shall usually refer to the "primes" in Z and the 
"irreducibles" in F[x].  

We shall use the preceding proposition to show that in a Unique Factorization 
Domain any two nonzero elements a and b have a greatest common divisor: 

Proposition 13. Let a and b be two nonzero elements of the Unique Factorization 
Domain R and suppose 

and 

are prime factorizations for a and b, where u and v are units, the primes p1 , pz ,  . . .  , Pn 
are distinct and the exponents e; and J; are :::: 0. Then the element 

d = Pt min (e, . /1 ) p2 min (e2 . f2l . . . Pn min (e,,fn )  

(where d = 1 if  all the exponents are 0) is  a greatest common divisor of a and b .  

Proof: Since the exponents of each of the primes occurring in d are no larger than 
the exponents occurring in the factorizations of both a and b, d divides both a and 
b. To show that d is a greatest common divisor, let c be any common divisor of a 

and b and let c = q1 g' q2g2 • • • qmgm be the prime factorization of c. Since each q; 
divides c, hence divides a and b, we see from the preceding proposition that q; must 
divide one of the primes Pj · In particular, up to associates (so up to multiplication 
by a unit) the primes occurring in c must be a subset of the primes occurring in a 

and b :  {qi , q2 , . . .  , qm } � {Pt . P2 • . . .  , Pn l · Similarly, the exponents for the primes 
occurring in c must be no larger than those occurring in d. This implies that c divides 
d, completing the proof. 

Example 

In the exantple above, where a = 2210 and b = 1 1 3 1 ,  we find immediately from their 

prime factorizations that (a , b) = 13 .  Note that if the prime factorizations for a and b are 

known, the proposition above gives their greatest common divisor instantly, but that finding 

these prime factorizations is extremely time-consuming computationally. The Euclidean 

Algorithm is the fastest method for determining the g.c.d. of two integers but unfortunately 

it gives almost no information on the prime factorizations of the integers. 

We now come to one of the principal results relating some of the rings introduced 
in this chapter. 

Theorem 14. Every Principal Ideal Domain is a Unique Factorization Domain. In 
particular, every Euclidean Domain is a Unique Factorization Domain. 

Proof" Note that the second assertion follows from the first since Euclidean Do
mains are Principal Ideal Domains. To prove the first assertion let R be a Principal 
Ideal Domain and let r be a nonzero element of R which is not a unit. We must show 
first that r can be written as a finite product of irreducible elements of R and then we 
must verify that this decomposition is unique up to units. 
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The method of proof of the first part is precisely analogous to the determination 
of the prime factor decomposition of an integer. Assume r is nonzero and is not a 
unit. If r is itself irreducible, then we are done. If not, then by definition r can be 
written as a product r = ri r2 where neither ri nor r2 is a unit. If both these elements 
are irreducibles, then again we are done, having written r as a product of irreducible 
elements. Otherwise, at least one of the two elements, say ri is reducible, hence can be 
written as a product of two nonunit elements ri = ri ir12, and so forth. What we must 
verify is that this process terminates, i.e., that we must necessarily reach a point where 
all of the elements obtained as factors of r are irreducible. Suppose this is not the case. 
From the factorization r = ri r2 we obtain aproper inclusion ofideals: (r) C (rJ ) c R. 
The first inclusion is proper since r2 is not a unit, and the last inclusion is proper since rt 
is not a unit. From the factorization of rt we similarly obtain (r) C (rt )  C (ru )  c R. 
If this process of factorization did not terminate after a finite number of steps, then we 
would obtain an infinite ascending chain of ideals: 

(r) C (rt ) C (ru) C · · · C R 

where all containments are proper, and the Axiom of Choice ensures that an infinite 
chain exists ( cf. Appendix I). 

We now show that any ascending chain I 1 � h � · · · � R of ideals in a Principal 
Ideal Domain eventually becomes stationary, i.e., there is some positive integer n such 
that h = In for all k :::; n .3 In particular, it is not possible to have an infinite ascending 
chain of ideals where all containments are proper. Let I = U�1 Ii . It follows easily (as 
in the proof of Proposition 1 1  in Section 7 .4) that I is an ideal. Since R is a Principal 
Ideal Domain it is principally generated, say I = (a) .  Since I is the union of the ideals 
above, a must be an element of one of the ideals in the chain, say a E In . But then we 
have In � I = (a) � In and so I = In and the chain becomes stationary at In . This 
proves that every nonzero element of R which is not a unit has some factorization into 
irreducibles in R.  

It remains to prove that the above decomposition is  essentially unique. We proceed 
by induction on the number, n, of irreducible factors in some factorization of the element 
r. If n = 0, then r is a unit. If we had r = qc (some other factorization) for some 
irreducible q, then q would divide a unit, hence would itself be a unit, a contradiction. 
Suppose now that n is at least 1 and that we have two products 

for r where the Pi and qj are (not necessarily distinct) irreducibles. Since then P I  

divides the product on the right, we see by Proposition 1 1  that PI must divide one of the 
factors. Renumbering if necessary, we may assume p1  divides q1 . But then QI = p1 u 

for some element u of R which must in fact be a unit since q1 is irreducible. Thus p1 
and Qt are associates. Cancelling p1 (recall we are in an integral domain, so this is 
legitimate), we obtain the equation 

m :::; n .  
3This same argument can be used to prove the more general statement: an ascending chain of ideals 

becomes stationary in any commutative ring where all the ideals are finitely generated. This result will 
be needed in Chapter 12 where the details will be repeated. 
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where q2' = uq2 is again an irreducible (associate to Q2). By induction on n, we 
conclude that each of the factors on the left matches bijectively (up to associates) with 
the factors on the far right, hence with the factors in the middle (which are the same, up 
to associates). Since Pl and Ql (after the initial renumbering) have already been shown 
to be associate, this completes the induction step and the proof of the theorem. 

Corollary 15. (Fundamental Theorem of Arithmetic) The integers 1£ are a Unique 
Factorization Domain. 

Proof" The integers 1£ are a Euclidean Domain, hence are a Unique Factorization 
Domain by the theorem. 

We can now complete the equivalence (Proposition 9) between the existence of a 
Dedekind-Hasse norm on the integral domain R and whether R is a P.I.D. 

Corollary 16. Let R be a P.I.D. Then there exists a multiplicative Dedekind-Hasse 
norm on R. 

Proof" If  R is a P.I.D. then R is  a U.F.D. Define the norm N by setting N(O) = 0, 
N(u) = 1 if u is a unit, and N (a) = 2n if a = PlP2 · · · Pn where the p; are 
irreducibles in R (well defined since the number of irreducible factors of a is unique). 
Clearly N(ab) = N (a)N(b) so N  is positive and multiplicative. To show that N is a 
Dedekind-Hasse norm, suppose that a, b are nonzero elements of R. Then the ideal 
generated by a and b is principal by assumption, say (a , b) = (r) . If a is not contained in 
the ideal (b) then also r is not contained in (b), i .e., r is not divisible by b. Since b = xr 
for some x E R, it follows that x is not a unit in R and so N(b) = N(x)N(r) > N(r).  
Hence (a , b) contains a nonzero element with norm strictly smaller than the norm of b, 
completing the proof. 

Factorization in the Gaussian Integers 

We end our discussion of Unique Factorization Domains by describing the irreducible 
elements in the Gaussian integers Z[i] and the corresponding application to a famous 
theorem of Fermat in elementary number theory. This is particularly appropriate since 
the classical study of Z[i ] initiated the algebraic study of rings. 

In general, let 0 be a quadratic integer ring and let N be the associated field norm 
introduced in Section 7 . 1 .  Suppose a E 0 is an element whose norm is a prime p in 
1£. If a = f3y for some {3. y E 0 then p = N (a) = N(f3)N(y) so that one of N(f3) 
or N(y) is ±1 and the other is ±p. Since we have seen that an element of 0 has norm 
± 1 if and only if it is a unit in 0, one of the factors of a is a unit. It follows that 

if N (a) is ± a prime (in 1£ ), then a is irreducible in 0. 

Suppose that rr is a prime element in 0 and let (rr) be the ideal generated by rr in 
0. Since (rr ) is a prime ideal in 0 it is easy to check that (rr) n 1£ is a prime ideal in 
1£ (if a and b are integers with ab E (rr ) then either a or b is an element of (rr) ,  so a 
or b is in (rr) n /£). Since N (n) is a nonzero integer in (rr ) we have (rr ) n 1£ = pi£ 
for some integer prime p. It follows from p E (rr ) that rr is a divisor in 0 of the 
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integer prime p, and so the prime elements in () can be found by determining how 
the primes in Z factor in the larger ring 0. Suppose rr divides the prime p in (), say 
p = rrrr'. Then N(rr)N(rr') = N(p) = p2, so since rr is not a unit there are only two 
possibilities: either N(rr) = ±p2 or N(rr) = ±p. In the former case N(rr') = ±1 ,  
hence rr' i s  a unit and p = rr (up to associates) i s  irreducible i n  Z[i] .  I n  the latter case 
N(rr) = N(rr') = ±p, hence rr' is also irreducible and p = rrrr' is the product of 
precisely two irreducibles. 

Consider now the special case D = - 1  of the Gaussian integers Z[i ] .  We have seen 
that the units in Z[i ] are the elements ±1  and ±i . We proved in Section 1 that Z[i] is a 
Euclidean Domain, hence is also a Principal Ideal Domain and a Unique Factorization 
Domain, so the irreducible elements are the same as the prime elements, and can be 
determined by seeing how the primes in Z factor in the larger ring Z[i ] .  

In  this case a =  a+bi has N(a) = aa = a2+b2, where a =  a -bi i s  the complex 
conjugate of a.  It follows by what we just saw that p factors in Z[i ] into precisely two 
irreducibles if and only if p = a2 + b2 is the sum of two integer squares (otherwise 
p remains irreducible in Z[i]). If p = a2 + b2 then the corresponding irreducible 
elements in Z[i] are a ± bi . 

Clearly 2 = 1 2 + 1 2 is the sum of two squares, giving the factorization 2 = 

( 1  + i ) ( l - i) = -i ( 1 + i)2 • The irreducibles 1 + i and 1 - i = -i (1 + i )  are associates 
and it is easy to check that this is the only situation in which conjugate irreducibles 
a + bi and a - bi can be associates. 

Since the square of any integer is congruent to either 0 or 1 modulo 4, an odd prime 
in Z that is the sum of two squares must be congruent to 1 modulo 4. Thus if p is 
a prime of Z with p = 3 mod 4 then p is not the sum of two squares and p remains 
irreducible in Z[i] .  

Suppose now that p i s  a prime of Z with p = 1 mod 4 .  We shall prove that p cannot 
be irreducible in Z[i] which will show that p = (a + bi ) (a - bi) factors as the product 
of two distinct irreducibles in Z[i ]  or, equivalently, that p = a2 + b2 is the sum of two 
squares. We first prove the following result from elementary number theory: 

Lemma 17. The prime number p E Z divides an integer of the form n2 + 1 if and only 
if p is either 2 or is an odd prime congruent to I modulo 4. 

Proof: The statement for p = 2 is trivial since 2 I 1 2 + 1 .  If p is an odd prime, 
note that p I n2 + 1 is equivalent to n2 = - I in Zj p/Z. This in tum is equivalent to 
saying the residue class of n is of order 4 in the multiplicative group (Z/ p/Z) x .  Thus 
p divides an integer of the form n2 + 1 if and only if (Z/ p/Z)x contains an element 
of order 4. By Lagrange's Theorem, if (Z/ ptz)x contains an element of order 4 then 
i (ZjpZY I = p - 1 is divisible by 4, i.e., p is congruent to 1 modulo 4. 

Conversely, suppose p - I is divisible by 4. We first argue that (Z/ p/Z) x contains 
a unique element of order 2. Ifm2 = 1 mod p then p divides m2 - I  = (m - 1 ) (m + 1 ) .  
Thus p divides either m - 1 (i.e., m = 1 mod p) or m + 1 (i.e., m = -1  mod p ), so  - 1  
is the unique residue class of order 2 in (Zjptz) x .  Now the abelian group (ZjpZY 
contains a subgroup H of order 4 (for example, the quotient by the subgroup {±1 }  
contains a subgroup of order 2 whose preimage i s  a subgroup of order 4 in  (Zjp/Z)x ). 

290 Chap. 8 Eucl idean,  Pri nci pal Idea l ,  and Unique Factorization Domains 



Since the Klein 4-group has three elements of order 2 whereas (Z/ pZ) x - hence also 
H - has a unique element of order 2, H must be the cyclic group of order 4. Thus 
(Z/ pZ) x contains an element of order 4, namely a generator for H. 

Remark: We shall prove later (Corollary 19 in Section 9.5) that (ZjpZ) x is  a cyclic 
group, from which it is immediate that there is an element of order 4 if and only if p - 1 
is divisible by 4. 

By Lemma 17, if p = 1 mod 4 is a prime then p divides n2 + 1 in Z for some 
n e Z, so certainly p divides n2 + 1 = (n + i) (n - i) in Z[i] .  If p were irreducible 
in Z[i]  then p would divide either n + i or n - i in Z[i] .  In this situation, since p is a 
real number, it would follow that p divides both n + i and its complex conjugate n - i ;  
hence p would divide their difference, 2i .  This i s  clearly not the case. We have proved 
the following result: 

Proposition 18. 
(1) (Fermat 's Theorem on sums of squares) The prime p is the sum of two integer 

squares, p = a2 + h2, a ,  h e  Z, if and only if p = 2 or p = 1 mod 4. Except 
for interchanging a and h or changing the signs of a and h, the representation 
of p as a sum of two squares is unique. 

(2) The irreducible elements in the Gaussian integers Z[i] are as follows: 
(a) 1 + i (which has norm 2), 
(b) the primes p e Z with p = 3 mod 4 (which have norm p2), and 
(c) a + hi ,  a - hi ,  the distinct irreducible factors of p = a2 + h2 = 

(a + hi) (a - hi) for the primes p e Z with p = 1 mod 4 (both of which 
have norm p ).  

The first part of Proposition 18  is a famous theorem of Fermat in elementary number 
theory, for which a number of alternate proofs can be given. 

More generally, the question of whether the integer n e Z can be written as a sum 
of two integer squares, n = A 2 + B2, is equivalent to the question of whether n is the 
norm of an element A + Bi in the Gaussian integers, i.e., n = A2 + B2 

= N(A + Bi) .  

Writing A + Bi = :rr1:rr2 · · · :rrk as  a product of irreducibles (uniquely up to units) it 
follows from the explicit description of the irreducibles in Z[i] in Proposition 1 8  that n 
is a norm if and only if the prime divisors of n that are congruent to 3 mod 4 occur to 
even exponents. Further, if this condition on n is satisfied, then the uniqueness of the 
factorization of A + Bi in Z[i ] allows us to count the number of representations of n 
as a sum of two squares, as in the following corollary. 

Corollary 19. Let n be a positive integer and write 

2k a1 a, ht b, n = Pt · · · Pr qt · · · qs 
where p1 , • • • , Pr are distinct primes congruent to 1 modulo 4 and q1 , . . .  , qs are distinct 
primes congruent to 3 modulo 4. Then n can be written as a sum of two squares in Z, 
i.e., n = A2 + B2 with A,  B e Z, if and only if each h; is even. Further, if this condition 
on n is satisfied. then the number of representations of n as a sum of two squares is 
4(at + 1 ) (a2 + 1) · · · (ar + 1) .  
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Proof: The first statement in the corollary was proved above. Assume now that 
b1 , . . . , b.,. are all even. For each prime p; congruent to 1 modulo 4 write p; = rr;rr; 
for i = 1 ,  2, . . . , r, where rr; and rr; are irreducibles as in (2)(c) of Proposition 1 8 . If 

N (A + Bi) = n then examining norms we see that, up to units, the factorization of 
A + Bi into irreducibles in Z[i] is given by 

A +  Bi = ( 1 + il (rr�I . I1Tl"I,2 )  . . . (7r�'· Irr;"'·2 )q�I /2 . . . q;, 12 

with nonnegative integers a;, ! , a;,2 satisfying a;, I + a;,2 = a; for i = 1 ,  2, . . .  , r .  Since 
a;, I can have the values 0, 1 ,  . . .  , a; (and then a;,2 is determined), there are a total of 
(a! + l ) (a2 + 1 )  · · · (ar + 1) distinct elements A + Bi in Z[i]  of norm n, up to units. 
Finally, since there are four units in Z[i] ,  the second statement in the corollary follows. 

Example 

Since 493 = 17 . 29 and both primes are congruent to 1 modulo 4, 493 = A2 + B2 is 
the sum of two integer squares. Since 17 = (4 + i ) (4 - i) and 29 = (5 + 2i) (5 - 2i ) 
the possible factorizations of A +  Bi in Z[i] up to units are (4 + i ) (5 + 2i) = 1 8  + 1 3i ,  
(4 + i ) (5 - 2i) = 22 - 3i , (4 - i) (5 - 2i) = 22 + 3i , and (4 - i) (5 - 2i) = 1 8 - 1 3i .  
Multiplying by -1 reverses both signs and multiplication by i interchanges the A and B 
and introduces one sign change. Then 493 = (±1 8)2 + (±13)2 = (±22)2 + (±3)2 with 
all possible choices of signs give 8 of the 16 possible representations of 493 as the sum of 
two squares; the remaining 8 are obtained by interchanging the two summands. 

Similarly, the integer 58000957 = 76 · 17  · 29 can be written as a sum of two squares 
in precisely 16 ways, obtained by multiplying each of the integers A, B in 493 = A 2 + B2 
above by 73 . 

Summary 

In summary, we have the following inclusions among classes of commutative rings with 
identity: 

fields C Euclidean Domains C P.l.D.s C U.F.D.s C integral domains 
with all containments being proper. Recall that Z is a Euclidean Domain that is not a 
field, the quadratic integer ring Z[(l + -J=T9 )/2] is a Principal Ideal Domain that is 
not a Euclidean Domain, Z[x] is a Unique Factorization Domain (Theorem 7 in Chapter 
9) that is not a Principal Ideal Domain and Z[ H ]  is an integral domain that is not a 
Unique Factorization Domain. 

E X E R C I S E S 

1. Let G = Qx be the multiplicative group of nonzero rational numbers. If a = p 1 q E G, 
where p and q are relatively prime integers, let q; : G � G be the map which inter
changes the primes 2 and 3 in the prime power factorizations of p and q (so, for example, 
q;(243 1 1 5 1 1 32) = 3421 15 1 1 32, q; (3116) = q;(31 24) = 2 1 34 = 2181 ,  and q; is the identity 
on all rational numbers with numerators and denominators relatively prime to 2 and to 3). 
(a) Prove that q; is a group isomorphism. 
(b) Prove that there are infinitely many isomorphisms of the group G to itself. 
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(c) Prove that none of the isomorphisms above can be extended to an isomorphism of the 
ring <Ql to itself. In fact prove that the identity map is the only ring isomorphism of <Ql. 

2. Let a and b be nonzero elements of the Unique Factorization Domain R. Prove that a and 
b have a least common multiple (cf. Exercise 1 1  of Section 1) and describe it in terms of 
the prime factorizations of a and b in the same fashion that Proposition 13 describes their 
greatest common divisor. 

3. Determine all the representations of the integer 2 1 30797 = 1 72 · 73 · 101 as a sum of two 
squares. 

4. Prove that if an integer is the sum of two rational squares, then it is the sum of two integer 
squares (for example, 13  = ( 1 /5)2 + (18/5)2 = 22 + 32). 

5. Let R = Z[ Fn] where n is a squarefree integer greater than 3. 
(a) Prove that 2, Fn and 1 + Fn are irreducibles in R. 
(b) Prove that R is not a U  .F.D. Conclude that the quadratic integer ring 0 is not a U  .F.D. 

for D = 2, 3 mod 4, D < -3 (so also not Euclidean and not a P.I.D.) .  [Show that 
either Fn or 1 + Fn is not prime.] 

(c) Give an explicit ideal in R that is not principal. [Using (b) consider a maximal ideal 
containing the nonprime ideal (Fn) or (1 + Fn).] 

6. (a) Prove that the quotient ring Z[i]/( 1  + i) is a field of order 2. 
(b) Let q E Z be a prime with q = 3 mod 4. Prove that the quotient ring Z[i ]/(q) i s  a 

field with q2 elements. 
(c) Let p E Z be a prime with p = 1 mod 4 and write p = nrr as in Proposition 1 8. Show 

that the hypotheses for the Chinese Remainder Theorem (Theorem 17 in Section 7 .6) 
are satisfied and that Z[i]/(p) � Z[i]/(n) x Z[i ]/(rr ) as rings. Show that the quotient 
ring Z[i]/(p) has order p2 and conclude that Z[i ]/(n) and Z[i ]/(rr) are both fields 
of order p. 

7. Let n be an irreducible element in Z[i ] .  
(a) For any integer n 2:: 0,  prove that (nn+ l ) = nn+ lz[i ] is an  ideal in (nn ) = nnZ[i ] 

and that multiplication by nn induces an isomorphism Z[i]/(n) � (nn )j(nn+ l ) as 
additive abelian groups. 

(b) Prove that IZ[i ]/(nn ) l = IZ[i]/(nW .  
(c) Prove for any nonzero ex in Z[i] that the quotient ring Z[i] /(cx) has order equal to 

N(cx). [Use (b) together with the Chinese Remainder Theorem and the results of the 
previous exercise.] 

8. Let R be the quadratic integer ring Z[H] and define the ideals h = (2 , 1 + H). 
/3 = (3 , 2 + H), and /� = (3 , 2 - H). 
(a) Prove that 2, 3, 1 + H and 1 - H are irreducibles in R, no two of which 

are associate in R, and that 6 = 2 · 3 = ( 1  + H) ·  ( 1  - H) are two distinct 
factorizations of 6 into irreducibles in R. 

(b) Prove that h h and /� are prime ideals in R. [One approach: for h observe 
that Rfl] � (R/(3))/(IJ/(3)) by the Third Isomorphism Theorem for Rings. Show 
that R/(3) has 9 elements, (IJ/(3)) has 3 elements, and that Rf [J � Z/3Z as an 
additive abelian group. Conclude that [J is a maximal (hence prime) ideal and that 
Rfl] � Zj3Z as rings.] 

(c) Show that the factorizations in (a) imply the equality of ideals (6) = (2) (3) and 
(6) = ( 1  + H)(l  - H). Show that these two ideal factorizations give the 
same factorization of the ideal (6) as the product of prime ideals (cf. Exercise 5 in 
Section 2). 
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9. Suppose that the quadratic integer ring 0 is a P.I.D. Prove that the absolute value of 
the field norm N on 0 (cf. Section 7 . 1 )  is a Dedekind-Hasse norm on 0. Conclude 
that if the quadratic integer ring 0 possesses any Dedekind-Hasse norm, then in fact the 
absolute value of the field norm on 0 already provides a Dedekind-Hasse norm on 0. 
[If a, fJ E 0 then (a, fJ) = (y) for some y E 0. Show that if fJ does not divide a then 
0 < IN(y ) l < IN(fJ) I - use the fact that the units in 0 are precisely the elements whose 
norm is ± 1 .] 

Remark: If 0 is a Euclidean Domain with respect to some norm it is not necessarily true that 
it is a Euclidean Domain with respect to the absolute value of the field norm (although this is 
true for D < 0, cf. Exercise 8 in Section I ). An example is D = 69 ( cf. D. Clark, A quadratic 
field which is Euclidean but not norm-Euclidean, Manuscripta Math., 83(1994), pp. 327-330). 

10. (k-stage Euclidean Domains) Let R be an integral domain and let N : R � z+ U {0} be 
a nonh on R. The ring R is Euclidean with respect to N if for any a, b E R with b i= 0, 
there exist elements q and r in R with 

a =  qb + r with r = O or N(r) < N(b). 

Suppose now that this condition is weakened, namely that for any a,  b E R with b i= 0, 
there exist elements q ,  q' and r, r' in R with 

a =  qb + r, b = q'r + r' with r' = 0 or N(r') < N(b), 

i.e . •  the remainder after two divisions is smaller. Call such a domain a 2-stage Euclidean 
Domain. 
(a) Prove that iterating the divisions in a 2-stage Euclidean Domain produces a greatest 

common divisor of a and b which is a linear combination of a and b. Conclude that 
every finitely generated ideal of a 2-stage Euclidean Domain is principal. (There 
are 2-stage Euclidean Domains that are not P.I.D.s, however.) [Imitate the proof of 
Theorem 4.] 

(b) Prove that a 2-stage Euclidean Domain in which every nonzero non unit can be factored 
into a finite number of irreducibles is a Unique Factorization Domain. [Prove first 
that irreducible elements are prime, as follows. If p is irreducible and p I ab with 
p not dividing a, use part (a) to write px + ay = 1 for some x, y. Multiply through 
by b to conclude that p I b, so p is prime. Now follow the proof of uniqueness in 
Theorem 14.] 

(c) Make the obvious generalization to define the notion of a k-stage Euclidean Domain 
for any integer k ::: 1 .  Prove that statements (a) and (b) remain valid if "2-stage 
Euclidean" is replaced by "k-stage Euclidean." 

Remarks: There are examples of rings which are 2-stage Euclidean but are not Euclidean. 
There are also examples of rings which are not Euclidean with respect to a given norm but 

which are k-stage Euclidean with respect to the norm (for example, the ring Z[.JI4 ] is not 

Euclidean with respect to the usual norm N (a + b.JI4 ) = la2 - 14b2 1 ,  but is 2-stage Euclidean 
with respect to this norm). The k-stage Euclidean condition is also related to the question of 
whether the group GLn (R) of invertible n x n matrices with entries from R is generated by 
elementary matrices (matrices with 1 's along the main diagonal, a single 1 somewhere off the 
main diagonal, and O's elsewhere). 

11. (Characterization of P.l.D.s) Prove that R is a P.I.D. if and only if R is a U.F.D. that is 
also a Bezout Domain (cf. Exercise 7 in Section 2). [One direction is given by Theorem 
14. For the converse, let a be a nonzero element of the ideal I with a minimal number of 
irreducible factors. Prove that I =  (a) by showing that if there is an element b E  I that is 
not in (a) then (a , b) = (d) leads to a contradiction.] 
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CHAPTER 9 

Po lyn o m ia l  Rings 

We begin this chapter on polynomial rings with a summary of, facts from the preceding 
two chapters (with references where needed). The basic definitions were given in 
slightly greater detail in Section 7 .2. For convenience, the ring R will always be a 
commutative ring with identity 1 =f. 0. 

9.1 DEFINITIONS AND BASIC PROPERTIES 

The polynomial ring R[x] in the indeterminate x with coefficients from R is the set 
of all formal sums anxn + an_1xn-J + · · · + a1x + ao with n :::: 0 and each a; E R. 
If an =f. 0 then the polynomial is of degree n,  anxn is the leading term, and an is the 
leading coefficient (where the leading coefficient of the zero polynomial is defined to be 

0). The polynomial is monic if � = I .  Addition of polynomials is "componentwise": 

n n n 

L a;x; + L b;x; = L (a; + b; )x; 

i=O 

(here an or bn may be zero in order for addition of polynomials of different degrees 
to be defined). Multiplication is performed by first defining (axi ) (bxj) = abxi+j and 
then extending to all polynomials by the distributive laws so that in general 

In this way R[x] is a commutative ring with identity (the identity I from R) in which 
we identify R with the subring of constant polynomials. 

We have already noted that if R is an integral domain then the leading term of a 
product of polynomials is the product of the leading terms of the factors. The following 
is Proposition 4 of Section 7.2 which we record here for completeness. 

Proposition 1. Let R be an integral domain. Then 
(1) degree p(x)q (x) = degree p(x) + degree q(x) if p(x), q (x) are nonzero 
(2) the units of R[x] are just the units of R 
(3) R[x] is an integral domain. 

Recall also that if R is an integral domain, the quotient field of R[x] consists of all 

295 



quotients 
p(x) 

where q (x) is not the zero polynomial (and is called the field of rational 
q (x) 

functions in x with coefficients in R). 
The next result describes a relation between the ideals of R and those of R[x].  

Proposition 2. Let I be an ideal of the ring R and let (I)  = I [x] denote the ideal of 
R [x] generated by I (the set of polynomials with coefficients in /). Then 

R[x]j(l) ;::: (R/ I ) [x] .  

In particular, if  I is a prime ideal of R then (/) is a prime ideal of R[x]. 

Proof" There is a natural map q; :  R[x] -+ (R/ I ) [x] given by reducing each of the 
coefficients of a polynomial modulo I .  The definition of addition and multiplication 
in these two rings shows that q; is a ring homomorphism. The kernel is precisely the 
set of polynomials each of whose coefficients is an element of I ,  which is to say that 
ker q; = I [ x] = (I) ,  proving the first part of the proposition. The last statement follows 
from Proposition 1 ,  since if I is a prime ideal in R, then Rf I is an integral domain, 
hence also (R/ I) [x] is an integral domain. This shows if I is a prime ideal of R, then 
(/) is a prime ideal of R[x] .  

Note that it  is not true that if I is a maximal ideal of R then (/) is a maximal ideal 
of R[x] .  However, if I is maximal in R then the ideal of R[x] generated by I and x is 
maximal in R[x]. 

We now give an example of the "reduction homomorphism" of Proposition 2 which 
will be useful on a number of occasions later ("reduction homomorphisms" were also 
discussed at the end of Section 7.3 with reference to reducing the integers mod n) . 

Example 

Let R = Z and consider the ideal nZ of Z. Then the isomorphism above can be written 

Z[x]jnZ[x] � ZjnZ[x] 
and the natural projection map of Z[x] to Z/ nZ[x] by reducing the coefficients modulo n is 
a ring homomorphism. If n is composite, then the quotient ring is not an integral domain. 
If, however, n is a prime p, then Z/ pZ is a field and so Zf pZ[x] is an integral domain (in 
fact, a Euclidean Domain, as we shall see shortly). We also see that the set of polynomials 
whose coefficients are divisible by p is a prime ideal in Z[x ] .  

We close this section with a description of the natural extension to polynomial rings 
in several variables. 

Definition. The polynomial ring in the variables Xt ,  Xz ,  . • • , Xn with coefficients in R, 
denoted R[x1 • xz , . . . , x11 ] ,  is defined inductively by 

R[xl ,  Xz ,  . . . , X11] = R[xl ,  Xz , . . . , Xn-d[xn ] 

This definition means that we can consider polynomials in n variables with coeffi
cients in R simply as polynomials in one variable (say X11 ) but now with coefficients that 
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are themselves polynomials in n - 1 variables. In a slightly more concrete formulation, 
a nonzero polynomial in XI ,  x2 , . . .  , Xn with coefficients in R is a finite sum of nonzero 
monomial terms, i.e., a finite sum of elements of the form 

where a E R (the coefficient of the term) and the d; are nonnegative integers. A monic 
term xf1 x�2 • • •  x�" is called simply a monomial and is the monomial part of the term 
axf1 x�2 • • •  x�" . The exponent d; is called the degree in X; of the term and the sum 

d = di + d2 + · · · + dn 

is called the degree of the term. The ordered n-tuple (di , d2 , . . .  , dn ) is the multidegree 
of the term. The degree of a nonzero polynomial is the largest degree of any of its 
monomial terms. A polynomial is called homogeneous or a form if all its terms have the 
same degree. If f is a nonzero polynomial in n variables, the sum of all the monomial 
terms in f of degree k is called the homogeneous component off of degree k .  If f has 
degree d then f may be written uniquely as the sum fo + !I + · · · + /d where fk is 
the homogeneous component of f of degree k, for 0 ::::: k ::::: d (where some fk may be 
zero). 

Finally, to define a polynomial ring in an arbitrary number of variables with coef
ficients in R we take f].nite sums of monomial terms of the type above (but where the 
variables are not restricted to just XI ,  • • .  , Xn ), with the natural addition and multiplica
tion. Alternatively, we could define this ring as the union of all the polynomial rings in 
a .finite number of the variables being considered. 

Example 

The polynomial ring Z[x ,  y] in two variables x and y with integer coefficients consists of 
all finite sums of monomial terms of the form ax; yi (of degree i + j). For example, 

p(x, y) = 2x3 + xy - l  
and 

q(x ,  y) = -3xy + 2y2 + x2i 

are both elements of Z[x, y] , of degrees 3 and 5, respectively. We have 

p(x , y) + q(x , y) = 2x3 - 2xy + y2 + x2i 
and 

p(x , y)q (x , y) = -6x4y + 4x3y2 + 2x5i - 3x2l + 5xy3 + x3y4 - 2y4 - x2y5 , 
a polynomial of degree 8. To view this last polynomial, say, as a polynomial in y with 
coefficients in Z[x] as in the definition of several variable polynomial rings above, we 
would write the polynomial in the form 

(-6x4)y + (4x3 - 3x2)i + (2x5 + 5x)y3 + (x3 - 2)y4 - (x2)y5 • 

The nonzero homogeneous components of f = f(x , y) = p(x ,  y)q(x ,  y) are the poly

nomials !4 = -3x2y2 + 5xy3 - 2y4 (degree 4), fs = -6x4y + 4x3y2 (degree 5), 
h = x3 i - x2 y5 (degree 7), and fs = 2x5 y3 (degree 8). 
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Each of the statements in Proposition l is true for polynomial rings with an arbitrary 
number of variables. This follows by induction for finitely many variables and from 
the definition in terms of unions in the case of polynomial rings in arbitrarily many 
variables. 

E X E R C I S E S  

1. Let p(x , y ,  z) = 2x2y - 3xy3z + 4y2z5 and q (x ,  y ,  z) = 7x2 + 5x2y3z4 - 3x2z3 be 
polynomials in Z[x, y,  z].  
(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z] .  
(b) Find the degree of each of p and q.  
(c) Find the degree of p and q in each of the three variables x, y and z.  
(d) Compute pq and find the degree of pq in each of the three variables x,  y and z. 
(e) Write pq as a polynomial in the variable z with coefficients in Z[x,  y ] .  

2.  Repeat the preceding exercise under the assumption that the coefficients of  p and q are in 
Z/3Z. 

3. If R is a commutative ring and Xi , xz , . . . , Xn are independent variables over R, prove 
that R[xrr( J ) , Xrr(2) • . . .  , Xrr(n) J is isomorphic to R[xJ , xz , . . .  , Xn ] for any permutation rr 
of { 1 ,  2, . . .  , n} .  

4.  Prove that the ideals (x) and (x , y)  are prime ideals in <Q[x, y] but only the latter ideal is 
a maximal ideal. 

5. Prove that (x , y) and (2, x , y) are prime ideals in Z[x , y] but only the latter ideal is a 
maximal ideal. 

6. Prove that (x , y) is not a principal ideal in <Ql x ,  y].  

7. Let R be a commutative ring with 1 .  Prove that a polynomial ring in more than one variable 
over R is not a Principal Ideal Domain. 

8. Let F be a field and let R = F[x,  x2y, x3y2 , . . .  , x" yn-i , . . .  ] be a subring of the poly
nomial ring F [x,  y] .  
(a) Prove that the fields of fractions of R and F[x ,  y] are the same. 
(b) Prove that R contains an ideal that is not finitely generated. 

9. Prove that a polynomial ring in infinitely many variables with coefficients in any commu
tative ring contains ideals that are not finitely generated. 

10. Prove that the ring Z[xJ , xz , x3 , . . .  ]/(XJ X2 , x3x4 , xsx6 , . . . ) contains infinitely many min
imal prime ideals (cf. Exercise 36 of Section 7.4). 

11. Show that the radical of the ideal I = (x , y2) in <Q[x, y] is (x ,  y) (cf. Exercise 30, Section 
7 .4). Deduce that I is a primary ideal that is not a power of a prime ideal (cf. Exercise 4 1 ,  
Section 7.4).  

12. Let R = <Q[x , y ,  z] and let bars denote passage to <Q[x, y ,  z]/(xy - z2) .  Prove that 
P = (:X, Z) is a prime ideal. Show that xy E P

2 
but that no power of y lies in P

2
. (This 

shows P is a prime ideal whose square is not a primary ideal - cf. Exercise 4 1 ,  Section 
7.4). 

13. Prove that the rings F[x,  y]j(y2 - x) and F[x,  y]j(y2 - x2) are not isomorphic for any 
field F. 

14. Le
_
t R b� an integral domain and let i ,  j be relatively prime integers. Prove that thcp ideal 

(x' - yl ) is a prime ideal in R[x , y] .  [Consider the ring homomorphism ({I from R [x , y )  
to R[t] defined by mapping x to tj and mapping y to ti . Show that an element of R[x,  y j 
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differs from an element in (x; - yj ) by a polynomial f (x) of degree at most j - 1 in y 
and observe that the exponents of cp(xr y' ) are distinct for 0 .::::: s < j .] 

15. Let p(xt , xz , . . .  , Xn ) be a homogeneous polynomial of degree k in R[xt • . . .  , Xn l - Prove 

that for all A. E R we have p(A.x t , A.xz ,  . . .  , Axn ) = A.k p(xt , xz , . . . , xn ) . 

16. Prove that the product of two homogeneous polynomials is again homogeneous. 

17. An ideal I in R[xt , . . .  , xn ] is called a homogeneous ideal if whenever p E I then each 
homogeneous component of p is also in I . Prove that an ideal is a homogeneous ideal if 
and only if it may be generated by homogeneous polynomials. [Use induction on degrees 
to show the "if" implication.] 

The following exercise shows that some care must be taken when working with polynomials 
over noncommutative rings R (the ring operations in R[x]  are defined in the same way as for 
commutative rings R), in parti{;ular when considering polynomials as functions. 

18. Let R be an arbitrary ring and let Func(R) be the ring of all functions from R to itself. 
If p(x) E R[xj is a polynomial, let jj, E Func(R) be the function on R defined by 
jj1 (r) = p(r) (the usual way of viewing a polynomial in R[x] as defining a function on R 
by "evaluating at r") .  
(a) For fixed a E R, prove that "evaluation at a" is a ring homomorphism from Func(R) 

to R (cf. Example 4 following Theorem 7 in Section 7.3). 
(b) Prove that the map cp : R[x] � Func(R) defined by cp(p(x)) = jj, is not a ring homo

morphism in general. Deduce that polynomial identities need not give corresponding 
identities when the polynomials are viewed as functions. [If R = Ill[ is the ring of real 
Hamilton Quatemions show that p(x) = x2 + 1 factors as (x + i ) (x - i) ,  but that 
p(j) = 0 while (j + i ) (j - i) =f. 0.] 

(c) For fixed a E R, prove that the composite "evaluation at a" of the maps in (a) and (b) 
mapping R [ x] to R is a ring homomorphism if and only if a is in the center of R.  

9.2 POLYNOM IAL RI NGS OVER FIELDS I 

We now consider more carefully the situation where the coefficient ring is a field F.  
We can define a norm on F[x] by defining N(p(x)) = degree of p(x) (where we set 
N (0) = 0). From elementary algebra we know that we can divide one polynomial with, 
say, rational coefficients by another (nonzero) polynomial with rational coefficients to 
obtain a quotient and remainder. The same is true over any field. 

Theorem 3. Let F be a field. The polynomial ring F[x] is a Euclidean Domain. 
Specifically, if a(x) and b(x) are two polynomials in F[x] with b(x) nonzero, then 
there are unique q (x) and r (x) in F[x] such that 

a(x) = q (x)b(x) + r (x) with r (x) = 0 or degree r (x) < degree b(x) . 

Proof" If a(x) is the zero polynomial then take q (x) = r (x) = 0. We may 
therefore assume a (x) =f=. 0 and prove the existence of q (x) and r (x) by induction on 
n = degree a(x) .  Let b(x) have degree m .  If n < m take q (x) = 0 and r (x) = a(x) . 
Otherwise n � m .  Write 

a(x) = OnX
n 

+ On-] X
n-l + · · · + a1X + Oo 
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and 
b(x) = bmxm + bm-!Xm-! + · · · + b,x + bo . 

Then the polynomial a'(x) = a(x) - an xn-mb(x) is of degree less than n (we have bm 
arranged to subtract the leading term from a(x)). Note that this polynomial is well 
defined because the coefficients are taken from afield and bm =/= 0. By induction then, 
there exist polynomials q' (x) and r(x) with 

a'(x) = q'(x)b(x) + r (x) with r(x) = 0 or degree r(x) < degree b(x) .  
. ' an Then, lettmg q (x) = q (x) + -xn-m we have 

bm 
a(x) = q (x)b(x) + r (x) with r(x) = 0 or degree r(x) < degree b(x) 

completing the induction step. 
As for the uniqueness, suppose q1 (x) and r1 (x) also satisfied the conditions of the 

theorem. Then both a(x) - q (x)b(x) and a(x) - q1 (x)b(x) are of degree less than 
m = degree b(x). The difference of these two polynomials, i.e., b(x)(q (x) - q1 (x)) is 
also of degree less than m .  But the degree of the product of two nonzero polynomials 
is the sum of their degrees (since F is an integral domain), hence q (x) - q, (x) must be 
0, that is, q (x) = q, (x) .  This implies r(x) = r1 (x), completing the proof. 

Corollary 4. If F is a field, then F[x] is a Principal Ideal Domain and a Unique 
Factorization Domain. 

Proof" This is immediate from the results of the last chapter. 

Recall also from Corollary 8 in Section 8.2 that if R is any commutative ring such 
that R[x] is a Principal Ideal Domain (or Euclidean Domain) then R must be a field. 
We shall see in the next section, however, that R[x] is a Unique Factorization Domain 
whenever R itself is a Unique Factorization Domain. 

Examples 

(1) By the above remarks the ring Z[x] is not a Principal Ideal Domain. As we have 
already seen (Example 3 beginning of Section 7 .4) the ideal (2, x) is not principal in 
this ring. 

(2) Q[x] is a Principal Ideal Domain since the coefficients lie in the field Q. The ideal 
generated in Z[x] by 2 and x is not principal in the subring Z[x] ofQ[x] .  However, the 
ideal generated in Q[x] is principal; in fact it is the entire ring (so has 1 as a generator) 
since 2 is a unit in Q[x] .  

(3) If p is a prime, the ring Z/ pZ[x]  obtained by reducing Z[x]  modulo the prime ideal 
(p) is a Principal Ideal Domain, since the coefficients lie in the field Z/ pZ. This 
example shows that the quotient of a ring which is not a Principal Ideal Domain may 
be a Principal Ideal Domain. To follow the ideal (2, x) above in this example, note 
that if p = 2, then the ideal (2, x) reduces to the ideal (x) in the quotient Zj2Z[x], 
which is a proper (maximal) ideal. If p :f. 2, then 2 is a unit in the quotient, so the 
ideal (2, x) reduces to the entire ring ZjpZ[x] .  

(4) Q[x, y ] ,  the ring of polynomials in two variables with rational coefficients, is not a 
Principal Ideal Domain since this ring is Q[x ] [y] and Q[x] is not a field (any element 
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of positive degree is not invertible). It is an exercise to see that the ideal (x , y) is not a 
principal ideal in this ring. We shall see shortly that Q[x , y] is a Unique Factorization 
Domain. 

We note that the quotient and remainder in the Division Algorithm applied to 
a (x),  b(x) E F[x] are independent of field extensions in the following sense. Suppose 
the field F is contained in the field E and a(x) = Q (x)b(x) + R(x) for some Q (x), 
R (x) satisfying the conditions ofTheorem 3 in E[x] .  Write a(x) = q (x)b(x) +r(x) for 
some q (x) , r (x) E F[x] and apply the uniqueness condition of Theorem 3 in the ring 
E[x] to deduce that Q (x) = q (x) and R(x) = r (x) .  In particular, b(x) divides a(x) 
in the ring E[x] if and only if b(x) divides a(x) in F[x] . Also, the greatest common 
divisor of a(x) and b(x) (which can be obtained from the Euclidean Algorithm) is the 
same, once we make it unique by specifying it to be monic, whether these elements are 
viewed in F[x] or in E[x] . 

E X E R C I S E S  

Let F be a field and let x be an indeterminate over F. 

1. Let f(x) E F[x] be a polynomial of degree n � 1 and let bars denote passage to the 
quotient F[x]/(f(x)). Prove that for each g(x) there is a unique polynomial go(x) of 
degree ::::: n - 1 such that g(x) = go (x) (equivalently, the elements I, x, . . . , xn-l are a 
basis of the vector space F[x]/(f(x)) over F - in particular, the dimension of this space 
is n ). [Use the Division Algorithm.] 

2. Let F be a finite field of order q and let f(x) be a polynomial in F[x] of degree n � 1 .  
Prove that F[x]j(f(x)) has qn elements. [Use the preceding exercise.] 

3. Let f(x) be a polynomial in F[x]. Prove that F[x]j(f(x)) is a field if and only if f(x) is 
irreducible. [Use Proposition 7, Section 8.2.] 

4. Let F be a finite field. Prove that F[x] contains infinitely many primes. (Note that over 
an infinite field the polynomials of degree 1 are an infinite set of primes in the ring of 
polynomials). 

5. Exhibit all the ideals in the ring F[x]j(p (x)), where F is a field and p(x) is a polynomial 
in F[x] (describe them in terms of the factorization of p(x)). 

6. Describe (briefly) the ring structure of the following rings: 
(a) Z[x]/(2), (b) Z[x]j(x), (c) Z[x]j(x2), (d) Z[x, y]j(x2 , y2 , 2). 
Show that a2 = 0 or I for every a in the last ring and determine those elements with 
a2 = 0. Determine the characteristics of each of these rings ( cf. Exercise 26, Section 7 .3). 

7. Determine all the ideals of the ring Z[x]/ (2, x3 + 1 ) .  

8 .  Determine the greatest common divisor of a(x) = x3 - 2 and b(x) = x + 1 in Q[x] and 
write it as a linear combination (in Q[x]) of a(x) and b(x) .  

9. Determine the greatest common divisor of a(x) = x5 + 2x3 +x2 + x + 1 and the polynomial 
b(x) = x5 + x4 + 2x3 + 2x2 + 2x + 1 in Q[x] and write it a<; a linear combination (in 
Q[x]) of a(x) and b(x). 

10. Determine the greatest common divisor of a(x) = x3 +4x2 +x -6 and b(x) = x5 - 6x +5 
i n  Q[x] and write it as a linear combination (in Q[x]) of a(x) and b(x). 

11. Suppose f (x) and g(x) are two nonzero polynomials in Q[x] with greatest common divisor 
d(x). 
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(a) Given h(x) E <Q[x ], show that there are polynomials a(x ) ,  b(x) E <Q[x] satisfying the 
equation a(x)f(x) + b(x)g(x) = h(x) if and only if h(x) is divisible by d(x).  

(b) If ao (x) ,  bo (x) E <Q[x] are particular solutions to the equation in (a), show that the 
full set of solutions to this equation is given by 

g(x) 
a (x) = ao(x) + m(x) -

d (x) 
f(x) 

b(x) = bo(x) - m(x) -d(x) 

as m(x) ranges over the polynomials in <Q[x] .  [cf. Exercise 4 in Section 8. 1 ]  

12. Let F[x ,  Y1 · Y2 · . . .  ] be the polynomial ring in the infinite set of variables x,  Y1 . Y 2  • . . .  
over the field F, and let I be the ideal (x - yf , Y1 - y� , . . .  , y; - yf+ 1 ,  . . . ) in this ring. 
Define R to be the ring F[x,  YI . Y2 • . . .  ]/ /, so that in R the square of each Yi+1 is y; and 
yf = x modulo I, i.e., x has a i th root, for every i .  Denote the image of y; in R as x 1 12' .  
Let Rn be the subring of R generated by F and x 112" . 
(a) Prove that R1 £ R2 £ · · · and that R is the union of all Rn , i .e., R = U�1 Rn . 
(b) Prove that Rn is isomorphic to a polynomial ring in one variable over F, so that Rn is 

a P.I.D. Deduce that R is a Bezout Domain ( cf. Exercise 7 in Section 8.2). [First show 
that the ring Sn = F[x ,  YI , . . .  , Yn ]/ (x - Yt , Y1 - Yi ,  . . . , Yn-1 - y;) is isomorphic 
to the polynomial ring F[yn ]. Then show any polynomial relation Yn satisfies in Rn 
gives a corresponding relation in SN for some N :::: n.] 

(c) Prove that the ideal generated by x ,  x112 , x 114 , • • •  in R is not finitely generated (so 
R is not a P.I.D.). 

13. This exercise introduces a noncommutative ring which is a "right" Euclidean Domain (and 
a "left" Principal Ideal Domain) but is not a "left'' Euclidean Domain (and not a "right" 
Principal Ideal Domain). Let F be a field of characteristic p in which not every element is 
a p1h power: F =1= FP (for example the field F = Fp (t) of rational functions in the variable 
t with coefficients in F P is such a field). Let R = F {x} be the "twisted" polynomial ring 
of polynomials L7=o a; xi in x with coefficients in F with the usual (termwise) addition 

n n n 
L a;xi + L b;xi = L (a; + b; )xi 
i=O i=O i =O 

but with a noncommutative multiplication defined by 

This multiplication arises from defining xa = aPx for every a E F (so the powers of x 
do not commute with the coefficients) and extending in a natural way. Let N be the norm 
defined by taking the degree of a polynomial in R: N (f) = deg(f) . 
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(a) Show that xka = aPk xk for every a E F and every integer k :::: 0 and that R is a 
ring with this definition of multiplication. [Use the fact that (a + b)P = aP + bP for 
every a ,  b E  F since F has characteristic p, so also (a + b)Pk = aPk + bPk for every 
a , b E F.] 

(b) Prove that the degree of a product of two elements of R is the sum of the degrees of 
the elements. Prove that R has no zero divisors. 
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(c) Prove that R is "right Euclidean" with respect to N, i.e., for any polynomials f, g E R 
with g ::f= 0, there exist polynomials q and r in R with 

f = qg + r with r = 0 or deg(r) < deg(g). 

Use this to prove that every left ideal of R is principal. 
(d) Let f = ex for some e E F, e rt FP and let g = X. Prove that there are no 

polynomials q and r in R with 

f = gq + r with r = 0 or deg(r) < deg(g), 

so in particular R is not "left Euclidean" with respect to N. Prove that the right ideal 
of R generated by x and ex is not principal. Conclude that R is not "left Euclidean" 
with respect to any norm. 

9.3 POLYNOMIAL RINGS THAT ARE UNIQUE 
FACTORIZATION DOMAINS 

We have seen in Proposition 1 that if R is an integral domain then R [ x] is also an integral 
domain. Also, such an R can be embedded in its field of fractions F (Theorem 15, 
Section 7.5), so that R[x] � F[x] is a subring, and F[x] is a Euclidean Domain (hence 
a Principal Ideal Domain and a Unique Factorization Domain). Many computations for 
R[x] may be accomplished in F[x] at the expense of allowing fractional coefficients. 
This raises the immediate question of how computations (such as factorizations of 
polynomials) in F[x] can be used to give information in R[x] . 

For instance, suppose p(x) is a polynomial in R[x] . Since F[x] is a Unique 
Factorization Domain we can factor p(x) uniquely into a product of irreducibles in 
F[x] . It is natural to ask whether we can do the same in R[x], i.e., is R[x] a Unique 
Factorization Domain? In general the answer is no because if R[x] were a Unique 
Factorization Domain, the constant polynomials would have to be uniquely factored 
into irreducible elements of R[x] , necessarily of degree 0 since the degrees of products 
add, that is, R would itself have to be a Unique Factorization Domain. Thus if R 
is an integral domain which is not a Unique Factorization Domain, R[x] cannot be a 
Unique Factorization Domain. On the other hand, it turns out that if R is a Unique 
Factorization Domain, then R[x] is also a Unique Factorization Domain. The method 
of proving this is to first factor uniquely in F [ x] and then "clear denotninators" to obtain 
a unique factorization in R[x] .  The first step in making this precise is to compare the 
factorization of a polynomial in F[x] to a factorization in R[x] . 

Proposition 5.  (Gauss ' Lemma) Let R be a Unique Factorization Domain with field of 
fractions F and let p(x) E R[x] . If p(x) is reducible in F[x] then p(x) is reducible 
in R[x] .  More precisely, if p(x) = A(x)B(x) for some nonconstant polynomials 
A(x) , B(x) E F[x], then there are nonzero elements r, s E F such that r A(x) = a(x) 
and sB(x) = b(x) both lie in R[x] and p(x) = a(x)b(x) is a factorization in R[x]. 

Proof" The coefficients of the polynomials on the right hand side of the equation 
p(x) = A(x)B(x) are elements in the field F, hence are quotients of elements from 
the Unique Factorization Domain R. Multiplying through by a common denominator 
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for all these coefficients, we obtain an equation dp (x) = a'(x)b' (x) where now a'(x) 
and b' (x) are elements of R [x] and d is a nonzero element of R.  If d is a unit in R, the 
proposition is true with a(x) = d- 1a'(x) and b(x) = b'(x) . Assume d is not a unit and 
write d as a product of irreducibles in R, say d = PI · · · Pn · Since PI is irreducible in 
R, the ideal (p1 ) is prime (cf. Proposition 12, Section 8.3), so by Proposition 2 above, 
the ideal p 1R[x] is prime in R[x] and (R/ p1 R) [x] is an integral domain. Reducing the 

equation dp(x) = a' (x )b' (x) modulo p1 , we obtain the equation 0 = a' (x) b' (x) in this 
integral domain (the bars denote the images of these polynomials in the quotient ring), 

hence one of the two factors, say a' (x) must be 0. But this means all the coefficients of 
a'(x )  are divisible by p1 , so that l.a' (x) also has coefficients in R. In other words, in PI 
the equation dp(x) = a' (x)b' (x) we can cancel a factor of P1 from d (on the left) and 
from either a'(x) or b' (x) (on the right) and still have an equation in R[x] .  But now the 
factor d on the left hand side has one fewer irreducible factors. Proceeding in the same 
fashion with each of the remaining factors of d, we can cancel all of the factors of d into 
the two polynomials on the right hand side, leaving an equation p(x) = a(x )b(x) with 
a(x), b(x) E R[x] and with a(x),  b(x) being F-multiples of A (x),  B(x), respectively. 
This completes the proof. 

Note that we cannot prove that a(x) and b(x) are necessarily R-multiples of A(x), 
B(x), respectively, because, for example, we could factor x2 in Q[x] with A (x) = 2x 
and B(x) = 4x but no integer multiples of A (x) and B(x) give a factorization of x2 in 
Z[x]. 

The elements of the ring R become units in the Unique Factorization Domain 
F[x] (the units in F[x]  being the nonzero elements of F). For example, 7x factors 
in Z[x] into a product of two irreducibles: 7 and x (so 7x is not irreducible in Z[x]), 
whereas 7x is the unit 7 times the irreducible x in Q[x] (so 7x is irreducible in Q[x]). 
The following corollary shows that this is essentially the only difference between the 
irreducible elements in R[x] and those in F[x] .  

Corollary 6. Let R be a Unique Factorization Domain, let F be its field of fractions and 
let p (x) E R[x] .  Suppose the greatest common divisor of the coefficients of p (x) is 1 .  
Then p (x) is irreducible i n  R[x] if and only if it i s  irreducible i n  F[x ] .  I n  particular, if 
p(x) is a monic polynomial that is irreducible in R[x], then p (x) is irreducible in F[x] .  

Proof: By Gauss' Lemma above, if p(x) is  reducible in F[x], then it  is  reducible 
in R[x]. Conversely, the assumption on the greatest common divisor of the coefficients 
of p(x) implies that if it is reducible in R[x], then p(x) = a(x)b(x) where neither a(x) 
nor b(x) are constant polynomials in R[x] .  This same factorization shows that p (x) is 
reducible in F[x] , completing the proof. 

Theorem 7. R is a Unique Factorization Domain if and only if R[x] is a Unique 
Factorization Domain. 

Proof" We have indicated above that R[ x] a Unique Factorization Domain forces R 
to be a Unique Factorization Domain. Suppose conversely that R is a Unique Factoriza
tion Domain, F is its field of fractions and p(x) is a nonzero element of R[x].  Let d be 
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the greatest common divisor of the coefficients of p(x), so that p(x) = dp'(x), where 
the g.c.d. of the coefficients of p' (x) is 1 .  Such a factorization of p(x) is unique up to a 
change in d (so up to a unit in R), and since d can be factored uniquely into irreducibles 
in R (and these are also irreducibles in the larger ring R[x ]), it suffices to prove that 
p'(x) can be factored uniquely into irreducibles in R[x] .  Thus we may assume that the 
greatest common divisor of the coefficients of p(x) is 1 .  We may further assume p(x) 
is not a unit in R[x], i.e. , degree p(x) > 0. 

Since F[x] is a Unique Factorization Domain, p(x) can be factored uniquely into 
irreducibles in F[x] .  By Gauss' Lemma, such a factorization implies there is a factor
ization of p(x) in R[x] whose factors are F -multiples of the factors in F[x]. Since the 
greatest common divisor of the coefficients of p(x) is 1 ,  the g.c.d. of the coefficients in 
each of these factors in R[ x] must be 1 .  By Corollary 6, each of these factors is an irre
ducible in R[x]. This shows that p (x) can be written as a finite product of irreducibles 
in R[x] .  

The uniqueness of the factorization of p(x) follows from the uniqueness in F[x] .  
Suppose 

p(x) = ql (x) · · · qr (X) = q; (x) · · · q.� (x) 

are two factorizations of p(x) into irreducibles in R[x] .  Since the g.c.d. of the co
efficients of p(x) is 1 ,  the same is true for each of the irreducible factors above 
in particular, each has positive degree. By Corollary 6, each qi (x) and qj (x) is an 
irreducible in F[x] .  By unique factorization in F[x],  r = s and, possibly after re
arrangement, qi (x) and q;(x) are associates in F[x] for all i E { 1 ,  . . .  , r } .  It remains to 
show they are associates in R[x] . Since the units of F[x] are precisely the elements of 
p x  we need to consider when q (x) = �q'(x) for some q (x) , q'(x) E R[x] and nonzero 
elements a, b of R, where the greatest common divisor of the coefficients of each of 
q (x) and q' (x) is 1 .  In this case bq (x) = aq'(x) ;  the g.c.d. of the coefficients on the left 
hand side is b and on the right hand side is a .  Since in a Unique Factorization Domain 
the g.c.d. of the coefficients of a nonzero polynomial is unique up to units, a = ub for 
some unit u in R.  Thus q (x) = uq'(x) and so q (x) and q'(x) are associates in R as 
well. This completes the proof. 

Corollary 8. If R is a Unique Factorization Domain, then a polynomial ring in an 
arbitrary number of variables with coefficients in R is also a Unique Factorization 
Domain. 

Proof· For finitely many variables, this follows by induction from Theorem 7, since 
a polynomial ring in n variables can be considered as a polynomial ring in one variable 
with coefficients in a polynomial ring in n - 1 variables. The general case follows from 
the definition of a polynomial ring in an arbitrary number of variables as the union of 
polynomial rings in finitely many variables. 

Examples 

(1) Z[x ], Z[x , y ], etc. are Unique Factorization Domains. The ring Z[x] gives an example 
of a Unique Factorization Domain that is not a Principal Ideal Domain. 

(2) Similarly, Q[x ], Q[x , y ], etc. are Unique Factorization Domains. 
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We saw earlier that if R is a Unique Factorization Domain with field of fractions 
F and p(x) E R[x],  then we can factor out the greatest common divisor d of the 
coefficients of p (x) to obtain p(x) = dp'(x) , where p'(x) is irreducible in both R[x] 
and F[x] .  Suppose now that R is an arbitrary integral domain with field of fractions F. 
In R the notion of greatest common divisor may not make sense, however one might 
still ask if, say, a monic polynomial which is irreducible in R [x] is still irreducible in 
F[x] (i.e. , whether the last statement in Corollary 6 is true). 

Note first that if a monic polynomial p(x) is reducible, it must have a factorization 
p(x) = a(x)b(x) in R[x] with both a(x) and b(x) monic, nonconstant polynomials 
(recall that the leading term of p(x)  is the product of the leading terms of the factors, so 
the leading coefficients of both a(x) and b(x) are units - we can thus arrange these to 
be 1 ). In other words, a nonconstant monic polynomial p(x) is irreducible if and only 
if it cannot be factored as a product of two monic polynomials of smaller degree. 

We now see that it is not true that if R is an arbitrary integral domain and p(x) is a 
monic irreducible polynomial in R[x],  then p(x) is irreducible in F[x] . For example, 
let R = Z[2i] = {a + 2bi I a ,  b E Z} (a subring of the complex numbers) and let 
p(x) = x2 + 1 .  Then the fraction field of R is F = {a +bi I a ,  b E  Q}.  The polynomial 
p(x) factors uniquely into a product oftwo linear factors in F[x] : x2 + 1  = (x - i ) (x +i)  
so  in particular, p(x)  is reducible in F[x] .  Neither of  these factors lies in R[x] (because 
i fj. R) so p(x) is irreducible in R [x] .  In particular, by Corollary 6, Z[2i] is not a 
Unique Factorization Domain. 

E X E R C I S E S 

1. Let R be an integral domain with quotient field F and let p(x) be a monic polynomial in 
R[x] .  Assume that p(x) = a(x)b(x) where a (x) and b(x) are monic polynomials in F[x] 
of smaller degree than p(x) .  Prove that if a(x) fJ. RLx]  then R is not a Unique Factorization 
Domain. Deduce that Z[2.J2] is not a U.F.D. 

2. Prove that if f(x) and g(x) arc polynomials with rational coefficients whose product 
f(x)g(x) has integer coefficients, then the product of any coefficient of g(x)  with any 
coefficient of f (x)  is an integer. 

3. Let F be a field. Prove that the set R of polynomials in F[x] whose coefficient of x is 
equal to 0 is a subring of F[x] and that R is not a U.F.D. [Show that x6 = (x2)3 = (x3)2 
gives two distinct factorizations of x6 into irreducibles.] 

4. Let R = IZ +x<Q[x] c <Q[x] be the set ofpolynomials in x with rational coefficients whose 
constant term is an integer. 
(a) Prove that R is an integral domain and its units are ± 1 .  
(b) Show that the irreducibles i n  R arc ± p  where p is a prime in IZ and the polynomi

als f(x) that are irreducible in <Qfx] and have constant term ±1 . Prove that these 
irreducibles are prime in R. 

(c) Show that x cannot be written as the product of irreducibles in R (in particular, x is 
not irreducible) and conclude that R is not a U.F.D. 

(d) Show that x is not a prime in R and describe the quotient ring Rf(x) .  
5.  Let R = IZ + x<Q[x] c <Q[x] be the ring considered in the previous exercise. 
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(a) Suppose that f(x) , g(x) E <Q[x] arc two nonzero polynomials with rational coeffi
cients and that xr is the largest power of x dividing both f (x) and g(x) in <Q[x ], (i.e., 
r is the degree of the lowest order term appearing in either f(x) or g(x)). Let fr and 
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gr be the coefficients of xr in f (x) and g(x ) , respectively (one of which is nonzero 
by definition of r). Then U'..f, + U'..g, = U'..dr for some nonzero d, E Q1 (cf. Exercise 14 
in Section 2.4). Prove that there is  a polynomial d(x) E Qi[x] that is  a g.c.d. of f(x) 
and g(x) in Ql[x] and whose term of minimal degree is d,x' . 

(b) Prove that f(x) = d(x)qt (x) and g(x) = d(x)qz (x) where q1 (x) and qz(x) arc 
elements of the subring R of Qi[x] .  

(c) Prove that d(x) = a(x)f(x) + b(x)g (x) for polynomials a(x) ,  b(x) in R. [The 
existence of a(x) ,  b(x) in the Euclidean Domain Ql[x] is immediate. Use Exercise 1 1  
in Section 2 to show that a(x) and b(x) can be chosen to lie in R.] 

(d) Conclude from (a) and (b) that Rf(x) + Rg(x) = Rd(x) in Ql[x] and use this to prove 
that R is a Bezout Domain (cf. Exercise 7 in Section 8.2) . 

(e) Show that (d), the results of the previous exercise, and Exercise 1 1  of Section 8.3 
imply that R must contain ideals that are not principal (hence not finitely generated). 
Prove that in fact I = xQI[ x] is an ideal of R that is not finitely generated. 

9.4 IRREDUCIBILITY CRITERIA 

If R is a Unique Factorization Domain, then by Corollary 8 a polynomial ring in any 
number of variables with coefficients in R is also a Unique Factorization Domain. It 
is of interest then to determine the irreducible elements in such a polynomial ring, 
particularly in the ring R[x ]. In the one-variable case, a non constant monic polynomial 
is irreducible in R[x] if it cannot be factored as the product of two other polynomials of 
smaller degrees. Determining whether a polynomial has factors is frequently difficult to 
check, particularly for polynomials of large degree in several variables. The purpose of 
irreducibility criteria is to give an easier mechanism for determining when some types 
of polynomials are irreducible. 

For the most part we restrict attention to polynomials in one variable where the 
coefficient ring is a Unique Factorization Domain. By Gauss' Lemma it suffices to 
consider factorizations in F[x] where F is the field of fractions of R (although we 
shall occasionally consider questions of irreducibility when the coefficient ring is just 
an integral domain). The next proposition considers when there is a factor of degree 
one (a Linear factor). 

Proposition 9. Let F be a field and let p (x) E F[x ]. Then p(x) has a factor of degree 
one if and only if p(x) has a root in F, i.e., there is an a E F with p(a) = 0. 

Proof' If p (x) has a factor of degree one, then since F is a field, we may assume 
the factor is monic, i.e., is of the form (x - a) for some a E F.  But then p(a) = 0. 
Conversely, suppose p(a) = 0. By the Division Algorithm in F[x] we may write 

p(x) = q(x) (x - a) + r 

where r is a constant. Since p(a) = 0, r must be 0, hence p(x) has (x - a) as a factor. 

Proposition 9 gives a criterion for irreducibility for polynomials of small degree: 
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Proposition 10. A polynomial of degree two or three over a field F is reducible if and 
only if it has a root in F. 

Proof" This follows immediately from the previous proposition, since a polynomial 
of degree two or three is reducible if and only if it has at least one linear factor. 

The next result limits the possibilities for roots of polynomials with integer coef
ficients (it is stated for /Z[x] for convenience although it clearly generalizes to R[x], 
where R is any Unique Factorization Domain). 

Proposition 11. Let p(x) = anxn + an-1Xn-1  + . . . + ao be a polynomial of degree 
n with integer coefficients. If r Is E <Ql is in lowest terms (i.e., r and s are relatively 
prime integers) and r Is is a root of p(x ), then r divides the constant term and s divides 
the leading coefficient of p (x) :  r I ao and s I an . In particular, if p(x) is a monic 
polynomial with integer coefficients and p(d) "I 0 for all integers d dividing the constant 
term of p(x ), then p(x) has no roots in <Ql. 

Proof" By hypothesis, p(r Is) = 0 = an (r ls)n + an- 1 (r ls)n-l  + · · · + ao . Multi
plying through by sn gives 

Thus anrn = s(  -an-t rn- 1 - · · · - aosn- 1  ) , so s divides anrn . By assumption, s is 
relatively prime to r and it follows that s I an . Similarly, solving the equation for aosn 
shows that r I a0. The last assertion of the proposition follows from the previous ones. 

Examples 

(1) The polynomial x3 - 3x - l is irreducible in Z[x] .  To prove this, by Gauss' Lemma 
and Proposition 10 it suffices to show it has no rational roots. By Proposition 1 1  the 
only candidates for rational roots are integers which divide the constant term 1 ,  namely 
± 1 .  Substituting both 1 and - 1  into the polynomial shows that these are not roots. 

(2) For p any prime the polynomials x2 - p and x3 - p are irreducible in Q[x] .  This is 
because they have degrees ::<::: 3 so it suffices to show they have no rational roots. By 
Proposition 1 1  the only candidates for roots are ± 1 and ± p, but none of these give 0 
when they are substituted into the polynomial. 

(3) The polynomial x2 + 1 is reducible in Z/2Z[x] since it has 1 as a root, and it factors 
as (x + 1 )2 . 

(4) The polynomial x2 + x + I  is irreducible in Z/2Z[x] since it does not have a root in 
Zf2Z : o2 + 0 + 1 = 1 and 12 + 1 + I  = I .  

(5} Similarly, the polynomial x3 + x + 1 is irreducible in Z/2Z[x] .  

This technique is limited to polynomials of low degree because it relies on the 
presence of a factor of degree one. A polynomial of degree 4, for example, may be 
the product of two irreducible quadratics, hence be reducible but have no linear factor. 
One fairly general technique for checking irreducibility uses Proposition 2 above and 
consists of reducing the coefficients modulo some ideal. 
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Proposition 12. Let I be a proper ideal in the integral domain R and let p(x) be a 
nonconstant monic polynomial in R[x] . If the image of p(x) in (R/ I)[x] cannot be 
factored in (Rj I) [x] into two polynomials of smaller degree, then p(x) is irreducible 
in R[x].  

Proof" Suppose p(x) cannot be factored in (Rji) [x] but that p(x) is reducible 
in R[x] . As noted at the end of the preceding section this means there are monic, 
nonconstant polynomials a (x) and b(x) in R[x] such that p(x) = a (x)b(x) . By 
Proposition 2, reducing the coefficients modulo I gives a factorization in (Rj I) [x] 
with nonconstant factors, a contradiction. 

This proposition indicates that if it is possible to find a proper ideal I such that 
the reduced polynomial cannot be factored, then the polynomial is itself irreducible. 
Unfortunately, there are examples of polynomials even in Z[x] which are irreducible 
but whose reductions modulo every ideal are reducible (so their irreducibility is not 
detectable by this technique). For example, the polynomial x4 + 1 is irreducible in 
Z[x] but is reducible modulo every prime (we shall verify this in Chapter 14) and the 
polynomial x4 - 72x2 + 4 is irreducible in Z[x] but is reducible modulo every integer. 

Examples 

(1) Consider the polynomial p(x) = x2 +x + 1 in Z[x] .  Reducing modulo 2, we see from 
Example 4 above that p(x) is irreducible in Z[x] .  Similarly, x3 + x + 1 is irreducible 
in Z[x] because it is irreducible in Z/2Z[x] .  

(2) The polynomial x2 + 1 is irreducible in Z[x] since it is irreducible in Z/3Z[x] (no 
root in Zj3Z), but is reducible mod 2. This shows that the converse to Proposition 12 
does not hold. 

(3) The idea of reducing modulo an ideal to determine irreducibility can be used also 
in several variables, but some care must be exercised. For example, the polynomial 
x2 + xy + 1 in Z[ x ,  y] is irreducible since modulo the ideal (y) it is x2 + 1 in Z[ x ], 
which is irreducible and of the same degree. In this sort of argument it is necessary to 
be careful about "collapsing." For example, the polynomial xy + x + y + 1 (which 
is (x + 1 ) (y + 1 ) )  is reducible, but appears irreducible modulo both (x) and (y) . The 
reason for this is that non unit polynomials in Z[ x, y] can reduce to units in the quotient. 
To take account of this it is necessary to determine which elements in the original ring 
become units in the quotient. The elements in .Z[x, y] which are units modulo (y), for 
example, are the polynomials in .Z[x , y] with constant term ± 1  and all nonconstant 
terms divisible by y. The fact that x2 + xy + 1 and its reduction mod (y) have the 
same degree therefore eliminates the possibility of a factor which is a unit modulo (y ) ,  
but not a unit in Z[x ,  y] and gives the irreducibility of this polynomial. 

A special case of reducing modulo an ideal to test for irreducibility which is fre
quently useful is known as Eisenstein 's Criterion (although originally proved earlier by 
Schonemann, so more properly known as the Eisenstein-Schonemann Criterion): 

Proposition 13. (Eisenstein 's Criterion) Let P be a prime ideal of the integral domain 
R and let f(x) = xn +an-IX

n- I + · · · +a1x +ao be a polynomial in R[x] (here n � 1) . 
Suppose an-I ,  . . .  , a1 , ao are all elements of P and suppose ao is not an element of P2 • 
Then f(x) is irreducible in R[x]. 
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Proof" Suppose f(x) were reducible, say f(x) = a(x)b(x) in R[x], where a(x) 
and b(x) are nonconstant polynomials. Reducing this equation modulo P and using 

the assumptions on the coefficients of f(x) we obtain the equation xn = a(x)b(x) in 
(R/ P) [x], where the bar denotes the polynomials with coefficients reduced mod P. 

Since P is a prime ideal, Rj P is an integral domain, and it  follows that both a(x) and 

b(x) have 0 constant term, i.e., the constant terms of both a (x) and b(x) are elements 
of P .  But then the constant term ao of f(x) as the product of these two would be an 
element of P2 , a contradiction. 

Eisenstein's Criterion is most frequently applied to Z[x] so we state the result 
explicitly for this case: 

Corollary 14. (Eisenstein 's Criterion for Z[x]) Let p be a prime in Z and let 
j(x) = xn + an- JXn-J + · · · + a1x + ao E Z[x], n � 1 .  Suppose p divides ai 
for all i E {0, 1 ,  . . .  , n- 1 }  but that p2 does not divide a0 • Then j(x) is irreducible in 
both Z[x] and <Q[x] . 

Proof" This is simply a restatement of Proposition 13 in the case of the prime ideal 
(p) in Z together with Corollary 6. 

Examples 

(1) The polynomial x4 + lOx + 5 in Z[x] is irreducible by Eisenstein's Criterion applied 
for the prime 5. · 

(2) If a is any integer which is divisible by some prime p but not divisible by p2, then xn -a 
is irreducible in Z[x] by Eisenstein's Criterion. In particular, xn - p is irreducible for 
all positive integers n and so for n :=:: 2 the nth roots of p are not rational numbers (i.e . •  
this polynomial has no root in <Ql). 

(3) Consider the polynomial f(x) = x4 + 1 mentioned previously. Eisenstein's Criterion 
does not apply directly to f(x).  The polynomial g(x) = f(x + 1) is (x + 1 )4 + 1 ,  i.e., 
x4 + 4x3 + 6x2 + 4x + 2, and Eisenstein's Criterion for the prime 2 shows that this 
polynomial is irreducible. It follows then that f (x) must also be irreducible, since any 
factorization for f (x) would provide a factorization for g (x) (just replace x by x + 1 
in each of the factors). This example shows that Eisenstein's Criterion can sometimes 
be used to verify the irreducibility of a polynomial to which it does not immediately 
apply. 

(4) As another example of this, let p be a prime and consider the polynomial 

xP - 1  
rJ>p (x) = -- = xp-J + xP-2 + · · · + x + 1 ,  

x - 1 
an example of a cyclotomic polynomial which we shall consider more thoroughly in 
Part IV. Again, Eisenstein's Criterion does not immediately apply, but it does apply 
for the prime p to the polynomial 

(x + 1)P - 1 2 p(p - 1)  
rJ>p (x + 1 )  = = xp-J + pxP- + · · · + x + p E Z[x] 

X 2 
since all the coefficients except the first are divisible by p by the Binomial Theorem. 
As before, this shows rJ>p (x) is irreducible in Z[x].  

(5) As an example of the use of the more general Eisenstein's Criterion in Proposition 13 
we mimic Example 2 above. Let R = <Ql[x] and let n be any positive integer. Consider 
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the polynomial xn - X  in the ring R[X]. The ideal (x) is prime in the coefficient 
ring R since R/(x) = (Q[x]/(x) is the integral domain (()!. Eisenstein's Criterion for 
the ideal (x) of R applies directly to show that xn - X  is irreducible in R[X]. Note 
that this construction works with (Q replaced by any field or, indeed, by any integral 
domain. 

There are now efficient algorithms for factoring polynomials over certain fields. 
For polynomials with integer coefficients these algorithms have been implemented in a 
number of computer packages. An efficient algorithm for factoring polynomials over 
IF P• called the Berlekamp Algorithm, is described in detail in the exercises at the end of 
Section 14.3. 

E X E R C I S E S 

1. Determine whether the following polynomials are irreducible in the rings indicated. For 
those that are reducible, determine their factorization into irreducibles. The notation IF P 
denotes the finite field z; p7l, p a prime. 
(a) x2 + x + 1 in IFz[x] .  
(b) x3 + x + 1 in IF3 [x] .  
(c) x4  + 1 in  !Fs [x] .  
(d) x4  + 10x2 + 1 in 7l[x] .  

2. Prove that the following polynomials are irreducible in 7l[x] :  
(a) x4 - 4x3 + 6 
(b) x6 + 30x5 - 1Sx3 + 6x - 120 
(c) x4 + 4x3 + 6x2 + 2x + 1 [Substitute x - 1 for x.]  

(x + 2)P - 2P 
(d) , where p is an odd prime. 

X 
3. Show that the polynomial (x- l ) (x-2) · · · (x-n) - 1 is irreducible over 71, for all n ;::: 1 .  

[If  the polynomial factors consider the values of the factors at x = 1 ,  2 ,  . . .  , n.] 
4. Show that the polynomial (x - 1 )(x - 2) · · · (x - n) + 1 is irreducible over 71, for all n ;::: 1 ,  

n =f:- 4. 
5. Find all the monic irreducible polynomials of degree S 3 in IFz[x], and the same in F3(x].  
6. Construct fields of each of the following orders: (a) 9, (b) 49, (c) 8, (d) 81  (you 

may exhibit these as F[x]f(f(x)) for some F and f). [Use Exercises 2 and 3 in Section 2.] 
7. Prove that IR.[x]/(x2 + 1) is a field which is isomorphic to the complex numbers. 
8. Prove that K1 = 1Fu [x]/(x2 + 1) and Kz = 1Fu [y]/(y2 + 2y + 2) are both fields with 121 

elements. Prove that the map which sends the element p(i) of Kt to the element p(.Y + 1) 
of Kz (where p is any polynomial with coefficients in IF't t )  is well defined and gives a ring 
(hence field) isomorphism from Kt to Kz . 

9. Prove that the polynomial x2 - ...J2 is irreducible over 71,[ ...J2 ] (you may use the fact that 
71,[ ...J2 ] is a U.F.D. - cf. Exercise 9 of Section 8 . 1  ). 

10. Prove that the polynomial p(x) = x4 - 4x2 + 8x + 2 is irreducible over the quadratic 
field F = Q(.J-=2 )  = {a + b.J-=1 I a ,  b E (()!} . [First use the method of Proposition 1 1  
for the Unique Factorization Domain 71,[ .J=2 ]  ( cf. Exercise 8, Section 8 . 1 )  to show that if 
a E 71,[ .J-=21 is a root of p(x) then a is a divisor of 2 in Z[.J-=2 ]. Conclude that a must 
be ±1 ,  ±.J-=2 or ±2, and hence show p(x) has no linear factor over F. Show similarly 
that p(x) is not the product of two quadratics with coefficients in F.] 
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11. Prove that x2 + y2 - 1 is irreducible in Q[ x ,  y] .  

12. Prove that xn-l + xn-2 + · · · + x + 1 is irreducible over Z if and only if n is a prime. 
13. Prove that x3 + nx + 2 is irreducible over Z for all integers n =f. 1 ,  -3, -5. 

14. Factor each of the two polynomials: x8 - 1 and x6 - 1 into irreducibles over each of the 
following rings: (a) Z, (b) Z/2Z, (c) Z/3Z. 

15. Prove that if F is a field then the polynomial xn - X which has coefficients in the ring 
F[[x]] of formal power series (cf. Exercise 3 of Section 7.2) is irreducible over F[[x]] .  
[Recall that F[[x]] is a Euclidean Domain - cf. Exercise 5, Section 7.2 and Example 4, 
Section 8. 1 .] 

16. Let F be a field and let f(x) be a polynomial of degree n in F[x]. The polynomial 
g (x) = xn f(lfx) is called the reverse of f(x). 
(a) Describe the coefficients of g in terms of the coefficients of f. 
(b) Prove that f is irreducible if and only if g is irreducible. 

17. Prove the following variant of Eisenstein's Criterion: let P be a prime ideal in the Unique 
Factorization Domain R and let j (x) = anxn +an-lX

n-l + · · · +atx +ao be a polynomial 
in R[x], n ::::: 1 .  Suppose an � P, an-l · . . .  , ao E P and ao � P2• Prove that f(x) is 
irreducible in F[x], where F is the quotient field of R. 

18. Show that 6x5 + 14x3 - 21x + 35 and 18x5 - 30x2 + 120x + 360 are irreducible in Q[x]. 
19. Let F be a field and let f(x) = anxn + an-lX

n-l + · · · + ao E F[x]. The derivative, 
Dx (f(x)), of f(x) is defined by 

Dx (j(x)) = nanxn-l + (n- 1)an-1Xn-2 + · · · + at 

where, as usual, na = a + a + · · · + a  (n times). Note that Dx (f(x)) is again a polynomial 
with coefficients in F. 
The polynomial f (x) is said to have a multiple root if there is some field E containing F 
and some a E E such that (x - a )2 divides f (x) in E[x ]. For example, the polynomial 
f(x) = (x - 1 )2(x - 2) E Q[x] has a = 1 as a multiple root and the polynomial 
f(x) = x4 + 2x2 + 1 = (x2 + 1 )2 E IR[x] has a = ±i E <C as multiple roots. We shall 
prove in Section 13.5 that a nonconstant polynomial f(x) has a multiple root if and only 
if f(x) is not relatively prime to its derivative (which can be detected by the Euclidean 
Algorithm in F[x]). Use this criterion to determine whether the following polynomials 
have multiple roots: 
(a) x3 - 3x - 2 E Q[x] 
(b) x3 + 3x + 2 E Q[x] 
(c) x6 - 4x4 + 6x3 + 4x2 - 12x + 9 E Q[x] 
(d) Show for any prime p and any a E IF P that the polynomial xP - a  has a multiple root. 

20. Show that the polynomial f(x) = x in Z/6Z[x] factors as (3x + 4)(4x + 3), hence is not 
an irreducible polynomial. 
(a) Show that the reduction of j(x) modulo both of the nontrivial ideals (2) and (3) of 

Z/6Z is an irreducible polynomial, showing that the condition that R be an integral 
domain in Proposition 12  is necessary. 

(b) Show that in any factorization f(x) = g (x)h (x) in Zj6Z[x] the reduction of g (x) 
modulo (2) is either 1 or x and the reduction of h (x) modulo (2) is then either x or 1, 
and similarly for the reductions modulo (3) .  Determine all the factorizations of f (x) 
in Z/6Z[x] .  [Use the Chinese Remainder Theorem.] 

(c) Show that the ideal (3 , x) is a principal ideal in Z/6Z[x] .  
(d) Show that over the ring Z/30Z[x] the polynomial f(x) = x has the factorization 
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f (x) = (1 Ox + 21) (15x + 16 ) (  6x + 25) . Prove that the product of any of these factors 
is again of the same degree. Prove that the reduction of f(x) modulo any prime 
in Zj301Z is an irreducible polynomial. Determine all the factorizations of f(x) in 
Zj301Z[x] .  [Consider the reductions modulo (2), (3) and (5) and use the Chinese 
Remainder Theorem.] 

(e) Generalize part (d) to ZjnZ[x I where n is the product of k distinct primes. 

9.5 POLYNOM IAL RI NGS OVER FIELDS I I  

Let F be a field. We prove here some additional results for the one-variable polynomial 
ring F[x]. The first is a restatement of results obtained earlier. 

Proposition 15. The maximal ideals in F[x] are the ideals (f(x)) generated by irre
ducible polynomials f(x) .  In particular, F[x]j(f(x)) is a field if and only if f(x) is 
irreducible. 

Proof This follows from Proposition 7 of Section 8.2 applied to the Principal Ideal 
Domain F[x] . 

Proposition 16. Let g(x) be a nonconstant element of F[x] and let 

g(x) = !1 (x)n 1 fz(xt2 • • • fk (xtk 

be its factorization into irreducibles, where the fi (x) are distinct. Then we have the 
following isomorphism of rings: 

F[x]j(g(x)) � F[x]j(f, (xt1 ) x F[x]f(fz (xt2) x · · · x F[x]j(fk (xtk) . 

Proof This follows from the Chinese Remainder Theorem (Theorem 7 . 17), since 
the ideals (Ji (x)n; ) and (/; (x)nj ) are comaximal if Ji (x) and /; (x) are distinct (they 
are relatively prime in the Euclidean Domain F[x] , hence the ideal generated by them 
is F[x]). 

The next result concerns the number of roots of a polynomial over a field F. By 
Proposition 9, a root a corresponds to a linear factor (x - a) of f(x). If f(x) is divisible 
by (x - a)m but not by (x - a)m+l , then a is said to be a root of multiplicity m.  

Proposition 17. If  the polynomial f(x) has roots a1 , a2 , . . .  , ak in F (not necessarily 
distinct), then f(x) has (x - a1 ) • • • (x - ak) as a factor. In particular, a polynomial 
of degree n in one variable over a field F has at most n roots in F, even counted with 
multiplicity. 

Proof The first statement follows easily by induction from Proposition 9. Since 
linear factors are irreducible, the second statement follows since F[x] is a Unique 
Factorization Domain. 

This last result has the following interesting consequence. 
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Proposition 18. A finite subgroup of the multiplicative group of a field is cyclic. In 
particular, if F is a finite field, then the multiplicative group Fx of nonzero elements 
of F is a cyclic group. 

Proof" We give a proof of this result using the Fundamental Theorem of Finitely 
Generated Abelian Groups (Theorem 3 in Section 5.2). A more number-theoretic proof 
is outlined in the exercises, or Proposition 5 in Section 6. 1 may be used in place of 
the Fundamental Theorem. By the Fundamental Theorem, the finite subgroup can be 
written as the direct product of cyclic groups 

Zjn 1Z x Zjn2Z x · · · x ZfnkZ 

where nk I nk- 1 I · · · I n2 I n1 . In general, if G is a cyclic group and d I I G I  then G 
contains precisely d elements of order dividing d. Since nk divides the order of each 
of the cyclic groups in the direct product, it follows that each direct factor contains 
nk elements of order dividing nk. If k were greater than I ,  there would therefore be a 
total of more than nk such elements. But then there would be more than nk roots of the 
polynomial xnk - 1 in the field F, contradicting Proposition 17. Hence k = l and the 
group is cyclic. 

Corollary 19. Let p be a prime. The multiplicative group (Z/ pZ) x of nonzero residue 
classes mod p is cyclic. 

Proof" This is the multiplicative group of the finite field Z/ pZ. 

Corollary 20. Let n � 2 be an integer with factorization n = p�1 p�2 • • • p�' in Z, where 
PI , . . .  , Pr are distinct primes. We have the following isomorphisms of (multiplicative) 
groups: 

(1) (ZjnZ) x � (Z/p�1 Z) x x (Zfp�2ZY x · · · x (Zjp�'ZY 
(2) (Z/2az) x is the direct product of a cyclic group of order 2 and a cyclic group 

of order 2a-2' for all a :::: 2 
(3) (Z/ paz) x is a cyclic group of order pa-l  (p - 1) ,  for all odd primes p.  

Remark: These isomorphisms describe the group-theoretic structure of the automor
phism group of the cyclic group, Zn , of order n since Aut(Zn)  � (ZjnZ) x (cf. Propo
sition 16  in Section 4.4). In particular, for p a prime the automorphism group of the 
cyclic gr.l)up of order p is cyclic of order p - 1 .  

Proof" This i s  mainly a matter of collecting previous results. The isomorphism in 
( 1 )  follows from the Chinese Remainder Theorem (see Corollary 1 8, Section 7.6). The 
isomorphism in (2) follows directly from Exercises 22 and 23 of Section 2.3. 

For p an odd prime, (Z/paz) x is an abelian group of order pa-1 (p - 1 ) .  By 
Exercise 21 of Section 2.3 the Sylow p-subgroup of this group is cyclic. The map 

defined by 

is a ring homomorphism (reduction mod p) which gives a smjective group homo
morphism from (Z/ pazy onto (Z/ pZ) x .  The latter group is cyclic of order p - 1 
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(Corollary 19). The kernel of this map is of order pa-l , hence for all primes q =!= p, the 
Sylow q-subgroup of (Z/ paz) x  maps isomorphically into the cyclic group (Z/ pZY . 
All Sylow subgroups of (Z/ paz)x are therefore cyclic, so (3) holds, completing the 
proof. 

E X E R C I S E S  

1. Let F be a field and let f(x) be a nonconstant polynomial in F[x] .  Describe the nilradical 
of F[x]j(f(x)) in terms of the factorization of j(x) (cf. Exercise 29, Section 7.3). 

2. For each of the fields constructed in Exercise 6 of Section 4 exhibit a generator for the 
(cyclic) multiplicative group of nonzero elements. 

3. Let p be an odd prime in z:; and let n be a positive integer. Prove that xn - p is irreducible 
over Z::[i ] .  [Use Proposition 1 8  in Chapter 8 and Eisenstein's Criterion.] 

4. Prove that x3 + 1 2x2 + 1 8x + 6 is irreducible over Z::[i] .  [Use Proposition 8. 1 8  and 
Eisenstein's Criterion.] 

5. Let 9 denote Euler's 9-function. Prove the identity Ldin 9(d) = n, where the sum is 
extended over all the divisors d of n. [First observe that the identity is valid when n = pm 
is the power of a prime p since the sum telescopes. Write n = pmn' where p does not 
divide n'. Prove that Ldin 9(d) = Ld"iPm 9(d") Ld' in' 9(d') by multiplying out the right 
hand side and using the multiplicativity 9(ab) = 9(a)9(b) when a and b are relatively 
prime. Use induction to complete the proof. This problem may be done alternatively 
by letting Z be the cyclic group of order n and showing that since Z contains a unique 
subgroup of order d for each d dividing n, the number of elements of Z of order d is 9(d) . 
Then I Z I is the sum of 9(d) as d runs over all divisors of n.] 

6. Let G be a finite subgroup of order n of the multiplicative group F x of nonzero elements 
of the field F. Let 9 denote Euler's 9-function and let 1/1 (d) denote the number of elements 
of G of order d. Prove that 1/f(d) = 9(d) for every divisor d of n. In particular conclude 
that 1/f(n) :::: 1 , so that G is a cyclic group. [Observe that for any integer N :::: 1 the 
polynomial xN - 1 has at most N roots in F. Conclude that for any integer N we have 
LdiN 1/l(d) _:::: N. Since LdJN 9(d) = N by the previous exercise, show by induction that 
1/f (d) _:::: 9(d) for every divisor d of n. Since Ldin 1/l(d) = n = Ldin 9(d) show that this 
implies 1/f(d) = 9(d) for every divisor d of n.] 

7. Prove that the additive and multiplicative groups of a field are never isomorphic. [Consider 
three cases: when I F  I is finite, when - 1  =1- I in F, and when - 1  = 1 in F.] 

9.6 POLYNOMIALS IN SEVERAL VARIABLES OVER A FIELD 
AND GROBNER BASES 

In this section we consider polynomials in many variables, present some basic computa
tional tools, and indicate some applications. The results of this section are not required 
in Chapters 10 through 14. Additional applications will be given in Chapter 15 . 

We proved in Section 2 that a polynomial ring F[x] in a variable x over a field F 
is a Euclidean Domain, and Corollary 8 showed that the polynomial ring F[x1 , . . .  , Xn] 
is a U.F.D. However it follows from Corollary 8 in Section 8.2 that the latter ring is 
not a P.I.D. unless n = 1 .  Our first result below shows that ideals in such polynomial 
rings, although not necessarily principal, are always finitely generated. General rings 
with this property are given a special name: 
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Definition. A commutative ring R with 1 is called Noetherian if every ideal of R is 
finitely generated. 

Noetherian rings will be studied in greater detail in Chapters 15 and 16. In this 
section we develop some of the basic theory and resulting algorithms for working with 
(finitely generated) ideals in F[xt , . . .  , Xn] .  

As we saw in  Section 1 ,  a polynomial ring in n variables can be considered as  a 
polynomial ring in one variable with coefficients in a polynomial ring in n - 1 variables . 
By following this inductive approach-as we did in Theorem 7 and Corollary 8-we 
can deduce that F[xt , x2 , . . .  , Xn] is Noetherian from the following more general result. 

Theorem 21. (Hilbert's Basis Theorem) If R is a Noetherian ring then so is the poly
nomial ring R[x].  

Proof" Let I be an ideal in R[x] and let L be the set of all leading coefficients of 
the elements in I .  We first show that L is an ideal of R, as follows. Since I contains 
the zero polynomial, 0 E L.  Let I = axd + · · · and g = bxe + · · · be polynomials in 
I of degrees d, e and leading coefficients a, b E R. Then for any r E R either ra - b 
is zero or it is the leading coefficient of the polynomial r xe I - xd g. Since the latter 
polynomial is in I we have ra - b E L,  which shows L is an ideal of R.  Since R is 
assumed Noetherian, the ideal L in R is finitely generated, say by a1 , a2 , . . .  , an E R. 
For each i = 1, . . . , n let /; be an element of I whose leading coefficient is a; . Let e; 
denote the degree of /; ,  and let N be the maximum of e1 , e2 , . . .  , en . 

For each d E {0, 1 ,  . . . , N - 1 }, let Ld be the set of all leading coefficients of 
polynomials in I of degree d together with 0. A similar argument as that for L shows 
each Ld is also an ideal of R, again finitely generated since R is Noetherian. For each 
nonzero ideal Ld let bd , l · bd,2 • . . .  , bd,nd E R be a set of generators for Ld , and let ld,i 
be a polynomial in I of degree d with leading coefficient bd , i . 

We show that the polynomials ft ,  . . . , In together with all the polynorrrials ld,i for 
all the nonzero ideals Ld are a set of generators for I, i.e., that 

I = ( Ut . . . . , In } U {fd, i I 0 � d < N, 1 � i � nd} ) . 

By construction, the ideal I' on the right above is contained in I since all the generators 
were chosen in I .  If I' =/:- I, there exists a nonzero polynomial I E I of minimum 
degree with I (j_ I' .  Let d = deg I and let a be the leading coefficient of I.  

Suppose first that d ?: N. Since a E L we may write a as an R-linear combination 
of the generators of L:  a = rtal + . . . + rnan . Then g = rtXd-e, It +  . . .  + rnxd-e., In is 
an element of I' with the same degree d and the same leading coefficient a as I. Then 
I - g E I is a polynomial in I of smaller degree than I. By the minimality of I, we 
must have I - g = 0, so I = g E I', a contradiction. 

Suppose next that d < N. In this case a E Ld for some d < N, and so we may 
write a = r1 bd , 1 + · · · + rndbnd for some r; E R. Then g = r1 ld , l + · · · + rnd lnd is a 
polynomial in I' with the same degree d and the same leading coefficient a as I, and 
we have a contradiction as before. 

It follows that I = I' is finitely generated, and since I was arbitrary, this completes 
the proof that R[x] is Noetherian. 
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Since a field is clearly Noetherian, Hilbert's Basis Theorem and induction imme
diately give: 

Corollary 22. Every ideal in the polynomial ring F[x1 , xz , . . .  , x11] with coefficients 
from a field F is finitely generated. 

If I is an ideal in F[x1 , . . .  , x11 ] generated by a (possibly infinite) set S of polyno
mials, Corollary 22 shows that I is finitely generated, and in fact I is generated by a 
finite number of the polynomials from the set S (cf. Exercise 1) .  

As the proof of Hilbert's Basis Theorem shows, the collection ofleading coefficients 
of the polynomials in an ideal I in R[x] forms an extremely useful ideal in R that can 
be used to understand I. This suggests studying "leading terms" in F[x1 , Xz , . . .  , x11] 
more generally (and somewhat more intrinsically). To do this we need to specify a 
total ordering on the monomials, since without some sort of ordering we cannot in 
general tell which is the "leading" term of a polynomial. We implicitly chose such an 
ordering in the inductive proof of Corollary 22-we first viewed a polynomial f as a 
polynomial in XI with coefficients in R = F[xz , . . .  , X11 ], say, then viewed its "leading 
coefficient" in F[xz , . . .  , Xn ] as a polynomial in Xz with coefficients in F[x3 , . . .  , x11], 
etc. This is an example of a lexicographic monomial ordering on the polynomial 
ring F[xt . . . .  , X11 ] which is defined by first declaring an ordering of the variables, for 
example XI > Xz > · · · > Xn and then declaring that the monomial term Axf• X�2 • • • x�" 
with exponents (a t ,  az , . . .  , a11 ) has higher order than the monomial term Bx�• x�2 • • - x�" 
with exponents (bt ,  hz, . . .  , b11) if the first component where the n-tuples differ has 
a; > b; . This is analogous to the ordering used in a dictionary (hence the name), 
where the letter "a" comes before "b" which in turn comes before "c", etc., and then 
"aardvark" comes before "abacus" (although the 'word' a2 = aa comes before a in 
the lexicographical order). Note that the ordering is only defined up to multiplication 
by units (elements of Fx}  and that multiplying two monomials by the same nonzero 
monomial does not change their ordering. This can be formalized in general. 

Definition. A monomial ordering is a well ordering ":::" on the set of monomials that 
satisfies mm1 2:: mmz whenever m1 2:: mz for monomials m,  m 1 , mz. Equivalently, 
a monomial ordering may be specified by defining a well ordering on the n-tuples 
a = (at ,  . . .  , a11 ) E zn of multidegrees of monomials Axf• · · · x�· that satisfies 
a + y 2:: fJ + y if a 2:: {J. 

It  is easy to show for any monomial ordering that m 2:: 1 for every monomial m 
(cf. Exercise 2). It is not difficult to show, using Hilbert's Basis Theorem, that any total 
ordering on monomials which for every monomial m satisfies m 2:: 1 and mm 1 ::: mmz 
whenever m1 2:: mz, is necessarily a well ordering (hence a monomial ordering)-this 
equivalent set of axioms for a monomial ordering may be easier to verify. For simplicity 
we shall limit the examples to the particularly easy and intuitive lexicographic ordering, 
but it is important to note that there are useful computational advantages to using other 
monomial orderings in practice. Some additional commonly used monomial orderings 
are introduced in the exercises. 
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As mentioned, once we have a monomial ordering we can define the leading term 
of a polynomial: 

Definition. Fix a monomial ordering on the polynomial ring F[x1 . x2 • . . .  , Xn] .  
(1) The leading term of a nonzero polynomial f in  F[x1 . x2 • . . .  , Xn ],  denoted 

LT(f), is the monomial term of maximal order in f and the leading term of 
f = 0 is 0. Define the multidegree of f, denoted () (f), to be the multidegree 
of the leading term of f. 

(2) If I is an ideal in F[x1 . x2 • . . .  , Xn ],  the ideal of leading terms, denoted LT(l), 
is the ideal generated by the leading terms of all the elements in the ideal, i.e., 
LT(l) = (LT(f) I f E I). 

The leading term and the multidegree of a polynomial clearly depend on the choice 
of the ordering. For example LT(2xy + y3) = 2xy with multidegree ( 1 , 1 )  if x > y, 
but LT(2xy + y3) = y3 with multidegree (0, 3) if y > x. In particular, the leading 
term of a polynomial need not be the term of largest total degree. Similarly, the ideal 
of leading terms LT(l) of an ideal I in general depends on the ordering used. Note 
also that the multidegree of a polynomial satisfies a (f g) = a f + a g when f and g are 
nonzero, and that in this case LT (fg) = LT(f) + LT(g) (cf. Exercise 2). 

The ideal LT(l) is by definition generated by monomials. Such ideals are called 
monomial ideals and are typically much easier to work with than generic ideals. For 
example, a polynomial is contained in a monomial ideal if and only if each of its 
monomial terms is a multiple of one of the generators for the ideal ( cf. Exercise 1 0). 

It was important in the proof of Hilbert's Basis Theorem to have all of the leading 
terms of the ideal I. If I = (ft , . . .  , fm), then LT(l) contains the leading terms 
L T(ft ),  . . .  , LT(fm) of the generators for I by definition. Since LT(l) is an ideal, it 
contains the ideal generated by these leading terms: 

(LT(ft), . . .  , LT(fm)) � LT(l) . 

The first of the following examples shows that the ideal LT(l) of leading terms can 
in general be strictly larger than the ideal generated just by the leading terms of some 
generators for I. 

Examples 

(1) Choose the lexicographic ordering x > y on F[x ,  y] . The leading terms of the 
polynomials fl = x3y - xy2 + 1 and h = x2y2 - y3 - 1 are LT(f1)  = x3y (so 
the multidegree of f1 is a (f1 ) = (3 , 1 )) and LT(f2) = x2y2 (so a(f2) = (2, 2)) . If 
I = U1 . h) is the ideal generated by fl and h then the leading term ideal LT(I) 
contains LT(fl)  = x3y and LT(f2) = x2y2, so (x3y , x2y2) � LT(I). Since 
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yfl - xh = y(x3y - xi + 1 ) - x (x2i - y3 - 1 )  = x + y 

we see that g = x + y is an element of I and so the ideal L T (I) also contains the leading 
term LT(g) = x .  This shows that LT(I) is strictly larger than (LT(fl) ,  LT(f2)), 
since every element in (LT(f1 ) ,  LT(f2)) = (x3y, x2y2) has total degree at least 4. 
We shall see later that in this case LT(I) = (x , y4) . 
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(2) With respect to the lexicographic ordering y > x, the leading terms of ft and fz 
in the previous example are LT(fl )  = -xy2 (which one could write as -y2x to 
emphasize the chosen ordering) and LT(fz) = -y3 . We shall see later that in this 
ordering LT(l) = (x4 , y), which is a different ideal than the ideal LT(l) obtained 
in the previous example using the ordering x > y, and is again strictly larger than 
(LT(/1 ) ,  LT(fz)). 

(3) Choose any ordering on F[x ,  y] and let f = f(x ,  y) be any nonzero polynomial. The 
leading term of every element of the principal ideal I = (f) is then a multiple of the 
leading term of f, so in this case LT(l) = (LT(f)) . 

In the case of one variable, leading terms are used in the Division Algorithm to 
reduce one polynomial g modulo another polynomial f to get a unique remainder r , and 
this remainder is 0 if and only if g is contained in the ideal (f). Since F[x, , xz , . . . , xn] 
is not a Euclidean Domain if n =::: 2 (since it is not a P.I.D.), the situation is more 
complicated for polynomials in more than one variable. In the first example above, 
neither ft nor h divides g in F[x ,  y] (by degree considerations, for example), so 
attempting to first divide g by one of !1 or h and then by the other to try to reduce g 
modulo the ideal I would produce a (nonzero) "remainder'' of g itself. In particular, 
this would suggest that g = Yf1 - xh is not an element of the ideal I even though 
it is. The reason the polynomial g of degree 1 can be a linear combination of the two 
polynomials ft and h of degree 4 is that the leading terms in y ft and xh cancel in the 
difference, and this is reflected in the fact that L T (JI )  and L T(f2) are not sufficient 
to generate L T (l) . A set of generators for an ideal I in F[x1 ,  • • •  , Xn] whose leading 
terms generate the leading terms of all the elements in I is given a special name. 

Definition. A Grabner basis for an ideal I in the polynomial ring F[x1 , . . .  , Xn ] is a 
finite set of generators {gl , . . .  , gm } for I whose leading terms generate the ideal of all 
leading terms in I, i.e., 

Remark: Note that a Grabner "basis" is in fact a set of generators for I (that depends on 
the choice of ordering), i.e., every element in I is a linear combination of the generators, 
and not a basis in the sense of vector spaces (where the linear combination would be 
unique, cf. Sections 10.3 and 1 1 . 1 ). Although potentially misleading, the terminology 
"Grobner basis" has been so widely adopted that it would be hazardous to introduce a 
different nomenclature. 

One of the most important properties of a Grobner basis (proved in Theorem 23 
following) is that every polynomial g can be written uniquely as the sum of an element 
in I and a remainder r obtained by a general polynomial division. In particular, we 
shall see that g is an element of I if and only if this remainder r is 0. While there is 
a similar decomposition in general, we shall see that if we do not use a Grobner basis 
the uniqueness is lost (and we cannot detect membership in I by checking whether the 
remainder is 0) because there are leading terms not accounted for by the leading terms 
of the generators. 
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We first use the leading terms of polynomials defined by a monomial ordering 
on F[xt , . . .  , Xn] to extend the one variable Division Algorithm to a noncanonical 
polynomial division in several variables. Recall that for polynomials in one variable, 
the usual Division Algorithm determines the quotient q (x) and remainder r (x) in the 
equation f(x) = q (x)g(x) + r (x) by successively testing whether the leading term of 
the dividend j(x) is divisible by the leading term of g(x) : if LT(f) = a(x)LT(g), 
the monomial term a(x) is added to the quotient and the process is iterated with j(x) 
replaced by the dividend j(x) - a(x)g(x) , which is of smaller degree since the leading 
terms cancel (by the choice of a(x)). The process terminates when the leading term 
of the divisor g(x) no longer divides the leading term of the dividend, leaving the 
remainder r (x) .  We can extend this to division by a finite number of polynomials in 
several variables simply by allowing successive divisions, resulting in a remainder and 
several quotients, as follows. 

General  Polynomial Division 

Fix a monomial ordering on F[x1 , • • •  , Xn] ,  and suppose g1 , . . . .  gm is a set of nonzero 
polynomials in F[xt , . . .  , Xn] . If f is any polynomial in F[xt • . . .  , Xn], start with a 
set of quotients q1 • . . .  , qm and a remainder r initially all equal to 0 and successively 
test whether the leading term of the dividend f is divisible by the leading terms of the 
divisors g1 • . . .  , gm , in that order. Then 

i. If LT(J) is divisible by LT(g; ) , say, LT(j) = a; LT(g; ) , add a; to the quotient q; , 
replace f by the dividend f - a;g; (a polynomial with lower order leading term), 
and reiterate the entire process. 

ii. If the leading term of the dividend f is not divisible by any of the leading terms 
LT(gt ) , . . . •  LT(gm) .  add the leading term of f to the remainder r, replace f by 
the dividend f - LT (f) (i .e., remove the leading term of f), and reiterate the 
entire process. 

The process terminates ( cf. Exercise 3) when the dividend is 0 and results in a set of 
quotients q1 , . . .  , qm and a remainder r with 

J = q1 g1 + · · · + qmgm + r. 
Each q;g; has multidegree less than or equal to the multidegree of f and the remainder 
r has the property that no nonzero term in r is divisible by any of the leading terms 
LT(gt ) ,  . . .  , LT(gm) (since only terms with this property are added to r in (ii)). 

Examples 

Fix the lexicographic ordering x > y on F[x, y] . 
(1) Suppose f = x3y3 + 3x2y4 and g = xy4 . The leading term of f is x3y3, which is 

not divisible by (the leading term of) g, so x3y3 is added to the remainder r (so now 
r = x3y3) and f is replaced by f - LT(f) = 3x2y4 and we start over. Since 3x2y4 
is divisible by LT(g) = xi. with quotient a =  3x, we add 3x to the quotient q (so 
q = 3x), and replace 3x2y4 by 3x2y4 - aLT(g) = 0, at which point the process 
terminates. The result is the quotient q = 3x and remainder r = x3 y3 and 

x3y3 + 3x2y4 = f = qg + r = (3x) (xy4) + x3y3 . 
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Note that if we had terminated at the first step because the leading term of f is 
not divisible by the leading term of g (which terminates the Division Algorithm for 
polynomials in one variable), then we would have been left with a 'remainder' of f 
itself, even though 'more' of f is divisible by g. This is the reason for step 2 in the 
division process (which is not necessary for polynomials in one variable). 

(2) Let f = x2 + x - y2 + y, and suppose g1 = x y + 1 and g2 = x + y. In the first iteration, 
the leading term x2 of f is not divisible by the leading term of g1 , but is divisible by 
the leading term of g2, so the quotient q2 is x and the dividend f is replaced by the 
dividend f - xg2 = -xy + x - y2 + y. In the second iteration, the leading term 
of -xy + x - y2 + y is divisible by L T (gt) .  with quotient -1 ,  so q1 = -1  and the 
dividend is replaced by (-xy + x - y2 + y) - ( - I )g1 = x - y2 + y + 1 .  In the third 
iteration, the leading term of x - y2 + y + 1 is not divisible by the leading term of g1 , 
but is divisible by the leading term of g2, with quotient I, so 1 is added to q2 (which is 
now q2 = x + l) and the dividend becomes (x - i + y + I ) - (l) (g2) = -y2 + 1 . The 
leading term is now -y2, which is not divisible by either L T (g1 ) = xy or L T (g2) = x, 
so -y2 is added to the remainder r (which is now -y2) and the dividend becomes 
simply 1 .  Finally, I is not divisible by either LT(gt ) or LT(g2),  so is added to the 
remainder (so r is now -y2 + 1 ), and the process terminates. The result is 

q1 = - 1 ,  q2 = x + I , r = -l + I  and 

f = x2 + x - y2 + y = (- l) (xy + I) + (x + 1) (x + y) + <-l + 1) 
= q1 g1 + q2g2 + r. 

(3) Let f = x2 + x - y2 + y as in the previous example and interchange the divisors g1 
and g2 : g1 = x + y and g2 = xy + 1.  In this case an easy computation gives 

q1 = x - y + I , q2 = 0, r = 0 and 

f = x2 + x - l  + y = (x - y + I ) (x + y) = q1 g1 + q2g2 + r, 

showing that the quotients q; and the remainder r are in general not unique and depend 
on the order of the divisors g1 , . . . • gm . 

The computation in Example 3 shows that the polynomial f = x2 + x - y2 + y is 
an element of the ideal I = (x + y,  xy + 1) since the remainder obtained in this case 
was 0 (in fact f is just a multiple of the first generator). In Example 2, however, the 
same polynomial resulted in a nonzero remainder -y2 + 1 when divided by x y + 1 and 
x + y, and it was not at all clear from that computation that f was an element of I. 

The next theorem shows that if we use a Grobner basis for the ideal I then these 
difficulties do not arise: we obtain a unique remainder, which in tum can be used to 
determine whether a polynomial f is an element of the ideal I . 

Theorem 23. Fix amonomial ordering on R = F[xt , . . .  , Xn ] and suppose {g1 , • • •  , gm} 
is a Grobner basis for the nonzero ideal I in R. Then 

(1) Every polynomial f E R can be written uniquely in the form 

f = !I + r 
where !I E I and no nonzero monomial term of the 'remainder' r is divisible 
by any of the leading terms L T (gt)  • . . .  , L T (gm).  

Sec. 9.6 Polynomia ls i n  Severa l Variab les over a Field and Grabner Bases 321 



(2) Both h and r can be computed by general polynomial division by 81 , . . .  , 8m 

and are independent of the order in which these polynomials are used in the 
division. 

(3) The remainder r provides a unique representative for the coset of f in the 
quotient ring F[x1 , . . .  , Xn]/ I .  In particular, f E I if and only if r = 0. 

Proof" Letting h = L�=1 qi gi E I in the general polynomial division of f 
by 81 , . . .  , 8m immediately gives a decomposition f = h + r for any generators 
g1 , . . . , 8m · Suppose now that {g. , . . .  , gm } is aGrobnerbasis, and f = /J +r = J;+r'. 
Then r - r' = J; - h E I, so its leading term LT(r - r') is an element of LT(I),  which 
is the ideal (L T(g1 ) ,  . . .  , LT(gm)) since {g. , . . .  , gm } is a Grobner basis for I .  Every 
element in this ideal is a sum of multiples of the monomial terms LT(g1 ) ,  . . .  , LT(gm), 
so is a sum of terms each of which is divisible by one of the LT(gi ) .  But both r 
and r', hence also r - r', are sums of monomial terms none of which is divisible by 
LT(g1 ) ,  . . .  , LT(gm), which is a contradiction unless r - r' = 0. It follows that r = r' 
is unique, hence so is h = f - r, which proves (1 ). 

We have already seen that h and r can be computed algorithmically by polynomial 
division, and the uniqueness in ( 1 )  implies that r is independent of the order in which the 
polynomials 81 , . . .  , 8m are used in the division. Similarly h = I:;: 1 qi gi is uniquely 
determined (even though the individual quotients qi are not in general unique), which 
gives (2). 

The first statement in (3) is immediate from the uniqueness in ( 1 ). If r = 0, then 
f = h E I .  Conversely, if f E I, then f = f + 0 together with the uniqueness of r 
implies that r = 0, and the final statement of the theorem follows. 

As previously mentioned, the importance of Theorem 23 , and one of the principal 
uses of Grobner bases, is the uniqueness of the representative r, which allows effective 
computation in the quotient ring F[xi ,  . . .  , Xn]/ I .  

We next prove that a set of polynomials in  an ideal whose leading terms generate 
all the leading terms of an ideal is in fact a set of generators for the ideal itself (and so 
is a Grobner basis-in some works this is tal-'!n as the definition of a Grabner basis), 
and this shows in particular that a Grabner basis always exists. 

Proposition 24. Fix a monomial ordering on R = F[x1 , . . .  , Xn] and let I be a nonzero 
ideal in R. 

(1) If g1 , . . .  , 8m are any elements of / such that L T(I) = (L T(g1 ) ,  . . .  , LT(gm)), 
then {gt , . . .  , 8m } is a Grobner basis for I. 

(2) The ideal I has a Grobner basis. 

Proof" Suppose 8t . . . .  , 8m E I with LT(/) = (LT(gt) ,  . . .  , LT(gm)) .  We need 
to see that 81 , . . .  , 8m generate the ideal I. If f E I ,  use general polynomial division 
to write f = L�=l qigi + r where no nonzero term in the remainder r is divisible by 
any LT(gi ) .  Since f E I, also r E I ,  which means LT(r) is in LT(/) .  But then 
LT(r) would be divisible by one of LT(g1 ) ,  . . .  , LT(gm) ,  which is a contradiction 
unless r = 0. Hence f = I:;"= 1 qi gi and 81 , . . .  , 8m generate I, so are a Grobner basis 
for I , which proves ( 1  ). 
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For (2), note that the ideal LT (I) ofleading terms of any ideal I is a monomial ideal 
generated by all the leading terms of the polynomials in I .  By Exercise 1 a finite number 
of those leading terms suffice to generate LT(J), say LT(J) = (LT(h t ) ,  . . .  , LT(hk)) 
for some h 1 , . . . . hk E I. By (1 ), the polynomials h 1 , . . .  , hk are a Grabner basis of I, 
completing the proof. 

Proposition 24 proves that Grabner bases always exist. We next prove a criterion 
that determines whether a given set of generators of an ideal I is a Grabner basis, 
which we then use to provide an algorithm to find a Grabner basis. The basic idea is 
very simple: additional elements in LT(I) can arise by taking linear combinations of 
generators that cancel leading terms, as we saw in taking y f1 - x h in the first example 
in this section. We shall see that obtaining new leading terms from generators in this 
simple manner is the only obstruction to a set of generators being a Grabner basis. 

In general, if f1 , h are two polynomials in F [x1 , . • .  , Xn] and M is the monic least 
common multiple of the monomial terms LT (f1 )  and LT(h) then we can cancel the 
leading terms by taking the difference 

M M 
S(f1 , h) = 

LT (f1 )  !
1 - LT(h) h · 

(9. 1 ) 

The next lemma shows that these elementary linear combinations account for all can
cellation in leading terms of polynomials of the same multidegree. 

Lemma 25. Suppose ft ,  . . .  , fm E F[x1 , . . .  , Xn ] are polynomials with the same 
multidegree a and that the linear combination h = a1 ft + · · · + am fm with constants 
a; E F has strictly smaller multidegree. Then 

m 
h = L b; S(J;-1 . f;) ,  for some constants b; E F. 

i=2 

Proof Write f; = c; f/ where c; E F and f/ is a monic polynomial of multidegree 
a. We have 

h = L a;c; J;' = a1 Ct (f{ - f�) + (at Ct + a2c2) (f� - J;) + · · · 

+ (a1c1 + · · · + am-1Cm-1 Hf�-1 - f�) + (a1 c1 + · · · + amcm)f� . 

Note that J;'_1 - f/ = S(j;_1 ,  j;) . Then since h and each J;'_1 - J;' has multidegree 
strictly smaller than a, we have a1 c1 + · · · + amcm = 0, so the last term on the right 
hand side is 0 and the lemma follows. 

The next proposition shows that a set of generators 81 , . . . , 8m is a Grabner basis if 
there are no new leading terms among the differences S(8; , 8i) not already accounted 
for by the 8i . This result provides the principal ingredient in an algorithm to construct 
a Grabner basis. 

For a fixed monomial ordering on R = F[x. , . . .  , Xn ] and ordered set of polyno
mials G = {81 • . . .  , 8m } in R, write f = r mod G if r is the remainder obtained by 
general polynomial division of f E R by 81 , . . . , 8m (in that order). 
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Proposition 26. (Buchberger's Criterion) Let R = F[x1 , . . . , Xn ] and fix a monomial 
ordering on R.  If I = (g1 , . . .  , gm) is a nonzero ideal in R, then G = {g1 , . . .  , gm } is 
a Grobner basis for I if and only if S(g; , gj ) = 0 mod G for 1 � i < j � m .  

Proof" If {g1 , • . •  , gm } is a Grobner basis for I, then S(g; , gj )  = 0 mod G by 
Theorem 23 since each S(g; ,  gj) is an element of I . 

Suppose now that S(g; , gj) = 0 mod G for 1 � i < j � m and take any element 
f E /. To see that G is a Grobner basis we need to see that (LT(g1 ) ,  . . . , LT(gm)) 
contains LT(f) . Since f E I, we can write f = L�=1 h;g; for some polynomials 
h t . . . .  , hm - Such a representation is not unique. Among all such representations 
choose one for which the largest multidegree of any summand (i.e., max;=1 ,  . . . ,m o (h;g; )) 
is minimal, say a. It is clear that the multidegree of f is no worse than the largest 
multidegree of all the summands h;g; ,  so o(j) s a. Write 

m 

1 = L h;g; = I: h; g, + I: h;g; 
i=1 iJ(h; g; )==a iJ(h; g; ) <a 

L LT(h;)g; + L (h; - LT(h;))g; + L h;g; . (9.2) 
iJ (h; g; )=a a(h;g; ) <a 

Suppose that o(j) < a . Then since the multidegree of the second two sums is also 
strictly smaller than a it follows that the multidegree of the first sum is strictly smaller 
than a. If a; E F denotes the constant coefficient of the monomial term LT(h; ) then 
LT(h;) = a;h; where h; is a monomiaL We can apply Lemma 25 to L: a; (h;g; )  to 
write the first sum above as I: b;S(h;_1g;-1 , h; g; )  with o (h;_1g;-1) = o(h;g; )  = a. 
Let /3; -I , i  be the multidegree of the monic least common multiple of LT(g;-1 ) and 
LT(g;) .  Then an easy computation shows that S(h;_ 1g;-1 , h; g; ) is just S(g;-1 , g; ) 
multiplied by the monomial of multidegree a - f3i-1 , i · The polynomial S(g;-1 , g; )  has 
multidegree less than f3i- 1 , i and, by assumption, S(g;-1 , g; ) = 0 mod G. This means 
that after general polynomial division of S(g;-1 , g; ) by g1 , . . .  , gm , each S(g;-1 , g; )  can 
be written as a sum L qjgj with o (qjgj) < f3i-1 ,i · It follows that each S(h;_1gi-1 · h;g; )  
is a sum L: qjgj with o (qjgj) < a .  But then all the sums on the right hand side of 
equation (2) can be written as a sum of terms of the form p; g; with polynomials p; 
satisfying o (p;g;) < a .  This contradicts the minimality of a and shows that in fact 
o (j) = a, i.e., the leading term of f has multidegree a. 

H we now take the terms in equation (2) of multidegree a we see that 

LT(j) = L LT(h; )LT(g; ) ,  
iJ(h; g; )==a 

so indeed LT(j) E (LT(g1) ,  . . .  , LT(gm)) . It follows that G = {g1 , . . . , gm } is a 
Grobner basis. 

Buchberger's Algorithm 

Buchberger's Criterion can be used to provide an algorithm to find a Grobner basis 
for an ideal I, as follows. If I = (g1 , . . . • gm) and each S(g; , gj ) leaves a remainder 
of 0 when divided by G = {g1 , . . .  , gm } using general polynomial division then G 
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is a Grabner basis. Otherwise S(g; , gj ) has a nonzero remainder r . Increase G by 
appending the polynomial gm+I = r: G' = {gi , . . .  , gm , gm+d and begin again (note 
that this is again a set of generators for I since gm+I E J). It is not hard to check 
that this procedure terminates after a finite number of steps in a generating set G that 
satisfies Buchberger's Criterion, hence is a Grabner basis for I (cf. Exercise 16). Note 
that once an S(g; , gi ) yields a remainder of 0 after division by the polynomials in G it 
also yields a remainder of 0 when additional polynomials are appended to G. 

If  {g1 , • • •  , gm } i s  a Grabner basis for the ideal ! and LT (gj ) i s  divisible by LT (g; ) 
for some j i= i ,  then LT(gj ) is not needed as a generator for L T(J) . By Proposition 24 
we may therefore delete gi and still retain a Grabner basis for I .  We may also assume 
without loss that the leading term of each g; is monic. A Grobner basis {g1 , • • •  , gm } 
for I where each LT(g; ) is monic and where LT (gj ) is not divisible by L T (g; ) for 
i -f=. j is called a minimal Grabner basis. WhiJ>· a minimal Grabner basis is not unique, 
the number of elements and their leading terms are unique (cf. Exercise 15). 

Examples 

(1) Choose the lexicographic ordering x > y on F[x ,  y] and consider the ideal I generated 
by fi = x3y - xy2 + 1 and h = x2y2 - y3 - 1 as in Example 1 at the beginning of 
this section. To test whether G = {fi , h} is a Grobner basis we compute S(/1 . h) = 
y fi - xh = x + y, which is its own remainder when divided by {/I , h}, so G is not a 
Grobner basis for I. Set h = x+y, and increase the generating set: G' = {/J , h. /3} .  
Now S(/1 .  h) = 0 mod G', and a brief computation yields 

S(/J , /3) = !I - x2yf3 = -x2y2 - xl + 1 = 0 mod G' 

S(h, /3) = h - xl /3 = -xy3 - l - 1 = i - l - 1 mod G' . 

Let /4 = y4 - y3 - 1 and increase the generating set to G'' =  {/J , h. /3,  j4}.  The 
previous 0 remainder is still 0, and now S(h. /3) = 0 mod G" by the choice of !4· 
Some additional computation yields 

S(ft , /4) = S(h, /4) = S(/3 , /4) = 0 mod G" 

and so {x3y - xy2 + 1 ,  x2y2 - y3 - 1 ,  x + y, y4 - y3 - 1 }  is a Grobner basis for 
I. In particular, LT(I) is generated by the leading terms of these four polynomials, 
so LT(l) = (x3y, x2y2 , x , y4) = (x, y4) ,  as previously mentioned. Then x + y 
and y4 - l  - 1 in I have leading terms generating LT(l), so by Proposition 24, 
{x + y, y4 - y3 - 1 }  gives a minimal Grobner basis for I :  

1 = (x  + y ,  y4 - l - 1) .  

This description of I is  much simpler than I =  (x3y - xl + 1 ,  x2y2 - y3 - 1 ). 
(2) Choose the lexicographic ordering y > x on F[x ,  y] and consider the ideal I in the 

previous example. In this case, S (/I , h) produces a remainder of h = -x - y; then 
S (/I , /3) produces a remainder of /4 = -x4 - x3 + 1 ,  and then all remainders are 0 
with respect to the Grobner basis {x3 y - xy2 + 1 ,  x2 y2 - y3 - 1 ,  -x - y, -x4 - x3 + 
1 } .  Here LT(l) = (-xy2 , -y3 , -y, -x4) = (y. x4) , as previous1y mentioned, and 
{x + y, x4 + x3 - 1 }  gives a minimal Grobner basis for I with respect to this ordering: 

I =  (x + y, x4 + x3 - 1) , 

a different simpler description of I.  
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In Example 1 above it is easy to check that {x + y4 - y3 + y - 1 ,  y4 -y3 - 1}  is again 
a minimal Grobner basis for I (this is just {/3 + f4 , f4}), so even with a fixed monomial 
ordering on F[x1 • • • •  , xnl a minimal Grobner basis for an ideal I is not unique. We can 
obtain an important uniqueness property by strengthening the condition on divisibility 
by the leading terms of the basis. 

Definition. Fix a monomial ordering on R = F[x1 , • • •  , xn].  A Grobner basis 
{g1 , • • •  , gm }  for the nonzero ideal I in R is called a reduced Grabner basis if 

(a) each g; has monic leading term, i.e., LT(g; ) is monic, i = 1 ,  . . .  , m, and 
(b) no term in g} is divisible by LT(g; ) for j i= i .  

Note that a reduced Grobner basis is, in particular, a minimal Grobner basis. If 
G = {g1 , . . .  , gm } is a minimal Grebner basis for I, then the leading term LT(gj) is not 
divisible by LT (g; ) for any i i= j .  As a result, if we use polynomial division to divide 
gJ by the other polynomials in G we obtain a remainder gj in the ideal I with the same 
leading term as gJ (the remainder gj does not depend on the order of the polynomials 
used in the division by (2) of Theorem 23). By Proposition 24, replacing gJ by gj in G 
again gives a minimal Grobner basis for I, and in this basis no term of gj is divisible 
by LT (g; ) for any i i= j .  Replacing each element in G by its remainder after division 
by the other elements in G therefore results in a reduced Grebner basis for I .  The 
importance of reduced Grobner bases is that they are unique (for a given monomial 
ordering), as the next result shows. 

Theorem 27. Fix a monomial ordering on R = F[x1 , • • •  , xnl· Then there is a unique 
reduced Grebner basis for every nonzero ideal I in R. 

Proof" By Exercise 15 ,  two reduced bases have the same number of elements and 
the same leading terms since reduced bases are also minimal bases. If G = {g1 , • • . , gm } 
and G' = {g� , . . .  , g� } are two reduced bases for the same nonzero ideal I ,  then after a 
possible rearrangement we may assume L T (g; ) = LT(g;) = h; for i =  1 ,  . . . , m .  For 
any fixed i ,  consider the polynomial f; = g; - g; . If /; is nonzero, then since /; E I, its 
leading term must be divisible by some h J .  By definition of a reduced basis, h 1 for j i= i 
does not divide any of the terms in either g; or g; , hence does not divide LT(f; ) .  But h; 
also does not divide L T (f; )  since all the terms in /; have strictly smaller multidegree. 
This forces f; = 0, i .e., g; = g; for every i , so G = G'. 

One application of the uniqueness of the reduced Grebner basis is a computational 
method to determine when two ideals in a polynomial ring are equal. 

Corollary 28. Let I and J be two ideals in F[x1 , • • • , Xn l·  Then I = J if and only 
if I and J have the same reduced Grobner basis with respect to any fixed monomial 
ordering on F[xi , . . .  , Xn] .  

Examples 

(1) Consider the ideal / = (h i ,  h2 , h3) with h 1  = x2 +xy5 +l, h2 = xy6 -xy3 + y5 - y2, 
and h3 = xy5 - xy2 in F[x ,  y] .  Using the lexicographic ordering x > y we find 
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S(h t ,  h2) = S(ht . h3) = 0 mod {h t .  h2 . h3 } and S(h2 , h3) = y5 -y2 mod {h t ,  h2 .  h3 } .  
Setting h4 = y5 - y2 we find S(h; , hj ) = 0 mod {h t ,  h2 . h3 , h4l for 1 .:::= i < j .:::= 4, 
so 

x2 + xi + y4 , xy6 - xi + y5 - y2 ' xy5 - xy2 , y5 - i 

is a Grobner basis for I .  The leading terms of this basis are x2, xi , xy5 , y5 . Since y5 

divides both xy6 and xy5, we may remove the second and third generators to obtain a 
minimal Grebner basis {x2 + xy5 + y4 , y5 - y2} for I .  The second term in the first 
generator is divisible by the leading term y5 of the second generator, so this is not a 
reduced Grobner basis. Replacing x2 + xy5 + y4 by its remainder x2 + xy2 + y4 after 
division by the other polynomials in the basis (which in this case is only the polynomial 
y5 - y2), we are left with the reduced Grebner basis {x2 + xy2 + y4 , y5 - y2} for I .  

(2) Consider the ideal J = (h t .  h2 , h3) with ht  = xy3 + y3 + 1 ,  h2 = x3y - x3 + 1 , and 
h3 = x + y in F[x ,  y ] .  Using the lexicographic monomial ordering x > y we find 
S(h t .  h2) = 0 mod {h t .  h2 ,  h3} and S(h J ,  h3) = y4 - y3 - 1  mod {h t ,  h2 . h3 } . Setting 
h4 = y4 - y3 - 1 we find S(h; , hj ) = 0 mod {h t .  h2 , h3 , h4 ) for 1 .:::= i < j .:::= 4, so 

xy3 + y3 + 1 ,  x3y - x3 + 1 ,  x + y, y4 - i - 1 

is a Grobner basis for J .  The leading terms of this basis are xy3 , x3 y, x, and l. so 
{x + y, l - y3 - 1 }  is a minimal Grobner basis for J. In this case none of the terms 
in y4 - y3 - I are divisible by the leading term of x + y and none of the terms in 
x + y are divisible by the leading term in l - y3 - 1 ,  so {x + y, y4 - y3 - 1 }  is the 
reduced Grobner basis for J .  This is the basis for the ideal I in Example 1 following 
Proposition 26, so these two ideals are equal: 

(x3y - xy2 + 1 ,  x2l - i - 1 )  = (xi + y3 + 1 ,  x3y - x3 + 1 , x + y) 

(and both are equal to the ideal (x + y, y4 - y3 - 1)) .  

Grebner Bases and Solving Algebraic Equations: Elimi nation 

The theory of Grobner bases is very useful in explicitly solving systems of algebraic 
equations, and is the basis by which computer algebra programs attempt to solve systems 
of equations. Suppose S = {f1 ,  • . •  , fm } is a collection of polynomials in n variables 
XJ , • • •  , Xn and we are trying to find the solutions of the system of equations ft = 0, 
h = 0, . . . , fm = 0 (i.e., the common set of zeros of the polynomials in S). If 
(at • . . .  , an) is any solution to this system, then every element f of the ideal I generated 
by S also satisfies f (a 1 , • • •  , an) = 0. Furthermore, it is an easy exercise to see that if 
S' = {g1 , • • •  , gs } is any set of generators for the ideal I then the set of solutions to the 
system g1 = 0, . . .  , g,, = 0 is the same as the original solution set. 

In the situation where ft ,  . . . , fm are linear polynomials, a solution to the system 
of equations can be obtained by successively eliminating the variables Xt , x2 , . . .  by 
elementary means-using linear combinations of the original equations to eliminate 
the variable Xt . then using these equations to eliminate x2, etc., producing a system of 
equations that can be easily solved (this is "Gauss-Jordan elimination" in linear algebra, 
cf. the exercises in Section 1 1 .2) . 

The situation for polynomial equations that are nonlinear is naturally more com
plicated, but the basic principle is the same. If there is a nonzero polynomial in the 
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ideal I involving only one of the variables, say p(xn) ,  then the last coordinate an is 
a solution of p(xn) = 0. If now there is a polynomial in I involving only Xn-J and 
Xn , say q (xn-t . Xn) ,  then the coordinate an-I  would be a solution of q (Xn-1 ·  an) = 0, 
etc. If we can successively find polynomials in I that eliminate the variables x 1 , x2 , • • •  
then we will be able to determine all the solutions (a1 , • • • •  an) to our original system 
of equations explicitly. 

Finding equations that follow from the system of equations in S, i.e. , finding ele
ments of the ideal I that do not involve some of the variables, is referred to as elimi
nation theory. The polynomials in I that do not involve the variables Xt . . . .  , x; , i.e., 
I n  F[x;+I ,  . . .  , Xn ],  is easily seen to be an ideal in F[x;+J , . . .  , Xn ] and is given a name. 

Definition. If I is an ideal in F [x1 , . . .  , Xn] then I; = I n F[x;+I .  . . .  , Xn] is called 
the ith elimination ideal of I with respect to the ordering XI > · · · > Xn .  

The success of using elimination to solve a system of equations depends on being 
able to determine the elimination ideals (and, ultimately, on whether these elimination 
ideals are nonzero). 

The following fundamental proposition shows that if the lexicographic monomial 
ordering x1 > · · · > Xn is used to compute a Grobner basis for 1 then the elements 
in the resulting basis not involving the variables xi > . . .  , x; not only determine the ; th 
elimination ideal, but in fact give a Grobner basis for the i th elimination ideal of I .  

Proposition 29. (Elimination) Suppose G = {g1 , . • •  , gm } i s  a Grobner basis for the 
nonzero ideal I in F[xJ , . . .  , Xn] with respect to the lexicographic monomial ordering 
XJ > . . .  > Xn - Then G n F[x;+l ' . . . ' Xn ] is a Grabner basis of the i1h elimination 
ideal I; = I n F[x;+I , . . .  , Xn] of I .  In particular, I n F[xi+I , . . .  , Xn ] = 0 if and only 
if G n F[xi+b . . .  ' Xn]  = 0. 

Proof Denote G; = G n F[x;+I ·  . . .  , Xn ] - Then G; � I; , so by Proposition 
24, to see that G; is a Grabner basis of I; it suffices to see that LT(G; ) ,  the leading 
terms of the elements in G; , generate L T  (/; )  as an ideal in F[x;+I ,  . . .  , Xn ] - Certainly 
(L T (G;)) � LT (l; ) as ideals in F[x;+I •  . . .  , Xn] - To show the reverse containment, 
let f be any element in I; . Then f E I and since G is a Grabner basis for I we have 

L T (f) = a1 (xb . . . , Xn )L T(gJ )  + · · · + am (XJ , . . .  , Xn )L T (gm) 

for some polynomials a1 , . . .  , am E F[x1 , . . .  , Xn ] .  Writing each polynomial a; as a 
sum of monomial terms we see that L T (f) is a sum of monomial terms of the form 
ax:• . . .  x�" L T (g; ) .  Since L T (f) involves only the variables Xi+l •  . . .  , Xn , the sum of 
all such terms containing any of the variables x1 . . . .  , x; must be 0, so L T(f) is also the 
sum of those monomial terms only involving x;+i • . . . , Xn - It follows that L T (f) can be 
written as a F[x; + 1 ,  . . •  , Xn]-linear combination of some monomial terms L T (g1 ) where 
L T (g1) does not involve the variables Xt . . . .  , x; . But by the choice of the ordering, 
if L T (g1 ) does not involve x1 , . . •  , x; ,  then neither do any of the other terms in g1 , 
i.e., g1 E G; . Hence L T (f) can be written as a F[xi+l • . . .  , Xn ] -linear combination of 
elements L T (G;),  completing the proof. 

Note also that Grabner bases can be used to eliminate any variables simply by using 
an appropriate monomial ordering. 
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Examples 

(1) The ellipse 2x2 + 2xy + y2 - 2x - 2y = 0 intersects the circle x2 + y2 = 1 in two 
points. To find them we compute a Grobner basis for the ideal / = (2x2 + 2xy + y2 -
2x - 2y, x2 + y2 - 1) c JR[x ,  y] using the lexicographic monomial order x > y to 
eliminate x, obtaining g1 = 2x + y2 + 5y3 - 2 and g2 = 5y4 - 4y3 . Hence 5y4 = 4y3 
and y = 0 or y = 4/5. Substituting these values into g1 = 0 and solving for x we find 
the two intersection points are ( 1 ,  0) and ( -3/5, 4/5) . 

Instead using the lexicographic monomial order y > x to eliminate y results in 
the Grobner basis {y2 + x2 - 1 ,  2yx - 2y + x2 - 2x + 1, 5x3 - 7x2 - x + 3} . Then 
5x3 - 7x2 - x + 3 = (x - 1)2(5x + 3) shows that x is 1 or -3/5 and we obtain the 
same solutions as before, although with more effort. 

(2) In the previous example the solutions could also have been found by elementary means. 
Consider now the solutions in C to the system of two equations 

x3 - 2xy + y3 = 0 and x5 - 2x2l + y5 = 0. 
Computing a Grobner basis for the ideal generated by fi = x3 - 2xy + y3 and 
h = x5 - 2x2y2 + y5 with respect to the lexicographic monomial order x > y we 
obtain the basis 

gl = x3 - 2xy + y3 

g2 = 200xl + 193y9 + l 58y8 - 45y7 - 456y6 + 50y5 - 100y4 

g3 = Y IO - y8 - 2y7 + 2y6 . 
Any solution to our original equations would satisfy g1 = g2 = g3 = 0. Since 
g3 = y6 (y - 1)2(y2 + 2y + 2) , we have y = 0, y = I or y = - 1  ± i .  Since 
g1 (x, 0) = x3 and g2 (x , 0) = 0, we see that (0, 0) is the only solution with y = 0. 
Since g1 (x, 1) = x3 - 2x +  1 and g2(x, 1 ) = 200(x - l) have only x = 1 as a common 
zero, the only solution with y = 1 is ( 1 ,  1) .  Finally, 

g1 (x, - I ± i) = x3 + (2 =F 2i)x + (2 ± 2i) 
g2(x, - 1  ± i )  = -400i(x + 1 ± i) ,  

and a quick check shows the common zero x = - 1  =f i when y = - 1  ± i , respectively. 
Hence, there are precisely four solutions to the original pair of equations, namely 

(x , y) = (O, O) , ( 1 , 1) , (- l + i , - 1 - i) , or (- 1 - i , - l + i) .  
(3) Consider th e  solutions i n  C to the system of equations 

x + y + z = l  

x2 + i + z2 = 2 

x3 + Y3 + z3 = 3.  
The reduced Grobner basis with respect to the lexicographic ordering x > y > z is 

{x + y + z - I , i + yz - y + i - z - (1/2) , z3 - z2 - (l/2)z - (l/6) } 
and so z is a root ofthe polynomial t3 - t2 - ( l/2)t - (1 /6) (by symmetry, also x and y 
are roots of this same polynomial). For each of the three roots of this polynomial, there 
are two values of y and one corresponding value of x making the first two polynomials 
in the Grobner basis equal to 0. The resulting six solutions are quickly checked to be 
the three distinct roots of the polynomial t3 - t2 - (I j2)t - (1 /6) (which is irreducible 
over Q) in some order. 
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As the previous examples show, the study of solutions to systems of polynomial 
equations /1 = 0, h = 0, . . .  , fm = 0 is intimately related to the study of the ideal 
I = (fl , h ,  . . . , fm) the polynomials generate in F[xt , . . .  , Xn] .  This fundamental 
connection is the starting point for the important and active branch of mathematics 
called "algebraic geometry", introduced in Chapter 15, where additional applications 
of Grabner bases are given. 

We close this section by showing how to compute the basic set-theoretic op
erations of sums, products and intersections of ideals in polynomial rings. Sup-
pose I = Ut . . . .  , fs ) and J = (h t . . . .  , h1 ) are two ideals in F[xt , . . .  , Xn ] .  Then 
I + 1  = Ut . . . .  , /5 ,  ht . . . . , h1) and I 1 = Utht , . . .  , fihj , . . .  , fsh1) .  The following 
proposition shows how to compute the intersection of any two ideals. 

Proposition 30. If I and J are any two ideals in F[xt . . . .  , Xn] then ti + ( 1  - t) J 
is an ideal in F[t , x1 , • • .  , xn] and I n  J = (ti + ( 1  - t)J) n F[x1 , • • •  , Xn] .  In 
particular, I n J is the first elimination ideal of t I + ( 1 - t) J with respect to the 
ordering t > Xt > · · · > Xn . 

Proof First, ti and ( 1 - t)J are clearly ideals in F[xt , . . .  , Xn ,  t] , so also their sum 
ti + ( 1 - t) J  is an ideal in F[xt . . . .  , Xn , t] .  If f  E I n J, then f = tf + ( 1 - t) f  shows 
I n  J � (ti + ( 1 - t) J) n F[Xt . . . .  ' Xn l · Conversely, suppose f = tft + (1 - t)h is 
an element of F[xt , . . .  , Xn ] ,  where /1 E I and h E  J .  Then t (/1 - h) = f - h E  
F[xt , . . .  , Xn]  shows that !I - h = 0 and f = h, so f = !I = h E I n J.  
Since I n  J = (ti + ( 1  - t)J) n F[Xt . . . .  , Xn ]. I n  J is  the first elimination ideal of 
ti  + ( 1 - t)J with respect to the ordering t > x1 > · · · > Xn . 

We have t I + ( 1 - t)J = (tft ,  . . . , tf5 ,  ( 1 - t)h t ,  . . . , ( l - t)h1 )  if I = (fl , . . .  -, fs) 
and ] = (h1 , • • .  , h1) .  By Proposition 29, the elements not involving t in a Grabnerbasis 
for this ideal in F[t , Xt , . . . , Xn] ,  computed for the lexicographic monomial ordering 
t > Xt > . . . > Xn ,  give a Grabner basis for the ideal I n  J in F[X} , . . .  , Xn] . 

Example 

Let I = (x , y)2 = (x2 , xy, y2) and let J = (x) .  For the lexicographic monomial ordering 
t > x > y the reduced Grobner basis for t / + ( l - t) J  in F[t , x, y] is {tx - x ,  ty2 , x2 , xy} 
and so I n  J = (x2 , xy) . 

E X E R C I S E S  

1. Suppose I is an ideal in F[xt • . . .  , xn] generated by a (possibly infinite) set S of poly
nomials. Prove that a finite subset of the polynomials in S suffice to generate I .  [Use 
Theorem 21  to write I =  Ut . . . . , fm) and then write each /i E I using polynomials in 
S.] 

2. Let � be any monomial ordering. 
(a) Prove that LT(fg) = LT(f)LT(g) and a(fg) = a (f) + a (g) for any nonzero 

polynomials f and g. 
(b) Prove that a(f + g) � max(a(f),  a (g)) with equality if a (f) -:j:. a (g) .  
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(c) Prove that m 2: 1 for every monomial m.  
(d) Prove that if m 1  divides m2 then m2 2: m1.  Deduce that the leading term of a 

polynomial does not divide any of its lower order terms. 

3. Prove that if 2: is any total or partial ordering on a nonempty set then the following are 
equivalent: 

(i) Every nonempty subset contains a minimum element. 
(ii) There is no infinite strictly decreasing sequence at > a2 > a3 > · · · (this is called 

the descending chain condition or D. C. C.). 
Deduce that General Polynomial Division always terminates in finitely many steps. 

4. Let 2: be a monomial ordering, and for monomials m t ,  m2 define m t  2:g m2 if either 
deg m 1  > deg m2, or deg m 1  = deg m2 and m t 2: m2 . 
(a) Prove that 2:g is also a monomial ordering. (The relation 2:g is called the grading 

of :::: . An ordering in which the most important criterion for comparison is degree is 
sometimes called a graded or a degree ordering, so this exercise gives a method for 
constructing graded orderings.) 

(b) The grading of the lexicographic ordering Xt > · · · > Xn is called the grlex monomial 
ordering. Show that xi > x? x2 > X! xi > xi > Xt with respect to the grlex ordering 

and Xf x2 > Xt xi > Xt > xi > xi with respect to the lexicographic ordering. 

5. The grevlex monomial ordering is defined by first choosing an ordering of the variables 
{xt . x2 , . . . , Xn }.  then defining m t  2: m2 for monomials m t .  m2 if either deg m 1  > deg m2 
or deg m 1 = deg m2 and the first exponent of Xn , Xn- 1 ,  . . .  , Xt (in that order) where m 1 
and m 2 differ is smaller in m 1 · 
(a) Prove that grevlex is a monomial ordering that satisfies Xt > x2 > · · · > Xn · 
(b) Prove that the grevlex ordering on F[xt , X2] with respect to {xt , X2}  is the graded 

lexicographic ordering with Xt > x2 , but that the grevlex ordering on F[xt , x2, x3] is 
not the grading of any lexicographic ordering. 

(c) Show that x1xix3 > x?xj' > xixj' > x2xj > XtX2 > xi > XtX3 > xj' > x1 > x2 for 
the grevlex monomial ordering with respect to {xt , x2 . X3 } .  

6.  Show that x3y > x3z2 > x3z > x2y2z > x2y > xz2 > y2z2 > y2z with respect to 
the lexicographic monomial ordering x > y > z. Show that for the corresponding grlex 
monomial ordering x3z2 > x2y2z > x3y > x3z > y2z2 > x2y > xz2 > y

2z, and that 
x2y2z > x3z2 > x3y > x3z > y2z2 > x2y > y2z > xz2 for the grevlex monomial 
ordering with respect to {x, y, z} . 

7. Order the monomials x2z , x2y2z, xy2z, x3y ,  x3z2 , x2 , x2yz2 , x2z2 for the lexicographic 
monomial ordering x > y > z, for the corresponding grlex monomial order, and for the 
grevlex monomial ordering with respect to {x , y , z } .  

8.  Show there are n!  distinct lexicographic monomial orderings o n  F[xt , . . . , Xn] .  Show 
similarly that there are n !  distinct grlex and grevlex monomial orderings. 

9. It can be shown that any monomial ordering on F[xt , . . .  , Xn ] may be obtained as follows. 
For k ::::: n let Vt , v2 , . . .  , Vk be nonzero vectors in Euclidean n-space, IRn , that are pairwise 
orthogonal: v; · Vj = 0 for all i =1- j, where · is the usual dot product, and suppose also that 
all the coordinates of Vt are nonnegative. Define an order, 2:, on monomials by m t > m2 
if and only if for some t ::::: k we have v; · a (m t )  = v; · a (m2) for all i E { 1 ,  2, . . . , t - 1 }  
and Vt · a (m t )  > Vt · a (m2) . 
(a) Let k = n and let v; = (0, . . .  , 0, 1 ,  0, . . .  , 0) with 1 in the ith position. Show that 2: 

defines the lexicographic order with x 1 > x2 > · · · > Xn · 
(b) Let k = n and define v1 = (1 , 1 , . . . , 1 )  and v; = ( 1 ,  1 ,  . . .  , 1 ,  -n + i  - 1 , 0, . . .  , 0) ,  
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where there are i - 2 trailing zeros, 2 :::: i :::: n .  Show that ::: defines the grlex order 
with respect to {xt , . . .  , Xn } .  

10. Suppose I is a monomial ideal generated by monomials m t • . . .  , mk. Prove that the 
polynomial f E F[xt , . . . .  Xn ] is in I if and only if every monomial term f; of f is 
a multiple of one of the mi . [For polynomials at , . . .  , ak E F[x1 , . . .  , Xn ] expand the 
polynomial a 1 m 1  + · · · + akmk and note that every monomial term is a multiple of at least 
one ofthe m1 .] Show that x2yz+3xy2 is an element ofthe ideal J = (xyz, y2) c F[x, y ,  z] 
but is not an element of the ideal /' = (x z2 , y2) .  

11 .  Fix a monomial ordering on R = F[xt , . . .  , Xn ] and suppose {gl , . . .  , gm }  i s  a Grobner 
basis for the ideal / in R. Prove that h E LT(l) if and only if h is a sum of monomial 
terms each divisible by some LT(g; ) ,  1 :::: i :::: m .  [Use the previous exercise.] 

12. Suppose I is a monomial ideal with monomial generators g1 , . . .  , gm .  Use the previous 
exercise to prove directly that {gt , . . .  , gm }  is a Grobner basis for I .  

13. Suppose I i s  a monomial ideal with monomial generators g1 , . . .  , gm .  Use Buchberger's 
Criterion to prove that {gl , . . .  , gm }  is a Grobner basis for I. 

14. Suppose I is a monomial ideal in R = F [xt , . . .  , Xn ] and suppose {m t • . . .  , mk} is a 
minimal set of monomials generating I, i.e., each m; is a monomial and no proper subset 
of {m 1 ,  . . .  , md generates J .  Prove that the m; , 1 :::: i :::: k are unique. [Use Exercise 1 0.] 

15. Fix a monomial ordering on R = F[xt , . . .  , xn ] .  
(a) Prove that {g1 , . . .  , gm }  is a minimal Grobner basis for the ideal / in R i f  and only if 

{LT(gt ) ,  . . .  , LT(gm)} is a minimal generating set for LT(l) .  
(b) Prove that the leading terms of a minimal Grobner basis for I are uniquely determined 

and the number of elements in any two minimal Grobner bases for I is the same. [Use 
(a) and the previous exercise.] 

16. Fix a monomial ordering on F[xt , . . .  , xn ] and suppose G = {gi , . . .  , gm }  is a set of 
generators for the nonzero ideal J. Show that if S(g; ,  gi ) ¢ 0 mod G then the ideal 
(LT(gt ) ,  . . . , LT(gm ) .  LT(S(g; ,  gi )) is strictly larger than the ideal (LT (gi ) ,  . . .  , LT(gm)) .  
Conclude that the algorithm for computing a Grobner basis described following Proposition 
26 terminates after a finite number of steps. [Use Exercise 1 .] 

17. Fix the lexicographic ordering x > y on F[x , y] .  Use Buchberger's Criterion to show that 
{x2y - y2 , x3 - xy} is a Grobner basis for the ideal / = (x2y - y2 , x3 - xy) . 

18. Show {x - y3 , y5 - y6} is the reduced Grobner basis for the ideal / = (x - y3 , -x2 + xy2) 
with respect to the lexicographic ordering defined by x > y in F[x ,  y]. 

19. Fix the lexicographic ordering x > y on F[x , y]. 
(a) Show that {x3 - y ,  x2 y - y2 , xy2 - y2 , y3 - y2} is the reduced Grobner basis for the 

ideal / = (-x3 + y , x2y - y2) .  
(b) Determine whether the polynomial f = x6 - x5 y is an element of the ideal / .  

20. Fix the lexicographic ordering x > y > z on F[x ,  y ,  z] . Show that {x2 + x y  + z ,  xyz + 
z2 , xz2 , z3} is the reduced Grobner basis for the ideal / = (x2 + xy + z. xyz + z2) and in 
particular conclude that the leading term ideal LT(l) requires four generators. 

21. Fix the lexicographic ordering x > y on F[x,  y ] .  Use Buchberger's Criterion to show that 
{x2 y - y2 , x3 - xy} is a Grobner basis for the ideal I = (x2 y - y2 , x3 - xy) . 

22. Let I = (x2 - y ,  x2y - z) in F[x,  y, z] . 
(a) Show that {x2 - y, y2 - z} is the reduced Grobner basis for I with respect to the 

lexicographic ordering defined by x > y > z. 
(b) Show that {x2 - y,  z - y2} is the reduced Grobner basis for I with respect to the 
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lexicographic ordering defined by z > x > y (note these are essentially the same 
polynomials as in (a)). 

(c) Show that {y - x2,  z - x4} is the reduced Grabner basis for I with respect to the 
lexicographic ordering defined by z > y > x .  

23. Show that the ideals I = (x2 y  + xy2 - 2 y ,  x 2  + xy - x + y2 - 2y, xy2 - x - y + y 3 )  and 
J = (x - y2 , xy - y, x2 - y) in F[x ,  y] are equal. 

24. Use reduced Grabner bases to show that the ideal I = (x3 - yz, yz + y) and the ideal 
J = (x3z + x3,  x3 + y) in F[x ,  y, z] are equal. 

25. Show that the reduced Grabner basis using the lexicographic ordering x > y for the ideal 
1 = (x2 + xy2 . x2 _ y3,  y3 _ y2) is {x2 _ y2,  y3 _ y2 ,  xy2 + y2} .  

26. Show that the reduced Grabner basis for the ideal I =  (xy + y2, x2y + xyl + x2) is 
{x2 ,  xy + y2 ,  y3 } with respect to the lexicographic ordering x > y and is {y2 + yx , xlJ · 
with respect to the lexicographic ordering y > x .  

There are generally substantial differences i n  computational complexity when using different 
monomial orders. The grevlex monomial ordering often provides the most efficient computation 
and produces simpler polynomials. 

27. Show that {x3 - y3,  x2 +xy2 + y4,  x2y +xy3 + y2} is a reduced Grabner basis for theideal I 
in the example following Corollary 28 with respect to the grlex monomial ordering. (Note 
that while this gives three generators for I rather than two for the lexicographic ordering 
as in the example, the degrees are smaller.) 

28. Let I = (x4 - y4 + z3 - 1 ,  x3 + y2 + z2 - 1) .  Show that there are five elements in a 
reduced Grabner basis for I with respect to the lexicographic ordering with x > y > z (the 
maximum degree among the five generators is 12 and the maximum number of monomial 
terms among the five generators is 35), that there are two elements for the lexicographic 
ordering y > z > x (maximum degree is 6 and maximum number of terms is 8), and that 
{x3 + y2 + z2 - 1 ,  xy2 + xz2 - x + y4 - z3 + 1 }  is the reduced Grabner basis for the 
grevlex monomial ordering. 

29. Solve the system of equations x2 - yz = 3, y2 - xz = 4, z2 - xy = 5 over C. 

30. Find a Grabner basis for the ideal I = (x2 +xy + y2 - 1 , x2 +4 y2 -4) for the lexicographic 
ordering x > y and use it to find the four points ofintersection ofthe ellipsex2 +xy+y2 = 1 
with the ellipse x2 + 4 y2 = 4 in .IR2 • 

31. Use Grabner bases to find all six solutions to the system of equations 2x3 + 2x2 y2 +3 y3 = 0 
and 3x5 + 2x3 y3 + 2y5 = 0 over C. 

32. Use Grabner bases to show that (x , z) n (y2 , x - yz) = (xy, x - yz) in F[x ,  y, z].  

33. Use Grabner bases to compute the intersection of the ideals (x3y - xy2 + 1 ,  x2y2 - y 3  - 1) 
and (x2 - y2 ,  x3 + y3) in F[x , y].  

The following four exercises deal with the ideal quotient of two ideals I and J in a ring R. 
Definition. The ideal quotient (I : J) of two ideals I,  J in a ring R is the ideal 

(1 : J) = {r E R I r J E I} .  

34. (a) Suppose R is  an integral domain, 0 f:. f E R and I is an ideal in R. Show that if 
{gi • . . .  ' gs } are generators for the ideal I n  (f), then {gl If, . . . ' gs If} are generators 
for the ideal quotient (/ : (f)) .  

(b) If I i s  an ideal i n  the commutative ring R and fi , . . .  , fs E R, show that the ideal 
quotient (I : (fi, . . . fs)) is the ideal nf=I (1 : (fi)) . 
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35. If I = (x2y + z3 , x + y3 - z, 2y4z - yz2 - z3) and J = (x2y5 , x3z4 , y3z7) in <Ql[x, y, z] 
show (I : J) is the ideal (z2 , y + z. x - z). [Use the previous exercise and Proposition 30.] 

36. Suppose that K is an ideal in R, that I is an ideal containing K, and J is any ideal. If ]  
and J denote the images of I and J in the quotient ring Rj K, show that (I : J) = (l : J) 
where (I : J) is the image in R/K of the ideal quotient (I : J).  

37. Let K be the ideal (y5 - z4) in R = <Ql[y, z] .  For each of the following pairs of ideals 
I and J, use the previous two exercises together with Proposition 30 to verify the ideal 
quotients (i : J) in the ring RjK: 

i. I = (y3 , y5 - z4) , J = (z) , (i :  J) = (ji3 • z3) . 
ii. I = (y3 , z, y5 - z4), J = (y), (i : J) = (ji2 , z) . 

iii. I =  (y, y3 , Z, y5 - z4), J = (1) ,  (i : J) = (ji , z) . 

Exercises 38 to 44 develop some additional elementary properties of monomial ideals in 
F[xt , . . .  , Xn ] .  It follows from Hilbert's Basis Theorem that ideals are finitely generated, 
however one need not assume this in these exercises-the arguments are the same for finitely 
or infinitely generated ideals. These exercises may be used to give an independent proof of 
Hilbert's Basis Theorem (Exercise 44). In these exercises, M and N are monomial ideals with 
monomial generators {m; I i E I}  and {nj I j E J}  for some index sets I and J respectively. 

38. Prove that the sum and product of two monomial ideals is a monomial ideal by showing 
that M + N = (m; , nj l i E l , j E J), and MN = (m;nj l i E I, j E J) .  

39. Show that if  {Ms I s E S} i s  any nonempty collection of monomial ideals that i s  totally 
ordered under inclusion then Uses M5 is a monomial ideal. (In particular, the union of any 
increasing sequence of monomial ideals is a monomial ideal, cf. Exercise 19, Section 7.3.) 

40. Prove that the intersection of two monomial ideals is a monomial ideal by showing that 
M n N = (e;,j I i E J, j E J) ,  where e;,j is the least common multiple of m; and nj . 
[Use Exercise 10.] 

41. Prove that for any monomial n, the ideal quotient (M : (n)) is (m; jd; 1 i E I), where d; 
is the greatest common divisor of m; and n (cf. Exercise 34) . Show that if N is finitely 
generated, then the ideal quotient (M : N) of two monomial ideals is a monomial ideal. 

42. (a) Show that M is a monomial prime ideal if and only if M = (S) for some subset of S of 
{ x1 , xz ,  . . . , Xn } . (In particular, there are only finitely many monomial prime ideals, 
and each is finitely generated.) 

(b) Show that (xt , . . .  , Xn ) is the only monomial maximal ideal. 

43. (Dickson 's Lemma-a special case of Hilbert's Basis Theorem) Prove that every monomial 
ideal in F[xt , . . . , Xn] is finitely generated as follows. 
Let S = { N I N is a monomial ideal that is not finitely generated} , and assume by way of 
contradiction S i= 0. 
(a) Show that S contains a maximal element M. [Use Exercise 30 and Zorn's Lemma.] 
(b) Show that there are monomials x, y not in M with xy E M. [Use Exercise 33(a).] 
(c) For x as in (b), show that M contains a finitely generated monomial ideal Mo such 

that Mo + (x) = M + (x) and M = Mo + (x) (M : (x)), where (M : (x)) is the 
(monomial) ideal defined in Exercise 32, and (x) (M : (x)) is the product of these 
two ideals. Deduce that M is finitely generated, a contradiction which proves S = 0. 
[Use the maximality of M and previous exercises.] 

44. If I is a nonzero ideal in F[ Xt , . . .  , Xn ] , use Dickson's Lemma to prove that LT (I) is finitely 
generated. Conclude that I has a Grobner basis and deduce Hilbert's Basis Theorem. [cf. 
Proposition 24.] 
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45. (n-colorings of graphs) A finite graph g of size N is a set of vertices i E { 1 ,  2, . . . , N} 
and a collection of edges (i, j) connecting vertex i with vertex j. An n-coloring of g 
is an assignment of one of n colors to each vertex in such a way that vertices connected 
by an edge have distinct colors. Let F be any field containing at least n elements. If 
we introduce a variable x; for each vertex i and represent the n colors by choosing a set 
S of n distinct elements from F, then an n-coloring of g is equivalent to assigning a 
value x; = a; for each i = 1 ,  2, . . . , N where a; E S and a; =/= ai if (i, j) is an edge 
in g. If /(x) = naES(x - a) is the polynomial in F[x] of degree n whose roots are 
the elements in S, then x; = a; for some a; E S is equivalent to the statement that x; 
is a solution to the equation f(x; ) = 0. The statement a; =/= a1 is then the statement 
that f(x; ) = f(x1 )  but x; =/= Xj , so x; and Xj satisfy the equation g(x; , Xj ) = 0, where 
g(x; , Xj ) is the polynomial (/ (x; ) - f(xj ))/(x; - Xj ) in F[x; , Xj ] .  It follows that finding 
an n-coloring of g is equivalent to solving the system of equations { f(x; ) = 0, for i = 1 , 2, . . . , N. 

g(x; , Xj ) = 0, for all edges (i ,  j) in g 

(note also we may use any polynomial g satisfying a; =/= aj if g(a; , aj ) = 0). It follows by 
"Hilbert's Nullstellensatz" (cf. Corollary 33 in Section 1 5 .3) that this system of equations 
has a solution, hence g has an n-coloring, unless the ideal I in F[x1 , x2 , . . .  , XN] generated 
by the polynomials f (x; ) for i = 1 ,  2, . . .  , N, together with the polynomials g (x; , x1 ) for 
all the edges (i ,  j) in the graph g, is not a proper ideal. This in turn is equivalent to the 
statement that the reduced Grobner basis for I (with respect to any monomial ordering) is 
simply [ 1 } . Further, when an n-coloring does exist, solving this system of equations as in 
the examples following Proposition 29 provides an explicit coloring for g. 

There are many possible choices of field F and set S. For example, use any field F 
containing a set S of distinct nth roots of unity, in which case f (x) = xn - 1 and we may 
tak ) n n )/(  ) n-1 n-2 n -2 n-1 e g(x; , Xj = (x; - xj x; - Xj = X; + X; Xj + · · · + x;x1 + x1 , or use 
any subset S of F =  lFp with a prime p :::: n (in the special case n = p, then, by Fermat's 
Little Theorem, we have f(x) = xP - x and g(x; , Xj) = (x; - Xj)P-1 - 1). 

(a) Consider a possible 3-coloring of the graph g with eight vertices and 14 edges (1, 3), 
(1 ,  4), (1 , 5) ,  (2, 4),  (2, 7), (2, 8), (3 , 4), (3 , 6), (3, 8), (4, 5),  (5 , 6), (6, 7) ,  (6, 8), (7, 8) .  
Take F = lF3 with 'colors' 0, 1 ,  2 E lF3 and suppose vertex 1 is  colored by 0.  In this case 
f(x) = x(x - 1) (x - 2) = x3 - x -E lF3[x] and g(x; , Xj )  = x'f + x;Xj + xJ - 1. If I is 
the ideal generated by x1 , xf - x; , 2 :::; i :::; 8 and g(x; , Xj) for the edges (i ,  j) in g, show 
that the reduced Grobner basis for I with respect to the lexicographic monomial ordering 
X1 > X2 > · · · > Xg is {Xt , X2 , X3 + Xg , X4 + 2xg , X5 + Xg , X6 , X7 + Xg , X� + 2} . Deduce 
that g has two distinct 3-colorings, determined by the coloring of vertex 8 (which must be 
colored by a nonzero element in lF 3 ), and exhibit the colorings of g.  

Show that if  the edge (3 ,  7) is  added to g then the graph cannot be 3-colored. 

(b) Take F = lF5 with four 'colors' 1 ,  2, 3, 4 E lF5, so f(x) = x4 - l and we may use 
g(x; , x1) = x? + x'fxi + x;xJ + xJ . Show that the graph g with five vertices having 9 
edges ( 1 ,  3), (1 ,  4), (1 , 5),  (2, 3) , (2, 4), (2, 5), (3 , 4), (3 , 5). (4, 5) (the "complete graph 
on five vertices" with one edge removed) can be 4-colored but cannot be 3-colored. 

(c) Use Grobner bases to show that the graph g with nine vertices and 22 edges ( 1 ,  4), ( 1 , 6), 
(1 , 7) , ( 1 ,  8) , (2, 3),  (2, 4), (2, 6) , (2, 7) , (3, 5) , (3 , 7) , (3, 9), (4, 5) , (4, 6), (4, 7), (4, 9), 
(5, 6), (5 , 7), (5, 8) , (5 , 9), (6, 7) ,  (6, 9), (7, 8) has precisely four 4-colorings up to a 
permutation of the colors (so a total of 96 total 4-colorings). Show that if the edge ( 1 ,  5) 
is added then g cannot be 4-colored. 
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Pa rt I l l  

M O D U LES AN D VEGO R  SPACES 

In Part III we study the mathematical objects called modules. The use of modules 
was pioneered by one of the most prominent mathematicians of the first part of this 
century, Emmy Noether, who led the way in demonstrating the power and elegance of 
this structure. We shall see that vector spaces are just special types of modules which 
arise when the underlying ring is a field. If R is a ring, the definition of an R-module 
M is closely analogous to the definition of a group action where R plays the role of 
the group and M the role of the set. The additional axioms for a module require that 
M itself have more structure (namely that M be an abelian group). Modules are the 
"representation objects" for rings, i.e., they are, by definition, algebraic objects on which 
rings act. As the theory develops it will become apparent how the structure of the ring 
R (in particular, the structure and wealth of its ideals) is reflected by the structure of its 
modules and vice versa in the same way that the structure of the collection of normal 
subgroups of a group was reflected by its permutation representations. 
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CHAPTER 1 0  

I ntrod u ction to M od u l e Theory 

1 0.1  BASIC DEFIN ITIONS AND EXAMPLES 

We start with the definition of a module. 

Definition. Let R be a ring (not necessarily commutative nor with 1 ). A left R -module 
or a left module over R is a set M together with 

(1) a binary operation + on M under which M is an abelian group, and 
(2) an action of R on M (that is, a map R x M -4 M) denoted by rm, for all r E R 

and for all m E M which satisfies 
(a) (r + s)m = rm + sm, for all r, s E R, m E M, 
(b) (rs)m = r(sm), for all r, s E R, m E M, and 
(c) r(m + n) = rm + rn, for all r E R, m, n E M. 

If the ring R has a 1 we impose the additional axiom: 
(d) lm = m, for all m E M. 

The descriptor "left" in the above definition indicates that the ring elements appear 
on the left; "right" R -modules can be defined analogously. If the ring R is commutative 
and M is a left R-module we can make M into a right R-module by defining mr = rm 
for m E M and r E R.  If R is not commutative, axiom 2(b) in general will not hold with 
this definition (so not every left R-module is also a right R-module). Unless explicitly 
mentioned otherwise the term "module" will always mean "left module." Modules 
satisfying axiom 2( d) are called unital modules and in this book all our modules will be 
unital (this is to avoid "pathologies" such as having rm = 0 for all r E R and m E M). 

When R is a field F the axioms for an R -module are precisely the same as those 
for a vector space over F, so that 

modules over a field F and vector spaces over F are the same. 

Before giving other examples of R -modules we record the obvious definition of 
submodules. 

Definition. Let R be a ring and let M be an R -module. An R -submodule of M is a 
subgroup N of M which is closed under the action of ring elements, i.e., rn E N, for 
all r E R , n E N . 
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Submodules of M are therefore just subsets of M which are themselves modules 
under the restricted operations.  In particular, if R = F is a field, submodules are the 
same as subspaces. Every R-module M has the two submodules M and 0 (the latter is 
called the trivial submodule). 

Examples 

(1) Let R be any ring. Then M = R is a left R -module, where the action of a ring element 
on a module element is just the usual multiplication in the ring R (similarly, R is a right 
module over itself). In particular, every field can be considered as a ( 1-dimensional) 
vector space over itself. When R is considered as a left module over itself in this 
fashion, the submodules of R are precisely the left ideals of R (and if R is considered 
as a right R-module over itself, its submodules are the right ideals). Thus if R is not 
commutative it has a left and right module structure over itself and these structures 
may be different (e.g., the submodules may be different) - Exercise 21 at the end of 
this section gives a specific example of this. 

(2) Let R = F be a field. As noted above, every vector space over F is an F -module and 
vice versa. Let n E z+ and let 

F
n 

= {(at . az , . . .  , an ) I a; E F, for all i }  

(called affine n-space over F). Make Fn into a vector space by defining addition and 
scalar multiplication componentwise: 

(at , az ,  . . . , an) + (ht , bz , . . .  , bn) = (at + b1 , az + bz , . . . , an + bn) 

a E F. 

As in the case of Euclidean n-space (i.e., when F = IR.), affine n-space is a vector space 
of dimension n over F (we shall discuss the notion of dimension more thoroughly in 
the next chapter). 

(3) Let R be a ring with 1 and let n E z+ . Following Example 2 define 

Rn = { (at , az ,  . . .  , an ) I a; E R, for all i } .  

Make R n  into an R -module by componentwise addition and multiplication by elements 
of R in the same manner as when R was a field. The module Rn is called the free 
module of rank n over R. (We shall see shortly that free modules have the same 
"universal property" in the context of R-modules that free groups were seen to have 
in Section 6.3. We shall also soon discuss direct products of R-modules.) An obvious 
submodule of Rn is given by the ; th component, namely the set of n-tuples with 
arbitrary ring elements in the ;th component and zeros in the /h component for all 
j i= i . 

(4) The same abelian group may have the structure of an R-module for a number of 
different rings R and each of these module structures may carry useful information. 
Specifically, if M is an ·R-module and S is a subring of R with 1s = 1R ,  then M 
is automatically an S-module as well. For instance the field IR. is an IR-module, a 
Q-module and a Z-module. 

(5) If M is an R-module and for some (2-sided) ideal I of R, am = 0, for all a E I and 
all m E M, we say M is annihilated by I. In this situation we can make M into an 
( R I /)-module by defining an action of the quotient ring R 11 on M as follows: for 
each m E  M and coset r + I  in Rl I let 
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Since am = 0 for all a E I and all m E M this is well defined and one easily checks 
that it makes M into an (R/ /)-module. In particular, when I is a maximal ideal in the 
commutative ring R and I M = 0, then M is a vector space over the field Rf I (cf. the 
following example). 

The next example is of sufficient importance as to be singled out. It will form the 
basis for our proof of the Fundamental Theorem of Finitely Generated Abelian Groups 
in Chapter 12. 

Example: (Z-modules) 

Let R = Z, let A be any abelian group (finite or infinite) and write the operation of A as + . 
Make A into a Z-module as follows: for any n E Z and a E A define 

I a + a + · · · + a (n times) if n > 0 

na = 0 if n = 0 

-a - a - · · ·  - a (-n times) if n < 0 

(here 0 is the identity of the additive group A). This definition of an action of the integers 
on A makes A into a Z-module, and the module axioms show that this is the only possible 
action of Z on A making it a (unital) Z-module. Thus every abelian group is a Z-module. 
Conversely, if M is any Z-module, a fortiori M is an abelian group, so 

Z-modules are the same as abelian groups. 
Furthermore, it is immediate from the definition that 

Z-submodules are the same as subgroups. 
Note that for the cyclic group { a  ) written multiplicatively the additive notation na becomes 
an , that is, we have all along been using the fact that { a )  is a right Z-module (checking that 

this "exponential" notation satisfies the usual laws of exponents is equivalent to checking 
the Z-module axiOms - this was given as an exercise at the end of Section 1 . 1 ). Note that 

since Z is commutative these definitions of left and right actions by ring elements give the 
same module structure. 

If A is an abelian group containing an element x of finite order n then nx = 0. Thus, 
in contrast to vector spaces, a Z-module may have nonzero elements x such that nx = 0 for 
some nonzero ring element n. In particular, if A has order m, then by Lagrange's 1beorem 
(Corollary 9, Section 3.2) mx = 0, for all x E A. Note that then A is a module over 
ZjmZ. 

In particular, if p is a prime and A is an abelian group (written additively) such that 

px = 0, for all x E A, then (as noted in Example 5) A is a Z/ pZ-module, i.e., can be 
considered as a vector space over the field IF P = Zj pZ. For instance, the Klein 4-group is 
a (2-dimensional) vector space over lF2. These groups are the elementary abelian p-groups 
discussed in Section 4.4 (see, in particular, Proposition 17  (3) ) .  

The next example is also of fundamental importance and will form the basis for 
our study of canonical forms of matrices in Sections 1 2.2 and 12.3. 
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Example: (F[x]-modules) 

Let F be a field, let x be an indeterminate and let R be the polynomial ring F[x] . Let V be 
a vector space over F and let T be a linear transformation from V to V (we shall review 
the theory of linear transformations in the next chapter - for the purposes of this example 
one only needs to know the definition of a linear transformation). We have already seen 
that V is an F-module; the linear map T will enable us to make V into an F[x]-module. 

First, for the nonnegative integer n, define 

T0 = I, 

T
n = T o T o · · · o T (n times) 

where I is the identity map from V to V and o denotes function composition (which makes 
sense because the domain and codomain of T are the same). Also, for any two linear 
transformations A ,  B from V to V and elements a, f3 E F, let a A +  {JB be defined by 

(aA + {JB)(v) = a(A (v)) + {J(B(v)) 

(i.e., addition and scalar multiplication of linear transformations are defined pointwise). 
Then aA + {JB is easily seen to be a linear transformation from V to V, so that linear 
combinations of linear transformations are again linear transformations. 

We now define the action of any polynomial in x on V. Let p(x) be the polynomial 

p(x)  = anX
n 

+ an-IX
n
-l + · · · + a1X  + ao , 

where ao , . . .  , an E F .  For each v E V define an action of the ring element p(x) on the 
module element v by 

p(x)v = (an T
n 

+ an-I T
n
-l + · · · + a1 T  + ao) (v) 

= an T
n

(v) + an-I T
n

- l (v) + · · · + a1 T(v) + aov  

(i.e. , p(x) acts b y  substituting the linear transformation T for x i n  p(x) and applying 
the resulting linear transformation to v). Put another way, x acts on V as the linear 
transformation T and we extend this to an action of all of F[x] on V in a natural way. It is 
easy to check that this definition of an action of F [x] on V satisfies all the module axioms 
and makes V into an F[x]-module. 

The field F is naturally a subring of F[x] (the constant polynomials) and the action 
of these field elements is by definition the same as their action when viewed as constant 
polynomials. In other words, the definition of the F [x] action on V is consistent with the 
given action of the field F on the vector space V, i.e., the definition extends the action of 
F to an action of the larger ring F[x] .  

The way F[x] acts on V depends on the choice of T so that there are in general many 
different F [x]-module structures on the same vector space V. For instance, if T = 0, 
and p(x) ,  v are as above, then p(x)v = aov, that is, the polynomial p(x) acts on v simply 
by multiplying by the constant term of p(x), so that the F[x]-module structure is just the 
F-module structure. If, on the other hand, T is the identity transformation (so Tn (v) = v, 
for all n and v), then p(x)v = an v + an- I  v + · · · + aov = (an + · · · + ao)v, so that now 
p(x) multiplies v by the sum of the coefficients of p(x) . 

To give another specific example, let V be affine n-space pn and let T be the "shift 
operator" 
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Let ei be the usual ;th basis vector (0, 0, . . .  , 0, 1 ,  0, . . .  , 0) where the 1 is in position i .  
Then 

so for example, if m < n, 

if i  > k 

if i :s k 

(amxm + am-lXm- l + · · · + ao)en = (0, . . .  , 0, am , am-l • . . .  , ao) .  

From this we can determine the action of any polynomial on any vector. 
The construction of an F[x ]-module from a vector space V over F and a linear trans

formation T from V to V in fact describes all F[x ]-modules; namely, an F[x ]-module is a 
vector space together with a linear transformation which specifies the action of x. This is 
because if V is any F[x ]-module, then V is an F -module and the action of the ring element 
x on V is a linear transformation from V to V. The axioms for a module ensure that the 
actions of F and x on V uniquely determine the action of any element of F[x] on V. Thus 
there is a bijection between the collection of F[ x ]-modules and the collection of pairs V, T { V an F[x ]-module ] I V a vector space- over F l 

+--+ and 
T : V � V a linear transformation 

given by 
the element x acts on V as the linear transformation T. 

Now we consider F[x]-submodules of V where, as above, V is any F[x]-module and 
T is the linear transformation from V to V given by the action of x .  An F[x ]-submodule W 
of V must first be an F -submodule, i.e., W must be a vector subspace of V .  Secondly, W 
must be sent to itself under the action of the ring element x, i.e., we must have T ( w) E W, 
for all w E W. Any vector subspace U of V such that T (U) � U is called T-stable or 
T -invariant. If U is any T -stable subspace of V it follows that Tn (U) � U; for all n E z+ 
(for example, T(U) � U implies T2(U) = T(T(U)) � T(U) � U). Moreover any linear 
combination of powers of T then sends U into U so that U is also stable by the action of 
any polynomial in T. Thus U is an F[x ]-submodule of V. This shows that 

the F[x]-submodules of V are precisely the T -stable subspaces of V. 

In terms of the bijection above, { W an F[x]-.-odule ] � { W a sub:;ce of V l 
W is T -stable 

which gives a complete dictionary between F[x]-modules V and vector spaces V together 
with a given linear transformation T from V to V. 

For instance, if T is the shift operator defined on affine n-space above and k is any 
integer in the range 0 :S k :S n, then the subspace 

is clearly T -stable so is an F[x]-submodule of V.  
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We emphasize that an abelian group M may have many different R-module struc
tures, even if the ring R does not vary (in the same way that a given group G may act in 
many ways as a permutation group on some fixed set Q). We shall see that the structure 
of an R-module is reflected by the ideal structure of R. When R is a field (the subject 
of the next chapter) all R-modules will be seen to be products of copies of R (as in 
Example 3 above). 

We shall see in Chapter 12  that the relatively simple ideal structure of the ring F [ x] 
(recall that F[x] is a Principal Ideal Domain) forces the F[x]-module structure of V to 
be correspondingly uncomplicated, and this in tum provides a great deal of information 
about the linear transformation T (in particular, gives some nice matrix representations 
for T: its rational canonical form and its Jordan canonical form) . Moreover, the same 
arguments which classify finitely generated F[x]-modules apply to any Principal Ideal 
Domain R, and when these are invoked for R = Z, we obtain the Fundamental Theorem 
of Finitely Generated Abelian Groups. These results generalize the theorem that every 
finite dimensional vector space has a basis. 

In Part VI of the book we shall study modules over certain noncommutative tings 
(group rings) and see that this theory in some sense generalizes both the study of F[x ]
modules in Chapter 1 2  and the notion of a permutation representation of a finite group. 

We establish a submodule criterion analogous to that for subgroups of a group in 
Section 2. 1 .  

Proposition 1 .  (The Submodule Criterion) Let R be a ring and let M be an R-module. 
A subset N of M is a submodule of M if and only if 

(1) N =I= 0, and 
(2) x + ry E N for all r E R and for all x ,  y E N. 

Proof If N is a submodule, then 0 E N so N =I= 0. Also N is closed under addition 
and is sent to itself under the action of elements of R .  Conversely, suppose ( 1 )  and (2) 
hold. Let r = - 1  and apply the subgroup criterion (in additive form) to see that N is 
a subgroup of M. In particular, 0 E N. Now let x = 0 and apply hypothesis (2) to see 
that N is sent to itself under the action of R. This establishes the proposition. 

We end this section with an important definition and some examples. 

Definition. Let R be a commutative ring with identity. An R -algebra is a ring A with 
identity together with a ring homomorphism f : R -+ A mapping 1 R to 1 A such that 
the subring f(R) of A is contained in the center of A. 

If A is an R-algebra then it is easy to check that A has a natural left and right 
(unital) R-module structure defined by r · a = a · r = f(r )a where f(r)a is just the 
multiplication in the ring A (and this is the same as af(r) since by assumption f(r) 
lies in the center of A). In general it is possible for an R-algebra A to have other left (or 
right) R-module structures, but unless otherwise stated, this natural module structure 
on an algebra will be assumed. 
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Definition. If A and B are two R -algebras, an R -algebra homomorphism (or isomor
phism) is a ring homomorphism (isomorphism, respectively) (/) : A ---+ B mapping l A 
to l B such that (/J(r · a) = r · (/)(a) for all r E R and a E A. 

Examples 

Let R be a commutative ring with 1 .  
(1) Any ring with identity is a Z-algebra. 
(2) For any ring A with identity, if R is a subring of the center of A containing the identity 

of A then A is an R-algebra. In particular, a commutative ring A containing 1 is an 
R-algebra for any subring R of A containing 1 .  For example, the polynomial ring 
R [x] is an R-algebra, the polynomial ring over R in any number of variables is an 
R-algebra, and the group ring RG for a finite group G is an R-algebra (cf. Section 7.2). 

(3) If A is an R-algebra then the R-module structure of A depends only on the subring 
f (R) contained in the center of A as in the previous example. If we replace R by its 
image f(R) we see that "up to a ring homomorphism" every algebra A arises from a 
subring of the center of A that contains 1 A .  

(4) A special case of the previous example occurs when R = F is a field. In this case 
F is isomorphic to its image under f, so we can identify F itself as a subring of A. 
Hence, saying that A is  an algebra over a field F is the same as saying that the ring A 
contains the field F in its center and the identity of A and of F are the same (this last 
condition is necessary, cf. Exercise 23). 

Suppose that A is an R-algebra. Then A is a ring with identity that is a (unital) left 
R-module satisfying r · (ab) = (r · a)b = a(r · b) for all r E R and a ,  b E A (these 
are all equal to the product f(r)ab in the ring A-recall that f(R) is contained in the 
center of A). Conversely, these conditions on a ring A define an R-algebra, and are 
sometimes used as the definition of an R-algebra (cf. Exercise 22). 

E X E R C I S E S 

In these exercises R is a ring with 1 and M is a left R-module. 
1. Prove that Om = 0 and (- l)m = -m for all m E  M. 

2. Prove that R x and M satisfy the two axioms in Section 1 .  7 for a group action of the 
multiplicative group R x on the set M. 

3. Assume that rm = 0 for some r E R and some m E M with m =f. 0. Prove that r does not 
have a left inverse (i.e., there is no s E R such that sr = 1) .  

4. Let M be the module Rn described in Example 3 and let 1} , [z,  . . . , In be left ideals of R. 
Prove that the following are submodules of M: 
(a) {(xt , xz , . . . , Xn ) I x; E Ii } 
(b) {(xt , xz , . . .  , xn ) I x; E R and xt + xz + · · · + xn = 0} . 

5. For any left ideal I of R define 

IM = { L a;m; I a; E I, m; E M} 
finite 

to be the collection of all finite sums of elements of the form am where a E I and m E M. 
Prove that I M is a sub module of M. 

6. Show that the intersection of any nonempty collection of submodules of an R-module is 
a submodule. 
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7. Let N1 £; N2 £; · · · be an ascending chain of submodules of M. Prove that U� 1 N; is a 
submodule of M. 

8. An element m of the R-module M is called a torsion element if rm = 0 for some nonzero 
element r e R. The set of torsion elements is denoted 

Tor(M) = {m e M I rm = 0 for some nonzero r e R} .  

(a) Prove that if  R is  an integral domain then Tor(M) is a submodule of M (called the 
torsion submodule of M). 

(b) Give an example of a ring R and an R-module M such that Tor(M) is not a submodule. 
[Consider the torsion elements in the R-module R.] 

(c) If R has zero divisors show that every nonzero R -module has nonzero torsion elements. 
9. If N is a submodule of M, the annihilator of N in R is defined to be 

{r e R I rn = 0 for all n e N}.  Prove that the annihilator of N in R is a 2-sided ideal of R .  
10. If  I is a right ideal of  R, the annihilator of I in M is  defined to be 

{m e M I am = 0 for all a e I} .  Prove that theannihilatorof I in M is a submodule of M. 
11. Let M be the abelian group (i.e., Z-module) Z/24Z x Zj15Z x Zj50Z. 

(a) Find the annihilator of M in Z (i.e., a generator for this principal ideal). 
(b) Let I = 2Z. Describe the annihilator of I in M as a direct product of cyclic groups. 

12. In the notation of the preceding exercises prove the following facts about annihilators. 
(a) Let N be a submodule of M and let I be its annihilator in R. Prove that the annihilator 

of I in M contains N. Give an example where the annihilator of I in M does not 
equal N. 

(b) Let I be a right ideal of R and let N be its annihilator in M. Prove that the annihilator of 
N in R contains I. Give an example where the annihilator of N in R does not equal I . 

13. Let I be an ideal of R. Let M' be the subset of elements a of M that are annihilated by 
some power, Ik , of the ideal I, where the power may depend on a. Prove that M' is a 
submodule of M. [Use Exercise 7 .] 

14. Let z be an element of the center of R, i.e., zr = rz for all r e R. Prove that zM is a 
submodule of M. where zM = {zm I m e M}. Show that if R is the ring of2 x 2 matrices 
over a field and e is the matrix with a 1 in position 1 , 1  and zeros elsewhere then eR is not 
a left R-submodule (where M = R is considered as a left R-module as in Example 1 ) 
in this case the matrix e is not in the center of R. 

15. If M is a finite abelian group then M is naturally a Z-module. Can this action be extended 
to make M into a Q-module? 

16. Prove that the submodules Uk described in the example of F[x]-modules are all of the 
F[x ]-submodules for the shift operator. 

17. Let T be the shiftoperatoron the vector space V and let e1 , . . .  , en be theusual basis vectors 
described in theexampleof F[x]-modules. Ifm � n find (amxm +am-IXm-l + ·  · +ao)en . 

18. Let F = IR, let V = JR2 and let T be the linear transformation from V to V which 
is rotation clockwise about the origin by 1r /2 radians. Show that V and 0 are the only 
F[ x ]-submodules for this T .  

19. Let F = IR,  let V = JR2 and let T be  the linear transformation from V to V which is 
projection onto the y-axis. Show that V, 0, the x-axis and the y-axis are the only F[x]
submodules for this T. 

20. Let F = IR, let V = JR2 and let T be the linear transformation from V to V which is 
rotation clockwise about the origin by 1r radians. Show that every subspace of V is an 
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F[x ]-submodule for this T. 
21. Let n E z+, n > 1 and let R be the ring of n x n matrices with entries from a field F. Let 

M be the set of n x n matrices with arbitrary elements of F in the first column and zeros 
elsewhere. Show that M is a submodule of R when R is considered as a left module over 
itself, but M is not a submodule of R when R is considered as a right R-module. 

22. Suppose that A is a ring with identity 1 A that is a (unital) left R -module satisfying r · (ab) = 
(r · a)b = a (r · b) for all r E R and a, b E A. Prove that the map f : R 4- A defined 
by j(r) = r · 1A  is a ring homomorphism mapping 1 R  to 1A  and that j(R) is contained 
in the center of A. Conclude that A is an R-algebra and that the R-module structure on A 
induced by its algebra structure is precisely the original R-module structure. 

23. Let A be the direct product ring <C x <C (cf. Section 7.6). Let t"l denote the identity map 
on <C and let -r2 denote complex conjugation. For any pair p, q E { 1 , 2} (not necessarily 
distinct) define 

fp,q : ([ 4- ([ X ([ by fp,q (Z) = (t"p (Z) , t"q (Z)) .  

So, for example, h, l : z �--+ (z, z), where z is the complex conjugate of z, i.e., t"2(Z) .  
(a) Prove that each fp.q is an injective ring homomorphism, and that they all agree on 

the subfield IR of <C. Deduce that A has four distinct <C-algebra structures. Explicitly 
give the action z · (u, v) of a complex number z on an ordered pair in A in each case. 

(b) Provethat if fp.q :f= fp',q' then the identity map on A isnota <C-algebrahomomorphism 
from A considered as a <C-algebra via fp,q to A considered a <C-algebra via fp' ,q' 
(although the identity is an IR-algebra isomorphism). 

(c) Prove that for any pair p, q there is some ring isomorphism from A to itself such that 
A is isomorphic as a <C-algebra via fp,q to A considered as <C-algebra via fu (the 
"natural" <C-algebra structure on A). 

Remark: In the preceding exercise A = <C x <C is not a <C-algebra over either of the direct factor 
component copies of <C (for example the subring <C x 0 � <C) since it is not a unital module 
over these copies of <C (the 1 of these subrings is not the same as the 1 of A). 

1 0.2 QUOTIENT MODULES AND MODULE HOMOMORPHISMS 

This section contains the basic theory of quotient modules and module homomorphisms. 

Definition. Let R be a ring and let M and N be R-modules. 
(1) A map ({J : M -+ N is an R-module homomorphism if it respects the R-module 

structures of M and N, i.e., 
(a) ({J(x + y) = ({J(X) + 97(y),  for all x ,  y E M  and 
(b) ({J (rx) = r97(x),  for all r E R, x E M. 

(2) An R-module homomorphism is an isomorphism (of R-modules) if it is both 
injective and surjective . The modules M and N are said to be isomorphic, 
denoted M � N, if there is some R -module isomorphism 97 : M -+ N. 

(3) If 97 : M -+ N is an R -module homomorphism, let ker 97 = { m E M I ({J (m) = 
0} (the kernel of 97) and let 97(M) = {n E N I n = 97(m) for some m E M} (the 
image of 97 , as usual). 

(4) Let M and N be R-modules and define HomR (M, N) to be the set of all R
module homomorphisms from M into N. 
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Any R -module homomorphism is also a homomorphism of the additive groups, but 
not every group homomorphism need be a module homomorphism (because condition 
(b) may not be satisfied). The unqualified term "isomorphism" when applied to R
modules will always mean R -module isomorphism. When the symbol � is used without 
qualification it will denote an isomorphism of the respective structures (which will be 
evident from the context) . 

It is an easy exercise using the submodule criterion (Proposition 1 )  to show that 
kernels and images of R -module homomorphisms are submodules. 

Examples 

(1) If R is a ring and M = R is a module over itself, then R-module homomorphisms (even 
from R to itself) need not be ring homomorphisms and ring homomorphisms need not 
be R-module homomorphisms. For example, when R = Z the Z-module homomor
phism x t-+ 2x is not a ring homomorphism ( 1  does not map to 1) .  When R = F[x] 
the ring homomorphism cp : f(x) t-+ f(x2) is not an F [x]-module homomorphism 
(if it were, we would have x2 = cp(x) = cp(x · I )  = xcp(l ) = x ) .  

(2) Let R be a ring, let n E z+ and let M = Rn . One easily checks that for each 
i E { I  , . . .  , n }  the projection map 

7rj : Rn � R by 7r; (XJ , . . . , Xn ) = Xi 

is a surjective R-module homomorphism with kernel equal to the submodule of n
tuples which have a zero in position i .  

(3) If R i s  a field, R-module homomorphisms are called linear transformations. These 
will be studied extensively in Chapter 1 1 . 

(4) For the ring R = Z the action of ring elements (integers) on any Z-module amounts to 
just adding and subtracting within the (additive) abelian group structure of the module 
so that in this case condition (b) of a homomorphism is implied by condition (a). For 
example, cp(2x) = cp(x + x) = cp(x) + cp(x) = 2cp(x) , etc. It follows that 

Z-module homomorphisms are the same as abelian group homomorphisms. 

(5) Let R be a ring, let I be a 2-sided ideal of R and suppose M and N are R-modules 
annihilated by I (i.e., am = 0 and an = 0 for all a E I, n E N and m E M). 
Any R-module homomorphism from N to M is then automatically a homomorphism 
of (R/ I)-modules (see Example 5 of Section 1 ) .  In particular, if A is an additive 
abelian group such that for some prime p, px = 0 for all x E A, then any group 
homomorphism from A to itself is a Z/ pZ-module homomorphism, i.e., is a linear 
transformation over the field lF P . In particular, the group of all (group) automorphisms 
of A is the group of invertible linear transformations from A to itself: GL(A) . 

Proposition 2. Let M, N and L be R-modules. 
(1) A map cp : M -+ N is an R-module homomorphism if and only if 

cp(rx + y) = rcp(x) + cp(y) for all x, y E M  and all r E R. 
(2) Let cp, 1/t be elements of HomR (M, N).  Define cp + 1/t by 
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(cp + 1/t)(m) = cp(m) + 1/t(m) for all m E M. 

Then cp + l/t  E HomR (M, N) and with this operation HomR (M, N) is an abelian 
group. If R is a commutative ring then for r E R define rcp by 

(rcp) (m) = r (cp(m)) for all m E M. 
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Then rep E HomR (M, N) and with this action of the commutative ring R the 
abelian group HomR (M, N) is an R-module. 

(3) If ep E HomR (L , M) and 't/f E HomR (M, N) then 't/f o ep E HomR (L ,  N). 
(4) With addition as above and multiplication defined as function composition, 

HomR (M, M) is a ring with 1 .  When R is commutative HomR (M, M) is an 
R-algebra. 

Proof ( l ) Certainly ep (rx +y) = rep(x)+ep(y) ifep is an R-module homomorphism. 
Conversely, if ep (rx + y) = rep (x) + ep (y),  take r = 1 to see that ep is additive and take 
y = 0 to see that ep commutes with the action of R on M (i.e., is homogeneous). 

(2) It is straightforward to check that all the abelian group and R-module axioms 
hold with these definitions - the details are left as an exercise. We note that the 
commutativity of R is used to show that rep satisfies the second axiom of an R-module 
homomorphism, namely, 

(r1 ep) (r2m) = r1 ep (r2m) 

= r1 r2 (ep (m)) 

= r2r1ep (m) 

= r2 (rtep) (m) 

(by definition of rt  ep) 

(since ep is  a homomorphism) 

(since R is commutative) 

(by definition of r1 ep) . 

Verification of the axioms relies ultimately on the hypothesis that N is an R -module. 
The domain M could in fact be any set - it does not have to be an R -module nor an 
abelian group. 

(3) Let ep and 't/f be as given and let r E R, x ,  y E L. Then 

{'t/f o ep) (rx + y) = 't/f(ep(rx + y)) 

= 't/f (rep(x) + ep (y)) (by ( 1 )  applied to ep) 

= r 't/f (ep (x)) + 't/f (ep (y)) (by (1) applied to 't/f) 

= r('t/f o ep) (x) + ('t/f o ep) (y) 

so, by ( 1 ), 't/f o ep is an R -module homomorphism. 
(4) Note that since the domain and codomain of the elements of HomR (M, M) 

are the same, function composition is defined. By (3), it is a binary operation on 
HomR (M, M) . As usual, function composition is associative. The remaining ring 
axioms are straightforward to check - the details are left as an exercise. The identity 
function, I, (as usual, I (x) = x, for all x E M) is seen to be the multiplicative identity 
of HomR (M, M) . If R is commutative, then (2) shows that the ring HomR (M, M) is 
a left R-module and defining epr = rep for all ep E HomR (M, M) and r E R makes 
HomR (M, M) into an R-algebra 

Definition. The ring HomR (M, M) is called the endomorphism ring of M and will 
often be denoted by EndR ( M) , or just End(M) when the ring R is clear from the context. 
Elements of End{M) are called endomorphisms. 
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When R is commutative there is a natural map from R into End(M) given by 
r ....-+ r I , where the latter endomorphism of M is just multiplication by r on M ( cf. 
Exercise 7). The image of R is contained in the center of End(M) so if R has an 
identity, End(M) is an R-algebra. The ring homomorphism (cf. Exercise 7) from R to 
EndR (M) may not be injective since for some r we may have rm = 0 for all m E M 
(e.g., R = Z, M = ZI2Z, and r = 2). When R is a field, however, this map is injective 
(in general, no unit is in the kernel of this map) and the copy of R in EndR ( M) is called 
the (subring of) scalar transformations. 

Next we prove that every submodule N of an R-module M is "normal" in the 
sense that we can always form the quotient module MIN, and the natural projection 
rr : M � M 1 N is an R-module homomorphism with kernel N. The proof of this fact 
and, more generally, the subseq�ent proofs of the isomorphism theorems for modules 
follow easily from the corresponding facts for groups. The reason for this is because a 
module is first of all an abelian group and so every submodule is automatically a normal 
subgroup and any module homomorphism is, in particular, a homomorphism of abelian 
groups, all of which we have already considered in Chapter 3. What remains to be proved 
in order to extend results on abelian groups to corresponding results on modules is to 
check that the action of R is compatible with these group quotients and homomorphisms. 
For example, the map rr above was shown to be a group homomorphism in Chapter 3 
but the abelian group MIN must be shown to be an R-module (i.e. ,  to have an action 
by R) and property (b) in the definition of a module homomorphism must be checked 
for rr .  

Proposition 3 .  Let R be a ring, let M be an R -module and let N be  a submodule of M. 
The (additive, abelian) quotient group M 1 N can be made into an R -module by defining 
an action of elements of R by 

r(x + N) = (rx) + N, for all r E R, x + N E MIN. 

The natural projection map rr : M � MIN defined by rr (x) = x + N is an R -module 
homomorphism with kernel N. 

Proof" Since M is an abelian group under + the quotient group M 1 N is defined 
and is an abelian group. To see that the action of the ring element r on the coset x + N is 
well defined, suppose x + N = y + N, i.e., x - y E N. Since N is a (left) R-submodule, 
r(x - y) E N. Thus rx - ry E N and rx + N = ry + N, as desired. Now since the 
operations in MIN are "compatible" with those of M, the axioms for an R-module are 
easily checked in the same way as was done for quotient groups. For example, axiom 
2(b) holds as follows: for all rt , r2 E R and x + N E MIN, by definition of the action 
of ring elements on elements of M 1 N 
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(rt r2) (x + N) = (r1 r2x) + N 

= r1 (r2x + N) 

= r1 (r2 (x + N)). 
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The other axioms are similarly checked -the details are left as an exercise. Finally, 
the natural projection map n described above is, in particular, the natural projection 
of the abelian group M onto the abelian group MIN hence is a group homomorphism 
with kernel N.  The kernel of any module homomorphism is the same as its kernel when 
viewed as a homomorphism of the abelian group structures. It remains only to show n 
is a module homomorphism, i.e., n(rm) = rn (m ). But 

n (rm) = rm + N 

= r(m + N) 

= rn (m) . 

This completes the proof. 

(by definition of the action of R on MIN) 

All the isomorphism theorems stated for groups also hold for R-modules. The 
proofs are similar to that of Proposition 3 above in that they begin by invoking the 
corresponding theorem for groups and then prove that the group homomorphisms are 
also R-module homomorphisms. To state the Second Isomorphism Theorem we need 
the following. 

Definition. Let A ,  B be submodules of the R-module M. The sum of A and B is the 
set 

A + B = {a + b I a E A,  b E  B} .  

One can easily check that the sum of two submodules A and B i s  a submodule and 
is the smallest submodule which contains both A and B.  

Theorem 4.  (Isomorphism Theorems) 
(1) (The First Isomorphism Theorem for Modules) Let M, N be R-modules and let 

<p : M ---+ N be an R-module homomorphism. Then ker ({J is a submodule of 
M and Ml ker ({J � ({J(M). 

(2) (The Second Isomorphism Theorem) Let A,  B be submodules of the R-module 
M. Then (A + B)IB � AI(A n B).  

(3) (The Third Isomorphism Theorem) Let M be an R-module, and let A and B be 
submodules of M with A �  B. Then (MIA)I(BIA) � MIB. 

(4) (The Fourth or Lattice Isomorphism Theorem) Let N be a submodule of the 
R-module M. There is a bijection between the submodules of M which contain 
N and the submodules of MIN. The correspondence is given by A ++ A IN, 
for all A 2 N. This correspondence commutes with the processes of taking 
sums and intersections (i.e. ,  is a lattice isomorphism between the lattice of 
submodules of MIN and the lattice of submodules of M which contain N). 

Proof Exercise. 
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E X E R C I S E S 

In these exercises R is a ring with 1 and M is a left R-module. 
1. Use the submodule criterion to show that kernels and images of R -module homomorphisms 

are submodules. 
2. Show that the relation "is R-module isomorphic to" is an equivalence relation on any set 

of R-modules. 
3. Give an explicit example of a map from one R-module to another which is a group homo

morphism but not an R-module homomorphism. 
4. Let A be any :£>module, let a be any element of A and let n be a positive integer. Prove that 

the map Cf!a : ZjnZ --+ A given by cp(k) = ka is a well defined 7/,-module homomorphism 
if and only if na = 0. Prove that Homz(Z/nZ, A) � An , where An = {a E A I na = 0} 
(so An is the annihilator in A of the ideal (n) of Z - cf. Exercise 10, Section 1). / 

5. Exhibit all 7/,-module homomorphisms from Z/307!, to Zj21Z. 
6. Prove that Homz(Z/nZ, ZjmZ) � 7/,j(n , m)Z. 
7. Let z be a fixed element of the center of R. Prove that the map m � zm is an R

module homomorphism from M to itself. Show that for a commutative ring R the map 
from R to EndR (M) given by r � ri is a ring homomorphism (where I is the identity 
endomorphism). 

8. Let cp : M --+ N be an R-module homomorphism. Prove that cp(Tor(M)) 5; Tor(N) (cf. 
Exercise 8 in Section 1 ). 

9. Let R be a commutative ring. Prove that HomR (R, M) and M are isomorphic as left 
R -modules. [Show that each element of HomR ( R ,  M) is determined by its value on the 
identity of R.] 

10. Let R be a commutative ring. Prove that HomR(R,  R) and R are isomorphic as rings. 
11. Let A J ,  Az , . . .  , An be R-modules and let Bi be a submodule of Ai for each i = 1 ,  2, . . .  , n. 

Prove that 

(AI X · · ·  X An)/(BI X · · ·  X Bn) � (A I /BI ) X · · · X (An /Bn ) .  

[Recall Exercise 14 i n  Section 5 . 1 .] 
12. Let I be a left ideal of R and let n be a positive integer. Prove 

RnjiRn 
� RjiR x · · · x RjiR (n times) 

where I Rn is defined as in Exercise 5 of Section 1 .  [Use the preceding exercise.] 
13. Let I be a nilpotent ideal in a commutative ring R (cf. Exercise 37, Section 7.3), let M 

and N be R-modules and let cp :  M --+  N be an R-module homomorphism. Show that if 
the induced map (jj : M I I M --+ N I IN is surjective, then cp is surjective. 

14. Let R = 7/,[x] be tpe ring of polynomials in x and let A = 7/,[ti , tz , . . .  ] be the ring of 
polynomials in the independent indeterminates t1 , t2 , . . . .  Define an action of R on A as 
follows: 1) let 1 E R act on A as the identity, 2) for n :=:: 1 let xn o 1 = tn , let xn o ti = tn+i 
for i = 1 , 2, . . .  , and let xn act as 0 on monomials in A of (total) degree at least two, and 
3) extend 7/,-linearly, i.e., so that the module axioms 2(a) and 2(c) are satisfied. 
(a) Show that xP+q o ti = xP o (xq o ti ) = tp+q+i and use this to show that under this 

action the ring A is a (unital) R-module. 
(b) Show that the map cp : R --+  A defined by cp(r) = r o 1A is an R-module homomor

phism of the ring R into the ring A mapping 1 R to 1 A ,  but is not a ring homomorphism 
from R to A. 
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1 0.3 GENERATION OF MODULES, DIRECT SU MS, AN D 
FREE MODULES 

� 
Let R be a ring with 1 .  As in the preceding sections the term "module" will mean "left 
module." We first extend the notion of the sum of two submodules to sums of any finite 
number of submodules and define the submodule generated by a subset. 

Definition. Let M be an R-module and let Nt . . . .  , Nn be submodules of M. 
(1) The sum of Nt , . . . •  Nn is the set of all finite sums of elements from the sets N; : 

{at + az + · · · + an I a; E N; for all i } .  Denote this sum by N1 + · · · + Nn . 
(2) For any subset A of M let 

RA = {rial + rzaz + · · · + rmam I rt • . . .  , rm E R,  ai , . . .  , am E A ,  m E z+} 
(where by convention RA = {O} if A = 0). lf A is the finite set {a1 , az, . . . , an}  
we shall write Ra1 + Raz + · · · + Ran for RA. Call RA the submodule of M 
generated by A. If N is a submodule of M (possibly N = M) and N = RA, 
for some subset A of M, we call A a set of generators or generating set for N, 
and we say N is generated by A. 

(3) A submodule N of M (possibly N = M) is  finitely generated if there is  some 
finite subset A of M such that N = RA, that is, if N is generated by some finite 
subset. 

(4) A submodule N of M (possibly N = M) is cyclic if there exists an element 
a E M such that N = Ra, that is, if N is generated by one element: 

N = Ra = {ra I r E R}.  

Note that these definitions do not require that the ring R contain a 1 ,  however 
this condition ensures that A is contained in RA. It is easy to see using the Submodule 
Criterion that for any subset A of M, RA is indeed a submodule of M and is the smallest 
submodule of M which contains A (i .e. , any submodule of M which contains A also 
contains RA). In particular, for submodules Nt • . . .  , Nn of M, N1 + · · · + Nn is just 
the submodule generated by the set N1 U · · · U Nn and is the smallest submodule of M 
containing N; , for all i .  If Nt , . . .  , Nn are generated by sets A 1 ,  . . . , An respectively, 
then N1 + · · · + Nn is generated by A t  U · · · U An . Note that cyclic modules are, a 
fortiori, finitely generated. 

A submodule N of an R-module M may have many different generating sets (for 
instance the set N itself always generates N). If N is finitely generated, then there is a 
smallest nonnegative integer d such that N is generated by d elements (and no fewer). 
Any generating set consisting of d elements will be called a minimal set of generators 
for N (it is not unique in general). If N is not finitely generated, it need not have a 
minimal generating set. 

The process of generating submodules of an R-module M by taking subsets A of 
M and forming all finite "R -linear combinations" of elements of A will be our primary 
way of producing submodules (this notion is perhaps familiar from vector space theory 
where it is referred to as taking the span of A). The obstruction which made the 
analogous process so difficult for groups in general was the noncommutativity of group 
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operations. For abelian groups, G, however, it was much simpler to control the subgroup 
{ A ) generated by A, for a subset A of G (see Section 2.4 for the complete discussion 
of this). The situation for R-modules is similar to that of abelian groups (even if R is 
a noncommutative ring) because we can always collect "like terms" in elements of A, 
i.e., terms such as rtat + r2a2 + Stat can always be simplified to (rt + St)aJ + r2a2 . 

This again reflects the underlying abelian group structure of modules. 

Examples 

(1) Let R = Z and let M be any R-module, that is, any abelian group. If a E M, then 
Za is just the cyclic subgroup of M generated by a: ( a )  (compare Definition 4 above 
with the definition of a cyclic group). More generally, M is generated as a Z-module 
by a set A if and only if M is generated as a group by A (that is, the action of ring 
elements in this instance produces no elements that cannot already be obtained from 
A by addition and subtraction). The definition of finitely generated for Z-modules is 
identical to that for abelian groups found in Chapter 5. 

(2) Let R be a ring with 1 and let M be the (left) R-module R itself. Note that R is 
a finitely generated, in fact cyclic, R-module because R = Rl (i.e., we can take 
A = { 1 }  ). Recall that the submodules of R are precisely the left ideals of R, so saying 
I is a cyclic R -submodule of the left R -module R is the same as saying I is a principal 
ideal of R (usually the term "principal ideal" is used in the context of commutative 
rings). Also, saying I is a finitely generated R-submodule of R is the same as saying 
I is a finitely generated ideal. When R is a commutative ring we often write AR or 
aR for the submodule (ideal) generated by A or a respectively, as we have been doing 
for Z when we wrote nZ. In this situation AR = RA and aR = Ra (elementwise 
as well). Thus a Principal Ideal Domain is a (commutative) integral domain R with 
identity in which every R-submodule of R is cyclic. 

Submodules of a finitely generated module need not be finitely generated: take 
M to be the cyclic R-module R itself where R is the polynomial ring in infinitely 
many variables xt . x2 , x3 , . . .  with coefficients in some field F. The submodule (i.e., 
2-sided ideal) generated by {xt , x2 • . . .  } cannot be generated by any finite set (note 
that one must show that no finite subset of this ideal will generate it). 

(3) Let R be a ring with 1 and let M be the free module of rank n over R, as described in 
the first section. For each i E { 1 ,  2, . . .  , n }  let e; = (0, 0, . . .  , 0, 1 , 0, . . .  , 0), where 
the 1 appears in position i .  Since 

n 

(st . s2 , . . .  , Sn ) = L s; e; 
i=t 

it is clear that M is generated by {et . . . .  , en } .  If R is commutative then this is a 
minimal generating set (cf. Exercises 2 and 27). 

(4) Let F be a field, let x be an indeterminate, let V be a vector space over F and let 
T be a linear transformation from V to V. Make V into an F[x]-module via T. 
Then V is a cyclic F[x]-module (with generator v) if and only if V = {p(x)v I 
p (x) E F[x]}, that is, if and only if every element of V can be written as an F-linear 
combination of elements of the set {Tn (v) I n � 0}. This in turn is equivalent to 
saying {v, T(v), T2 (v) , . . .  } span V as a vector space over F. 
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For instance if T is the identity linear transformation from V to V or the zero linear 
transformation, then for every v E V and every p(x) E F[x] we have p(x)v = av for 
some a E F. Thus if V has dimension > 1 ,  V cannot be a cyclic F[x]-module. 
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For another example suppose V is affine n-space and T is the "shift operator" 
described in Section 1 .  Let e; be the ith basis vector (as usual) numbered so that T 
is defined by Tk (en ) = en-k for 1 :=: k < n. Thus V is spanned by the elements 
en , T (en) • . . .  , rn-l (en) ,  that is, V is a cyclic F[x ]-module with generator en . For 
n > 1 ,  V is not, however, a cyclic F -module (i.e., is not a !-dimensional vector space 
over F). 

Definition. Let M1 , • • .  , Mk be a collection of R-modules. The collection of k-tuples 
(m . ,  m2 , . . . , mk) where m; E M; with addition and action of R defined componentwise 
is called the direct product of M1 , . . •  , Mk, denoted M1 x · · · x Mk . 

It is evident that the direct product of a collection of R-modules is again an R
module. The direct product of Mt , . . . , Mk is also referred to as the (external) direct 
sum of Mt , . . . , Mk and denoted Mt $ · · · $ Mk .  The direct product and direct sum of 
an infinite number of modules (which are different in general) are defined in Exercise 
20. 

The next proposition indicates when a module is isomorphic to the direct product 
of some of its submodules and is the analogue for modules of Theorem 9 in Section 5.4 
(which determines when a group is the direct product of two of its subgroups). 

Proposition 5. Let N1 , N2, . . .  , Nk be submodules of the R-module M. Then the 
following are equivalent: 

(1) The map rr : N1 x N2 x · · · x Nk � N1 + N2 + · · · + Nk defined by 

rr(a1 , a2 , . . .  , ak) = a1 + a2 + . . . + ak 

is an isomorphism (of R-modules): N1 + N2 + · · · + Nk � N1 x N2 x · · · x Nk . 
(2) Nj n (N1 + N2 + · · · + Ni-l + Ni+l + · · · + Nk) = 0 for all j E { 1 , 2, . . . , k} .  
(3) Every x E N1 + · · · + Nk can be written uniquely in the form a1 + a2 + · · · + ak 

with a; E N; .  

Proof" To prove ( 1 )  implies (2), suppose for some j that (2) fails to hold and let 
ai E (N1 + · · · + Nj-l + Ni+l + · · · + Nk) n Ni o  with ai # 0. Then 

ai = a I + . . . + ai-l + aj+I + . . . + ak 

for some a; E N; ,  and (a1 , • . • , ai- l •  -ai , ai+l • . . .  , ak) would be a nonzero element 
of ker rr, a contradiction. 

Assume now that (2) holds. If for some module elements a; , b; E N; we have 

a1 + a2 + · · · + ak = b1 + b2 + · · · + bk 

then for each j we have 

aj - bi = (bt - a1 ) + · · · + (bj-1  - aj- t ) + (bi+I - aj+I ) + · · · + (bk - ak) . 

The left hand side is in Nj and the right side belongs to N 1 + · · · + Nj _1 + Ni+ 1 + · · · + Nk. 
Thus 

ai - bi E Ni n (N1 + · · · + Nj-t + Ni+t + · · · + Nk) = 0. 

This shows ai = bi for all j, and so (2) implies (3). 
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Finally, to see that (3) implies ( 1 ) observe first that the map 1r is clearly a surjec
tive R-modu1e homomorphism. Then (3) simply implies 1r is injective, hence is an 
isomorphism, completing the proof. 

If an R-module M = Nt + N2 + · · · + Nk is the sum of submodules Nt , N2, . . . , Nk 
of M satisfying the equivalent conditions of the proposition above, then M is said to be 
the (internal) direct sum of Nt ,  N2 , . . .  , Nkt written 

M = Nt $ N2 $ · · · $ Nk . 

By the proposition, this is equivalent to the assertion that every element m of M can be 
written uniquely as a sum of elements m = n t + n2 + · · · + nk with n; e N; . (Note that 
part ( 1 ) of the proposition is the statement that the internal direct sum of Nt , N2, • • •  , Nk 
is isomorphic to their external direct sum, which is the reason we identify them and use 
the same notation for both.) 

Definition. An R-module F is said to be free on the subset A of F if for every 
nonzero element x of F, there exist unique nonzero elements Tt , r2 , . . .  , rn of R and 
unique at . a2 , . . . • an in A such that x = rtat + r2a2 + ·  . .  + rnan ,  for some n E z+. In 
this situation we say A is a basis or set of free generators for F. If R is a commutative 
ring the cardinality of A is called the rank of F ( cf. Exercise 27). 

One should be careful to note the difference between the uniqueness property of 
direct sums (Proposition 5(3)) and the uniqueness property of free modules. Namely, 
in the direct sum of two modules, say Nt $ N2, each element can be written uniquely 
as n t + n2 ; here the uniqueness refers to the module elements n t and n2 . In the case of 
free modules, the uniqueness is on the ring elements as well as the module elements. 
For example, if R = Z and Nt = N2 = Z/2Z, then each element of Nt e N2 has a 
unique representation in the form n t + n2 where each n; e N; , however n t (for instance) 
can be expressed as nt or 3nt or 5nt . . .  etc., so each element does not have a unique 
representation in the form rtat + r2a2, where r. , r2 e R, at e Nt and a2 e N2. Thus 
Zj2Z $ Zj2Z is not a free Z-module on the set { ( 1 ,  0) , (0, 1 ) } . Similarly, it is not free 
on any set. 

Theorem 6. For any set A there is a free R-module F(A) on the set A and F(A) satisfies 
the following universal property: if M is any R-module and ffJ : A -+ M is any map 
of sets, then there is a unique R-module homomorphism t1J : F(A) -+ M such that 
t!J(a) = ({J(a), for all a e A, that is, the following diagram commutes. 

A 
inclusion 

F (A) �l� 
When A is the finite set {at . a2 , . . .  , an }, F(A) = Rat $ Ra2 $ · · · $ Ran � Rn . 
(Compare: Section 6.3, free groups.) 

Proof: Let F(A) = {0} if A = 0. If A is nonempty let F(A) be the collection of 
all set functions f : A -+  R such that f(a) = 0 for all but finitely many a e A . Make 
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F (A) into an R -module by pointwise addition of functions and pointwise multiplication 
of a ring element times a function, i.e., 

(f + g) (a) = j(a) + g(a) and 

(rj)(a) = r(f(a)) , for all a E A ,  r E R and f, g E F(A) . 

It is an easy matter to check that all the R-module axioms hold (the details are omitted). 
Identify A as a subset of F(A) by a �--* fa, where fa is the function which is 1 at a and 
zero elsewhere. We can, in this way, think of F(A) as all finite R-linear combinations 
of elements of A by identifying each function f with the sum r1a 1 + r2a2 + · · · + rnan , 
where f takes on the value r; at a; and is zero at all other elements of A. Moreover, 
each element of F(A) has a unique expression as such a formal sum. To establish the 
universal property of F (A) suppose <p : A ---+ M is a map of the set A into the R -module 
M. Define tP : F(A) ---+ M by 

n n 
tP :  L r;a; �--* L r;<p(a; ) .  

i=l i=l 

By the uniqueness of the expression for the elements of F(A) as linear combinations 
of the a; we see easily that tP is a well defined R-module homomorphism (the details 
are left as an exercise). By definition, the restriction of tP to A equals <p .  Finally, since 
F(A) is generated by A, once we know the values of an R-module homomorphism on 
A its values on every element of F(A) are uniquely determined, so tP is the unique 
extension of <p to all of F(A). 

When A is the finite set {at , a2 , . . .  , an } Proposition 5(3) shows that F(A) = Rat EB 
Ra2 EB · · · EB Ran . Since R � Ra; for all i (under the map r �--* ra; ) Proposition 5( 1 )  
shows that the direct sum i s  isomorphic to Rn . 

Corollary 7. 
(1) If F1 and F2 are free modules on the same set A, there is a unique isomorphism 

between Ft and F2 which is the identity map on A.  
(2) If F is any free R-module with basis A, then F � F(A). In particular, F enjoys 

the same universal property with respect to A as F(A) does in Theorem 6. 

Proof Exercise. 

If F is a free R-module with basis A, we shall often (particularly in the case of 
vector spaces) define R-module homomorphisms from F into other R-modules simply 
by specifying their values on the elements of A and then saying "extend by linearity." 
Corollary 7(2) ensures that this is permissible. 

When R = Z, the free module on a set A is called the free abelian group on A. If 
I A I  = n, F(A) is called the free abelian group ofrank n and is isomorphic to Z EB ·  · · EBZ 
(n times). These definitions agree with the ones given in Chapter 5. 
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E X E R C I S E S 

In these exercises R is a ring with 1 and M is a left R-module. 

1. Prove that if A and B are sets of the same cardinality, then the free modules F(A) and 
F(B) are isomorphic. 

2. Assume R is commutative. Prove that R" � Rm if and only if n = m, i.e., two free 
R-modules of finite rank are isomorphic if and only if they have the same rank. [Apply 
Exercise 12 of Section 2 with I a maximal ideal of R .  You may assume that if F is a field, 
then F" � pm if and only if n = m, i.e., two finite dimensional vector spaces over F 
are isomorphic if and only if they have the same dimension - this will be proved later in 
Section 1 1 . 1 .] 

3. Show that the F[x ]-modules in Exercises 18 and 19 of Section I are both cyclic. 

4. An R-module M is called a torsion module if for each m E M  there is a nonzero element 
r E R such that rm = 0, where r may depend on m (i.e., M = Tor(M) in the notation of 
Exercise 8 of Section 1 ). Prove that every finite abelian group is a torsion Z-module. Give 
an example of an infinite abelian group that is a torsion Z-module. 

S. Let R be an integral domain. Prove that every finitely generated torsion R-module has a 
nonzero annihilator i.e., there is a nonzero element r E R such that rm = 0 for all m E M 
- here r does not depend on m (the annihilator of a module was defined in Exercise 9 of 
Section 1) . Give an example of a torsion R-module whose annihilator is the zero ideal. 

6. Prove that if M is a finitely generated R-module that is generated by n elements then every 
quotient of M may be generated by n (or fewer) elements. Deduce that quotients of cyclic 
modules are cyclic. 

7. Let N be a submodule of M. Prove that if both MIN and N are finitely generated then so 
is M .  

8. Let S be the collection of sequences (a1 ,  az , a3 , . . .  ) of integers a1 , az , a3 , . . .  where all 
but finitely many of the a; are 0 (called the direct sum of infinitely many copies of Z). 
Recall that S is a ring under componentwise addition and multiplication and S does not 
have a multiplicative identity - cf. Exercise 20, Section 7 . 1 .  Prove that S is not finitely 
generated as a module over itself. 

9. An R-module M is called irreducible if M =I= 0 and if O and M are the only submodules 
of M. Show that M is irreducible if and only if M =1= 0 and M is a cyclic module with any 
nonzero element as generator. Determine all the irreducible Z-modules. 

10. Assume R is commutative. Show that an R-module M is irreducible if and only if M is 
isomorphic (as an R-modulc) to Rj I where I is a maximal ideal of R. [By the previous 
exercise, if M is irreducible there is a natural map R � M defined by r r+ rm, where m 
is any fixed nonzero element of M.] 

11. Show that if M 1 and Mz are irreducible R-modules, then any nonzero R-module homomor
phism from M1 to Mz is an isomorphism. Deduce that if M is irreducible then EndR (M) is 
a division ring (this result is called Schur's Lemma). [Consider the kernel and the image.] 

12. Let R be a commutative ring and let A, B and M be R-modules. Prove the following 
isomorphisms of R-modules: 
(a) HomR (A x B, M) � HomR (A, M) x HomR (B, M) 
(b) HomR (M, A x B) � HomR (M, A) x HomR (M, B) .  

13. Let R be a commutative ring and let F be a free R-module of finite rank. Prove the 
following isomorphism of R-modules: HomR (F, R) � F. 
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14. Let R be a commutative ring and let F be the free R-module of rank n. Prove that 
HomR (F, M) � M x · · · x M (n times). [Use Exercise 9 in Section 2 and Exercise 12.] 

15. An element e E R is called a central idempotent if e2 = e and er = re for all r E R. If e is 
a central idempotent in R, prove that M = eM EB (1 -e)M. [Recall Exercise 14 in Section 
1 . )  

The next two exercises establish the Chinese Remainder Theorem for modules (cf. Section 7 .6). 
16. For any ideal I of R let I M be the submodule defined in Exercise 5 of Section 1 .  Let 

At , . . . , Ak be any ideals in the ring R. Prove that the map 
M __. M/At M x · · · x M/AkM defined by m � (m + At M • . . .  , m  + Ak M) 

is an R-module homomorphism with kernel At M n A 2M n · · · n AkM. 
17. In the notation of the preceding exercise, assume further that the ideals At , . . .  , Ak are 

pairwise comaximal (i .e., A; + Aj = R for all i ;;j; j). Prove that 
M/(At  . . .  Ak)M � M/At M X . . .  X MfAkM. 

[See the proof of the Chinese Remainder Theorem for rings in Section 7.6.] 
18. Let R be a Principal Ideal Domain and let M be an R-module that is annihilated by the 

nonzero, proper ideal (a) .  Let a = pf1 p�2 • • • p;k be the unique factorization of a into 
distinct prime powers in R. Let M; be the annihilator of p�; in M, i.e., M; is the set 
{m E M I p�; m = 0} - called the p; -primary component of M. Prove that 

M = Mt EB M2 EB · • · EB Mk . 

19. Show that if M is a finite abelian group of order a = pf1 p�2 • • • p;k then, considered as a 
Z-module, M is annihilated by (a) ,  the p;-primary component of M is the unique Sylow 
p; -subgroup of M and M is isomorphic to the direct product of its Sylow subgroups. 

20. Let I be a nonempty index set and for each i E / let M; be an R-module. The direct product 
of the modules M; is defined to be their direct product as abelian groups ( cf. Exercise 15 
in Section 5. 1) with the action of R componentwise multiplication. The direct sum of the 
modules M; is defined to be the restricted direct product of the abelian groups M; (cf. 
Exercise 1 7  in Section 5. 1 )  with the action of R componentwise multiplication. In other 
words, the direct sum of the M; 's is the subset of the direct product, ni el M; , which consists 
of all element<; nie/ m; such that only finitely many of the components m; are nonzero; 
the action of R on the direct product or direct sum is given by r niel m; = niel rm; (cf. 
Appendix I for the definition of Cartesian products of infinitely many sets). The direct 
sum will be denoted by EB;ei M; . 
(a) Prove that the direct product of the M; 's is an R-module and the direct sum of the 

M; 's is a submodule of their direct product. 
(b) Show that if R = Z, I = z+ and M; is the cyclic group of order i for each i, then the 

direct sum of the M; 's is not isomorphic to their direct product. [Look at torsion.] 
21. Let I be a nonempty index set and for each i E / let N; be a submodule of M. Prove that 

the following are equivalent: 
(i) the submodule of M generated by all the N; 's is isomorphic to the direct sum of the 

N; 's 
(ii) if {it , i2 . . . . , ik } is any finite subset of I then N;1 n (N;2 + · · · + N;

k
) = 0 

(iii) if {it , i1 , . . .  , h}  is any finite subset of I then Nt + · · · + Nk = Nt EB • • · EB Nk � (iv) for every element x of the submodule of M generated by the N; 's there are unique 
elements a; E N; for all i E I such that all but a finite number of the a; are zero and 
x is the (finite) sum of the a; . 
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22. Let R be a Principal Ideal Domain, let M be a torsion R-module (cf. Exercise 4) and let p 
be a prime in R (do not assume M is finitely generated, hence it need not have a nonzero 
annihilator - cf. Exercise 5). The p-primary component of M is the set of all elements 
of M that are annihilated by some positive power of p. 
(a) Prove that the p-primary component is a submodule. [See Exercise 13 in Section 1 .] 
(b) Prove that this definition of p-primary component agrees with the one given in Exer-

cise 18  when M has a nonzero annihilator. 
(c) Prove that M is the (possibly infinite) direct sum of its p-primary components, as p 

runs over all primes of R.  

23. Show that any direct sum of free R-modules is  free. 

24. (An arbitrary direct product of free modules need not be free) For each positive integer i 
let M; be the free Z-module Z, and let M be the direct product niEZ+ M; (cf. Exercise 
20). Each element of M can be written uniquely in the form (a1 , a2 , a3 , . . . ) with a; E Z 
for all i. Let N be the submodule of M consisting of all such tuples with only finitely 
many nonzero a; .  Assume M is a free Z-module with basis 13. 
(a) Show that N is countable. 
(b) Show that there is some countable subset 81 of 13 such that N is contained in the 

submodule, N1 , generated by 131 • Show also that N1 is countable. 
(c) Let M = M!N1 . Show that M is a free Z-module. Deduce that if x is any nonzero 

element of M then there are only finitely many distinct positive integers k such that 
x = km for some m E  M (depending on k). 

(d) Let S = { (b1 , b2 , b3 , . . .  ) I b; = ±i ! for all i } .  Prove that S is uncountable. Deduce 
that there is some s E S with s ¢ N1 . 

(e) Show that the assumption M is free leads to a contradiction: By (d) we may choose 
s E S with s ¢ N1 . Show that for each positive integer k there is some m E M with 
s = km, contrary to (c). [Use the fact that N � N1 .] 

25. In the construction of direct limits, Exercise 8 of Section 7.6, show that if all A; are R
modules and the maps Pij are R-module homomorphisms, then the direct limit A = \!w A; 
may be given the structure of an R-module in a natural way such that the maps p; : A; � A 
are all R-module homomorphisms. Verify the corresponding universal property (part (e)) 
for R-module homomorphisms ({J; : A; � C commuting with the Pij · 

26. Carry out the analysis of the preceding exercise corresponding to inverse limits to show 
that an inverse limit of R-modules is an R-module satisfying the appropriate universal 
property (cf. Exercise 10 of Section 7.6). 

27. (Free modules over noncommutative rings need not have a unique rank) Let M be the 
Z-module Z x Z x · · · of Exercise 24 and let R be its endomorphism ring, R = Endz(M) 
(cf. Exercises 29 and 30 in Section 7. 1 ). Define (/Jl , ({J2 E R by 

(/JI (a1 ,  a2 , a3 ,  . . . ) = (a1 , a3 , a5 ,  . . .  ) 

({J2(at .  a2 , a3 ,  . . . ) = (a2 ,  a4 , a6 , . . .  ) 

(a) Prove that {({J1 , ({J2 } is a free basis of the left R-module R. [Define the maps 1/11 and 
1/12 bY 1/J1 (a1 , a2 , . . . ) = (a1 , 0, a2 , 0, . . .  ) and 1/f2 (a 1 , a2 , . . . ) = (O, a1 , 0, a2 , . . . ) . 
Verify that (/Ji 1/1; = 1 , (/)11/12 = 0 = ({)21/11 and 1/11 (/)1 + 1/12(/)2 = 1 .  Use these relations 
to prove that (/)1 , (/)2 are independent and generate R as a left R-module.] 

(b) Use (a) to prove that R � R2 and deduce that R � Rn for all n E z+. 

358 Chap. 1 0  I ntroduction to Module Theory 



1 0.4 TENSOR PRODUCTS OF MODULES 

In this section we study the tensor product of two modules M and N over a ring (not 
necessarily commutative) containing 1 .  Formation of the tensor product is a general 
construction that, loosely speaking, enables one to form another module in which one 
can take "products" mn of elements m E M and n E N. The general construction 
involves various left- and right- module actions, and it is instructive, by way of moti
vation, to first consider an important special case: the question of "extending scalars" 
or "changing the base." 

Suppose that the ring R is a sub ring of the ring S. Throughout this section, we 
always assume that 1 R = 1 s  (this ensures that S is a unital R-module). 

If N is a left S-module, then N can also be naturally considered as a left R-module 
since the elements of R (being elements of S) act on N by assumption. The S-module 
axioms for N include the relations 

(s1 + sz)n = s1n + Szn and s (n t + nz) = sn1 + snz 
for all s , s1 , Sz E S and all n, n1 , n2 E N, and the relation 

(stsz)n = s1 (szn) for all St .  sz E S, and all n E N. 

A particular case of the latter relation is 

(sr)n = s (rn) for all s E S, r E R and n E N. 

(10. 1) 

( 10.2) 

( 10.2') 

More generally, if / : R � S is a ring homomorphism from R into S with f(lR)  = 1s  
(for example the injection map if  R i s  a subring of S as  above) then it i s  easy to see that 
N can be considered as an R-module with rn = f(r)n for r E R and n E N. In this 
situation S can be considered as an extension of the ring R and the resulting R -module 
is said to be obtained from N by restriction of scalars from S to R. 

Suppose now that R is a subring of S and we try to reverse this, namely we start 
with an R-module N and attempt to define an S-module structure on N that extends 
the action of R on N to an action of S on N (hence "extending the scalars" from R 
to S). In general this is impossible, even in the simplest situation: the ring R itself is 
an R-module but is usually not an S-module for the larger ring S. For example, Z is 
a Z-module but it cannot be made into a Q-module (if it could, then � o 1 = z would 
be an element of Z with z + z = 1 ,  which is impossible). Although Z itself cannot be 
made into a Q-module it is contained in a Q-module, namely Q itself. Put another way, 
there is an injection (also called an embedding) of the Z-module Z into the Q-module Q 
(and similarly the ring R can always be embedded as an R -submodule of the S-module 
S). This raises the question of whether an arbitrary R-module N can be embedded as 
an R -submodule of some S -module, or more generally, the question of what R -module 
homomorphisms exist from N to S-modules. For example, suppose N is a nontrivial 
finite abelian group, say N = Zj2Z, and consider possible Z-module homomorphisms 
(i.e. ,  abelian group homomorphisms) of N into some Q-module. A Q-module is just 
a vector space over Q and every nonzero element in a vector space over Q has infinite 
(additive) order. Since every element of N has finite order, every element of N must 
map to 0 under such a homomorphism. In other words there are no nonzero Z-module 
homomorphisms from this N to any Q-module, much less embeddings of N identifying 
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N as a submodule of a Q-module. The two Z-modules Z and Zj2Z exhibit extremely 
different behaviors when we try to "extend scalars" from Z to Q: the first module maps 
injectively into some Q-module, the second always maps to 0 in a Q-module. 

We now construct for a general R -module N an S-module that is the "best possible" 
target in which to try to embed N. We shall also see that this module determines all of 
the possible R-module homomorphisms of N into S-modules, in particular determining 
when N is contained in some S-module (cf. Corollary 9). In the case of R = Z and 
S = Q this construction will give us Q when applied to the module N = Z, and will give 
us 0 when applied to the module N = Zj2Z (Examples 2 and 3 following Corollary 9). 

If the R-module N were already an S-module then of course there is no difficulty 
in "extending" the scalars from R to S, so we begin the construction by returning to 
the basic module axioms in order to examine whether we can define "products" of the 
form sn, for s E S and n E N. These axioms start with an abelian group N together 
with a map from S x N to N, where the image of the pair (s , n) is denoted by sn .  It is 
therefore natural to consider the free Z-module (i.e., , the free abelian group) on the set 
S x N, i.e., the collection of all finite commuting sums of elements of the form (s; , n; ) 
where s; E S and n; E N. This is an abelian group where there are no relations between 
any distinct pairs (s, n) and (s' ,  n') , i.e., no relations between the "formal products" 
sn, and in this abelian group the original module N has been thoroughly distinguished 
from the new "coefficients" from S. To satisfy the relations necessary for an S-module 
structure imposed in equation (1)  and the compatibility relation with the action of R on 
N in (2'), we must take the quotient of this abelian group by the subgroup H generated 
by all elements of the form 

(st + s2 , n) - (st , n) - (s2 , n) ,  
(s , n 1 + n2) - (s , n t ) - (s, n2) , and 

(sr, n) - (s , rn) , 
(10.3) 

for s, s1 , s2 E S, n , n t , n2 E N and r E R, where rn in the last element refers to the 
R-module structure already defined on N. 

The resulting quotient group is  denoted by S ® R N (or just S ® N if  R is clear from 
the context) and is called the tensor product of S and N over R. If s ® n denotes the 
coset containing (s , n) in S ® R N then by definition of the quotient we have forced the 
relations 

(St + S2) @ n = St @ n + S2 @ n , 
s ® (n t + n2) = s ® n 1 + s ® n2 , and 

sr ® n  = s ® rn . 
( 10.4) 

The elements of S ® R N are called tensors and can be written (non-uniquely in general) 
as finite sums of "simple tensors" of the form s ® n with s E S, n E N. 

We now show that the tensor product S ®R N is naturally a left S-module under 
the action defined by 

360 

s( L: s; ® n;) = L (ss; ) ® n; .  
firure firure 

(10.5) 
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We first check this is well defined, i.e., independent of the representation of the 
element of S ® R N as a sum of simple tensors. Note first that if s' is any element of S 
then 

(s' (s, + s2) ,  n) - (s's, ,  n) - (s's2 , n) ( = (s's, + s's2 , n) - (s's 1 , n) - (s's2 , n)) , 
(s's , n , + n2) - (s's , n , ) - (s's , n2) , and 

(s' (sr) , n) - (s's , rn) ( = ((s's)r, n) - (s's , rn)) 

each belongs to the set of generators in (3), so in particular each lies in the subgroup 
H. This shows that multiplying the first entries of the generators in (3) on the left by s' 
gives another element of H (in fact another generator). Since any element of H is a sum 
of elements as in (3), it follows that for any element :L<si , n; ) in H also :L<s'si , ni ) 
lies in H. Suppose now that :L s; ® n; = :L s[ ® n; are two representations for the 
same element in S  ®R N. Then :L(s; ,  n;) - :LCs; , n) is an element of H, and by what 
we have just seen, for any s E S also L(ss; , n; ) - L(ss; , n) is an element of H.  But 
this means that :L ss; ® n; = :L ss; ® n; in S ®R N, so the expression in (5) is indeed 
well defined. 

It is now straightforward using the relations in (4) to check that the action defined 
in (5) makes S ®R N into a left S-module. For example, on the simple tensor s; ® n; , 

(s + s') (s; ® n; ) = ((s + s')s; )  ® n; 
= (ss; + s's; )  ® n; 

by definition (5) 

= ss; ® n; + s' s; ® n; by the first relation in (4) 

= s (s; ® n;) + s' (s; ® n; )  by definition (5) . 

The module S ® R N is called the (left) S -module obtained by extension of scalars 
from the (left) R-module N. 

There is a natural map t : N --+ S ® R N defined by n �--+ 1 ® n (i.e., first map 
n E N to the element ( 1 ,  n) in the free abelian group and then pass to the quotient 
group). Since 1 ® rn = r ® n = r ( I ® n) by (4) and (5), it is easy to check that t is 
an R-module homomorphism from N to S ®R N. Since we have passed to a quotient 
group, however, t is not injective in general. Hence, while there is a natural R-module 
homomorphism from the original left R-module N to the left S-module S ®R N, in 
general S ® R N need not contain (an isomorphic copy of) N. On the other hand, the 
relations in equation (3) were the minimal relations that we had to impose in order to 
obtain an S-module, so it is reasonable to expect that the tensor product S ®R N is 
the "best possible" S-module to serve as target for an R-module homomorphism from 
N. The next theorem makes this more precise by showing that any other R-module 
homomorphism from N factors through this one, and is referred to as the universal 
property for the tensor product S ® R N. The analogous result for the general tensor 
product is given in Theorem 10. 
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Theorem 8. Let R be a subring of S, let N be a left R-module and let t : N -*  S ®R N 
be the R-module homomorphism defined by t (n) = 1 ®n.  Suppose that L is any left S
module (hence also an R -module) and that q; : N -* L is an R -module homomorphism 
from N to L. Then there is a unique S-module homomorphism l/J : S ® R N -* L such 
that q; factors through l/J, i.e., q; = l/J o t and the diagram 

t 
N �1:N 

commutes. Conversely, if tP : S ®R N -+ L is an S-module homomorphism then 
q; = tP o t is an R-module homomorphism from N to L.  

Proof" Suppose q; : N -+  L is an R-module homomorphism to the S-module L.  
By the universal propeny of free modules (Theorem 6 in Section 3) there is  a Z-module 
homomorphism from the free Z-module F on the set S x N to L that sends each generator 
(s, n) to sq; (n ) .  Since q; is an R-module homomorphism, the generators of the subgroup 
H in equation (3) all map to zero in L .  Hence this Z-module homomorphism factors 
through H, i.e., there is a well defined Z-module homomorphism tP from F I H = 

S ®R N to L satisfying tP (s ® n) = sq;(n) . Moreover, on simple tensors we have 

s't!J (s ® n) = s' (sq; (n)) = (s's)q; (n) = tP ((s's) ® n) = tP (s' (s ® n)) .  

for any s' E S.  Since tP is  additive it follows that tP is  an S-module homomorphism, 
which proves the existence statement of the theorem. The module S ® R N is generated 
as an S-module by elements of the form 1 ® n, so any S-module homomorphism is 
uniquely determined by its values on these elements. Since tP (l ®n) = q;(n),  it follows 
that the S-module homomorphism tP is uniquely determined by q;, which proves the 
uniqueness statement of the theorem. The converse statement is immediate. 

The universal property of S ®R N in Theorem 8 shows that R-module homomor
phisms of N into S-modules arise from S-module homomorphisms from S ®R N. In 
particular this determines when it is possible to map N injectively into some S-module: 

Corollary 9. Let t : N -* S ®R N be the R-module homomorphism in Theorem 8. 
Then N I ker t is the unique largest quotient of N that can be embedded in any S-module. 
In particular, N can be embedded as an R -submodule of some left S -module if and only 
if t is injective (in which case N is isomorphic to the R -submodule t (N) of the S-module 
S ®R N). 

Proof" The quotient N I ker t is mapped injectively (by t) into the S-module S ® R N. 
Suppose now that q; is an R-module homomorphism injecting the quotient N I ker q; 
of N into an S-module L. Then, by Theorem 8, ker t is mapped to 0 by q;, i.e. , 
ker t £;; ker q;. Hence N I ker q; is a quotient of N I ker t (namely, the quotient by 
the submodule ker q;l ker t). It follows that Nl ker t  is the unique largest quotient of 
N that can be embedded in any S-module. The last statement in the corollary follows 
immediately. 
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Examples 

(1) For any ring R and any left R-module N we have R ®  R N � N (so "extending scalars 
from R to R" does not change the module). This follows by taking q; to be the identity 
map from N to itself (and S = R) in Theorem 8: t is then an isomorphism with inverse 
isomorphism given by tP .  In particular, if A is any abelian group (i.e., a Z-module), 
then Z ®z A = A. 

(2) Let R = Z, S = Q and let A be a finite abelian group of order n. In this case the 
Q-module Q ®z A obtained by extension of scalars from the Z-module A is 0. To see 
this, observe first that in any tensor product 1 ® 0 = 1 ® (0 + 0) = 1 ® 0 + 1 ® 0, by 
the second relation in (4), so 

Now, for any simple tensor q ® a  we can write the rational number q as (qjn)n.  Then 
since na = 0 in A by Lagrange's Theorem, we have 

q ® a = (fj_ · n) ® a = fj_ ® (na) = (qjn) ® 0 = (qjn)( 1 ® 0) = 0. n n 

It follows that Q ®z A = 0. In particular, the map t : A � S ® R A is the zero map. 
By Theorem 8, we see again that any homomorphism of a finite abelian group into a 
rational vector space is the zero map. In particular, if A is nontrivial, then the original 
Z-module A is not contained in the Q-module obtained by extension of scalars. 

(3) Extension ofscalarsforfree modules: If N � Rn is a free module ofrank.n over R then 
S ® R N � sn is a free module of rank n over S. We shall prove this shortly (Corollary 
18) when we discuss tensor products of direct sums. For example, Q ®u:: zn � Qn . 
In this case the module obtained by extension of scalars contains (an isomorphic copy 
of) the original R-module N. For example, Q ®u:: zn � Qn and zn is a subgroup of 
the abelian group � . 

(4) Extension of scalars for vector spaces: As a special case of the previous example, let 
F be a subfield of the field K and let V be an n-dimensional vector space over F (i.e., 
V � Fn ). Then K ® F V � Kn is a vector space over the larger field K of the same 
dimension, and the original vector space V is contained in K ® F V as an F -vector 
subspace. 

(5) Induced modules for finite groups: Let R be a commutative ring with 1, let G be a 
finite group and let H be a subgroup of G. As in Section 7.2 we may form the group 
ring RG and its subring RH. For any RH-module N define the induced module 
RG ®RH N. In this way we obtain an RG-module for each RH-module N. We shall 
study properties of induced modules and some of their important applications to group 
theory in Chapters 17 and 19. 

The general tensor product construction follows along the same lines as the ex
tension of scalars above, but before describing it we make two observations from this 
special case. The first is that the construction of S ®R N as an abelian group involved 
only the elements in equation (3), which in tum only required S to be a right R-module 
and N to be a left R-module. In a similar way we shall construct an abelian group 
M ®R N for any right R-module M and any left R-module N. The second observation 
is that the S-module structure on S ®R N defined by equation (5) required only a left 
S-module structure on S together with a "compatibility relation" 

s'(sr) = (s 's)r 
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between this left S-module structure and the right R-module structure on S (this was 
needed in order to deduce that (5) was well defined). We first consider the general 
construction of M 0 R N as an abelian group, after which we shall return to the question 
of when this abelian group can be given a module structure. 

Suppose then that N is a left R -module and that M is a right R -module. The 
quotient of the free Z-module on the set M x N by the subgroup generated by all 
elements of the form 

(m t + mz , n) - (mt .  n) - (mz , n), 
(m, n t  + nz) - (m . n t ) - (m , nz) ,  and 

(mr, n) - (m, rn), 
(10.6) 

for m ,  m . ,  m2 E M, n, n t . nz E N and r E R is an abelian group, denoted by M 0R N, 
or simply M 0 N if the ring R is clear from the context, and is called the tensor product 
of M and N over R.  The elements of M 0R N are called tensors, and the coset, m 0 n , 

of (m , n) in M 0R N is called a simple tensor. We have the relations 

(m t + mz) 0 n = m t 0 n + mz 0 n , 
m 0 (n t + nz) = m 0 nt + m 0 nz ,  and 

mr 0 n  = m  0 rn .  
(10.7) 

Every tensor can be written (non-uniquely in general) as a finite sum of simple tensors. 

Remark: We emphasize that care must be taken when working with tensors, since each 
m 0 n represents a coset in some quotient group, and so we may have m 0 n = m' 0 n' 
where m '1- m' or n '1- n'. More generally, an element of M 0 N may be expressible in 
many different ways as a sum of simple tensors. In particular, care must be taken when 
defining maps from M 0 R N to another group or module, since a map from M 0 N 
which is described on the generators m 0 n in terms of m and n is not well defined unless 
it is shown to be independent of the particular choice of m 0 n as a coset representative. 

Another point where care must be exercised is in reference to the element m 0 n 
when the modules M and N or the ring R are not clear from the context. The first two 
examples of extension of scalars give an instance where M is a submodule of a larger 
module M', and for some m E M  and n  E N we have m 0 n = O in M' 0R N but m 0 n 
is nonzero in M 0 R N. This is possible because the symbol "m 0 n" represents different 
cosets, hence possibly different elements, in the two tensor products. In particular, these 
two examples show that M 0 R N need not be a subgroup of M' 0 R N even when M 
is a submodule of M' (cf. also Exercise 2). 

Mapping M x N to the free Z-module on M x N and then passing to the quotient 
defines a map t :  M x N --+  M 0R N with t (m ,  n) = m 0 n. This map is in general 
not a group homomorphism, but it is additive in both m and n separately and satisfies 
t (mr, n) = mr 0 n = m 0 rn = t (m, rn) . Such maps are given a name: 
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Definition. Let M be a right R -module, let N be a left R -module and let L be an 
abelian group (written additively). A map (/) : M x N --)- L is  called R-balanced or 
middle linear with respect to R if 

qJ(mt + mz , n) = qJ(m t , n) + qJ(m2, n) 
qJ(m, n t + n2) = qJ(m , nt )  + qJ(m, nz) 

qJ(m, rn) = qJ(mr, n) 
for all m, m t , mz E M, n, n 1 , nz E N , and r E R. 

With this tenninology, it follows immediately from the relations in (7) that the map 
t :  M x N --)- M ®R N is R-balanced. The next theorem proves the extremely useful 
universal property of the tensor product with respect to balanced maps. 

Theorem 10. Suppose R is a ring with 1 ,  M is a right R-module, and N is a left 
R -module. Let M ® R N be the tensor product of M and N over R and let ' : M x N -)o 
M ®R N be the R-balanced map defined above. 

(1) If c/J : M ® R N --* L is any group homomorphism from M ® R N to an abelian 
group L then the composite map fP = c/J o t is an R -balanced map from M x N 
to L. 

(2) Conversely, suppose L is an abelian group and (/) : M x N --* L is any R
balanced map. Then there is a unique group homomorphism c/J : M ® R N --)- L 
such that (/) factors through t, i.e. , (/) = c/J o t as in ( 1 ) . 

Equivalently, the correspondence (/) +* c/J in the commutative diagram 
L M x N�I; N 

establishes a bijection 

{ R -balanced maps } +------+ { group homomorphisms } . 
(/) : M x N --* L c/J : M ®R N --* L 

Proof" The proof of ( 1 ) is immediate from the properties of t above. For (2), the 
map fP defines a unique Z-module homomorphism (p from the free group on M x N to 
L (Theorem 6 in Section 3) such that (p(m ,  n) = qJ(m , n) E L.  Since (/) is R-balanced, 
(p maps each of the elements in equation ( 6) to 0; for example 

(p ((mr, n) - (m , rn)) = qJ(mr, n) - qJ (m, rn) = 0. 

It follows that the kernel of (p contains the subgroup generated by these elements, hence 
(p induces a homomorphism c/J on the quotient group M ® R N to L.  By definition we 
then have 

c/J (m ® n) = (p(m ,  n) = qJ(m, n) , 
i.e., fP = c/J o L. The homomorphism c/J is uniquely detennined by this equation since 
the elements m ® n generate M ® R N as an abelian group. This completes the proof. 
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Theorem 10 is extremely useful in defining homomorphisms on M ® R N since it 
replaces the often tedious check that maps defined on simple tensors m ® n are well 
defined with a check that a related map defined on ordered pairs (m , n) is balanced. 

The first consequence of the universal property in Theorem 10 is a characterization 
of the tensor product M ® R N as an abelian group: 

Corollary 11. Suppose D is an abelian group and t' : M x N � D is an R-balanced 
map such that 

(i) the image of t' generates D as an abelian group, and 
(ii) every R-balanced map defined on M x N factors through t' as in Theorem LO. 

Then there is an isomorphism f : M ®R N � D of abelian groups with t' = f o t. 

Proof Since t' : M x N � D is a balanced map, the universal property in (2) 
of Theorem 10 implies there is a (unique) homomorphism f : M ®R N � D with 
t' = f o t. In particular t' (m ,  n) = f(m ® n) for every m E M, n E N. By the first 
assumption on t', these elements generate D as an abelian group, so f is a surjective 
map. Now, the balanced map t : M x N � M ®R N together with the second 
assumption on t ' implies there is a (unique) homomorphism g :  D � M ®R N with 
t = g o t' . Then m ® n = (g o  f) (m ® n). Since the simple tensors m ® n generate 
M ® R N, it follows that g o f is the identity map on M ® R N and so f is injective, 
hence an isomorphism. This establishes the corollary. 

We now, return to the question of giving the abelian group M ® R N a module 
structure. As we observed in the special case of extending scalars from R to S for the 
R-module N, the S-module structure on S ® R N required only a left S-module structure 
on S together with the compatibility relation s' (sr) = (s's)r for s, s' E S and r E R. 
In this special case this relation was simply a consequence of the associative law in 
the ring S. To obtain an S-module structure on M ®R N more generally we impose a 
similar structure on M: 

Definition. Let R and S be any rings with 1 .  An abelian group M is called an (S, R)
bimodule if M is a left S-module, a right R-module, and s (mr) = (sm)r for all s E S, 
r E R and m E M. 

Examples 

(1) Any ring S is an (S, R)-bimodule for any subring R with l R  = l s  by the associativity 
of the multiplication in S. More generally, if f : R � S is any ring homomorphism 
with f ( l R) = I s then S can be considered as a right R-module with the action 
s · r = sf(r), and with respect to this action S becomes an (S, R)-bimodule. 

(2) Let I be an ideal (two-sided) in the ring R . Then the quotient ring R/1 is an (Rfl, R)
bimodule. This is easy to see directly and is also a special case of the previous example 
(with respect to the canonical projection homomorphism R � R/ 1). 

(3) Suppose that R is a commutative ring. Then a left (respectively, right) R-module M 
can always be given the structure of a right (respectively, left) R-module by defining 
mr = rm (respectively, rm = mr), for all m E M and r E R, and this makes M into 
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an (R, R)-bimodule. Hence every module (right or left) over a commutative ring R 
has at least one natural (R, R)-bimodule structure. 

(4) Suppose that M is a left S-module and R is a subring contained in the center of S (for 
example, if S is commutative). Then in particular R is commutative so M can be given 
a right R-module structure as in the previous example. Then for any s E S, r E R and 
m E M by definition of the right action of R we have 

(sm)r = r(sm) = (rs)m = (sr)m = s (rm) = s (mr) 

(note that we have used the fact that r commutes with s in the middle equality). Hence 
M is an (S, R)-bimodule with respect to this definition of the right action of R. 

Since the situation in Example 3 occurs so frequently, we give this bimodule struc
ture a name: 

Definition. Suppose M is a left (or right) R-module over the commutative ring R. 
Then the (R,  R)-bimodule structure on M defined by letting the left and right R-actions 
coincide, i.e., mr = rm for all m E M and r E R, will be called the standard R -module 
structure on M. 

Suppose now that N is a left R-module and M is an (S, R)-bimodule. Then just as 
in the example of extension of scalars the (S, R)-bimodule structure on M implies that 

s ( :E m; ® n;) = L(sm;) ® n; (10.8) 
finite finite 

gives a well defined action of S under which M ®R N is a left S-module. Note that 
Theorem 10 may be used to give an alternate proof that (8) is well defined, replacing 
the direct calculations on the relations defining the tensor product with the easier check 
that a map is R -balanced, as follows. It is very easy to see that for each fixed s E S 
the map (m , n) t-+ sm ® n is an R-balanced map from M x N to M ®R N. By 
Theorem 10 there is a well defined group homomorphism As from M ®R N to itself 
such that As (m ® n) = sm ® n .  Since the right side of (8) is then As ('L, m; ® n;) , 
the fact that As is well defined shows that this expression is indeed independent of 
the representation of the tensor L, m; ® n; as a sum of simple tensors. Because As is 
additive, equation (8) holds. 

By a completely parallel argument, if M is a right R-module and N is an (R,  S)
bimodule then the tensor product M ® R N has the structure of a right S-module, where 
(L, m; ® n; ) s  = L, m; ® (n;s) .  

Before giving some more examples of tensor products it  is  worthwhile to highlight 
one frequently encountered special case of the previous discussion, namely the case 
when M and N are two left modules over a commutative ring R and S = R (in some 
works on tensor products this is the only case considered). Then the standard R -module 
structure on M defined previously gives M the structure of an (R, R)-bimodule, so in 
this case the tensor product M ®R N always has the structure of a left R-module. 

The corresponding map t : M x N ---+ M ®R N maps M x N into an R-module 
and is additive in each factor. Since r (m ® n) = rm ® n = mr ® n = m ® rn it also 
satisfies 

n(m, n) = t (rm , n) = t (m , rn) . 
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Such maps are given a name: 

Definition. Let R be a commutative ring with 1 and let M, N, and L be left R -modules. 
The map cp : M x N --+ L is called R -bilinear if it is R -linear in each factor, i.e., if 

cp(r1m 1 + r2m2 , n) = rtcp(m t .  n) + r2cp(m2, n) ,  and 

cp(m, r1n 1 + r2n2) = rtcp(m, n t ) + r2cp(m , n2) 
for all m, m 1 , m2 E M, n, n 1 , n2 E N and rt , r2 E R. 

With this terminology Theorem 10 gives 

Corollary 12. Suppose R is a commutative ring. Let M and N be two left R-modules 
and let M ® R N be the tensor product of M and N over R, where M is given the standard 
R-module structure. Then M ®R N is a left R-module with 

r (m ® n) = (rm) ® n  = (mr) ® n  = m ® (rn) , 
and the map t : M x N --+ M ®R N with t (m, n) = m ® n is an R-bilinear map. If L 
is any left R-module then there is a bijection 

{ R-bilinear maps } � { R-module homomorphisms } 
cp : M x N --+  L C/J : M ®R N --+  L 

where the correspondence between cp and C/J is given by the commutative diagram 
l 

M x N�F N 

Proof" We have shown M ® R N is an R -module and that t is bilinear. It remains 
only to check that in the bijective correspondence in Theorem 10 the bilinear maps 
correspond with the R-module homomorphisms. If cp : M x N --+ L is bilinear then it 
is an R-balanced map, so the corresponding C/J : M ®R N is a group homomorphism. 
Moreover, on simple tensors C/J((rm) ® n) = cp(rm, n) = rcp(m , n) = re/J(m ® n), 
where the middle equality holds because cp is R-linear in the first variable. Since C/J is 
additive this extends to sums of simple tensors to show C/J is an R-module homomor
phism. Conversely, if C/J is an R-module homomorphism it is an exercise to see that the 
corresponding balanced map cp is bilinear. 

Examples 

(1) In any tensor product M ®R N we have m ® 0 = m ® (0 + 0) = (m ® 0) + (m ® 0) ,  
so m ® 0 = 0. Likewise 0 ® n = 0. 

(2) We have Z/271. ®z; Z/37!. = 0, since 3a = a for a E Z/271. so that 
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a ® b = 3a ® b = a ® 3b = a ® 0 = 0 

and every simple tensor is reduced to 0. In particular 1 ® I = 0. It follows that there 
are no nonzero balanced (or bilinear) maps from Z/271. x Z/37!. to any abelian group. 
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On the other hand, consider the tensor product 7l..j2'1!..07L. 7l..f27l.., which is generated 
as an abelian group by the elements 0 0 0 = 1 0 0 = 0 0 1 = 0 and 1 0 1 .  In this case 
1 0 1  # 0 since, for example, the map '1!../2'1!.. x 7l..f27l.. --+ 7l..j27!.. defined by (a , b) � ab 
is clearly nonzero and linear in both a and b. Since 2(1 0 1) = 2 0 1 = 0 0 1 = 0, 
the element 1 0 l is of order 2. Hence '1!../27!.. 07!.. 7l..f27l.. � 7l..f27l... 

(3) In general, 
'll..fm'll.. 07!.. 'll..fn'll.. � 'll..fd'll.., 

where d is the g.c.d. of the integers m and n. To see this, observe first that 

a 0 b = a  0 (b · 1) = (ab) 0 1 = ab(l 0 1 ) ,  

from which i t  follows that 'll..fm'll.. 07!.. 'll..fn'll.. i s  a cyclic group with 1 0 1 as generator. 
Since m(l 0 1 )  = m 0 1 = 0 0 1 = 0 and similarly n( l  0 1 )  = 1 0 n = 0, we have 
d(l 0 1) = 0, so the cyclic group has order dividing d. The map � : 'll..fm'll.. x 'll..fn'll.. --+ 
'll..fd'll.. defined by �(a mod m,  b mod n) = ab mod d is well defined since d divides 
both m and n. It is clearly 7!..-bilinear. The induced map 4> : 7l..jm'll..07L. 'll../n'll.. --+ 'll..fd'll.. 
from Corollary 12  maps 1 0 1  to the element 1 E 'll..fd'll.., which is an element of order 
d. In particular 'll..fm'll.. 07!.. 'll..fn'll.. has order at least d. Hence 1 0 1 is an element of 
order d and 4> gives an isomorphism 'll..fm'll.. 07!.. 'll..fn'll.. � 'll..fd'll... 

(4) In Q/'1!.. 07!.. Q/'1!.. a simple tensor has the form (afb mod 'll..) 0 (cfd mod 'll..) for some 
rational numbers ajb and cfd. Then 

and so 

a c a c 
( b mod 'll..) 0 (d  mod 'll..) = d(

bd 
mod 'll..) 0 (d  mod 'll..) 

a c a 
= ( 

bd 
mod 'll..) 0 d( d mod 'll..) = (

bd 
mod 'll..) 0 0 = 0 

Q/'1!.. 07!.. Q/'1!.. = 0. 

In a similar way, A 07!.. B = 0 for any divisible abelian group A and torsion abelian 
group B (an abelian group in which every element has finite order). For example 

(5) The structure of a tensor product can vary considerably depending on the ring over 
which the tensors are taken. For example Q 0Q Q and Q 07!.. Q are isomorphic as left 
Q-modules (both are one dimensional vector spaces over Q) - cf. the exercises. On 
the other hand we shall see at the end of this section that <C 0c <C and <C 0JR <C are 
not isomorphic <C-modules (the former is a !-dimensional vector space over <C and the 
latter is 2-dimensional over <C). 

(6) General extension of scalars or change of base: Let f : R --+ S be a ring homomor
phism with f(lR)  = l s .  Then s · r = sf(r) gives S the structure of a right R-module 
with respect to which S is an (S, R)-bimodule. Then for any left R-module N, the 
resulting tensor product S 0R N is a left S-module obtained by changing the base 
from R to S. This gives a slight generalization of the notion of extension of scalars 
(where R was a subring of S). 

(7) Let f : R --+ S be a ring homomorphism as in the preceding example. Then we 
have S 0R R � S as left S-modules, as follows. The map � : S x R --+ S defined 
by (s , r) � sr (where sr = sf(r) by definition of the right R-action on S), is an 
R-balanced map, as is easily checked. For example, 

�(st + sz ,  r) = (st + sz)r = s1r + szr = �(st ,  r) + �(sz , r) 
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and 
'{J(sr, r') = (sr)r' = s (rr') = '{J(S, rr') . 

By Theorem 10 we have an associated group homomorphism 4> : S ®R R � S with 
4> (s ® r) = sr . Since 4> (s'(s ® r)) = 4> (s's ® r) = s' sr = s'4> (s ® r), it follows that 
4> is also an S-module homomorphism. The map 4>' : S -+  S ®R R with s f-+  s ® I  is 
an S-module homomorphism that is inverse to 4> because 4> o 4>'(s) = 4> (s ® I ) = s 
gives 4> 4>' = I .  and 

4>1 o 4> (s ® r) = 4>1(sr) = sr ® I =  s ® r 

shows that 4> '4> is the identity on simple tensors, hence 4>'4> = I .  
(8) Let R be a ring (not necessarily commutative), let I be a two sided ideal in R ,  and let N 

be a left R-module. Then as previously mentioned, Rf I is an (R/ I, R)-bimodule, so 
the tensor product Rf I ®R N is a left Rf /-module. This is an example of "extension 
of scalars" with respect to the natural projection homomorphism R -+ Rf I .  

Define 

IN = { L a;n; I a; E /, n; E N } , 
firute 

which is easily seen to be a left R-submodule of N (cf. Exercise 5, Section I ). Then 

(Rfl) ®R N � NfiN, 

as left R-modules, as follows. The tensor product is generated as an abelian group by 
the simple tensors (r mod I) ®  n = r(l  ® n) for r E R and n E N (viewing the Rf /
module tensor product as an R-module on which I acts trivially). Hence the elements 
I ®  n generate (Rfl) ®R N as an R/1-moduie. The map N -+  (R/l) ®R N defined 
by n f-+ I ®  n is a left R-module homomorphism and, by the previous observation, 
is sm:jective. Under this map a;n; with a; E I and n; E N maps to I ® a;n; = 
a; ® n; = 0, and so IN is contained in the kernel. This induces a sm:jective R-module 
homomorphism f : N /IN -+ (R/l) ®R N with f(n mod i) = I ®  n. We show f 
is an isomorphism by exhibiting its inverse. The map (R/ I) x N � N fIN defined 
by mapping (r mod I, n) to (rn mod IN) is well defined and easily checked to be R
balanced. It follows by Theorem 10 that there is an associated group homomorphism 
g :  (Rfl) ® N -+ N fl N with g((r mod l) ® n) = rn mod l N. As usual, fg = 1 and 
gf = l, so f is a bijection and (Rf I) ®R N � N fiN,  as claimed. 

As an example, let R = Z with ideal / = mZ and let N be the Z-module ZjnZ. 
Then IN = m(ZjnZ) = (mZ + nZ)jnZ = dZfnZ where d is the g.c.d. of m and n.  
Then N fIN � Zj dZ and we recover the isomorphism Z/ mZ ®z Z/ nZ � Z/ dZ of 
Example 3 above. 

We now establish some of the basic properties of tensor products. Note the frequent 
application of Theorem 10 to establish the existence of homomorphisms. 

Theorem 13. (The "Tensor Product" of Two Homomorphisms) Let M, M' be right 
R-modules, let N, N' be left R-modules, and suppose rp : M -+  M' and 1/1 : N -+ N' 
are R-module homomorphisms. 

(1) There is a unique group homomorphism, denoted by rp ® 1/1 ,  mapping M ®R N 
into M' ®R N' such that (rp ® 1/f)(m ® n) = rp(m) ® l/f (n) for all m E M and 
n E N. 
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(2) If M, M' are also (S, R)-bimodules for some ring S and ({J is also an S-module 
homomorphism, then ({J®l/f is a homomorphism ofleft S-modules. In particular, 
if R is commutative then ({J ® 1/f is always an R -module homomorphism for the 
standard R-module structures. 

(3) If 'A : M' -? M" and JL : N' -? N" are R-module homomorphisms then 
('A ® JL) o (({J ® 1/f) = ('A o ({J) ® (JL o 1/f) . 

Proof· The map (m , n) � ({J(m) ® 1/f(n) from M x N to M' ®R N' is clearly 
R-balanced, so ( 1 ) follows immediately from Theorem 10. 

In (2) the definition of the (left) action of S on M together with the assumption that 
({J is an S-module homomorphism imply that on simple tensors 

(({! ® 1/f)(s (m ® n)) = (({! ® 1/f)(sm ® n) = qJ (sm) ® 1/f (n) = SqJ(m) ® Y,(n). 
Since ({J ® 1/f is additive, this extends to sums of simple tensors to show that ({J ® Y, is 
an S-module homomorphism. This gives (2). 

The uniqueness condition in Theorem 10  implies (3), which completes the proof. 

The next result shows that we may write M ® N ® L, or more generally, an n-fold 
tensor product Mt ® M2 ® · · · ® Mn, unambiguously whenever it is defined. 

Theorem 14. (Associativity of the Tensor Product) Suppose M is a right R-module, N 
is an (R, T)-bimodule, and L is a left T -module. Then there is a unique isomorphism 

(M ®R N) ®T L ;:;:: M ®R (N ®T L) 
of abelian groups such that (m ® n) ® l � m ® (n ® l) . If M is an (S, R)-bimodule. 
then this is an isomorphism of S-modules. 

Proof Note first that the (R , T)-bimodule structure on N makes M ®R N into a 
right T -module and N ®7 L into a left R -module, so both sides of the isomorphism are 
well defined. For each fix�d l E L, the mapping (m, n) � m ® (n ® l) is R-balanced. 
so by Theorem 10 there is a homomorphism M ®R N -? M ®R (N ®7 L) with 
m ®n � m ® (n ® l) . This shows that the map from (M ®R N) x L to M ®R (N ®7 L) 
given by (m ® n, l) � m ® (n ® l) is well defined. Since it is easily seen to be T
balanced, another application of Theorem 10 implies that it induces a homomorphism 
(M ®R N) ®7 L -? M ®R (N ®7 L) such that (m ® n) ® l � m ® (n ® l).  In a 
similar way we can construct a homomorphism in the opposite direction that is inverse 
to this one. This proves the group isomorphism. 

Assume in addition M is an (S. R)-bimodule. Then for s E S and t E T we have 
s ((m ® n)t) = s (m ® nt) = sm ® nt = (sm ® n)t = (s (m ® n)) t 

so that M ®R N is an (S, T)-bimodule. Hence (M ®R N) ®7 L is a left S-module. 
Since N ®7 L is a left R-module, also M ®R (N ®7 L) is a left S-module. The group 
isomorphism just established is easily seen to be a homomorphism of left S-modules 
by the same arguments used in previous proofs: it is additive and is S-linear on simple 
tensors since s ((m ® n) ® l) = s (m ® n) ® l = (sm ® n) ® l maps to the element 
sm ® (n ® l) = s (m ® (n ® l)) . The proof is complete. 
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Corollary 15. Suppose R is commutative and M, N, and L are left R -modules. Then 

(M ® N) ® L � M ® (N ® L) 

as R-modules for the standard R-module structures on M, N and L. 

There is a natural extension of the notion of a bilinear map: 

Definition. Let R be a commutative ring with 1 and let Mt , M2, . . .  , Mn and L be 
R-modules with the standard R-module structures. A map cp :  Mt x · · · x Mn ---+ L is 
called n-multilinear over R (or simply multilinear if n and R are clear from the context) 
if it is an R -module homomorphism in each component when the other component 
entries are kept constant, i.e., for each i 

cp(m t , . . .  , m;-l , rm; + r'm; , mi+l •  . . .  , mn ) 

= rcp(m t • . . .  , m; , . . .  , mn ) + r'cp(m t • . . .  , m; , . . .  , mn) 

for all m; ,  m; E M; and r, r' E R. When n = 2 (respectively, 3) one says cp is bilinear 
(respectively trilinear) rather than 2-multilinear (or 3-multilinear). 

One may construct the n-fold tensor product M1 ® M2 ® · · · ® Mn from first 
principles and prove its analogous universal property with respect to multilinear maps 
from M1 x · · · x Mn to L. By the previous theorem and corollary, however, an n
fold tensor product may be obtained unambiguously by iterating the tensor product of 
pairs of modules since any bracketing of M1 ® · · · ® Mn into tensor products of pairs 
gives an isomorphic R -module. The universal property of the tensor product of a pair 

of modules in Theorem 10  and Corollary 12 then implies that multilinear maps factor 
uniquely through the R-module M1 ® · · · ® Mn, i.e., this tensor product is the universal 
object with respect to multilinear functions: 

Corollary 16. Let R be a commutative ring and let M1 , • • •  , Mn . L be R-modules. Let 
M 1 ® M2 ® · · · ® Mn denote any bracketing of the tensor product of these modules and 
let 

L : Mt X • • • X Mn ---+ Mt ® · · · ® Mn 

be the map defined by t (m t • . . .  , mn) = m1 ® · · · ® mn . Then 
(1) for every R-module homomorphism 4> : Mt ® · · · ® Mn ---+ L the map cp = 4> o t  

i s  n-multilinear from Mt x · · · x Mn to L,  and 
(2) if cp : Mt x · · · x Mn ---+ L is an n-multilinear map then there is a unique 

R-module homomorphism 4> : Mt ® · · · ® Mn ---+ L such that cp = 4> o t .  
Hence there is a bijection 

{ n-multilinear maps } 
� 

{ R-module homomorphisms } 
cp : Mt X • • · X Mn ---+ L 4> : Mt ® · · · ® Mn ---+ L 

with respect to which the following diagram commutes: 
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M x · · · x M.�·FM" 
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We have already seen examples where M 1 ® R N is not contained in M ® R N 
even when M1 is an R-submodule of M. The next result shows in particular that (an 
isomorphic copy of) M 1 ® R N is contained in M ® R N if M 1 is an R -module direct 
summand of M. 

Theorem 17. (Tensor Products of Direct Sums) Let M, M' be right R-modules and let 
N, N' be left R-modules. Then there are unique group isomorphisms 

(M EB M') ® R N � (M ® R N) EB (M' ® R N) 

M ®R (N EB  N') � (M ®R N) EB (M ®R N') 

such that (m, m') ®n � (m ®n, m' ®n) and m ® (n ,  n') � (m ®n, m ®n') respectively. 
If M, M' are also (S, R)-bimodules, then these are isomorphisms of left S-modules. In 
particular, if R is commutative, these are isomorphisms of R -modules. 

Proof: The map (MEBM') x N -+ (M®RN)EB(M'®RN) defined by ((m, m') , n) � 
(m ® n ,  m' ® n) is well defined since m and m' in M EB M' are uniquely defined in 
the direct sum. The map is clearly R-balanced, so induces a homomorphism f from 
(M EB M') ® N to (M ®R N) EB (M' ®R N) with 

f((m, m') ® n) = (m ® n ,  m' ® n) .  

In the other direction, the R-balanced maps M x N -+ (M EB M') ® R N and M' x N -+ 

(M EB M') ®R N given by (m , n) � (m, O) ® n and (m', n) � (O, m') ®n, respectively, 
define homomorphisms from M ® R N and M' ® R N to (M EB M') ® R N. These in tum 
give a homomorphism g from the direct sum (M ® R N) EB (M' ® R N) to (M EB M') ® R N 
with 

g((m ® nt .  m' ® n2)) = (m. 0) ® n t + {0, m') ® n2 . 

An easy check shows that f and g are inverse homomorphisms and are S-module 
isomorphisms when M and M' are (S, R)-bimodules. This completes the proof. 

The previous theorem clearly extends by induction to any finite direct sum of R
modules. The corresponding result is also true for arbitrary direct sums. For example 

M ® (EBiei N; ) � EB;ei (M ® N; ) , 

where I is any index set (cf. the exercises). This result is referred to by saying that 
tensor products commute with direct sums. 

Corollary 18. (Extension of Scalars for Free Modules) The module obtained from the 
free R-module N � Rn by extension of scalars from R to S is the free S-module sn , 
i.e., 

as left S-modules. 

Proof: This follows immediately from Theorem 17 and the isomorphism S ® R R � 
S proved in Example 7 previously. 
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Corollary 19. Let R be a commutative ring and let M � Rs and N � R1 be free 
R-modules with bases m 1 , . . .  , ms and n 1 , . . .  , n1 , respectively. Then M ®R N is a free 
R-module of rank st,  with basis mi ® nj , 1 ::: i ::: s and 1 ::: j ::: t, i.e., 

Rs ®R Rt � Rsr .  

Remark: More generally, the tensor product o f  two free modules o f  arbitrary rank over 
a commutative ring is free (cf. the exercises). 

Proof This follows easily from Theorem 17 and the first example following Corol
lary 9. 

Proposition 20. Suppose R is a commutative ring and M, N are left R-modules, 
considered with the standard R-module structures. Then there is a unique R-module 
isomorphism 

mapping m ® n to n ® m. 

Proof The map M x N -+ N ® M defined by (m, n) �---+ n ® m is  R-balanced. 
Hence it induces a unique homomorphism f from M ® N to N ®  M with f (m ® n) = 

n ® m. Similarly, we have a unique homomorphism g from N ® M to M ® N with 
g(n ®m) = m ®n giving the inverse of f, and both maps are easily seen to be R-module 
isomorphisms. 

Remark: When M = N it is not in general true that a ®  b = b ® a  for a ,  b E M. We 
shall study "symmetric tensors" in Section 1 1 .6. 

We end this section by showing that the tensor product of R-algebras is again an 
R-algebra. 

Proposition 21. Let R be a commutative ring and let A and B be R -algebras. Then the 
multiplication (a ®  b)(a' ® b') = aa' ® bb' is well defined and makes A ®R B into an 
R-algebra. 

Proof Note first that the definition of an R -algebra shows that 

r(a ® b) = ra ® b = ar ® b = a ®  rb = a ®  br = (a ® b)r 
for every r E R, a E A and b E B. To show that A ®  B is an R -algebra the main task is, 
as usual, showing that the specified multiplication is well defined. One way to proceed is 
to use two applications ofCorollary 16, as follows. The map cp : A x B x A x B -+ A®B 
defined by f(a , b, a ' ,  b') = aa' ® bb' i s  multilinear over R.  For example, 

374 

f (a, r1b1 + r2b2 , a' , b') = aa' ® (r1b1 + r2b2)b' 
= aa' ® r1 b1 b' + aa' ® r2b2b' 
= ri f(a ,  b1 o a' , b') + rd(a, � . a' , b') . 
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By Corollary 16, there is a corresponding R-module homomorphism t1> from A ®  B ® 
A ® B to A ® B with t1> (a ® b ® a' ® b') = aa' ® bb' . Viewing A ® B ® A ® B as 
(A ® B) ® (A ® B), we can apply Corollary 16 once more to obtain a well defined R
bilinear mapping q/ from (A ®B) x (A ®B) to A ® B  with q/(a ®b, a' ®b') = aa' ®bb' . 
This shows that the multiplication is indeed well defined (and also that it satisfies the 
distributive laws). It is now a simple matter (left to the exercises) to check that with 
this multiplication A ®  B is an R-algebra. 

Example 

The tensor product <C ®JR <C is free of rank 4 as a module over lR with basis given by 
e1 = 1 ® 1 ,  ez = 1 ® i , e3 = i ® 1, and e4 = i ® i (by Corollary 19). By Proposition 21 ,  
this tensor product i s  also a (commutative) ring with e1 = 1 ,  and, for example, 

e� = (i ® i ) (i ® i) = i2 ® i 2 = (- 1 )  ® (- 1) = (- 1) (- 1 )  ® 1 = 1 . 

Then (e4 - 1) (e4 + 1 ) = 0, so <C � <C is not an integral domain. 
The ring <C � <C is an JR-algebra and the left and right JR-actions are the same: xr = r x 

for every r E lR and x E <C ®JR <C. The ring <C ®JR <C has a structure of a left <C-module 
because the first <C is a (<C, JR)-bimodule. It also has a right <C-module structure because 
the second <C is an (lR, <C)-bimodule. For example, 

i · e1 = i · (1 ® 1) = (i · 1) ® 1 = i ® 1 = e3 

and 
et · i = (1 ® 1) · i = 1 ® (1 · i) = 1 ® i = ez . 

This example also shows that even when the rings involved are commutative there may be 
natural left and right module structures (over some ring) that are not the same. 

E X E R C I S E S 

Let R be a ring with 1 .  

1. Let f : R --+ S be a ring homomorphism from the ring R to the ring S with f ( 1 R )  = 1 s.  
Verify the details that sr = sf(r) defines a right R-action on S under which S is an 
(S, R)-bimodule. 

2. Show that the element "2 ® 1" is 0 in Z ®z Z/2/Z but is nonzero in 2/Z ®z Z/2/Z. 

3. Show that <C®JR <C and <C®c <C are both leftlR-modules but are not isomorphic as lR-modules. 

4. Show that Q ®z Q and Q ®Q Q are isomorphic left Q-modules. [Show they are both 
! -dimensional vector spaces over Q.] 

5. Let A be a finite abelian group of order n and let pk be the largest power of the prime p 
dividing n. Prove that Z/ pk Z ®z A is isomorphic to the Sylow p-subgroup of A .  

6. If  R is  any integral domain with quotient field Q, prove that (Q/ R)  ®R (Q/ R)  = 0. 

7. If R is any integral domain with quotient field Q and N is a left R-module, prove that 
every element of the tensor product Q ® R N can be written as a simple tensor of the form 
(1  I d) ® n for some nonzero d E R and some n E N. 

8. Suppose R is an integral domain with quotient field Q and let N be any R-module. Let 
U = R x be the set of nonzero elements in R and define U -l N to be the set of equivalence 
classes of ordered pairs of elements (u , n) with u E U and n E N under the equivalence 
relation (u , n) � (u' ,  n) if and only if u'n = un' in N. 
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(a) Prove that u-1 N is an abelian group under the addition defined by (u t ,  n t )  + 
(u2 , n2) = (u 1 u2 , u2n1  + u 1n2) . Prove that r (u , n) = (u, rn) defines an action of R 
on u-I N making it into an R-module. [This is an example of localization considered 
in general in Section 4 of Chapter 15 ,  cf. also Section 5 in Chapter 7.] 

(b) Show that the map from Q x N to u-1 N defined by sending (alb, n) to (b, an) 
for a E R, b E U, n E N, is an R-balanced map, so induces a homomorphism f 
from Q ® R N to u-l N. Show that the map g from u-I N to Q ® R N defined by 
g((u, n)) = ( l lu) ®n is well defined and is an inverse homomorphism to f. Conclude 
that Q ®R N � u-1 N as R-modules. 

(c) Conclude from (b) that (l id) ® n is 0 in Q ®R N if and only if rn = 0 for some 
nonzero r E R. 

(d) If A is an abelian group, show that Q ®z A =  0 if and only if A is a torsion abelian 
group (i.e., every element of A has finite order). 

9. Suppose R is an integral domain with quotient field Q and let N be any R-module. Let 
Q ® R N be the module obtained from N by extension of scalars from R to Q. Prove that 
the kernel of the R-module homomorphism t :  N � Q ®R N is the torsion submodule of 
N (cf. Exercise 8 in Section 1 ). [Use the previous exercise.] 

10. Suppose R is commutative and N � Rn is a free R-module of rank n with R-module basis 
et ,  . . .  , en . 
(a) For any nonzero R-module M show that every element of M ® N can be written 

uniquely in the forrn i:7=t m; ® e; where m; E M. Deduce that if i:7=1 m; ® e; = 0 
in M ® N then m; = 0 for i = I .  . . . , n .  

(b) Show that if  I: m; ® n; = 0 in  M ® N where the n; are merely assumed to be R
linearly independent then it is not necessarily true that all the m; are 0. [Consider 
R = Z, n = 1 ,  M = ZI2Z, and the element 1 ® 2.] 

11. Let (et , e2} be a basis of V = JR2. Show that the element e1 ® e2 + e2 ® e1 in V ®!R V 
cannot be written as a simple tensor v ® w for any v ,  w E  JR2• 

12. Let V be a vector space over the field F and let v, v' be nonzero elements of V. Prove that 
v ® v' = v' ® v in V ®F V if and only if v = av' for some a E F. 

13. Prove that the usual dot product of vectors defined by letting (at • . . .  , an) ·  (bt ,  . . .  , bn ) be 
a1b1 + · · · + anbn is a bilinear map from JR.n x JR.n to JR. 

14. Let I be an arbitrary nonempty index set and for each i E I let N; be a left R-module. Let 
M be a right R-module. Prove the group isomorphism: M ® (ffiie/ N; ) � ffi;eJ (M ® N; ),  
where the direct sum of an arbitrary collection of modules is defined in Exercise 20, 
Section 3. [Use the same argument as for the direct sum of two modules, taking care to 
note where the direct sum hypothesis is needed - cf. the next exercise.] 

15. Show that tensor products do not commute with direct products in general. [Consider 
the extension of scalars from Z to Q of the direct product of the modules M; = Zl2i Z, 
i = 1 ,  2, . . .  ] 

16. Suppose R is commutative and let I and J be ideals of R, so Rl I and Rl J are naturally 
R-modules. 
(a) Prove that every element of R I I ® R R 1 J can be written as a simple tensor of the form 

( 1  mod I) ® (r mod J) . 
(b) Prove that there is an R-module isomorphism Rll ®R RIJ � Rl(l + J) mapping 

(r mod /) ® (r' mod J) to rr' mod (I + J). 

17. Let / = (2, x) be the ideal generatedby 2 andx in the ring R = Z[x] .  The ring ZI2Z = Rll 
is naturally an R-module annihilated by both 2 and x. 
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(a) Show that the map q; : I x I --+ 'll/271.. defined by 

q;(ao + a1x + · · · + anx
n

, bo + btx + · · · + bmxm) = � bt mod 2 

is R -bilinear. 
(b) Show that there is an R-module homomorphism from I ®R I --+ 'll/271.. mapping 

p(x) ® q(x) to p;O) 
q' (O) where q' denotes the usual polynomial deriv<Jtive of q.  

(c) Show that 2 ® x # x ® 2 in i ®R I.  

18. Suppose I is a principal ideal in the integral domain R.  Prove that the R-module I ®R I 
has no nonzero torsion elements (i.e., rm = 0 with 0 # r E R and m E I ®R I implies 
that m = 0). 

19. Let I = (2, x) be the ideal generated by 2 and x in the ring R = 'll[x] as in Exercise 17. 
Show that the nonzero element 2 ® x - x ® 2 in I ®R I is a torsion element. Show in 
fact that 2 ® x - x ® 2 is annihilated by both 2 and x and that the submodule of I ® R I 
generated by 2 ® x - x ® 2 is isomorphic to R/ I .  

20. Let I = (2, x) be the ideal generated by 2 and x in the ring R = 'll[x] . Show that the 
element 2 ® 2 + x ® x in I ® R I is not a simple tensor, i.e., cannot be written as a ® b for 
some a, b E I .  

21. Suppose R i s  commutative and let I and J be ideals of R .  
(a) Show there is a surjective R -module homomorphism from I ®  R J to the product ideal 

I J mapping i ® j to the element i j .  
(b) Give an example to show that the map i n  (a) need not b e  injective (cf. Exercise 17). 

22. Suppose that M is a left and a right R-module such that rm = mr for all r E R and 
m E M. Show that the elements r1 r2 and rzrt act the same on M for every q ,  rz E R. 
(This explains why the assumption that R is commutative in the definition of an R-algebra 
is a fairly natural one.) 

23. Verify the details that the multiplication in Proposition 19 makes A ®  R B into an R -algebra. 

24. Prove that the extension of scalars from 71.. to the Gaussian integers 'll[i] of the ring JR. is 
isomorphic to C as a ring: 'll[i ] ®z: JR. �  C as rings. 

25. Let R be a subring of the commutative ring S and let x be an indeterminate over S. Prove 
that S[x] and S ®R R[x] are isomorphic as S-algebras. 

26. Let S be a commutative ring containing R (with 1s  = 1 R) and let XJ , . . .  , Xn be indepen
dent indeterminates over the ring S. Show that for every ideal I in the polynomial ring 
R[XJ , . . . , Xn ] that S®R (R[XJ , . . .  , Xn ]/I) � S[XJ , . . . , Xn ]/IS[XJ , . . .  , Xn ] as S-algebras. 

The next exercise shows the ring C ®JR C introduced at the end of this section is isomorphic 
to C x C. One may also prove this via Exercise 26 and Proposition 16 in Section 9.5, since 
C � IR.[x]f(x2 + 1) . The ring C x C is also discussed in Exercise 23 of Section 1 .  

27. (a) Write down a formula for the multiplication of two elements a · 1 +b · ez +c · e3 +d · e4 
and a' · 1 + b' · ez + c' · e3 + d' · e4 in the example A = C ®JR C following Proposition 
21 (where I = I ® 1 is the identity of A). 

(b) Let EI = � (l ® l +i®i) and Ez = !0® 1 -i®i). Show thatE tE2 = O, EJ +Ez = I , and 
EJ = Ej for j = 1 ,  2 (EJ and E2 are called orthogonal idempotents in A). Deduce that 
A is isomorphic as a ring to the direct product oftwo principal ideals: A �  AEt x AE2 
(cf. Exercise 1, Section 7.6). 

(c) Prove that the map q; : C x C --+ C x C by q;(zt ,  zz) = (ZIZ2 ,  ZIW, where Z2 denotes 
the complex conjugate of zz ,  is an IR.-bilinear map. 
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(d) Let (1J be the IR-module homomorphism from A to C x C obtained from rp in (c). 
Show that (!J (Et)  = (0, 1) and (!J (E2) = ( 1 ,  0). Show also that (1J is C-linear, where 
the action of C is on the left tensor factor in A and on both factors in C x C. Deduce 
that (1J is surjective. Show that (1J is a C-algebra isomorphism. 

1 0.5 EXACT SEQUENCEs-PROJECTIVE, I NJECTIVE, AND 
FLAT MODULES 

One of the fundamental results for studying the structure of an algebraic object B (e.g., 
a group, a ring, or a module) is the First Isomorphism Theorem, which relates the 
subobjects of B (the normal subgroups. the ideals, or the submodules, respectively) 
with the possible homomorphic images of B .  We have already seen many examples 
applying this theorem to understand the structure of B from an understanding of its 
"smaller" constituents-for example in analyzing the structure of the dihedral group 
D8 by determining its center and the resulting quotient by the center. 

In most of these examples we began first with a given B and then determined some 
of its basic properties by constructing a homomorphism rp (often given implicitly by 
the specification of ker rp 5; B) and examining both ker rp and the resulting quotient 
BI ker rp. We now consider in some greater detail the reverse situation, namely whether 
we may first specify the "smaller constituents." More precisely, we consider whether, 
given two modules A and C, there exists a module B containing (an isomorphic copy 
of) A such that the resulting quotient module B I A is isomorphic to C-in which case 
B is said to be an extension of C by A. It is then natural to ask how many such B exist 
for a given A and C, and the extent to which properties of B are determined by the 
corresponding properties of A and C. There are, of course, analogous problems in the 
contexts of groups and rings. This is the extension problem first discussed (for groups) 
in Section 3 .4; in this section we shall be primarily concerned with left modules over 
a ring R, making note where necessary of the modifications required for some other 
structures, notably noncommutative groups. As in the previous section, throughout this 
section all rings contain a 1 . 

We first introduce a very convenient notation. To say that A is isomorphic to a 
submodule of B, is to say that there is an injective homomorphism 1/1 : A � B (so 
then A � 1/I (A) 5; B). To say that C is isomorphic to the resulting quotient is to say 
that there is a surjective homomorphism rp : B � C with ker rp = 1/I(A). In particular 
this gives us a pair of homomorphisms: 

A � B � C 

with image 1/1 = ker rp. A pair of homomorphisms with this property is given a name: 

Definition. 

(1) The pair of homomorphisms X � Y � Z is said to be exact (at Y) if 
image a = ker f3.  

(2) A sequence · · ·  � Xn-1  � Xn � Xn+l � · · · ofhomomorphisms is  said to be 
an exact sequence if it is exact at every X n between a pair of homomorphisms. 
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With this terminology, the pair of h�;�morphisms A _t B � C above is exact at B .  
We can also use this terminology to express the fact that for these maps 1/f is  injective 
and ({J is surjective: 

Proposition 22. Let A, B and C be R-modules over some ring R. 'Iben 

(1) The sequence 0 � A _t B is exact (at A) if and only if 1/f is injective. 
(2) The sequence B � C � 0 is exact (at C) if and only if ({J is surjective. 

Proof· The (uniquely defined) homomorphism 0 � A has image 0 inA This will 
be the kernel of 1/f if and only if 1/f is injective. Similarly, the kernel of the (uniquely 
defined) zero homomorphism C � 0 is all of C, which is the image of ({J if and only if 
({J is surjective. 

Corollary 23. The sequence 0 � A _t B � C � 0 is exact if and only if 1/1 is 
injective, ({J is surjective, and image 1/f = ker ({J, i.e., B is an extension of C by A. 

Definition. The exact sequence 0 � A _t B � C � 0 is called a short exact 
sequence. 

In terms of this notation, the extension problem can be stated succinctly as follows: 
given modules A and C, determine all the short exact sequences 

0 ---+ A � B � C ---+ 0. ( 10.9) 

We shall see below that the exact sequence notation is also extremely convenient for 
analyzing the extent to which properties of A and C determine the corresponding prop
erties of B. If A, B and C are groups written multiplicatively, the sequence (9) will be 
written 

(10.9') 

where 1 denotes the trivial group. Both Proposition 22 and Corollary 23 are valid with 
the obvious notational changes. 

Note that any exact sequence can be written as a succession of short exact sequences 

since to say X � Y � Z is exact at Y is the same as saying that the sequence 
0 � a (X) � Y � Y j ker {3 � 0 is a short exact sequence. 

Examples 
(1) Given modules A and C we can always form their direct sum B = A 6.1 C and the 

sequence 

o � A � A E!1 C � c � o  

where t (a) = (a , 0) and rr(a, c) = c is a short exact sequence. In particular, it follows 
that there always exists at least one extension of C by A. 

(2) As a special case of the previous example, consider the two Z-modules A = Z and 
C = llfnll: 

I � 0 - Z - II': $  (llfnll) - llfnll - 0, 
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giving one extension of 'llf n'll by 7l. 
Another extension of 'llf n'll by 7l is given by the short exact sequence 

where n denotes the map x �---+ nx given by multiplication by n, and n denotes the 
natural projection. Note that the modules in the middle of the previous two exact 
sequences are not isomorphic even though the respective "A" and "C" terms are 
isomorphic. Thus there are (at least) two "essentially different" or "inequivalent" 
ways of extending 7lfn7l by 7l. 

(3) If ({! : B � C is any homomorphism we may form an exact sequence: 

0 � ker ({! � B � image ({! � 0 

where t is the inclusion map. In particular, if ({! is smjective, the sequence ({! : B � C 
may be extended to a short exact sequence with A =  ker ({J. 

( 4) One particularly important instance of the preceding example is when M is an R -module 
and S is a set of generators for M. Let F(S) be the free R-module on S. Then 

o �  K � F(S) � M � o  

is the short exact sequence where ({! is the unique R-module homomorphism which is 
the identity on S ( cf. Theorem 6) and K = ker ({!. 

More generally, when M is any group (possibly non-abelian) the above short exact 
sequence (with 1 's at the ends, if M is written multiplicatively) describes a presentation 
of M, where K is the normal subgroup of F(S) generated by the relations defining M 
(cf. Section 6.3). 

(5) 1\vo "inequivalent" extensions G of the Klein 4-group by the cyclic group Z2 of order 
two are 

1 � Z2 � Dg � Z2 x Z2 � 1 ,  and 

1 � Z2 � Qg � Z2 x Z2 � 1 ,  

where in each case t maps Z2 injectively into the center of G (recall that both Ds and 
Qs have centers of order two), and ({! is the natural projection of G onto G/Z(G). 

1\vo other inequivalent extensions G of the Klein 4-group by Z2 occur when G 
is either of the abelian groups Z2 x Z2 x Z2 or Z2 x Z4 for appropriate maps t and ({!. 

Examples 2 and 5 above show that, for a fixed A and C, in general there may be 
several extensions of C by A. To distinguish different extensions we define the notion 
of a homomorphism (and isomorphism) between two exact sequences. Recall first that 
a diagram involving various homomorphisms is said to commute if any compositions of 
homomorphisms with the same starting and ending points are equal, i.e., the composite 
map defined by following a path of homomorphisms in the diagram depends only on 
the starting and ending points and not on the choice of the path taken. 
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Definition. Let 0 ---+ A ---+ B ---+ C ---+ 0 and 0 ---+ A' ---+ B' ---+ C' ---+ 0 be two short 
exact sequences of modules. 

(1) A homomorphism of short exact sequences is a triple a, {3, y of module homo
morphisms such that the following diagram commutes: 

0 ----+ A ----+ B ----+ C ----+ 0 

0 ----+ A' ----+ B' ----+ C' ----+ 0 
The homomorphism is an isomorphism of short exact sequences if a, {3, y are all 
isomorphisms, in which case the extensions B and B' are said to be isomorphic 
extensions. 

(2) The two exact sequences are called equivalent if A = A', C = C', and there is 
an isomorphism between them as in ( 1 )  that is the identity maps on A and C 
(i.e., a and y are the identity). In this case the corresponding extensions B and 
B' are said to be equivalent extensions. 

If B and B' are isomorphic extensions then in particular B and B' are isomorphic 
as R-modules, but more is true: there is an R-module isomorphism between B and 
B' that restricts to an isomorphism from A to A' and induces an isomorphism on the 
quotients C and C'. For a given A and C the condition that two extensions B and B' 
of C by A are equivalent is 

·
stronger still: there must exist an R-module isomorphism 

between B and B' that restricts to the identity map on A and induces the identity map 
on C. The notion of isomorphic extensions measures how many different extensions of 
C by A there are, allowing for C and A to be changed by an isomorphism. The notion 
of equivalent extensions measures how many different extensions of C by A there are 
when A and C are rigidly fixed. 

Homomorphisms and isomorphisms between short exact sequences of multiplica
tive groups (9') are defined similarly. 

It is an easy exercise to see that the composition of homomorphisms of short exact 
sequences is also a homomorphism. Likewise, if the triple a, {3, y is an isomorphism 
(or equivalence) then a- 1 , {3-1 , y - 1 

is an isomorphism (equivalence, respectively) in 
the reverse direction. It follows that "isomorphism" (or equivalence) is an equivalence 
relation on any set of short exact sequences. 

Examples 

(1) Let m and n be integers greater than 1 . Assume n divides m and let k = mfn. Define 
a map from the exact sequence of il-modules in Example 2 of the preceding set of 
examples: 

0 ----+ 
n ----+ � llfnZ -------+ 0 

0 ----+ ilfkil � ilfmil � ilfnil -------+ 0 

where ex and f3 are the natural projections, y is the identity map, L maps a modk to 
na mod m, and rr' is the natural projection ofil/ mil onto its quotient (il/ mil) I (nil/ mil) 
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(which is isomorphic to 7l..fn7l..). One easily checks that this is a homomorphism of 
short exact sequences. 

(2) If again 0 ---+ 7!.. � 7!.. � 7!../ n7!.. 4 0 is the short exact sequence of 7!..-modules defined 
previously, map each module to itself by x � -x . This triple of homomorphisms 
gives an isomorphism of the exact sequence with itself. This isomorphism is not an 
equivalence of sequences since it is not the identity on the first 7!... 

(3) The short exact sequences in Examples 1 and 2 following Corollary 23 are not 
isomorphic-the extension modules are not isomorphic 7!..-modules (abelian groups). 
Likewise the two extensions, Ds and Qg, in Example 5 of the same set are not iso
morphic (hence not equivalent), even though the two end terms "A" and "C" are the 
same for both sequences. 

(4) Consider the maps 

o - 7!..!27!.. 

o - 7!..!27!.. 7l..f27l.. $ 7!../27!.. q/ -

7!../27!.. - o 

7!../27!.. - o 

where 1jr maps 7!../27!.. injectively into the first component of the direct sum and rp projects 
the direct sum onto its second component. Also 1/r' embeds 7!../27!.. into the second 
component of the direct sum and rp' projects the direct sum onto its first component. 
If fJ maps the direct sum 7!../27!.. EB 7!../27!.. to itself by interchanging the two factors, 
then this diagram is seen to commute, hence giving an equivalence of the two exact 
sequences that is not the identity isomorphism. 

(5) We exhibit two isomorphic but inequivalent 7!..-module extensions. For i = 1 ,  2 define 
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0 ---+ 7l..j27!.. � 7l..j47l.. EB 7!../27!.. � 7!../27!.. EB 7!../27!.. ---+ 0 

where 1jr : 1 � (2, 0) in both sequences, f/JI is defined by f/JI (a mod 4, b mod 2) = 
(a mod 2, b mod 2), and f/J2 (a mod 4, b mod 2) = (b mod 2, a mod 2) . It is easy to see 
that the resulting two sequences are both short exact sequences. 

An evident isomorphism between these two exact sequences is provided by the 
triple of maps id, id, y,  where y : 7l..f27l.. EB 7l..j27!.. ---+ 7!../27!.. EB 7l..j27!.. is the map 
y((c, d)) = (d, c) that interchanges the two direct factors. 

We now check that these two isomorphic sequences are not equivalent, as fol
lows. Since f/JI (0, 1) = {0, 1 ) ,  any equivalence, id, {J, id, from the first sequence to 
the second must map {0, 1 )  E 7l..j47l.. EB 7l..j27!.. to either { 1 ,  0) or {3, 0) in 7l..f47l.. $ 7l..j27!.., 
since these are the two possible elements mapping to {0, 1) by f/J2·  This is impossible, 
however, since the isomorphism fJ cannot send an element of order 2 to an element of 
order 4. 

Put another way, equivalences involving the same extension module B are au
tomorphisms of B that restrict to the identity on both 1/r(A) and Bfljr(A). Any such 
automorphism of B = 7!../47!.. EB 7!../27!.. must fix the coset {0, 1) + ljr(A) since this 
is the unique nonidentity coset containing elements of order 2. Thus maps which 
send this coset to different elements in C give inequivalent extensions. In particular, 
there is yet a third inequivalent extension involving the same modules A = 7l..f27l.., 
B = 7!../47!.. EB 7!../27!.. and C = 7l..j27!.. EB 7l..f27l.., that maps the coset {0, 1 ) + ljr(A) to the 
element ( 1 ,  1 )  E 7!../27!.. EB 7!../27!... 

By similar reasoning there are three inequivalent but isomorphic group extensions 
of z2 X Z2 by z2 with B � Ds (cf. the exercises). 
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The homomorphisms a, {3, y in a homomorphism of short exact sequences are not 
independent. The next result gives some relations among these three homomorphisms. 

Proposition 24. (The Short Five Lemma) Let a, {3, y be a homomorphism of short 
exact sequences 

0 --+ A --+ B --+ C --+ 0 

0 --+ A' --+ B' --+ C' --+ 0 

(1) If a and y are injective then so is {3. 
(2) If  a and y are smjective then so is  {3. 
(3) If a and y are isomorphisms then so is  {3 (and then the two sequences are 

isomorphic). 

Remark: These results hold also for short exact sequences of (possibly non-abelian) 
groups (as the proof demonstrates). 

Proof: We shall prove ( 1 ), leaving the proof of (2) as an exercise (and (3) follows 
immediately from ( 1 )  and (2)). Suppose then that a and y are injective and suppose 
b E  B with {3(b) = 0. Let 1/f :  A �  B and cp :  B � C denote the homomorphisms in 
the first short exact sequence. Since {3(b) = 0, it follows in particular that the image 
of {3(b) in the quotient C' is also 0. By the commutativity of the diagram this implies 
that y (cp(b)) = 0, and since y is assumed injective, we obtain cp(b) = 0, i.e., b is 
in the kernel of cp. By the exactness of the first sequence, this means that b is in the 
image of 1/f, i.e. , b = 1/f (a) for some a E A. Then, again by the commutativity of 
the diagram, the image of a (a) in B' is the same as {3(1/f(a)) = {3(b) = 0. But a and 
the map from A' to B' are injective by assumption, and it follows that a = 0. Finally, 
b = 1/f(a) = l/f (O) = 0 and we see that {3 is indeed injective. 

We have already seen that there is always at least one extension of a module C by A, 
namely the direct sum B = A EB C. In this case the module B contains a submodule C' 
isomorphic to C (namely C' = 0 EB C) as well as the submodule A, and this submodule 
complement to A "splits" B into a direct sum. In the case of groups the existence of 
a subgroup complement C' to a normal subgroup in B implies that B is a semidirect 
product (cf. Section 5 in Chapter 5). The fact that B is a direct sum in the context 
of modules is a reflection of the fact that the underlying group structure in this case is 
abelian; for abelian groups semidirect products are direct products. In either case the 
corresponding short exact sequence is said to "split": 

Definition. 

(1) Let R be a ring and let 0 � A .:!:,. B � C � 0 be a short exact sequence of 
R -modules. The sequence is said to be split if there is an R -module complement 
to lfr(A) in B .  In this case, up to isomorphism, B = A EB C (more precisely, 
B = 1/f (A) EB C' for some submodule C', and C' is mapped isomorphically onto 
C by cp: cp(C') � C). 
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(2) If 1 --+ A -! B � C --+ I is a short exact sequence of groups, then the 
sequence is said to be split if there is a subgroup complement to 1/f (A) in B.  In 
this case, up to isomorphism, B = A �  C (more precisely, B = 1/f (A) � C' for 
some subgroup C', and C' is mapped isomorphically onto C by <p:  <p(C') � C). 

In either case the extension B is said to be a split extension of C by A. 

The question of whether an extension splits is the question of the existence of a 
complement to 1/f (A) in B isomorphic (by <p) to C, so the notion of a split extension 
may equivalently be phrased in the language of homomorphisms: 

Proposition 25. The short exact sequence 0 --+ A --! B � C --+ 0 of R -modules is 
split if and only if there is an R -module homomorphism Jl : C --+ B such that cp o Jl 
is the identity map on C. Similarly, the short exact sequence 1 --+ A -! B � C --+ 1 
of groups is split if and only if there is a group homomorphism Jl : C --+ B such that 
cp o Jl is the identity map on C. 

Proof" This follows directly from the definitions: if Jl is given define C' = Jl( C) � 
B and if C' is given define Jl = q;-1 : C � C' � B .  

Definition. With notation as i n  Proposition 25, any set map Jl : C --+ B such that 
cp o Jl = id is called a section of cp. If Jl is a homommphism as in Proposition 25 then 
Jl is called a splitting homomorphism for the sequence. 

Note that a section of cp is nothing more than a choice of coset representatives in B 
for the quotient BI ker cp � C. A section is a (splitting) homomorphism if this set of 
coset representatives forms a submodule (respectively, subgroup) in B, in which case 
this submodule (respectively, subgroup) gives a complement to 1/f(A) in B .  

Examples 

(1) The split short exact sequence 0 --+ A � A ffi C � C --+ 0 has the evident splitting 
homomorphism p,(c) = (0, c). 

(2) The extension 0 --+ Z � Z ffi (ilfnil) � Jlfnil --+ 0, of Jlfnil by Z is split (with 
splitting homomorphism p, mapping Zjnil isomorphically onto the second factor of 

the direct sum). On the other hand, the exact sequence of Z-modules 0 --+ Z � Z � 
Jlfnil --+ 0 is not split since there is no nonzero homomorphism of Jlfnil into Z. 

(3) Neither Ds nor Qs is a split extension of Z2 x Z2 by Z2 because in neither group is 
there a subgroup complement to the center (Section 2.5 gives the subgroup structures 
of these groups). 

(4) The group Ds is a split extension of Z2 by Z4, i.e., there is a split short exact sequence 
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1 -----* Z4 � Ds � Z2 -----* 1 .  

namely, 

1 -----* ( r )  � Ds � ( S )  -----* 1 ,  

using our usual set of generators for Ds . Here t i s  the inclusion map and 1'{ : ra sb r+ sb 
is the projection onto the quotient Ds I ( r ) � z2 . The splitting homomorphism JL 
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maps ( s )  isomorphically onto the complement ( s ) for ( r )  in Dg. Equivalently, Ds 
is the semidirect product of the normal subgroup ( r )  (isomorphic to Z4) with ( s )  
(isomorphic to Zz). 

On the other hand, while Qs is also an extension of Zz by Z4 (for example, 
( i ) � Z4 has quotient isomorphic to Zz), Qs is not a split extension of Zz by Z4: no 
cyclic subgroup of Qs of order 4 has a complement in Qg. 

Section 5.5 contains many more examples of split extensions of groups. 

Proposition 25 shows that an extension B of C by A is a split extension if and only 
if there is a splitting homomorphism J.L of the projection map q; : B 4 C from B to the 
quotient C .  The next proposition shows in particular that for modules this is equivalent 
to the existence of a splitting homomorphism for 1/1 at the other end of the sequence. 

Proposition 26. Let 0 4 A � B � C 4 0 be a short exact sequence of modules 

(respectively, 1 4 A �  B � C 4 1 a short exact sequence of groups). Then B = 

1/f(A) $ C' for some submodule C' of B with q;(C') � C (respectively, B = 1/I(A) x C' 
for some subgroup C' of B with q;(  C') � C) if and only if there is a homomorphism 
A :  B 4 A such that A o 1/1 is the identity map on A .  

Proof: This i s  similar to the proof of Proposition 25. If A i s  given, define C '  = 

ker A £; B and if C' is given define A : B = 1/f(A) $ C' 4 A by A((1/f (a} , c') = a. 
Note that in this case C' = ker A is normal in B, so that C' is a normal complement to 
1/f(A) in B,  which in turn implies that B is the direct sum of 1/f(A) and C' (cf. Theorem 
9 of Section 5.4). 

Proposition 26 shows that for general group extensions, the existence of a splitting 
homomorphism A on the left end of the sequence is stronger than the condition that 
the extension splits: in this case the extension group is a direct product, and not just 
a semidirect product. The fact that these two notions are equivalent in the context of 
modules is again a reflection of the abelian nature of the underlying groups, where 
semidirect products are always direct products. 

Modules and HomR( D, _} 
Let R be  a ring with 1 and suppose the R-module M i s  an extension of N by  L ,  with 

O ----* L � M 4 N ----* O 

the corresponding short exact sequence of R-modules. It is natural to ask whether 
properties for L and N imply related properties for the extension M. The first situation 
we shall consider is whether an R-module homomorphism from some fixed R-module 
D to either L or N  implies there is also an R-module homomorphism from D to M. 

The question of obtaining a homomorphism from D to M given a homomorphism 
from D to L is easily disposed of: if f E HomR (D, L) is an R -module homomorphism 
from D to L then the composite f' = 1/1 o f is an R-module homomorphism from D to 
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M. The relation between these maps can be indicated pictorially by the commutative 
diagram 

D 

I ! ' , ,( L 1/1 ' M 
Put another way, composition with 1/1 induces a map 

1/1' : HomR(D, L) � HomR (D, M) 

I �-----+ I' = 1/1 o f. 
Recall that, by Proposition 2, HomR(D, L) and HomR(D, M) are abelian groups. 

Proposition 27. Let D, L and M be R-modules and let 1/1 :  L --+  M be an R-module 
homomorphism. Then the map 

1/1' : HomR(D, L) � HomR(D, M) 

I �-----+ I' = 1/1 o I 
is a homomorphism of abelian groups. If 1/1 is injective, then 1/1' is also injective, i.e., 

if 0 � L � M is exact, 

1/r' 
then 0 � HomR (D, L) � HomR (D, M) is also exact. 

Proof The fact that 1/1' is a homomorphism is immediate. If 1/1 is injective, then 
distinct homomorphisms I and g from D into L give distinct homomorphisms 1/1 o I and 1/1 o g from D into M, which is to say that 1/1' is also injective. 

While obtaining homomorphisms into M from homomorphisms into the submodule 
L is straightforward, the situation for homomorphisms into the quotient N is much less 
evident. More precisely, given an R-module homomorphism I : D --+  N the question 
is whether there exists an R-module homomorphism F :  D --+  M that extends or lifts 

I to M, i.e., that makes the following diagram commute: 

D 

�// ! I 
M / ({J 

N 
As before, composition with the homomorphism (jJ induces a homomorphism of abelian 
groups 

(jJ1 : HomR(D, M) � HomR (D, N) 

F �-----+ F' = ({J o F. 

In terms of (jJ1, the homomorphism I to N lifts to a homomorphism to M if and only if 

I is in the image of ({J1 (namely, I is the image of the lift F). 
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In general it may not be possible to lift a homomorphism f from D to N to a 
homomorphism from D to M. For example, consider the nonsplit exact sequence 

0 --+ Z _..;. Z � Zj2Z --+ 0 from the previous set of examples. Let D = Zj2Z and let 
f be the identity map from D into N. Any homomorphism F of D into M = Z must 
map D to 0 (since Z has no elements of order 2), hence rr o F  maps D to 0 in N, and 
in particular, rr o F =/= f.  Phrased in terms of the map q;', this shows that 

if M � N ----+ 0 is exact, 

then HomR (D, M) � HomR (D. N) ----+ 0 is not necessarily exact. 

These results relating the homomorphisms into L and N to the homomorphisms 
into M can be neatly summarized as part of the following theorem. 

Theorem 28. Let D, L, M, and N be R-modules. If 

"' "' 0 ----+ L ----+ M ----+ N ----+ 0 is exact, 

then the associated sequence 

1/t' rp' 
0 --+  HomR(D. L) --+ HomR(D, M) --+ HomR(D, N) is exact. ( 10. 10) 

A homomorphism f : D --+ N lifts to a homomorphism F : D --+ M if and only if 
f E HomR (D. N) is in the image ofq;' . In general q;' : HomR (D, M) --+ HomR (D, N) 
need not be smjective; the map q;' is smjective if and only if every homomorphism from 
D to N lifts to a homomorphism from D to M, in which case the sequence ( 10) can be 
extended to a short exact sequence. 

The sequence ( 10) is exact for all R-modules D if and only if the sequence 

0 --+ L ..! M � N is exact. 

Proof: The only item in the first statement that has not already been proved is the 
exactness of (10) at HomR (D, M), i.e., ker q;' = image 1fr'. Suppose F : D --+  M 
is an element of HomR (D, M) lying in the kernel of q;', i.e., with q; o F = 0 as 
homomorphisms from D to N. If d E D is any element of D, this implies that 
q;( F (d)) = 0 and F (d) E ker q;. By the exactness of the sequence defining the extension 
M we have ker q; = image 1/r,  so there is some element [ E L with F(d) = 1/r (l) . Since 
1/r is injective, the element l is unique, so this gives a well defined map F' : D --+ L 
given by F'(d) = l. It is an easy check to verify that F' is a homomorphism, i.e., 
F' E HomR(D, L). Since 1/r o F'(d) = 1/r (l) = F(d), we have F = 1/r'(F') which 
shows that F is in the image of 1/r', proving that ker q;' s; image 1/r'.  Conversely, 
if F is in the image of 1/r' then F = 1/r'(F') for some F' E HomR(D, L) and so 
q;(F(d)) = q;(l/r (F'(d))) for any d E D. Since ker q; = image 1/r we have q; o 1/r = 0, 
and it follows that q;(F(d)) = 0 for any d E D, i.e., q;' (F) = 0. Hence F is in the 
kernel of q;', proving the reverse containment: image 1/r' s; ker q;' . 

For the last statement in the theorem, note first that the sutjectivity of q; was not 
required for the proof that (10) is exact, so the "if' portion of the statement has already 
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been proved. For the converse, suppose that the sequence (1 0) is exact for all R -modules 
D. In general, HomR (R , X) � X for any left R-module X, the isomorphism being 
given by mapping a homomorphism to its value on the element 1 e R ( cf. Exercise 

10(b)). Taking D = R in (10), the exactness of the sequence 0 -+ L .t M � N 
follows easily. 

By Theorem 28, the sequence 

t/1' q/ 0 � HomR (D, L) � HomR(D, M) � HomR(D, N) � 0 (10. 1 1 ) 

is in general not a short exact sequence since the homomorphism q/ need not be sur
jective. The question of whether this sequence is exact precisely measures the extent 
to which the homomorphisms from D into M are uniquely determined by pairs of ho
momorphisms from D into L and D into N. More precisely, this sequence is exact if 
and only if there is a bijection F � (g, f) between homomorphisms F : D -+ M and 
pairs of homomorphisms g :  D -+  L and f :  D -+  N given by F l t/I(L) = 1/F'(g) and 
/ = q>'(F).  

One situation in which the sequence ( 1 1 )  is  exact occurs when the original sequence 
0 -+ L -+ M -+ N -+ 0 is a split exact sequence, i.e., when M = L $ N. In this 
case the sequence (1 1) is also a split exact sequence, as the first part of the following 
proposition shows. 

Proposition 29. Let D, L and N be R-modules. Then 
(1) HomR(D, L EB N) � HomR (D, L) EB HomR(D, N), and 
(2) HomR (L EB N,  D) � HomR(L, D) EB HomR (N, D). 

Proof: Let rr1 : L $ N -+ L be the natural projection from L $ N to L and similarly 
let rr2 be the natural projection to N. If f e HomR(D, L $ N) then the compositions 
rr1 o f and rr2 o f give elements in HomR(D, L) and HomR(D, N), respectively. 
This defines a map from HomR(D, L $ N) to HomR (D, L) $ HomR (D, N) which 
is easily seen to be a homomorphism. Conversely, given /1 e HomR(D, L) and 
/2 E HomR(D, N), define the map f E HomR (D, L EB N) by /(d) = (/1 (d) , f2(d)) .  
This defines a map from HomR(D, L)EBHomR (D, N) to HomR (D, LEBN) that is easily 
checked to be a homomorphism inverse to the map above, proving the isomorphism in 
(1) .  The proof of (2) is similar and is left as an exercise. 

The results in Proposition 29 extend immediately by induction to any finite direct 
sum of R-modules. These results are referred to by saying that Hom commutes with 
finite direct sums in either variable (compare to Theorem 17 for a corresponding result 
for tensor products). For infinite direct sums the situation is more complicated. Part 
(1)  remains true if L $ N is replaced by an arbitrary direct sum and the direct sum on 
the right hand side is replaced by a direct product (Exercise 13 shows that the direct 
product is necessary). Part (2) remains true if the direct sums on both sides are replaced 
by direct products. 

This proposition shows that if the sequence 

"' "' . 
O � L � M � N � O  
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is a split short exact sequence of R -modules, then 

1/r' rp' 
0 -----+ HomR{D, L) -----+ HomR{D, M) -----+ HomR{D, N) -----+ 0 

is also a split short exact sequence of abelian groups for every R-module D. Ex-
1/r' rp' 

ercise 14 shows that a converse holds: if 0 --+ HomR(D, L) --+ HomR (D, M) --+ 
HomR{D, N) --+ 0 is exact for every R-module D then 0 --+  L .!, M � N --+  0 is 
a split short exact sequence (which then implies that if the original Hom sequence is 
exact for every D, then in fact it is split exact for every D). 

Proposition 29 identifies a situation in which the sequence ( 1 1 )  is exact in terms 
of the modules L, M, and N. The next result adopts a slightly different perspective, 
characterizing instead the modules D having the property that the sequence ( 10) in 
Theorem 28 can always be extended to a short exact sequence: 

Proposition 30. Let P be an R-module. Then the following are equivalent: 
(1) For any R-modules L, M, and N, if 

0 -----+ L � M � N -----+ 0 
is a short exact sequence, then 

is also a short exact sequence. 

(2) For any R-modules M and N, if M � N --+  0 is exact, then every R-module 
homomorphism from P into N lifts to an R-module homomorphism into M, 
i.e., given f E HomR (P,  N) there is a lift F E HomR (P, M) making the 
following diagram commute: 

0 
{3) If P is a quotient of the R -module M then P is isomorphic to a direct summand 

of M, i.e. , every short exact sequence 0 --+ L --+ M --+ P --+ 0 splits. 
(4) P is a direct summand of a free R-module. 

Proof The equivalence of ( 1 )  and (2) is a restatement of a result in Theorem 28. 

Suppose now that (2) is satisfied, and let 0 --+ L .!, M � P --+ 0 be exact. By (2), the 
identity map from P to P lifts to a homomorphism 11 making the following diagram 
commute: 

p 

�/ / / !id 
/ (/J 

M P 0 
Then ({J o 11 = 1 ,  so 11 is a splitting homomorphism for the sequence, which proves (3). 

Every module P is the quotient of a free module (for example, the free module on the 
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set of elements in P), so there is always an exact sequence 0 -+ ker q; -+ :F � P -+ 0 
where :F is a free R-module (cf. Example 4 following Corollary 23). If (3) is satisfied, 
then this sequence splits, so :F is isomorphic to the direct sum of ker q; and P, which 
proves (4). 

Finally, to prove (4) implies (2), suppose that P is a direct summand of a free R
module on some set S, say :F(S) = P EB K, and that we are given a homomorphism f 
from P to N as in (2). Let rr denote the natural projection from :F(S) to P, so that f on 
i s  a homomorphism from :F(S) to N. For any s E S define ns = f o rr(s) E N  and let 
m .• E M be any element of M with q;(m5) = ns (which exists because q; is surjective). 
By the universal property for free modules (Theorem 6 of Section 3), there is a unique 
R-module homomorphism F' from :F(S) to M with F'(s) = m5 • The diagram is the 
following: 

:F(S) = P EB K 

I 
// t Jr 

F' t  p 

// 
(/) ! f 

M N ----+ 0 

By definition of the homomorphism F' we have q;oF' (s) = q;(ms) = ns = fon(s) ,  
from which it follows that q; o F' = f o rr  on :F(S), i.e., the diagram above is  com
mutative. Now define a map F : P -+ M by F(d) = F'((d, 0)) .  Since F is the 
composite of the injection P -+ :F(S) with the homomorphism F', it follows that F is 
an R-module homomorphism. Then 

q; o F(d) = q; o F'((d, 0)) = f o rr((d, 0)) = f(d) 
i.e., q; o F =  J, so the diagram 

p 

r;/ / / !f 

M
/ q; 

N 0 
commutes, which proves that (4) implies (2) and completes the proof. 

Definition. An R-module P is called projective if it satisfies any of the equivalent 
conditions of Proposition 30. 

The third statement in Proposition 30 can be rephrased as saying that any module 
M that projects onto P has (an isomorphic copy of) P as a direct summand, which 
explains the terminology. 

The following result is immediate from Proposition 30 (and its proof): 

Corollary 31. Free modules are projective. A finitely generated module is projective 
if and only if it is a direct summand of a finitely generated free module. Every module 
is a quotient of a projective module. 
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If D is fixed, then given any R -module X we have an associated abelian group 
HomR (D, X) . Further, an R-module homomorphism a : X � Y induces an abelian 
group homomorphism a' : HomR(D, X) �  HomR(D, Y), defined by a' (/) = a o f. 
Put another way, the map HomR (D, _) is a covariant functor from the category of 
R-modules to the category of abelian groups (cf. Appendix II). Theorem 28 shows that 
applying this functor to the terms in the exact sequence 

1/r rp 0 ---+ L ---+ M ---+ N ---+ 0 

produces an exact sequence 

1/r' rp' 
0 � HomR (D, L) � HomR (D, M) � HomR (D, N). 

This is referred to by saying that HomR (D, _) is a left exact functor. By Proposition 
30, the functor HomR(D, _) is exact, i.e., always takes short exact sequences to short 
exact sequences, if and only if D is projective. We summarize this as 

Corollary 32. If D is an R-module, then the functor HomR (D, _) from the category 
of R-modules to the category of abelian groups is left exact. It is exact if and only if D 
is a projective R -module. 

Note that if HomR (D , _) takes short exact sequences to short exact sequences, 
then it takes exact sequences of any length to exact sequences since any exact sequence 
can be broken up into a succession of short exact sequences. 

As we have seen, the functor HomR (D, _) is in general not exact on the right. 
Measuring the extent to which functors such as HomR(D, _) fail to be exact leads to 
the notions of "homological algebra," considered in Chapter 17. 

Examples 

(1) We shall see in Section 1 1 . 1  that if R = F is a field then every F -module is projective 
(although we only prove this for finitely generated modules). 

(2) By Corollary 3 1 ,  /Z is a projective /Z-module. This can be seen directly as follows: 

suppose f is a map from /Z to N and M � N -+ 0 is exact. The homomorphism f is 
uniquely determined by the value n = f(l) .  Then f can be lifted to a homomorphism 
F : /Z -+  M by first defining F(l )  = m, where m is any element in M mapped to n 
by qJ, and then extending F to all of /Z by additivity. 

By the first statement in Proposition 30, since /Z is projective, if 

O - L � M � N - 0  
is an exact sequence of /Z-modules, then 

1/r' rp' 
0 � Homz;(/Z, L) - Homz:(/Z, M) � Homz:(/Z, N) � 0 

is also an exact sequence. This can also be seen directly using the isomorphism 
Homz:(/Z, M) � M of abelian groups, which shows that the two exact sequences 
above are essentially the same. 

(3) Free /Z-modules have no nonzero elements of finite order so no nonzero finite abelian 
group can be isomorphic to a submodule of a free module. By Corollary 3 1  it follows 
that no nonzero finite abelian group is a projective /Z-module. 

Sec. 1 0.5 Exact Sequ ences-Projective. I njective, and  F lat  Mod u l es  391 



(4) As a particular case of the preceding example, we see that for n � 2 the Z-module 
ZjnZ is not projective. By Theorem 28 it must be possible to find a short exact 
sequence which after applying the functor Homz (Z/ nZ, _) is no longer exact on the 
right. One such sequence is the exact sequence of Example 2 following Corollary 23: 

for n � 2. Note first that Homz(Z/nZ, Z) = 0 since there are no nonzero Z-module 
homomorphisms from ZjnZ to Z. It is also easy to see that Homz(Z/nZ, ZjnZ) � 
Zjn'l4 as follows. Every homomorphism I is uniquely determined by 1(1 )  = a E 
ZjnZ, and given any a E ZjnZ there is a unique homomorphism Ia with la O ) = a; 

the map Ia �--+ a is easily checked to be an isomorphism from Homz(ZjnZ, ZjnZ) 
to ZjnZ. 

Applying Homz(Z/nZ, _) to the short exact sequence above thus gives the 
sequence 

n' "' 
o � o � o � ZJnZ � o  

which is not exact at its only nonzero term. 
(S) Since Q/Z is a torsion Z-module it is not a submodule of a free Z-module, hence is 

not projective. Note also that the exact sequence 0 � Z � Q � Q/Z � 0 does not 
split since Q contains no submodule isomorphic to QJZ. 

(6) The Z-module Q is not projective (cf. the exercises) . 
(7) We shall see in Chapter 1 2  that a finitely generated Z-module is projective if and only 

if it is free. 
(8) Let R be the commutative ring Zj2Z x Zj2Z under componentwise addition and 

multiplication. If Pt and P2 are the principal ideals generated by ( 1 , 0) and (0, I )  
respectively then R = Pt $ P2, hence both Pt and P2 are projective R-modules by 
Proposition 30. Neither Pt nor P2 is free, since any free module has order a multiple 
of four. 

(9) The direct sum of two projective modules is again projective (cf. Exercise 3). 
(10) We shall see in Part VI that if F is any field and n E z+ then the ring R = Mn (F) of all 

n x n matrices with entries from F has the property that every R-module is projective. 
We shall also see that if G is a finite group of order n and n =f:. 0 in the field F then the 
group ring FG also has the property that every module is projective. 

Injective Modules and HomR{_ , D )  

If 0 ---+ L � M � N ---+ 0 is a short exact sequence of R -modules then, instead 
of considering maps from an R -module D into L or N and the extent to which these 
determine maps from D into M, we can consider the "dual" question of maps from 
L or N  to D. In this case, it is easy to dispose of the situation of a map from N to 
D: an R-module map from N to D immediately gives a map from M to D simply by 
composing with fP. It is easy to check that this defines an injective homomorphism of 
abelian groups 
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(/)1 : HomR(N, D) ---+ HomR(M, D) 

f 1----+ f' = f 0 (/), 
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or, put another way, 

if M � N ---+ 0 is exact, 

then rp' 
0 ---+ HomR (N, D) ---+ HomR (M, D) is exact. 

(Note that the associated maps on the homomorphism groups are in the reverse direction 
from the original maps.) 

On the other hand, given an R -module homomorphism f from L to D it may not 
be possible to extend f to a map F from M to D, i.e., given f it may not be possible 
to find a map F making the following diagram commute: 

L 
l/f 

M 

f l / / / /
; 

D 

For example, consider the exact sequence 0 ---+ /Z � /Z � /Zf2/Z ---+ 0 of 
Z-modules, where l/f is multiplication by 2 and cp is the natural projection. Take 
D = llf2/Z and let f : /Z ---+ /Zf2/Z be reduction modulo 2 on the first /Z in the se
quence. There is only one nonzero homomorphism F from the second /Z in the se
quence to /Zf2/Z (namely, reduction modulo 2), but this F does not lift the map f since 
F o 1/f (/Z) = F(2/Z) = 0, so F o l/f =F f.  

Composition with l/f induces an abelian group homomorphism l/f' fromHomR ( M, D) 
to HomR(L,  D), and in terms of the map l/f'. the homomorphism f E HomR (L, D) 
can be lifted to a homomorphism from M to D if and only if f is in the image of l/f' . 
The example above shows that 

if 0 ---+ L � M is exact, 

then HomR (M, D) � HomR (L,  D) ---+ 0 is  nor necessarily exact. 

We can summarize these results in the following dual version of Theorem 28: 

Theorem 33. Let D, L, M, and N be R-modules. If 

"' rp 0 ---+ L ---+ M ---+ N ---+ 0 is exact, 

then the associated sequence 

rp' "'' 
0 ---+ HomR (N. D) ---+ HomR (M, D) ---+ HomR (L , D) is exact. ( 10. 12) 

A homomorphism f : L ---+ D lifts to a homomorphism F : M ---+ D if and only if 
f E HomR (L , D) is in the image of l/f' . In general l/f' : HomR (M, D) ---+ HomR (L , D) 
need not be swjective; the map l/f' is swjective if and only if every homomorphism from 
L to D lifts to a homomorphism from M to D, in which case the sequence ( 12) can be 
extended to a short exact sequence. 

The sequence ( 12) is exact for all R-modules D if and only if the sequence 

L -! M � N ---+ 0 is exact. 
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Proof" The only item remaining to be proved in the first statement is the exactness 
of ( 12) at HomR (M, D). The proof of this statement is very similar to the proof of 
the corresponding result in Theorem 28 and is left as an exercise. Note also that the 
injectivity of 1/1 is not required, which proves the "if" portion of the final statement of 
the theorem. 

Suppose now that the sequence (12) is exact for all R-modules D. We first show 
that ({J : M � N is a suijection. Take D = N jqJ(M) . If rr1 : N � N jqJ(M) is 
the natural projection homomorphism, then rr1 o qJ(M) = 0 by definition of rr1 . Since 
rr1 o ({J = qJ'(rrt ), this means that the element 7rt E HomR (N, N /({J(M)) is mapped to 0 
by (/)1• Since (/)1 is assumed to be injective for all modules D, this means rr1 is the zero 
map, i.e., N = ({J(M) and so ({J is a suijection. We next show that ({J o 1/J = 0, which 
will imply that image 1/J � ker qJ. For this we take D = N and observe that the identity 
map idN on N is contained in HomR (N, N), hence qJ'(idN) E HomR(M, N). Then the 
exactness of (12) for D = N implies that qJ' (idN) E ker 1/J', so 1/f'(qJ' (idN)) = 0. Then 
idN o 1/J o ({J = 0, i .e., 1/J o ({J = 0, as claimed. Finally, we show that ker ({J � image 1/J .  
Let D = M/1/I (L) and let rr2 : M � M/1/f (L) be the natural projection. Then 
1/J' (rr2) = 0 since rr2 (1/J (L)) = 0 by definition of rr2. The exactness of ( 12) for this D 
then implies that rr2 is in the image of (/)1, say rr2 = qJ'(j) for some homomorphism 
f E HomR (N, M/1/f (L)) ,  i.e., rr2 = f o ((J. If m E ker qJ then rr2(m) = j (qJ (m)) = 0, 
which means that m E 1/J (L) since rr2 is just the projection from M into the quotient 
M f 1/J (L ) .  Hence ker ({J � image 1/1, completing the proof. 

By Theorem 33, the sequence 

"/ 1/r' 0 � HomR (N, D) � HomR (M, D) � HomR (L , D) � 0 

is in general not a short exact sequence since 1/J' need not be suijective, and the question 
of whether this sequence is exact precisely measures the extent to which homomor
phisms from M to D are uniquely determined by pairs of homomorphisms from L and 
N to D. 

The second statement in Proposition 29 shows that this sequence is exact when the 
original exact sequence 0 � L � M � N � 0 is a split exact sequence. In fact in 

rp' 1/r' 
this case the sequence 0 � HomR (N, D) � HomR (M, D) � HomR (L , D) � 0 is 
also a split exact sequence of abelian groups for every R -module D. Exercise 14 shows 

rp' 1/r' 
that a converse holds: if 0 � HomR(N, D) � HomR (M, D) � HomR(L , D) � 0 

is exact for every R-module D then 0 � L -! M � N � 0 is a split short exact 
sequence (which then implies that if the Hom sequence is exact for every D, then in 
fact it is split exact for every D). 

There is also a dual version ofthe first three parts of Proposition 30, which describes 
the R-modules D having the property that the sequence (12) in Theorem 33 can always 
be extended to a short exact sequence: 

Proposition 34. Let Q be an R-module. Then the following are equivalent: 
(1) For any R -modules L, M, and N ,  if 
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is a short exact sequence, then 

is also a short exact sequence. 

(2) For any R-modules L and M, if 0 -+ L � M is exact, then every R-module 
homomorphism from L into Q lifts to an R-module homomorphism of M into 
Q, i.e., given f E HomR (L , Q) there is a lift F E HomR(M, Q) making the 
following diagram commute: 

0 -� L 1/1 M 
f ! / /

/

F 

Q )' 

(3) If Q is a submodule of the R-module M then Q is a direct summand of M, i.e., 
every short exact sequence 0 -+ Q -+ M -+ N -+ 0 splits. 

Proof" The equivalence of ( 1 )  and (2) is part of Theorem 33. Suppose now that (2) 

is satisfied and let 0 -+ Q � M � N -+ 0 be exact. Taking L = Q and f the identity 
map from Q to itself, it follows by (2) that there is a homomorphism F : M -+ Q with 
F o 1/1 = 1 ,  so F is a splitting homomorphism for the sequence, which proves (3). The 
proof that (3) implies (2) is outlined in the exercises. 

Definition. An R-module Q is called injective if it satisfies any of the equivalent 
conditions of Proposition 34. 

The third statement in Proposition 34 can be rephrased as saying that any module 
M into which Q injects has (an isomorphic copy of) Q as a direct summand, which 
explains the terminology. 

If D is fixed, then given any R -module X we have an associated abelian group 
HomR (X. D). Further, an R-module homomorphism a : X -+  Y induces an abelian 
group homomorphism a' : HomR (Y. D) -+ HomR (X, D), defined by a'(/) = f o a, 
that "reverses" the direction of the arrow. Put another way, the map HomR (D. _) is a 
contravariant functor from the category of R -modules to the category of abelian groups 
( cf. Appendix II). Theorem 33 shows that applying this functor to the terms in the exact 
sequence 

"' <p O � L � M � N � O  

produces an exact sequence 

rp' 1/r' 0 -+  HomR (N, D) -+ HomR (M, D) -+ HomR (L,  D). 

This is referred to by saying that HomRL. D) is a left exact (contravariant) functor. 
Note that the functor HomR L. D) and the functor HomR(D, _) considered earlier 

Sec. 1 0.5 Exact Sequences-Projective, I njective, a nd Flat Modules 395 



are both left exact; the former reverses the directions of the maps in the original short 
exact sequence, the latter maintains the directions of the maps. 

By Proposition 34, the functor HomR (_, D) is exact, i.e., always takes short exact 
sequences to short exact sequences (and hence exact sequences of any length to exact 
sequences), if and only if D is injective. We summarize this in the following proposition, 
which is dual to the covariant result of Corollary 32. 

Corollary 35. If D is an R-module, then the functor HomR(_, D) from the category 
of R -modules to the category of abelian groups is left exact. It is exact if and only if D 
is an injective R-module. 

We have seen that an R-module is projective if and only if it is a direct summand 
of a free R-module. Providing such a simple characterization of injective R-modules 
is not so easy. The next result gives a criterion for Q to be an injective R-module (a 
result due to Baer, who introduced the notion of injective modules around 1940), and 
using it we can give a characterization of injective modules when R = Z (or, more 
generally, when R is a P.I.D.). Recall that a Z-module A (i.e., an abelian group, written 
additively) is said to be divisible if A = nA for all nonzero integers n. For example, 
both Q and Q/Z are divisible (cf. Exercises 1 8  and 19  in Section 2.4 and Exercise 15 
in Section 3. 1) .  

Proposition 36. Let Q be an R -module. 
(1) (Baer's Criterion) The module Q is injective if and only if for every left ideal I 

of R any R -module homomorphism g : I -+ Q can be extended to an R -module 
homomorphism G : R -+ Q. 

(2) If R is  a P.I.D. then Q is injective if  and only if  r Q = Q for every nonzero 
r E R. In particular, a Z-module is injective if and only if it is divisible. When 
R is a P.I.D., quotient modules of injective R-modules are again injective. 

Proof If Q is injective and g :  I -+  Q is an R-module homomorphism from the 
nonzero ideal I of R into Q,  then g can be extended to an R-module homomorphism 
from R into Q by Proposition 34(2) applied to the exact sequence 0 -+  I -+ R, which 
proves the "only if" portion of (1) .  Suppose conversely that every homomorphism 
g : I -+ Q can be lifted to a homomorphism G : R -+ Q. To show that Q is 
injective we must show that if 0 -+ L -+ M is exact and f : L -+ Q is an R
module homomorphism then there is a lift F : M -+ Q extending f. If S is the 
collection (f' , L') of lifts f' : L' -+ Q of f to a submodule L' of M containing L, 
then the ordering (f' , L') :S (f" , L") if L' � L" and f" = f' on L' partially orders 
S. Since S -:f. 0, by Zorn's Lemma there is a maximal element (F, M') in S. The map 
F : M' -+ Q is a lift of f and it suffices to show that M' = M. Suppose that there is 
some element m E M not contained in M' and let I = {r E R I rm E M'} .  It is easy to 
check that / is a left ideal in R, and the map g : I -+  Q defined by g(x) = F(xm) is an 
R-module homomorphism from I to Q.  By hypothesis, there is a lift G : R -+ Q of g. 
Consider the submodule M' + Rm of M, and define the map F' : M' + Rm -+ Q by 
F'(m' + rm) = F(m') + G(r) . Ifm1 + r1m = m2 + r2m then (r1 - r2)m = m2 - m1 
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shows that r1 - r2 E I, so that 

G(rt - r2) = g(rt - r2) = F((rt - r2)m) = F(m2 - mt ) . 
and so F(mt )  + G(rt ) = F(m2) + G(r2) . Hence F' is well defined and it is then 
immediate that F' is an R-module homomorphism extending f to M' + Rm. This 
contradicts the maximality of M' , so that M' = M, which completes the proof of ( 1 ) . 

To prove (2), suppose R is a P.I.D. Any nonzero ideal I of R is of the form I = (r) 
for some nonzero element r of R. An R-module homomorphism f : I � Q is 
completely determined by the image f (r) = q in Q .  This homomorphism can be 
extended to a homomorphism F : R � Q if and only if there is an element q' in Q 
with F(l )  = q' satisfying q = f(r) = F(r) = rq' .  It follows that Baer's criterion for 
Q is satisfied if and only if rQ = Q, which proves the first two statements in (2). The 
final statement follows since a quotient of a module Q with r Q = Q for all r 'I 0 in R 
has the same property. 

Examples 

(1) Since Z is not divisible, Z is not an injective Z-module. This also follows from the 

fact that the exact sequence 0 � Z � Z � Z/2/Z � 0 corresponding to 
multiplication by 2 does not split. 

(2) The rational numbers Q is an injective Z-module. 
(3) The quotient Q/Z of the injective Z-module Q is an injective Z-module. 
(4) It is immediate that a direct sum of divisible Z-modules is again divisible, hence a 

direct sum of injective Z-modules is again injective. For example, Q E9 Q/Z is an 
injective Z-module. (See also Exercise 4). 

(5) We shall see in Chapter 12 that no nonzero finitely generated Z-module is injective. 
(6) Suppose that the ring R is an integral domain. An R-module A is said to be a divisible 

R -module if r A = A for every nonzero r E R. The proof of Proposition 36 shows 
that in this case an injective R-module is divisible. 

(7) We shall see in Section 1 1 . 1  that if R = F is a field then every F -module is injective. 
(8) We shall see in Part VI that if F is any field and n E z+ then the ring R = Mn (F) 

of all n x n matrices with entries from F has the property that every R-module is 
injective (and also projective). We shall also see that if G is a finite group of order 
n and n =ft 0 in the field F then the group ring FG also has the property that every 
module is injective (and also projective). 

Corollary 37. Every Z-module is a submodule of an injective Z-module. 

Proof" Let M be a Z-module and let A be any set of Z-module generators of M. 
Let :F = F(A) be the free Z-module on the set A. Then by Theorem 6 there is a 
surjective Z-module homomorphism from :F to M and if K denotes the kernel of this 
homomorphism then K is a Z-submodule of :F and we can identify M = :F I K. Let Q 
be the free Q-module on the set A. Then Q is a direct sum of a number of copies of Q, 
so is a divisible, hence (by Proposition 36) injective, Z-module containing :F. Then K 
is also a Z-submodule of Q, so the quotient Ql K is injective, again by Proposition 36. 
Since M = :F I K 5; Ql K, it follows that M is contained in an injective Z-module. 

Corollary 37 can be used to prove the following more general version valid for 
arbitrary R -modules. This theorem is the injective analogue of the results in Theorem 6 
and Corollary 3 1  showing that every R-module is a quotient of a projective R-module. 
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Theorem 38. Let R be a ring with 1 and let M be an R-module. Then M is contained 
in an injective R -module. 

Proof: A proof is outlined in Exercises 15 to 17. 

It is possible to prove a sharper result than Theorem 38, namely that there is a 
minimal injective R-module H containing M in the sense that any injective map of 
M into an injective R-module Q factors through H. More precisely, if M � Q for 
an injective R-module Q then there is an injection L : H "-+ Q that restricts to the 
identity map on M; using L to identify H as a subset of Q we have M 5; H � Q. (cf. 
Theorem 57. 13 in Representation Theory of Finite Groups and Associative Algebras 
by C. Curtis and I. Reiner, John Wiley & Sons, 1966). This module H is called the 
injective hull or injective envelope of M. The universal property of the injective hull of 
M with respect to inclusions of M into injective R-modules should be compared to the 
universal property with respect to homomorphisms of M of the free module F (A) on a 
set of generators A for M in Theorem 6. For example, the injective hull of Z is <Ql, and 
the injective hull of any field is itself (cf. the exercises). 

Flat Modules and D ®R _ 
We now consider the behavior of extensions 0 --+ L � M � N --+ 0 of 
R-modules with respect to tensor products. 

Suppose that D is a right R-module. For any homomorphism f : X ---* Y of left 
R -modules we obtain a homomorphism 1 ® f : D ® R X ---+ D ® R Y of abelian groups 
(Theorem 13). If in addition D is an (S, R)-bimodule (for example, when S = R is 
commutative and D is given the standard (R, R)-bimodule structure as in Section 4), 
then 1 ® f is a homomorphism of left S-modules. Put another way, 

D ®R _ : X --+ D ®R X 

is a covariant functor from the category of left R-modules to the category of abelian 
groups (respectively, to the category of left S-modules when D is an (S, R)-bimodule ), 
cf. Appendix II. In a similar way, if D is a left R-module then _ ®R D is a covariant 
functor from the category of right R-modules to the category of abelian groups (respec
tively, to the category of right S-modules when D is an (R, S)-bimodule). Note that, 
unlike Hom, the tensor product is covariant in both variables, and we shall therefore 
concentrate on D ® R _, leaving as an exercise the minor alterations necessary for 
_ ®R D. 

We have already seen examples where the map 1 ® 1/J : D ® R L ---* D ® R M 
induced by an injective map 1/1 : L "-+ M is no longer injective (for example the 
injection Z "-+ <Ql of Z-modules induces the zero map from Z/2Z ®z Z = Z/2Z to 
Z/2Z®z<Ql = 0). On the other hand, suppose that � : M ---* N is a smjective R-module 
homomorphism. The tensor product D ® R N is generated as an abelian group by the 
simple tensors d ® n for d E D and n E N. The surjectivity of � implies that n = �(m) 
for some m E M, and then 1 ® �(d ® m) = d ® � (m) = d ® n shows that 1 ® � is 
a surjective homomorphism of abelian groups from D ®R M to D ®R N. This proves 
most of the following theorem. 
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Theorem 39. Suppose that D is a right R-module and that L, M and N are left 
R-modules. If 

"' <p 
0 ----* L ----* M ----* N ----* 0 is exact, 

then the associated sequence of abelian groups 

1®1/1 l®<p 
D 0R L ----* D 0R M ----* D 0R N ----* 0 is exact. ( 10. 13)  

If D is an (S,  R)-bimodule then ( 1 3) is an exact sequence of left S-modules. In partic
ular, if S = R is a commutative ring, then ( 13) is an exact sequence of R-modules with 
respect to the standard R-module structures. The map 1 0 <p is not in general injective, 
i.e., the sequence ( 13) cannot in general be extended to a short exact sequence. 

The sequence ( 13) is exact for all right R-modules D if and only if 

L .! M 4 N � 0 is exact. 

Proof" For the first statement it remains to prove the exactness of ( 1 3) at D 0R M. 
Since <p o 1/1 = 0, we have 

and it follows that image(1 01/f) £:; ker( 1 0<p) . In particular, there is a natural projection 
rr : (D 0R M)/ image(1 0 1/f) � (D 0R M)j ker( 1 0  <p) = D 0R N. The composite 
of the two projection homomorphisms 

D 0R M � (D 0R M)/ image( 1 0 1/f) � D 0R N 

is the quotient of D 0 R M by ker( l 0 <p ), so is just the map 1 0 <p. We shall show that 
rr is an isomorphism, which will show that the kernel of 1 0 <p is just the kernel of the 
first projection above, i.e., image(1  0 1/1), giving the exactness of (1 3) at D 0R M. To 
see that rr is an isomorphism we define an inverse map. First define rr' : D x N � 
(D 0R M)/ image(1 0 1/f) by rr '( (d, n) ) = d 0 m for any m E M with <p(m) = n.  
Note that this is  well defined: any other element m'  e M mapping to n differs from 
m by an element in ker <p = image 1/1, i.e., m' = m + 1/f (I) for some l e L, and 
d 0 1/f (l) e image( l  0 1/1  ). It is easy to check that rr' is a balanced map, so induces a 
homomorphism if : D x N � (D 0R M)/ image(l 0 1/1) with if (d 0 n) = d 0 m. 
Then if o rr(d 0 m) = if(d 0 <p(m)) = d 0 m shows that if o rr  = 1. Similarly, 
rr o if = 1 ,  so that rr and if are inverse isomorphisms, completing the proof that (13)  is 
exact. Note also that the injectivity of 1/1 was not required for the proof. 

Finally, suppose ( 13)  is exact for every right R-module D. In general, R 0R X � X 
for any left R-module X (Example 1 following Corollary 9). Taking D = R the 

"' <p 
exactness of the sequence L � M � N � 0 follows. 

By Theorem 39, the sequence 

1®1/1 l®<p 
0 ----* D 0R L ----* D 0R M ----* D 0R N ----* 0 
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is not in general exact since 1 ® 1ft need not be injective. If 0 --+ L .! M 4 N --+ 0 is 
a split short exact sequence, however, then since tensor products commute with direct 
sums by Theorem 17, it follows that 

1®1/r l®q> 0 -+  D ®R L -+ D ®R M -+ D ®R N -+ 0 

is also a split short exact sequence. 
The following result relating to modules D having the property that (13) can always 

be extended to a short exact sequence is immediate from Theorem 39: 

Proposition 40. Let A be a right R -module. Then the following are equivalent: 
(1) For any left R-modules L, M, and N, if 

0 -+ L � M � N -+ 0 

is a short exact sequence, then 

1®1/r l®q> 0 -+ A ®R L -+ A ®R M -+ A ®R N -+ 0 

is also a short exact sequence. 

(2) For any left R-modules L and M, if O --+ L � M is an exact sequence of 

left R-modules (i.e., 1/t : L --+ M is injective) then 0 --+  A ®R L .:.!t A ®R M 
is an exact sequence of abelian groups (i.e., 1 ® 1ft  : A ®R L --+ A ®R M is 
injective). 

Definition. A right R -module A is called flat if it satisfies either of the two equivalent 
conditions of Proposition 40. 

For a fixed right R-module D, the first part of Theorem 39 is referred to by saying 
that the functor D ® R _ is right exact. 

Corollary 41. If D is a right R-module, then the functor D ®R _ from the category 
of left R-modules to the category of abelian groups is right exact. If D is an (S, R)
bimodule (for example when S = R is commutative and D is given the standard 
R -module structure), then D ® R _ is a right exact functor from the category of left 
R-modules to the category of left S-modules. The functor is exact if and only if D is a 
flat R-module. 

We have already seen some flat modules: 

Corollary 42. Free modules are flat; more generally, projective modules are flat. 

Proof To show that the free R-module F is flat it suffices to show that for any 
injective map 1/t : L --+ M of R -modules L and M the induced map 1 ® 1/t : F ® R L --+ 
F ®R M is also injective. Suppose first that F � R" is a finitely generated free R
module. In this case F ® R L = R" ® R L � L n since R ® R L � L and tensor products 
commute with direct sums. Similarly F ® R M � M" and under these isomorphisms 
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the map 1 ® 1/1 : F ® R L --+ F ® R M is just the natural map of L n to Mn induced 
by the inclusion 1/1 in each component. In particular, 1 ® 1/1 is injective and it follows 
that any finitely generated free module is fiat. Suppose now that F is an arbitrary free 
module and that the element L /; ® l; E F ® R L is mapped to 0 by 1 ® 1/f.  This means 
that the element L(k t/t (l; )) can be written as a sum of generators as in equation (6) 
in the previous section in the free group on F x M. Since this sum of elements is finite, 
all of the first coordinates of the resulting equation lie in some finitely generated free 
submodule F' of F. Then this equation implies that L fi ® l; E F' ® R L is mapped to 
0 in F' ®R M. Since F' is a finitely generated free module, the injectivity we proved 
above shows that L fi ® l; is 0 in F' ® R L and so also in F ® R L. It follows that 1 ® t/t 
is injective and hence that F is fiat 

Suppose now that P is a projective module. Then P is a direct summand of a 
free module F (Proposition 30), say F = P EB P'. If t/t : L --+ M is injective then 
1 ® t/t : F ®R L --+  F ®R M is also injective by what we have already shown. Since 
F = P EB P' and tensor products commute with direct sums, this shows that 

1 ® 1/1 : (P ®R L) EB (P' ®R L) --+ (P ®R M) EB (P' ®R M) 
is injective. Hence 1 ® t/t : P ®R L --+  P ®R M is injective, proving that P is fiat. 

Examples 

(1) Since Z is a projective Z-module it is fiat. The example before Theorem 39 shows 
that Z12Z not a fiat Z-module. 

(2) The Z-module Q is a fiat Z-module, as follows. Suppose 1/1 : L --+ M is an injective 
map of Z-modules. Every element of Q ®z L can be written in the form ( 1 1d} ® l for 
some nonzero integer d and some l E L (Exercise 7 in Section 4 }. If ( 1 I d) ® l is in the 
kernel of 1 ® 1/1 then ( 1  I d) ® l/f(l} is  0 in Q®z M. By Exercise 8 in Section 4 this means 
cl/f(l} = 0 in M for some nonzero integer c. Then l/f(c - I} =  0, and the injectivity of 
1/1 implies c - I = 0 in L. But this implies that ( l id} ® l = ( lied} ® (c · I} =  0 in L, 
which shows that 1 ® 1/1 is injective. 

(3} The Z-module Q_/Z is injective (by Proposition 36}, but is not fiat: the injective 
map l/f(z} = 2z from Z to Z does not remain injective after tensoring with QIIZ 
(1 ® 1/1 : QIZ ®tz Z --+  QIZ ® Z has the nonzero element (� + Z} ® 1 in its kernel 
- identifying QIZ = QIZ ®tz Z this is the statement that multiplication by 2 has the 
element 1/2 in its kernel}. 

(4) The direct sum of fiat modules is fiat (Exercise 5}. In particular, Q EB Z is fiat. This 
module is neither projective nor injective (since Q is not projective by Exercise 8 and 
Z is not injective by Proposition 36 (cf. Exercises 3 and 4}. 

We close this section with an important relation between Hom and tensor products: 

Theorem 43. (Adjoint Associativity) Let R and S be rings, let A be a right R -module, let 
B be an (R , S)-bimodule and let C be a right S-module. Then there is an isomorphism 
of abelian groups: 

Homs (A ®R B, C) � HomR (A. Homs (B, C)) 

(the homomorphism groups are right module homomorphisms-note that Homs(B, C) 
has the structure of a right R-module, cf. the exercises). If R = S is commutative this 
is an isomorphism of R-modules with the standard R-module structures. 
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Proof: Suppose (/) : A ® R B --+ C is a homomorphism. For any fixed a E A define 
the map cP (a) from B to C by cP (a) (b) = qJ(a ® b). It is easy to check that cP (a) 
is a homomorphism of right S-modules and that the map cP from A to Homs(B, C) 
given by mapping a to cP (a) is a homomorphism of right R-modules. Then j(qJ) = cP 
defines a group homomorphism from Homs(A ®R B, C) to HomR(A , Homs(B, C)) . 
Conversely, suppose cP : A --+ Homs(B, C) is a homomorphism. The map from 
A x B to C defined by mapping (a, b) to cP (a)(c) is an R-balanced map, so induces a 
homomorphism qJ from A ® R B to C. Then g(  cP) = qJ defines a group homomorphism 
inverse to f and gives the isomorphism in the theorem. 

As a first application of Theorem 43 we give an alternate proof of the first result 
in Theorem 39 that the tensor product is right exact in the case where S = R is a 
commutative ring. If 0 -----+ L -----+ M -----+ N -----+ 0 is exact, then by Theorem 33 the 
sequence 

0 -----+ HomR (N, E) -----+ HomR(M, E) -----+ HomR(L, E) 

is exact for every R-module E. Then by Theorem 28, the sequence 

0 --+  HomR (D,HomR (N , E)) --+ HomR(D,HomR(M, E)) --+ HomR(D,HomR(L, E)) 

is exact for all D and all E. By adjoint associativity, this means the sequence 

0 -----+ HomR(D ®R N, E) -----+ HomR(D ®R M, E) -----+ HomR(D ®R L ,  E) 

is exact for any D and all E. Then, by the second part of Theorem 33, it follows that 
the sequence 

D ®R L -----+ D ®R M -----+ D ®R N -----+ 0 

is exact for all D, which is the right exactness of the tensor product. 
As a second application of Theorem 43 we prove that the tensor product of two 

projective modules over a commutative ring R is again projective (see also Exercise 9 
for a more direct proof). 

Corollary 44. If R is commutative then the tensor product of two projective R -modules 
is projective. 

Proof: Let P1 and P2 be projective modules. Then by Corollary 32, HomR (P2 , _) 
is an exact functor from the category of R-modules to the category of R-modules. Then 
the composition HomR (P1 , HomR(P2, _)) is an exact functor by the same corollary. 
By Theorem 43 this means that HomR (Pl ®R P2, _) is an exact functor on R-modules. 
It follows again from Corollary 32 that P1 ® R P2 is projective. 

Summary 

Each of the functors HomR(A , _), HomRL. A),  and A ®R _, map left R-modules 
to abelian groups; the functor _ ®  R A maps right R -modules to abelian groups. When 
R is commutative all four functors map R-modules to R-modules. 

(1) Let A be a left R-module. The functor HomR (A, _) is covariant and left exact; 
the module A is projective if and only if HomR(A, _) is exact (i.e., is also right 
exact). 
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(2) Let A be a left R -module. The functor HomR L. A) is contravariant and left exact; 
the module A is injective if and only if HomR L. A) is exact. 

(3) Let A be a right R-module. The functor A ®R _ is covariant and right exact; the 
module A is flat if and only if A ®R _ is exact (i .e., is also left exact). 

(4) Let A be a left R-module. The functor _ ®R A is covariant and right exact; the 
module A is flat if and only if _ ®R A is exact. 

(5) Projective modules are flat. The &:>module Q/Z is injective but not flat. The 
Z-module Z 61 Q is flat but neither projective nor injective. 

Let R be a ring with 1 .  

1 .  Suppose that 

E X E R C I S E S  

is a commutative diagram of groups and that the rows are exact. Prove that 
(a) if(/) and a are smjective, and fJ is injective then y is injective. [If c E ker y ,  show there 

is a b E B with lp(b) = c. Show that lp'({J(b)) = 0 and deduce that fJ (b) = 1/J '(a') 
for some a' E A'. Show there is an a E A with cx(a) = a' and that fJ (l/J (a)) = fJ (b). 
Conclude that b = 1/J (a) and hence c = lp(b) = 0.] 

(b) if 1/J', a, and y are injective, then fJ is injective, 
(c) if lp, a, and y are smjective, then fJ is smjective, 
(d) if fJ is injective. a and y are smjective, then y is injective, 
(e) if fJ is smjective, y and 1/J' are injective, then a is smjective. 

2. Suppose that 

A' B' -----+ C' -----+ D' 

is a commutative diagram of groups, and that the rows are exact. Prove that 
(a) if a is smjective, and {J, 8 are injective, then y is injective. 
(b) if 8 is injective, and ex, y are smjective, then fJ is smjective. 

3. Let PI and Pz be R-modules. Prove that PI E9 Pz is a projective R-module if and only if 
both PI and Pz are projective. 

4. Let Q I  and Q2 be R-modules. Prove that Q I  E9 Q2 is an injective R-module if and only 
if both QI and Q2 are injective. 

5. Let AI and Az be R-modules. Prove that A I  E& A2 is a flat R-module if and only if both A I  
and A 2  are flat. More generally, prove that an arbitrary direct sum L: A ;  of R-modules is 
flat if and only if each A; is flat. [Use the fact that tensor product commutes with arbitrary 
direct sums.] 

6. Prove that the following are equivalent for a ring R: 
(i) Every R-module is projective. 

(ii) Every R-module is injective. 
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7. Let A be a nonzero finite abelian group. 
(a) Prove that A is not a projective Z-module. 
(b) Prove that A is not an injective Z-module. 

8. Let Q be a nonzero divisible Z-module. Prove that Q is not a projective Z-module. Deduce 
that the rational numbers Q is not a projective Z-module. [Show first that if F is any free 
module then n� 1 nF = 0 (use a basis of F to prove this}. Now suppose to the contrary 
that Q is projective and derive a contradiction from Proposition 30(4).] 

9. Assume R is commutative with 1 .  
(a) Prove that the tensor product of two free R -modules i s  free. [Use the fact that tensor 

products commute with direct sums.] 
(b) Use (a) to prove that the tensor product of two projective R-modules is projective. 

10. Let R and S be rings with I and let M and N be left R-modules. Assume also that M is 
an (R, S)-bimodule. 
(a) For s E S and for rp E HomR (M, N} define (srp) : M � N by (srp)(m} = rp(ms). 

Prove that srp is a homomorphism of left R-modules, and that this action of S on 
HomR (M, N) makes it into a left S-module. 

(b) Let S = R and let M = R (considered as an (R ,  R}-bimodule by left and right 
ring multiplication on itself). For each n E N define (/)n : R � N by qJn (r) = rn, 
i.e., (/)n is the unique R-module homomorphism mapping 1R to n .  Show that (/)n E 
HomR (R, N). Use part (a) to show thai the map n �--+ (/)n is an isomorphism of left 
R-modules: N � HomR(R,  N) . 

(c) Deduce that if N is a free (respectively, projective, injective, flat) left R-module, then 
HomR (R, N) is also a free (respectively, projective, injective, flat) left R-module. 

11. Let R and S be rings with 1 and let M and N be left R-modules. Assume also that N is an 
(R, S)-bimodule. 
(a) For s E S and for rp E HomR (M, N) define (rps) : M � N by (rps)(m) = rp(m)s. 

Prove that rps is a homomorphism of left R-modules, and that this action of S on 
HomR (M, N} makes it into a right S-module. Deduce that HomR (M, R) is a right 
R-module, for any R-module M-called the dual module to M. • 

(b) Let N = R be considered as an (R, R)-bimodule as usual. Uncter the action de
fined in part (a) show that the map r �--+ rpr is an isomorphism of right R-modules: 
HomR (R, R) � R, where rpr is the homomorphism that maps 1 R  to r. Deduce that 
if M is a finitely generated free left R-module, then HomR(M, R) is a free right 
R-module of the same rank. (cf. also Exercise 13.) 

(c) Show that if M is a finitely generated projective R-module then its dual module 
HomR (M, R) is also projective. 

12. Let A be an R-module, let I be any nonempty index set and for each i E I let B; be an 
R -module. Prove the following isomorphisms of abelian groups; when R is commutative 
prove also that these are R-module isomorphisms. (Arbitrary direct sums and direct 
products of modules are introduced in Exercise 20 of Section 3.) 
(a) HomR (EfliE/ B; , A) � flEI HomR(Bi , A) 
(b) HomR (A, flEI B; ) � niEI HomR(A , Bi) .  

13. (a) Show that the dual of the free Z-module with countable basis i s  not free. [Use the 
preceding exercise and Exercise 24, Section 3.] (See also Exercise 5 in Section 1 1 .3 .) 

(b) Show that the dual of the free Z-module with countable basis is also not projective. 
[You may use the fact that any submodule of a free Z-module is free.] 

� � . 
14. Let 0 � L � M � N � 0 be a sequence of R-modules. 
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(a) Prove that the associated sequence 

1/1' q/ 
0 -----+ HomR (D, L) -----+ HomR (D, M) -----+ HomR(D, N) -----+ 0 

is a short exact sequence of abelian groups for all R-modules D if and only if the 
original sequence is a split short exact sequence. [To show the sequence splits, take 
D = N and show the lift of the identity map in HomR (N, N) to HomR (N, M) is a 
splitting homomorphism for qJ.] 

(b) Prove that the associated sequence 

rp' 1/1' 
0 -----+ HomR (N, D) -----+ HomR (M, D) -----+ HomR (L , D) -----+ 0 

is a short exact sequence of abelian groups for all R-modules D if and only if the 
original sequence is a split short exact sequence. 

15. Let M be a left R-module where R is a ring with l .  
(a) Show that Homz (R, M) is a left R-module under the action (rqJ)(r') = qJ(r'r) (see 

Exercise 10). 

(b) Suppose that 0 � A .! B is an exact sequence of R -modules. Prove that if every 
homomorphism f from A to M lifts to a homomorphism F from B to M with f = 
F o 1/J,  then every homomorphism f' from A to Homz (R, M) lifts to a homomorphism 
F' from B to Homz(R , M) with f' = F' o 1/J . [Given f', show that f (a) = f'(a)( lR) 
defines a homomorphism of A to M. If F is the associated lift of f to B, show that 
F' (b)(r) = F(rb) defines a homomorphism from B•to Homz(R, M) that lifts f'.] 

(c) Prove that if Q is an injective R-module then Homz(R, Q) is also an injective R
module. 

16. This exercise proves Theorem 38 that every left R-module M is contained in an injective 
left R-module. 
(a) Show that M is contained in an injective &::-module Q .  [M is a &::-module-use 

Corollary 37.] 
(b) Show that HomR (R, M) � Homz(R, M) � Homz(R, Q). 
(c) Use the R-module isomorphism M � HomR (R , M) (Exercise 10) and the previous 

exercise to conclude that M is contained in an injective module. 

17. This exercise completes the proof of Proposition 34. Suppose that Q is an R-module with 
the property that every short exact sequence 0 � Q � Mt � N � 0 splits and suppose 

that the sequence 0 � L .! M is exact. Prove that every R-module homomorphism f 
from L to Q can be lifted to an R-module homomorphism F from M to Q with f = F o Y,. 
[By the previous exercise, Q is contained in an injective R-module. Use the splitting 
property together with Exercise 4 (noting that Exercise 4 can be proved using (2) in 
Proposition 34 as the definition of an injective module).] 

18. Prove that the injective hull of the &::-module Z is Q. [Let H be the injective hull of Z 
and argue that Q contains an isomorphic copy of H. Use the divisibility of H to show 
ljn E H for all nonzero integers n, and deduce that H = Q.] 

19. If F is a field, prove that the injective hull of F is F. 
20. Prove that the polynomial ring R[x]  in the indeterminate x over the commutative ring R 

is a flat R-module. 

21. Let R and S be rings with 1 and suppose M is a right R-module, and N is an (R, S)
bimodule. If M is flat over R and N is flat as an S-module prove that M ® R N is flat as a 
right S-module. 
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22. Suppose that R is a commutative ring and that M and N are flat R-modules. Prove that 
M ®R N is a flat R-module. [Use the previous exercise.] 

23. Prove that the (right) module M ® R S obtained by changing the base from the ring R to the 
ring S (by some homomorphism f :  R � S with f( 1 R) = 1s ,  cf. Example 6 following 
Corollary 12 in Section 4) of the flat (right) R-module M is a flat S-module. 

24. Prove that A is a flat R-module if and only if for any left R-modules L and M where L is 
finitely generated, then 1/1 : L � M injective implies that also 1 ® 1/1 : A ®  R L � A ® R M 
is injective. [Use the techniques in the proof of Corollary 42.] 

25. (A Flatness Criterion) Parts (a)-( c) of this exercise prove that A is  a flat R-module if and 
only if for every finitely generated ideal / of R, the map from A ®R I � A ®R R :;;= A 
induced by the inclusion I � R is again injective (or, equivalently, A ®R I :;;= AI  � A). 
(a) Prove that if A is flat then A ®R I � A ®R R is injective. 
(b) If A ®R I � A ®R R is injective for every finitely generated ideal /, prove that 

A ®R I � A ®R R is injective for every ideal / .  Show that if K is any submodule of 
a finitely generated free module F then A ® R K � A ® R F is injective. Show that 
the same is true for any free module F. [Cf. the proof of Corollary 42.] 

(c) Under the assumption in (b), suppose L and M are R-modules and L .i M is injective. 

Prove that A ®R L 1� A ®R M is injective and conclude that A is flat. [Write M as 
a quotient of the free module F, giving a short exact sequence 

O � K � F � M � O. 

Show that if J = j-1 ( 1/J (L)) and t : J � F is the natural injection, then the diagram 

0 K � J � L � O 

idt t t 1/lt 
0 K � F � M � O 

is commutative with exact rows. Show that the induced diagram 

A ®R K � A ®R l 

id t 1 ® t t � o 

A ®R K � A ®R F � A ®R M � O 
is commutative with exact rows. Use (b) to show that 1 ® t is injective, then use 
Exercise 1 to conclude that 1 ® 1/f is injective.] 

(d) (A Flatness Criterion for quotients) Suppose A =  FfK where F is flat (e.g., if F is 
free) and K is an R -submodule of F. Prove that A is flat if and only if F I n K = K I 
for every finitely generated ideal / of R .  [Use (a) to prove F ®R I :;;= F I and observe 
the image of K ® R 1 is K 1 ;  tensor the exact sequence 0 � K � F � A � 0 with 
I to prove that A ® R I :;;= F I I K 1, and apply the flatness criterion.] 

26. Suppose R is a P.I.D. This exercise proves that A is a flat R-module if and only if A is 
torsion free R-module (i.e., if a E A is nonzero and r E R, then ra = 0 implies r = 0). 
(a) Suppose that A is flat and for fixed r E R consider the map 1/Jr : R � R defined 

by multiplication by r :  1/Jr (x) = rx . If r is nonzero show that 1/Jr is an injection. 
Conclude from the flatness of A that the map from A to A defined by mapping a to 
ra is injective and that A is torsion free. 
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(b) Suppose that A is torsion free. If I is a nonzero ideal of R, then I = rR for some 
nonzero r E R.  Show that the map 1/Jr in (a) induces an isomorphism R :;;= I of 
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R-modules and that the composite R ! l � R of t/Jr with the inclusion t : l � R 
. ul . 1· . b P h th . A R l®1/J, A l l®t A ts m t1p tcatton y r . rove t at e compostte ®R � ®R � ®R R 
corresponds to the map a � ra under the identification A ®R R = A and that this 
composite is injective since A is torsion free. Show that 1 ® 1/lr is an isomorphism 
and deduce that 1 ® t is injective. Use the previous exercise to conclude that A is fiat. 

27. Let M, A and B be R-modules. 

28. 

(a) Suppose f : A � M and g : B � M are R-module homomorphisms. Prove that 
X = { (a ,  b) I a E A ,  b E  B with f(a) = g(b)} is an R-submodule of the direct sum 
A EB B  (called the pullback or fiber product of f and g) and that there is a commutative 
diagram 

where n1 and n2 are the natural projections onto the first and second components. 
(b) Suppose f' : M � A and g' : M � B are R-module homomorphisms. Prove that 

the quotient Y of A EB B  by { (f' (m) , -g'(m)) I m E M} is an R-module (called the 
pushout or fiber sum of f' and g') and that there is a commutative diagram 

where n� and n2 are the natural maps to the quotient induced by the maps into the 
first and second components. 

. � (a) (Schanuel's Lemma) If O  � K � P � M � 0 and 0 � K' � P' � M � 0 are 
exact sequences of R -modules where P and P' are projective, prove P EB K' � P' EB K 
as R-modules. [Show that there is an exact sequence 0 � ker n � X � P � 0 
with ker n � K', where X is the fiber product of f/! and f/!1 as in the previous exercise. 
Deduce that X � P EB K'. Show similarly that X � P' EB K .] 

1/1 � (b) If 0 � M � Q � L � 0 and 0 � M � Q' � L' � 0 are exact sequences of 
R-modules where Q and Q' are injective, prove Q EB L' � Q' EB L as R-modules. 

The R-modules M and N are said to be projectively equivalent if M EB P � N EB P' for some 
projective modules P, P'. Similarly, M and N are injectively equivalent if M EB Q � N EB  Q' 
for some injective modules Q,  Q'. The previous exercise shows K and K' are projectively 
equivalent and L and L' are injectively equivalent. 
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CHAPTER 1 1  

Vector Spaces 

In this chapter we review the basic theory of finite dimensional vector spaces over 
an arbitrary field F (some infinite dimensional vector space theory is covered in the 
exercises). Since the proofs are identical to the corresponding arguments for real vector 
spaces our treatment is very terse. For the most part we include only those results which 
are used in other parts of the text so basic topics such as Gauss-Jordan elimination. 
row echelon forms, methods for finding bases of subspaces, elementary properties of 
matrices, etc., are not covered or are discussed in the exercises.  The reader should 
therefore consider this chapter as a refresher in linear algebra and as a prelude to field 
theory and Galois theory. Characteristic polynomials and eigenvalues will be reviewed 
and treated in a larger context in the next chapter. 

1 1 .1 DEFI N ITIONS AND BASIC TH EORY 

The terminology for vector spaces is slightly different from that of modules, that is, 
when the ring R is a field there are different names for many of the properties of R
modules which we defined in the last chapter. The following is a dictionary of these new 
terms (many of which may already be familiar). The definition of each corresponding 
vector space property is the same (verbatim) as the module-theoretic definition with 
the only added assumption being that the ring R is a field (so these definitions are not 
repeated here). 
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Terminology for R any Ring 

M is an R-module 
m is an element of M 
a is a ring element 
N is a submodule of M 
M 1 N is a quotient module 
M is a free module of rank n 
M is a finitely generated module 
M is a nonzero cyclic module 
q; : M � N is an R-module homomorphism 
M and N are isomorphic as R-modules 
the subset A of M generates M 
M = RA 

Terminology for R a Field 

M is a vector space over R 
m is a vector in M 
a is a scalar 
N is a subspace of M 
M 1 N is a quotient space 
M is a vector space of dimension n 
M is a finite dimensional vector space 
M is a } -dimensional vector space 
q; : M � N is a linear transformation 
M and N are isomorphic vector spaces 
the subset A of M spans M 
each element of M is a linear combination 

of elements of A i.e., M = Span( A) 



For the remainder of this chapter F is a field and V is a vector space over F. 
One of the first results we shall prove about vector spaces is  that they are free F

modules, that is, they have bases. Although our arguments treat only the case of finite 
dimensional spaces, the corresponding result for arbitrary vector spaces is proved in the 
exercises as an application of Zorn's Lemma. The reader may first wish to review the 
section in the previous chapter on free modules, especially their properties pertaining 
to homomorphisms. 

Definition. 
(1) A subset S of V is called a set of linearly independent vectors if an equation 

a1 Vt + azvz + · · · + an Vn = O with at . az , . . . , an E F and Vt , Vz , . . . , Vn E S 
implies a1 = a2 = · · · = an = 0. 

(2) A basis of a vector space V is an ordered set of linearly independent vectors 
which span V. In particular two bases will be considered different even if one 
is simply a rearrangement of the other. This is sometimes referred to as an 
ordered basis. 

Examples 

(1) The space V = F[x] of polynomials in the variable x with coefficients from the 
field F is in particular a vector space over F. The elements 1 ,  x ,  x2 , • • •  are linearly 
independent by definition (i.e., a polynomial is 0 if and only if all its coefficients are 
0). Since these elements also span V by definition, they are a basis for V. 

(2) The collection of solutions of a linear, homogeneous, constant coefficient differential 
equation (for example, y" - 3y' + 2y = 0) over C form a vector space over C 
since differentiation is a linear operator. Elements of this vector space are linearly 
independent if they are linearly independent as functions. For example, e' and e'b are 
easily seen to be solutions of the equation y" - 3y' + 2y = 0 (differentiation with 
respect to t). They are linearly independent functions since ae1 + be21 = 0 implies 
a +  b = 0 (let t = 0) and ae + be2 = 0 (let t = 1 )  and the only solution to these two 
equations is a = b = 0. It is a theorem in differential equations that these elements 
span the set of solutions of this equation, hence are a basis for this space. 

• 

Proposition 1. Assume the set A = { Vt , vz , . . .  , Vn } spans the vector space V but no 
proper subset of A spans V. Then A is a basis of V.  In particular, any finitely generated 
(i.e., finitely spanned) vector space over F is a free F -module. 

Proof" It is only necessary to prove that Vt , Vz ,  . . . , Vn are linearly independenL 
Suppose a1 Vt + azvz + · · · + an Vn = 0 where not all of the a; are 0. By reordering, 
we may assume that a1 =f. 0 and then 

1 
Vt = - - (azVz + . . . + an Vn) .  

a1 
It follows that {vz , V3 , . . .  , vn } also spans V since any linear combination of vt , Vz , . . .  , Vn 
can be written as a linear combination of vz , v3 , . . .  , Vn using the equation above. This 
is a contradiction. 
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Example 

Let F be a field and consider F[x]j(f(x)) where f(x) = xn 
+ an-1 Xn-l + · · · + at X + ao. 

The ideal (f(x))  is a subspace of the vector space F[x] and the quotient F[x]j(f(x)) is 
also a vector space over F. By the Euclidean Algorithm, every polynomial a(x) E F[x] 
can be written uniquely in the form a(x) = q (x)f(x) + r(x) where r(x) E F[x] and 
0 � deg r (x) � n - 1 .  Since q (x)f(x) E (f (x)), it follows that every element of 
the quotient is represented by a polynomial r(x) of degree � n - 1 .  Two distinct such 
polynomials cannot be the same in the quotient since this would say their difference (which 
is a nonzero polynomial of degree at most n - 1) would be divisible by f(x) (which is 
of degree n). It follows that the elements I ,  i ,  x2 , . . .  , xn-l (the bar denotes the image of 
these elements in the quotient, as usual) span F[x]j(f(x)) as a vector space over F and 
that no proper subset of these elements also spans, hence these elements give a basis for 
F[x]f(f(x)) .  

Corollary 2. Assume the finite set A spans the vector space V.  Then A contains a 
basis of V .  

Proof: Any subset B of A spanning V such that n o  proper subset of B also spans 
V (there clearly exist such subsets) is a basis for V by Proposition 1 .  

Theorem 3. (A Replacement Theorem) Assume A = {at .  az , . . .  , an } is a basis for 
V containing n elements and {b1 , bz , . . .  , bm} is a set of linearly independent vectors 
in V.  Then there is an ordering at . a2 , . . .  , an such that for each k E { 1 ,  2, . . .  , m}  
the set {bt , bz , . . .  , bk . ak+l • ak+2 • . . .  , an }  is a basis ofV. In  other words, the elements 
ht .  bz , . . .  , bm can be used to successively replace the elements of the basis A still 
retaining a basis. In particular, n =::: m. 

Proof· Proceed by induction on k .  If  k = 0 there is  nothing to prove, since A is 
given as a basis for V. Suppose now that {b. , bz , . . .  , bk . ak+t . ak+2 • . . .  , an} is a basis 
for V. Then in particular this is a spanning set, so bk+t is a linear combination: 

( 1 1 . 1) 

Not all of the a; can be 0, since this would imply bk+t is a linear combination of 
ht . bz , . . .  , bk . contrary to the linear independence of these elements. By reordering 
if necessary, we may assume ak+l #- 0. Then solving this last equation for ak+l as a 
linear combination of bk+t and bt . bz, . . .  , bk . ak+2 · . . .  , an shows 

Span{bt . hz ,  . . .  , bk , bk+l • ak+2 • . . . , an } = Span{bt , hz , . . .  , bk , ak+l · ak+2 · · · · · an }  

and so this is a spanning set for V. It remains to show ht • . . . , bk . bk+l · ak+2 • . . .  , an 
are linearly independent. If 

( 1 1 .2) 

then substituting for bk+l from the expression for bk+l in equation ( 1  ), we obtain a linear 
combination of {bt , bz , . . .  , bk . ak+l • ak+2 · . . .  , an }  equal to 0, where the coefficient of 
ak+t is f3k+t · Since this last set is a basis by induction, all the coefficients in this linear 
combination, in particular f3k+t . must be 0. But then equation (2) is 

f3t ht + · · · + f3kbk + ak+2ak+2 + · · · + ctnan = 0. 
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Again by the induction hypothesis all the other coefficients must be 0 as welL Thus 
{bt , b2 , . . .  , bk . bk+1 •  ak+2 ·  . . .  , an ) is a basis for V,  and the induction is complete. 

Corollary 4. 
(1) Suppose V has a finite basis with n elements. Any set of linearly independent 

vectors has ::::: n elements. Any spanning set has � n elements. 
(2) If V has some finite basis then any two bases of V have the same cardinality. 

Proof ( 1 )  This is a restatement of the last result of Theorem 3 and Corollary 2. 
(2) This is immediate from (I)  since a basis is both a spanning set and a linearly 
independent set. 

Definition. If V is a finitely generated F -module (i.e., has a finite basis) the cardinality 
of any basis is called the dimension of V and is denoted by dim F V, or just dim V when 
F is clear from the context, and V is said to be finite dimensional over F. If V is not 
finitely generated, V is said to be infinite dimensional (written dim V = oo). 

Examples 

(1) The dimension of the space of solutions to the differential equation y" - 3y' + 2y = 0 
over C is 2 (with basis e1 , e21 ,  for example). In general, it is a theorem in differential 
equations that the space of solutions of an nth order linear, homogeneous, constant 
coefficient differential equation of degree n over C form a vector space over C of 
dimension n.  

(2) The dimension over F of the quotient F[x]j(f(x)) by the nonzero polynomial j(x) 
considered above is n = deg f(x). The space F[x] and its subspace (f(x)) are infinite 
dimensional vector spaces over F. 

Corollary 5. (Building-Up Lemma) If A is a set of linearly independent vectors in the 
finite dimensional space V then there exists a basis of V containing A. 

Proof This is also immediate from Theorem 3, since we can use the elements of 
A to successively replace the elements of any given basis for V (which exists by the 
assumption that V is finite dimensional). 

Theorem 6. If V is an n dimensional vector space over F, then V � Fn . In particular, 
any two finite dimensional vector spaces over F of the same dimension are isomorphic. 

Proof: Let Vt , v2 , . . .  , Vn be a basis for V .  Define the map 

by 

The map q; is clearly F-linear, is surjective since the v; span V ,  and is injective since 
the v; are linearly independent, hence is an isomorphism. 
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Examples 

(1) Let IF be a finite field with q elements and let W be a k-dimensional vector space over 
IF. We show that the number of distinct bases of W is 

(qk - l ) (l - q) (qk - q2) . . . (qk - l-1) .  
Every basis of W can be built up as follows. Any nonzero vector Wt can be the first 
element of a basis. Since W is isomorphic to IFk, I W I = qk , so there are qk - 1 
choices for WI . Any vector not in the ! -dimensional space spanned by w1 is linearly 
independent from WI and so may be chosen for the second basis element, wz . A 
! -dimensional space is isomorphic to IF and so has q elements. Thus there are qk - q 

choices for wz . Proceeding in this way one sees that at the ; th stage any vector not in the 
(i - I)-dimensional space spanned by WI , wz , . . .  , w;-I will be linearly independent 
from Wt , w2 • . . .  , w;-I and so may be chosen for the ;th basis vector w; . An (i - I)
dimensional space is  isomorphic to IFi-

I and so has qi-
I elements. Thus there are 

qk - qi-l  choices for w; . The process tenninates when wk is  chosen, for then we have 
k linear independent vectors in a k-dimensional space, hence a basis. 

(2) Let IF be a finite field with q elements and let V be an n-dimensional vector space 
over IF. For each k E { 1 ,  2, . . .  , n} we show that the number of subspaces of V of 
dimension k is 

(qn _ I ) (qn _ q) . . .  (qn _ qk-I) 

(qk - l) (qk - q) . . . (qk - qk-1 )
. 

Any k-dimensional space is spanned by k independent vectors. By arguing as in the 
preceding example the numerator of the above expression is the number of ways of 
picking k independent vectors from an n-dimensional space. Two sets of k independent 
vectors span the same space W if and only if they are both bases of the k-dimensional 
space W. In order to obtain the formula for the number of distinct subs paces of 
dimension k we must divide by the number of repetitions, i.e., the number of bases of 
a fixed k-dimensional space. This factor which appears in the denominator is precisely 
the number computed in Example I .  

Next, we prove an important relation between the dimension of a subspace, the 
dimension of its associated quotient space and the dimension of the whole space: 

Theorem 7. Let V be a vector space over F and let W be a subspace of V. Then VI W 
is a vector space with dim V = dim W + dim VI W (where if one side is infinite then 
both are). 

Proof Suppose W has dimension m and V has dimension n over F and let 
W I , w2 , . . .  , Wm be a basis for W. By Corollary 5, these linearly independent ele
ments of V can be extended to a basis W t , w2 , . . . , Wm , Vm+l • • • •  , Vn of V. The natural 
surjective projection map of V into VI W maps each w; to 0. No linear combination of 
the v; is mapped to 0, since this would imply this linear combination is an element of 
W, contrary to the choice of the v; . Hence, the image VI W of this projection map is 
isomorphic to the subspace of V spanned by the v; , hence dim VI W = n - m ,  which is 
the theorem when the dimensions are finite. If either side is infinite it is an easy exercise 
to produce an infinite number of linearly independent vectors showing the other side is 
also infinite. 
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Corollary 8. Let rp : V ---+ U be a linear transformation of vector spaces over F. Then 
ker rp is a subspace of V ,  rp(V) is a subspace of U and dim V = dim ker rp + dim rp(V).  

Proof" This follows immediately from Theorem 7. Note that the proof of Theorem 
7 is in fact the special case of Corollary 8 where U is the quotient V f W and rp is the 
natural projection homomorphism. 

Corollary 9. Let rp : V ---+ W be a linear transformation of vector spaces of the same 
finite dimension. Then the following are equivalent: 

(1) rp is an isomorphism 
(2) rp is injective, i.e., ker rp = 0 
(3) rp is suljective, i.e. ,  rp(V)  = W 
(4) rp sends a basis of V to a basis of W. 

Proof" The equivalence of these conditions follows from Corollary 8 by counting 
dimensions. 

Definition. If rp : V ---+ U is a linear transformation of vector spaces over F, ker rp is 
sometimes called the null space of rp and the dimension of ker rp is called the nullity of 
rp. The dimension of rp(V) is called the rank of rp. If ker rp = 0, the transformation is 
said to be nonsingular. 

Example 

Let F be a finite field with q elements and let V be an n-dimensional vector space over 
F. Recall that the genera/ linear group GL(V) is the group of all nonsingular linear 
transformations from V to V (the group operation being composition). We show that the 
order of this group is 

IGL(V) I  = (qn _ l ) (qn _ q)(qn _ q2) . . . (qn _ qn- 1
) . 

To see this, fix a basis v1 , • • •  , Vn of V. A linear transformation is nonsingular if and only 
if it sends this basis to another basis of V. Moreover, if w1 . . . , Wn is any basis of V, by 
Theorem 6 in Section 10.3 there is a unique linear transformation which sends v; to w; , 
1 :::; i ::: n. Thus the number of nonsingular linear transformations from V to itself equals 
the number of distinct bases of V. This number, which was computed in Example 1 above 
(with k = n), is the order of GL(V).  

E X E R C I S E S 

l. Let V = !Rn and let (a1 ,  az , . . . , an) be a fixed vector in V. Prove that the collection of 
elements (xl , xz , . . .  , Xn ) of V with a1x1 + azxz + . . .  + anXn = 0 is a subspace of V.  
Determine the dimension of  this subspace and find a basis. 

2. Let V be the collection of polynomials with coefficients in Q in the variable x of degree 
at most 5. Prove that V is a vector space over Q of dimension 6, with 1 ,  x ,  x2 , . . .  , x5 as 
basis. Prove that 1 ,  1 + x .  1 + x + x2 , . . .  , 1  + x  + x2 + x3 + x4 + x5 is also a basis for V. 
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3. Let q; be the linear transformation q; : IR4 -4 lR I such that 

q;(( 1 ,  0, 0, 0)) = 1 
q;(( l ,  - 1 ,  1 ,  0)) = 1 

Determine q;((a ,  b, c, d)). 

q;(( 1 ,  - 1 .  0, 0)) = 0 
q;(( 1 ,  - 1 .  1 ,  - 1)) = 0. 

4. Prove that the space of real-valued functions on the closed interval [a , b] is an infinite 
dimensional vector space over IR, where a < b. 

5. Prove that the space of continuous real-valued functions on the closed interval [a , b] is an 
infinite dimensional vector space over IR, where a < b. 

6. Let V be a vector space of finite dimension. If q; is any linear transformation from V to V 
prove there is an integer m such that the intersection of the image of q;m and the kernel of 
q;m is {0}. 

7. Let q; be a linear transformation from a vector space V of dimension n to itself that satisfies 
q;2 = 0. Prove that the image of q; is contained in the kernel of q; and hence that the rank 
of q; is at most n/2. 

8. Let V be a vector space over F and let q; be a linear transformation of the vector space 
V to itself. A nonzero element v E V satisfying q;(v) = AV for some A E F is called 
an eigenvector of q; with eigenvalue A. Prove that for any fixed A E F the collection of 
eigenvectors of q; with eigenvalue A together with 0 forms a subspace of V.  

9 .  Let V be a vector space over F and let q; be a linear transformation of  the vector space V 
to itself. Suppose for i = 1 ,  2, . . .  , k that v; E V is an eigenvector for q; with eigenvalue 
Ai E F (cf. the preceding exercise) and that all the eigenvalues Ai are distinct. Prove that 
VI , v2 • . • •  , Vk are linearly independent. [Use induction on k: write a linear dependence 
relation among the v; and apply q; to get another linear dependence relation among the Vi 
involving the eigenvalues -now subtract a suitable multiple of the first linear relation to get 
a linear dependence relation on fewer elements.] Conclude that any linear transformation 
on an n-dimensional vector space has at most n distinct eigenvalues. 

In the following exercises let V be a vector space of arbitrary dimension over a field F. 

10. Prove that any vector space V has a basis (by convention the null set is the basis for the 
zero space). [Let S be the set of subsets of V consisting of linearly independent vectors, 
partially ordered under inclusion; apply Zorn's Lemma to S and show a maximal element 
of S is a basis.] 

11. Refine your argument in the preceding exercise to prove that any set of linearly independent 
vectors of V is contained in a basis of V.  

12. I f  F is  a field with a finite or countable number of elements and V i s  an  infinite dimensional 
vector space over F with basis B, prove that the cardinality of V equals the cardinality of 
B. Deduce in this case that any two bases of V have the same cardinality. 

13. Prove that as vector spaces over Q, !Rn � IR, for all n E tz+ (note that, in particular, this 
means !Rn and lR are isomorphic as additive abelian groups). 

14. Let A be a basis for the infinite dimensional space V. Prove that V is isomorphic to the 
direct sum of copies of the field F indexed by the set A. Prove that the direct product of 
copies of F indexed by A is a vector space over F and it has strictly larger dimension than 
the dimension of V (see the exercises in Section 10.3 for the definitions of direct sum and 
direct product of infinitely many modules). 
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1 1 .2 TH E MATRIX OF A LIN EAR TRANSFORMATION 

Throughout this section let V, W be vector spaces over the same field F, let B = 

{vt . v2 , . . .  , Vn } be an (ordered) basis of V , let £ = {wt . w2 , . . .  , wm } be an (ordered) 
basis of W and let � E Hom(V, W) be a linear transformation from V to W. For each 
j E { 1 ,  2, . . . , n }  write the image of Vj under � in terms of the basis £: 

m 

� (Vj ) = L: a;j W; . ( 1 1 .3) 
i= l  

Let M� (�) = (a;j) be the m x n matrix whose i ,  j entry is a;j (that is, use the coefficients 
of the w; 's in the above computation of �(vj ) for the jth column of this matrix). The 
matrix M� ( �) is called the matrix of� with respect to the bases B, £. The domain basis 
is the lower and the codomain basis the upper letters appearing after the ''M.� GiYeo 
this matrix, we can recover the linear transformation � as follows: to compute f'(V) for 
v E V, write v in terms of the basis B: 

n 

v = La; v; , 
i=l 

a; E F, 

and then calculate the product of the m x n and n x 1 matrices 

M�(�) X (j:) = UJ . 
The image of v under � is given by 

m 

�(v) = L fJ;w; . 
i=l 

i.e., the column vector of coordinates of �(v) with respect to the basis £ are obtained 
by multiplying the matrix M� ( �) by the column vector of coordinates of v with respect 
to the basis B (sometimes denoted [�(v)]£ = M�(�)[v]B). 

Definition. The m x n matrix A = (a;j ) associated to the linear transformation f' 
above is said to represent the linear transformation � with respect to the bases B, £. 
Similarly, � is the linear transformation represented by A with respect to the bases B, 
£. 

Examples 

(1) Let V = JR3 with the standard basis B = { ( 1 ,  0, 0) , (0, 1 ,  0) , (0, 0, 1 ) }  and let W = 
JR2 with the standard basis £ = { ( 1 ,  0) , (0, l ) } .  Let cp be the linear transformation 
cp(x , y, z) = (x + 2y, x + y + z) .  Since cp(1 , 0, 0) = ( 1 . 1 ) , cp(O, 1 ,  0) = (2, 1), 
cp(O, 0, 1) = (0, 1), the matrix A =  M� (cp) is the matrix ( � � �) . 
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(2) Let V = W be the 2-dimensional space of solutions of the differential equation 
y" - 3y' + 2y = 0 over C and let B = f be the basis VI = e1 , vz = e21 •  Since the 
coefficients of this equation are constants it is easy to check that if y is a solution then 
its derivative y' is also a solution. It follows that the map f/! = d/dt = differentiation 
(withrespect to t) is a linear transformation from V to itself. Since f{J(vi ) = d(e1 )/dt = 
e1 = VI and f{J(v2) = d(e21)/dt = 2e21 = 2vz we see that the corresponding matrix 

with respect to these bases is the diagonal matrix ( � �) .· 
(3) Let V = W = «i = { (x ,  y, z) I x , y , z E Q} be the usual 3-dimensional vector space 

of ordered 3-tuples with entries from the field F = Q of rational numbers and suppose 
f/! is the linear transformation 

f{J(x , y, z) = (9x + 4y + 5z, -4x - 3z, -6x - 4y - 2z) , x, y, z E Q  

from V to itself. Take the standard basis ei = (1 , 0, 0) , ez = (0, I ,  0), e3 = (0, 0, 1 )  
for V and for W = V.  Since f{J(l . 0. 0) = (9, -4, -6), f{J(O, I , 0)  = (4, 0, -4), 
f{J(O, 0, 1 )  = (5 ,  -3, -2), the matrix A representing this linear transformation with 
respect to these bases is 

A = ( -� � _; ) . 
-6 -4 -2 

Theorem 10. Let V be a vector space over F of dimension n and let W be a vector space 
over F of dimension m ,  with bases B, f respectively. Then the map HomF (V, W) � 
Mmxn (F) from the space of linear transformations from V to W to the space of m x n 
matrices with coefficients in F defined by ({J � M& (({J) is a vector space isomorphism. 
In particular, there is a bijective correspondence between linear transformations and 
their associated matrices with respect to a fixed choice of bases. 

Proof' The columns of the matrix M& (({J) are determined by the action of ({J on 

the basis B as in equation (3). This shows in particular that the map ({J � M&(({J) is 
an F -linear map since ({J is F -linear. This map is surjective since given a matrix M, 
the map ({J defined by equation (3) on a basis and then extended by linearity is a linear 
transformation with matrix M. The map is injective since two linear transformations 
agreeing on a basis are the same. 

Note that different choices of bases give rise to different isomorphisms, so in the 
same sense that there is no natural choice of basis for a vector space, there is no natural 
isomorphism between HomF (V, W) and Mmxn (F). 

Corollary 11. The dimension of HomF (V, W) is (dim V) (dim W). 

Proof: The dimension of Mmxn (F) is mn. 

Definition. An m x n matrix A is called nonsingular if Ax = 0 with x E pn implies 
x = O. 
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The connection of the term nonsingular applied to matrices and to linear trans
formations is the following: let A = M� (rp) be the matrix associated to the linear 
transformation rp (with some choice of bases B, f). Then independently of the choice 
of bases, the m x n matrix A is nonsingular ifand only if the linear transformation rp is a 
nonsingular linear transformation from the n-dimensional space V to the m-dimensional 
space W (cf. the exercises). 

Assume now that U, V and W are all finite dimensional vector spaces over F 
with ordered bases V, B and f respectively, where B and f are as before and suppose 
V = {u 1 ,  Uz, . . . , uk} . Assume 1/1 :  U � V and rp : V � W are lineart:ransformations. 
Their composite, rp o 1/1, is a linear transformation from U to W, so we can compute its 
matrix with respect to the appropriate bases; namely, M� (rp o 1/1) is found by computing 

m 

rp o 1/f(uj) = L Y;iw; 
i= l  

and putting the coefficients Yii down the jlh column of M� (rp o 1/1 ) .  Next, compo1e tbe 
matrices of 1/1 and rp separately: 

n 
1/f (uj ) = L: apj Vp 

p=l 
and 

so that M!jy(l/1) = (apj ) and M� (rp) = ({3;p ) -

m 

rp(vp) = L f3;pW; 
i=l 

Using these coefficients we can find an expression for the y 's in terms of tbe a's 
and f3's as follows: 

n 

= L apjrp(vp) 
p=l 

n m 
= L aPi L f3;pW; 

p=l i=l 
" m 

= L L aPi{3;pW; . 
p=l i=l 

By interchanging the order of summation in the above double sum we see that Yii , which 
is the coefficient of w; in the above expression, is 

n 

Yii = L apj{3ip · 
p=l 

Computing the product of the matrices for rp and 1/1 (in that order) we obtain 
m 

(f3ij ) (aij ) = (�;j ) , where �ij = L f3;papj · 
p=l 
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By comparing the two sums above and using the commutativity of field multiplication, 
we see that for all i and j ,  Yij = 8ij . This computation proves the following result: 

Theorem 12. With notations as above, M!jy(� o 1/f) = M�(�)M!J(lfr), i.e., with respect 
to a compatible choice of bases, the product of the matrices representing the linear 
transformations � and 1/f is the matrix representing the composite linear transformation 
� o l/f. 

Corollary 13. Matrix multiplication is associative and distributive (whenever the di
mensions are such as to make products defined). An n x n matrix A is nonsingular if 
and only if it is invertible. 

Proof: Let A, B and C be matrices such that the products (AB)C and A(BC) are 
defined, and let S, T and R denote the associated linear transformations. By Theorem 
12, the linear transformation corresponding to AB is the composite S o T so the linear 
transformation corresponding to (AB)C is the composite (S o T) o R. Similarly, the 
linear transformation corresponding to A(BC) is the composite S o  (T o R). Since 
function composition is associative, these two linear transformations are the same, and 
so (AB)C = A(BC) by Theorem 1 0. The distributivity is proved similarly. Note also 
that it is possible to prove these results by straightforward (albeit tedious) calculations 
with matrices. 

If A is invertible, then Ax = 0 implies x = A-1Ax = A- 1o = 0, so A is 
nonsingular. Conversely, if A is nonsingular, fix bases B, E for V and let � be the 
linear transformation of V to itself represented by A with respect to these bases. By 
Corollary 9, � is an isomorphism of V to itself, hence has an inverse, �-1 . Let B 
be the matrix representing �-1 with respect to the bases £, B (note the order). Then 
AB = M�(�)Mf(�-1 ) = Mf(� o �-1)  = Mf(l) = / .  Similarly, BA = I so B is 
the inverse of A. 

Corollary 14. 
(1) If B is a basis of the n-dimensional space V, the map � �--+ Mg ( �) is a ring and 

a vector space isomorphism of HomF (V, V) onto the space M, (F) of n x n 
matrices with coefficients in F. 

(2) GL(V) � GL, (F) where dim V = n . In particular, if F is a finite field 
the order of the finite group GL, (F) (which equals IGL(V) I)  is given by the 
formula at the end of Section 1 .  

Proof· ( 1 )  We have already seen in Theorem 1 0  that this map is an isomorphism 
of vector spaces over F. Corollary 13 shows that M, (F) is a ring under matrix multi
plication, and then Theorem 12  shows that multiplication is preserved under this map, 
hence it is also a ring isomorphism. 

(2) This is immediate from ( 1 )  since a ring isomorphism sends units to units. 

Definition. If A is any m x n matrix with entries from F, the row rank (respectively, 
column rank) of A is the maximal number of linearly independent rows (respectively, 
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columns) of A (where the rows or columns of A are considered as vectors in affine 
n-space, m-space, respectively). 

The relation between the rank of a matrix and the rank of the associated linear 
transformation is the following: the rank of q; as a linear transformation equals the 
column rank of the matrix M&(q;) (cf. the exercises). We shall also see that the row 
rank and the column rank of any matrix are the same. 

We now consider the relation of two matrices associated to the same linear transfor
mation of a vector space to itself but with respect to two different choices of bases ( cf. 
the exercises for the general statement regarding a linear transformation from a vector 
space V to another vector space W). 

Definition. Two n x n matrices A and B are said to be similar if there is an invertible 
(i.e., nonsingular) n x n matrix P such that p-1 AP = B . Two linear transformations 
q; and '1/f from a vector space V to itself are said to be similar if there is a nonsingular 
linear transformation � from V to V such that � -1 q;� = '1/f. 

Suppose !3 and£ are two bases of the same vector space V and let q; E HomF (V ,  V). 
Let I be the identity map from V to V and let P = Mff(I) be its associated matrix 
(in other words, write the elements of the basis £ in terms of the basis !3 - note the 
order - and use the resulting coordinates for the columns of the matrix P). Note that 
if !3 =I £  then P is not the identity matrix. Then p-1Mg(q;)P = Mf(q;). If [v]B is 
the n x 1 matrix of coordinates for v E V with respect to the basis !3, and similarly 
[v]£ is the n x 1 matrix of coordinates for v E V with respect to the basis £, then 
[ v ]B = P [ v 1£.  The matrix P is called the transition or change of basis matrix from !3 
to £ and this similarity action on Mg(q;) is called a change of basis. This shows that 
the matrices associated to the same linear transformation with respect to two different 
bases are similar. 

Conversely, suppose A and B are n x n matrices similar by a nonsingular matrix P. 
Let !3 be a basis for the n-dimensional vector space V .  Define the linear transformation 
q; of V (with basis !3) to V (again with basis !3) by equation (3) using the given matrix 
A, i.e., 

n 

q;(vj ) = L aijVi . 
i=1 

Then A = Mg(q;) by definition of q;. Define a new basis £ of V by using the ;th 

column of P for the coordinates of wi in terms of the basis !3 (so P = Mff(I) by 
definition). Then B = p-1 AP = p-1 Mg(q;)P = Mf(q;) is the matrix associated to 
q; with respect to the basis £. This shows that any two similar n x n matrices arise in 
this fashion as the matrices representing the same linear transformation with respect to 
two different choices of bases. 

Note that change of basis for a linear transformation from V to itself is the same as 
conjugation by some element of the group G L(V) of nonsingular linear transformations 
of V to V.  In particular, the relation "similarity" is an equivalence relation whose 
equivalence classes are the orbits of G L(V) acting by conjugation on HomF{V, V). If 
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rp E G L (V) (i.e., rp is an invertible linear transformation), then the similarity class of 
rp is none other than the conjugacy class of rp in the group GL(V) .  

Example 

Let V = Q3 and let q; be the linear transformation 

q;(x , y ,  z) = (9x + 4y + 5z,  -4x - 3z, -6x - 4y - 2z) ,  x , y , z E Q  

from V to itself we considered in an earlier example. With respect to the standard basis, 
13, bt = ( 1 ,  0, 0), b2 = (0, 1 , 0), b3 = (0, 0, I )  we saw that the matrix A representing this 
linear transformation is 

A =  MN (q;) = ( -� 6 _;) . 
-6 -4 -2 

Take now the basis, £, e1 = (2,  - 1 ,  -2),  e2 = (I , 0, -1 ), e3 = (3 , -2, -2) for V (we 
shall see that this is in fact a basis momentarily). Since 

q;(et ) = q;(2, - 1 , -2) = (4, -2, -4) = 2 · et + O · e2 + 0 · e) 
q;(e2) = q;( I , 0, - 1 )  = (4, - I , -4) = I ·  et + 2 · e2 + 0 · e3 

q;(eJ) = q;(3, -2, -2) = (9, -6, -6) = 0 · et + 0 · � + 3 · e3 , 

the matrix representing rp with respect to this basis is the matrix 

B = Mf (q;) = (� � �) . 
0 0 3 

Writing the elements of the basis £ in terms of the basis 13 we have 

et = 2bt - b2 - 2b3 

e2 = bt - b3 

e3 = 3bt - 2b2 - 2b3 

so the matrix P = M� (l) = ( -i � _;) with inverse P-1 = ( -; -� -i) 
-2 -I -2 1 0 1 

conjugates A into B, i.e., p-l AP = B, as can easily be checked. (Note incidentally that 
since P is invertible this proves that £ is indeed a basis for V .) 

We observe in passing that the matrix B representing this linear transformation rp is 
much simpler than the matrix A representing rp. The study of the simplest possible matrix 
representing a given linear transformation (and which basis to choose to realize it) is the 
study of canonical forms considered in the next chapter. 

Linear Transformations on Tensor Products of Vector Spaces 

For convenience we reiterate Corollaries 1 8  and 19 of Section 10.4 for the special case 
of vector spaces. 

Proposition 15. Let F be a subfield of the field K .  If W is an m-dimensional vector 
space over F with basis w1 , . . •  , Wm , then K ®F W is an m-dimensional vector space 
over K with basis 1 ® WJ , • • •  , 1 ® Wm . 
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Proposition 16. Let V and W be finite dimensional vector spaces over the field F with 
bases Vt , . . .  , Vn and Wt , . . .  , Wm respectively. Then V 0 F W is a vector space over F 
of dimension nm with basis v; 0 Wj , 1 :::; i :::; n and 1 :::; j :::; m. 

Remark: If v and w are nonzero elements of V and W, respectively, then it follows from 
the proposition that v 0 w is a nonzero element of V 0 F W, because we may always 
build bases of V and W whose first basis vectors are v, w, respectively. In a tensor 
product M 0 R N of two R -modules where R is not a field it is in general substantially 
more difficult to determine when the tensor product m 0 n of two nonzero elements is 
zero. 

Now let V, W, X, Y be finite dimensional vector spaces over F and let 

and 

be linear transformations. We compute a matrix of the linear transformation 

cp 0 1/f : V 0 W � X 0 Y. 

Let Bt = {vt , . . .  , Vn } and 82 = {wt , . . . , Wm} be (ordered) bases of V and W respec
tively, and let £1 = {xt ,  . . .  , x, } and £2 = {Yt , . . .  , Ys } be (ordered) bases of X and Y 
respectively. Let B = { V; 0 Wj } and £ = {x; 0 yj } be the bases of V 0 W and X 0 Y 
given by Proposition 16; we shall order these shortly. Suppose 

Then 

r 

cp{v; ) = L:ap;Xp 
p=l 

and 

r 

p=l 
r s 

1/f (Wj ) = LJ3qjYq · 
q=l 

s 

q=l 

= L Lap;,Bqj {Xp 0 Yq ) .  
p=l q=l 

( 1 1 .8) 

In view of the order of summation in ( 1 1 .8) we order the basis £ into r ordered sets, 
with the pth list being Xp 0 Yt . Xp 0 Y2 , . . .  , Xp 0 Ys . and similarly order the basis B. 
Then equation (8) determines the column entries for the corresponding matrix of cp 01/f. 
The resulting matrix M�{cp 0 1/f) is an r x n block matrix whose p, q block is the s x m 
matrix ap,qM�� ('Ijf). In other words, the matrix for cp 0 1/f  is obtained by taking the 
matrix for cp and multiplying each entry by the matrix for 1/f. Such matrices have a 
name: 

Definition. Let A = (aij) and B be r x n and s x m matrices, respectively, with 
coefficients from any commutative ring. The Kronecker product or tensor product of 
A and B, denoted by A 0 B, is the rs x nm matrix consisting of an r x n block matrix 
whose i, j block is the s x m matrix aij B. 

With this terminology we have 
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Proposition 17. Let cp : V --+ X and 1/1 : W --+ Y be linear transformations of finite 
dimensional vector spaces. Then the Kronecker product of matrices representing cp and 
1/1 is a matrix representation of cp ® 1/1. 

Example 

Let V = X =  JR3 , both with basis Vt .  v2 . VJ ,  and W = Y = IR2, both with basis WI , w2. 
Suppose ({! : JR3 � JR3 is the linear transformation given by ({!(avi + bv2 + cv3) = 
cv1 + 2am - 3bv3 and 1/f :  IR2 � IR2 is the linear transformation given by 1/f(awi +bw2) = 
(a + 3b)w1 + (4b - 2a)w2. With respect to the chosen bases, the matrices for ({! and 1/f are ( 0 0 1 ) 

2 0 0 
0 -3 0 

and 

respectively. Then with respect to the ordered basis 

13 = {VI ® WI , VI ® W2 , V2 ® WI , V2 ® W2 , V3 ® WI , V3 ® W2} 

we have 
o o : o o : 1 3 
0 0 : 0 0 : -2 4 

-i -6 -:- -0- - - 0 -:- -0- -0-
-4 8 : 0 o : o o  
-6 -6 - :-�f --=-9 -:- -0- -0-

0 0 : 6 - 12 : 0 0 

obtained (as indicated by the dashed lines) by multiplying the 2 x 2 matrix for 1/f successively 
by the entries in the matrix for ((!. 

E X E R C I S E S 

1. Let V be the collection of polynomials with coefficients in Q in the variable x of degree at 
most 5. Determine the transition matrix from the basis 1 , x , x2 , . . .  , x5 for V to the basis 
1 , 1  + x , 1  + x + x2 , . . .  , l + x  + x2 + x3 + x4 + x5 for V. 

2. Let V be the vector space of the preceding exercise. Let ({! = d f dx be the linear trans
formation of V to itself given by usual differentiation of a polynomial with respect to x. 
Determine the matrix of ({! with respect to the two bases for V in the previous exercise. 

3. Let V be the collection of polynomials with coefficients in F in the variable x of degree 
at most n. Determine the transition matrix from the basis 1 ,  x,  x2 , . . .  , xn for V to the 
elements 

1 , x - A, . . . , (x - A)n-I , (x - A)n 

where A is a fixed element of F. Conclude that these elements are a basis for V.  

4. Let ({! be the linear transformation of JR2 to itself given by rotation counterclockwise around 
the origin through an angle e. Show that the matrix of ({! with respect to the standard basis 
£ JR2 . (cos e - sin e ) or IS sin e cos e · 

5. Show that the m x n matrix A is nonsingular if and only if the linear transformation ({! is a 
nonsingular linear transformation from the n-dimensional space V to the m-dimensional 
space W, where A =  M�(({!), regardless of the choice of bases 13 and f. 
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6. Prove if q; E HomF (Fn ,  Fm) ,  and B, £ are the natural bases of pn, pm respectively, then 
the range of q; equals the span of the set of columns of M� (q;) .  Deduce that the rank of rp 
(as a linear transformation) equals the column rank of M� (q;) .  

7 .  Prove that any two similar matrices have the same row rank and the same column rank. 
8. Let V be an n-dimensional vector space over F and let q; be a linear transformation of the 

vector space V to itself. 
(a) Prove that if V has a basis consisting of eigenvectors for q; ( cf. Exercise 8 of Section 1 )  

then the matrix representing q; with respect to this basis (for both domain and range) 
is diagonal with the eigenvalues as diagonal entries. 

(b) If A is the n x n matrix representing q; with respect to a given basis for V (for both 
domain and range) prove that A is similar to a diagonal matrix if and only if V has a 
basis of eigenvectors for q;. 

9. If W is a subspace of the vector space V stable under the linear transformation q; (i.e., 
q;(W) � W), show that q; induces linear transformations q; i w  on W and iP on the quotient 
vector space VI W. If q; I w and � are nonsingular prove q; is nonsingular. Prove the converse 
holds if V has finite dimension and give a counterexample with V infinite dimensional. 

10. Let V be an n-dimensional vector space and let q; be a linear transformation of V to itself. 
Suppose W is a subspace of V of dimension m that is stable under q;.  
(a) Prove that there is a basis for V with respect to which the matrix for q; is of the form 

where A is an m x m matrix, B is an m x (n - m) matrix and C is an (n - m) x (n - m) 
matrix (such a matrix is called block upper triangular) . 

(b) Prove that if there is a subspace W' invariant under q; so that V = W EB  W' decomposes 
as a direct sum then the bases for W and W' give a basis for V with respect to which 
the matrix for q; is block diagonal: 

where A is an m x m matrix and C is an (n - m) x (n - m) matrix. 
(c) Prove conversely that if there is a basis for V with respect to which q; is block diagonal 

as in (b) then there are q;-invariant subs paces W and W' of dimensions m and n -m, 
respectively, with V = W EB W'. 

11. Let q; be a linear transformation from the finite dimensional vector space V to itself such 
that q;2 = q;. 
(a) Prove that image q; n ker q; = 0. 
(b) Prove that V = image q; EB ker q;. 
(c) Prove that there is a basis of V such that the matrix of q; with respect to this basis is 

a diagonal matrix whose entries are all 0 or 1 .  

A linear transformation q; satisfying q;2 = q; i s  called an idempotent linear transformation. 
This exercise proves that idempotent linear transformations are simply projections onto 
some subspace. 

12. Let V = JR2, VJ = ( 1 , 0) , v2 = (0, I ) ,  so that v1 , v2 are a basis for V. Let q; be the linear 

transformation of V to itself whose matrix with respect to this basis is ( � ; ) . Prove 

that if W is the subspace generated by VJ then W is stable under the action of q;. Prove 
that there is no subspace W' invariant under q; so that V = W EB W' . 
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13. Let V be a vector space of dimension n and let W be a vector space of dimension m over 
a field F. Suppose A is the m x n matrix representing a linear transformation ({J from V to 
W with respect to the bases Bt for V and £1 for W. Suppose similarly that B is the m x n 
matrix representing ({J with respect to the bases 82 for V and £2 for W. Let P = Mg; (/) 

where I denotes the identity map from V to V, and let Q = Mi; (/) where 1 denotes the 

identity map from W to W. Prove that Q-1 = M%� (1) and that Q- 1 AP = B, giving 

the general relation between matrices representing the same linear transformation but with 
respect to different choices of bases. 

The following exercises recall the Gauss-Jordan elimination process. This is one of the fastest 
computational methods for the solution of a number of problems involving vector spaces -
solving systems oflinear equations, determining inverses of matrices, computing determinants, 
determining the span of a set of vectors, determining linear independence of a set of vectors 
etc. 

Consider the system of m linear equations 

an xi + a 12x2 + . . .  + ainXn = q 
a21XI + a22X2 + . . .  + a2nXn = C2 

(1 1 .4) 

am i X I + am2X2 + . . .  + amnXn = Cm 

in the n unknowns x1 , x2 , . . .  , Xn where aij , Cj ,  i = 1 , 2, . . . , m, j = 1 , 2, . . . , n are elements 
of the field F. Associated to this system is the coefficient matrix: 

c a21 
A =  . 

am i 

and the augmented matrix: ( au 
a21 

(A I C) = 
: 

am i 

al2 

a22 

am2 

a12 

a22 

am2 

am ) 
a2n 

amn 

aln q )  a2n C2 

amn Cm 

(the term augmented refers to the presence of the column matrix C = (ci ) in addition to the 
coefficient matrix A = (aij ) ). The set of solutions in F of this system of equations is not 
altered if we perform any of the following three operations: 

(1) interchange any two equations 
(2) add a multiple of one equation to another 
(3) multiply any equation by a nonzero element from F, 

which correspond to the following three elementary row operations on the augmented matrix: 

(1) interchange any two rows 
(2) add a multiple of one row to another 
(3) multiply any row by a unit in F, i.e., by any nonzero element in F. 

If a matrix A can be transformed into a matrix C by a series of elementary row operations then 
A is said to be row reduced to C. 
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14. Prove that if A can be row reduced to C then C can be row reduced to A. Prove that the 
relation "A � C if and only if A can be row reduced to C" is an equivalence relation. 
[Observe that the elementary row operations are reversible.] 

Matrices lying in the same equivalence class under this equivalence relation are said to be row 

equivalent. 

15. Prove that the row rank of two row equivalent matrices is the same. [It suffices to prove 
this for two matrices differing by an elementary row operation.] 

An m x n matrix is said to be in reduced row echelon form if 

(a) the first nonzero entry a;j, in row i is 1 and all other entries in the corresponding jith column 
are zero, and 

(b) h < h < . . . < jr where r is the number of nonzero rows, i.e., the number of initial zeros 
in each row is strictly increasing (hence the term echelon). 
An augmented matrix (A I C) is said to be in reduced row echelon form if its coefficient 

matrix A is in reduced row echelon form. For example, the following two matrices are in 
reduced row echelon form: ( 1 0 5 7 0 3 0 1 - 1  1 0 -4 0 0 0 0 1 6 0 0 0 0 0 0 -D (0 1 - 1  o 

I 
o) 0 0 0 1 2 0 0 0 0 -3 

(with h = 1 ,  h = 2, h = 5 for the first matrix and h = 2, h = 4 for the second matrix). 
The first nonzero entry in any given row of the coefficient matrix of a reduced row echelon 
augmented matrix (in position (i, j; ) by definition) is sometimes referred to as a pivotal element 
(so the pivotal elements in the first matrix are in positions (1 , 1 ), (2,2) and (3,5) and the pivotal 
elements in the second matrix are in positions ( 1 ,2) and (2,4)). The columns containing pivotal 
elements will be called pivotal columns and the columns of the coefficient matrix not containing 
pivotal elements will be called nonpivotal. 

16. Prove by induction that any augmented matrix can be put in reduced row echelon form by 
a series of elementary row operations. 

17. Let A and C be two matrices in reduced row echelon form. Prove that if A and C are row 
equivalent then A = C. 

18. Prove that the row rank of a matrix in reduced row echelon form is the number of nonzero 
rows. 

19. Prove that the reduced row echelon forms of the matrices 

n 1 4 8 0 - 1  - 1 ) G -3 3 I U) 2 3 9 0 -5 -2 
1 - 1  0 

-2 2 -2 1 14 3 
2 -2 0 

4 1 1 1  0 - 13 -4 

are the two matrices preceding Exercise 16. 

The point of the reduced row echelon form is that the corresponding system of linear equations 
is in a particularly simple form, from which the solutions to the system AX = C in (4) can be 
determined immediately: 

20. (Solving Systems of Linear Equations) Let (A' I C') be the reduced row echelon form of 
the augmented matrix (A 1 C). The number of zero rows of A' is clearly at least as great 
as the number of zero rows of (A' I C'). 
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(a) Prove that if the number of zero rows of A' is strictly larger than the number of zero 
rows of (A' I C') then there are no solutions to AX = C. 

By (a) we may assume that A' and (A' I C') have the same number, r, of nonzero rows 
(so n � r). 
(b) Prove that if r = n then there is precisely one solution to the system of equations 

AX = C. 
(c) Prove that if r < n then there are infinitely many solutions to the system of equations 

AX = C. Prove in fact that the values of the n - r variables corresponding to the 
nonpivotal columns of (A' I C') can be chosen arbitrarily and that the remaining 
r variables corresponding to the pivotal columns of (A' I C') are then determined 
uniquely. 

21. Determine the solutions of the following systems of equations: 
(a) 

(b) 

(c) 

(d) 

(e) 

-3x + 3y + z 5 

X - y 0 
2x - 2y -3 

X - 2y + Z 5 

x - 4y 6z 10 
4x - l ly + l lz 12 

X - 2y + Z = 5 

y - 2z 17  
2x - 3y = 27 

x + y - 3z + 2u 2 
3x - 2y + 5z + u 1 
6x + y - 4z + 3u 7 
2x + 2y - 6z 4 

x + y + 4z + 8u w - 1  
x + 2 y  + 3z + 9u 5w = -2 

- 2y + 2z - 2u + v + 14w 3 
x + 4y + z + l lu - 13w -4 

22. Suppose A and B are two row equivalent m x n matrices. 
(a) Prove that the set 

of solutions to the homogeneous linear equations AX = 0 as in equation (4) above 
are the same as the set of solutions to the homogeneous linear equations B X = 0. [It 
suffices to prove this for two matrices differing by an elementary row operation.] 

(b) Prove that any linear dependence relation satisfied by the columns of A viewed as 
vectors in pm is also satisfied by the columns of B. 
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(c) Conclude from (b) that the number of linearly independent columns of A is the same 
as the number of linearly independent columns of B. 

23. Let A' be a matrix in reduced row echelon form. 
(a) Prove that the nonzero rows of A' are linearly independent. Prove that the pivotal 

columns of A' are linearly independent and that the nonpivotal columns of A' are 
linearly dependent on the pivotal columns. (Note the role the pivotal elements play.) 

(b) Prove that the number of linearly independent columns of a matrix in reduced row 
echelon form is the same as the number of linearly independent rows, i.e., the row 
rank and the column rank of such a matrix are the same. 

24. Use the previous two exercises and Exercise 1 5  above to prove in general that the row rank 
and the column rank of a matrix are the same. 

25. (Computing Inverses of Matrices) Let A be an n x n matrix. 
(a) Show that A has an inverse matrix B with columns Bt , B2 • . . .  , B11 if and only if the 

systems of equations: 

have solutions. 
(b) Prove that A has an inverse if and only if A is row equivalent to the n x n identity 

matrix. 
(c) Prove that A has an inverse B if and only if the augmented matrix (A I I) can be row 

reduced to the augmented matrix (I I B) where I is the n x n identity matrix. 

26. Determine the inverses of the following matrices using row reduction: 

( -7 A =  � ( 1 1 0 2) 
0 2 1 - 1  

B = 
0 2 0 0 

. 

- 1  1 1 0 

27. (Computing Spans, Linear Independence and Linear Dependencies in Vector Spaces) Let 
V be an m-dimensional vector space with basis e1 , e2 • . . .  , em and let Vt , v2 , . . .  , v,. be 
vectors in V.  Let A be the m x n matrix whose columns are the coordinates of the vectols 
v; (with respect to the basis et , e2 , . . .  , em ) and let A' be the reduced row echelon form of 
A. 
(a) Let B be any matrix row equivalent to A. Let Wt , w2 , . . . , Wn be the vectors whose 

coordinates (with respect to the basis et , e2 , . . .  , em ) are the columns of B. Prove that 
any linear relation 

Xt Vl + X2V2 + . . .  + Xn Vn = 0  (1 1 .5) 
satisfied by Vt , v2 , . . .  , Vn is also satisfied when v; is replaced by w; , i = I ,  2, . . .  , n.  

(b) Prove that the vectors whose coordinates are given by the pivotal columns of A' 
are linearly independent and that the vectors whose coordinates are given by the 
nonpivotal columns of A' are linearly dependent on these. 

(c) (Determining linear Independence of Vectors) Prove that the vectors Vt , v2 , . . . , v,. 
are linearly independent if and only if A' has n nonzero rows (i .e., has rank n). 

(d) (Determining Linear Dependencies of Vectors) By (c), the vectors Vl , v2 , . . .  , v, are 
linearly dependent if and only if A' has nonpivotal columns. The solutions to (5) 
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defining linear dependence relations among v1 , vz , . . .  , Vn are given by the linear 
equations defined by A'. Show that each of the variables x1 , xz , . . .  , Xn in (5) corre
sponding to the nonpivotal columns of A' can be prescribed arbitrarily and the values 
of the remaining variables are then uniquely determined to give a linear dependence 
relation among v1 , vz , . . .  , Vn as in (5). 

(e) (Determining the Span of a Set of Vectors) Prove that the subspace W spanned by 
v1 , vz , . . . , Vn has dimension r where r is the number of nonzero rows of A' and that 
a basis for W is given by the original vectors Vj, (i = 1 , 2, . . .  , r) corresponding to 
the pivotal columns of A'. 

28. Let V = JR5 with the standard basis and consider the vectors 

Vl = (1 , 1 , 3, -2, 3) , Vz = (0, 1 , 0, - 1 , 0) , V3 = (2, 3, 6, -5, 6) 

V4 = (0, 3, 1 , -3, 1) , V5 = (2, - 1 ,  - 1 , - 1 , - 1) . 

(a) Show that the reduced row echelon form of the matrix 

A = ( i ! � 
-2 - 1  -5 

3 0 6 

0 2) 3 - 1  
1 - 1  

-3 - 1 
1 - 1 

whose columns are the coordinates of Vl , vz , v3 , V4 , vs is the matrix ( 1 0 2 0 2) 0 1 1 0 18 
A' = 0 0 0 1 -7 

0 0 0 0 0 
0 0 0 0 0 

where the 1st, 2nd and 4th columns are pivotal and the remaining two are nonpivotal. 
(b) Conclude that these vectors are linearly dependent, that the subspace W spanned by 

v 1 ,  vz , v3 , v4 , vs is 3-dimensional and that the vectors 
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Vl = (1 , 1 , 3, -2, 3), V2 = (0, 1 , 0, - 1 ,  0) and V4 = (0, 3 , 1 , -3,  1) 

are a basis for W. 
(c) Conclude from (a) that the coefficients x1 , xz , X3 , x4 , xs of any linear relation 

Xl VI + X2 V2 + X3V3 + X4V4 + X5 V5 = 0 

satisfied by v1 , vz , VJ , v4 , vs are given by the equations 

x1 + 2x3 + 2xs = 0 
xz + x3 + 18xs = 0 

x4 - 7xs = 0. 

Deduce that the 3rd and 5th variables, namely X3 and xs, corresponding to the non
pivotal columns of A', can be prescribed arbitrarily and the remaining variables are 
then uniquely determined as: 

Xl = -2x3 - 2xs 
xz = -x3 - 1 8xs 
x4 = 7xs 
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to give all the linear dependence relations satisfied by VI , v2 , v3 , v4 , vs .  In particular 
show that 

-2Vt - V2 + V3 = 0 

and 
-2vt - I 8v2 + 7v4 + vs = 0 

corresponding to (x3 = I ,  xs = 0) and (x3 = 0, xs = 1 ) , respectively. 

29. For each exercise below, determine whether the given vectors in IR4 are linearly inde
pendent. If they are linearly dependent, determine an explicit linear dependence among 
them. 
(a) (1 , -4, 3 , 0) , (0, - 1 ,  4, -3) ,  (1 , - 1 ,  1 ,  -1 ) ,  (2, 2, - 1 ,  -3) .  
(b) ( 1 ,  -2, 4, 1 ) ,  (2, -3,  9,  - I ) ,  (1 , 0 ,  6, -5) , (2, -5, 7,  5) .  
(c) (1 , -2, 0, 1 ) ,  (2, -2,  0, 0) , (- 1 ,  3, 0, -2) , (-2, 1 ,  0, I ) . 
(d) (0, 1 ,  1 ,  0) , (1 , 0, 1 ,  1 ) ,  (2, 2. 2, 0) , (0, - 1 ,  1 .  1 ) .  

30. For each exercise below, determine the subspace spanned i n  JR4 
by the given vectors and 

give a basis for this subspace. 
(a) ( 1 ,  -2, 5, 3) , (2, 3, 1 ,  -4) ,  (3 , 8, -3, -5) .  
(b) (2, -5, 3 , 0) , (0, -2,  5, -3) , ( 1 ,  -1 ,  I , -1) ,  (-3 , 2, -1 ,  2) .  
(c) ( I ,  -2,  0, 1 ) , (2, -2 ,  0, 0) , (- 1 ,  3 , 0, -2) , (-2, 1 ,  0, 1) .  
(d) ( 1 ,  1 ,  0 ,  - 1 ) ,  { 1 ,  2, 3, 0) , (2. 3 , 3 . - 1 ) ,  ( 1 ,  2 ,  2. -2) , (2, 3 , 2, -3) ,  ( 1 ,  3 ,  4, -3).  

31. (Computing the Image and Kernel of a Linear Transformation) Let V be an n-dimensional 
vector space with basis e1 , e2 , . . .  , en and let W be an m-dimensional vector space with 
basis ft ,  /2, . . . . fm · Let ({! be a linear transformation from V to W and let A be the 
corresponding m x n matrix with respect to these bases: A = (aij ) where 

m 
({!(ej ) = 'L,aij fi , j = 1 , 2, . . .  , n, 

i=l 
i.e., the columns of A are the coordinates of the vectors ({!(e t ) ,  ({!(e2) ,  . . .  , ({!(en) with respect 
to the basis ft ,  h ,  . . .  , fm of W. Let A' be the reduced row echelon form of A. 
(a) (Determining the Image of a Linear Transformation) Prove that the image ({!(V) of 

V under ({! has dimension r where r is the number of nonzero rows of A' and that a 
basis for ({!(V) is given by the vectors ({!(ej; ) (i = I ,  2, . . .  , r), i.e., the columns of 
A corresponding to the pivotal columns of A' give the coordinates of a basis for the 
image of ({!. 

(b) (Determining the Kernel of a Linear Transformation) The elements in the kernel of 
({! are the vectors in V whose coordinates (xt . x2 , . . .  , Xn ) with respect to the basis 
e1 , e2 , . . .  , en satisfy the equation 

and the solutions XI , x2 , . . . , Xn to this system of linear equations are determined by 
the matrix A'. 

(i) Prove that ({! is injective if and only if A' has n nonzero rows (i.e., has rank n). 
(ii) By (i), the kernel of({! is nontrivial if and only if A' has nonpivotal columns. Show that 

each of the variables Xl , x2 , . . .  , Xn above corresponding to the nonpivotal columns 
of A' can be prescribed arbitrarily and the values of the remaining variables are then 
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uniquely determined to give an element x1e1  + xzez + . . .  + Xn en in the kernel of 
rp. In particular, show that the coordinates of a basis for the kernel are obtained 
by successively setting one nonpivotal variable equal to 1 and all other nonpivotal 
variables to 0 and solving for the remaining pivotal variables. Conclude that the 
kernel of rp has dimension n - r where r is the rank of A. 

32. Let V = JR5 and W = JR4 with the standard bases. Let rp be the linear transformation 
rp : V � W defined by 

rp(x , y, z , u , v) = (x + 2y + 3z + 4u + 4v ,  -2x - 4y + 2v,  x + 2y + u - 2v, x + 2y - v) .  

(a) Prove that the matrix A corresponding to rp and these bases is 

( 1 2 3 4 4) 
= -2 -4 0 0 2 A 

1 2 0 1 -2 
1 2 0 0 - 1  

and that the reduced row echelon matrix A' row equivalent to A is 

A'= 0 0 1 0 3 ( 1 2 0 0 - 1 ) 
0 0 0 1 - 1  
0 0 0 0 0 

where the 1st, 3rd and 4th columns are pivotal and the remaining two are nonpivotal. 
(b) Conclude that the image of rp is 3-dimensional and that the image of the tst, 3rd and 

4th basis elements of V, namely, ( 1 , -2, 1 ,  1 ) ,  (3 ,  0, 0, 0) and (4, 0, 1 ,  0) give a basis 
for the image rp(V) of V.  

(c) Conclude from (a) that the elements in the kernel of rp are the vectors (x , y, z. u , v) 
satisfying the equations 

X + 2y - V = 0 
z + 3v = 0 

u - v = 0. 

Deduce that the 2nd and 5th variables, namely y and v, corresponding to the nonpivotal 
columns of A' can be prescribed arbitrarily and the remaining variables are then 
uniquely determined as 

x = -2y + v  

z = -3v 

u = v. 

Show that (-2, 1, 0, 0, 0) and ( 1 , 0, -3, 1, 1 )  give a basis for the 2-dimensional kernel 
of rp, corresponding to (y = 1 ,  v = 0) and (y = 0, v = 1) , respectively. 

33. Let rp be the linear transformation from JR4 to itself defined by the matrix 

( - � A= 
- 1  

1 

- 1  
2 
1 

-2 

0 3) 
1 - 1  
0 -3 

- 1 1 

with respect to the standard basis for JR4. Determine a basis for the image and for the 
kernel of rp.  
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34. Let q; be the linear transformation q; : ffi.4 --+ m.2 such that 

q;((l , 0, 0, 0))  = (1 ,  - 1 )  q;((l ,  -1 ,  0, 0)) = (0, 0) 

q;((l , - 1 ,  1 ,  0))  = ( 1 ,  - 1) q;((l , - 1 , 1 ,  -1 ) )  = (0, 0) . 

Determine a basis for the image and for the kernel of q;. 
35. Let V be the set of all 2 x 2 matrices with real entries and let q; : V --+ ffi. be the map 

defined by sending a matrix A E V to the sum of the diagonal entries of A (the trace of 
A). 
(a) Show that 

is a basis for V.  
(b) Prove that q; is  a linear transformation and determine the matrix of q; with respect to 

the basis in (a) for V .  Determine the dimension of and a basis for the kernel of q;. 
36. Let V be the 6-dimensional vector space over Q consisting of the polynomials in the 

variable x of degree at most 5. Let q; be the map of V to itself defined by q;(f) = 
x2 f" - 6x f' + 12  f, where f" denotes the usual second derivative (with respect to x) of 
the polynomial f E V and f' similarly denotes the usual first derivative. 
(a) Prove that q; is a linear transformation of V to itself. 
(b) Determine a basis for the image and for the kernel of q;. 

37. Let V be the ?-dimensional vector space over the field F consisting of the polynomials in 
the variable x of degree at most 6. Let q; be the linear transformation of V to itself defined 
by q; (f) = f', where f' denotes the usual derivative (with respect to x) of the polynomial 
f E V. For each of the fields below, determine a basis for the image and for the kernel of 
q;: 
(a) F = ffi. 
(b) F = lF2, the finite field of 2 elements (note that, for example, (x2)' = 2x = 0 over 

this field) 
(c) F = 1F3 
(d) F = lF5 . 

38. Let A and B be square matrices. Prove that the trace of their Kronecker product is the 
product of their traces: tr (A ® B) = tr (A) tr (B) .  (Recall that the trace of a square matrix 
is the sum of its diagonal entries.) 

39. Let F be a subfield of K and let 1jr : V --+ W be a linear transformation of finite dimensional 
vector spaces over F. 
(a) Prove that 1 ® 1jr is  a K-linear transformation from the vector spaces K ®F V to 

K ®F W over K. (Here 1 denotes the identity map from K to itself.) 
(b) Let f3 = {vi , . . . , Vn } and £ = {wi , . . . , wm } be bases of V and W respectively. 

Prove that the matrix of 1 ® 1jr with respect to the bases { 1  ® VJ , • . .  , I ® Vn } and 
{ 1 ® WJ , • . •  , 1 ® Wm } is the same as the matrix of 1jr with respect to f3 and £. 

1 1 .3 DUAL VECTOR SPACES 

Definition. 
(1) For V any vector space over F let V* = HomF (V, F) be the space of linear 

transformations from V to F, called the dual space of V. Elements of V* are 
called linear functionals. 
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(2) If B = { Vt . vz , . . .  , Vn } is a basis of the finite dimensional space V ,  define v7 E V* 
for each i E { 1, 2, . . . , n} by its action on the basis B: 

{ 1 ,  
v; (v1 ) = O, 

if i = j 

if i -1- j 
1 ::::: j ::::: n .  ( 1 1 .6) 

Proposition 18. With notations as above, {vi , vi , . . .  , v� } is a basis of V* .  In particular, 
if V is finite dimensional then V* has the same dimension as V. 

Proof" Observe that since V is finite dimensional, dim V* = dim HomF (V, F) = 
dim V = n (Corollary 1 1), so since there are n of the v; 's it suffices to prove that they 
are linearly independent. If 

a1 v� + azv2 + · · · + anv� = 0 in HomF (V, F) ,  

then applying this element to v i  and using equation (6) above we obtain ai = 0. Since 
i is arbitrary these elements are linearly independent. 

Definition. The basis {vi , vi , . . .  , v�} of V* is called the dual basis to {v J , Vz ,  . . .  , vn } .  

The exercises later show that if  V is infinite dimensional i t  is  always true that 
dim V < dim V*.  For spaces of arbitrary dimension the space V* is the "algebraic" 
dual space to V. If V has some additional structure, for example a continuous structure 
(i.e., a topology), then one may define other types of dual spaces (e.g., the continuous 
dual of V, defined by requiring the linear functionals to be continuous maps). One has 
to be careful when reading other worlcs (particularly analysis books) to ascertain what 
qualifiers are implicit in the use of the terms "dual space" and "linear functional." 

Example 

Let [a, b] be a closed interval in lR and let V be the real vector space of all continuous 
functions f : [a , b] � IR. If a < b, V is infinite dimensional. For each g E V the function 
q;8 : V � lR defined by q;8 (f) = J: f(t)g(t)dt is a linear functional on V. 

Definition. The dual of V*, namely V**, is called the double dual or second dual of 
v. 

Note that for a finite dimensional space V, dim V = dim V* and also dim V* = 

dim V** , hence V and V** are isomorphic vector spaces. For infinite dimensional 
spaces dim V < dim V** (cf. the exercises) so V and V** cannot be isomorphic. In the 
case of finite dimensional spaces there is a natural, i.e., basis independent or coordinate 
free way of exhibiting the isomorphism between a vector space and its second dual. 
The basic idea, in a more general setting, is as follows: if X is any set and S is any set 
of functions of X into the field F, we normally think of choosing or fixing an f E S 
and computing f (x) as x ranges over all of X. Alternatively, we could think of fixing 
a point x in X and computing f (x) as f ranges over all of S. The latter process, called 
evaluation at x shows that for each x E X there is a function Ex : S � F defined by 
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Ex (f) = f (x) (i.e., evaluate f at x). This gives a map x t-+ Ex of X into the set of 
F -valued functions on S. If S "separates points" in the sense that for distinct points 
x and y of X there is some f E S such that f(x) f. f(y), then the map x t-+ Ex 
is injective. The proof of the next lemma applies this "role reversal" process to the 
situation where X = V and S = V*, proves Ex is a linear F-valued function on S, 
that is, Ex belongs to the dual space of V*, and proves the map x t-+ Ex is a linear 
transformation from V into V** . Note that throughout this process there is no mention 
of the word "basis" (although it is convenient to know the dimension of V** - a  fact 
we established by picking bases). In particular, the proof does not start with the familiar 
phrase ''pick a basis of V . . . .  " 

Theorem 19. There is a natural injective linear transformation from V to V** . If V is 
finite dimensional then this linear transformation is an isomorphism. 

Proof" Let v E V.  Define the map (evaluation at v) 

Ev : V* --+ F by Ev (f) = f(v) .  

Then Ev U + ag) = (f + ag)(v) = f(v) + ag(v) = Ev (f) + aE8 (v), so that Ev is  a 
linear transformation from V* to F. Hence Ev is an element of HomF (V* ,  F) = V** .  
This defines a natural map 

ifJ :  V --+  V** by 

The map ifJ is a linear map, as follows: for v, w E V and a E F, 

Ev+�w (f) = f(v + aw) = f(v) + af(w) = Ev (f) + aEw (f) 

for every f E V*, and so 

({J(V + aw) = Ev+aw = Ev + a Ew = ({J(v) + CX((J(W) . 

To see that ifJ is injective let v be any nonzero vector in V .  By the Building Up Lemma 
there is a basis 13 containing v .  Let f be the linear transformation from V to F 
defined by sending v to 1 and every element of 13 - { v} to zero. Then f E V* and 
Ev (f) = f ( v) = 1 .  Thus ({J( v) = Ev is not zero in V** . This proves ker ifJ = 0, i.e., ifJ 
is injective. 

If V has finite dimension n then by Proposition 1 8, V* and hence also V** has 
dimension n. In this case ifJ is an injective linear transformation from V to a finite 
dimensional vector space of the same dimension, hence is an isomorphism. 

Let V, W be finite dimensional vector spaces over F with bases 13, £, respectively 
and let 13* , £* be the dual bases. Fix some ifJ E HomF (V, W). Then for each f E W*, 
the composite f o ifJ is a linear transformation from V to F, that is f o ifJ E V* . Thus 
the map f t-+ f o ifJ defines a function from W* to V* . We denote this induced function 
on dual spaces by ifJ* . 
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Theorem 20. With notations as above, q;* is a linear transformation from W* to V* and 
M2: (q;*)  is the transpose of the matrix M� (q;) (recall that the transpose of the matrix 
(aij) is the matrix (aj;) ). 

Proof" The map q;* is linear because (j + ag) o q; = (f o q;) + a(g o q;) . The 
equations which define q; are (from its matrix) 

m 

q;(vj ) = LaijW; 1 � j � n.  i=l 
To compute the matrix for q;* ,  observe that by the definitions of q;* and wZ 

q;* (wZ) (vj ) = (wZ o q;) (vj ) = wt ( ta;jwi) = akj · 
1=1 

Also 
n 

(Lak; v7)(vj )  = akj i=l 
for all j .  This shows that the two linear functionals below agree on a basis of V, hence 
they are the same element of V* :  

n 

q;* (wt) = L ak; v; .  i= l 
This determines the matrix for q;* with respect to the bases £*  and 13* as  the transpose 
of the matrix for q; .  

Corollary 21. For any matrix A, the row rank of  A equals the column rank of A. 

Proof· Let q; : V --+ W be a linear transformation whose matrix with respect to 
some fixed bases of V and W is A. By Theorem 20 the matrix of q;* : W* --+ V* with 
respect to the dual bases is the transpose of A.  The column rank of A is the rank of q; 
and the row rank of A (= the column rank of the transpose of A) is the rank of q;* (cf. 
Exercise 6 of Section 2). It therefore suffices to show that q; and q;* have the same rank. 
Now 

f E ker q;* {:} q;* (f) = 0 {:} f o q;(v) = 0, for all v E V 

{:} q;(V) � ker f ¢> f E Ann(q;(V)) , 

where Ann(S) is the annihilator of S described in Exercise 3 below. Thus Ann( q;(V)) = 
ker q;*.  By Exercise 3, dim Ann(q;(V)) = dim W - dim q;(V).  By Corollary 8, 
dim ker q;* = dim W* - dim q;*(W*) .  Since W and W* have the same dimension, 
dim q;(V) = dim q;*(W*) as needed. 
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E X E R C I S E S 

1. Let V be a finite dimensional vector space. Prove that the map rp �---+ rp* in Theorem 20 
gives a ring isomorphism of End(V) with End(V*).  

2. Let V be the collection of polynomials with coefficients in Q in the variable x of degree 
at most 5 with 1 ,  x ,  x2 , . . .  , x5 as basis. Prove that the following are elements of the dual 
space of V and express them as linear combinations of the dual basis: 
(a) E : V � Q defined by E (p(x)) = p(3) (i.e., evaluation at x = 3). 

(b) rp : V � Q defined by rp(p(x)) = J� p(t)dt. 

(c) rp : V � Q defined by rp(p(x)) = f� t2p(t)dt .  
(d) rp : V � Q defined by rp(p(x)) = p' (5) where p' (x) denotes the usual derivative of 

the polynomial p(x) with respect to x.  
3.  Let S be  any subset of V* for some finite dimensional space V. Define Ann(S) = {v E 

V I f(v) = 0 for all f E S}. (Ann(S) is called the annihilator of S in V). 
(a) Prove that Ann(S) is a subspace of V.  
(b) Let W1 and W2 be subspaces of V*. Prove thatAnn(WI + W2) = Ann(WI ) nAnn(W2) 

and Ann(W1 n W2) = Ann(W1 )  + Ann(W2) .  
(c) Let WI and W2 b e  subspaces of V* .  Prove that W1 = W2 i f  and only if Ann(WI ) = 

Ann(W2).  
(d) Prove that the annihilator of S is the same as the annihilator of the subspace of V* 

spanned by S. 
(e) Assume V is finite dimensional with basis VJ , • • •  , Vn . Prove that if S = { vj , . . .  , vk J 

for some k � n, then Ann(S) is the subspace spanned by { Vk+l , . . •  , vn l ·  
(f) Assume V is  finite dimensional. Prove that if W* is any subspace of V* then 

dim Ann(W*) = dim V - dim W* . 

4. If V is infinite dimensional with basis A, prove that A* = { v* I v E A} does not span V*. 

5. If V is infinite dimensional with basis A, prove that V* is isomorphic to the direct product 
ofcopies of F indexed by A. Deduce that dim V* > dim V. [Use Exercise 14, Section 1 .] 

1 1 .4 DETERMINANTS 

Although we shall be using the theory primarily for vector spaces over a field, the theory 
of determinants can be developed with no extra effort over arbitrary commutative rings 
with 1 .  Thus in this section R is any commutative ring with 1 and V1 , V2, . . .  , Vn . V and 
W are R-modules. For convenience we repeat the definition of multilinear functions 
from Section 10.4. 

Definition. 
(1) A map ({J : VI X v2 X • • •  X Vn -+ w is called multilinear if for each fixed i 

and fixed elements Vj E lj ,  j 'I i ,  the map 

defined by 

is an R-module homomorphism. If V; = V, i = 1 ,  2, . . .  , n ,  then ({J is called 
an n-multilinear function on V, and if in addition W = R, ({J is called an n
multilinear form on V. 
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(2) An n-multilinear function <p on V is called alternating if <p( v, ,  v2 , • • •  , Vn) = 0 
whenever v; = v;+l for some i E { 1 , 2, . . .  , n - 1 }  (i.e., <p is zero whenever 
two consecutive arguments are equal). The function <p is called symmetric if 
interchanging v; and Vj for any i and j in (v, , v2 , • • •  , Vn) does not alter the 
value of <p on this n-tuple. 

When n = 2 (respectively, 3) one says <p is bilinear (respectively, trilinear) rather 
than 2-multilinear (respectively, 3-multilinear). Also, when n is clear from the context 
we shall simply say <p is multilinear. 

Example 

For any fixed m :::: 0 the usual dot product on V = !Rm is a bilinear form (here the ring R 
is the field of real numbers). 

Proposition 22. Let <p be an n-multilinear alternating function on V .  Then 
(1) <p(v, , • • •  , V; - t . Vi+l • V; , V;+2 · · · · · Vn)  = -<p(v, , v2 · · · · · Vn )  for any i E 

{ 1 .  2, . . . .  n -1 }, i.e., the value of <p on an n-tuple is negated if two adjacent 
components are interchanged. 

(2) For each (]' E Sn , <p(Va(l) • Va (2) • • • •  ' Va(n) ) = E (a)<p(v, , V2 , • • •  ' Vn) .  where 
E (a) is the sign of the permutation a (cf. Section 3.5). 

(3) If v; = Vj for any pair ofdistinct i, j E { 1 ,  2, . . .  , n } then <p(v, , v2 , • • •  , Vn) = 0. 
(4) If v; is replaced by v; + avj in (v1 , . . .  , Vn ) for any j =j:. i and any a E R, the 

value of <p on this n-tuple is not changed. 

Proof: (1 )  Let 1/r(x ,  y) be the function <p with variable entries x and y in positions 
i and i + 1 respectively and fixed entries Vj in position j, for all other j .  Thus ( 1 )  is the 
same as showing 1/r(y, x) = -1/r(x ,  y) . Since <p is alternating 1/f (x + y ,  x + y) = 0. 
Expanding x + y in each variable in tum gives 1/r(x + y, x + y) = 1/r(x ,  x) + 1/r(x ,  y) + 
1/r (y ,  x) + 1/r (y , y). Again, by the alternating property of <p, the first and last terms on 
the right hand side of the latter equation are zero. Thus 0 = 1/f(x ,  y) + 1/r(y ,  x), which 
gives ( 1) . 

(2) Every permutation can be written as a product of transpositions ( cf. Section 
3.5). Furthermore, every transposition may be written as a product of transpositions 
which interchange two successive integers (cf. Exercise 3 of Section 3.5). Thus every 
permutation a can be written as -r1 • • • Tm , where Tk is a transposition interchanging two 
successive integers, for all k. It follows from m applications of (1 )  that 

<p(Va(l) • Va(2) • . . • , Va (n) ) = E (Tm) · · · E ( T,)<p(v, , V2 , • • •  , Vn) . 

Finally, since E is a homomorphism into the abelian group ± 1 (so the order of the factors 
±1 does not matter), E(T1 )  • • • E(Tm)  = E (T! · · · Tm) = E (a) .  This proves (2). 

(3) Choose a to be any permutation which fixes i and moves j to i + 1 .  Thus 
(va( l) • Va(2) , • • •  , Va(n)) has two equal adjacent components so <p is zero on this n-tuple. 
By (2), <p(Va(l ) • Va(2) • • • •  , Va(n)) = ±<p(v, ,  V2 , • • •  , Vn) . This implies (3). 

(4) This follows immediately from (3) on expanding by linearity in the ;th position. 
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Proposition 23. Assume (/J is an n-multilinear alternating function on V and that for 
some Vt , Vz , . . .  , Vn and Wt ,  wz , . . .  , Wn E V and some aij E R we have 

Wt = au Vt + azt Vz + · · · + ant Vn 

Wz = a12v1 + azzVz + · · · + anzVn 

(we have purposely written the indices of the aij in "column format"). Then 

({J(Wt ,  Wz , . . .  ' Wn) = L € (a)aa(t) laa (2) 2 . . . aa(n) n(/J(Vt ,  Vz ,  . . .  ' Vn) -
aES,l 

Proof: If we expand ({J(Wt , wz , . . .  , wn) by multilinearity we obtain a sum of nn 

terms of the form a;1 t a;2 2 • . .  a;. n(/J( V;1 , V;2 , • • •  , v;,), where the indices i t , iz ,  . . .  , in 
each run over I ,  2, . . .  , n .  By Proposition 22(3), (/J is zero on the terms where two 
or more of the ij 's are equal. Thus in this expansion we need only consider the 
terms where i t ,  . . .  , in are distinct. Such sequences are in bijective correspondence 
with permutations in Sn , so each nonzero term may be written as aa(l) t aa(2) 2 • • • 

aa(n) n(/J(Va( l ) •  Va (2) • . . .  , Va (n) ) . for some a E Sn . Applying (2) of the previous propo
sition to each of these terms in the expansion of({J(Wt . wz , . . .  , wn) gives the expression 
in the proposition. 

Definition. An n x n detenninant function on R is any function 

det : Mnxn (R) -+ R 

that satisfies the following two axioms: 
(1) det is an n-multilinear alternating form on Rn ( = V), where the n-tuples are the 

n columns of the matrices in Mnxn (R) 
(2) det{l) = 1 ,  where I is the n x n identity matrix. 

On occasion we shall write det(At , Az, . . .  , An) for det A, where At . Az ,  . . .  , An 
are the columns of A. 

Theorem 24. There is a unique n x n determinant function on R and it can be computed 
for any n x n matrix ( aij)  by the formula: 

det(aij) = I: €(a)aa(l )  taa (2) 2 . . . aa(n) n · 
aes. 

Proof· Let At .  Az , . . .  , An be the column vectors in a general n x n matrix (a;j). 
We leave it as an exercise to check that the formula given in the statement of the theorem 
does satisfy the axioms of a determinant function - this gives existence of a determinant 
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function. To prove uniqueness let e; be the column n-tuple with 1 in position i and zeros 
in all other positions. Then 

At = aue1 + a21e2 + · · · + an l en 

A2 = a12e1 + a22e2 + · · · + an2en 

By Proposition 23, det A = LaES, E (a)aa( l) raa(2) 2  · · ·aa(n) n  det(et , e2 , . . .  , en) · Since 

by axiom (2) of a determinant function det(e1 , ez ,  . . .  , en) = 1 ,  the value of det A is as 
claimed. 

Corollary 25. The determinant is an n-mu1tilinear function of the rows of Mnxn (R) 
and for any n x n matrix A, det A = det(N), where N is the transpose of A. 

Proof The first statement is an immediate consequence of the second, so it suffices 
to prove that a matrix and its transpose have the same determinant. For A = ( aij) one 
calculates that 

det N = L E (a)al a ( l)a2a(2) . . .  an a(n) · 
aES, 

Each number from 1 to n appears exactly once among a ( l ) ,  . . . , a (n) so we may 
rearrange the product al a(l)a2 a (2) . . .  an a (n) as aa- ' ( 1 )  laa-1 (2) 2 . . . aa-1 (n) n · Also, the 

homomorphism E takes values in {± 1 }  so E (a) = E (a -1) .  Thus the sum for det A1 may 
be rewritten as 

L E(0"- 1 )aa-1 ( l ) laa- 1 (2) 2 . . .  aa- ' (n) n · 
UES,J 

The latter sum is over all permutations, so the index a - I may be replaced by a.  The 
resulting expression is the sum for det A. This completes the proof. 

Theorem 26. (Cramer's Rule) If A 1 , A2 , . . .  , An are the columns of an n x n matrix 
A and B = fJr A r  + fJzAz + · · · + fJn An, for some fJ1 , . . .  , fJn E R, then 

{3; det A = det(At , . . . , A;-1 , B, Ai+I , . . .  , An) -

Proof This follows immediately from Proposition 22(3) on replacing the given 
expression for B in the ;th position and expanding by multilinearity in that position. 

Corollary 27. If R is an integral domain, then det A = 0 for A E Mn (R) if and only 
if the columns of A are R -linearly dependent as elements of the free R -module of rank 
n .  Also, det A = 0 if and only if the rows of A are R -linearly dependent. 

Proof Since det A = det A' the first sentence implies the second. 
Assume first that the columns of A are linearly dependent and 

0 = fJ1 A 1 + fJzA2 + · · · + fJn An 
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is a dependence relation on the columns of A with, say, {3; -:f. 0. By Cramer's Rule, 
{3; det A = 0. Since R is an integral domain and {3; 'I 0, det A = 0. 

Conversely, assume the columns of A are independent. Consider the integral do
main R as embedded in its quotient field F so that Mnxn (R) may be considered as 
a subring of Mn xn (F) (and note that the determinant function on the subring is the 
restriction of the determinant function from Mn xn (F)). The columns of A in this way 
become elements of Fn . Any nonzero F -linear combination of the columns of A which 
is zero in Fn gives, by multiplying the coefficients by a common denominator, a nonzero 
R -linear dependence relation. The columns of A must therefore be independent vectors 
in Fn . Since A has n columns, these form a basis of Fn . Thus there are elements f3iJ 
of F such that for each i ,  the ith basis vector e; in Fn may be expressed as 

e; = fJu A 1 + f3z; Az + · · · + f3niAn .  

The n x n identity matrix i s  the one whose columns are e1 , ez ,  . . .  , en . By Proposition 
23 (with cp = det), the determinant of the identity matrix is some F -multiple of det A. 
Since the determinant of the identity matrix is 1 ,  det A cannot be zero. This completes 
the proof. 

Theorem 28. For matrices A,  B E Mn xn (R), det AB = (det A) (det B). 

Proof" Let B = ({3;j ) and let A 1 , Az , . . .  , An be the columns of A. Then C = AB 
is  the n x n matrix whose jth column is Ci = fJ1iA 1 + f3zi A2 + · · · + f3nj An · By 
Proposition 23 applied to the multilinear function det we obtain 

det C = det(C1 , . . . , Cn )  = [ L E (a)f3a(l) lf3a(2) 2 . . . f3a (n) n J det(A1 , . . . , An) . 
aESn 

The sum inside the brackets is the formula for det B,  hence det C = (det B) (det A), as 
required (R is commutative). 

Definition. Let A =  (a;j ) be an n x n matrix. For each i, j , let Aii be the n- 1 x n- 1 
matrix obtained from A by deleting its ith row and jth column (an n- 1 x n- 1 minor 
of A). Then (- 1)i+i det (A;j ) is called the ij cofactor of A. 

Theorem 29. (The Cofactor Expansion Formula along the ith row) If A = (aij) is  an 
n x n matrix, then for each fixed i E { 1 ,  2, . . .  , n }  the determinant of A can be computed 
from the formula 

det A =  ( - l )i+lai l det Ai l + (- 1)i+2a;z det A;z + · · · + (- 1i+nain det Ain · 

Proof" For each A let D(A) be the element of R obtained from the cofactor expan
sion formula described above. We prove that D satisfies the axioms of a determinant 
function, hence is the determinant function. Proceed by induction on n. If n = 1 , 
D((a)) = a, for all 1 x I matrices (a) and the result holds. Assume therefore that 
n :::: 2. To show that D is an alternating multilinear function of the columns, fix an 
index k and consider the k th column as varying and all other columns as fixed. If j =f=. k, 
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a;i does not depend on k and D(Aij) is linear in the k1h column by induction. Also, as 
the k1h column varies linearly so does a;b whereas D(A;k) remains unchanged (the k1h 
column has been deleted from A;k ). Thus each term in the formula for D varies linearly 
in the kth column. This proves D is multilinear in the columns. 

To prove D is alternating assume columns k and k + 1 of A are equal. If j -::j:. k or 
k + 1, the two equal columns of A become two equal columns in the matrix A;i . By 
induction D (A;j ) = 0. The formula for D therefore has at most two nonzero terms: 
when j = k and when j = k + 1 . The minor matrices A;k and A; k+l are identical and 
a;k = a; k+l · Then the two remaining terms in the expansion for D, (- l)i+ka;kD(A;k) 
and (-1)i+k+1a; k+I D(A; k+l )  are equal and appear with opposite signs, hence they 
cancel. Thus D(A) = 0 if A has two adjacent columns which are equal, i.e., D is 
alternating. 

Finally, it follows easily from the formula and induction that D(l) = 1, where I is 
the identity matrix. This completes the induction. 

Theorem 30. (Cofactor Fonnula for the Inverse of a Matrix) Let A = (aij) be an 
n x n matrix and let B be the transpose of its matrix of cofactors, i.e., B = (/3ij ), where 
/3ij = (- l)i+i det Ai i • 1 ::=:: i, j ::=:: n .  Then AB = BA = (det A)/ .  Moreover, det A is 

1 
a unit in R if and only if A is a unit in M" xn ( R) ;  in this case the matrix -- B is the 

det A 
inverse of A .  

Proof" The i ,  j entry of AB is  ai l f31i + a;2/32j + · · · + a;n /3nj · By definition of  the 
entries of B this equals 

.B � + ai l (- 1)1 D(Aj i ) + ad- 1 )1 D(Aj2) + · · · + a;, (- l)l " D(Aj,) . ( 1 1 .7) 

If i = j, this is the cofactor expansion for det A along the ;th row. The diagonal entries 
of AB are thus all equal to det A.  If i -::j:. j ,  let A be the matrix A with the ph row 
replaced by the i 1h row, so det A = 0. By inspection Aik = Ajk and a;k = ajk for every 
k E { 1 ,  2, . . .  , n } .  By making these substitutions in equation (7) for each k = 1 ,  2, . . .  , n 
one sees that the i, j entry in A B  equals ai 1 (- 1) 1+i D(Aj 1) + · · +ain (- 1 )"+i D(Aj, ) . 
This expression is the cofactor expansion for det A along the Ph row. Since, as noted 
above, det A = 0, this proves that all off diagonal terms of AB are zero, which proves 
that AB = (det A)/ .  

It follows directly from the definition of B that the pair (AI , Br) satisfies the 
same hypotheses as the pair (A , B).  By what has already been shown it follows that 
(BA)1 = AI B1 = (det AI) / .  Since det A' = det A and the transpose of a diagonal ma
trix is itself, we obtain BA = (det A)/ as well. 

If d = det A is a unit in R, then d-1 B is a matrix with entries in R whose product 
with A (on either side) is the identity, i.e., A is a unit in M,x,(R) .  Conversely, assume 
that A is a unit in R with (2-sided) inverse matrix C. Since det C E R and 

1 = det / = det AC = (det A) (det C) = (det C) (det A) ,  

it follows that det A has a 2-sided inverse in R ,  as needed. This completes all parts of 
the proof. 
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E X E R C I S E S  

1. Formulate and prove the cofactor expansion formula along the jth column of a square 
matrix A.  

2. Let F b e  a field and let A 1 .  A2, . . . , An b e  (column) vectors i n  pn . Form the matrix A 
whose ;th column is A; . Prove that these vectors form a basis of pn 

if and only if det A i= 0. 

3. Let R be any commutative ring with 1 ,  let V be an R-module and let x1 . x2 , . . . , Xn E V.  
Assume that for some A E Mnxn (R), 

Prove that (det A)x; = 0, for all i E { 1 ,  2, . . . , n}. 
4. (Computing Determinants of Matrices) This exercise outlines the use of Gauss-Jordan 

elimination (cf. the exercises in Section 2) to compute determinants. This is the most 
efficient general procedure for computing large determinants. Let A be an n x n matrix. 
(a) Prove that the elementary row operations have the following effect on determinants: 

(i) interchanging two rows changes the sign of the determinant 
(ii) adding a multiple of one row to another does not alter the determinant 

(iii) multiplying any row by a nonzero element u from F multiplies the determinant 
by u. 

(b) Prove that det A is nonzero if and only if A is row equivalent to the n x n identity 
matrix. Suppose A can be row reduced to the identity matrix using a total of s row 
interchanges as in (i) and by multiplying rows by the nonzero elements u1 . u2, . . . , u, 
as in (iii). Prove that det A = (-1)5 (U I U2 · · · ur)-1 . 

S. Compute the determinants of the following matrices using row reduction: ( 5 4 -6) 
A = -2 0 2 

3 4 -2 

( 1 2 -4 4) 
= 2 - 1  4 -8 

B 1 0 1 -2 . 

0 1 -2 3 

6. (Minkowski's Criterion) Suppose A is an n x n matrix with real entries such that the 
diagonal elements are all positive, the off-diagonal elements are all negative and the row 
sums are all positive. Prove that det A i= 0. [Consider the corresponding system of 
equations AX = 0 and suppose there is a nontrivial solution (XI . • • .  , xn) .  If x; has the 
largest absolute value show that the ;th equation leads to a contradiction.] 

1 1 .5 TENSOR ALGEBRAS, SYM M ETRIC AND EXTERIOR ALGEBRAS 

In this section R is any commutative ring with 1 ,  and we assume the left and right 
actions of R on each R-module are the same. We shall primarily be interested in the 
special case when R = F is a field, but the basic constructions hold in general. 

Suppose M is an R -module. When tensor products were first introduced in Section 
10.4 we spoke heuristically of forming "products" m1m2 of elements of M, and we 
constructed a new module M ® M generated by such "products" m 1 ® m2. The "value" 
of this product is not in M, so this does not give a ring structure on M itself. If, however, 

Sec. 1 1 .5 Tensor Algebras, Symmetric and Exterior Algebras 441 



we iterate this by taking the "products" m1mzm3 and mtmzm3m4, and all finite sums of 
such products, we can construct a ring containing M that is "universal" with respect to 
rings containing M (and, more generally, with respect to homomorphic images of M), 
as we now show. 

For each integer k � 1 ,  define 

Tk (M) = M ®R M ®R · · · ®R M (k factors), 

and set fO(M) = R. The elements of Tk (M) are called k-tensors. Define 

00 

/(M) = R EB 71 (M) EB J2(M) EB 7\M) · · ·  = E9 Tk (M) .  
k=O 

Every element of /(M) is a finite linear combination of k-tensors for various k � 0. 
We identify M with /1 (M), so that M is an R-submodule of T(M) . 

Theorem 31. If M is any R-module over the commutative ring R then 
(1) /(M) is an R-algebra containing M with multiplication defined by mapping 

(mt ® · · · ® m; )(m� ® · · · ® mj)  = m1 ® · · · ® m; ® m; ® · · · ® mj 

and extended to sums via the distributive laws. With respect to this multiplica
tion T; (M)Ti (M) � Ti+i (M) .  

(2) (Universal Property) If A i s  any R-algebra and q; : M -+ A is an R-module 
homomorphism, then there is a unique R-algebrahomomorphism 4> : T ( M) -+ 
A such that 4> IM = q;. 

Proof" The map 

M X M X • • • X M X M X M X • • . X M -+  Ji+i (M) 

i factors j factors 

defined by 

(m1 ,  . . .  , m; ,  m� , . . .  , mj)  �----* m 1 ® . . .  ® m; ® m� ® . . . ® mj 

is R-multilinear, so induces a bilinear map /; (M) x Ti (M) to Ti+i (M) which is 
easily checked to give a well defined multiplication satisfying ( 1 )  (cf. the proof of 
Proposition 21  in Section 10.4). To prove (2), assume that q; : M -+  A is an R-algebra 
homomorphism. Then 

defines an R-multilinear map from M x · · · x M (k times) to A.  This in tum induces a 
unique R-module homomorphism 4> from T (M) to A (Corollary 16 of Section 10.4) 
mapping m1 ® . . .  ® mk to the element on the right hand side above. It is easy to check 
from the definition of the multiplication in ( 1 )  that the resulting uniquely defined map 
4> :  /(M) -+ A is an R-algebra homomorphism. 
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Definition. The ring T(M) is called the tensor algebra of M. 

Proposition 32. Let V be a finite dimensional vector space over the field F with basis 
B = {v1 , . . . , Vn } . Then the k-tensors 

with v;j E B 

are a vector space basis of Tk (V) over F (with the understanding that the basis vector 
is the element 1 E F when k = 0). In particular, dim F (Tk (V)) = nk . 

Proof: This follows immediately from Proposition 16 of Section 2. 

Theorem 3 1  and Proposition 32 show that the space T(V) may be regarded as the 
noncommutative polynomial algebra over F in the (noncommuting) variables v1 , • . .  , Vn . 
The analogous result also holds for finitely generated free modules over any commuta
tive ring (using Corollary 19  in Section 10.4). 

Examples 

(1) Let R = fl. and let M = Qfll.. Then (Q/Z) ®z (Q/Z) = 0 (Example 4 following 
Corollary 12 in Section 10.4). Thus T(Q/Z) = fl. ffi (Q/IZ.), where addition is com
ponentwise and the multiplication is given by (r, p)(s ,  fj) = (rs, rq + sp) .  The ring 
Rf(x) of Exercise 4(d) in Section 9.3 is isomorphic to T(Q/Z) . 

(2) Let R = fl. and let M = IZ.fnll.. Then (/Z.fn/Z.) ®z (IZ.fnll.) � IZ.fnll. (Example 3 
following Corollary 12 in Section 10.4). Thus Ti (M) � M for all i > 0 and so 
T(ll.fnll.) � fl. ffi (IZ.fnll.) ffi (IZ.fnll.) · · · .  It follows easily that T(ll.fnll.) � IZ.[x]f(nx) .  

Since Ti (M)Tj (M) � Ti+j (M), the tensor algebra T(M) has a natural "grading" 
or "degree" structure reminiscent of a polynomial ring. 

Definition. 
(1) A ring S is called a graded ring if it is the direct sum of additive subgroups:  

S = So EB S1 EB Sz EB · · · such that S; Sj � Si+j for all i , j � 0.  The elements of 
sk are said to be homogeneous of degree k, and sk is called the homogeneous 
component of S of degree k. 

(2) An ideal I of the graded ring S is called a graded ideal if I = $�0(1 n Sk) .  
(3) A ring homomorphism ({J : S -+ T between two graded rings is  called a 

homomorphism of graded rings if it respects the grading structures on S and T, 
i.e., if ({J(Sk) � Tk for k = 0, 1 , 2, . . . .  

Note that SoSo � So, which implies that So is a subring of the graded ring S and 
then S is an So-module. If So is in the center of S and it contains an identity of S, then 
S is an So-algebra. Note also that the ideal I is graded if whenever a sum ik, + · · · + h. 
of homogeneous elements with distinct degrees k1 , . . .  , kn is in I then each of the 
individual summands ik , , . . . , ik,. is itself in I .  
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Example 

The polynomial ring S = R[xt . xz , . . . . Xn] in n variables over the commutative ring R is 
an example of a graded ring. Here So = R and the homogeneous component of degree k 
is the subgroup of all R-linear combinations of monomials of degree k. 

The ideal I generated by Xt , . . .  , Xn is a graded ideal: every polynomial with zero 
constant term may be written uniquely as a sum of homogeneous polynomials of degree 
k > 1 ,  and each of these has zero constant term hence lies in I .  More generally, an ideal is 
a graded ideal if and only if it can be generated by homogeneous polynomials ( cf. Exercise 
17 in Section 9. 1 ). 

Not every ideal of a graded ring need be a graded ideal. For example in the graded 
ring /Z[x] the principal ideal J generated by 1 + x is not graded: 1 + x E J and 1 � J so 
1 + x cannot be written as a sum of homogeneous polynomials each of which belongs to 
J .  

The next result shows that quotients of graded rings by graded ideals are again 
graded rings. 

Proposition 33. Let S be a graded ring, let I be a graded ideal in S and let h = I n Sk 
for all k � 0. Then S I I is naturally a graded ring whose homogeneous component of 
degree k is isomorphic to Ski Ik . 

Proof" The map 

S = EB�0Sk -+ EB�0(Skl h) 

( • • •  ·, sk . • • •  ) t----+ ( . . .  , sk mod h . . . .  ) 

is surjective with kernel I = EB�oh and defines an isomorphism of graded rings. The 
details are left for the exercises. 

Symmetric Algebras 

The first application of Proposition 33 is in the construction of a commutative quotient 
ring of /(M) through which R-module homomorphisms from M to any commutative 
R-algebra must factor. This gives an "abelianized" version of Theorem 3 1 .  The con
struction is analogous to forming the commutator quotient GIG' of a group ( cf. Section 
5 .4). 

Definition. The symmetric algebra of an R -module M is the R -algebra obtained by 
taking the quotient of the tensor algebra /(M) by the ideal C(M) generated by all 
elements of the form m 1 ® m2 - mz ® m 1 ,  for all m 1 ,  m2 E M. The symmetric algebra 
/(M)IC(M) is denoted by S(M). 

The tensor algebra T (M) is generated as a ring by R = JO (M) and M = /1 (M), 
and these elements commute in the quotient ring S(M) by definition. It follows that 
the symmetric algebra S(M) is a commutative ring. The ideal C(M) is generated by 
homogeneous tensors of degree 2 and it follows easily that C(M) is a graded ideal. 
Then by Proposition 33 the symmetric algebra is a graded ring whose homogeneous 
component of degree k is Sk(M) = Tk(M)ICk (M). Since C(M) consists of k-tensors 
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with k =:::: 2, we have C(M) n M = 0 and so the image of M = T1 (M) in S(M) 
is isomorphic to M .  Identifying M with its image we see that S1 (M) = M and the 
symmetric algebra contains M. In a similar way S0 (M) = R, so the symmetric algebra 
is also an R-algebra. The R-module Sk (M) is called the kth symmetric power of M. 

The first part of the next theorem shows that the elements of the kth symmetric 
power of M can be considered as finite sums of simple tensors m 1 ® · · · ® mk where 
tensors with the order of the factors permuted are identified. Recall also from Sec
tion 4 that a k-multilinear map cp : M x · · · x M -+ N is said to be symmetric 
if cp(m t ,  . . .  , mk) = cp(ma( l) •  . . .  , ma(k) )  for all permutations u of 1 ,  2, . . . , k. (The 
definition is the same for modules over any commutative ring R as for vector spaces.) 

Theorem 34. Let M be an R-module over the commutative ring R and let S(M) be its 
symmetric algebra. 

(1) The kth symmetric power, Sk (M), of M is equal to M ® ·  . · ® M (k factors) 
modulo the submodule generated by all elements of the form 

for all m; E M  and all permutations u in the symmetric group Sk . 
(2) (Universal Property for Symmetric Multilinear Maps) If cp : M x · · · x M -+ N 

is a symmetric k-multilinear map over R then there is a unique R-module 
homomorphism 4> : Sk (M) -+ N such that cp = 4> o t, where 

l :  M X . . •  X M -+  Sk (M) 

is the map defined by 

t (m t , . . . , mk) = m1 ® · · · ® mn mod C(M). 

(3) (Universal Property for maps to commutative R -algebras) If A is any commu
tative R-algebra and cp : M -+  A is an R-module homomorphism, then there 
is a unique R -algebra homomorphism 4> : S ( M) -+ A such that 4> IM = cp. 

Proof The k-tensors Ck (M) in the ideal C(M) are finite sums of elements of the 
form 

with m 1 • . . . , mk E M (where k =:::: 2 and L .:::= i < k). This product gives a difference 
of two k-tensors which are equal except that two entries (in positions i and i + 1 )  have 
been transposed, i.e., gives the element in ( 1 )  of the theorem corresponding to the trans
position (i i + 1 )  in the symmetric group Sk . Conversely, since any permutation u in Sk 
can be written as a product of such transpositions it is easy to see that every element in 
(1) can be written as a sum of elements of the form above. This gives ( 1 ). 

The proofs of (2) and (3) are very similar to the proofs of the corresponding "asym
metric" results (Corollary 16  of Section 10.4 and Theorem 3 1 )  noting that Ck(M) is 
contained in the kernel of any symmetric map from Tk(M) to N by part ( 1 ). 
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Corollary 35. Let V be an n-dimensional vector space over the field F. Then S ( V) is 
isomorphic as a graded F -algebra to the ring of polynomials in n variables over F (i.e. ,  
the isomorphism is also a vector space isomorphism from Sk (V) onto the space of all 
homogeneous polynomials of degree k). In particular, dim F (Sk (V)) = e���1) .  

Proof: Let B = { v 1 , • • . •  Vn } be a basis of V.  B y  Proposition 3 2  there i s  a bijection 
between a basis of Tk (V) and the set Bk of ordered k-tuples of elements from B. Define 
two k-tuples in Bk to be equivalent if there is some permutation of the entries of one 
that gives the other - this is easily seen to be an equivalence relation on Bk . Let S(Bk) 
denote the corresponding set of equivalence classes . Any symmetric k-multilinear 
function from Vk to a vector space over F will be constant on all of the basis tensors 
whose corresponding k-tuples lie in the same equivalence class; conversely, any function 
from S(Bk) can be uniquely extended to a symmetric k-multilinear function on Vk . It 
follows that the vector space over F with basis S(Bk) satisfies the universal property 
of Sk (V) in Theorem 34(2), hence is isomorphic to Sk (V).  Each equivalence class has 
a unique representative of the form ( v� ' , v�2 , • • •  , v�" ), where vf denotes the sequence 
v; , v; , . . .  , v; taken a times, each a; :=:: 0, and a1 + · · · +an = k. Thus there is a bijection 
between the basis Sk (B) and the set x� ' · · · x�" of monic monomials of degree k in the 
polynomial ring F[Xt ,  . . .  , Xn] - This bijection extends to an isomorphism of graded 
F -algebras, proving the first part of the corollary. The computation of the dimension 
of Sk (V)  (i.e., the number of monic monomials of degree k) is left as an exercise. 

Exterior Algebras 

Recall from Section 4 that a multilinear map fP : M x · · · x M � N is called alternating 
if fP (m 1 ,  . . .  , md = 0 whenever m; = mi+I for some i .  (The definition is the same for 
any R-module as for vector spaces.) We saw that the determinant map was alternating, 
and was uniquely determined by some additional constraints. We can apply Proposition 
33 to construct an algebra through which alternating multilinear maps must factor in a 
manner similar to the construction of the symmetric algebra (through which symmetric 
multilinear maps factor). 

Definition. The exterior algebra of an R -module M is the R -algebra obtained by 
taking the quotient of the tensor algebra T(M) by the ideal A(M) generated by all 
elements of the form m 0 m, for m E M. The exterior algebra T(M) I A(M) is denoted 
by /\ (M) and the image of m 1 0 m2 ® ·  · · 0 mk in /\ (M) is denoted by m t l\ m2 1\ ·  · · 1\mk . 

As with the symmetric algebra, the ideal A( M) is generated by homogeneous 
elements hence is a graded ideal. By Proposition 33 the exterior algebra is graded, with 
kth homogeneous component 1\ k (M) = Tk (M) I Ak ( M). We can again identify R with 
f\0 (M) and M with /\\M) and so consider M as an R-submodule of the R-algebra 
1\ (M) . The R-module 1\ \M) is called the kth exterior power of M. 

The multiplication 

(m t 1\ · · · 1\ m;)  1\ (m� 1\ · · · 1\ mj ) = m 1  1\ · · · 1\ m; 1\ m� 1\ · · · 1\ mj 
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in the exterior algebra is called the wedge (or exterior) product. By definition of the 
quotient, this multiplication is alternating in the sense that the product m 1 1\ · · · 1\ mk 
is 0 in 1\ (M) if m; = m;+1 for any 1 ::::: i < k. Then 

0 = (m + m') 1\ (m + m') 

= (m 1\ m) + (m 1\ m') + (m' 1\ m) + (m' 1\ m') 

= (m 1\ m') + (m' 1\ m) 

shows that the multiplication is also anticommutative on simple tensors: 

m 1\ m' = -m' 1\ m for all m ,  m' E M. 

This anticommutativity does not extend to arbitrary products, however, i.e., we need 
not have ab = -ba for all a ,  b E  /\(M) (cf. Exercise 4). 

Theorem 36. Let M be an R-module over the commutative ring R and let /\(M) be 
its exterior algebra. 

(1) The kth exterior power, 1\k(M), of M is equal to M ® · · · ® M (k factors) 
modulo the submodule generated by all elements of the form 

m 1  ® mz ® · · · ® mk where m; = mj for some i =f=. j .  
In particular, 

m 1 1\ mz 1\ · · · 1\ mk = 0 if m; = m j for some i =f=. j .  
(2) (UniversalPropertyforAltematingMultilinearMaps) If({J : M x · · · X M  � N 

is an alternating k-multilinear map then there is a unique R-module homomor
phism t1> : /\k(M) � N such that ifJ = t1> o t, where 

t :  M X . . •  X M � 1\
k

(M) 

is the map defined by 

Remark: The exterior algebra also satisfies a universal property similar to (3) of The
orem 34, namely with respect to R-module homomorphisms from M to R-algebras A 
satisfying a2 = 0 for all a E A (cf. Exercise 6). 

Proof: The k-tensors Ak(M) in the ideal A(M) are finite sums of elements of the 
form 

m 1 ® . . . ® m;- 1 ® (m ® m) ® m;+Z ® . . .  ® mk 

with m 1 , . . .  , mk . m E M (where k � 2 and 1 ::::: i < k), which is a k-tensor with two 
equal entries (in positions i and i + 1 ), so is of the form in ( 1 ). For the reverse inclusion, 
note that since 

m' ® m = -m ® m' + [ (m + m') ® (m + m') - m ® m - m' ® m'] 
= -m ® m' mod A(M), 
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interchanging any two consecutive entries and multiplying by - 1  in a simple k-tensor 
gives an equivalent tensor modulo Ak (M) . Using such a sequence of interchanges and 
sign changes we can arrange for the equal entries m; and m j of a simple tensor as in ( 1 )  
to be adjacent, which gives an element of Ak (M) . I t  follows that the generators in  ( 1 ) 
are contained in Ak (M) , which proves the first part of the theorem. 

As in Theorem 34, the proof of (2) follows easily from the corresponding result 
for the tensor algebra in Theorem 3 1  since Ak(M) is contained in the kernel of any 
alternating map from Tk (M) to N. 

Examples 

(1) Suppose V is a one-dimensional vector space over F with basis element v. Then 
/\ k (V) consists of finite sums of elements of the form a1 v A a2 v A · · · A ak v, i .e., 
a1a2 · · · ak (v A v A · · ·  A v) for a1 , . . .  , ak E F. Since v A v = 0, it follows that 
f\0(V) = F, /\ 1 (V) = V, and 1\i (V) = 0 for i 2:: 2, so as a graded F-algebra we 
have 

1\(V) = F EB  V EB 0 EB 0 EB . . . .  

(2) Suppose now that V is a two-dimensional vector space over F with basis v, v'. Here 
/\ k ( V) consists of finite sums of elements of the form (al v+a} v') A ·  · · 1\ (ak v+a� v') . 
Such an element is a sum of elements that are simple wedge products involving only 
v and v'. For example, an element in /\ 2(V) is a sum of elements of the form 

(av + bv') 1\ (cv + dv') = ac(v 1\ v) + ad(v 1\ v') + bc(v' A v) 

+ bd(v' 1\ v') 

= (ad - bc)v  1\ v' . 

It follows that /\i (V) = 0 for i 2:: 3 since then at least one of v, v' appears twice in 
such simple products. 

We can see directly from /\ 2 (V) = T2(V)jA2(V) that v A v' 1= 0, as follows. 
The vector space T2(V) is 4-dimensional with v 0 v, v 0 v', v' 0 v, v' 0 v' as basis 
(Proposition 16). The elements v 0 v, v 0 v' + v' 0 v, v' 0 v' and v 0 v' are therefore 
also a basis for T2(V). The subspace A2(V) consists of all the 2-tensors in the ideal 
generated by the tensors 

(av + bv') 0 (av + bv') = a2 (v 0 v) + ab(v 0 v' + v' 0 v) + b2 (v' 0 v') ,  

from which it i s  clear that A2 (V) i s  contained in the 3-dimensional subspace having 
v 0 v, v 0 v' + v' 0 v, and v' 0 v' as basis. In particular, the basis element v 0 v' of 
T2(V) is not contained in A2(V), i.e., v A v' 1= 0 in /\ 2 (V) .  

It  follows that f\0(V) = F, /\ 1 (V) = V, f\2(V) = F(v A v') ,  and 1\i (V) = 0 
for i 2:: 3, so as a graded F -algebra we have 

1\(V) = F EB  V EB F(v A v') EB 0 EB . . . . 

As the previous examples illustrate, unlike the tensor and symmetric algebras. for 
finite dimensional vector spaces the exterior algebra is finite dimensional: 
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Corollary 37. Let V be a finite dimensional vector space over the field F with basis 
13 = { vt , . . .  , vn } .  Then the vectors 

V;1 A V;2 A · · · A V;k for 1 ::S it < i2 < · · · < h ::S n 

are a basis of 1\k(V), and 1\k (V) = 0 when k > n (when k = 0 the basis vector is the 
element 1 E F). In particular, dim p(/\k (V)) = (�) . 

Proof" As the proof of Theorem 36 shows, modulo Ak (M), the order of the terms 
in any simple k-tensor can be rearranged up to introducing a sign change. It follows 
that the k-tensors in the corollary (which have been arranged with increasing subscripts 
on the v; and with no repeated entries) are generators for 1\k(V) .  To show these vec
tors are linearly independent it suffices to exhibit an alternating k-multilinear function 
from Vk to F which is 1 on a given v;1 A v;2 A ·  · · A vh and zero on all other gen
erators. Such a function f is defined on the basis of Tk (V) in Proposition 32 by 
f(vh ® vh ® · · · ® vA ) = E (cr) if a is the unique permutation of (h . h .  . . . . A) into 
(i t ,  i2 , . . .  , ik) ,  and f is zero on every basis tensor whose k-tuple of indices cannot be 
permuted to Cit .  i2 , . . .  , h) (where E (cr) is the sign of cr) . Note that f is zero on any 
basis tensor with repeated entries. The value E (cr) ensures that when f is extended to 
all elements of 'P(V) it gives an alternating map, i.e., f factors through Ak(V).  Hence 
f is the desired function. The computation of the dimension of 1\ k (V) (i .e., of the 
number of increasing sequences of k-tuples of indices) is left to the exercises. 

The results in Corollary 37 are true for any free R-module of rank n. In particular 
if M ;:: Rn with R -module basis m t ,  . . .  , mn then 

1\n (M) = R(m1 A . · ·  A mn) 
is a free (rank 1) R-module with generator m1  A · · ·  A mn and 

/\n+t
(M) = /\n+2(M) = . . . = 0. 

Example 

Let R be the polynomial ring Z[x,  y] in the variables x and y. If M = R, then /I?(M) = 0 
so, for example, there are no nontrivial alternating bilinear maps on R x R by the universal 
property of /\ 2 (R) with respect to such maps (Theorem 36). 

Suppose now that M = l is the ideal (x , y) generated by x and y in R. Then l /\ l =I 0. 
Perhaps the easiest way to see this is to construct a nontrivial alternating bilinear map on 
l x l. The map 

cp(ax + by, ex + dy) = (ad - be) mod (x , y) 

is a well defined alternating R-bilinear map from l x l to Z = Rf l (cf. Exercise 7) .  Since 
cp(x , y) = 1 ,  it follows that x A y E /\2 (l) is nonzero. Unlike the situation offree modules 
as in the examples following Theorem 36 (where arguments involving bases could be used), 
in this case it is not at all a trivial matter to give a direct verification that x 1\ y =I 0 in 
/\2 (1) . 

Remark: The ideal 1 is an example of a rank 1 (but not free) R-module (the rank of a 
module over an integral domain is defined in Section 12. 1), and this example shows that 
the results of Corollary 3 7 are not true in general if the R-module is not free over R. 
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Homomorphisms of Tensor Algebras 

If cp : M ---* N is any R-module homomorphism, then there is an induced map on the 
kth tensor power: 

It follows directly that this map sends generators of each of the homogeneous compo
nents of the ideals C(M) and A(M) to themselves. Thus cp induces R-module homo
morphisms on the quotients: 

and 

Moreover, each of these three maps is a ring homomorphism (hence they are graded 
R -algebra homomorphisms). 

Of particular interest is the case when M = V is an n-dimensional vector space 
over the field F and cp : V ---* V is an endomorphism. In this case by Corollary 37, 
1\ n ( cp) maps the !-dimensional space 1\ n ( V) to itself. Let Vt , . . .  , Vn be a basis of V, 
so that Vt 1\ · • · 1\ Vn is a basis of 1\n (V). Then 

1\n (cp) (Vt 1\ · · · 1\ Vn) = cp(vt)  1\ · · · 1\ cp(vn) = D(cp)Vt  1\ · · · 1\ Vn 

for some scalar D(cp) E F. 
For any n x n matrix A over F we can define the associated endomorphism cp 

(with respect to the given basis Vt ,  . . .  , Vn), which gives a map D : Mnxn (F) ---* F 
where D(A) = D(cp). It is easy to check that this map D satisfies the three axioms 
for a determinant function in Section 4. Then the uniqueness statement of Theorem 24 
gives: 

Proposition 38. If cp is an endomorphism on a n-dimensional vector space V, then 
1\n (cp) (w) = det(cp)w for all w E 1\n (V).  

Note that Proposition 38 characterizes the determinant of the endomorphism cp as 
a certain naturally induced linear map on 1\n (V). The fact that the determinant arises 
naturally when considering alternating multilinear maps also explains the source of the 
map cp in the example above. 

As with the tensor product, the maps Sk ( cp) and 1\ k ( cp) induced from an injective 
map from M to N need not remain injective (so /\

2
(M) need not be a submodule of 

f\2(N) when M is a submodule of N, for example). 

Example 

The inclusion rp : I <:....+ R of the ideal (x , y) into the ring R = /Z[x,  y ], both considered as 
R-modules, induces a map 

/\2(rp) :  /\2(1) � /\2(R) .  

Since /\2 (R) = 0 and A 
2 (1) =f. 0, the map cannot be injective. 

450 Chap. 1 1  Vector Spaces 



One can show that if M is an R-module direct summand of N, then /(M) (respec
tively, S(M) and /\ (M)) is an R-subalgebra of /(N) (respectively, S(N) and /\ (N)) 
(cf. the exercises). When R = F is a field then every subspace M of N is a direct 
summand of N and so the corresponding algebra for M is a subalgebra of the algebra 
for N. 

Symmetric and Alternating Tensors 

The symmetric and exterior algebras can in some instances also be defined in terms 
of symmetric and alternating tensors (defined below), which identify these algebras as 
subalgebras of the tensor algebra rather than as quotient algebras. 

For any R -module M there is a natural left group action of the symmetric group Sk 
on M x M x · · · x M (k factors) given by permuting the factors: 

for each a E Sk 

(the reason for a-1 is to make this a left group action, cf. Exercise 8 of Section 5. 1) .  
This map is clearly R-multilinear, so there is a well defined R-linear left group action 
of Sk on T" (M) which is defined on simple tensors by 

for each a E Sk . 

Definition. 
(1) An element z E Tk (M) is called a symmetric k-tensor if az = z for all a in the 

symmetric group Sk . 
(2) An element z E /k (M) is called an alternating k-tensor if az = t= (a )z for all 

(]' in the symmetric group sb where € ( (]') is the sign, ± 1 '  of the permutation (]' .  

It i s  immediate from the definition that the collection of symmetric (respectively, 
alternating) k-tensors is an R-submodule of the module of all k-tensors. 

Example 

The elements m ® m and mt ® mz + mz ® m 1 arc symmetric 2-tensors. The element 
m 1 ® mz - mz ® m 1 is an alternating 2-tensor. 

It is also clear from the definition that both Ck (M) and A
k

(M) are stable under the 

action of Sk. hence there is an induced action on the quotients Sk (M) and 1\
k
(M). 

Proposition 39. Let a be an element in the symmetric group Sk and let €{a ) be the 
sign of the permutation a .  Then 

(1) for every w E Sk
(M) we have aw = w, and 

(2) for every w E /\k
(M) we have aw = € (a)w .  

Proof" The first statement i s  immediate from (1)  in  Theorem 34. We showed in the 
course of the proof of Theorem 36 that 

m1 1\ · · · 1\ m; 1\ m;+1 1\ · · · 1\ mk = -m1 1\ · · · 1\ m;+1 1\ m; 1\ · · · 1\ mk . 
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which shows that the formula in (2) is valid on simple products for the transposition 
(f = (i i+l) .  Since these transpositions generate sk and E is a  group homomorphism 
it follows that (2) is valid for any cr E Sk on simple products w. Since both sides are 
R-linear in w, it follows that (2) holds for all w E  1\k(M). 

By Proposition 39, the symmetric group Sk acts trivially on both the subrnodule 
of symmetric k-tensors and the quotient module Sk(M), the kth symmetric power of 
M. Similarly, Sk acts the same way on the submodule of alternating k-tensors as on 
1\k(M), the kth exterior power of M. We now show that when k !  is a unit in R that 
these respective submodules and quotient modules are isomorphic (where k !  is the sum 
of the 1 of R with itself k !  times). 

For any k-tensor z E Tk(M) define 

Sym(z) = L crz 
aeSk 

Alt (z) = L E (cr) crz. 
aeSk 

For any k-tensor z, the k-tensor Sym(z) is symmetric and the k-tensor Alt (z) is alter
nating. For example, for any T E sk 

r Alt (z) = L E(cr) rcr z 
aeSk 

= L E(r-1cr') cr'z (letting cr' = rcr) 
a'ESk 

= E (r- 1) L E (cr') cr'z = E(r)Alt (z) . 
a'eSk 

The tensor Sym(z) is sometimes called the symmetrization of z and Alt (z) the skew
symmetrization of z .  

If z is  already a symmetric (respectively, alternating) tensor then Sym(z) (respec
tively, Alt (z)) is just k !z .  lt follows that Sym (respectively, Alt) is an R-module 
endomorphism of Tk(M) whose image lies in the submodule of symmetric (respec
tively, alternating) tensors. ln general these maps are not smjective, but if k !  is a unit 
in R then 

1 
-Sym(z) = z for any symmetric tensor z, and 
k !  

1 
k !  Alt (z) = z for any alternating tensor z 

so that in this case the maps ( 1 /  k !)Sym and (1/ k !)Alt give smjective R-module ho
momorphisms from Tk(M) to the submodule of symmetric (respectively, alternating) 
tensors. 
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Proposition 40. Suppose k !  is a unit in the ring R and M is an R -module. Then 
(1) The map ( 1/ k !)Sym induces an R-module isomorphism between the k1h sym

metric power of M and the R-submodule of symmetric k-tensors: 

1 
k !  

Sym : Sk (M) � {symmetric k-tensors} .  

(2) The map ( 1 /  k !)Alt induces an R-module isomorphism between the k1h exterior 
power of M and the R-submodule of alternating k-tensors: 

1 
k !  

Alt : 1\k (M) � {alternating k-tensors} .  

Proof We have seen that the respective maps are surjective R-homomorphisms 
from Tk (M) so to prove the proposition it suffices to check that their kernels are Ck (M) 
and Ak (M), respectively. We show the first and leave the second to the exercises. It is 
clear that Sym is 0 on any difference of two k-tensors which differ only in the order of 
their factors, so Ck (M) is contained in the kernel of ( l f  k ! )Sym by (1 ) of Theorem 34. 
For the reverse inclusion, observe that 

1 1 
z - - Sym(z) = - "' (z - az) 

k !  k ! L 
aesk 

for any k-tensor z. If z is in the kernel of Sym then the left hand side of this equality 
is just z; and since z - az E Ck (M) for every a E Sk (again by (1)  of Theorem 34), it 
follows that z E Ck (M), completing the proof. 

The maps ( 1/  k ! )Sym and ( 1/  k !)Alt are projections (cf. Exercise 1 1  in Section 2) 
onto the submodules of symmetric and antisymmetric tensors, respectively. Equiva
lently, if k !  is a unit in R, we have R-module direct sums 

T" (M) = ker(rr) EB image(rr) 

for rr = ( ljk ! )Sym or rr = ( 1/k ! )Alt.  In the former case the kernel consists of Ck (M) 
and the image is the collection of symmetric tensors (in which case Ck (M) is said to 
form an R-module complement to the symmetric tensors). In the latter case the kernel 
is A k (M) and the image consists of the alternating tensors. 

The R-linear left group action of Sk on P (M) makes /k (M) into a module over 
the group ring RSk (analogous to the formation of F[x]-modules described in Section 
1 0. 1 ). In terms of this module structure these projections give RSk-submodule comple
ments to the RSk-submodules Ck (M) and Ak (M).  The "averaging" technique used to 
construct these maps can be used to prove a very general result (Maschke's Theorem in 
Section 18. 1 )  related to actions of finite groups on vector spaces (which is the subject 
of the "representation theory" of finite groups in Part VI).  

If k! is  not invertible in R then in general we do not have such Sk-invariant direct 
sum decompositions so it is not in general possible to identify, for example, the k1h 
exterior power of M with the alternating k-tensors of M. 

Note also that when k! is invertible it is possible to define the kth exterior power of M 
as the collection of alternating k-tensors (this equivalent approach is sometimes found 
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in the literature when the theory is developed over fields such as � and C). In this case 
the multiplication of two alternating tensors z and w is defined by first taking the product 
zw = z ® w in T(M) and then projecting the resulting tensor into the submodule of 
alternating tensors. Note that the simple product of two alternating tensors need not be 
alternating (for example, the square of an alternating tensor is a symmetric tensor). 

Example 

Let V be a vector space over a field F in which k ! =/:. 0. There are many vector space 
complements to Ak(V) in Tk(V) (just extend a basis for the subspace Ak(V) to a basis 
for Tk(V), for example). These complements depend on choices of bases for Tk(V) 
and so are indistinguishable from each other from vector space considerations alone. The 
additional structure on Tk (V) given by the action of Sk singles out a unique complement 
to Ak(V), namely the subspace of alternating tensors in Proposition 40. 

Suppose that k ! =/:. 0 in F for all k � 2 (i.e., the field F has "characteristic 0," 
cf. Exercise 26 in Section 7.3), for example, F = Q. Then the full exterior algebra 
/\ (V) = EBk�O /\ k (V) can be identified with the collection of tensors whose homogeneous 
components are alternating (with respect to the appropriate symmetric groups Sk). 

Multiplication in /\ (V) in terms of alternating tensors is rather cumbersome, however. 
For example let Vt , v2 , v3 be distinct basis vectors in V .  The product of the two alternating 
tensors z = Vt and w = vz ® VJ - V3 ® vz is obtained by first computing 

Z 18) W = Vt 18) Vz 18) V3 - Vt 18) V3 18) Vz 

in the full tensor algebra. This 3-tensor is not alternating - for example, 

( 1 2)(z 18) W) = V2 18) Vt 18) VJ - VJ 18) Vl 18) Vz =/:. -z 18) W 

and also ( 1 2 3)(z ® w) = VJ ® Vt ® vz - vz ® Vt ® v3 =/:. z ® w. The multiplication requires 
that we project this tensor into the subspace of alternating tensors. This projection is given 
by ( 1 f3 !)Alt (z ® w) and an easy computation shows that 

1 1 
6Aft (z 18) W) = J [Vt 18) Vz 18) V3 + Vz 18) VJ 18) Vl + V3 18) Vt 18) Vz 

- Vt 18) V3 18) Vz - Vz 18) Vt 18) VJ - VJ 18) Vz 18) Vt ) , 

so the right hand side is the product of z and w in terms of alternating tensors. The same 
product in terms of the quotient algebra 1\(V) is simply 

Vt 1\ (2vz 1\ V3)  = 2VJ 1\ V2 1\ V3 . 

E X E R C I S E S 

In these exercises R is a commutative ring with 1 and M is an R-module; F is a field and V is 
a finite dimensional vector space over F. 

1. Prove that if M is a cyclic R-module then T(M) = S(M), i .e. , the tensor algebra T(M) 
is commutative. 

2. Fill in the details for the proof of Proposition 33 that Sf I = EB�oSkf h .  [Show first that 
SJj � Ii+j ·  Use this to show that the multiplication (Si fli )(Sj /lj ) � Si+j/Ii+j is well 
defined, and then check the ring axioms and verify the statements made in the proof of 
Proposition 33.] 
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3. Show that the image of the map Sym2 for the Z-module Z consists of the 2-tensors a(1 ® 1) 
where a is an even integer. Conclude in particular that the symmetric tensor 1 ® 1 in Z®z Z 
is not contained in the image of the map Sym. 

4. Prove that m 1\ n 1  1\ n2 1\ · · · 1\ nk = (-1)k (n i 1\ n2 1\ · · · 1\ nk 1\ m). In particular, 
x 1\ (y 1\ Z) = (y 1\ z) 1\ x  for all x ,  y, z E M. 

5. Prove that if M is a free R-module of rank n then /'•/ (M) is a free R-module of rank (7) 
for i = 0, 1 ,  2, . . . .  

6. If A is any R-algebra in which a2 = 0 for all a E A and ffJ : M -+ A is an R-module 
homomorphism, prove there is a unique R-algebra homomorphism cJJ : /\(M) -+ A such 
that cJJ IM = f/J. 

7. Let R = Z[x , y] and I =  (x , y) .  
(a) Prove that if ax + by = a'x + b'y in R then a' =  a +  yf and b'  = b - xf for some 

polynomial f(x ,  y) E R. 
(b) Prove that the map f{J(ax+by, cx +dy) = ad -bc mod (x , y) in the example following 

Corollary 37 is a well defined alternating R-bilinear map from I x I to Z = R/ I .  

8. Let R be an integral domain and let F be its field of fractions. 
(a) Considering F as an R-module, prove that 1\

2 
F = 0. 

(b) Let I be any R-submodule of F (for example, any ideal in R). Prove that /\; I is a 
torsion R-module for i ::::_ 2 (i.e., for every x E /\; I there is some nonzero r E R 
with rx = 0). 

(c) Give an example of an integral domain R and an R-module I in F with /\; I =/= 0 for 
every i ::::_ 0 (cf. the example following Corollary 37). 

9. Let R = Z[ G] be the group ring of the group G = { 1 ,  a}  of order 2. Let M = Ze1 + Ze2 be 
a free Z-module ofrank 2 with basis el and e2 . Define a{et )  = e1 + 2e2 and a{e2) = -e2. 
Prove that this makes M into an R-module and that the R-module 1\

2 
M is a group of 

order 2 with e1 1\ e2 as generator. 

10. Prove that z - {1/  k !)Alt (z) = { 1/  k !) Laesk (z - E(a)az) for any k-tensor z and use this 
to prove that the kernel of the R-module homomorphism (1/  k !)Alt in Proposition 40 is 
Ak (M) . 

11. Prove that the image of Altk is the unique largest subspace of Tk (V) on which each 
permutation a in the symmetric group Sk acts as multiplication by the scalar E {a). 

12. (a) Prove that if f(x ,  y) is an alternating bilinear map on V {i.e., f(x ,  x) = 0 for all 
X E V) then j (x , y) = -j (y , X) for all X ,  y E V. 

(b) Suppose that -1 =1= 1 in F. Prove that f (x , y) is an alternating bilinear map on V 
{i.e., j(x ,  x) = 0 for all x E V) if and only if f(x, y) = -f(y, x) for all x, y E V. 

(c) Suppose that -1 = I in F. Prove that every alternating bilinear form f (x , y) on V is 
symmetric (i.e., f(x , y) = f(y, x) for all x, y E V). Prove that there is a symmetric 
bilinear map on V that is not alternating. [One approach: show that C2(V) c A2(V) 
and C2{V) =1= A2(V) by counting dimensions. Alternatively, construct an explicit 
symmetric map that is not alternating.] 

13. Let F be any field in which - 1  =1= 1 and let V be a vector space over F. Prove that 
V ®F V = S2(V) ffi f\

2
{V) i.e., that every 2-tensor may be written uniquely as a sum of 

a symmetric and an alternating tensor. 

14. Prove that if M is an R-module directfactor of the R-module N then T(M) {respectively, 
S(M) and 1\(M)) is an R-subalgebra of T(N) (respectively, S(N) and 1\(N)). 
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CHAPTER 1 2  

M odu l es over 
Principa l Idea l Do mains 

The main purpose of this chapter is to prove a structure theorem for finitely generated 
modules over particularly nice rings, namely Principal Ideal Domains. This theorem is 
an example of the ideal structure of the ring (which is particularly simple for P.I.D.s) 
being reflected in the structure of its modules. If we apply this result in the case where 
the P.I.D. is the ring of integers Z then we obtain a proof of the Fundamental Theorem 
of Finitely Generated Abelian Groups (which we examined in Chapter 5 without proof). 
If instead we apply this structure theorem in the case where the P.I.D. is the ring F[x] 
of polynomials in x with coefficients in a field F we shall obtain the basic results on 
the so-called rational and Jordan canonical forms for a matrix. Before proceeding to 
the proof we briefly discuss these two important applications. 

We have already discussed in Chapter 5 the result that any finitely generated abelian 
group is isomorphic to the direct sum of cyclic abelian groups, either Z or ZjnZ for 
some positive integer n # 0. Recall also that an abelian group is the same thing as 
a Z-module. Since the ideals of Z are precisely the trivial ideal (0) and the principal 
ideals (n) = nZ generated by positive integers n, we see that the Fundamental Theorem 
of Finitely Generated Abelian Groups in the language of modules says that any finitely 
generated Z-module is the direct sum of modules of the form Zj I where I is an ideal 
of Z (these are the cyclic Z-modules), together with a uniqueness statement when the 
direct sum is written in a particular form. Note the correspondence between the ideal 
structure of z and the structure of its (finitely generated) modules, the finitely generated 
abelian groups. 

The Fundamental Theorem of Finitely Generated Modules over a P.I.D. states that 
the same result holds when the Principal Ideal Domain Z is replaced by any P.I.D. In 
particular, we have seen in Chapter 10  that a module over the ring F[x] of polynomials 
in x with coefficients in the field F is the same thing as a vector space V together 
with a fixed linear transformation T of V (where the element x acts on V by the linear 
transformation T). The Fundamental Theorem in this case will say that such a vector 
space is the direct sum of modules of the form F[x ]/I where I is an ideal of F[x ], 
hence is either the trivial ideal (0) or a principal ideal (f (x)) generated by some nonzero 
polynomial f (x) (these are the cyclic F[x ]-modules), again with a uniqueness statement 
when the direct sum is written in a particular form. If this is translated back into the 
language of vector spaces and linear transformations we can obtain information on the 
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linear transformation T. 
For example, suppose V is  a vector space of dimension n over F and we choose 

a basis for V. Then giving a linear transformation T of V to itself is the same thing 
as giving an n x n matrix A with coefficients in F (and choosing a different basis for 
V gives a different matrix B for T which is similar to A i.e., is of the form p-l AP 
for some invertible matrix P which defines the change of basis). We shall see that 
the Fundamental Theorem in this situation implies (under the assumption that the field 
F contains all the "eigenvalues" for the given linear transformation T) that there is a 
basis for V so that the associated matrix for T is as close to being a diagonal matrix 
as possible and so has a particularly simple form. This is the Jordan canonical form. 
The rational canonical form is another simple form for the matrix for T (that does not 
require the eigenvalues for T to be elements of F). In this way we shall be able to give 
canonical forms for arbitrary n x n matrices over fields F, that is, find matrices which 
are similar to a given n x n matrix and which are particularly simple (almost diagonal, 
for example). 

Example 

Let V = � = { (x , y, z) I x ,  y, z E Q} be the usual 3-dimensional vector space of ordered 
3-tuples with entries from the field F = Q of rational numbers and suppose T is the linear 
transformation 

T(x , y ,  z) = (9x + 4y + 5z, -4x - 3z, -6x - 4y - 2z) , X ,  y, z E Q. 

If we take the standard basis et = (1 ,  0, 0) , e2 = (0, 1 ,  0) , e3 = (0, 0, 1 ) for V then the 
matrix A representing this linear transformation is 

A = ( -� � _; ) . 
-6 -4 -2 

We shall see that the Jordan canonical form for thls matrix A is the much simpler matrix ( 2 1 0) 
B = 0 2 0 

0 0 3 

obtained by taking instead the basis ft = (2, - 1 ,  -2), h = ( 1 ,  0, -1) ,  /3 = (3 , -2, -2) 
for V, since in thls case 

T(/1 ) = T(2, - 1 ,  -2) = (4, -2, -4) = 2 · ft + 0 · h + 0 · /3 

T(/2) = T( l ,  0, - 1 ) = (4, - 1 , -4) = 1 · ft + 2 · h + 0 · /3 

T(/3) = T(3, -2, -2) = (9, -6, -6) = 0 · ft + 0 · f2 + 3 · /3, 

so the columns of the matrix representing T with respect to this basis are (2, 0, 0) ,  { 1 ,  2, 0) 
and (0, 0, 3), i.e., T has matrix B with respect to this basis. In particular A is similar to the 
simpler matrix B.  

In fact thls linear transformation T cannot be diagonalized (i.e., there i s  no choice of 
basis for V for which the corresponding matrix is a diagonal matrix) so that the matrix B 
is as close to a diagonal matrix for T as is possible. 
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The first section below gives some general definitions and states and proves the 
Fundamental Theorem over an arbitrary P.I.D., after which we return to the application 
to canonical forms (the application to abelian groups appears in Chapter 5). These 
applications can be read independently of the general proof. An alternate and compu
tationally useful proof valid for Euclidean Domains (so in particular for the rings Z and 
F[x]) along the lines of row and column operations is outlined in the exercises. 

1 2.1  TH E BASIC THEORY 

We first describe some general finiteness conditions. Let R be a ring and let M be a left 
R-module. 

Definition. 
(1) The left R-module M is said to be a Noetherian R-module or to satisfy the 

ascending chain condition on submodules (or A. C. C. on submodules) if there 
are no infinite increasing chains of submodules, i.e., whenever 

Mt � M2 � M3 � · ·  · 

is an increasing chain of submodules of M, then there is a positive integer m 
such that for all k ::: m, Mk = Mm (so the chain becomes stationary at stage m: 
Mm = Mm+l = Mm+2 = . . .  ). 

(2) The ring R is said to be Noetherian if it is Noetherian as a left module over 
itself, i.e., if there are no infinite increasing chains of left ideals in R.  

One can formulate analogous notions of A. C. C. on right and on two-sided ideals in 
a (possibly noncommutative) ring R. For noncommutative rings these properties need 
not be related. 

Theorem 1. Let R be a ring and let M be a left R-module. Then the following are 
equivalent: 

(1) M is a Noetherian R-module. 
(2) Every nonempty set of submodules of M contains a maximal element under 

inclusion. 
(3) Every submodule of M is finitely generated. 

Proof: [( 1 ) implies (2)] Assume M is Noetherian and let :E be any nonempty 
collection of submodules of M. Choose any M1 E :E. If Mt is a maximal element of 
:E ,  (2) holds, so assume M1 is not maximal. Then there is some M2 E :E such that 
M1 C M2. If M2 is maximal in :E ,  (2) holds, so we may assume there is an M3 E :E 
properly containing M2. Proceeding in this way one sees that if (2) fails we can produce 
by the Axiom of Choice an infinite strictly increasing chain of elements of :E , contrary 
to ( 1). 

[(2) implies (3)] Assume (2) holds and let N be any submodule of M. Let :E be 
the collection of all finitely generated submodules of N. Since {0} E :E, this collection 
is nonempty. By (2) :E contains a maximal element N'. If N' =j:. N, let x E N - N'. 
Since N' E :E, the submodule N' is finitely generated by assumption, hence also the 
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submodule generated by N' and x is finitely generated. Thi� contradicts the maximality 
of N', so N =  N' is finitely generated. 

[(3) implies ( 1 )] Assume (3) holds and let M1 � Mz � M3 . . . be a chain of 
submodules of M. Let 

00 

and note that N is a submodule. By (3) N is finitely generated by, say, a1 , a2 , • • •  , an . 
Since a; E N for all i ,  each a; lies in one of the submodules in the chain, say Mj; . 
Let m = max {h , jz, . . .  , in l · Then a; E Mm for all i so the module they generate is 
contained in Mm , i.e. , N � Mm . This implies Mm = N = Mk for all k 2: m, which 
proves ( 1 ). 

Corollary 2. If R is a P.I.D. then every nonempty set of ideals of R has a maximal 
element and R is a Noetherian ring. 

Proof: The P.I.D. R satisfies condition (3) in the theorem with M = R .  

Recall that even i f  M itself i s  a finitely generated R-module, submodules of M 
need not be finitely generated, so the condition that M be a Noetherian R-module is in 
general stronger than the condition that M be a finitely generated R-module. 

We require a result on "linear dependence" before turning to the main results of 
this chapter. 

Proposition 3. Let R be an integral domain and let M be a free R -module of rank 
n < oo. Then any n + 1 elements of M are R-linearly dependent, i.e., for any 
YI . yz , . . .  , Yn+I E M  there are elements r1 , rz , . . . • rn+I E R,  not all zero, such that 

r1Y1 + rzyz + . . .  + rn+IYn+l = 0. 

Proof: The quickest way of proving this is to embed R in its quotient field F (since 
R is an integral domain) and observe that since M � R EB R EB · · · EB R (n times) we 
obtain M � F EB  F EB ·  · · EB F. The latter is an n-dimensional vector space over F so 
any n + 1 elements of M are F -linearly dependent. By clearing the denominators of the 
scalars (by multiplying through by the product of all the denominators, for example), 
we obtain an R -linear dependence relation among the n + 1 elements of M. 

Alternatively, let e1 , • • .  , en be a basis of the free R -module M and let y1 , . • •  , Yn+l 
be any n + 1 elements of M. For 1 :::: i :::: n + 1 write y; = ali ei + az;ez + . . .  + an;e; in 
terms of the basis e 1 ,  e2 , • • •  , en . Let A be the (n + 1) x (n + 1 )  matrix whose i, j entry 
is a;j , 1 :::: i :::: n,  1 :::: j :::: n + 1 and whose last row is zero, so certainly det A = 0. 
Since R is an integral domain, Corollary 27 of Section 1 1 .4 shows that the columns 
of A are R-linearly dependent. Any dependence relation on the columns of A gives a 
dependence relation on the y; 's, completing the proof. 

If R is any integral domain and M is any R -module recall that 

Tor(M) = (x E M  I rx = 0 for some nonzero r E R}  
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is a submodule of M (called the torsion sub module of M) and if N is any submodule of 
Tor(M), N is called a torsion submodule of M (so the torsion submodule of M is the 
union of all torsion submodules of M, i.e., is the maximal torsion submodule of M). If 
Tor(M) = 0, the module M is said to be torsion free. 

For any submodule N of M, the annihilator of N is the ideal of R defined by 

Ann(N) = {r E R I rn = O for all n E N}.  

Note that if  N is  not a torsion submodule of M then Ann(N) = (0) .  It is  easy to see 
that if N, L are submodules of M with N � L, thenAnn(L) � Ann(N) . If R is a P.I.D. 
and N � L � M with Ann(N) = (a) and Ann(L) = (b), then a I b. In particular, 
the annihilator of any element x of M divides the annihilator of M (this is implied by 
Lagrange's Theorem when R = Z). 

Definition. For any integral domain R the rank of an R-module M is the maximum 
number of R-linearly independent elements of M. 

The preceding proposition states that for a free R -module M over an integral domain 
the rank of a submodule is bounded by the rank of M. This notion of rank agrees with 
previous uses of the same term. If the ring R = F is a field, then the rank of an 
R-module M is the dimension of M as a vector space over F and any maximal set 
of F -linearly independent elements is a basis for M. For a general integral domain, 
however, an R-module M of rank n need not have a "basis," i.e. , need not be a free 
R-module even if M is torsion free, so some care is necessary with the notion of rank, 
particularly with respect to the torsion elements of M. Exercises I to 6 and 20 give 
an alternate characterization of the rank and provide some examples of (torsion free) 
R -modules (of rank 1 )  that are not free. 

The next important result shows that if N is a submodule of a free module of finite 
rank over a P.I.D. then N is again a free module of finite rank and furthermore it is 
possible to choose generators for the two modules which are related in a simple way. 

Theorem 4. Let R be a Principal Ideal Domain, let M be a free R-module of finite rank 
n and let N be a submodule of M. Then 

(1) N is free of rank m, m ::: n and 
(2) there exists a basis YI · y2 , . . .  , Yn of M so thata1y1 . a2y2 , . . .  , amYm is a basis of 

N where a1 , a2 , . . .  , am are nonzero elements of R with the divisibility relations 

a1 I a2 I · · · I am . 

Proof" The theorem is trivial for N = {0}, so assume N =/= {0} . For each R-module 
homomorphism ({! of M into R, the image ({J(N) of N is a submodule of R, i.e., an 
ideal in R.  Since R is a P.I.D. this ideal must be principal, say ({I (N) = (a"'), for some 
a"' E R. Let 

b = {(a"') I ({!  E HomR (M, R)} 

be the collection of the principal ideals in R obtained in this way from the R-module 
homomorphisms of M into R. The collection b is certainly nonempty since taking ({! 
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to be the trivial homomorphism shows that (0) E :E .  By Corollary 2, :E has at least 
one maximal element i.e., there is at least one homomorphism v of M to R so that the 
principal ideal v(N) = (av)  is not properly contained in any other element of :E .  Let 
a1 = a,, for this maximal element and let y E N be an element mapping to the generator 
a1 under the homomorphism v :  v (y) = a1 . 

We now show the element a1 is nonzero. Let Xt ,  xz,  . . .  , Xn be any basis of the free 
module M and let rr; E HomR {M, R) be the natural projection homomorphism onto 
the i 1h coordinate with respect to this basis. Since N # {0}, there exists an i such that 
rr; (N) # 0, which in particular shows that :E contains more than just the trivial ideal 
(0). Since (aJ )  is a maximal element of :E it follows that a1 # 0. 

We next show that this element a1 divides IP(Y) for every IP E HomR(M, R). To 
see this let d be a generator for the principal ideal generated by a 1 and IP (y) . Then d is a 
divisor of both a1 and IP(Y) in R and d = r1a1 + rziP (Y) for some rr , rz E R. Consider 
the homomorphism 1fr = r1 v + rziP from M to R. Then 1fr(y) = (r1 v + rziP) (y) = 
r1a1 + rziP(Y) = d so that d E 1/r(N), hence also (d) s; 1/r(N). But d is a divisor of 
a1 so we also have (aJ )  s; (d) . Then (aJ )  s; (d) s; 1/r (N) and by the maximality of 
(a1 )  we must have equality: (at )  = (d) = 1/r(N). In particular (ar ) = (d) shows that 
at I IP(Y) since d divides lfJ(y). 

If we apply this to the projection homomorphisms rr; we see that a1 divides rr; (y) 
for all i .  Write rr; (y) = a1 b; for some b; E R, 1 ::S i ::S n and define 

n 
Yl = L h;X; .  

i=l 

Note that a1Yt = y.  Since a1 = v(y) = v(atyd = a 1v (yi)  and a1 is a nonzero element 
of the integral domain R this shows 

v(yt) = 1 .  

We now verify that this element y 1  can be taken as one element in a basis for M 
and that a1y1  can be taken as one element in a basis for N, namely that we have 
(a) M = Ryt ffi ker v, and 
(b) N = Rat Yt ffi (N n ker v) . 

To see (a) let x be an arbitrary element in M and write x = v(x)y1 + (x - v(x)y1) .  
Since 

v(x - v(x)y1 ) = v(x) - v (x)v(y1 ) 

= v(x) - v(x) · l  

. = 0 

we see that x - v(x)y1 is an element in the kernel of v. This shows that x can be written 
as the sum ofan element in Ryl and an element in the kernel of v, so M = Ryl + ker v.  
To see that the sum is direct, suppose ry1 is also an element in the kernel of v .  Then 
0 = v (ryr )  = rv (y1) = r shows that this element is indeed 0. 

For (b) observe that v(x') is divisible by a1 for every x' E N by the definition of a1  
as a generator for v (N). If we write v (x') = bat where b E  R then the decomposition 
we used in (a) above is x' = v(x')YI + (x' - v(x')Yt ) = batYl + (x' - ba1y1 )  where 
the second summand is in the kernel of v and is an element of N. This shows that 
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N = Rat Yt + (N n ker v ) .  The fact that the sum in (b) is direct is a special case of the 
directness of the sum in (a). 

We now prove part ( 1 )  of the theorem by induction on the rank, m, of N. If m = 0, 
then N is a torsion module, hence N = 0 since a free module is torsion free, so ( 1 )  
holds trivially. Assume then that m > 0 .  Since the sum i n  (b) above i s  direct w e  see 
easily that N n ker v has rank m - I (cf. Exercise 3). By induction N n ker v is then 
a free R-module of rank m - 1 .  Again by the directness of the sum in (b) we see that 
adjoining at Yt to any basis of N n ker v gives a basis of N, so N is also free (of rank 
m ), which proves ( 1  ). 

Finally, we prove (2) by induction on n, the rank of M. Applying ( 1 )  to the 
submodule ker v shows that this submodule is free and because the sum in (a) is direct 
it is free of rank n - 1 .  By the induction assumption applied to the module ker v (which 
plays the role of M) and its submodule ker v n N (which plays the role of N), we see 
that there is a basis yz , y3 , . . .  , Yn of ker v such that azyz ,  a3y3 , . . .  , amYm is a basis of 
N n ker v for some elements az , a3 , . . .  , am of R with az I a3 I · · · I am . Since the 
sums (a) and (b) are direct, Yt , yz , . . .  , Yn is a basis of M and atYt . azyz ,  . . .  , amYm is 
a basis of N. To complete the induction it remains to show that at divides a2 • Define 
a homomorphism qJ from M to R by defining fP(Yt ) = fP(Yz) = 1 and q7(y; ) = 0, for 
all i > 2, on the basis for M .  Then for this homomorphism fP we have at = fP(atYt )  
so a t  E q7 (N) hence also (at )  � q7(N). B y  the maximality of (at ) i n  :E it follows that 
(at )  = q7(N). Since az = fP(azyz) E q7 (N) we then have az E (at )  i.e., a1 I az . This 
completes the proof of the theorem. 

Recall that the left R -module C is a cyclic R -module (for any ring R, not necessarily 
commutative nor with 1 )  if there is an element x E C such that C = Rx . We can then 
define an R-module homomorphism 

rr : R ---+ C 

by rr (r) = rx, which will be surjective by the assumption C = Rx. The First Isomor
phism Theorem gives an isomorphism of (left) R-modules 

R j ker rr � C. 

If R is a P.I.D., ker rr is a principal ideal, (a}, so we see that the cyclic R-modules 
C are of the form R j (a) where (a) = Ann( C). 

The cyclic modules are the simplest modules (since they require only one generator). 
The existence portion of the Fundamental Theorem states that any finitely generated 
module over a P.I.D. is isomorphic to the direct sum of finitely many cyclic modules. 

Theorem 5. (Fundamental Theorem, Existence: Invariant Factor Form) Let R be a 
P.I.D. and let M be a finitely generated R-module. 

(1) Then M is isomorphic to the direct sum of finitely many cyclic modules. More 
precisely, 
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M � Rr EB R j (at )  EB R j (az) EB · • • EB R j(am) 
for some integer r :=:::: 0 and nonzero elements at , a2 , • • •  , am of R which are not 
units in R and which satisfy the divisibility relations 

at I az I · · · I am . 
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(2) M is torsion free if and only if M is free. 
(3) In the decomposition in ( 1 ), 

In particular M is a torsion module if and only if r = 0 and in this case the 
annihilator of M is the ideal (am) -

Proof: The module M can be generated by a finite set of elements by assumption 
so let Xt , x2 • . . .  , X

n 
be a set of generators of M of minimal cardinality. Let Rn be 

the free R-module of rank n with basis b1 , b2 , . . .  , bn and define the homomorphism 
rr : Rn -+ M by defining rr (b; ) = x; for all i ,  which is automatically surjective 
since Xt , . . .  , Xn generate M. By the First Isomorphism Theorem for modules we have 
Rn I ker rr :;::::: M. Now, by Theorem 4 applied to Rn and the submodule ker rr we can 
choose another basis Yt . Y2 · . . .  , Yn of Rn so that a1 y1 , a2y2 ,  . . .  , amYm is a basis of 
ker rr for some elements a1 , a2 , . . . •  am of R with at I a2 I · · · I am . This implies 

To identify the quotient on the right hand side we use the natural surjective R-module 
homomorphism 

that maps (atYt • . . .  , anYn)  to (at mod (at )  • . . .  , am mod (am) . am+t • . . .  , an) .  The 
kernel of this map is clearly the set of elements where a; divides a; , i = 1 ,  2, . . .  , m, 
i.e., Ra1Y1 EB Ra2Y2 EB · · · EB RamYm (cf. Exercise 7). Hence we obtain 

If a is a unit in R then R I (a) = 0, so in this direct sum we may remove any of the 
initial a; which are units. This gives the decomposition in ( 1 )  (with r = n - m). 

Since R I (a) is a torsion R -module for any nonzero element a of R, ( 1 )  immediately 
implies M is a torsion free module if and only if M :;::::: Rr, which is (2). Part (3) is 
immediate from the definitions since the annihilator of Rl (a) is evidently the ideal (a). 

We shall shortly prove the uniqueness of the decomposition in Theorem 5, namely 
that if we have 

for some integer r' ;::: 0 and nonzero elements bt , b2 , . . .  , bm' of R which are not units 
with 

then r = r', m = m' and (a; ) = (b; ) (so a; = b; up to units) for all i .  It is precisely the 
divisibility condition at I a2 I · · · I am which gives this uniqueness. 
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Definition. The integer r in Theorem 5 is called the free rank or the Betti number of 
M and the elements a1 , a2 , . . .  , am e R (defined up to multiplication by units in R) are 
called the invariant factors of M. 

Note that until we have proved that the invariant factors of M are unique we should 
properly refer to a set of invariant factors for M (and similarly for the free rank), by 
which we mean any elements giving a decomposition for M as in (1)  of the theorem 
above. 

Using the Chinese Remainder Theorem it is possible to decompose the cyclic 
modules in Theorem 5 further so that M is the direct sum of cyclic modules whose 
annihilators are as simple as possible (namely (0) or generated by powers of primes in 
R). This gives an alternate decomposition which we shall also see is unique and which 
we now describe. 

Suppose a is a nonzero element of the Principal Ideal Domain R. Then since R is 
also a Unique Factorization Domain we can write 

a - upa• pa2 pa• 
- l 2 • . .  s 

where the p; are distinct primes in R and u is a unil This factorization is unique 
up to units, so the ideals (p�; ) ,  i = 1 ,  . . .  , s are uniquely defined. For i =/=- j we 
have (pf; ) + (p;i >  = R since the sum of these two ideals is generated by a greatest 
common divisor, which is 1 for distinct primes p; , Pj . Put another way, the ideals 
(pf; ), i = 1 ,  . . .  , s, are comaximal in pairs. The intersection of all these ideals is the 
ideal (a) since a is the least common multiple of pf• , p�2 , • • •  , p�·· . Then the Chinese 
Remainder Theorem (Theorem 7 . 17) shows that 

Rj(a) � Rj(pr • ) $ Rj(p�2 ) $ · · · $ Rj(p:• ) 

as rings and also as R-modules. 
Applying this to the modules in Theorem 5 allows us to write each of the direct 

summands R /(a; ) for the invariant factor a; of M as a direct sum of cyclic modules 
whose annihilators are the prime power divisors of a; . This proves: 

Theorem 6. (Fundamental Theorem, Existence: Elementary Divisor Form) Let R be a 
P.I.D. and let M be a finitely generated R-module. Then M is the direct sum of a finite 
number of cyclic modules whose annihilators are either (0) or generated by powers of 
primes in R, i.e. , 

M � Rr $ Rj(pr• )  $ Rj(p�2 ) $ · · · $ Rj(p�' ) 
where r :::::. 0 is an integer and pr• . . . .  , p�' are positive powers of (not necessarily 
distinct) primes in R.  

We proved Theorem 6 by using the prime power factors of the invariant factors for 
M. In fact we shall see that the decomposition of M into a direct sum of cyclic modules 
whose annihilators are (0) or prime powers as in Theorem 6 is unique, i.e., the integer 
r and the ideals (p�• ), . . .  , (p�' ) are uniquely defined for M. These prime powers are 
given a name: 
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Definition. Let R be a P.I.D. and let M be a finitely generated R-module as in Theo
rem 6. The prime powers p� 1 ,  • • •  , p�' (defined up to multiplication by units in R) are 
called the elementary divisors of M. 

Suppose M is a finitely generated torsion module over the Principal Ideal Domain 
R.  lffor the distinct primes p, , pz , . . .  , Pn occurring in the decomposition inTheorem 6 
we group together all the cyclic factors corresponding to the same prime Pi we see in 
particular that M can be written as a direct sum 

M = N, EB Nz EB · · · EB Nn 
where Ni consists of all the elements of M which are annihilated by some power of 
the prime Pi . This result holds also for modules over R which may not be finitely 
generated: 

Theorem 7. (The Primary Decomposition Theorem) Let R be a P.I.D. and let M be a 
nonzero torsion R-module (not necessarily finitely generated) with nonzero annihilator 
a .  Suppose the factorization of a into distinct prime powers in R is 

a = up� � p�2 . . .  p�" 

and let Ni = {x E M I p�; x = 0}, 1 _:::: i _:::: n.  Then Ni is a submodule of M with 
annihilator p�' and is the submodule of M of all elements annihilated by some power 
of p; . We have 

M = N, EB Nz EB • · · EB Nn . 

If M is finitely generated then each N; is the direct sum of finitely many cyclic modules 
whose annihilators are divisors of p�i .  

Proof: We have already proved these results in the case where M is finitely gener
ated over R. In the general case it is clear that N; is a submodule of M with annihilator 
dividing p�' .  Since R is a P.I.D. the ideals (p�' )  and (p;j )  are comaximal for i =I j ,  so 
the direct sum decomposition of M can be proved easily by modifying the argument in 
the proof of the Chinese Remainder Theorem to apply it to modules. Using this direct 
sum decomposition it is easy to see that the annihilator of N; is precisely p�' . 

Definition. The submodule N; in the previous theorem is called the Pi -primary com
ponent of M. 

Notice that with this terminology the elementary divisors of a finitely generated 
module M are just the invariant factors of the primary components of Tor(M). 

We now prove the uniqueness statements regarding the decompositions in the Fun
damental Theorem. 

Note that if M is any module over a commutative ring R and a is an element of R 
then aM = {am I m E M} is a submodule of M. Recall also that in a Principal Ideal 
Domain R the nonzero prime ideals are maximal, hence the quotient of R by a nonzero 
prime ideal is a field. 
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Lemma 8. Let R be a P.I.D. and let p be a prime in R. Let F denote the field R / (p ) . 
(1) Let M = R' . Then M / pM � F.  
(2) Let M = Rj(a) where a i s  a nonzero element of R. Then 

{ F if p divides a in R 
M/ M �  p 

0 if p does not divide a in R. 

(3) Let M = Rj(al) E9 Rj(az) E9 · · · E9 Rj(ak) where each a; is divisible by p.  
Then MjpM � Fk . 

Proof" (1 )  There is a natural map from R' to ( R / (p )Y defined by mapping 
(a1 , . . .  , a,) to (a1 mod (p) , . . .  , a, mod (p)) . This is clearly a surjective R-module 
homomorphism with kernel consisting of the r-tuples all of whose coordinates are 
divisible by p, i.e., pW, so W/ pR' � (Rj(p))' , which is ( 1) . 

(2) This follows from the Isomorphism Theorems: note first that p(Rj(a)) is the 
image of the ideal (p) in the quotient R /(a), hence is (p) +(a)/ (a) .  The ideal (p) + (a) 
is generated by a greatest common divisor of p and a, hence is (p) if p divides a and is 
R = ( I) otherwise. Hence pM = (p)j(a) if p divides a and is R/(a) = M otherwise. 
If p divides a then M / pM = (Rj(a)) j((p) j(a)) � Rj(p) , and if p does not divide 
a then M / pM = Mf M = 0, which proves (2). 

(3) This follows from (2) as in the proof of part ( 1 )  of Theorem 5. 

Theorem 9. (Fundamental Theorem, Uniqueness) Let R be a P.I.D. 
(1) Two finitely generated R -modules M1 and M2 are isomorphic if and only if they 

have the same free rank and the same list of invariant factors. 
(2) Two finitely generated R -modules M1 and M2 are isomorphic if and only if they 

have the same free rank and the same list of elementary divisors. 

Proof" If M1 and M2 have the same free rank and list of invariant factors or the 
same free rank and list of elementary divisors then they are clearly isomorphic. 

Suppose that M1 and Mz are isomorphic. Any isomorphism between M1 and Mz 
maps the torsion in M1 to the torsion in M2 so we must have Tor(M1) � Tor(M2). Then 
W1 � M1/Tor(MJ) � M2/Tor(M2) � W2 where r1 is the free rank of M1 and r2 is 
the free rank of M2. Let p be any nonzero prime in R. Then from R'1 � W2 we obtain 
W1 / p W1 � R'2 / p R'2 •  By ( 1 )  of the previous lemma. this implies F'1 � prz where F 
is the field R / p R. Hence we have an isomorphism of an r1-dimensional vector space 
over F with an rz-dimensional vector space over F, so that r1 = r2 and M1 and M2 
have the same free rank. 

We are reduced to showing that M1 and M2 have the same lists of invariant factors 
and elementary divisors. To do this we need only work with the isomorphic torsion 
modules Tor(M1) and Tor(M2), i.e., we may as well assume that both M1 and M2 are 
torsion R -modules. 

We first show they have the same elementary divisors. It suffices to show that for 
any fixed prime p the elementary divisors which are a power of p are the same for 
both M1 and M2 . If Mt � Mz then the p-primary submodule of Mt ( = the direct 
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sum of the cyclic factors whose elementary divisors are powers of p) is isomorphic to 
the p-primary submodule of M2, since these are the submodules of elements which are 
annihilated by some power of p. We are therefore reduced to the case of proving that 
if two modules M1 and M2 which have annihilator a power of p are isomorphic then 
they have the same elementary divisors. 

We proceed by induction on the power of p in the annihilator of Mt (which is the 
same as the annihilator of M2 since Mt and M2 are isomorphic). If this power is 0, 
then both Mt and M2 are 0 and we are done. Otherwise Mt (and M2) have nontrivial 
elementary divisors. Suppose the elementary divisors of Mt are given by 

elementary divisors of M1 : p, p, . . .  , p , pat , paz , . . .  , pas , 
� 

m times 

where 2 ::::; at ::::; a2 ::::; · · · ::::; a5 0 i.e., Mt is the direct sum of cyclic modules with gen
erators Xt , x2, . . . , Xm , Xm+l • . . .  , Xm+s • say, whose annihilators are (p) ,  (p) , . . . , (p), 
(pat ) ,  . . .  , (pas ) ,  respectively. Then the submodule pMt has elementary divisors 

elementary divisors of pM1 : pat -1 , paz-1 , . . . , pas -l 

since pMt is the direct sum of the cyclic modules with generators px1 . px2 , . . .  , pxm . 

PXm+l • . . .  , PXm+s whose annihilators are ( 1 ) ,  ( 1 ) ,  . . .  , ( 1 ) ,  (pat -1 ) ,  . • • , (pas -1 ) ,  re
spectively. Similarly, if the elementary divisors of M2 are given by 

elementary divisors of M2: p, p, . . . , p , pf3t , p/32 , • • • , pfJ' , 
� n times 

where 2 ::::; f3t ::::; fJ2 ::::; · · · ::::; f3t o then pM2 has elementary divisors 

elementary divisors of pM2:  pf3t -l , p/32-1 , . . •  , pA -1 . 

Since Mt � M2 , also pMt � pM2 and the power of p in the annihilator of pMt is 
one less than the power of p in the annihilator of Mt . By induction, the elementary 
divisors for pM1 are the same as the elementary divisors for pM2, i.e., s = t and 
a; - 1 = {3; - 1 for i = 1 ,  2, . . .  , s, hence a; = {3; for i = 1 ,  2, . . . , s. Finally, since 
also Mt / pMt � M2/ pM2 we see from (3) of the lemma above that Fm+s � Fn+t , 
which shows that m + s = n + t hence m = n since we have already seen s = t. This 
proves that the set of elementary divisors for M 1 is the same as the set of elementary 
divisors for M2. 

We now show that Mt and M2 must have the same invariant factors. Suppose 
a1 I a2 I · · · I am are invariant factors for M 1 · We obtain a set of elementary divisors for 
M1 by taking the prime power factors of these elements. Note that then the divisibility 
relations on the invariant factors imply that am is the product of the largest of the prime 
powers among these elementary divisors, am-I is the product of the largest prime powers 
among these elementary divisors once the factors for am have been removed, and so 
on. If ht I b2 I · · · I bn are invariant factors for M2 then we similarly obtain a set of 
elementary divisors for M2 by taking the prime power factors of these elements. But we 
showed above that the elementary divisors for Mt and M2 are the same, and it follows 
that the same is true of the invariant factors. 
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Corollary 10. Let R be a P.I.D. and let M be a finitely generated R-module. 
(1) The elementary divisors of M are the prime power factors of the invariant factors 

of M. 
(2) The largest invariant factor of M is the product of the largest of the distinct prime 

powers among the elementary divisors of M, the next largest invariant factor 
is the product of the largest of the distinct prime powers among the remaining 
elementary divisors of M, and so on. 

Proof" The procedure in ( I )  gives a set of elementary divisors and since the ele
mentary divisors for M are unique by the theorem, it follows that the procedure in ( 1 )  
gives the set of elementary divisors. Similarly for (2). 

Corollary 11. (The Fundamental Theorem of Finitely Generated Abelian Groups) See 
Theorem 5.3 and Theorem 5.5. 

Proof" Take R = Z in Theorems 5, 6 and 9 (note however that the invariant factors 
are listed in reverse order in Chapter 5 for computational convenience). 

The procedure for passing between elementary divisors and invariant factors in 
Corollary 10 is described in some detail in Chapter 5 in the case of finitely generated 
abelian groups. 

Note also that if a finitely generated module M is written as a direct sum of cyclic 
modules of the form R j (a) then the ideals (a) which occur are not in general unique 
unless some additional conditions are imposed (such as the divisibility condition for 
the invariant factors or the condition that a be the power of a prime in the case of the 
elementary divisors). To decide whether two modules are isomorphic it is necessary to 
first write them in such a standard (or canonical) form. 

E X E R C I S E S  

1. Let M be a module over the integral domain R .  
(a) Suppose x is a nonzero torsion element in  M. Show that x and 0 are "linearly 

dependent." Conclude that the rank of Tor(M) is 0, so that in particular any torsion 
R-module has rank 0. 

(b) Show that the rank of M is the same as the rank of the (torsion free) quotient M /Tor M. 

2. Let M be a module over the integral domain R. 
(a) Suppose that M has rank n and that x 1 , x2 , . . .  , Xn is any maximal set of linearly 

independent elements of M. Let N = R Xl + . . .  + R Xn be the submodule generated 
by xt , x2 • . . .  , Xn .  Prove that N is isomorphic to Rn and that the quotient Mj N is a 
torsion R-module (equivalently, the elements x1 , . . .  , Xn are linearly independent and 
for any y E M there is a nonzero element r E R such that ry can be written as a linear 
combination rt Xl + . . . + r nXn of the Xi ) . 

(b) Prove conversely that if M contains a submodule N that is free of rank n (i.e., N � 
Rn) such that the quotient MjN is a torsion R-module then M has rank n. [Let 
Yl · Y2 · . . .  , Yn+l be any n + 1 elements of M. Use the fact that MjN is torsion 
to write ri Yi as a linear combination of a basis for N for some nonzero elements 
rt , . . .  , rn+1 of R. Use an argument as in the proof of Proposition 3 to see that the 
ri Yi , and hence also the Yi , are linearly dependent.] 
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3. Let R be an integral domain and let A and B be R-modules of ranks m and n, respectively. 
Prove that the rank of A EB B is m + n. [Use the previous exercise.] 

4. Let R be an integral domain, let M be an R-module and let N be a submodule of M. 
Suppose M has rank n, N has rank r and the quotient MIN has rank s. Prove that 
n = r + s .  [Let Xt , x2 , . . .  , Xs be elements of M whose images in MIN are a maximal 
set of independent elements and let Xs+ 1 ,  Xs+2 , . . .  , Xs+r be a maximal set of independent 
elements in N. Prove that Xt ,  x2 , . . .  , Xs+r are linearly independent in M and that for any 
element y E M there is a nonzero element r E R such that ry is a linear combination of 
these elements. Then use Exercise 2.] 

5. Let R = /Z[x] and let M = (2, x) be the ideal generated by 2 and x,  considered as 
a submodule of R. Show that {2, x} is not a basis of M. [Find a nontrivial R-linear 
dependence between these two elements.] Show that the rank of M is I but that M is not 
free of rank I (cf. Exercise 2). 

6. Show that if R is an integral domain and M is any nonprincipal ideal of R then M is torsion 
free of rank I but is not a free R-module. 

7. Let R be any ring, let At , A2 ,  . . .  , Am be R-modules and let B; be a submodule of A; ,  
1 ::::: i ::::: m.  Prove that 

(At EB A2 EB · · · EB Am )/ (Bt EB B2 EB · · · EB Bm ) � (A t / Bt ) EB (A2/ B2) EB · · · EB (Am / Bm ).  

8.  Let R be a P.I.D., let B be a torsion R-module and let p be a prime in R. Prove that if 
pb = 0 for some nonzero b E  B. then Ann(B) c; (p). 

9. Give an example of an integral domain R and a nonzero torsion R-module M such that 
Ann(M) = 0. Prove that if N is a finitely generated torsion R-module then Ann(N) -:f. 0. 

10. For p a prime in the P.I.D. R and N an R-module prove that the p-primary component of 
N is a submodule of N and prove that N is the direct sum of its p-primary components 
(there need not be finitely many of them). 

11. Let R be a P.I.D., let a be a nonzero element of R and let M = Rj(a) .  For any prime p 
of R prove that 

where n is the power of p dividing a in R.  

12. Let R be a P.I.D. and let p be a prime in R. 
(a) Let M be a finitely generated torsion R-module. Use the previous exercise to prove that 

pk-l M j pk M � Fnk where F is the field R / (p) and nk is the number of elementary 
divisors of M which are powers pa with a ::-: k. 

(b) Suppose Mt and M2 are isomorphic finitely generated torsion R-modules. Use (a) to 
prove that, for every k ::-: 0, M 1 and M2 have the same number of elementary divisors 
pa with a ::-: k. Prove that this implies Mt and M2 have the same set of elementary 
divisors. 

13. If M is a finitely generated module over the P.I.D. R, describe the structure of M ITor(M) . 

14. Let R be a P.I.D. and let M be a torsion R-module. Prove that M is irreducible (cf. 
Exercises 9 to 1 1  of Section 10.3) if and only if M = Rm for any nonzero element m E M 
where the annihilator of m is a nonzero prime ideal (p). 

15. Prove that if R is a Noetherian ring then Rn is a Noetherian R-module. [Fix a basis of Rn . 
If M is a submodule of Rn show that the collection of first coordinates of elements of M 
is a submodule of R hence is finitely generated. Let m 1 ,  m2 , . . .  , mk be elements of M 
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whose first coordinates generate this submodule of R. Show that any element of M can be 
written as an R-linear combination of m 1 ,  m2, . . .  , mk plus an element of M whose first 
coordinate is 0. Prove that M n Rn - I is a submodule of Rn- I where Rn- I is the set of 
elements of Rn with first coordinate 0 and then use induction on n.  

The following set of exercises outlines a proof of Theorem 5 in  the special case where R is 
a Euclidean Domain using a matrix argument involving row and column operations. This 
applies in particular to the cases R = Z and R = F[x] of interest in the applications and is 
computationally useful. 

Let R be a Euclidean Domain and let M be an R-module. 

16. Prove that M is finitely generated if and only if there is a surjective R-homomorphism 
({! : Rn ---+ M for some integer n (this is true for any ring R). 

Suppose ({! : Rn ---+ M is a surjective R-module homomorphism. By Exercise 15, ker ({J is 
finitely generated. If xt , x2 , . . .  , Xn is a basis for Rn and YI , . . .  , Ym are generators for ker ({! 
we have 

Yi = ai l  XI + a;2x2 + · · · + a;nXn i = 1 ,  2 • . . .  , m 

with coefficients aij E R. It follows that the homomorphism ({! (hence the module structure of 
M) is determined by the choice of generators for Rn and the matrix A = (aij ) . Such a matrix 
A will be called a relations matrix. 

17. (a) Show that interchanging x; and x1 in the basis for Rn interchanges the ;th column 
with the jth column in the corresponding relations matrix. 

(b) Show that, for any a E R, replacing the element Xj by x1 - ax; in the basis for Rn 
gives another basis for Rn and that the corresponding relations matrix for this basis 
is the same as the original relations matrix except that a times the jth column has 
been added to the ;th column. [Note that · · · +  a;x; + · · · + aJXJ + · · · = · · · + (a; + 
aaj )x; + · · · + aj (Xj - ax;) + . . . . ] 

18. (a) Show that interchanging the generators y; and YJ interchanges the ;th row with the jth 

row in the relations matrix. 
(b) Show that, for any a E R, replacing the element YJ by YJ - ay; gives another set 

of generators for ker ({! and that the corresponding relations matrix for this choice of 
generators is the same as the original relations matrix except that -a times the ;th row 
has been added to the jth row. 

19. By the previous two exercises we may perform elementary row and column operations on 
a given relations matrix by choosing different generators for Rn and ker ({J. If all relation 
matrices are the zero matrix then ker ({J = O and M � Rn . Otherwise let at be the (nonzero) 
g.c.d. (recall R is a Euclidean Domain) of all the entries in a fixed initial relations matrix 
for M. 

470 

(a} Prove that by elementary row and column operations we may assume at occurs in a 
relations matrix of the form 

where at divides aij , i = 1 ,  2 . . . .  , m, j = 1 ,  2, . . . , n .  
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(b) Prove that there is a relations matrix of the form 

0 
a22 

where at divides all the entries_ 
(c) Let a2 be a g.c.d. of all the entries except the element at in the relations matrix in (b). 

Prove that there is a relations matrix of the form 
0 0 

a2 0 
0 a33 

where at divides a2 and a2 divides all the other entries of the matrix. 

(d) Prove that there is a relations matrix of the form ( � �) where D is a diagonal 

matrix with nonzero entries at , a2 , . .  _ ,  ak . k :S n, satisfying 

at I a2 I · - - I ak -
Conclude that 

If n is not the minimal number of generators required for M then some of the initial 
elements at , a2 , . . . above will be units, so the corresponding direct summands above will be 
0. If we remove these irrelevant factors we have produced the invariant factors of the module 
M. Further, the image of the new generators for Rn corresponding to the direct summands 
above will then be a set of R-generators for the cyclic submodules of M in its invariant factor 
decomposition (note that the image in M of the generators corresponding to factors with ai a 
unit will be 0). The column operations performed in the relations matrix reduction correspond 
to changing the basis used for Rn as described in Exercise 17: 

(a) Interchanging the ;th column with the jth column corresponds to interchanging the ;th and 
jth elements in the basis for Rn . 

(b) For any a E R, adding a times the jth column to the ;th column corresponds to subtracting 
a times the ;th basis element from the jth basis element. 

Keeping track of the column operations performed and changing the initial choice of generators 
for M in the same way therefore gives a set of R-generators for the cyclic submodules of M in 
its invariant factor decomposition. 

This process is quite fast computationally once an initial set of generators for M and initial 
relations matrix are determined. The element at is determined using the Euclidean Algorithm 
as the g.c.d. of the elements in the initial relations matrix. Using the row and column operations 
we can obtain the appropriate linear combination of the entries to produce this g.c.d. in the 
( 1 , 1  )-position of a new relations matrix. One then subtracts the appropriate multiple of the first 
column and first row to obtain a matrix as in Exercise 19(b), then iterates this process. Some 
examples of this procedure in a special case are given at the end of the following section. 

20. Let R be an integral domain with quotient field F and let M be any R -module. Prove that 
the rank of M equals the dimension of the vector space F ® R M over F. 
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21. Prove that a finitely generated module over a P.I.D. is projective if and only if it is free. 

22. Let R be a P.I.D. that is not a field. Prove that no finitely generated R-module is injective. 
[Use Exercise 4, Section 10.5 to consider torsion and free modules separately.] 

1 2.2 THE RATIONAL CANONICAL FORM 

We now apply our results on finitely generated modules in the special case where the 
P.I.D. is the ring F[x] of polynomials in x with coefficients in a field F. 

Let V be a finite dimensional vector space over F of dimension n and let T be 
a fixed linear transformation of V (i.e. ,  from V to itself). As we saw in Chapter 10 
we can consider V as an F[x]-module where the element x acts on V as the linear 
transformation T (and so any polynomial in x acts on V as the same polynomial in 
T). Since V has finite dimension over F by assumption, it is by definition finitely 
generated as an F -module, hence certainly finitely generated as an F[x ]-module, so 
the classification theorems of the preceding section apply. 

Any nonzero free F[x ]-module (being isomorphic to a direct sum of copies of 
F[x]) is an infinite dimensional vector space over F, so if V has finite dimension over 
F then it must in fact be a torsion F[x]-module (i.e., its free rank is 0). It follows from 
the Fundamental Theorem that then V is isomorphic as an F[x]-module to the direct 
sum of cyclic, torsion F[x]-modules. We shall see that this decomposition of V will 
allow us to choose a basis for V with respect to which the matrix representation for 
the linear transformation T is in a specific simple form. When we use the invariant 
factor decomposition of V we obtain the rational canonical form for the matrix for T, 
which we analyze in this section. When we use the elementary divisor decomposition 
(and when F contains all the eigenvalues of T) we obtain the Jordan canonical form, 
considered in the following section and mentioned earlier as the matrix representing T 
which is as close to being a diagonal matrix as possible . The uniqueness portion of the 
Fundamental Theorem ensures that the rational and Jordan canonical forms are unique 
(which is why they are referred to as canonical). 

One important use of these canonical forms is to classify the distinct linear trans
formations of V. In particular they allow us to determine when two matrices represent 
the same linear transformation, i.e., when two given n x n matrices are similar. 

Note that this will be another instance where the structure of the space being acted 
upon (the invariant factor decomposition of V for example) is used to obtain significant 
information on the algebraic objects (in this case the linear transformations) which 
are acting. This will be considered in the case of groups acting on vector spaces in 
Chapter 18 (and goes under the name of Representation Theory of Groups). 

Before describing the rational canonical form in detail we first introduce some 
linear algebra. 

Definition. 
(1) An element ').. of F is called an eigenvalue of the linear transformation T if there 

is a nonzero vector v E V such that T ( v) = ').. v . In this situation v is called an 
eigenvector of T with corresponding eigenvalue 'A. 
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(2) If A is ann x n matrix with coefficients in F, an element A is called an eigenvalue 
of A with corresponding eigenvector v if v is a nonzero n x 1 column vector 
such that Av = AV.  

(3) IfA is  an eigenvalue of the linear transformation T, the set { v E V 1 T ( v) = A v}  
is  called the eigenspace of T corresponding to the eigenvalue A.  Similarly, if  A 
is an eigenvalue of the n x n matrix A, the set of n x 1 matrices v with A v = AV 
is called the eigenspace of A corresponding to the eigenvalue A. 

Note that if we fix a basis 13 of V then any linear transformation T of V has an 
associated n x n matrix A. Conversely, if A is any n x n matrix then the map T defined 
by T ( v) = A v for v E V, where the v on the right is the n x 1 vector consisting of 
the coordinates of v with respect to the fixed basis 13 of V, is a linear transformation 
of V. Then v is an eigenvector of T with corresponding eigenvalue A if and only if 
the coordinate vector of v with respect to 13 is an eigenvector of A with eigenvalue 
A. In other words, the eigenvalues for the linear transformation T are the same as the 
eigenvalues for the matrix A of T with respect to any fixed basis for V. 

Definition. The determinant of a linear transformation from V to V is  the determinant 
of any matrix representing the linear transformation (note that this does not depend on 
the choice of the basis used). 

Proposition 12. The following are equivalent: 
(1) A is an eigenvalue of T 
(2) AI - T is a singular linear transformation of V 
(3) det(AI - T) = 0. 

Proof: Since A is an eigenvalue of T with corresponding eigenvector v if and only 
if v is a nonzero vector in the kernel of AI - T, it follows that ( 1 )  and (2) are equivalent. 

(2) and (3) are equivalent by our results on determinants. 

Definition. Let x be an indeterminate over F. The polynomial det(x/ - T) is called 
the characteristic polynomial of T and will be denoted cr (x) . If A is an n x n matrix 
with coefficients in F, det(xl - A) is called the characteristic polynomial of A and 
will be denoted cA (x) . 

It is easy to see by expanding the determinant that the characteristic polynomial 
of either T or A is a monic polynomial of degree n = dim V. Proposition 12 says 
that the set of eigenvalues of T (or A) is precisely the set of roots of the characteristic 
polynomial of T (of A, respectively). In particular, T has at most n distinct eigenvalues. 

We have seen that V considered as a module over F[x] via the linear transformation 
T is a torsion F[x]-module. Let m (x) E F[x] be the unique monic polynomial generat
ing the annihilator of V in F[x ] .  Equivalently, m(x) is the unique monic polynomial of 
minimal degree annihilating V (i.e., such that m(T) is the 0 linear transformation), and 
if f(x) E F[x] is any polynomial annihilating V, m(x) divides f(x) .  Since the ring of 
all n x n matrices over F is isomorphic to the collection of all linear transformations of 
V to itself (an isomorphism is obtained by choosing a basis for V), it follows that for 
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any n x n matrix A over F there is similarly a unique monic polynomial of minimal 
degree with m (A) the zero matrix. 

Definition. The unique monic polynomial which generates the ideal Ann(V) in F[x] 
is called the minimal polytWmial of T and will be denoted m r (x) .  The unique monic 
polynomial of smallest degree which when evaluated at the matrix A is the zero matrix 
is called the minimal polynomial of A and will be denoted mA (x) .  

It is easy to see (cf. Exercise 5 )  that the degrees of these minimal polynomials are 
at most n2 where n is the dimension of V . We shall shortly prove that the minimal 
polynomial for T is a divisor of the characteristic polynomial for T (this is the Cayley
Hamilton Theorem), and similarly for A, so in fact the degrees of these polynomials are 
at most n .  

We now describe the rational catWnical form of the linear transformation T (re
spectively, of the n x n matrix A). By Theorem 5 we have an isomorphism 

V � F[x]j(a1 (x)) El1 F[xJj(a2 (x)) $ ·  · · El1 F[x]j(am (x)) ( 12. 1 )  

of F[x]-modules where a1 (x) ,  a2 (x) ,  . . . , am (x) are polynomials in  F[x] of degree at 
least one with the divisibility conditions 

a1 (x) I a2 (x) I · · · I am (x) . 

These invariant factors ai (x) are only determined up to a unit in F [ x] but since the units 
of F[x] are precisely the nonzero elements of F (i.e., the nonzero constant polynomials), 
we may make these polynomials unique by stipulating that they be monic. 

Since the annihilator of V is the ideal (am (x)) (part (3) of Theorem 5), we imme
diately obtain: 

Proposition 13. The minimal polynomial m r (x) is the largest invariant factor of V .  
All the invariant factors of V divide mr (x) .  

We shall see below how to calculate not only the minimal polynomial for T but 
also the other invariant factors. 

We now choose a basis for each of the direct summands for V in the decomposition 
( 1) above for which the matrix for T is quite simple. Recall that the linear transformation 
T acting on the left side of ( 1 )  is the element x acting by multiplication on each of the 
factors on the right side of the isomorphism in (1) .  

We have seen in the example following Proposition 1 of Chapter 1 1  that the elements 
1 ,  x ,  x2 , . . .  , xk- I give a basis for the vector space F[x]j(a(x)) where a(x) = xk + 
bk-tXk-I  + · · +b1x +b0 is any monic polynomial in F[x] and x = x mod (a(x)) .  With 
respect to this basis the linear transformation of multiplication by x acts in a simple 
manner: 

X 
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1 I-+ X 
x �--+ x2 

x2 I-+ x3 

xk-2 I-+ xk- I  

Xk-I I-+ Xk = -bo - btX - . . . - bk-!Xk-I 
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where the last equality is because ik + bk-IXk- I + · · · + b1i + b0 = 0 since a(i) = 0 in 
F [ x] I (a ( x)) .  With respect to this basis, the matrix for multiplication by x is therefore 

0 0 
1 0 

0 1 

0 0 

0 0 

Such matrices are given a name: 

Definition. Let a(x) = xk + bk- IXk-I + · · · + b1x + b0 be any monic polynomial 
in F[x). The companion matrix of a(x) is the k x k matrix with 1 's down the first 
subdiagonal, -bo, -bl , . . .  , -bk-I  down the last column and zeros elsewhere. The 
companion matrix of a(x) will be denoted by Ca(x) ·  

We apply this to each of the cyclic modules on the right side of ( 1 )  above and let 
B; be the elements of V corresponding to the basis chosen above for the cyclic factor 
F [ x] I (a; (x)) under the isomorphism in (1  ) . Then by definition the linear transformation 
T acts on B; by the companion matrix for a; (x) since we have seen that this is how 
multiplication by x acts. The union B of the B; 's gives a basis for V since the sum on 
the right of ( 1 )  is direct and with respect to this basis the linear transformation T has as 
matrix the direct sum of the companion matrices for the invariant factors, i.e., 

( 1 2.2) 

Notice that this matrix is uniquely determined from the invariant factors of the F[x]
module V and, by Theorem 9, the list of invariant factors uniquely determines the 
module V up to isomorphism as an F[x]-module. 

Definition. 
(1) A matrix is said to be in rational canonical form if it is the direct sum of 

companion matrices for monic polynomials a1 (x) , . . .  , am (x) of degree at least 
one with a1 (x) I az (x) I · · · I am (x ). The polynomials a; (x) are called the 
i1Wariant factors of the matrix. Such a matrix is also said to be a block diagonal 
matrix with blocks the companion matrices for the a; (x ) . 

(2) A rational canonical form for a linear transformation T is a matrix representing 
T which is in rational canonical form. 

We have seen that any linear transformation T has a rational canonical form. We 
now see that this rational canonical form is unique (hence is called the rational canonical 
form for T). To see this note that the process we used to determine the matrix of T 
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from the direct sum decomposition is reversible. Suppose b1 (x) ,  b2 (x) ,  . . .  , b1 (x) are 
monic polynomials in F[x] of degree at least one such that b; (x) j bi+l  (x) for all i and 
suppose for some basis £ of V, that the matrix of T with respect to the basis £ is the 
direct sum of the companion matrices of the b; (x ) .  Then V must be a direct sum of 
T -stable subspaces D; , one for each b; (x) in such a way that the matrix of T on each D; 
is the companion matrix of bi (x ) .  Let £; be the corresponding (ordered) basis of D; (so 
£ is the union of the £; ) and let e; be the first basis element in £; . Then it is easy to see 
that D; is a cyclic F[x ]-module with generator e; and that the annihilator of D; is b; (x ) .  
Thus the torsion F[x ]-module V decomposes into a direct sum of cyclic F[x ]-modules 
in two ways, both of which satisfy the conditions of Theorem 5, i.e., both of which give 
lists of invariant factors. Since the invariant factors are unique by Theorem 9, a; (x) 
and b; (x) must differ by a unit factor in F[x] and since the polynomials are monic by 
assumption, we must have a; (x) = b; (x) for all i .  This proves the following result: 

Theorem 14. (Rational Canonical Form for Linear Transformations) Let V be a finite 
dimensional vector space over the field F and let T be a linear transformation of V.  

(1) There is  a basis for V with respect to which the matrix for T is  in  rational 
canonical form, i.e., is a block diagonal matrix whose diagonal blocks are the 
companion matrices for monic polynomials a1 (x) ,  a2(x) ,  . . .  , am (x) of degree 
at least one with a1 (x) I a2 (x) I · · · I am (x) .  

(2) The rational canonical form for T i s  unique. 

The use of the word rational is to indicate that this canonical form is calculated 
entirely within the field F and exists for any linear transformation T .  This is not the 
case for the Jordan canonical form (considered later), which only exists if the field F 
contains the eigenvalues for T (cf. also the remarks following Corollary 18). 

The following result translates the notion of similar linear transformations (i.e., the 
same linear transformation up to a change of basis) into the language of modules and 
relates this notion to rational canonical forms. 

Theorem 15. Let S and T be linear transformations of V. Then the following are 
equivalent: 

(1) S and T are similar linear transformations 
(2) the F[x]-modules obtained from V via S and via T are isomorphic F[x]

modules 
(3) S and T have the same rational canonical form. 

Proof [ ( 1) implies (2)] Assume there is a non singular linear transformation U such 
that S = U TU-1 . The vector space isomorphism U : V � V is also an F[x]-module 
homomorphism, where x acts on the first V via T and on the second via S, since for ex
ample U (xv) = U(Tv) = U T(v) = SU(v) = x (Uv) .  Hence this is an F[x]-module 
isomorphism of the two modules in (2). 

[(2) implies (3)] Assume (2) holds and denote by V1 the vector space V made into 
an F[x]-module via S and denote by V2 the space V made into an F[x]-module via T .  
Since V1 � V2 as  F[x ]-modules they have the same list of invariant factors. Thus S 
and T have a common rational canonical form. 
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[(3) implies ( 1 )] Assume {3) holds. Since S and T have the same matrix represen
tation with respect to some choice of (possibly different) bases of V by assumption, 
they are, up to a change of basis, the same linear transformation of V, hence are similar. 

Let A be any n x n matrix with entries from F. Let V be an n-dimensional vector 
space over F. Recall we can then define a linear transformation T on V by choosing 
a basis for V and setting T ( v) = A v where v on the right hand side means the n x 1 
column vector of coordinates of v with respect to our chosen basis (this is just the usual 
identification of linear transformations with matrices). Then (of course) the matrix for 
this T with respect to this basis is the given matrix A.  Put another way, any n x n matrix 
A with entries from the field F arises as the matrix for some linear transformation T of 
an n-dimensional vector space. 

This dictionary between linear transformations of vector spaces and matrices allows 
us to state our previous two results in the language of matrices: 

Theorem 16. (Rational Canonical Fonnfor Matrices) Let A be an n x n matrix over 
the field F. 

(1) The matrix A 1s similar to a matrix in rational canonical form, i.e., there is an 
invertible n x n matrix P over F such that p-l AP is a block diagonal ma
trix whose diagonal blocks are the companion matrices for monic polynomials 
a1 (x) ,  a2 (x) ,  . . .  , am (x) of degree at least one with a1 (x) I a2 (x) I · · · I am (x). 

(2) The rational canonical form for A is unique. 

Definition. The invariant factors of an n x n matrix over a field F are the invariant 
factors of its rational canonical form. 

Theorem 17. Let A and B be n x n matrices over the field F. Then A and B are similar 
if and only if A and B have the same rational canonical form. 

If A is a matrix with entries from a field F and F is a subfield of a larger field K 
then we may also consider A as a matrix over K. The next result shows that the rational 
canonical form for A and questions of similarity do not depend on which field contains 
the entries of A. 

Corollary 18. Let A and B be two n x n matrices over a field F and suppose F i s  a 
subfield of the field K. 

(1) The rational canonical form of A is the same whether it is computed over K or 
over F. The minimal and characteristic polynomials and the invariant factors 
of A are the same whether A is considered as a matrix over F or as a matrix 
over K. 

(2) The matrices A and B are similar over K if and only if they are similar over 
F, i.e. , there exists an invertible n x n matrix P with entries from K such that 
B = P-I A P if and only if there exists an (in general different) invertible n x n 
matrix Q with entries from F such that B = Q-1 AQ .  

Proof" ( 1 )  Let M b e  the rational canonical form of A when computed over the 
smaller field F. Since M satisfies the conditions in the definition of the rational canon
ical form over K, the uniqueness of the rational canonical form implies that M is also 
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the rational canonical form of A over K .  Hence the invariant factors of A are the same 
whether A is viewed over F or over K. In particular, since the minimal polynomial 
is the largest invariant factor of A it also does not depend on the field over which A is 
viewed. It is clear from the detenninant definition of the characteristic polynomial of 
A that this polynomial depends only on the entries of A (we shall see shortly that the 
characteristic polynomial is the product of all the invariant factors for A, which will 
give an alternate proof of this result). 

(2) If A and B are similar over the smaller field F they are clearly similar over K. 
Conversely, if A and B are similar over K, they have the same rational canonical form 
over K. By (1) they have the same rational canonical form over F, hence are similar 
over F by Theorem 17 .  

This corollary asserts in particular that the rational canonical form for an n x n 
matrix A is an n x n matrix with entries in the smallest field containing the entries 
of A. Further, this canonical form is the same matrix even if we allow conjugation of 
A by nonsingular matrices whose entries come from larger fields. This explains the 
tenninology of rational canonical form. 

The next proposition gives the connection between the characteristic polynomial 
of a matrix (or of a linear transformation) and its invariant factors and is quite useful 
for detennining these invariant factors (particularly for matrices of small size). 

Lemma 19. Let a (x) E F[x] be any monic polynomial. 
(1) The characteristic polynomial of the companion matrix of a(x) is a(x). 
(2) If M is the block diagonal matrix 

0 
Az 

0 

given by the direct sum of matrices A 1 ,  A2, . . . .  Ak then the characteristic poly
nomial of M is the product of the characteristic polynomials of A1 ,  Az , . . .  , Ak . 

Proof These are both straightforward exercises. 

Proposition 20. Let A be an n x n matrix over the field F. 
(1) The characteristic polynomial of A is the product of all the invariant factors of 

A.  
(2) (The Cayley-Hamilton Theorem) The minimal polynomial of A divides the 

characteristic polynomial of A. 
(3) The characteristic polynomial of A divides some power of the minimal poly

nomial of A. In particular these polynomials have the same roots, not counting 
multiplicities. 

The same statements are true if the matrix A is replaced by a linear transformation T 
of an n-dimensional vector space over F. 
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Proof Let B be the rational canonical form of A. By the previous lemma the block 
diagonal form of B shows that the characteristic polynomial of B is the product of the 
characteristic polynomials of the companion matrices of the invariant factors of A. By 
the first part of the lemma above, the characteristic polynomial of the companion matrix 
Ca(x) for a(x) is just a(x ) , which implies that the characteristic polynomial for B is the 
product of the invariant factors of A. Since A and B are similar, they have the same 
characteristic polynomial, which proves ( 1 ). Assertion (2) is immediate from ( 1 )  since 
the minimal polynomial for A is the largest invariant factor of A. The fact that all the 
invariant factors divide the largest one immediately implies (3). The final assertion is 
clear from the dictionary between linear transformations of vector spaces and matrices. 

Note that part (2) of the proposition is the assertion that the matrix A satisfies its own 
characteristic polynomial, i.e., c A (A) = 0 as matrices, which is the usual formulation 
for the Cay ley-Hamilton Theorem. Note also that it implies the degree of the minimal 
polynomial for A has degree at most n, a result mentioned before. 

The relations in Proposition 20 are frequently quite useful in the determination 
of the invariant factors for a matrix A, particularly for matrices of small degree (cf. 
Exercises 3 and 4 and the examples). The following result (which relies on Exercises 
16  to 19 in the previous section and whose proof we outline in the exercises) computes 
the invariant factors in general. 

Let A be an n x n matrix over the field F. Then xI - A is an n x n matrix with 
entries in F[x]. The three operations 
(a) interchanging two rows or columns 
(b) adding a multiple (in F[x]) of one row or column to another 
(c) multiplying any row or column by a unit in F[x], i.e., by a nonzero element in F, 
are called elementary row and column operations. 

Theorem 21. Let A be an n x n matrix over the field F. Using the three elementary 
row and column operations above, the n x n matrix xI  - A with entries from F[x] can 
be put into the diagonal form (called the Smith Normal Form for A) 

1 

1 

am (X) 
with monic nonzero elements a1 (x) ,  a2(x) ,  . . . , am (x) of F[x] with degrees at least 
one and satisfying a1 (x) I a2 (x) I · · · I am (x) .  The elements a1 (x) ,  . . .  , am (x) are the 
invariant factors of A. 

Proof cf. the exercises. 
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Invariant Factor Decomposition Algorithm:  Converting to Rational 
Canonica l  Form 

As mentioned in the exercises near the end of the previous section, keeping track of 
the operations necessary to diagonalize xI - A will explicitly give a matrix P such 
that p-I  AP is in rational canonical form. Equivalently, if V is a given F[x]-module 
with vector space basis [eh e2 , • • •  , en]. then P defines the change of basis giving the 
Invariant Factor Decomposition of V into a direct sum of cyclic F[x]-modules. In 
particular, if A is the matrix of the linear transformation T of the F[x]-module V 
defined by x (i.e., T (ej) = xej = :L7=1 a;jei where A = (aij )), then the matrix P 
defines the change of basis for V with respect to which the matrix for T is in rational 
canonical form. 

We first describe the algorithm in the general context of determining the Invariant 
FactorDecomposition ofa given F[x]-module V with vector spacebasis [eJ , ez , . . .  , en] 
(the proof is outlined in the exercises). We then describe the algorithm to convert a given 
n x n matrix A to rational canonical form (in which reference to an underlying vector 
space and associated linear transformation are suppressed). 

Explicit numerical examples of this algorithm are given in Examples 2 and 3 fol
lowing. 

Invariant Factor Decomposition Algorithm 

Let V be an F[x ]-module with vector space basis [el , ez , . . .  , en] (so in  particular these 
elements are generators for V as an F[x]-module). Let T be the linear transformation 
of V to itself defined by x and let A be the n x n matrix associated to T and this choice 
of basis for V, i.e., 

n 

T (ej ) = xej = L aijei where 
i=l 

(1) Use the following three elementary row and column operations to diagonalize the 
matrix xI  - A over F[x] , keeping track of the row operations used: 
(a) interchange two rows or columns (which will be denoted by Ri � Rj for the 

interchange of the ;th and jth rows and similarly by Ci � Cj for columns), 
(b) add a multiple (in F[x ]) of one row or column to another (which will be denoted 

by Ri + p(x)Rj 1-+ Ri if p(x) times the jth row is added to the ith row, and 
similarly by C; + p(x)Cj 1-+ C; for columns), 

(c) multiply any row or column by a unit in F[x], i.e., by a nonzero element in 
F (which will be denoted by uR; if the ;th row is multiplied by u E p x , and 
similarly by uCi for columns). 

(2) Beginning with the F[x ]-module generators [el , ez , . . .  , en], for each row operation 
used in ( 1 ), change the set of generators by the following rules: 
(a) If the ;th row is interchanged with the jth row then interchange the ;th and jth 

generators. 
(b) If p(x) times the jth row is added to the ;th row then subtract p(x) times the 

;th generator from the jth generator (note the indices). 
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(c) If the ;th row is multiplied by the unit u E F then divide the ;th generator by u.  
(3) When xi  - A has been diagonalized to the form in Theorem 21  the genera

tors [e. , ez , . . .  , en ] for V will be in the form of F[x]-linear combinations of 
e1 , ez , . . .  , en . Use xej = T(ej ) = I:7=1 a;je; to write these elements as F
linear combinations of e1 , ez , . . .  , en . When xi - A has been diagonalized, the 
first n - m of these linear combinations are 0 {providing a useful numerical check 
on the computations) and the remaining m linear combinations are nonzero, i.e., 
the generators for V are in the form [0, . . .  , 0, ft ,  . . . , fm] corresponding precisely 
to the diagonal elements in Theorem 2 1 .  The elements ft ,  . . . , fm are a set of 
F [ x ]-module generators for the cyclic factors in the invariant factor decomposition 
of V (with annihilators (a1 (x)),  . . .  , (am (x)), respectively): 

V = F[x] ft E9 F[x] fz E9 . . . E9 F[x] fm , 

F[x] J. � F[x]j (a; (x)) i = 1, 2, . . .  , m ,  

giving the Invariant Factor Decomposition of the F[x ]-module V .  
(4) The corresponding vector space basis for each cyclic factor of V i s  then given by 

th 1 t I' T I' T2 I' Tdeg a1 (x)-l I' e e emen s 1 ; ,  1 ; , 1 ; ,  • • .  , J i · 

(5) Write the kth element of the vector space basis computed in (4) in terms of the 
original vector space basis [ e1 , e2 , • • •  , en ] and use the coordinates for the kth column 
of an n x n matrix P. Then p-1 AP is in rational canonical form (with diagonal 
blocks the companion matrices for the a; (x) ). This is the matrix for the linear 
transformation T with respect to the vector space basis in (4). 

We now describe the algorithm to convert a given n xn matrix A to rational canonical 
form, i.e. ,  to determine an n x n matrix P so that p-1 AP is in rational canonical form. 
This is nothing more than the algorithm above applied to the vector space V = pn 
of n x 1 column vectors with standard basis [e1 , ez , . . .  , en] (where e; is the column 
vector with 1 in the ;th position and O's elsewhere) and T is the linear transformation 
defined by A and this choice of basis. Explicit reference to this underlying vector space 
and associated linear transformation are suppressed, so the algorithm is purely matrix 
theoretic. 

Converting an n x n Matrix to Rational Canonical Form 

Let A be an n x n matrix with entries in the field F .  

(1) Use the following three elementary row and column operations to diagonalize the 
matrix xi - A over F[x] , keeping track of the row operations used: 
(a) interchange two rows or columns (which will be denoted by R; B- Rj for the 

interchange of the ;th and jth rows and similarly by C; B- Cj for columns), 
(b) add a multiple (in F[ x]) of one row or column to another (which will be denoted 

by R; + p(x)Rj � R; if p(x) times the ph row is added to the ; th row, and 
similarly by C; + p(x)Cj � C; for columns), 

(c) multiply any row or column by a unit in F [x], i.e., by a nonzero element in 
F (which will be denoted by uR; if the ;th row is multiplied by u E px ,  and 
similarly by uC; for columns). 
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Define d1 , . • •  , dm to be the degrees of the monic nonconstant polynomials 
at (x) ,  . . .  , am (x) appearing on the diagonal, respectively. 

(2) Beginning with the n x n identity matrix P', for each row operation used in ( 1 ), 
change the matrix P' by the following rules: 
(a) If R; *+ R; then interchange the ith and jth columns of P' (i.e., C; *+ Cj for 

P'). 
(b) If R; + p(x)Rj 1-+ R; then subtract the product of the matrix p(A) times the 

ith column of P' from the jth column of P' (i.e., Cj - p(A)C; 1-+ Cj for P' 
- note the indices). 

(c) If uR; then divide the elements of the ith column of P' by u (i.e. , u-1c; for 
P'). 

(3) When xI - A has been diagonalized to the form in Theorem 21 the first n - m 
columns of the matrix P' are 0 (providing a useful numerical check on the compu
tations) and the remaining m columns of P' are nonzero. For each i = 1 ,  2, . . . , m ,  
multiply the ith nonzero column of P' successively by A0 = I, A 1 , A2 , . . •  , Ad, -l , 
where d; is the integer in (1 ) above and use the resulting column vectors (in this 
order) as the next d; columns of an n x n matrix P.  Then p-I AP is in ratio
nal canonical form (whose diagonal blocks are the companion matrices for the 
polynomials a1 (x) ,  . . .  , am (x) in ( 1 )). 

In the theory of canonical forms for linear transformations (or matrices) the charac
teristic polynomial plays the role of the order of a finite abelian group and the minimal 
polynomial plays the role of the exponent (after all, they are the same invariants, one 
for modules over the Principal Ideal Domain Z and the other for modules over the 
Principal Ideal Domain F[x]) so we can solve problems directly analogous to those 
we considered for finite abelian groups in Chapter 5. In particular, this includes the 
following: 

(A) determine the rational canonical form of a given matrix (analogous to decomposing 
a finite abelian group as a direct product of cyclic groups) 

(B) determine whether two given matrices are similar (analogous to determining whether 
two given finite abelian groups are isomorphic) 

(C) determine all similarity classes of matrices over F with a given characteristic poly
nomial (analogous to determining all abelian groups of a given order) 

(D) determine all similarity classes of n x n matrices over F with a given minimal 
polynomial (analogous to determining all abelian groups of rank at most n of a 
given exponent). 

Examples 

(1) We find the rational canonical forms of the following matrices over Q and determine 
if they are similar: 
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( 2 -2 14) A =  0 3 -7 
0 0 2 

( 0 -4 85 ) 
B = 1 4 -30 

0 0 3 

( 2 2 1 )  
c = 0 2 -1  . 

0 0 3 

A direct computation shows that all three of these matrices have the same characteristic 
polynomial: q (x) = CB (x) = cc (x) = (x - 2)2 (x - 3).  Since the minimal and char-
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acteristic polynomials have the same roots, the only possibilities for the minimal poly
nomials are (x -2)(x - 3) or (x -2)2(x - 3). We quickly find that (A-2/)(A-3/) = 0, 
(B - 2/)(B - 31) =I= 0 (the 1 , 1 -entry is nonzero) and (C - 2/)(C - 31) =1= 0 (the 
1 ,2-entry is nonzero). It follows that 

mA (x) = (x - 2)(x - 3), mB (x) = mc (x) = (x - 2)2 (x - 3) . 

It follows immediately that there are no additional invariant factors for B and C. 
Since the invariant factors for A divide the minimal polynomial and have product 
the characteristic polynomial, we see that A has for invariant factors the polynomials 
x - 2, (x - 2)(x - 3) = x2 - 5x + 6. (For 2 x 2 and 3 x 3 matrices the determination 
of the characteristic and minimal polynomials determines all the invariant factors, cf. 
Exercises 3 and 4.) We conclude that B and C are similar and neither is similar to A. 
The rational canonical forms are (note (x - 2)2(x - 3) = x3 - 7x2 + 16x - 12) ( 2 0 0) 

0 0 -6 
0 1 5 

(0 0 12) 
1 0 - 1 6  
0 1 7 

( 0 0 12) 
1 0 - 16 . 
0 l 7 

(2) In the example above the rational canonical forms were obtained simply by determining 
the characteristic and minimal polynomials for the matrices. As mentioned, this is 
sufficient for 2 x 2 and 3 x 3 matrices since this information is sufficient to determine 
all of the invariant factors. For larger matrices, however, this is in general not sufficient 
( cf. the next example) and more work is required to determine the invariant factors. In 
this example we again compute the rational canonical form for the matrix A in Example 
1 following the two algorithms outlined above. While this is computationally more 
difficult for this small matrix (as will be apparent), it has the advantage even in this 
case that it also explicitly computes a matrix P with p-l A P in rational canonical 
form. 

I. (Invariant Factor Decomposition) We use row and column operations (in Q[x]) to 
reduce the matrix (x - 2 2 - 14 ) 

xi - A =  0 x - 3  7 
0 0 x - 2 

to diagonal form. As in the invariant factor decomposition algorithm, we shall use the 
notation R; B Rj to denote the interchange of the ith and jth rows, R; + aRj ..-. R; 
if a times the jth row is added to the ;th row, simply uR; if the ith row is multiplied 
by u (and similarly for columns, using C instead of R). Note also that the first two 
operations we perform below are rather ad hoc and were chosen simply to have integers 
everywhere in the computation: 

( - 1  x - 1  
-x+3 x-3 

0 0 
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(x-2 x - 1  -7 ) 
0 x-3 7 ----+ 
0 0 x-2 

-x+l 
x-3 

0 
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-x+ 1 0 
- -x2+5x-6 - -x2+5x -6 -

R2+(x-J)R1 G 0 
7(x"_2) ) 

x-2 C2+(x-l)C1 G 0 
1(x"_2) ) 

x-2 
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>-+ R2 >-+C2 

G 0 
7(xo_2) ) G 0 

1(xo_2) ) � - -x2+5x-6 - x2-5x+6 
C3 -?C, 0 x-2 -C2 0 x-2 

>-+CJ 

G 0 

x�2
) - x2-5x+6 

R2-?R3 0 
>-+R2 G -

R2#R3 
C2#C3 

0 
x-2 

0 

0 ) 0 . 
x2-5x+6 

This determines the invariant factors x - 2, x2 - 5x + 6 for this matrix, which we 
determined in Example 1 above. Let now V be a 3-dimensional vector space over 
<Q with basis e1 , e2 , e3 and let T be the corresponding linear transformation (which 
defines the action of x on V), i.e., 

xe1 = T(et ) = 2et 
xe2 = T(e2) = -2et + 3e2 
xe3 = T(e3) = 14et - 7e2 + 2e3 . 

The row operations used in the reduction above were 

Rt + R2 �----* Rt , -Rt , R2 + (x - 3)Rt �----* R2 , R2 - 1R3 �----* R2 , R2 ++ R3 . 

Starting with the basis [et ,  e2 , e3] for V and changing it according to the rules given 
in the text, we obtain 

[e1 , e2 , e3] - [e1 , e2-et , e3] - [-et , e2-e1 , e3] 
- [ -e1 -(x-3)(e2 -et ) , e2 -e1 , e3] 
- [ -et - (x-3) (e2-et ) , e2-e1 , e3+ 7(e2-et )] 
- [ -et -(x -3) (e2-et ) ,  e3+7(e2-et ) , e2-et ]. 

Using the formulas above for the action of x, we see that these last elements are 
the elements [0, -7et + 7e2 + e3 , -e1 + e2] of V corresponding to the elements 
1 , x - 2 and x2 - 5x + 6 in the diagonalized form of xi - A, respectively. The 
elements ft = -7et + 7e2 + e3 and h = -e1 + e2 are therefore <Q[x]-module 
genemtors for the two cyclic factors of V in its invariant factor decomposition as a 
<Q[x]-module. The corresponding <Q-vector space bases for these two factors are then 
ft and f2, xf2 = Th, i.e. , -7et + 1e2 + e3 and -e1 +e2 , T(-et + e2) = -4et + 3e2 . 
Then the matrix ( -7 - 1 

P = 7 I 
1 0 1) 

conjugates A into its rational canonical form: 

as one easily checks. 

(2 0 
p-1 A P  = 0 0 

0 1 
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II. (Converting A Directly to Rational Canonical Fonn) We use the row operations 
involved in the diagonalization of xI - A to determine the matrix P' of the algorithm 
above: 

G ! D  - 1  0) ( - 1 
I 0 � 0 
0 1 -Ct 0 

- 1  0) 
1 0 � 
0 1 

0 1 
( 0 - 1  

0 7 1 = P'. 
( 0 -7 - 1 ) 

0 0 0 1 0 

Here we have dt 1 and d2 = 2, corresponding to the second and third nonzero 
columns of P', respectively. The columns of P are therefore given by 

( - 1 )  ( - 1 ) - ( -4 )  
and I , A 1 - 3 ,  

0 0 0 
respectively, which again gives the matrix P above. 

(3) For the 3 x 3 matrix A it was not necessary to perform the lengthy calculations 
above merely to determine the rational canonical form (equivalently, the invariant 
factors), as we saw in Example I .  For n x n matrices with n :::: 4, however, the 
computation of the characteristic and minimal polynomials is in general not sufficient 
for the determination of all the invariant factors, so the more extensive calculations of 
the previous example may become necessary. For example, consider the matrix 

= 
( � _; -: _: ) 

D I 0 I -2 
. 

0 I -2 3 

A short computation shows that the characteristic polynomial of D is (x - 1 )4. The 
possible minimal polynomials are then x - 1 ,  (x - I )2, (x - 1 )3 and (x - 1 )4. Clearly 
D - I =f. 0 and another short computation shows that (D - I)2 = 0, so the minimal 
polynomial for D is (x - 1 )2 . There are then two possible sets of invariant factors: 

x - 1 , x - 1 , (x - I )2 and (x - I i, (x - 1 )2 • 
To determine the invariant factors for D we apply the procedure of the previous example 
to the 4 x 4 matrix 

xi _ D = 
(

x
=;

I 
x¥1 

x�4
1 �

4 ) 
. 

0 - 1  2 x -3 

The diagonal matrix obtained from this matrix by elementary row and column opera
tions is the matrix 

(
1 0 
0 I 
0 0 
0 0 

0 0 ) 0 0 
(x - 1 )2 0 ' 

0 (x - 1 )2 
which shows that the invariant factors for D are (x - 1 )2 , (x - 1 )2 (one series of 
elementary row and column operations which diagonalize x i - D are Rt � R3 , -R1 , 
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R2 + 2Rt �---+ R2 , R3 - (x - 1)Rt �---+ R3 , C3 + (x - 1)C! �---+ C3 , C4 + 2Ct �---+ C4 , 
R2 # R4 , -R2 , R3 + 2R2 �---+ R3 , R4 - (x + 1)R2 �---+ R4 , C3 + 2C2 �---+ C3 , 
C4 + (x - 3)C2 �---+ C4). 

I. (Invariant Factor Decomposition) If e1 , e2 , e3 , e4 is a basis for V in this case, then 
using the row operations in this diagonalization as in the previous example we see that 
the generators of V corresponding to the factors above are (x - I )et - 2e2 - e3 = 0, 
-2et + (x + 1 )e2 - e4 = 0, e t ,  e2 . Hence a vector space basis for the two direct factors 
in the invariant decomposition of V in this case is given by et , T et and e2 , T e2 where 
T is the linear transformation defined by D, i.e., e1 , et + 2e2 + e3 and e2 , 2et - e2 + e4.  
The corresponding matrix P relating these bases is 

p = (� � � -i) 
0 I 0 0 
0 0 0 1 

so that P -l D P is in rational canonical form: 

r1 DP � G -1 
2 
0 
0 

as can easily be checked. 

II. (Converting D Directly to Rational Canonical Form) As in Example 2 we determine 
the matrix P' of the algorithm from the row operations used in the diagonalization of 
xi  - D: 

� 
C1 -2Cz 

�->C, 

c 0 0 
0 1 0 
0 0 1 
0 0 0 

( -� 0 
1 

- 1  0 
0 0 

n c�, n 0 I 
1 0 
0 0 
0 0 

1 0 ) 0 0 
0 0 
0 1 

C, +�l)<; (� 
�->C, 0 

n =1. ( -! 0 1 0) 1 0 0 
0 0 0 � 
0 0 1 

0 I 
I 0 
0 0 
0 0 

0) c 0 
0 0 0 
0 c�4 0 0 
1 0 1 

1 0) 0 1 
0 0 � 
0 0 

� � 0�I ) � (� -� � �) (� � � �) = p' 
0 0 C2-2C3 0 0 0 0 C2+�l)C4 0 0 0 0 

. 

- 1  0 �-->Cz 0 - 1  0 0 �-->Cz 0 0 0 0 
Here we have dt = 2 and d2 = 2, corresponding to the third and fourth nonzero 
columns of P'. The columns of P are therefore given by 

respectively, which again gives the matrix P above. 

( 4) In this example we determine all similarity classes of matrices A with entries from Q 
with characteristic polynomial (x4 - 1  ) (x2 - 1  ) . First note that any matrix with a degree 
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6 characteristic polynomial must be a 6 x 6 matrix. The polynomial (x4 - l ) (x2 - 1 )  
factors into irreducibles i n  Q[x] a s  (x - 1)2(x + 1)2(x2 + 1 ) . Since the minimal 
polynomial rnA (x) for A has the same roots as cA (x) it follows that (x - 1) (x+ 1 ) (x2+ 1 )  
divides mA(X) .  Suppose at (x),  . . .  , am (x) are the invariant factors of some A ,  so 
am (x) = rnA (x), a; (x) I a;+t  (x) (in particular, all the invariant factors divide rnA (x)) 
and at (x)az (x) · · · am (x) = (x4 - 1)(x2 - 1) .  One easily sees that the only permissible 
lists under these constraints are 

(a) (x - 1 ) (x + 1 ) ,  (x - 1 ) (x + 1 ) (x2 + 1 )  
(b) x - 1 ,  (x - 1 ) (x + 1)2(x2 + 1 )  
(c) x + I , (x - 1 )2 (x + 1 ) (x2 + 1)  
(d) (x - 1)2(x + 1)2 (x2 + 1) .  

One can now easily write out the corresponding direct sums of companion matrices 
to obtain representatives of the 4 similarity classes. We shall see in the next section 
that there are still only 4 similarity classes even in M6 (C) .  

(5) In this example we find all similarity classes o f  3 x 3 matrices A with entries from Q 
satisfying A 6 = I. For each such A, its minimal polynomial divides x6 - 1 and in 
Q[x] the complete factorization of this polynomial is 

x6 - 1 = (x - l )(x + 1 ) (x2 - x + 1 )(x2 + x + 1) . 

Conversely, if B is any 3 x 3 matrix whose minimal polynomial divides x6 - 1 , then 

B6 = I .  The only restriction on the minimal polynomial for B is that its degree is 
at most 3 (by the Cayley-Hamilton Theorem). The only possibilities for the minimal 
polynomial of such a matrix A are therefore 

(a) x - 1  
(b) X + 1 
(c) x2 - x + 1 
(d) x2 + x + I 
(e) (x - 1 ) (x + 1 )  
(t) (x - 1 ) (x2 - x + I )  
(g) (x - 1) (x2 + x  + 1 )  
(h) (x + 1 ) (x2 - x + 1 )  
(i) (x + l ) (x2 + x + 1 ) .  

Under the constraints o f  the rational canonical form these give rise t o  the following 
permissible lists of invariant factors: 

(i) X - 1 ,  X - 1 ,  X - 1 
(ii) X + 1 ,  X + 1 ,  X + 1 

(iii) x - 1 ,  (x - 1 ) (x + 1 ) 
(iv) x + 1 ,  (x - l )(x + l) 
(v) (x - 1 ) (x2 - x  + 1 )  

(vi) (x - 1 ) (x2 + x + 1 )  
(vii) (x + 1 )(x2 - x + 1 )  

(viii) (x + 1 ) (x2 + x + 1) . 

Note that it is impossible to have a suitable set of invariant factors if the minimal 
polynomial is x2 + x + 1 or x2 - x + 1 . One can now write out the corresponding 
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rational canonical forms; for example, (i) is I, (ii) is -I, and (iii) is ( 1  0 0) 
0 0 1 . 
0 l 0 

Note also that another way of phrasing this result is that any 3 x 3 matrix with entries 
from Q whose order (multiplicatively, of course) divides 6 is similar to one of these 8 
matrices, so this example determines all elements of orders 1 ,2,3 and 6 in the group 
GL3 (Q) (up to similarity). 

E X E R C I S E S 

1. Prove that similar linear transformations of V (or n x n matrices) have the same charac
teristic and the same minimal polynomial. 

2. Let M be as in Lemma 19. Prove that the minimal polynomial of M is the least common 
multiple of the minimal polynomials of A 1 , . . .  , Ak . 

3. Prove that two 2 x 2 matrices over F which are not scalar matrices are similar if and only 
if they have the same characteristic polynomial. 

4. Prove that two 3 x 3 matrices are similar if and only if they have the same characteristic 
and same minimal polynomials. Give an explicit counterexample to this assertion for 4 x 4 
matrices. 

5. Prove directly from the fact that the collection of all linear transformations of an n dimen
sional vector space V over F to itself form a vector space over F of dimension n2 that the 
minimal polynomial of a linear transformation T has degree at most n2 . 

6. Prove that the constant term in the characteristic polynomial of the n x n matrix A is 
( - l )n det A and that the coefficient of xn- 1 is the negative of the sum of the diagonal 
entries of A (the sum of the diagonal entries of A is called the trace of A). Prove that det A 
is the product of the eigenvalues of A and thar the trace of A is the sum of the eigenvalues 
of A.  

7.  Determine the eigenvalues of the matrix 

0 0) 
1 0 
0 1 . 

0 0 

8. Verify that the characteristic polynomial of the companion matrix 

is 
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0 
0 
0 

-ao ) 
-a1 
-az 

-a;,_1 

Chap. 12  Modu les over Principal Idea l  Domai ns 



9. Find the rational canonical forms of ( 0 -1  - 1 ) 
0 0 0 ' 

- 1  0 0 

( c 0 - 1 ) 
0 c 1 

-1  1 c 
and 

( 422 465 15  -30) 
-420 -463 -15  30 

840 930 32 -60 . 
- 140 - 155 -5 12 

10. Find all similarity classes of6 x 6 matrices over Q with minimal polynomial (x + 2)2 (x - 1) 
(it suffices to give all lists of invariant factors and write out some of their corresponding 
matrices). 

11. Find all similarity classes of 6 x 6 matrices over C with characteristic polynomial 
(x4 - 1) (x2 - 1) .  

12. Find all similarity classes of 3 x 3 matrices A over F 2 satisfying A 6 = I (compare with 
the answer we computed over Q). Do the same for 4 x 4 matrices B satisfying B20 = I .  

13. Prove that the number of similarity classes of 3 x 3 matrices over Q with a given character
istic polynomial in Q[ x] is the same as the number of similarity classes over any extension 
field of Q. Give an example to show that this is not true in general for 4 x 4 matrices. 

14. Determine all possible rational canonical forms for a linear transformation with charac
teristic polynomial x2 (x2 + 1)2 . 

15. Determine up to similarity all 2 x 2 rational matrices (i.e., E M2(Q)) of precise order 4 
(multiplicatively, of course). Do the same if the matrix has entries from C. 

16. Show that x5 - 1 = (x - 1) (x2 - 4x + 1 ) (x2 + 5x + 1) in F19[x] . Use this to determine 
up to similarity all 2 x 2 matrices with entries from F19 of (multiplicative) order 5.  

17. Determine representatives for the conjugacy classes for GL3 (F2). [Compare your answer 
with Theorem 15 and Proposition 14 of Chapter 6.] 

18. Let V be a finite dimensional vector space over Q and suppose T is a nonsingular linear 
transformation of V such that T-1 = T2 + T. Prove that the dimension of V is divisible 
by 3. If the dimension of V is precisely 3 prove that all such transformations T are similar. 

19. Let V be the infinite dimensional real vector space 

IR00 = { (ao ,  a1 , a2 , . . .  ) I ao, a1 , a2 , · · · E IR}. 
Define the map T : V -+ V by T (ao ,  a1 , a2 , . . .  ) = (0, ao, a1 , a2 , . . .  ). Prove that T has 
no eigenvectors. 

20. Let l be a prime and let <Pe (x) = ��l = xl- 1 + xl-2 + . . .  + x + 1 E Z[x] be the 

lth cyclotomic polynomial, which is irreducible over Q (Example 4 following Corollary 
9. 14). This exercise determines the smallest degree of a factor of <Pt (x) modulo p for 
any prime p and so in particular determines when <Pt (X) is irreducible modulo p. (This 
actually determines the complete factorization of <Pt (X) modulo p - cf. Exercise 8 of 
Section 13 .6.) 
(a) Show that if p = l then <Pe (x) is divisible by x - 1 in Fe [x] .  
(b) Suppose p i=  l and let f denote the order of p in F; , i.e., f is the smallest power of 

p with pf = 1 mod l. Show that m = f is the first value of m for which the group 
G Lm (F p) contains an element A of order l. [Use the formula for the order of this 
group at the end of Section 1 1 . 1 .] 

(c) Show that <Pe (x) is not divisible by any polynomial of degree smaller than f in Fp [x] 
[consider the companion matrix for such a divisor and use (b)] . Let mA (X) E Fp [x] 
denote the minimal polynomial for the matrix A in (b) and conclude that mA (X) is 
irreducible of degree f and divides <Pe (x) in Fp [x]. 
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(d) In particular, prove that tP e (x) is irreducible modulo p if and only if / - 1  is the smallest 
power of p which is congruent to 1 modulo l, i.e., p is a primitive root modulo l.  

21. Prove that the first two elementary row and. column operations described before Theorem 21 
do not change the determinant of the matrix and the third elementary operation multiplies 
the determinant by a unit. Conclude from Theorem 21  that the characteristic polynomial 
of A differs by a unit from the product of the invariant factors of A. Since both these 
polynomials are monic by definition, conclude that they are equal (this gives an alternate 
proof of Proposition 20). 

The following exercises outline the proof of Theorem 21 . They carry out explicitly the con
struction described in Exercises 16 to 19 of the previous section for the Euclidean Domain 
F[x].  Let V be an n-dimensional vector space with basis VI , v2 ,  . . . , Vn and let T be the linear transformation of V defined by the matrix A and this choice of basis, i.e., T is the linear 
transformation with 

n 
T(Vj )  = L UijVj ,  

i=I 
j = 1, 2 ,  . . .  , n 

where A = (a;1) .  Let F[x]11 be the free module of rank n over F[x] and let �I . �2 • . . . , �n 
denote a basis. Then we have a natura! smjective F[x]-module homomorphism 

f/J :  F[xr � v 

defined by mapping �; to v; , i = 1 , 2, . . .  , n. As indicated in the exercises oftheprevious section 
the invariant factors for the F[x]-module V can be determined once we have determined a set 
of generators and the corresponding relations matrix for ker f/J. Since by definition x acts on V 
by the linear transformation T, we have 

22. Show that the elements 

n 
x(vJ ) = L aiJVi , j = 1 , 2, . . . , n .  

i=I 

Vj = -UIJ�I - · · · - Uj-I j �j-I  + (X - Ujj)�j - Uj+I J�J+I - · · · - Unj�n 

for j = 1 , 2, . . .  , n are elements of the kernel of qJ. 
23. (a) Show that x�1 = v1 + fJ where fJ E F�I + · · · + F�n is  an element in the F-vector 

space spanned by �I , . . .  , �n .  
(b) Show that 

F[x]�I + · · · + F[x]�n = ( F[x]vi + · · · + F[x]v11) + (F�I + · · · + F�n ) .  

24. Show that VI , v2 , . . . , v11 generate the kernel of qJ. [Use the previous result to show that 
any element of ker qJ is the sum of an element in the module generated by VI , v2 , • • •  , v11 
and an element of the form hi �I + · · · + bn�n where the b; are elements of F. Then show 
that such an element is in ker qJ if and only if all the b; are 0 since VI , . . .  , v11 are a basis 
for V over F.] 

25. Show that the generators VI , v2 , . . .  , v11 of ker qJ have corresponding relations matrix 
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-ani ) 
-Un2 : = xi - A1 , 

X - ann 

Chap. 1 2  Modu les over Principal Ideal Domai ns 



where A1 is the transpose of A. Conclude that Theorem 21 and the algorithm for deter
mining the invariant factors of A follows by Exercises 16 to 19 in the previous section 
(note that the row and column operations necessary to diagonalize this relations matrix are 
the column and row operations necessary to diagonalize the matrix in Theorem 21 ,  which 
explains why the invariant factor algorithm keeps track of the row operations used). 

1 2.3 TH E JORDAN CANON ICAL FORM 

We continue with the notation in the previous section: F is a field, F[x] is the ring of 
polynomials in x with coefficients in F, V is a finite dimensional vector space over F 
of dimension n, T is a fixed linear transformation of V by which we make V into an 
F[x]-module, and A is an n x n matrix with coefficients in F. Recall that once a basis 
for V has been fixed any linear transformation T defines a matrix A and conversely any 
matrix A defines a linear transformation T.  

In the previous section we used the invariant factor form of the Fundamental The
orem for finitely generated modules over the Principal Ideal Domain F[x] to obtain the 
rational canonical form for such a linear transformation T and the rational canonical 
form for such an n x n matrix A. In this section we use the elementary divisor form 
of the Fundamental Theorem to obtain the Jordan canonical fonn. We shall see that 
matrices in this canonical form are as close to being diagonal matrices as possible, so 
the matrices are simpler than in the rational canonical form (but we lose some of the 
"rationality" results). 

The elementary divisors of a module are the prime power divisors of its invariant 
factors (this was Corollary 10). For the F[x]-module V the invariant factors were 
monic polynomials a1 (x) ,  az (x), . . .  , am (x) of degree at least one (with a1 (x) I az (x) I 
· · · I am (x)), so the associated elementary divisors are the powers of the irreducible 
polynomial factors of these polynomials. These polynomials are only defined up to 
multiplication by a unit and, as in the case of the invariant factors, we can specify them 
uniquely by requiring that they be monic. 

To obtain the simplest possible elementary divisors we shall assume that the poly
nomials a1 (x) , az (x), . . .  , am (x) factor completely into linear factors, i.e., that the el
ementary divisors of V are powers (x - A)k of linear polynomials. Since the product 
of the elementary divisors is the characteristic polynomial, this is equivalent to the as
sumption that the field F contains all the eigenvalues of the linear transformation T 
(equivalently, of the matrix A representing the linear transformation T). 

Under this assumption on F, it follows immediately from Theorem 6 that V is the 
direct sum of finitely many cyclic F[x]-modules of the form F[x]j (x - A)k where 
A E F is one of the eigenvalues of T, corresponding to the elementary divisors of V. 

We now choose a vector space basis for each of the direct summands corresponding 
to the elementary divisors of V for which the corresponding matrix for T is particularly 
simple. Recall that by definition of the F[x ]-module structure the linear transformation 
T acting on V is the element x acting by multiplication on each of the direct summands 
F[x]j (x - A)k.  

Consider the elements 

(i - A/- 1 ,  (i - A/-2 , . • •  , i - A , 1 ,  
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in the quotient F[x J/ (x - A)k . Expanding each of these polynomials in x we see that 

the matrix relating these elements to the F -basis _xk-1 , _xk-2 , • • •  , x ,  I of F[ x] j (x - A  )k 
is upper triangular with 1 's along the diagonal. Since this is an invertible matrix (having 
determinant 1 ), it follows that the elements above are an F -basis for F[x]j (x - A)k . 
With respect to this basis the linear transformation of multiplication by x acts in a 
particularly simple manner (note that x = A + (x - .A) and that (.X - .Al = 0 in the 
quotient): 

(x _ .A)k-1 I-* .A .  (x - .A)k-l + (x - .Al = .A .  (x - .A)k-1 

(x _ .A)k-2 I-* .A . (x _ .A)k-2 + (x _ .A)k- 1 

X 
x - .A  I-* .A · (x - A) + (x - A)2 

I I-* .A . 1 + (x - .A). 

With respect to this basis, the matrix for multiplication by x is therefore 

.A 1 
.A 

1 
A 1 

A 
where the blank entries are all zero. Such matrices are given a name: 

Definition. The k x k matrix with .A along the main diagonal and 1 along the "first su
perdiagonal depicted above is called the k x k elementary Jordan matrix with eigenvalue 
.A or the Jordan block of size k with eigenvalue .A. 

Applying this to each of the cyclic factors of V in its elementary divisor decomposi
tion we obtain a vector space basis for V with respect to which the linear transformation 
T has as matrix the direct sum of the Jordan blocks corresponding to the elementary 
divisors of V, i.e. ,  is block diagonal with Jordan blocks along the diagonal: 

Notice that this matrix is uniquely determined up to permutation of the blocks along the 
diagonal by the elementary divisors of the F[x ]-module V and conversely, by Theorem 
9, the list of elementary divisors uniquely determines the module V up to F[x]-module 
isomorphism. 

Definition. 
(1) A matrix is said to be in Jordan canonical form if it is a block diagonal matrix 

with Jordan blocks along the diagonal. 
(2) A Jordan canonical form for a linear transformation T is a matrix representing 

T which is in Jordan canonical form. 
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We have proved that any linear transformation T has a Jordan canonical form. 
As in the case of the rational canonical form, it follows from the uniqueness of the 
elementary divisors that the Jordan canonical form is unique up to a permutation of the 
Jordan blocks along the diagonal (hence is called the Jordan canonical form for T). We 
summarize this in the following theorem. 

Theorem 22. (Jordan Canonical Form for Linear Transformations) Let V be a finite 
dimensional vector space over the field F and let T be a linear transformation of V. 
Assume F contains all the eigenvalues of T.  

(1) There is a basis for V with respect to which the matrix for T is  in Jordan 
canonical form. i.e., is a block diagonal matrix whose diagonal blocks are the 
Jordan blocks for the elementary divisors of V. 

(2) The Jordan canonical form for T is unique up to a permutation of the Jordan 
blocks along the diagonal. 

As for the rational canonical form, the following theorem gives the corresponding 
statement for n x n matrices over F. 

Theorem 23. (Jordan Canonical Form for Matrices) Let A be an n x n matrix over the 
field F and assume F contains all the eigenvalues of A. 

(1) The matrix A is similar to a matrix in Jordan canonical form, i.e., there is an 
invertible n x n matrix P over F such that p-l AP is a block diagonal matrix 
whose diagonal blocks are the Jordan blocks for the elementary divisors of A. 

(2) The Jordan canonical form for A is unique up to a permutation of the Jordan 
blocks along the diagonal. 

The Jordan canonical form differs from a diagonal matrix only by the possible 
presence of some 1 's along the first superdiagonal (and then only if there are Jordan 
blocks of size greater than one), hence is close to being a diagonal matrix. The following 
result shows in particular that the Jordan canonical form for a matrix A is as close to 
being a diagonal matrix as possible. 

Corollary 24. 
(1) If a matrix A is similar to a diagonal matrix D, then D is  the Jordan canonical 

form of A. 
(2) Two diagonal matrices are similar if  and only if  their diagonal entries are the 

same up to a permutation. 

Proof" The first assertion is immediate from the uniqueness of Jordan canonical 
forms because a diagonal matrix is itself in Jordan form (with Jordan blocks of size 1). 
The uniqueness of the Jordan canonical form gives (2). 

The next corollary gives a criterion to determine when a matrix A can be diagonal
ized. 
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Corollary 25. If A is an n x n matrix with entries from F and F contains all the 
eigenvalues of A, then A is similar to a diagonal matrix over F if and only if the 
minimal polynomial of A has no repeated roots. 

Proof Suppose A is similar to a diagonal matrix. The minimal polynomial of a 
diagonal matrix has no repeated roots (its roots are precisely the distinct elements along 
the diagonal). Since similar matrices have the same minimal polynomial it follows that 
the minimal polynomial for A has no repeated roots. 

Conversely, suppose the minimal polynomial for A has no repeated roots and let 
B be the Jordan canonical form of A. The matrix B is a block diagonal matrix with 
elementary Jordan matrices down the diagonal. By the exercises at the end of the 
preceding section the minimal polynomial for B is the least common multiple of the 
minimal polynomials of the Jordan blocks. It is easy to see directly that a Jordan 
block of size k with eigenvalue >.. has minimal polynomial (x - >..)k (note that this is 
immediate from the fact that each elementary Jordan matrix gives the action on a cyclic 
F[x ]-submodule whose annihilator is (x - >..)k) .  Since A and B have the same minimal 
polynomial, the least common multiple of the (x - >.. )k cannot have any repeated roots. 
It follows that k must be 1 , i.e., that each Jordan block must be of size one and B is a 
diagonal matrix. 

Changing From One Canonical  Form to Another 

We continue to assume that the field F contains all the eigenvalues of T (or A) so both 
the rational and Jordan canonical forms exist over F.  The process of passing from one 
form to the other is exactly the same algorithm described in Section 5 .2 for finite abelian 
groups (where the elementary divisors were determined from the list of invariant factors 
and vice versa). 

In brief summary, recall that the elementary divisors are the prime power divisors 
of the invariant factors. They are obtained from the invariant factors by writing each 
invariant factor as a product of distinct linear factors to powers; the resulting set of 
powers of linear polynomials is the set of elementary divisors. For example, if the 
invariant factors of T are 

(x - 1) (x - 3)3 , (x - 1) (x - 2) (x - 3)3 , (x - l ) (x - 2)2 (x - 3)3 

then the elementary divisors are 

(x - 1) ,  (x - 3)3 ,  (x - 1) ,  (x - 2) , (x - 3)3 ,  (x - 1) , (x - 2l, (x - 3)3 •  

The largest invariant factor is the product of the largest of the distinct prime powers 
among the elementary divisors, the next largest invariant factor is the product of the 
largest of the distinct prime powers among the remaining elementary divisors, and so 
on. Given a list of elementary divisors we can find the list of invariant factors by first 
arranging the elementary divisors into n separate lists, one for each eigenvalue. In each 
of these n lists arrange the polynomials in increasing (i .e. ,  nondecreasing) degree. Next 
arrange for all n lists to have the same length by appending an appropriate number of 
the constant polynomial 1 .  Now form the ith invariant factor by taking the product of 
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the ith polynomial in each of these lists. For example, if the elementary divisors of T 
are 

then the intermediate lists are 
( 1) (x - 1)3 , 
(2) 1 , 
(3) 1 ,  

so the list of invariant factors is 

(x - 1)3 , 
x + 4, 
1 ,  

(x - 1)4 , 
(x + 4)2 , 
(x - 5)2 , 

(x - 1)5 
(x + 4)3 
(x - 5)3 

(x - 1)3 , (x - 1)\x + 4) ,  (x - 1)4(x + 4)2 (x - 5)2 , (x - 1)5 (x + 4)\x - 5)3 • 

Elementary Divisor Decomposition Algorithm: Converting to jor
dan Canonical Forms 

Theorem 21  indicates a computational procedure to determine the invariant factors of 
any given matrix A. Factorization of these invariant factors produces the elementary 
divisors of A, hence determines the Jordan canonical form for A as above. 

The Invariant Factor Decomposition Algorithm following Theorem 21 starts with 
a basis e1 , . . .  , en for V and produces a set /1 ,  . . .  , f m of elements of V which are 
F[x]-module generators for the cyclic factors in the invariant factor decomposition of 
V (with annihilators (at (x)), . . .  , (am(x)), respectively). Since the elementary divisor 
decomposition is obtained from the invariant factor decomposition by applying the 
Chinese Remainder Theorem to the cyclic modules F[xJj (ai (x)), this gives a set of 
F[x ]-module generators for the cyclic factors in the elementary divisor decomposition 
of V.  These elements then give rise to an explicit vector space basis for V with respect 
to which the linear transformation corresponding to A is in Jordan canonical form 
(equivalently, an explicit matrix P such that p-I AP is in Jordan canonical form). As 
for the Invariant Factor Decomposition Algorithm we state the result first in the general 
context of decomposing a vector space and then describe the algorithm to convert a 
given n x n matrix A to Jordan canonical form. 

Explicit numerical examples of this algorithm are given later in Examples 2 and 3. 

Elementary Divisor Decomposition Algorithm 

(1) to (3): The first three steps in the algorithm are those from the Invariant Factor 
Decomposition Algorithm following Theorem 21 .  

(4) For each invariant factor a(x) computed for A write 

a(x) = (x - At )a1 (x - A2)a2 • • •  (x - A,f' 

where At , . . .  , A., E F are distinct. Let f E V be the F[x]-module generator for 
the cyclic factor corresponding to the invariant factor a(x) computed in (3). Then 
the elements 

a(x) --- f ,  
(x - At)ai 
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a(x) 
(note that the E F[x] are polynomials) are F[x]-module generators for 

(x - A; )a' 
the cyclic factors of V corresponding to the elementary divisors 

.. .. . ' 
respectively. 

a�) . . 
(5) If g; = f Is the F[x ]-module generator for the cychc factor of V corre-

(x - A; )a' 
sponding to the elementary divisor (x - A; )"' then the corresponding vector space 
basis for this cyclic factor of V is given by the elements 

(T - A; )g; , g; . 

(6) Write the k1h element of the vector space basis computed in (5) in terms of the 
original vector space basis [e1 , e2 , . . .  , en] for V and use the coordinates for the 
kth column of an n x n matrix P. Then p-I AP is in Jordan canonical form (with 
Jordan blocks appearing in the order used in (5) for the cyclic factors of V). 

Converting an n x n Matrix to jordan Canonical Form 

(1) to (2): The first two steps are those from the algorithm for Converting an n x n 
matrix to Rational Canonical Form following Theorem 2 1 .  

(3) When xl - A has been diagonalized to the form in  Theorem 21  the first n-m 
columns of the matrix P' are 0 (providing a useful numerical check on the com
�utations) and the remaining m columns of P' are nonzero. For each successive( 
1 = 1 ,  2, . . . , m :  
(a) Factor the ith  nonconstant diagonal element (which is of degree d; ) : 

a(x) = (x - At)"1 (x - A2)a2 • • •  (x - As)a, 

where A1 , . . .  , As E F are distinct (here a(x) = a; (x) is the ith nonconstant 
diagonal element and s depends on i ). 

(b) Multiply the ;th nonzero column of P' successively by the d; matrices: 
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(A - A t l )"1 - 1 (A - A2/)"2 • • •  (A - As /)"' 
(A - At l)"1 -2(A - A2/)"2 • • •  (A - As l)"' 

(A - At/)"1 (A - A2/)"2-1  • • •  (A - As l)"' 
(A - At /)"1 (A - A2/)"2-2 . . .  (A - As /)"' 
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(A - )q l)"I (A - Azl)"l . . .  (A - As l)a,- 1  
(A - At l)"1 (A - Azl)a2 • • •  (A - A5 l)",-2 

(A - At l)"1 (A - Azl)"2 • • •  (A - A5 1)0• 

(c) Use the column vectors resulting from (b) (in that order) as the next d; columns 
of an n  x n matrix P. 

Then p-l AP i s  in  Jordan canonical form (whose Jordan blocks correspond to the 
ordering of the factors in (a)). 

Examples 
We can use Jordan canonical forms to carry out the same analysis of matrices that we did 
as examples of the use of rational canonical forms. In some instances, when the field is 
enlarged, the number of similarity classes increases (the number of similarity classes can 
never decrease when we extend the field by Corollary 18(2)). 
(1) Let A, B and C be the matrices in Example l of the previous section and let F = <Ql. 

Note that <Ql contains all the eigenvalues for these matrices. Since we have already 
determined the invariant factors of these matrices we can immediately obtain their 
elementary divisors. The elementary divisors of A are x - 2, x - 2 and x - 3 and 
the elementary divisors of B and C are (x - 2)2 and! - 3 so the respective Jordan 
canonical forms are: 

� (� � �) (� � �) ( o � �) -o 0 3 0 0 3 0 0 3 

Notice that A is similar to a diagonal matrix but, by Corollary 25, B and C are not. 
(2) For the matrix A, we determined in Example 2 of the previous section that ft = 

-7et + 7ez + e3 and fz = -et + ez were <Ql[x ]-module generators for the two cyclic 
factors of V in its invariant factor decomposition, corresponding to the invariant factors 
x - 2 and (x - 2) (x - 3), respectively. Using the first algorithm described above, the 
elements ft , (x - 3)/z and (x - 2)/z are therefore <Ql[x]-module generators for the 
three cyclic factors of V in its elementary divisor decomposition, corresponding to the 
elementary divisors x - 2, x - 2, and x - 3. An easy computation shows that these 
are the elements -7et + 7ez + e3, -et and -2et + ez, respectively. Then the matrix ( -7 - 1  

p = 7 0 
1 0 

conjugates A into its Jordan canonical form: 

as one easily checks. 

( 2 0 
p-1 AP = 0 2 

0 0 

The columns of this matrix can also be obtained following the second algorithm 
above, using the nonzero columns of the matrix P' computed in Example 2 of the 
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previous section: 

and 

(A _ 21)0(A _ 31) 1 rn � n) . (A _ 21) 1 (A _ 3/)0 rn � n) . 
respectively, which again gives the matrix P. 

(3) For the 4 x 4 matrix D of Example 3 of the previous section, the invariant factors 
were (x - 1)2 , (x - 1)2, with corresponding CQ[x]-module generators f1 = e1 and 
fz = e2 , respectively. These are also the elementary divisors for this matrix. The 
corresponding vector space bases for these two factors are given by (T - l )fl , f1 
and (T - I ) fz ,  fz, respectively. An easy computation shows these are the elements 
2e2 + e3 , e1 and 2et - e2 + e4 , e2, respectively. Then the matrix (0 1 2 

p = 2 0 -2 
I 0 0 
0 0 I 

conjugates D into its Jordan canonical form: ( I 1 

p-l DP = 0 1 
0 0 
0 0 

as can easily be checked. 

0 0 ) 
0 0 
I I 
0 I 

The columns of this matrix can also be obtained following the second algorithm 
above, using the nonzero columns of the matrix P' computed in Example 3 of the 
previous section: 

and 

respectively, which again gives the matrix P. 
(4) The set of similarity classes of 6 x 6 matrices with entries from C with characteristic 

polynomial (x4 - l) (x2 - 1 )  consists of the 4 classes represented by the rational 
canonical forms in the preceding set of examples (there are no additional lists of 
invariant factors over C). Their Jordan canonical forms cannot all be written over CQ, 
however. For instance, if the invariant factors are 
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(x - I) (x + 1 )  and (x - 1 ) (x + l ) (x2 + 1 ) 
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then the elementary divisors are 

x - 1 , x + l , x - 1 , x + 1 , x - i, x + i , 

where i is a square root of - 1  in <C, so the Jordan form for this matrix is a diagonal 
matrix with diagonal entries I , I , - I  , - I , i, -i .  

(5) In contrast, the set of similarity classes of  3 x 3 matrices, A, over <C satisfying A 6 = I 
is considerably larger than that over <Ql. If A is any such matrix, mA (x)  I x6 - 1 so 
since the latter polynomial has no repeated roots in <C, the minimal polynomial of A 
has no repeated roots. By Corollary 25 the Jordan canonical form of A is a diagonal 
matrix. Since this diagonal matrix has the same minimal polynomial, its 6th power 
is also the identity, and so each diagonal entry is a 6th root of unity. For each list 
{1 , {2 , {3 of 6th roots of unity we obtain a Jordan canonical form, and two such forms 
are the same (i.e., give rise to similar matrices) if and only if the lists are permuted 
versions of each other. One finds that there are, up to similarity, 56 classes of such 
A's. 

E X E R C I S E S 

1. Suppose the vector space V is the direct sum of cyclic F[x]-modules whose annihilators 
are (x + I )2 , (x - I ) (x2 + 1 )2, (x4 - I )  and (x + l ) (x2 - 1 ) .  Determine the invariant 
factors and elementary divisors for V. 

2. Prove that if }... 1 , . . .  , An are the eigenvalues of the n x n matrix A then }... � ,  . . . .  }...� are the 
eigenvalues of Ak for any k =::: 0. 

3. Use the method of Example 2 above to determine explicit matrices P1 and P2 with P1-
1 B P1 

and P21C P2 in Jordan canonical form. Use this to explicitly construct a matrix Q which 
conjugates B into C (proving directly that these matrices are similar). 

4. Prove that the Jordan canonical form for the matrix ( -� � _; ) -6 -4 -2 
is that stated at the beginning of this chapter. Explicitly determine a matrix P which 
conjugates this matrix to its Jordan canonical form. Explain why this matrix cannot be 
diagonalized. 

5. Compute the Jordan canonical form for the matrix (� � -�) -
0 I 3 

6. Determine which of the following matrices are similar: 

2 
I 

- I  

7. Determine the Jordan canonical forms for the following matrices: ( -i � �) (-; -� -�) -
-3 -4 I -4 -4 -3 

Sec. 12.3 The jordan Canonical Form 

4 
-3 
-4 -

4) 2 . 
3 

499 



8. Prove that the matrices 

A = ( -; 
-2 

6 0) -4 0 
0 1 

( 3 - 1 2) B = - 10 6 - 14 
-6 3 -7 

are similar. Prove that both A and B can be diagonalized and determine explicit matrices 
P1 and P2 with P11 APt and P2-

1 B P2 in diagonal form. 
9. Prove that the matrices 

A = ( -� - 1� - � ) 
3 2 0 

(-3 
B =  : 2 -4) - 1 4 

-2 5 

both have (x - 1)2 (x + 1) as characteristic polynomial but that one can be diagonalized 
and the other cannot. Determine the Jordan canonical form for both matrices. 

10. Find all Jordan canonical forms of 2 x 2, 3 x 3 and 4 x 4 matrices over C. 

11. Verify that the characteristic polynomial of ( 1 0 

A
_ 0 1 - -2 -2 

-2 0 

0 
0 
0 

- 1 j) 
is a product of linear factors over Q. Determine the rational and Jordan canonical forms 
for A over Q. 

12. Determine the Jordan canonical form for the matrix ( 1 2 0 0) 
0 1 2 0 
0 0 1 2 . 

0 0 0 1 

13. Determine the Jordan canonical form for the matrix 

14. Prove that the matrices ( -� 
A =  

2 
-2 

are similar. 
15. Prove that the matrices 

0 - 1 
1 
4 

4 -8 14 - 1 5  
( 3 0 - 2  -3 ) 

2 -4 7 -7 . 
0 2 -4 3 

0 
-8 
-4 

2 

-4 
15  
7 

-5 

-7) 
- 1 3  

-7 
1 

A � (I � � D B =  

( 5 2 -8 -8 ) 
-6 -3 8 8 
-3 - 1  3 4 

3 1 -4 -5 

both have characteristic polynomial (x - 3)(x + 1)3 . Determine whether they are similar 
and determine the Jordan canonical form for each matrix. 
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16. Determine the Jordan canonical form for the matrix 

(� � � 
-� )  0 0 1 1 

0 0 0 1 
and determine a matrix P which conjugates this matrix into its Jordan canonical form. 

17. Prove that any matrix A is similar to its transpose At . 
18. Determine all possible Jordan canonical forms for a linear transformation with character

istic polynomial (x - 2)3 (x - 3)2 • 
19. Prove that all n x n matrices with characteristic polynomial f(x) are similar if and only 

if f (x) has no repeated factors in its unique factorization in F[x] . 
20. Show that the following matrices are similar in M P (IF P) (p x p matrices with entries from 

1Fp): 

(l 0 0 0 !) 
1 1 0 0 0 

0 0 0 
0 1 1 0 0 
0 0 1 0 0 

1 0 0 and 

0 0 1 0 0 0 1 1 
0 0 0 0 1 

21. Show that if A2 = A then A is similar to a diagonal matrix which has only O's and 1 's 
along the diagonal. 

22. Prove that an n x n matrix A with entries from C satisfying A 3 = A can be diagonalized. 
Is the same statement true over any field F? 

23. Suppose A is a 2 x 2 matrix with entries from Q for which A 3 = I but A -:f. I . Write A in 
rational canonical form and in Jordan canonical form viewed as a matrix over C. 

24. Prove there are no 3 x 3 matrices A over Q with A 8 = I but A 4 -:f. I . 
25. Determine the Jordan canonical form for the n x n matrix over Q whose entries are all 

equal to 1 .  

26. Determine the Jordan canonical form for the n x n matrix over IF P whose entries are all 
equal to 1 (the answer depends on whether or not p divides n). 

27. Determine the Jordan canonical form for the n x n matrix over Q whose entries are all 
equal to 1 except that the entries along the main diagonal are all equal to 0. 

28. Determine the Jordan canonical form for the n x n matrix over IF P whose entries are all 
equal to 1 except that the entries along the main diagonal are all equal to 0. 

The direct sum of the cyclic submodules of V corresponding to all the elementary divisors of 
V which are powers of the same x - A is called the generalized eigenspace ofT corresponding 
to the eigenvalue A. Note that this is the p-primary component of V for the prime p = x - A 
of F[x] and consists of the elements of V which are annihilated by some power of the linear 
transformation T - A. The matrix for T on the generalized eigenspace for A is the block diagonal 
matrix of all Jordan blocks for T with the same eigenvalue A. 

29. Suppose V; is the generalized eigenspace of T corresponding to eigenvalue A; . For any 
k 2': 0, prove that the nullity of T - A; on the subspace (T - A; )k V; is the same as the nullity 
of T - A; on (T - A; )k V and equals the number of Jordan blocks of T having eigenvalue 
A; and size greater than k (so for k = 0 this gives the number of Jordan blocks). 
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30. Let A be an eigenvalue of the linear transformation T on the finite dimensional vector space 
· V over the field F. Let rk = dim F (T - A)k V be the rank of the linear transformation 

(T - A)k on V .  For any k � 1 ,  prove that rk-1 -2rk+rk+l is the number of Jordan blocks 
of T corresponding to A of size k [use Exercise 1 2  in Section 1 ] .  (This gives an efficient 
method for determining the Jordan canonical form for T by computing the ranks of the 
matrices (A - A/)k for a matrix A representing T, cf. Exercise 3 1 (a) in Section 1 1 .2.) 

31. Let N be an n x n matrix with coefficients in the field F. The matrix N is said to be 
nilpotent if some power of N is the zero matrix, i.e., Nk = 0 for some k .  Prove that any 
nilpotent matrix is similar to a block diagonal matrix whose blocks are matrices with 1 's 
along the first superdiagonal and O's elsewhere. 

32. Prove that if N is an n x n nilpotent matrix then in fact Nn = 0. 

33. Let A be a strictly upper triangular n x n matrix (all entries on and below the main diagonal 
are zero). Prove that A is nilpotent. 

34. Prove that the trace of a nilpotent n x n matrix is 0 (recall the trace of a matrix is the sum 
of the diagonal elements). 

35. For 0 � i � n, let d; be the g.c.d. of the determinants of all the i x i minors of xi - A, 
for A as in Theorem 21 (take the 0 x 0 minor to be 1 ). Prove that the ;th element along 
the diagonal of the Smith Normal Form for A is di /d; - J . This gives the invariant factors 
for A. [Show these g.c.d.s do not change under elementary row and column operations.] 

36. Let V = en be the usual n-dimensional vector space of n-tuples (a1 ,  a2 , . . .  , an ) of 
complex numbers. Let T be the linear transformation defined by setting T(a1 . a2 , . . .  , an) 
equal to (0, a1 .  a2 , . . . , an-J ) .  Determine the Jordan canonical form for T.  

37. Let J be a Jordan block of size n with eigenvalue A over C. 
(a) Prove that the Jordan canonical form for the matrix 12 is the Jordan block of size n 

with eigenvalue A 2 if A :f. 0. 
(b) If A = 0 prove that the Jordan canonical form for 12 has two blocks (with eigenvalues 

. n n 
f d 

. n - 1 n + 1 
.f 

. 
dd 0) of stze 2 ,  2 i n is even an of stze -

2
- ,  -

2
- 1 n ts o . 

38. Determine necessary and sufficient conditions for a matrix A E Mn (C) to have a square 
root, i.e., for there to exist another matrix B E Mn (C) such that A = B2 • [Suppose B is in 
Jordan canonical form and consider the Jordan canonical form for B2 using the previous 
exercise.] 

39. Let J be a Jordan block of size n with eigenvalue A over a field F of characteristic 
2. Determine the Jordan canonical form for the matrix 12 • Determine necessary and 
sufficient conditions for a matrix A E Mn (F) to have a square root, i.e., for there to exist 
another matrix B E  Mn (F) such that A = B2 . 

The remaining exercises explore functions (power series) of a matrix and introduce some 
applications of the Jordan canonical form to the theory of differential equations. 

Throughout these exercises the matrices are assumed to be n x n matrices with entries 
from the field K, where K is either the real or complex numbers. Let 

00 
G(x) = L akxk 

k=O 

be a power series with coefficients from K. Let G N (x) = "Lf=o akxk be the Nth partial sum 
of G(x) and for each A E Mn (K) let GN(A) be the element of Mn (K) obtained (as usual) by 
substituting A in this polynomial. For each fixed i, j we obtain a sequence of real or complex 
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numbers ct . N = 0, 1 ,  2, . . .  by taking ct to be the i, j entry of the matrix GN (A). The series 

00 
G(A) = L ctkAk 

k=O 
is said to converge to the matrix C in Mn (K) if for each i, j E { 1, 2, . . . , n} the sequence ct , 
N = 0, 1 ,  2, . . . converges to the i, j entry of C (in which case we write G(A) = C). Say 
G(A) converges if there is some C E Mn (K) such that G(A) = C. If A is a 1 x 1 matrix, this 
is the usual notion of convergence of a series in K. 

For A =  (aij) E Mn (K) define 
n 

I I  A l l = L laii l  
i, j=l  

i.e., I I  A I I is the sum of the absolute values of all the entries of A.  
40. Prove that for all A,  B E Mn (K) and all a E K 

(a) I I A + B I I S I I A I I + I I B I I 
(b) I I  AB I I  s I I  A I I  · I I  B I I  
(c) I I  a A I I = la l · l l  A 1 1 .  

41. Let R be the radius of convergence of the real or complex power series G(x) (where R = oo 
if G(x) converges for all x E K). 
(a) Prove that if I I  A I I  < R then G(A) converges. 
(b) Deduce that for all matrices A the following power series converge: 

A3 A5 A2k+l 
sin(A) = A - - + - +  . . .  + (- 1)k + . . .  

3 ! 5 !  (2k + 1 ) ! 

A2 A4 A2k 
cos(A) = I - - + - + ·  · · + (- 1)k __ + · . . 

2 ! 4 !  (2k) ! 

A2 A3 Ak 
exp(A) = I + A  + 2! + 3! + 

· 
· · + kl + 

· · · 
where I is the n x n identity matrix. 

In view of applications to the theory of differential equations we introduce a variable t at this 
point, so that for A E Mn (K) the matrix At is obtained from A by multiplying each entry by 
t (which is the same as multiplying A by the "scalar" matrix t 1). We obtain a function from a 
subset of K into Mn (K) defined by t � G(At) at all points t where the series G(At) converges. 
In particular, sin(At), cos(At) and exp(At) converge for all t E K. 
42. Let P be a nonsingular n x n matrix. 

(a) Prove that PG(At)P-1 = G(P At p-l ) = G(P AP-1 t) . (This implies that, up to 
a change of basis, it suffices to compute G(At) for matrices A in canonical form). 
[Take limits of partial sums to get the first equality. The second equality is immediate 
because the matrix ti commutes with every matrix.] 

(b) Prove that if A is the direct sum of matrices At , A2 , . . . , Am , then G(At) is the direct 
sum of the matrices G(Att) ,  G(A2t), . . . , G(Am t) . 

(c) Show that if Z is the diagonal matrix with entries ZI , Z2 ,  . . • , Zn then G(Zt) is the 
diagonal matrix with entries G(ztt) ,  G(z2t),  . . .  , G(znt). 

The matrix exp(A) defined in Exercise 41 (b) is called the exponential of A and is often denoted 
by eA . The next three exercises lead to a formula for the matrix exp(Jt) , where J is an 
elementary Jordan matrix. 
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43. Prove that if A and B are commuting matrices then exp(A + B) = exp(A) exp(B) . [Treat 
A and B as commuting indeterminates and deduce this by comparing the power series on 
the left hand side with the product of the two power series on the right hand side.] 

44. Use the preceding exercise to show that if M is any matrix and A is any element of K then 

exp(A/t + M) = eM exp(M). 

45. Let N be the r x r matrix with 1 's on the first superdiagonal and zeros elsewhere. Compute 
the exponential of the following nilpotent r x r matrix: 

1 

if Nt � (O t J 0 t 

then exp(Nt) = 

12 
2T 

t 12 
2T 

t 
1 

Deduce that if J is the r x r elementary Jordan matrix with eigenvalue A then 

exp(Jt) = 

teM 12 At 
2Ie 

eM teM 

eM 

[To do the first part use the observation that since Nt is a nilpotent matrix, exp(Nt) is a 
polynomial in N t, i.e., all but a finite number of the terms in the power series are zero. To 
compute the exponential of J t write J t as AI t + N t and use Exercise 44 with M = N t.] 

Let A E Mn (K) and let P be a change of basis matrix such that p- I A P  is in Jordan canonical 
form. Suppose p- I AP is the sum of elementary Jordan matrices J1 , . . .  , lm . The preceding 
exercises (with t = 1) show that exp(A) can easily be found by writing E = exp(P- 1 AP) as 
the direct sum of the matrices exp( J1 ) ,  . . .  , exp( lm ) and then changing the basis back again to 
obtain exp(A) = P E p- 1 . 

46. For the 4 x 4 matrices D and P given in Example 3 of this section: 

D � n 2 -4 -·· ) P � n 1 2 D - 1 4 0 -2 
0 1 -2 0 0 
1 -2 3 0 1 

show that 

h n e 0 D c 2e -4e 4e ) e 0 
and 

2e -e 4e -8e 
. 

0 e 
exp(D) = � 

0 e -2e 
0 0 e -2e 3e 
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47. Compute the exponential of each of the following matrices: 
(a) the matrix A in Example 2 of this section 
(b) the matrix in Exercise 4 (where you computed the Jordan canonical form and a change 

of basis matrix) 
(c) the matrix in Exercise 16. 

48. Show that exp(O) = I (here 0 is the zero matrix and I is the identity matrix). Deduce that 
exp(A) is nonsingular with inverse exp(-A) for all matrices A E Mn (K). 

49. Prove that det(exp(A)) = etr(A) , where tr(A) is the trace of A (the sum of the diagonal 
entries of A) . 

50. Fix any A E Mn (K). Prove that the map 

defined by t � exp(At) 

is a group homomorphism (here K is the additive group of the field). (Note how this gener
alizes the familiar exponential map from K to K x , which is the n = 1 case. The subgroup 
{exp(At) I t E K) is called a ]-parameter subgroup of GLn (K). These subgroups and 
the exponential map play an important role in the theory of Lie groups - G Ln (K) being 
a particular example of a Lie group.). 

Let G(x) be a power series having an infinite radius of convergence and fix a matrix A E Mn (K). 
The entries of the matrix G(At) are K-valued functions of the variable t that are defined for all 
t. Let c;i (t) be the function of t in the i, j entry of G (At). The derivative of G (At) with respect 

d d to t, denoted by - G (At), is the matrix whose i, j entry is -cij (t) obtained by differentiating 
dt dt 

each of the entries of G(At) . In other words, if we identify Mn (K) with Kn2 by considering 
each n x n matrix as an n2-tuple, then t � G(At) is a map from K to Kn2 (i.e., is a vector 
valued function oft) whose derivative is just the usual ( componentwise) derivative of this vector 
valued function. 

51. Establish the following properties of derivatives : 
00 d 00 

(a) If G(x) = L ctkxk then - G (At) = A L kak (At)k-l . 
k=O dt k=l 

(b) If v is an n x 1 matrix with (constant) entries from K then 

.!!_ (G(At)v) = (.!!_ G(At)) v. 
dt dt 

52. Deduce from part (a) of the preceding exercise that 
d - exp(At) = A exp(At) . dt 

Now let Yl (t) , . . .  , Yn (t) be differentiable functions of the real variable t that are related by the 
following linear system of first order differential equations with constant coefficients aij E K :  

Yi = auy1 + a12Y2 + . . . + alnYn 

Y� = a21 Y1 + a22Y2 + · · · + a2nYn 

Y� = anl Yl + an2Y2 + · · · + annYn 
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(here the primes denote derivatives with respect to t). Let A be the matrix whose i, j entry is 
aij , so that ( *) may be written as 

or, more succinctly, as y' = Ay, where y is the column vector of functions Yl (t) , . . .  , Yn (t) .  
An n x n matrix whose entries are functions of t and whose columns are independent 

solutions to the system (*) is called a fundamental matrix of (*). By the theory of differential 
equations, the set of vectors y that are solutions to the system ( *) form an n-dimensional vector 
space over K and so the columns of a fundamental matrix are a basis for the vector space of 
all solutions to (*). 
53. Prove that exp(At) is a fundamental matrix of (*). Show also that if C is the n x 1 constant 

vector whose entries are Yl (0) , . . . , Yn (0) then y(t) = exp(At)C is the particular solution 
to the system (*) satisfying the initial condition y(O) = C. (Note how this generalizes 
the 1-dimensional result that the single differential equation y' = ay has ffi1 as a basis for 
the 1-dimensional space of solutions and the unique solution to this differential equation 
satisfying the initial condition y(O) = c is y = clf11 .) [Use the preceding exercises.] 

54. Prove that if M is a fundamental matrix of (*) and if Q is a nonsingular matrix in Mn (K), 
then M Q is also a fundamental matrix of ( *). [The columns of M Q are linear combinations 
of the columns of M.] 

Now apply the preceding two exercises to solve some specific systems of differential equations 
as follows: given the matrix A in a system ( * ), calculate a change of basis matrix P such that 
B = p- l A P  is in Jordan canonical form. Then exp(At) = P exp(Bt)P- 1 is a fundamental 
matrix for (*). By the preceding exercise, P exp(Bt) is also a fundamental matrix for (*) and 
exp(Bt) can be calculated by the method described in the discussion following Exercise 45 (in 
particular, one does not have to find the inverse of the matrix P to obtain a fundamental matrix 
for (*)). Thus, for example, if A = D and P are the matrices given in Exercise 46, then we 
saw that the Jordan canonical form for A is the matrix B = p- 1 AP consisting of two 2 x 2 
Jordan blocks with eigenvalues 1 .  A fundamental matrix for the system y' = Ay is therefore 

P (B) = ( � � :2 �) (� t
;

1 � � ) ( 2�1 2��� :;:1 e1 (�t�1 
2t) ) 

exp 
1 0 0 0 0 0 e1 te1 - e1 te1 0 0 

· 
0 0 1 0 0 0 0 e1 0 0 e1 te1 

Writing this out more explicitly, this shows that the general solution to the system of differential 
equations 
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Yt = Yl + 2yz - 4y3 + 4y4 

y2_ = 2yt - Y2 + 4y3 - 8y4 

YJ = Yl + Y3 - 2y4 

Y� = Y2 - 2y3 + 3y4 
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where at , . . .  , a4 are arbitrary elements of the field K (this describes the 4-dimensional vector 
space of solutions). 

55. In each of Parts (a) to (c) find a fundamental matrix for the system (*), where the coefficient 
matrix A of ( *) is specified. 
(a) A is the matrix in Part (a) of Exercise 47. 
(b) A is the matrix in Part (b) of Exercise 47. 
(c) A is the matrix in Part (c) of Exercise 47. 

56. Consider the system ( *) whose coefficient matrix A is the matrix D listed in Exercise 46 
and whose fundamental matrix was computed just before the preceding exercise. Find the 
particular solution to ( *) that satisfies the initial condition y; (0) = I for i = I ,  2, 3, 4. 

Next we explore a special case of (*). Given the linear nth order differential equation with 
constant coefficients 

y<n) + an-ty<n-t) + · · · + alY' + aoy = 0 

(where y<k> is the kth derivative of y and yC0> = y) one can form a system of linear first order 
differential equations by letting y; = y(i-t) for 1 .::::: i .::::: n (the coefficient matrix of this system 
is described in the next exercise). A basis for the n-dimensional vector space of solutions to 
the nth order equation (**) may then obtained from a fundamental matrix for the linear system. 
Specifically, in each of the n x I columns of functions in a fundamental matrix for the system, 
the 1 , 1 entry is a solution to ( **) and so the n functions in the first row of the fundamental 
matrix for the system form a basis for the solutions to (**). 

57. Prove that the matrix, A, of coefficients of the system of n first order equations obtained 
from (**) is the transpose of the companion matrix of the polynornial xn + an-IXn-t + · · · + atx + ao . 

58. Use the above methods to find a basis for the vector space of solutions to the following 
differential equations 
(a) y"' - 3y' + 2y = 0 
(b) y"'' + 4y"' + 6y" + 4y' + y = 0. 

A system of differential equations 

Yt = Ft (Yt . Y2 , . . . , Yn) 

Y2 = F2(Yt . Y2 • . . .  , Yn) 

y� = Fn(Yt .  Y2 · · · · , Yn) 
where Ft . F2 , . . .  , Fn are functions of n variables, is called an autonomous system and it 
will be written more succinctly as y' = F(y), where F = (Ft • . . .  , Fn). (The expression 
autonomous means "independent of time" and it indicates that the variable t - which may 
be thought of as a time variable - does not appear explicitly on the right hand side.) The 
system ( *) is the special type of autonomous system in which each F; is a linear function. In 
many instances it is desirable to analyze the behavior of solutions to an autonomous system 
of differential equations without explicitly finding these solutions (indeed, it is unlikely that it 
will be possible to find explicit solutions for a given nonlinear system). This investigation falls 
under the rubric "qualitative analysis" of autonomous differential equations and the rudiments 
of this study are often treated in basic calculus courses for 1 x 1 systems. The first step in 
a qualitative analysis of an n x n autonomous system is to find the steady states, namely cbe 
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constant solutions (these are called steady states since they do not change with t). Note that 
a constant function y = c, where c is the n x 1 constant vector with entries q ,  . . . , Cn , is a 
solution to y' = F(y) if and only if 

c; = 0 = F; (CJ , . . .  , Cn) for i = 1 , 2, . . . , n , 
so the steady states are found by computing the zeros of F (in the case of a nonlinear system 
this may require numerical methods). Next, given the initial value of some solution, one wishes 
to analyze the behavior of this solution as t --+ oo. This is called the asymptotic behavior of the 
solution. Again, it may not be possible to find the solution explicitly, although by the general 
theory of differential equations a solution to the initial value problem is unique provided the 
functions F; are differentiable. A steady state y = c is called globally asymptotically stable if 
every solution tends to c as t --+ oo, i.e., for any solution y(t) we have lim y; (t) = c; for all 

t-+oo 
i = 1 , 2 , . . . , n. 

In the case of the linear autonomous system ( *) the solutions form a vector space, so the 
only constant solution is the zero solution. The next exercise gives a sufficient condition for 
zero to be globally asymptotically stable and it gives one example of how the behavior of a 
linear system may be analyzed in terms of the eigenvalues of its coefficient matrix. Nonlinear 
systems can be approximated by linear systems in some neighborhood of a steady state by 

considering y' = Ty, where T = ( :: ) is the n x n Jacobian matrix of F evaluated at the 

steady state point. In this way the analysis of linear systems plays an important role in the local 
analysis of general autonomous systems. 

59. Prove that the solution of (*) given by y; (t) = 0 for all i E { 1 , . . .  , n} (i .e., the zero 
solution) is globally asymptotically stable if all the eigenvalues of A have negative real 
parts. [For those unfamiliar with the behavior of the complex exponential function, assume 
all eigenvalues are real (hence are negative real numbers). Use the explicit nature of the 
solutions to show that they all tend to zero as t --+  oo.] 
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Pa rt I V  

F I ELD TH EO RY AN D GALO I S  TH EO RY 

The previous sections have developed the theory of some of the basic algebraic struc
tures of groups, rings and fields. The next two chapters consider properties of fields, 
particularly fields which arise from trying to solve equations (such as the simple equation 
x2 + 1 = 0), and fields which naturally arise in trying to perform "arithmetic" (adding, 
subtracting, multiplying and dividing). The elegant and beautiful Galois Theory relates 
the structure of fields to certain related groups and is one of the basic algebraic tools. 
Applications include solutions of classical compass and straightedge construction ques
tions, finite fields and Abel's famous theorem on the insolvability (by radicals) of the 
general quintic polynomial. 
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CHAPTER 1 3  

Fi e l d  Th eo ry 

1 3.1 BASIC THEORY OF FIELD EXTENSIONS 

Recall that a field F is a commutative ring with identity in which every nonzero element 
has an inverse. Equivalently, the set Fx = F - {0} of nonzero elements of F is an 
abelian group under multiplication. 

One of the first invariants associated with any field F is its characteristic, defined 
as follows : If IF  denotes the identity of F, then F contains the elements 1 F, 1 F + 1 F,  
1F + 1F  + 1F,  . . . of the additive subgroup of F generated by IF .  which may not all 
be distinct. For n a positive integer, let n · 1 F  = I F + · · · + I F  (n times). Then two 
possibilities arise: either all the elements n · 1 F are distinct, or else n · 1 F = 0 for some 
positive integer n .  

Definition. The characteristic of a field F ,  denoted ch(F), i s  defined to be the smallest 
positive integer p such that p · 1 F = 0 if such a p exists and is defined to be 0 otherwise. 

It is easy to see that 

n · 1 F + m · I F  = (m + n) · I F  

(n · 1 F ) (m · 1 F )  = m n  · 1 F 

and that 
( 13. 1 )  

for positive integers m and n .  It follows that the characteristic of a field is  either 0 or a 
prime p (hence the choice of p in the definition above), since if n = ab is composite 
with n · I F =  0, then ab · I F =  (a · 1 F) (b · 1 F) = 0 and since F is a field, one of a ·  I F  
or b · 1 F is 0, so the smallest such integer is necessarily a prime. It also follows that if 
n · 1 F  = 0, then n is divisible by p. 

Proposition 1. The characteristic of a field F, ch(F), is either 0 or a prime p .  If 
ch(F) = p then for any a E F, 

p · a = a + a + · · ·  + a = 0. 
p times 

Proof" Only the second statement has not been proved, and this follows immediately 
from the evident equality p · a  = p · ( l Fa) = (p · I F  ) (a) in F. 
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Remark: This notion of a characteristic makes sense also for any integral domain and 
its characteristic will be the same as for its field of fractions. 

Examples 

(1) The fields <Q and JR. both have characteristic 0: ch(<Ql) = ch(IR.) = 0. The integral 
domain Z also has characteristic 0. 

(2) The (finite) field IF' P = Zj pZ has characteristic p for any prime p. 
(3) The integral domain IF' P [ x] of polynomials in the variable x with coefficients in the 

field IF' P has characteristic p, as does its field of fractions IF' P (x) (the field of rational 
functions in x with coefficients in IF' P ). 

If we define ( -n) · 1 F  = -(n · 1F )  for positive n and 0 · 1 F  = 0, then we have a 
natural ring homomorphism (by equation ( 1 )) 

cp : 7l -----"' F 
n �----+ n · 1 F  

and we can interpret the characteristic of F by noting that ker(cp) = ch(F)'ll. Taking 
the quotient by the kernel gives us an injection of either 7l or 'llj p'll into F (depending 
on whether ch(F) = 0 or ch(F) = p). Since F is a field, we see that F contains a 
subfield isomorphic either to Q (the field of fractions of 'll) or to lF P = 'llj p'll (the field 
of fractions of 'llj p'll) depending on the characteristic of F, and in either case is the 
smallest subfield of F containing 1 F (the field generated by 1 F in F). 

Definition. The prime subfield of a field F is the subfield of F generated by the 
multiplicative identity 1 F  of F. It is (isomorphic to) either Q (if ch(F) = 0) or 1Fp (if 
ch(F) = p). 

Remark: We shall usually denote the identity 1F of a field F simply by 1 .  Then in 
a field of characteristic p, one has p · 1 = 0, frequently written simply p = 0 (for 
example, 2 = 0 in a field of characteristic 2). It should be kept in mind, however, that 
this is a shorthand statement - the element "p" is really p · 1 F and is not a distinct 
element in F. This notation is useful in light of the second statement in Proposition 1 .  

Examples 

(1) The prime subfield of both <Q and JR. is <Q. 
(2) The prime subfield of the field IF'p(x) is isomorphic to IF'p, given by the constant 

polynomials. 

Definition. If K is a field containing the sub field F, then K is said to be an extension 
field (or simply an extension) of F, denoted K f F or by the diagram 

K 

I 
F 

In particular, every field F is an extension of its prime sub field. The field F is sometimes 
called the base field of the extension. 
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The notation KIF for a field extension is a shorthand for "K over F" and is not 
the quotient of K by F. 

If KIF is  any extension of fields, then the multiplication defined in K makes K 
into a vector space over F. In particular every field F can be considered as a vector 
space over its prime field. 

Definition. The degree (or relative degree or index) of a field extension KIF, denoted 
[K : F], is the dimension of K as a vector space over F (i.e., [K : F] = dimF K). The 
extension is said to be finite if [K : F] is finite and is said to be infinite otherwise. 

An important class of field extensions are those obtained by trying to solve equations 
over a given field F. For example, if F = � is the field of real numbers, then the simple 
equation x2 + 1 = 0 does not have a solution in F. The question arises whether there is 
some larger field containing � in which this equation does have a solution, and it was 
this question that led Gauss to introduce the complex numbers C = � + �i , where i is 
defined so that i2 + 1 = 0. One then defines addition and multiplication in C by the 
usual rules familiar from elementary algebra and checks that in fact C so defined is a 
field, i.e., it is possible to find an inverse for every nonzero element of C. 

Given any field F and any polynomial p(x) E F[x] one can ask a similar question: 
does there exist an extension K of F containing a solution of the equation p(x) = 0 
(i.e., containing a root of p(x))? Note that we may assume here that the polynomial 
p(x) is irreducible in F[x] since a root of any factor of p(x) is certainly a root of 
p(x) itself. The answer is yes and follows almost immediately from our work on the 
polynomial ring F[x] . We first recall the following useful result on homomorphisms 
of fields (Corollary 10 of Chapter 7) which follows from the fact that the only ideals of 
a field F are 0 and F. 

� 
Proposition 2. Let ifJ : F --+ F' be a homomorphism of fields. Then ifJ is either 
identically 0 or is injective, so that the image of ifJ is either 0 or isomorphic to F. 

Theorem 3. Let F be a field and let p(x) E F[x] be an irreducible polynomial. Then 
there exists a field K containing an isomorphic copy of F in which p(x) has a root. 
Identifying F with this isomorphic copy shows that there exists an extension of F in 
which p(x) has a root. 

Proof: Consider the quotient 

K = F[x]l(p(x)) 

of the polynomial ring F[x] by the ideal generated by p(x ) . Since by assumption p(x) is 
an irreducible polynomial in the P.I.D. F[x], the ideal (p(x)) is a maximal ideal. Hence 
K is actually afield (this is Proposition 12  of Chapter 7). The canonical projection n 
of F[x] to the quotient F[x]l(p(x)) restricted to F C F[x] gives a homomorphism 
ifJ = n iF : F --+ K which is not identically 0 since it maps the identity 1 of F to the 
identity 1 of K.  Hence by the proposition above, ({J(F) � F is an isomorphic copy 
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of F contained in K.  We identify F with its isomorphic image in K and view F as a 
subfield of K. If x = rr(x) denotes the image of x in the quotient K, then 

p(x) = p(x) 
= p(x) (mod p(x)) 
= 0  

(since rr is a homomorphism) 

in F[x]/(p(x)) 
in F[x]j(p(x)) 

so that K does indeed contain a root of the polynomial p(x) . Then K is an extension 
of F in which the polynomial p(x) has a root. 

We shall use this result later to construct extensions of F containing all the roots 
of p(x) (this is the notion of a splitting field and one of the central objects of interest in 
Galois theory). 

To understand the field K = F[x]j(p(x)) constructed above more fully, it is useful 
to have a simple representation for the elements of this field. Since F is a subfield of 
K, we might in particular ask for a basis for K as a vector space over F. 

Theorem 4. Let p(x) E F[x] be an irreducible polynomial of degree n over the field 
F and let K be the field F[x]j(p(x)) . Let (} = x mod (p(x)) E K. Then the elements 

1 , (}, (}2 , . . .  ' e
n-1 

are a basis for K as a vector space over F, so the degree of the extension is n, i.e., 
[K : F] = n. Hence 

K = {ao + a18 + a282 + · · · + an-1en- l  I ao , a1 , . . .  , an- 1  E F} 
consists of all polynomials of degree < n in (} .  

Proof Let a(x) E F[x] be any polynomial with coefficients in F. Since F[x] i s  a 
Euclidean Domain (this is Theorem 3 of Chapter 9), we may divide a(x) by p(x) : 

a(x) = q (x)p(x) + r (x) q (x) , r(x) E F[x] with deg r (x) < n. 
Since q(x)p(x) lies in the ideal (p(x)) , it follows that a(x) = r(x) mod (p(x)), which 
shows that every residue class in F[x]j(p(x)) is represented by a polynomial of degree 
less than n. Hence the images 1 ,  (},  (}2 , . . . , en-1 of 1 ,  X, x2 , . . .  , xn-1 in the quotient 
span the quotient as a vector space over F. It remains to see that these elements are 
linearly independent, so form a basis for the quotient over F. 

If the elements 1 , 8, 82 , • • .  , en- l  were not linearly independent in K, then there 
would be a linear combination 

bo + b18 + b282 + · · · + bn- 1en- 1 = 0 

in K, with bo, b1 , . . . , bn-1 E F, not all 0. This is equivalent to 

I.e. ,  

bo + b1x + b2x2 + · · · + bn-1Xn- l = O mod (p(x)) 

p(x) divides bo + b1x + b2x2 + · · · + bn_ 1xn-l 
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in F[x]. But this is impossible, since p(x) is of degree n and the degree of the nonzero 
polynomial on the right is < n .  This proves that 1 ,  e ,  e2 , . . .  , en-t are a basis for K 
over F, so that [K : F] = n by definition. The last statement of the theorem is clear. 

This theorem provides an easy description of the elements of the field F [ x ]/ (p (x)) 
as polynomials of degree < n in e  where e is an element (in K) with p(e) = 0. It 
remains only to see how to add and multiply elements written in this form. The addition 
in the quotient F[x ]/ (p(x)) is just usual addition of polynomials. The multiplication 
of polynomials a(x) and b(x) in the quotient F[x]j(p(x)) is performed by finding the 
product a (x)b(x) in F[x], then finding the representative of degree < n for the coset 
a(x)b(x) + (p(x)) (as in the proof above) by dividing a(x)b(x) by p(x) and finding 
the remainder. 

This can also be done easily in terms of e as follows: We may suppose p(x) is 
monic (since its roots and the ideal it generates do not change by multiplying by a 
constant), say p(x) = xn + Pn-tXn-l + · · · + PtX + po. Then in K,  since p(e) = 0, 
we have 

en = -(Pn-len- t + · · · + Pte + Po) 
i.e., en is a linear combination of lower powers of e .  Multiplying both sides by e and 
replacing the en on the right hand side by these lower powers again, we see that also 
en+t is a polynomial of degree < n in e .  Similarly, any positive power of e can be 
written as a polynomial of degree < n in e, hence any polynomial in e can be written 
as a polynomial of degree < n in-8 . Multiplication in K is now easily performed: one 
simply writes the product of two polynomials of degree < n in e as another polynomial 
of degree < n in e . 

We summarize this as: 

Corollary 5. Let K be as in Theorem 4, and let a(e) ,  b(e) E K be two polynomials of 
degree < n in e. Then addition in K is defined simply by usual polynomial addition 
and multiplication in K is defined by 

a(e)b(e) = r(e) 
where r(x) is the remainder (of degree < n) obtained after dividing the polynomial 
a(x)b(x) by p(x) in F[x] . 

) 
By the results proved above, this definition of addition and multiplication on the 

polynomials of degree < n in e make K into a field, so that one can also divide by 
nonzero elements as well, which is not so immediately obvious from the definitions of 
the operations. 

It is also important in Theorem 4 that the polynomial p(x) be irreducible over F. In 
general the addition and multiplication in Corollary 5 (which can be defined in the same 
way for any polynomial p(x)) do not make the polynomials of degree < n in e  into a 
field if p(x) is not irreducible. In fact, this set is not even an integral domain in general 
(its structure is given by Proposition 16 of Chapter 9). To describe the field containing 
a root e of a general polynomial f(x) over F, f(x) is factored into irreducibles in F[x] 
and the results above are applied to an irreducible factor p(x) of f(x) having e as a 
root. We shall consider this more in the following sections. 
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Examples 

(1) If we apply this construction to the special case F = IR and p(x) = x2 + 1 then we 
obtain the field 

IR[x]/(x2 + 1)  

which is  an extension of degree 2 of IR in  which x2 + 1 has a root. The elements of 
this field are of the form a + he for a ,  b E IR. Addition is defined by 

(a + be) + (c + d(}) = (a + c) + (b + d)(}. ( 13 .2a) 

To multiply we use the fact that e2 + 1 = 0, i .e., e2 = - 1  in K. (Alternatively, note 
that - 1  is also the remainder when x2 is divided by x2 + 1 in IR[x].) Then 

(a + be)(c + d(}) = ac + (ad + be)(} + bd(}2 

= ac + (ad + be)(} + bd(- 1)  
= (ac - bd) + (ad + be)(} . (13 .2b) 

These are, up to changing (} to i, the formulas for adding and multiplying in C. Put 
another way, the map 

q; : IR[x]j(x2 + I) � C 

a + bx f-+ a + bi 

is a homomorphism. Since it is bijective (as a map of vector spaces over the reals, for 
example), it is an isomorphism. Notice that instead of taking the existence of C for 
granted (along with the fairly tedious verification that it is in fact a field), we could 
have defined C by this isomorphism. Then the fact that it is a field is a consequenc_e 
of Theorem 4. 

(2) Take now F = Q to be the field of rational numbers and again take p(x) = x2 + 1 (still 
irreducible over Q, of course). Then the same construction, with the same addition and 
multiplication formulas as (2a) and (2b) above, except that now a and b are elements 
of Q, defines a field extension Q(i)  of Q of degree 2 containing a root i of x2 + 1 .  

(3) Take F = Q and p(x) = x2 - 2, irreducible over Q by Eisenstein's Criterion, for 
example. Then we obtain a field extension of Q of degree 2 containing a square root 
(} of 2, denoted Q(O) .  If we denote (} by -./2, the elements of this field are of the form 

with addition defined by 

a + bh, a, b E Q  

(a + bh )  + (c + d..fi )  = (a + c) +  (b + d)h 

and multiplication defined by 

(a + b../i ) (c + d../2) = (ac + 2bd) + (ad + bc)../2. 

(4) Let F = Q and p(x) = x3 - 2, irreducible again by Eisenstein. Denoting a root of 
p(x) by (} ,  we obtain the field 

Q[x]j(x3 - 2) � {a +  b(} + ce2 I a , b, c E Q} 

with e3 = 2, an extension of degree 3. To find the inverse of, say, 1 + e in this field, 
we can proceed as follows: By the Euclidean Algorithm in Q[ x] there are polynomials 
a(x) and b(x) with 

a(x)( l + x) + b(x) (x3 - 2) = 1 
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(since p(x) = x3 - 2 is irreducible, it is relatively prime to every polynomial of smaller 
degree). In the quotient field this equation implies that a(e) is the inverse of 1 + e. 

In this case, a simple computation shows that we can take a(x) = l <x2 - x + 1) (and 

b(x) = -l), so that 
e2 - e + 1 

(1 + e)-1 = ---:-----
3 

(5) In general, if e E K is a root of the irreducible polynomial 

p(x) = PnX
n + Pn-1X

n
-

1 + · · · + P1X + PO 

we can compute e -1 E K from 

namely 

e (pnen
-

1 + Pn
-

1 en-2 + · · · + P1 ) = -po 

- 1 - 1  n-1 n-2 e = - (pne + Pn-l e + · · · + PI ) E K 
pO 

(note that po i= 0 since p(x) is irreducible). 

Remark: Determining inverses in extensions of this type may be familiar from elementary 
algebra in the case of <C or Example 3 under the name "rationalizing denominators." The 
last two examples indicates a procedure which is much more general than the ad hoc 
procedures of elementary algebra. 

(6) Take F = lF2, the finite field with two elements, and p(x) = x2 + x + 1 ,  which we 
have previously checked is irreducible over lF2 . Here we obtain a degree 2 extension 
of lF2 

lF2 [x]j(x2 + x + 1)  � {a +  be I a ,  b E  lF2} 

where e2 = -e - 1 = e + 1 .  Multiplication in this field lF2(e) (which contains fo� 

elements) is defined by 

(a + be) (c + de) = ac + (ad + bc)e + bde2 

= ac + (ad + bc)e + bd(e + 1 )  

= (ac + bd) + (ad + be + bd)e. 

(7) Let F = k(t) be the field of rational functions in the variable t over a field k (for 
example, k = Q or k = 1Fp). Let p(x) = x2 - t E F[x].  Then p(x) is irreducible 
(it is Eisenstein at the prime (t) in k[t]). If we denote a root by e,  the corresponding 
degree 2 field extension F(e) consists of the elements 

{a(t) + b(t)e I a(t) ,  b(t) E F} 

where the coefficients a(t) and b(t) are rational functions in t with coefficients in k 
and where e2 = t .  

Suppose F is a subfield of a field K and a E K is an element of K.  Then the 
collection of subfields of K containing both F and a is nonempty (K is such a field, for 
example). Since the intersection of subfields is again a subfield, it follows that there is a 
unique minimal subfield of K containing both F and a (the intersection of all subfields 
with this property). Similar remarks apply if a is replaced by a collection a, {3, . . . of 
elements of K.  
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Definition. Let K be an extension of the field F and let a, {3, · · · E K be a collection 
of elements of K .  Then the smallest subfield of K containing both F and the elements 
a, {3, . . .  , denoted F(a, {3, . . .  ) is called the field generated by a, {3, . . .  over F. 

Definition. If the field K is generated by a single element a over F, K = F (a), then 
K is said to be a simple extension of F and the element a is called a primitive element 
for the extension. 

We shall later characterize which extensions of a field F are simple. In particular we 
shall prove that every finite extension of a field of characteristic 0 is a simple extension. 

The connection between the simple extension F(a) generated by a over F where 
a is a root of some irreducible polynomial p(x) and the field constructed in Theorem 3 
is provided by the following: 

Theorem 6. Let F be a field and let p(x) E F[x] be an irreducible polynomial. Suppose 
K is an extension field of F containing a root a of p(x): p(a) = 0. Let F(a) denote 
the subfield of K generated over F by a. Then 

F(a) � F[x]/(p(x)) .  

Remark: This theorem says that any field over F in which p(x) contains a root contains 
a subfield isomorphic to the extension of F constructed· in Theorem 3 and that this 
field is (up to isomorphism) the smallest extension of F containing such a root. The 
difference between this result and Theorem 3 is that Theorem 6 assumes the existence 
of a root a of p(x) in some field K and the major point of Theorem 3 is proving that 
there exists such an extension field K.  

Proof: There is a natural homomorphism 

cp : F [x] ---+ F(a) � K 
a(x) 1----+ a(a) 

obtained by mapping F to F by the identity map and sending x to a and then extending 
so that the map is a ring homomorphism (i.e., the polynomial a (x) in x maps to the 
polynomial a (a) in a). Since p(a) = 0 by assumption, the element p(x) is in the 
kernel of cp, so we obtain an induced homomorphism (also denoted cp ) : 

cp : F[x]j(p(x)) ---+ F(a). 

But since p(x) is irreducible, the quotient on the left is afield, and cp is not the 0 map 
(it is the identity on F, for example), hence cp is an isomorphism of the field on the left 
with its image. Since this image is then a subfield of F(a) containing F and containing 
a, by the definition of F(a) the map must be smjective, proving the theorem. 

Combined with Corollary 5, this determines the field F(a) when a is a root of an 
irreducible polynomial p(x) :  
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Corollary 7. Suppose in Theorem 6 that p(x) is of degree n. Then 

F(a) = {ao + a1a + a2a2 + · · · + an-I an- I I ao, ab . . .  , an-I E F} 5; K.  

Describing fields generated by more than one element is more complicated and we 
shall return to this question in the following section. 

Examples 

(1) In Example 3 above, we have determined the field Q( -/2 )  generated over Q by the 
element -/2 E IR, having suggestively denoted the abstract solution 0 of the equation 
x2 - 2 = 0 by the symbol -/2, which has an independent meaning in the field lR 
(namely the positive square root of 2 in IR). 

(2) The equation x2 - 2 = 0 has another solution in IR, namely --/2, the negative square 
root of 2 in R The field generated over Q by this solution consists of the elements 
{a + b(--/2) 1 a , b E Q}, and is again isomorphic to the field in Example 3 above 
(hence also isomorphic to the field just considered, the isomorphism given explicitly 
by a + b-/2 1-4 a - b-/2 ). As a subset of lR this is the same set of elements as in 
Example 1 .  

(3) Similarly, i f  we use the symbol V2 to denote the (positive) cube root of 2 i n  IR, then 
the field generated by V2 over Q in lR consists of the elements 

{a + h V2 + c{ V2 )2 1 a , b, c  E Q} 

and is isomorphic to the field constructed in Example 4 above. 
(4) The equation x3 - 2 = 0 has no further solutions in IR, but there are two additional 

I . C . b 3'2 - 1  
+ ;-JJ d 3'2 - I - ;-JJ ( "' d . . so utwns in gtven y v �< 
2 

) an v �< 2 
) v 3 enotmg the post-

tive real square root of 3) as can easily be checked. The fields generated by either of 
these two elements over Q are subfields of C (but not of IR) and are both isomorphic 
to the field constructed in the previous example (and to Example 4 earlier). 

As Theorem 6 indicates, the roots of an irreducible polynomial p(x) are alge
braically indistinguishable in the sense that the fields obtained by adjoining any root 
of an irreducible polynomial are isomorphic. In the last two examples above, the fields 
obtained by adjoining one of the three possible (complex) roots of x3 - 2 = 0 to Q 
were all algebraically isomorphic. The fields were distinguished not by their alge
braic properties, but by whether their elements were real, which involves continuous 
operations. 

The fact that different roots of the same irreducible polynomial have the same 
algebraic properties can be extended slightly, as follows: 

Let ({J : F � F' be an isomorphism of fields. The map ({J induces a ring isomor
phism (also denoted ({J) 

({J : F[x] � F'[x] 
defined by applying ({J to the coefficients of a polynomial in F[x] .  Let p(x) E F[x] 
be an irreducible polynomial and let p'(x) E F'[x] be the polynomial obtained by 
applying the map ({J to the coefficients of p(x), i.e., the image of p(x) under ([J. The 
isomorphism ({J maps the maximal ideal (p ( x)) to the ideal (p' ( x)), so this ideal is also 
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maximal, which shows that p'(x) is also irreducible in F'[x]. The following theorem 
shows that the fields obtained by adjoining a root of p(x) to F and a root of p'(x)  to 
F' have the same algebraic structure (i.e., are isomorphic): 

Theorem 8. Let ({J : F � F' be an isomorphism of fields. Let p(x) E F[x] be an 
irreducible polynomial and let p'(x) E F'[x] be the irreducible polynomial obtained 
by applying the map ({J to the coefficients of p(x) .  Let a be a root of p(x) (in some 
extension of F) and let {3 be a root of p' (x) (in some extension of F'). Then there is an 
isomorphism 

a : F(a) � F'(/3) 

a t----+ {3 
mapping a to {3 and extending ({J, i.e., such that a restricted to F is the isomorphism fP. 

Proof" As noted above, the isomorphism ({J induces a natural isomorphism from 
F[x] to F'[x]  which maps the maximal ideal (p(x)) to the maximal ideal (p'(x)).  
Taking the quotients by these ideals, we obtain an isomorphism of fields 

F[x]f(p(x)) � F'[x]f(p'(x)) . 

By Theorem 6 the field on the left is isomorphic to F(a) and by the same theorem the 
field on the right is isomorphic to F' ({3). Composing these isomorphisms, we obtain the 
isomorphism a .  It is clear that the restriction of this isomorphism to F is ({J, completing 
the proof. 

This extension theorem will be of considerable use when we consider Galois Theory 
later. It can be represented pictorially by the diagram 

a :  F(a) ---+ F'(/3) 

(/) : 
I I 

F F' 

E X E R C I S E S 

1. Show that p(x) = x3 + 9x + 6 is irreducible in <Q[x].  Let () be a root of p(x). Find qre 
inverse of 1 + 8 in <Q(8).  

2. Show that x3 - 2x - 2 is irreducible over <Q and let (} be a root. Compute ( 1  +8)(1 +8 + 82) 
1 + 8  . tf1\ 

and 
1 + 8 + 82 m "'l(8) . 

3. Show that x3 + x + 1 is irreducible over IF2 and let 8 be a root. Compute the powers of 8 
in IF2 (8) .  

4. Prove directly that the map a + b.../2 � a - b.../2 is an isomorphism of <Q( .../2 ) with itself. 

5. Suppose a is a rational root of a monic polynomial in Z[x ] .  Prove that a is an integer. 

6. Show that if ct is a root of anxn + an-1Xn- 1 + · · · + a1x + ao then anct is a root of the 
monic polynomial xn + an-1Xn- 1 + anan-2Xn-2 + - - - + a�-2atx  + a�-1ao. 

7. Prove that x3 - nx + 2 is irreducible for n f:- - 1 ,  3 ,  5.  
8.  Prove that x5 -ax - 1  E Z[x]  is  irreducible unless a = 0, 2 or -1.  The first two correspond 

to linear factors, the third corresponds to the factorization (x2 - x + 1 ) (x3 + x2 - 1 ) .  
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1 3.2 ALGEBRAIC EXTENSIONS 

Let F be a field and let K be an extension of F. 

Definition. The element a E K is said to be algebraic over F if a is a root of some 
nonzero polynomial f(x) E F[x] .  If a is not algebraic over F (i.e., is not the root of 
any nonzero polynomial with coefficients in F) then a is said to be transcendental over 
F. The extension K / F is said to be algebraic if every element of K is algebraic over 
F. 

Note that if a is algebraic over a field F then it is algebraic over any extension field 
L of F (if f (x) having a as a root has coefficients in F then it also has coefficients in 
L). 

Proposition 9. Let a be algebraic over F. Then there is a unique monic irreducible 
polynomial ma, F (x) E F[x] which has a as a root. A polynomial f(x) E F[x] has a 
as a root if and only if ma. F (x) divides f(x) in F[x]. 

Proof· Let g(x) E F[x] be a polynomial of minimal degree having a as a root. 
Multiplying g(x) by a constant, we may assume g(x) is monic. Suppose g(x) were 
reducible in F[x], say g(x) = a(x)b(x) with a (x) ,  b(x) E F[x] both of degree smaller 
than the degree of g(x). Then g(a) = a (a)b(a) in K, and since K is a field, either 
a(a) = 0 or b(a) = 0, contradicting the minimality of the degree of g(x). It follows 
that g(x) is a monic irreducible polynomial having a as a root. Suppose now that 
f(x) E F[x] is any polynomial having a as a root. By the Euclidean Algorithm in 
F[x] there are polynomials q (x), r(x) E F[x] such that 

f(x) = q (x)g(x) + r (x) with deg r (x) < deg g(x) .  
Then f(a) = q(a)g(a) + r (a) in K and since a is  a root of ooth f(x) and g(x), we 
obtain r(a) = 0, which contradicts the minimality of g(x) unless r(x) = 0. Hence 
g(x) divides any polynomial f (x) in F[x] having a as a root and, in particular, would 
divide any other monic irreducible polynomial in F[x] having a as a root. This proves 
that ma, F (x) = g (x) is unique and completes the proof of the proposition. 

Corollary 10. If Lj F is an extension of fields and a is algebraic over both F and L, 
then ma.dx) divides ma, F (x) in L[x] . 

Proof' Thi'� is immediate from the second statement in Proposition 9 applied to L, 
since ma, F (x) is a polynomial in L [x] having a as a root. 

Definition. The polynomial ma, F (x) (or just ma (x) if the field F is understood) in 
Proposition 9 is called the minimal polynomial for a over F. The degree of ma(x) is 
called the degree of a. 

Note that by the proposition, a monic polynomial over F with a as a root is the 
minimal polynomial for a over F if and only if it is irreducible over F. Exercise 20 

520 Chap. 13 Field Theory 



gives one method for computing the minimal polynomial for a over F, and the theory 
of Grobner bases can be used to compute the minimal polynomial for other elements 
in F(a) (cf. Proposition 10 and Exercise 48 in Section 15 . 1 ). 

Proposition 11. Let a be algebraic over the field F and let F(a) be the field generated 
by a over F. Then 

F(a) � F[x]l(ma (x)) 

so that in particular 
[F(a) : F] = deg ma (x) = deg a, 

i .e. , the degree of a over F is the degree of the extension it generates over F. 

Proof: This follows immediately from Theorem 6. · 
Examples 

(1) The minimal polynomial for ./2 over Q is x2 - 2 and ./2 is of degree 2 over Q: 
[Q(./2 ) : Q] = 2. 

(2) The minimal polynomial for V2 over Q is x3 - 2 and V2 is of degree 3 over Q: 
[Q( V2) : Q] = 3. 

(3) Similarly, for any n > 1,  the polynomial xn - 2 is irreducible over Q since it is 
Eisenstein. Denoting a root of this polynomial by ::/2 (where as usual we reserve this 
symbol to denote the positive nth root of 2 if we want to view this root as an element 
of IR, and where the symbol denotes any one of the algebraically indistinguishable 
abstract solutions in general), we have [Q( ::/2) : Q] = n. 

(4) The minimal polynomial and the degree of an element ex depend on the base field. 
For example, over IR, the el�ment ::/2 is of degree one, with minimal polynomial 
m 0.nt

(x) = x - ::/2. 
(5) Consider the polynomial p (x) = x3 - 3x - 1 over Q, which is irreducible over Q 

since it is a cubic which has no rational root ( cf. Proposition 1 1 of Chapter 9). Hence 
[Q(cx) : Q] = 3 for any root ex of p(x).  For future reference we note that a quick 
sketch of the graph of this function over the real numbers shows that the graph crosses 
the x-axis precisely once in the interval [0,2], i.e., there is precisely one real number 
ex ,  0 < ex  ( 2 satisfying cx3 - 3cx - 1 = 0. 

Proposition 12. The element a is algebraic over F if and only if the simple extension 
F (a) IF is finite. More precisely, if a is an element of an extension of degree n over F 
then a satisfies a polynomial of degree at most n over F and if a satisfies a polynomial 
of degree n over F then the degree of F(a) over F is at most n.  

Proof' If a is algebraic over F, then the degree of the extension F (a) IF is the 
degree of the minimal polynomial for a over F. Hence the extension is finite, of degree 
::5 n if a satisfies a polynomial of degree n. Conversely, suppose a is an element of 
an extension of degree n over F (for example, if [F(a) : F] = n). Then the n + 1 
elements 

Sec. 1 3.2 Algebra ic Extensions 521 



of F(a) are linearly dependent over F, say 

bo + ha + b2a2 
+ · · · + bnan = 0 

with bo, b1 , b2 , . . .  , bn E F not all 0. Hence a is the root of a nonzero polynomial with 
coefficients in F (of degree :::::: n), which proves a is algebraic over F and also proves 
the second statement of the proposition. 

Corollary 13. If the extension K f F is finite, then it is algebraic. 

Proof If a E K, then the subfield F(a) is in particular a subspace of the vector 
space K over F. Hence [F(a) : F] :::::: [K : F] and so a is algebraic over F by the 
proposition. 

Remark: We shall prove below a sort of converse to this result (Theorem 17), but note 
that there are infinite algebraic extensions (we shall have an example later), so the literal 
converse of this corollary is not true. 

Example: (Quadratic Extensions m·�! Fields of Characteristic ':f:. 2) 

Let F be a field of characteristic i= 2 (for example, any field of characteristic 0, such as Q) 
and let K be an extension of F of degree 2, [K : F] = 2. Let a be any element of K not 
contained in F. By the proposition above, a satisfies an equation of degree at most 2 over 
F. This equation cannot be of degree 1 ,  since a is not an element of F by assumption. It 
follows that the minimal polynomial of a is a monic quadratic 

ma(x) = x2 + bx + c  b, c E F. 

Since F c F(a) � K and F(a) is already a vector space over F of dimension 2, we have 
K = F(a). 

The roots of this quadratic equation can be determined by the quadratic formula, which 
is valid over any field of characteristic i= 2 (the formula is obtained as in elementary algebra 
by completing the square): 

-b ± .Jb2 - 4c 
a =  

2 
(the reason for requiring the cha�:acteristic of F not be 2 is that we must divide by 2). Here 
b2 -4c is not a square in F since a is not an element of F and the symbol .J b2 - 4c denotes 
a root of the equation x2 - (b2 - 4c) = 0 in K (see the end of the next paragraph). Note 
that here there is no natural choice of one of the roots analogous to choosing the positive 
square root of 2 in IR - the roots are algebraically indistinguishable. 

Now F(a) = F(.Jb2 - 4c ) as follows: by the formula above, a is an element of the 
field on the right, hence F(a) � F(.Jb2 - 4c ) . Conversely, .Jb2 - 4c = =J=(b+2a) shows 
that .Jb2 - 4c is an element of F(a), which gives the reverse inclusion F(.Jb2 - 4c ) � 

F(a) (and incidentally shows that the equation x2 - (b2 - 4c) = 0 does have a solution in 
K). 

It follows that any extension K of F of degree 2 is of the form F ( -/i5) where D is 
an element of F which is not a square in F, and conversely, every such extension is an 
extension of degree 2 of F. For this reason, extensions of degree 2 of a field F are called 
quadratic extensions of F. 
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Suppose that F is a subfield of a field K which in tum is a subfield of a field L. 
Then there are three associated extension degrees - the dimension of K and L as vector 
spaces over F, and the dimension of L as a vector space over K. 

Theorem 14. Let F � K � L be fields. Then 

[L : F] = [L : K][K : F], 
i.e. extension degrees are multiplicative, where if one side of the equation is infinite, 
the other side is also infinite. Pictorially, 

[L:F] 

F c K c L 
..__,.._ '-v-

[K :F] [L:K] 

Proof· Suppose first that [L : K] = m and [K : F] = n are finite. Let 
a1 , az , . . .  , am be a basis for L over K and let flt , fh . . .  , fJn be a basis for K over F. 
Then every element of L can be written as a linear combination 

a1a1 + azaz + · · · + amam 

where a1 , . . .  , am are elements of K, hence are F -linear combinations of fJ1 ,  . . . , fJn : 
i = 1 , 2, . . .  , m ( 13 .3) 

where the b;j are elements of F. Substituting these expressions in for the coefficients 
a; above, we see that every element of L can be written as a linear combination 

L bijaifJj 
i=l,2, . . .  ,m 
j=l ,2, . . .  ,n 

of the mn elements a; fJj with coefficients in F. Hence these elements span L as a 
vector space over F.  

Suppose now that we had a linear relation in L 

L b;jai {Jj = 0 
i=l ,2, . . .  ,m j=l,2, . . .  ,n 

with coefficients bij in F. Then defining the elements a; E K by equation (3) above, 
this linear relation could be written 

a1a1 + azaz + · · · + am am = 0. 

Since the a; are a basis for L over K, it follows that all the coefficients a; ,  i = 1 ,  2, . . .  , m 
must be 0, i.e., that 

i = 1 ,  2, . . .  , m 

in K.  Since now the {Jj , j = 1 ,  2, . . .  , n form a basis for K over F, this implies bij = 0 
for all i and j .  Hence the elements a; fJj are linearly independent over F, so form a 
basis for L over F and [L : F] = mn = [L : K][K : F], as claimed. 
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If [K : F] is infinite, then there are infinitely many elements of K, hence of L, 
which are linearly independent over F, so that [L : F] is also infinite. Similarly, if 
[L : K] is infinite, there are infinitely many elements of L linearly independent over K, 
so certainly linearly independent over F, so again [L : F] is infinite. Finally, if [L : K] 
and [K : F] are both finite, then the proof above shows [L : F] is finite, so that [L : F] 
infinite implies at least one of [L : K] and [K : F] is infinite, completing the proof. 

Remark: Note the similarity of this result with the result on group orders proved in Part I. 
As with diagrams involving groups we shall frequently indicate the relative degrees of 
extensions in field diagrams. 

The multiplicativity of extension degrees is extremely useful in computations. A 
particular application is the following: 

Corollary 15. Suppose L/ F is a finite extension and let K be any subfield of L 
containing F, F � K � L. Then [K : F] divides [L : F]. 

Proof: This is immediate. 

Examples 

(1) The element .J2 is not contained in the field Q(a) where a is the real root of x3 - 3x - 1  
between 0 and 2, since we have already determined that [Q( .J2 )  : Q] = 2 and 
[Q(a) : Q] = 3 and 2 does not divide 3. Note that it is not so easy to prove directly 
that .J2 cannot be written as a rational linear combination of 1 , a, a2 . 

(2) Let as usual lfi denote the positive real 6th root of 2. Then [Q( lfi )  : Q] = 6. Since 

( lfi )3 = .J2 we have Q( .J2 ) c Q( lfi )  and by the multiplicativity of extension 
degrees, [Q( lfi )  : Q( .J2)]  = 3. This gives us the field diagram 

6 

c c 
'--,.--' 

2 3 

Q( lfi )  

In particular, this shows that the minimal polynomial for lfi over Q( .J2)  is of degree 3. 
It is therefore the polynomial x3 - ./2. Note that showing directly that this polynomial 
is irreducible over Q( .J2 )  is not completely trivial. 

By Theorem 14 a finite extension of a finite extension is finite. The next results 
use this to show that an extension generated by a finite number of algebraic elements is 
finite (extending Proposition 12). 

Definition. An extension K / F is finitely generated if there are elements a1 , a2 , . . .  , ak 
in K such that K = F(a1 , a2 , . . .  , ak) . 

Recall that the field generated over F by a collection of elements in a field K is 
the smallest subfield of K containing these elements and F. The next lemma will show 
that for finitely generated extensions this field can be obtained recursively by a series 
of simple extensions. 

524 Chap. 1 3  Field Theory 



Lemma 16. F(a, fJ) = (F(a))(f.J), i.e., the field generated over F by a and f3 is the 
field generated by f3 over the field F(a) generated by a. 

Proof" This follows by the minimality of the fields in question. The field F(a, f.J) 
contains F and a, hence contains the field F(a), and since it also contains f.J, we have 
the inclusion (F(a)) (/3) £;; F(a, f.J) by the minimality of the field (F(a))(f.J). Since the 
field (F(a)) (f.J) contains F, a and f.J, by the minimality of F(a, f.J) we have the reverse 
inclusion F(a, f.J) £;; (F(a)) (f.J), which proves the lemma. 

By the lemma we have 

K = F(at , a2 , . . .  , ak) = (F(at , a2 , . . .  , ak-1 ))(ak) 
and so by iterating, we see that K is obtained by taking the field Ft generated over F 
by at , then the field F2 generated over F1 (this is important) by a2, and so on, with 
Fk = K. This gives a sequence of fields: 

F = Fo £;; Ft £;; F2 £;; · · · f; Fk = K 

where 
i = 0, 1 ,  . . .  ' k - 1 .  

Suppose now that the elements a1 , a2 , . . .  , ak are algebraic over F of degrees 
n 1 , n2 , . . . , nk (so a priori are algebraic over any extension of F). Then the extensions 
in this sequence are simple extensions of the type considered in Proposition 1 1 . The 
relative extension degree [F;+l : Fd is equal to the degree of the minimal polynomial 
of a;+l over F; ,  which is at most n;+1 (and equals n;+l if and only if the minimal 
polynomial of ai+1 over F remains irreducible over F; ). By the multiplicativity of 
extension degrees, we see that 

[K : F] = [Fk : Fk-tUFk-l : Fk-2] · · · [Ft : Fo] 
is also finite, and :::: n 1n2 · · · nk . 

This also gives a description of the elements of F(at . a2 , . . .  , ak) .  For simplicity, 
consider the case of the field F(a, f.J) where a and f3 are algebraic over F. Then the 
elements of this field are of the form 

bo + btf3 + b2f.J2 + · · · + bd-lf.Jd- l 

where d = [F(a)(/3) : F(a)] is the degree of f3 over F(a) (which may be strictly 
smaller than the degree of f3 over F), and where the coefficients b0, b1 , . . .  , bd-1 are 
elements of F(a). The coefficients b; E F(a), i = 0, . . .  , d - 1 ,  are of the form 

2 n-1 ao; + alia + a2;a + · · · + an-1ia 
where n = [ F (a) : F] is the degree of a over F and the aii are elements of F. Hence 
the elements of F(a, f.J) are of the form 

L aiiaif.Jj aii E F. 
i=0, 1 , . . . ,n-l 
j=0, 1 , . . . ,d-1 

Since [F(a, f.J) : F] = [F(a, f.J) : F(a)][F(a) : F] = dn, the elements ai f.Jj are in 
fact an F basis for F(a, f.J). 
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In practice the field F(a) generated by the algebraic a is obtained by adjoining 
the element a to F and then "closing" the resulting set with respect to addition and 
multiplication, which amounts to adjoining the powers a2 , a3 , . . .  of a and taking linear 
combinations (with coefficients from F) of these elements. The process terminates 
when a power of a is a linear combination of lower powers of a which amounts to 
knowing the minimal polynomial for a .  The previous discussion shows a similar process 
gives the field F(a, fJ) generated by two elttments, and by recursion, the field generated 
by any finite number of algebraic elements. This shows in particular that "closing" 
with respect to addition and multiplication also closes with respect to division for 
algebraic elements ( cf. Example 5 following Corollary 5 above). If the elements are not 
algebraic, one must also "close" with respect to inverses. The difficulty in this procedure 
is determining the degrees of the relative extensions - for example the degree d for 
F(a, fJ) over F(a) above, for which one has only an a priori upper bound (the degree 
of fJ over F). 

This is the analogue of "closing" a set of elements in a group G to determine the 
subgroup they generate. 

Examples 

(1) The extension Ql( t/2 ,  ./2) is simply the extension Ql( t/2 )  since ./2 is already an 
element of this field. Put another way, the degree d of ./2 over Q( t/2) is 1, which 
is strictly smaller than the degree of ./2 over Q. We shall later have less obvious 
examples where this occurs. 

(2) Consider the field Ql( ./2 ,  -J3 )  generated over Q by ./2 and -JJ. Since -J3 is of 
degree 2 over Q the degree of the extension Ql( ./2 ,  -J3 )  /Ql( ./2) is at most 2 and is 
precisely 2 if and only if x2 - 3 is irreducible over Ql( ./2). Since this polynomial is of 
degree 2, it is reducible only if it has a root, i.e., if and only if -J3 E Ql( ./2 ) . Suppose 
-J3 = a +  b./2 with a, b E  Ql. Squaring this we obtain 3 = (a2 + 2b2) + 2ab./2. If 
ab =I 0, then we can solve this equation for ./2 in terms of a and b which implies that 
./2 is rational, which it is not. If b = 0, then we would have that -J3 = a is rational, a 
contradiction. Finally, if a = 0, we have -J3 = b./2 and multiplying both sides by ./2 
we see that ./6 would be rational, again a contradiction. This shows -J3 ¢ Ql( ./2 ), 
proving 

[Q( h ' ./3) : Q] = 4. 
Elements in this field (by "closing " 1, ./2 , -J3) include 1, ./2 , -J3 , ./6 and by the 
computations above, these form a basis for this field: 

Q( h ,  -J3 ) = {a +  bh + c./3 + d../6 I a, b, c, d E Q}. 

We can now characterize the finite extensions of a field F: 

Theorem 17. The extension Kj F is finite if and only if K is generated by a finite 
number of algebraic elements over F. More precisely, a field generated over F by a 
finite number of algebraic elements of degrees n 1 , nz , . . .  , nk is algebraic of degree 
.::: n 1n2 · · · nk . 

Proof" If K / F is finite of degree n, let a1 , az , . . .  , an be a basis for K as a vector 
space over F. By Corollary 15,  [F(a; ) :  F] divides [K : F] = n for i = 1 ,  2, . . .  , n, so 
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that Proposition 12 implies each a; is algebraic over F. Since K is obviously generated 
over F by at , a2 , . . .  , an , we see that K is generated by a finite number of algebraic 
elements over F.  The converse was proved above. The second statement of the theorem 
is immediate from Corollary 13  and the computation above. 

The first example above shows that the inequality for the degree of the extension 
given in the theorem may be strict. We remark that information helpful in the determi
nation of this degree can often be obtained by determining subfields and then applying 
Corollary 15 .  

Corollary 18. Suppose a and /3 are algebraic over F. Then a ± /3, af3, aff3 (for f3 f:. 0), 
(in particular a-1 for a f:. 0) are all algebraic. 

Proof All of these elements lie in the extension F(a, /3),  which is finite over F by 
the theorem, hence they are algebraic by Corollary 13 .  

Corollary 19. Let Lf F be an arbitrary extension. Then the collection of elements of 
L that are algebraic over F form a subfield K of L. 

Proof This is immediate from the previous corollary. 

Examples 

(1) Consider the extension CjQ and let ij denote the subfield of all elements in C that are 
algebraic over Q. In particular, the elements :.:/2 (the positive nth roots of 2 in JR) are 
all elements of ij, so that [ij : Q] ::: n for all integers n > l . Hence ij is an infinite 
algebraic extension of Q, called the field of algebraic numbers. 

(2) Consider the field ij n JR, the subfield of lR consisting of elements algebraic over Q. 
The field Q is countable. The number of polynomials in Q[x] of any given degree 
n is therefore also countable (since such a polynomial is determined by specifying 
n + 1 coefficients from Q). Since these polynomials have at most n roots in JR, the 
number of algebraic elements of lR of degree n is countable. Finally, the collection of 
all algebraic elements in lR is the countable union (indexed by n) of countable sets, 
hence is countable. Since lR is uncountable, it follows that there exist (in fact many) 
elements of lR which are not algebraic, i.e., are transcendental, over Q. In particular 
the subfield ij n lR of algebraic elements of lR is a proper subfield of lR, so also Q is a 
proper subfield of C. 

It is extremely difficult in general to prove that a given real number is not algebraic. 
For example, it is known (these are theorems) that rr = 3. 14159 . . . and e = 2.71 828 . . . 
are transcendental elements of JR. Even the proofs that these elements are not rational 
are not too easy. 

Theorem 20. If K is algebraic over F and L is algebraic over K, then L is algebraic 
over F. 

Proof Let a be any element of L.  Then a is algebraic over K, so a satisfies some 
polynomial equation 
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where the coefficients ao , a1 , . . . , an are in K .  Consider the field F(a, ao , a1 , . . .  , an) 
generated over F by a and the coefficients of this polynomial. Since KIF is algebraic, 
the elements ao , a1 , . . . , an are algebraic over F, so the extension F (ao , a1 , . . .  , an)/ F 
is finite by Theorem 17. By the equation above, we see that a generates an extension 
of this field of degree at most n, since its minimal polynomial over this field is a divisor 
of the polynomial above. Therefore 

[F(a, ao , a1 , . . .  , an) : F] = [F(a, ao , . . . , an) : F(ao , . . .  , an)] [F(ao , . . .  , an) : F] 

is also finite and F(a, ao , a1 , . . . , an)/F is an algebraic extension. In particular the 
element a is algebraic over F, which proves that L is algebraic over F. 

The subfield F(at , a2 , • • •  , ak) generated by a finite set of elements a1 , a2 , . . .  , ak 
of a field K contains each of the fields F (a; ) , i = 1 ,  2, . . .  , k. By the definitions, it is 
also the smallest subfield of K containing these fields. 

Definition. Let K 1 and K 2 be two subfields of a field K. Then the composite field 
of K1 and K2, denoted K1 K2,  is the smallest subfield of K containing both K1 and 
K2• Similarly, the composite of any collection of subfields of K is the smallest sub field 
containing all the subfields. 

Note that the composite K1 K2 can also be described as the intersection of all the 
subfields of K containing both K 1 and K2 and similarly for the composite of more than 
two fields, analogous to the subgroup generated by a subset of a group ( cf. Section 2.4 ). 

Example 

The composite of the two fields Q( .j2) and Q( V2 ) is the field Q( .tf2).  This is because this 
field contains both of these subfields ( ( .tf2 )3 = .j2 and ( .tf2 )2 = Vi ) and conversely, 
any field containing both .j2 and V2 contains their quotient, which is .tf2. 

Suppose now that Kt and K2 are finite extensions of F in K. Let a1 , a2 , . . .  , an 
be an F-basis for Kt and let ,81 , ,82 , . . .  , .Bm be an F -basis for K2 (so that [Kt : F] = n 
and [K2 : F] = m). Then it is clear that these give generators for the composite K1 K2 
over F: 

Kt Kz = F(at , az , . . .  , an , ,81 , .Bz , . . . , .Bm) .  

Since a1 , a2 , . . . , an i s  an F-basis for K 1  any power a /  of one of the a's is a linear 
combination with coefficients in F of the a's and a similar statement holds for the ,B's. 
It follows that the collection of linear combinations 

L a;jai,Bj 
i=l ,2, . . .  ,n 
j=l ,2, . . .  ,m 

with coefficients in F is closed under multiplication and addition since in a product 
of two such elements any higher powers of the a's and ,B 's can be replaced by linear 
expressions. Hence, the elements a; ,Bj for i = 1 , 2, . . . , n and j = 1 ,  2, . . .  , m span 
the composite extension K 1 K 2 over F. In particular, [ K 1 K 2 : F] � mn. We summarize 
this as: 
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Proposition 21. Let K1 and K2 be two finite extensions of a field F contained in K. 
Then 

with equality if and only if an F -basis for one of the fields remains linearly independent 
over the other field. If a1 , a2 , . . . , an and f3t , fh , . . . , f3m are bases for Kt and K2 over 
F, respectively, then the elements a; /3i for i = 1 ,  2, . . .  , n and j = 1 ,  2, . . .  , m span 
K1 K2 over F. 

Proof" From K1 K2 = F(ai ,  a2 , . . . , an , f3t , fJ2 , . . . , f3m) = Kt (f3t , /32, . . . , f3m) , 
we see as above that f3t , f3z , . . .  , f3m span K1 K2 over Kt . Hence [K1 K2 : Kd � m = 
[K2 : F] with equality if and only if these elements are linearly independent over K1 . 
Since [Kt K2 : F] = [K1 Kz : Kd [Kt : F] this proves the proposition. 

By the proposition (and its proof), we have the following diagram: 

Kt Kz 

�y � n 
Kt Kz 

� /m  
F 

We shall have examples shortly where the inequality in the proposition is strict. 
One useful situation where one can be certain of equality is the following: 

Corollary 22. Suppose that [K1 : F] = n, [K2 : F] = m in Proposition 21 ,  where n 
and m are relatively prime: (n , m) = l .  Then [K1 K2 : F] = [Kt : F][K2 : F] = nm. 

Proof" In general the extension degree [K1 K2 : F] is divisible by both n and 
m since Kt and K2 are subfields of K1 K2, hence is divisible by their least common 
multiple. In this case, since (n , m) = 1 ,  this means [K1 K2 : F] is divisible by nm, 
which together with the inequality [K1 K2 : F] :::: nm of the proposition proves the 
corollary. 

Example 

The composite of the two fields Q( .J2) and Q( 0 )  is of degree 6 over Q, which we 
determined earlier by actually computing the composite Q( .tf2 ). 

E X E R C I S E S  

1. Let IF be a finite field of characteristic p.  Prove that llFI = p
n for some positive integer n. 

2. Let g(x) = x2 + x - 1 and let h(x) = x3 - x + 1.  Obtain fields of 4, 8, 9 and 27 elements 
by adjoining a root of f(x) to the field F where f (x) = g (x) or h (x) and F = lF2 or lF3 . 
Write down the multiplication tables for the fields with 4 and 9 elements and show that 
the nonzero elements form a cyclic group. 

3. Determine the minimal polynomial over Q for the element I + i .  
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4. Determine the degree over Q of 2 + -J3 and of 1 + Vi +  W. 
5. Let F = Q(i ) .  Prove that x3 - 2 and x3 - 3 are irreducible over F. 

6. Prove directly from the definitions that the field F(at , a2 • . . .  , a,) is the composite of the 
fields F(at ) ,  F(a2) . . . . , F(a,. ) . 

7. Prove that Q( .J2 + -J3 ) = Q( .J2 ,  -J3 )  [one inclusion is obvious, for the other consider 
(.j'i + -J3 )2 , etc.] . Conclude that [Q(.J2 +-J3) : Q] = 4. Find an irreducible polynomial 
satisfied by .J2 + -JJ. 

8. Let F be a field of characteristic =f. 2. Let Dt and D2 be elements of F, neither of which 
is a square in F. Prove that F ( ..fl5i , %2 )  is of degree 4 over F if Dt D2 is not a square 
in F and is of degree 2 over F otherwise. When F ( ..fl5i ,  %2 )  is of degree 4 over F the 
field is called a biquadratic extension of F. 

9. Let F be a field of characteristic =f. 2. Let a, b be elements of the field F with b not a 
square in F. Prove that a necessary and sufficient condition for J a + ./b = ,.Jm + Jn 
for some m and n in F is that a2 - b is a square in F. Use this to determine when the field 
Q( J a + ./b ) (a, b E Q) is biquadratic over Q. 

10. Determine the degree of the extension Q( J'3_+_2_.J2....,2= ) over Q. 
11. (a) Let ,13 + 4i denote the square root of the complex number 3 + 4i that lies in the 

first quadrant and let ,13 - 4i denote the square root of 3 - 4i that lies in the fourth 
quadrant. Prove that [ Q( ,13 + 4i + ,13 - 4i ) : Q ]  = 1 . 

(b) Determine the degree of the extension Q( J 1 + A + J 1 - A ) over Q. 
12. Suppose the degree of the extension K 1 F is a prime p. Show that any subfield E of K 

containing F is either K or F. 

13. Suppose F = Q(at . a2, . . .  , a, ) where af E Q for i = 1 ,  2, . . .  , n .  Prove that Vi ¢ F. 

14. Prove that if [F(a) : F] is odd then F(a) = F(a2) .  

15. A field F i s  said to be formally real if  - 1  i s  not expressible as a sum of squares in F. Let 
F be a formally real field, let f(x) E F[x] be an irreducible polynomial of odd degree and 
let a be a root of f(x).  Prove that F(a) is also formally real. [Pick a a counterexample 
of minimal degree. Show that - 1  + f(x)g(x) = (pt (x))2 + · · · + (Pm (x))2 for some 
p; (x) ,  g(x) E F[x] where g(x) has odd degree < deg f. Show that some root f3 of g has 
odd degree over F and F(f3) is not formally real, violating the minimality of a.] 

16. Let KIF be an algebraic extension and let R be a ring contained in K and containing F. 
Show that R is a subfield of K containing F. 

17. Let f(x) be an irreducible polynomial of degree n over a field F. Let g(x) be any 
polynomial in F[x] . Prove that every irreducible factor of the composite polynomial 
f(g(x)) has degree divisible by n. 

18. Let k be a field and let k (x) be the field of rational functions in x with coefficients from k. 
Let t E k(x) be the rational function P(x) with relatively prime polynomials P(x) ,  Q(x) E 

Q(x) 
k[x], with Q(x) =f. 0. Then k(x) is  an extension of k(t) and to compute its degree it is 
necessary to compute the minimal polynomial with coefficients in k(t) satisfied by x. 
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(a) Show that the polynomial P(X) - t Q(X) in the variable X and coefficients in k(t) 
is irreducible over k(t) and has x as a root. [By Gauss' Lemma this polynomial is 
irreducible in (k(t)) [X] if and only if it is irreducible in (k[t])[X] . Then note that 
(k[t])[X] = (k[X]) [t] .] 
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(b) Show that the degree of P (X) - t Q(X) as a polynomial in X with coefficients in k(t) 
is the maximum of the degrees of P(x) and Q(x) .  

P (x) 
(c) Show that [k(x) : k(t)] = [k(x) : k( -- )] = max (deg P(x), deg Q(x)). 

Q(x) 
19. Let K be an extension of F of degree n.  

(a) For any a E K prove that a acting by left multiplication on K is  an F -linear trans
formation of K.  

(b) Prove that K i s  isomorphic to a subfield of the ring of  n x n matrices over F,  so the 
ring of n x n matrices over F contains an isomorphic copy of every extension of F 
of degree ::: n.  

20. Show that if  the matrix of the linear transformation "multiplication by a" considered in the 
previous exercise is A then a is a root of the characteristic polynomial for A. This gives 
an effective procedure for determining an equation of degree n satisfied by an element a 
in an extension of F of degree n. Use this procedure to obtain the monic polynomial of 

degree 3 satisfied by V2 and by 1 + V2 + V4. 
21. Let K = Q(-J75 ) for some squarefree integer D. Let a = a +  b-Jl) be an element of 

K. Use the basis 1 ,  -JD for K as a vector space over Q and show that the matrix of 
the linear transformation "multiplication by a" on K considered in the previous exercises 

has the matrix (: b �) .  Prove directly that the map a + b-Jl) � (: b �) is an 

isomorphism of the field K with a subfield of the ring of 2 x 2 matrices with coefficients 
in Q. 

22. Let Kt and K2 be two finite extensions of a field F contained in the field K. Prove that 
the F-algebra Kt ®F K2 is a field if and only if [K1 K2 : F] = [Kt : F][K2 : F]. 

1 3.3 CLASSICAL STRAIGHTEDGE AN D COM PASS CONSTRUCTIONS 

As a simple application of the results we have obtained on algebraic extensions, and in 
particular on the multiplicativity of extension degrees, we can answer (in the negative) 
the following geometric problems posed by the Greeks: 

I. (Doubling the Cube) Is it possible using only straightedge and compass to construct 
a cube with precisely twice the volume of a given cube? 

II. (Trisecting an Angle) Is it possible using only straightedge and compass to trisect 
any given angle ()?  

III. (Squaring the Circle) I s  it possible using only straightedge and compass to construct 
a square whose area is precisely the area of a given circle? 

To answer these questions we must translate the construction of lengths by compass 
and straightedge into algebraic terms. Let l denote a fixed given unit distance. Then 
any distance is determined by its length a e IR, which allows us to view geometric 
distances as elements of the real numbers R USing the given unit distance 1 to define 
the scale on the axes, we can then construct the usual Cartesian plane IR2 and view 
all of our constructions as occurring in IR2. A point (x , y) e IR2 

is then constructible 
starting with the given distance 1 if and only if its coordinates x and y are constructible 
elements of R The problems above then amount to determining whether particular 
lengths in IR can be obtained by compass and straightedge constructions from a fixed 
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unit distance. The collection of such real numbers together with their negatives will be 
called the constructible elements of JR, and we shall not distinguish between the lengths 
that are constructible and the real numbers that are constructible. 

Each straightedge and compass construction consists of a series of operations of 
the following four types: ( 1 )  connecting two given points by a straight line, (2) finding 
a point of intersection of two straight lines, (3) drawing a circle with given radius and 
center, and (4) finding the point(s) of intersection of a straight line and a circle or the 
intersection of two circles. 

It is an elementary fact from geometry that if two lengths a and b are given one may 
construct using straightedge and compass the lengths a ±  b, ab and afb (the first two 
are clear and the latter two are given by the construction of parallel lines (Figure 1) ). 

�+--- a --�  

Fig. 1 

j� 
�1� 

1+---b--� 

It is also an elementary geometry construction to construct .JU if a is given: construct 
the circle with diameter 1 + a and erect the perpendicular to the diameter as indicated 
in Figure 2. Then .JU is the length of this perpendicular. 

a 
Fig. 2 

It follows that straightedge and compass constructions give all the algebraic operations 
of addition, subtraction, multiplication and division (by nonzero elements) in the reals 
so the collection of constructible elements is a subfield of JR. One can also take square 
roots of constructible elements. We shall now see that these are essentially the only 
operations possible. 

From the given length 1 it is possible to construct by these operations all the rational 
numbers Q. Hence we may construct all of the points (x , y) E JR2 whose coordinates 
are rational. We may construct additional elements of lR by taking square roots, so the 
collection of elements constructible from 1 of lR form a field strictly larger than Q. 

The usual formula ("two point form") for the straight line connecting two points 
with coordinates in some field F gives an equation for the line of the form ax+by - c  = 0 
with a, b, c E F. Solving two such equations simultaneously to determine the point of 
intersection of two such lines gives solutions also in F. It follows that if the coordinates 
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of two points lie in the field F then straightedge constructions alone will not produce 
additional points whose coordinates are not also in F. 

A compass construction (type (3) or (4) above) defines points obtained by the 
intersection of a circle with either a straight line or another circle. A circle with center 
(h , k) and radius r has equation 

(x - h)2 + (y - k)2 = r2 

so when we consider the effect of compass constructions on elements of a field F 
we are considering simultaneous solutions of such an equation with a linear equation 
ax + by - c = 0 where a, b, c, h ,  k, r E F, or the simultaneous solutions of two 
quadratic equations. 

In the case of a linear equation and the equation for the circle, solving for y, say, 
in the linear equation and substituting gives a quadratic equation for x (and y is given 
linearly in terms of x ). Hence the coordinates of the point of intersection are at worst 
in a quadratic extension of F. 

In the case of the intersection of two circles, say 

(x - h)2 + (y - kf = r2 

and (x - h')2 + (y - k')2 = r'2 , 
subtraction of the second equation from the first shows that we have the same intersection 
by considering the two equations 

(x - h)2 + (y - k)2 = r2 

and 2(h' - h)x + 2(k' - k)y = r2 - h2 - k2 - r'2 + h'2 + k'2 
which is the intersection of a circle and a straight line (the straight line connecting the 
two points of intersection, in fact) of the type just considered. 

It follows that if a collection of constructible elements is given, then one can con
struct all the elements in the subfield F of lR generated by these elements and that any 
straightedge and compass operation on elements of F produces elements in at worst 
a quadratic extension of F. Since quadratic extensions have degree 2 and extension 
degrees are multiplicative, it follows that if a E lR is obtained from elements in a field 
F by a (finite) series of straightedge and compass operations then a is an element of an 
extension K of F of degree a power of 2: [K : F] = 2m for some m .  Since [F(a) : F] 
divides this extension degree, it must also be a power of 2. 

Proposition 23. If the element a E lR is obtained from a field F c lR by a series of 
compass and straightedge constructions then [F(a) : F] = 2k for some integer k :::: 0. 

Theorem 24. None of the classical Greek problems: (I) Doubling the Cube, (II) 
Trisecting an Angle, and (III) Squaring the Circle, is possible. 

Proof" (I) Doubling the cube amounts to constructing V2 in the reals starting with 
the unit 1 .  Since [Q( V2 )  : Q] = 3 is not a power of 2, this is impossible. 

(II) If an angle e can be constructed, then determining the point at distance 1 from 
the origin and angle 8 from the positive X axis in JR2 shOWS that COS 8 (the X-COOrdinate 
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of this point) can be constructed (so then sin e can also be constructed). Conversely if 
cos e, then sin e ,  can be constructed, the point with those coordinates gives the angle e .  

The problem of trisecting the angle e is then equivalent to the problem: given cos e 
construct cos e /3. 

To see that this is not always possible (it is certainly occasionally possible, for 
example for e = 180°), consider e = 60° . Then cos e = i .  By the triple angle formula 
for cosines: 

cos e = 4cos3 e /3 - 3cos e /3, 

substituting e = 60° , we see that f3 = cos zoo satisfies the equation 

4{33 - 3{3 - 1/Z = 0 

or 8({3)3 - 6{3 - 1 = 0. This can be written (Z/3)3 - 3(Zf3) - 1 = 0. Let a = Z/3. Then 
a is a real number between 0 and Z satisfying the equation 

a3 - 3a - 1 = 0. 

But we considered this equation in the last section and determined [Q(a) : Q] = 3, and 
as before we see that a is not constructible. 

(III) Squaring the circle is equivalent to determining whether the real number rr = 
3 . 14159 . . . is constructible. As mentioned previously, it is a difficult problem even 
to prove that this number is not rational. It is in fact transcendental (which we shall 
assume without proof), so that [Q(rr) : Q] is not even finite, much less a power of Z, 
showing the impossibility of squaring the circle by straightedge and compass. 

Remark: The proof above shows that cos zoo and sin zoo cannot be constructed. The 
question arises as to which integer angles (measured in degrees) are constructible? The 
angles 1 o and zo are not constructible, since otherwise the addition formulae for sines 
and cosines would give the constructibility for zoo . On the other hand, elementary 
geometric constructions (of the regular 5-gon for an angle of 72° and the equilateral 
triangle for an angle of 60°) together with the addition formulae and the half-angle 
formulae show that cos 3° and sin 3° are constructible. It follows from this that the 
trigonometric functions of an integer degree angle are constructible precisely when the 
angle is a multiple of 3°. Explicitly, 

cos 3° = � (.J3 + l )J5 + ,J5 + 
1
� (../6 - .Ji)(,JS - 1 )  

. 1 1 I SID 3o = 
16 

(../6 + .J'i)(,JS - 1 ) - g(.J3 - l )y 5 + ,J5 ,  
showing that these are obtained from Q by successive extractions of square roots and 
field operations. 

After discussing the cyclotomic fields in Section 14.5 we shall consider another 
classical geometric question: "which regular n-gons can be constructed by straightedge 
and compass?" (cf. Proposition 14.Z9). 

We have been careful here to consider constructions using a straightedge rather 
than a ruler, the distinction being that a ruler has marks on it. If one uses a ruler, it is 
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possible to construct many additional algebraic elements. For example, suppose e is a 
given angle and the unit distance I is marked on the ruler. Draw a circle of radius I with 
central angle e as shown in Figure 3 and then slide the ruler until the distance between 
points A and B on the circle is I .  Then some elementary geometry shows that ( cf. 
the exercises) the angle a indicated is e f3, i.e., this construction (due to Archimedes) 
trisects e .  In particular, the second classical problem in Theorem 24 (Trisecting an 
Angle) can be solved with ruler and compass. 

A 1 Fig. 3 

The first of the classical problems in Theorem 24 (Duplication of the Cube), which 
amounts to the construction of J.!i, can also be solved with ruler and compass. The 
following gives a construction for k113 for any given positive real k which is less than 
1 .  This construction was shown to us by J .H. Conway. 

Drawing a circle of radius 1 and using the point A = (k, 0) as center, con
struct the point B = (0, ,J1 - k2 ) .  Dividing this distance by 3, construct the point 
(0, - t-J1 - k2 ) and draw the line connecting this point with A. Slide the ruler with 
marked unit length 1 so that it passes through the point B and so that the distance from 
the intersection point C to the intersection point D with the x-axis is of length 1 ,  as 
indicated in Figure 4. 

Then the distance between A and D is 2k113 and the distance between B and C is 
2k213 (cf. the exercises). 

!,J1 - k2 3 

B 

k 

E X E R C I S E S 

1. Prove that it
)
is impossible to construct the regular 9-gon. 

D 
Fig. 4 

2. Prove that Archimedes' construction actually trisects the angle e .  [Note the isosceles 
triangles in Figure 5 to prove that fJ = y = 2a.] 
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3. Prove that Conway's construction indicated in the text actually constructs 2k113 and 2k213 . 
[One method: let (x , y) be the coordinates of the point C, a the distance from B to 

C and b the distance from A to D; use similar triangles to prove (a) � = .Jf=k2, 
1 1 + a 

X b + k y .Jf=k2 2 2 (b) - = -- , (c) -- = 
3 

, and also show that (d) ( l -k2)+(h+k) = ( l +a) ; 
a 1 + a x - k k 

solve these equations for a and b.] 

4. The construction of the regular 7-gon amounts to the constructibility of cos(2rr/7) . We 
shall see later (Section 14.5 and Exercise 2 of Section 14. 7) that a = 2 cos(2rr j7) satisfies 
the equation x3 + x2 - 2x - 1 = 0. Use this to prove that the regular 7-gon is not 
constructible by straightedge and compass. 

5. Use the fact that a = 2 cos(2rr j5) satisfies the equation x2 + x - 1 = 0 to conclude that 
the regular 5-gon is constructible by straightedge and compass. 

1 3.4 SPLITTI NG FIELDS AND ALGEBRAIC CLOSURES 

Let F be a field. 
If f(x) is any polynomial in F[x] then we have seen in Section 2 that there exists 

a field K which can (by identifying F with an isomorphic copy of F) be considered 
an extension of F in which f (x) has a root a. This is equivalent to the statement that 
f(x) has a linear factor x - a  in K[x] (this is Proposition 9 of Chapter 9). 

Definition. The extension field K of F is called a splitting field for the polyno�al 
f(x) E F[x] if f(x) factors completely into linear factors (or splits completely) in 
K[x] and f(x) does not factor completely into linear factors over any proper subfield 
of K containing F. 

If f (x) is of degree n, then f (x) has at most n roots in F (Proposition 17 of 
Chapter 9) and has precisely n roots (counting multiplicities) in F if and only if f(x) 
splits completely in F[x] . 

Theorem 25. For any field F, if f(x) E F[x] then there exists an extension K of F 
which is a splitting field for f(x) . 

Proof" We first show that there is an extension E of F over which f (x) splits 
completely into linear factors by induction on the degree n of f (x) .  If n = 1 ,  then take 
E = F. Suppose now that n > 1 .  If the irreducible factors of f (x) over F are all of 
degree 1 ,  then F is the splitting field for f (x) and we may take E = F. Otherwise, 
at least one of the irreducible factors, say p(x) of f (x) in F[x] is of degree at least 2. 
By Theorem 3 there is an extension Et of F containing a root a of p(x) .  Over Et the 
polynomial f (x) has the linear factor x - a .  The degree of the remaining factor ft (x) 
of f (x) is n - 1 , so by induction there is an extension E of E 1 containing all the roots 
of ft (x ) .  Since a E E, E is an extension of F containing all the roots of f (x ) .  Now 
let K be the intersection of all the subfields of E containing F which also contain all 
the roots of f(x) .  Then K is a field which is a splitting field for f(x) .  
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We shall see shortly that any two splitting fields for j(x) are isomorphic (which 
extends Theorem 8), so (by abuse) we frequently refer to the splitting field of a poly
nomial. 

Definition. If K is an algebraic extension of F which is the splitting field over F for 
a collection of polynomials f (x) E F[ x] then K is called a normal extension of F. 

We shall generally use the term "splitting field" rather than "normal extension" ( cf. 
also Section 14.9). 

Examples 

(1) The splitting field for x2 - 2 over Q is just Q( Ji ) , since the two roots are ±.J2 and 
-Ji E Q(../i ).  

(2) The splitting field for (x2 - 2)(x2 - 3) i s  the field Q( Ji , .J3 )  generated over Q by 
Ji and .J3 since the roots of the polynomial are ±Ji., ±.J3. We have already seen 
that this is an extension of degree 4 over Q and we have the following diagram of 
known subfields :  

Q(../i . .Jj") ;/ 2� 
Q(../i ) Q(.J6 ) Q(.J3 ) 

� �  
Q 

(3) The splitting field of x3 - 2 over Q is not just Q( 0 ) since as previously noted the 
three roots of this polynomial in C are 

lfi .  V2 ( - 1  � i .J3)
. 

V2 ( - 1 � i.J3) 
and the latter two roots are not elements of Q( 0 ), since the elements of this field 
are of the form a + b 0 + c W with rational a ,  b, c and all such numbers are real. 

The splitting field K of this polynomial is obtained by adjoining all three of these 
roots to Q. Note that since K contains the first two roots above, then it contains their 

- 1 + H quotient 
2 

hence K contains the element ,J=3. On the other hand, any field 
containing 0 and H contains all three of the roots above. It follows that 

K = Q( lfi . H) 
is the splitting field of x3 - 2 over Q. Since H satisfies the equation x2 + 3 = 0, the 

degree of this extension over Q( V2 ) is at most 2, hence must be 2 since we observed 
above that Q( 0) is not the splitting field. It follows that 

[QC V2 . R) : Q1 = 6. 
Note that we could have proceeded slightly differently at the end by noting that 

Q(H ) is a subfield of K,  so that the index [Q(H ) : Q] = 2 divides [K : Q]. 
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Since this extension degree is also divisible by 3 (because Ql( .{/2) c K), the degree 
is divisible by 6, hence must be 6. 

This gives us the diagram of known subfields: 

where 

(4) One must be careful in computing splitting fields. The splitting field for the polynomial 
x4 + 4 over Ql is smaller than one might at first suspect. In fact this polynomial factors 
over Ql: 

x4 + 4 = x4 + 4x2 + 4 - 4x2 = (x2 
+ 2)2 - 4x2 

= (x2 + 2x + 2)(x2 - 2x + 2) 
r 

where these two factors are irreducible (Eisenstein again). Solving for the roots of the 
two factors by the quadratic formula, we find the four roots 

± l ± i  

so that the splitting field of this polynomial is just the field Ql(i),  an extension of degree 
2 of Ql. 

In general, if f(x) E F[x] is a polynomial of degree n, then adjoining one root of 
f(x) to F generates an extension F1 of degree at most n (and equal to n if and only if 
f(x) is irreducible). Over F1 the polynomial f(x) now has at least one linear factor, 
so that any other root of f (x) satisfies an equation of degree at most n - 1 over F1 . 
Adjoining such a root to F1 we therefore obtain an extension of degree at most n - 1 
of F1 , etc. Using the multiplicativity of extension degrees, this proves 

Proposition 26. A splitting field of a polynomial of degree n over F is of degree at 
most n !  over F. 

As the examples above show, the degree of a splitting field may be smaller than n ! .  
It will be proved later using Galois Theory that a "general" polynomial of degree n (in 
a well defined sense) over Q has a splitting field of degree n ! , so this may be viewed 
as the "generic" situation (although most of the interesting examples we shall consider 
have splitting fields of smaller degree). 
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Example: (Splitting Field of xn - 1 :  Cyclotomic Fields) 

Consider the splitting field of the polynomial x" - 1 over Q. The roots of this polynomial 
are called the nth roots of unity. 

Recall that every nonzero complex number a + bi E C can be written uniquely in the 
form 

rew = r (cos e + i sin e) r > 0, 0 :::: e < 2rr 

which is simply representing the point a + bi in the complex plane in terms of polar 
coordinates: r is the distance of (a , b) from the origin and e is the angle made with the real 
positive axis. 

Over C there are n distinct solutions of the equation x" = 1, namely the elements 

2 k ·;  2rrk . 2rrk e n ' " = cos ( -- ) + i sm ( --) 
n n 

for k = 0, 1 ,  . . . , n - I .  These points are given geometrically by n equally spaced points 
starting with the point ( 1 ,0) (corresponding to k = 0) on a circle of radius 1 in the complex 
plane (see Figure 6). The fact that these are all nth roots of unity is immediate, since 

(
e2nki fn )n = e(2:rrkijn)n = e2nki = 1 . 

It follows that C contains a splitting field for x" - 1 and we shall frequently view the 
splitting field for x" - 1 over Q as the field generated over Q in C by the numbers above. 

( 

Fig. 6 

In any abstract splitting field K JQ for x" - 1 the collection of nth roots of unity form 
a group under multiplication since if a" = I and .B" = 1 then (a ,B)" = 1 , so this subset of 
K x is closed under multiplication. It follows that this is a cyclic group (Proposition 1 8  of 
Chapter 9); we shall see that there are n distinct roots in K so it has order n.  

Definition. A generator of the cyclic group of all nth roots of unity is called a primitive nth 

root of unity. 

Let 1;, denote a primitive nth root of unity. The other primitive nth roots of unity are then the 
elements 1;, a where 1 :::; a < n is an integer relatively prime to n, since these are the other 
generators for a cyclic group of order n. In particular there are precisely .p(n) primitive nth 

roots of unity, where .p (n) denotes the Euler .p-function. 
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Over C we can see all of this directly by letting 

tn = e2ni/n 

(the first nth root of unity counterclockwise from 1) .  Then all the other roots of unity are 
powers of tn : 

so that l;n is one possible generator for the multiplicative group of nth roots of unity. When 
we view the roots of unity in C we shall usually use l;n to denote this choice of a primitive 
nth root of unity. The primitive roots of unity in C for some small values of n are 

/;1 = 1 

t2 = - 1 

- l + i.J3 
/;3 = ----,---

2 
t4 = i 

_ .J5 - 1 
·
(J1 0 + 2.J5) 

l;s - 4 
+ z 

4 

1 + i.J3 
/;6 = --:---

2 

Ji Ji 
l;s = 2 + i 2 

(these formulas follow from the elementary geometry of n-gons and in any case can be 
verified directly by raising them to the appropriate power). 

The splitting field of xn - 1 over Q is the field Q(l;n) and this field is given a name: 

Definition. The field Q(l;n ) is called the cyclotomic field of nth roots of unity. 

Determining the degree of this extension requires some analysis of the minimal polynomial 
of l;n over Q and will be postponed until later (Section 6). One important special case which 
we have in fact already considered is when n = p is a prime. In this case, we have the 
factorization 

xP - 1 = (x - l) (.xP-1 + xP-2 + · · · + x  + 1 )  

and since l;p i= I it follows that l;p i s  a root of the polynomial 

xP - 1 1 2 <l>p (x) = -- = xp- + xp- + · · · + .x  + 1 
.x - 1 

which we showed was irreducible in Section 9.4. It follows that <l>p (x) is the minimal 
polynomial of l;p over Q, so that 

[Q(l;p) : Q] = p - 1 .  

We shall see later that in general [Q(l;n) : Q] = q7(n), where q7(n) is the Euler phi-function 
of n (so that q7(p) = p - 1) .  
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Example: (Splitting Field of xP - 2, p a prime) 

Let p be a prime and consider the splitting field of x P - 2. If a is a root of this equation, 
i .e., aP = 2, then (sa)P = 2 where s is any pth root of unity. Hence the solutions of this 
equation are 

I; f/2, s a pth root of unity 

where as usual the symbol f/2 denotes the positive real lh root of 2 if we wish to view 
these elements as complex numbers, and denotes any one solution of x P = 2 if we view 
these roots abstractly. Since the ratio of the two solutions l;p f/2 and ifi for l;p a primitive 

p1h root of unity is just l;p . the splitting field of xP - 2 over Q contains Q( ifi . l;p) .  On 
the other hand, all the roots above lie in this field, so that the splitting field is precisely 

Q( f/2 . l;p) .  

This field contains the cyclotomic field o f  pth roots ofpruty and i s  generated over i t  by 
!/2, hence is an extension of degree at most p. It follows that the degree of this extension 
over Q is � p(p - 1) . Since both Q( !/2) and Q(l;p) are subfields, the degree of the 
extension over Q is divisible by p and by p - 1 . Since these two numbers are relatively 
prime it follows that the extension degree is divisible by p(p - 1) so that we must have 

[Q( f/2 . l;p) : Q] = p(p - 1 )  

(this i s  Corollary 22). Note in particular that we have proved xP - 2 remains irreducible 
over Q(l;p),  which is not at all obvious. We have the following diagram of known subfields: 

Q< ifi .  sp) 
y "'z- 1 

Q(l;p) Q( !/2) 
p -� /P  

Q 
The special case p = 3 was Example 3 above, where we simply indicated the 3rd roots 

of unity explicitly. 

We now return to the problem of proving it makes no difference how the splitting 
field of a polynomial f (x) over a field F is constructed. As in Theorem 8 it is convenient 
to state the result for an arbitrary isomorphism cp : F _::;. F' between two fields. 

Theorem 27. Let cp : F _::;. F' be an isomorphism of fields. Let j(x) E F[x] 
be a polynomial and let f'(x) E F'[x] be the polynomial obtained by applying cp to 
the coefficients of f(x). Let E be a splitting field for f(x) over F and let E' be a 
splitting field for f' (x) over F' . Then the isomorphism cp extends to an isomorphism 
a : E _::;. E', i.e., a restricted to F is the isomorphism cp :  

a :  E -+ E' 
I 

cp :  F -+ F' 

Proof" We shall proceed by induction on the degree n of f(x).  As in the discus

sion before Theorem 8, recall that an isomorphism cp from one field F to another field 
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F' induces a natural isomorphism between the polynomial rings F[x] and F' [x] .  In 
particular, if f (x) and f' (x) correspond to one another under this isomorphism then 
the irreducible factors of f (x) in F[x] correspond to the irreducible factors of f' (x) in 
F' [x] . 

If f(x) has all its roots in F then f(x) splits completely in F[x]  and f'(x) splits 
completely in F'[x] (with its linear factors being the imagesl)f the linear factors for 
f(x)). Hence E = F and E' = F', and in this case we may take a = cp. This shows 
the result is true for n = 1 and in the case where all the irreducible factors of f (x) have 
degree 1 .  

Assume now by induction that the theorem has been proved for any field F, iso
morphism cp, and polynomial f(x) E F[x] of degree < n. Let p(x) be an irreducible 
factor of f (x) in F[x] of degree at least 2 and let p' (x) be the corresponding irreducible 
factor of f' (x) in F'[x ]. If a E E is a root of p(x) and fJ E E' is a root of p' (x ), then 

by Theorem 8 we can extend cp to an isomm'Phism a' : F (a{ ..=+ F'(fJ) :  
a' : F (a) ---+ F'(fJ) 

cp : 
I I 
F F' . 

Let F1 = F (a), F{ = F' ({3), so that we have the isomorphism a ' : F1 ..=+ F{ . We have 
f(x) = (x - a)ft (x) over Ft where ft (x) has degree n - 1  and f'(x) = (x - {J)f{(x) .  
The field E i s  a splitting field for ft (x) over Ft : all the roots of f1 (x) are in E and if 
they were contained in any smaller extension L containing F1 , then, since Ft contains 
a, L would also contain all the roots of f(x), which would contradict the minimality 
of E as the splitting field of f (x) over F. Similarly E' is a splitting field for f{ (x) over 
F{. Since the degrees of f1 (x) and f{(x) are less than n, by induction there exists a 

map a : E ..=+ E' extending the isomorphism a' : F1 ..=+ F{ . This gives the extended 
diagram: 

a :  E ---+ E' 
I 

a' : Ft ---+ F' I 
I I 

cp : F ---+ F' . 
Then as the diagram indicates, a restricted to Ft is the isomorphism a', so in particular 
a restricted to F is a ' restricted to F, which is cp, showing that a is an extension of cp, 
completing the proof. 

Corollary 28. (Uniqueness of Splitting Fields) Any two splitting fields for a polynomial 
f(x) E F[x]  over a field F are isomorphic. 

Proof Take cp to be the identity mapping from F to itself and E and E' to be two 
splitting fields for f(x)(= f'(x)) .  

As we mentioned before, this result justifies the terminology of the splitting field 
for f (x) over F, since any two are isomorphic. Splitting fields play a natural role in 
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the study of algebraic elements (if you are adjoining one root of a polynomial, why not 
adjoin all the roots?) and so take a particularly important role in Galois Theory. 

We end this section with a discussion of field c;xtensions of F which contain all the 
roots of all polynomials over F. 

Definition. The field F is called an algebraic closure of F if F is algebraic over F 
and if every polynomial f(x) E F[x] splits completely over F (so that F can be said 
to contain all the elements algebraic over F). 

Definition. A field K is said to be algebraieally closed if every polynomial with 
coefficients in K has a root in K. 

It is  not obvious that algebraically closed fields exist nor that there exists an algebraic 
closure of a given field F (we shall prove this shortly). 

Note that if K is algebraically closed, then in fact every f(x) E K[x] has all its 
roots in K, since by definition f (x) has a root a E K, hence has a factor x - a in 
K[x ] .  The remaining factor of f (x) then is a polynomial in K[x ], hence has a root, so 
has a linear factor etc.,  so that f (x) must split completely. Hence if K is algebraically 
closed, then K itself is an algebraic closure of K and the converse is obvious, so that 
K = K if and only if K is algebraically closed. 

The next result shows that the process of "taking the algebraic closure" actually 
stops after one step - taking the algebraic closure of an algebraic closure does not give 

a larger field: the field is already algebraically closed (notationally: F = F ). 

Proposition 29. Let F be an algebraic closure of F. Then F is algebraically closed. 

Proof" Let f(x) be a polynomial in F[x] and let a be a root of f(x) . Then a 
generates an algebraic extension F(a) of F, and F is algebraic over F. By Theorem 
20, F (a) is algebraic over F so in particular its element a is algebraic over F. But then 
a E F, showing F is algebraically closed. 

Given a field F we have already shown how to construct (finite) extensions of F 
containing all the roots of any given polynomial f (x) E F [ x] . Intuitively, an algebraic 
closure of F is given by the field "generated" by all of these fields. The difficulty 
with this is "generated" where?, since they are not all subfields of a given field. For a 
finite collection of polynomials j1 (x) ,  . . .  , fk (x) ,  we can identify their splitting fields 
as subfields of the splitting field of the product polynomial ft (x) · · · fk (x ), but the same 
idea used for an infinite number of polynomials requires numerous "bookkeeping" 
identifications and an application of Zorn's Lemma. 

We shall instead construct an algebraic closure of F by first constructing an al
gebraically closed field containing F. The proof uses a clever idea of Artin which 
very neatly solves the "bookkeeping" problem of constructing a field containing the 
appropriate roots of polynomials (which also ultimately relies on Zorn's Lemma) by 
introducing a separate variable for every polynomial. 
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Proposition 30. For any field F there exists an algebraically closed field K containing F. 

Proof" For every nonconstant monic pl"iYnomial f = f (x) with coefficients in 
F, let Xf denote an indeterminate and consider the polynomial ring F[ . . .  , Xf , . . .  ] 
generated over F by the variables x f. In this polynomial ring consider the ideal I 
generated by the polynomials f (xr ). If this ideal is not proper, then 1 is an element of 
the ideal, hence we have a relation 

gt fl (Xj1 ) + g2 /2 (XJJ + · · · '+ gn fn (XJJ = 1 

where the g; , i = 1 ,  2, . . .  , n, are polynomials in the Xf .  For i = 1 ,  2, . . .  , n let 
Xfi = x; and let Xn+I • . . .  , Xm be the remaining variables occurring in the polynomials 

gj . j = 1 ,  2, . . .  , n. Then the relation above reads 

gl (XI , X2 , · · · ,  Xm)/J (XI ) + · · · + gn (XI , X2 , · · · ,  Xm)fn (Xn)  = 1 .  

Let F' be a finite extension of F containing a root a; of /; (x) for i = 1 ,  2, . . .  , n .  Letting 
X; = a; , i = 1 .  2, . . . , n and setting Xn+ l = · · · = Xm = 0, say, in the polynomial 
equation above would imply that 0 = 1 in F', clearly impossible. 

Since the ideal I is a proper ideal, it is contained in a maximal ideal M (this is 
where Zorn's Lemma is used). Then the quotient 

Kl = F[ . . .  , Xf , . . .  ]/M 
is a field containing (an isomorphic copy of) F.  Each of the polynomials f has a root 
in K1 by construction, namely the image of Xf,  since f(xf) E I � M. We have 
constructed a field K 1 in which every polynomial with coefficients from F has a root. 
Performing the same construction with K1 instead of F gives a field K2 containing 
K 1 in which all polynomials with coefficients from K 1 have a root. Continuing in this 
fashion we obtain a sequence of fields 

F = K0 � K1 � K2 � · · · � Kj � Kj+l � · · · 

where every polynomial with coefficients in Kj has a root in Kj+ l •  j = 0, 1 ,  . . . . Let 

K = U Kj 
j?:O 

be the union of these fields. Then K is clearly a field containing F. Since K is the 
union of the fields Kj , the coefficients of any polynomial h (x) in K [x] all lie in some 
field KN for N sufficiently large. But then h (x) has a root in KN+ I •  so has a root in K.  
It  follows that K is  algebraically closed, completing the proof. 

We now use the algebraically closed field containing F to construct an algebraic 
closure of F :  

Proposition 31. Let K be an algebraically closed field and let F be a subfield of K .  
Then the collection of elements F of K that are algebraic over F is an algebraic closure 
of F. An algebraic closure of F is unique up to isomorphism. 

Proof" By definition, F is an algebraic extension of F. Every polynomial f(x) E 

F[x] splits completely over K into linear factors x - a  (the same is true for every 
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polynomial even in K[x]). But each a is a root of f (x) , so is algebraic over F, hence 

is an element of F. It follows that all the linear factors x - a  have coefficients in F, 
i.e., f (x) splits completely in F[x] and F is an algebraic closure of F. 

The uniqueness (up to isomorphism) of the algebraic closure is natural in light of 
the uniqueness (up to isomorphism) of splitting fields, and is proved along the same 
lines together with an application of Zorn's Lemma and will be omitted. 

We shall prove later using Galois theory the following result (purely analytic proofs 
using complex analysis also exist). 

Theorem. (Fundamental Theorem of Algebra) The field C is algebraically closed. 

By Proposition 3 1 ,  we immediately obtain: 

Corollary 32. The field C contains an algebraic closure for any of its subfields. In 

particular, Q, the collection of complex numbers algebraic over Q, is an algebraic 
closure of Q. 

The point of these considerations is that all the computations involving elements 
algebraic over a field F may be viewed as taking place in one (large) field, namely 

F. Similarly, we can speak sensibly of the composite of any collection of algebraic 
extensions by viewing them all as subfields of an algebraic closure. In the case of Q or 
finite extensions of Q we may consider all of our computations as occurring in C. 

E X E R C I S E S 

1. Determine the splitting field and its degree over Q for x4 - 2. 
2. Determine the splitting field and its degree over Q for x4 + 2. 
3. Detennine the splitting field and its degree over Q for x4 + x2 + 1 .  

4. Detennine the splitting field and its degree over Q for x6 - 4. 

5. Let K be a finite extension of F. Prove that K is a splitting field over F if and only if 
every irreducible polynomial in F[x] that has a root in K splits completely in K[x ]. [Use 
Theorems 8 and 27 .] 

6. Let K1 and Kz be finite extensions of F contained in the field K, and assume both are 
splitting fields over F. 
(a) Prove that their composite K1 K2 is a splitting field over F. 
(b) Prove that K1 n Kz is  a splitting field over F. [Use the preceding exercise.] 

1 3.5 SEPARABLE AN D INSEPARABLE EXTENSIONS 

Let F be a field and let f (x) E F[x] be a polynomial. Over a splitting field for f (x) 
we have the factorization 

f (x) = (x - a1)n 1 (x - az)n2 • • • (x - ak)n• 

where a1 , az , . . .  , ak are distinct elements of the splitting field and n; ::;:: 1 for all i .  
Recall that a; is called a multiple root if n ;  > 1 and is called a simple root if n ;  = 1 .  
The integer n ;  i s  called the multiplicity of the root a; . 
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Definition. A polynomial over F is called separable if it has no multiple roots (i.e., 
all its roots are distinct). A polynomial which is not separable is called inseparable. 

Note that if a polynomial f (x) has distinct roots in one splitting field then f (x) has 
distinct roots in any splitting field (since this is equivalent to f (x) factoring into distinct 
linear factors, and there is an isomorphism over F between any two splitting fields of 
f(x) that is bijective on its roots), so that we need not specify the field containing all 
the roots of f(x) . 

Examples 

(1) The polynomial x2 - 2 is separable over Q since its two roots ±.J2 are distinct. The 
polynomial (x2 - 2)" for any n :::: 2 is inseparable since it has the multiple roots ±.J2, 
each with multiplicity n . 

(2) The polynomial x2 - t ( = x2 + t) over the field F = lF 2 (t) of rational functions in t 
with coefficients from lF2 is irreduCible as we've seen before, but is not separable. If 
.ji denotes a root in some exteysion field (note that .ji ¢ F), then 

(x - -./i)2 = x2 - 2x-./i + t = x2 + t = x2 - t 

since F is a field of characteristic 2. Hence this irreducible polynomial has only one 
root (with multiplicity 2), so is not separable over F. 

There is a simple criterion to check whether a polynomial has multiple roots. 

Definition. The derivative of the polynomial 

f(x) = anx" + an- tX" - 1 + · · · + a1x + ao E F[x] 

is defined to be the polynomial 

Dxf(x) = nanxn- l + (n - l)an-tX"-2 + . . . + 2a2X + at E F[x]. 

This formula is nothing but the usual formula for the derivative of a polynomial 
familiar from calculus. It is purely algebraic and so can be applied to a polynomial 
over an arbitrary field F, where the analytic notion of derivative (involving limits - a 
continuous operation) may not exist. 

The usual (calculus) formulas for derivatives hold for derivatives in this situation 
as well, for example the formulas for the derivative of a sum and of a product: 

Dx (f(x) + g(x)) = Dxf(x) + Dxg(x) 

Dx (f(x)g(x)) = f(x)Dxg(x) + (Dxf(x))g(x) .  

These formulas can be proved directly from the definition for polynomials and do not 
require any limiting operations and are left as an exercise. 

The next proposition shows that the separability of f (x) can be determined by the 
Euclidean Algorithm in the field where the coefficients of f (x) lie, without passing to 
a splitting field and factoring f(x) .  
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Proposition 33. A polynomial f (x) has a multiple root a if and only if a is also a root 
of Dx f(x) , i.e., f(x) and Dxf(x) are both divisible by the minimal polynomial for 
a. In particular, f(x) is separable if and only if it is relatively prime to its derivative: 
(f(x) ,  Dx f(x)) = 1 . 

Proof Suppose first that a is a multiple root of f(x). Then over a splitting field, 

f(x) = (x - a)ng (x) 
for some integer n ::: 2 and some polynomial g(x). Taking derivatives we obtain 

Dx f(x) = n(x - at-l g(x) + (x - at Dxg (x) 
which shows (n ::: 2) that Dxf(x) has a as a root. 

Conversely, suppose that a is a root of both f (x) and Dx f (x ) . Then write 

f(x) = (x - a)h (x) 
for some polynomial h (x) and take the derivative: 

Dx f(x) = h (x) + (x - a)Dxh(x). 
Since Dx f(a) = 0 by assumption, substituting a into the last equation 8bows that 
h (a) = 0. Hence h (x) = (x - a)ht (x) for some polynomial h t (x) , and 

f(x) = (x - a)2h t (x) 
showing that a is a multiple root of f(x). 

The equivalence with divisibility by the minimal polynomial for a follows from 
Proposition 9. The last statement is then clear (let a denote any root of a common factor 
of f(x) and Dxf(x)). 

Examples 

(1) The polynomial xP" - x over !F'p has derivative pnxp"-l - 1  = - 1  since the field has 
characteristic p. Since in this case the derivative has no roots at all, it follows that the 
polynomial has no multiple roots, hence is separable. 

(2) The polynomial xn - 1 has derivative nxn -I . Over any field of characteristic not divid
ing n (including characteristic 0) this polynomial has only the root 0 (of multiplicity 
n - 1 ), which is not a root of xn - 1 .  Hence xn - 1 is separable and there are n distinct 
nth roots of unity. We saw this directly over Q by exhibiting n distinct solutions over 
c. 

(3) If F is of characteristic p and p divides n, then there are fewer than n distinct nth roots 
of unity over F: in this case the derivative is identically 0 since n = 0 in F. In fact 
every root of xn - 1 is multiple in this case. 

Corollary 34. Every irreducible polynomial over a field of characteristic 0 (for example, 
Q) is separable. A polynomial over such a field is separable if and only if it is the product 
of distinct irreducible polynomials. 

Proof Suppose F is a field of characteristic 0 and p(x) E F[x] is irreducible 
of degree n. Then the derivative Dxp(x) is a polynomial of degree n - 1 .  Up to 
constant factors the only factors of p(x) in F[x] are 1 and p(x) ,  so Dxp (x) must be 

Sec. 1 3.5 Sepa rable and Inseparable Extensions 547 



relatively prime to p (x) .  This shows that any irreducible polynomial over a field of 
characteristic 0 is separable. The second statement of the corollary is then clear since 
distinct irreducibles never have zeros in common (by Proposition 9). 

The point in the proof of the corollary that can fail in characteristic p is the statement 
that the derivative Dx p(x) is of degree n - 1 .  In characteristic p the derivative of any 
power xPm of xP is identically 0: 

Dx (xPm) = pmxpm- l = 0 

so it is possible for the degree of the derivative to decrease by more than one. If the 
derivative Dx p(x) of the irreducible polynomial p (x)  is nonzero, however, then just as 
before we conclude that p(x) must be separable. 

It is clear from the definition of the derivative that if p(x) is a polynomial whose 
derivative is 0, then every exponent of x in p(x) must be a multiple of p where p is the 
characteristic of F: 

p(x) = amx"'P + am- iX(m-l)p + · · · + a,xP + ao. 
Letting 

Pi (X) = amXm + am-iXm-l + · · · + a1X + ao 
we see that p(x) is a polynomial in xP , namely p(x) = p1 (xP) . 

We now prove a simple but im$ortant result about raising to the pth power in a field 
of characteristic p .  

Proposition 35. Let F be a field of characteristic p .  Then for any a ,  b E F, 

(a + b)P = aP + bP , and (ab)P = aPbP . 
Put another way, the p1h-power map defined by q;(a) = aP is an injective field homo
morphism from F to F. 

Proof: The Binomial Theorem for expanding (a + b)n for any positive integer n 
holds (by the standard induction proof) over any commutative ring: 

(a + bt = a
n

+ G)an-lb + . . .  + G)an-ibi + . . .  + bn . 

It should be observed that the binomial coefficients (n) n !  
i - i ! (n - i) !  

are integers (recall that ma for m E Z is defined for a an element of any ring) and here 
are elements of the prime field. 

If p is a prime, then the binomial coefficients (f) for i = I ,  2, . . .  , p - 1 are all 
divisible by p since for these values of i the numbers i !  and (p - i) !  only involve factors 
smaller than p, hence are relatively prime to p and so cannot cancel the factor of p in the 

numerator of the expression 
p !  

. It follows that over a field of characteristic p all i ! (p - i) ! 
the intermediate terms in the expansion of (a + b )P are 0, which gives the first equation 
of the proposition. The second equation is trivial, as is the fact that q; is injective. 
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Definition. The map in Proposition 35 is called the Frobenius endomorphism of F. 

Corollary 36. Suppose that IF is a finite field of characteristic p. Then every element 
of IF is a pth power in IF (notationally, IF = IFP).  

Proof" The injectivity of the Frobenius endomorphism of IF implies that it is also 
surjective when IF is finite, which is the statement of the corollary. 

We now prove the analogue of Corollary 34 for finite fields. 
Let IF be a finite field and suppose that p(x) E IF[x] is an irreducible polynomial 

with coefficients in IF. If p(x) were inseparable then we have seen that p(x) = q(xP)  
for some polynomial q(x)  E IF[x].  Let 

q (x) = amXm + am-IXm-I + · · · + a1x + ao .  

By Corollary 36, each a; ,  i = 1 ,  2 ,  . . . , m i s  a pth power in IF,  say a; = bf . Then by 
Proposition 35 we have 

p(x) = q (xP) = am (Xp)m + am-I (xP)m-I + · · · + a1xP + ao 

= bf:. (xp)m + b�_ 1 (xp)m-I + · · · + bfxP + hg 

= (bmxm)p + (bm-IXm-l )p + · · · + (bix)P + (bo)P 

= (bmxm + bm-IXm- I + · · · + b1 x + bo)P 

which shows that p(x) is the pth powe; of a polynomial in IF[x],  a contradiction to the 
irreducibility of p(x) . This proves: 

Proposition 37. Every irreducible polynomial over a finite field IF is separable. A 
polynomial in IF[x] is separable if and only if it is the product of distinct irreducible 
polynomials in IF[x].  

The important part of the proof of this result is the fact that every element in the 
characteristic p field IF was a pth power in IF. This suggests the following definition: 

Definition. A field K of characteristic p is called peifect if every element of K is a 
pth power in K, i.e., K = K P .  Any field of characteristic 0 is also called perfect. 

With this definition, we see that we have proved that every irreducible polynomial 
over a perfect field is separable. It is not hard to see that if K is not perfect then there 
are inseparable irreducible polynomials. 

Example: (Existence and Uniqueness of Finite Fields) 

Let n > 0 be any positive integer and consider the splitting field of the polynomial xP" - x 
over IF p · We have already seen that this polynomial is separable, hence has precisely p" 
roots. Let a and fJ be any two roots of this polynomial, so that aP" = a and fJP" = fJ.  
Then (afJ)P" = afJ, (a-1 )P" = a-1 and by Proposition 35 also 

(Ci + fJ)P" = Cip" + fJP" = Ci + {J. 
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Hence the set lF consisting of the pn distinct roots of xP" - x over lF P is closed under 
addition, multiplication and inverses in its splitting field It follows that lF is a subfield, 
hence in fact must be the splitting field. Since the number of elements is pn , we have 
[lF : 1Fp] = n, which shows that there exist finite fields of degree n over 1Fp for any n > 0. 

Let now lF be any finite field of characteristic p. If lF is of dimension n over its prime 
subfield lF P• then lF has precisely pn elements. Since the multiplicative group lFx is (in 

fact cyclic) of order pn - 1, we have aP"-l = l for every a =/= 0 in IF, so that aP" = a  for 
every a E IF. But this means a is a root of xP" - x, hence lF is contained in a splitting field 
for this polynomial. Since we have seen that the splitting field has order pn this shows that 
lF is a splitting field for xP" - x. Since splitting fields are unique up to isomorphism, this 
proves that finite fieltls of any order pn exist and are unique up to isomorphism. We shall 
denote the finite field of order pn by lF p" • 

We shall consider finite fields more later. 

We now investigate further the structure of inseparable irreducible polynomials over 
fields of characteristic p. We have seen above that if p(x)  is an irreducible polynomial 
which is not separable, then its derivative Dx p(x)  is identically 0, so that p(x) = Pl (xP)  
for some polynomial Pl (x ) .  The polynomial Pl (x) may or may not itself be separable. 
If not, then it too is a polynomial in xP,  Pl (x) = pz (xP),  so that p(x) is a polynomial in 
xP2 : p(x)  = p2 (xP2 ) . Continuing in this fashion we see that there is a uniquely defined 
power pk of p such that p(x)  = Pk(xJI')  where Pk (x) has nonzero derivative. It is clear 
that Pk (x) is irreducible since any factorization of Pk (x) would, after replacing x by 

xPk , immediately imply a factorization of the irreducible p(x) .  It follows that Pk(x) is 
separable. We summarize this as: 

Proposition 38. Let p(x) be an irreducible polynomial over a field F of characteristic 
p. Then there is a unique integer k � 0 and a unique irreducible separable polynomial 
Psep (X) E F[x] such that 

Definition. Let p(x) be an irreducible polynomial over a field of characteristic p. The 
degree of Psep (x) in the last proposition is called the separable degree of p(x ), denoted 
degsp(x) .  The integer pk in the proposition is called the inseparable degree of p(x) ,  
denoted deg; p(x) .  

From the definitions and the proposition we see that p(x) is  separable if and only 
if its inseparability degree is 1 if and only if its degree is equal to its separable degree. 
Also, computing degrees in the relation p(x) = Psep (xPk )  we see that 

deg p(x) = degsp(x)deg; p(x) .  

Examples 

(1) The polynmpial p (x) = x2 - t over F = lFz(t) considered above has derivative 
0, hence is not separable (as we determined earlier). Here Psep (x) = x - t with 
inseparability degree 2. 
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(2) The polynomial p(x) = x2m - t over F = IF2(t) is irreducible with the same separable 
polynomial part, but with inseparability degree 2m .  

(3) The polynomial (xP2 - t)(xP - t )  over F = IF p(t) has (two) inseparable irreducible 

factors so is inseparable. This polynomial cannot be written in the form fsep (xif )  
where fsep (x) is separable, which is the reason we restricted to irreducible polynomials 
above. This example also shows that there is no analogous factorization to define the 
separable and inseparable degrees of a general polynomial. 

The notion of separability carries over to the fields generated by the roots of these 
polynomials. 

Definition. The field K is said to be separable (or separably algebraic) over F if 
every element of K is the root of a separable polynomial over F (equivalently, the 
minimal polynomial over F of every element of K is separable). A field which is not 
separable is inseparable. 

We have seen that the issue of separability is straightforward for finite extensions 
of perfect fields since for these fields the minimal polynomial of an algebraic element 
is irreducible hence separable. 

Corollary 39. Every finite extension of a perfect field is separable . In particular, every 
finite extension of either Q or a finite field is separable. 

We shall consider separable and inseparable extensions more after developing some 
Galois Theory, in particular defining the separable and inseparable degree of the exten
sion KjF. 

E X E R C I S E S 

l. Prove that the derivative Dx of a polynomial satisfies Dx<f(x) + g(x)) = Dx<f(x)) + 
Dx (g(x)) and Dx (f(x)g(x)) = Dx (f(x))g(x) + Dx (g(x))f(x) for any two polynomials 
f(x) and g(x). 

2. Find all irreducible polynomials of degrees 1 ,  2 and 4 over IF 2 and prove that their product 
is x 16 - x. 

3. Prove that d divides n if and only if xd - 1 divides xn - 1 .  [Note that if n = qd + r then 
xn - 1 = (xqd+r - xr) + (xr - 1 ).] 

4. Let a > 1 be an integer. Prove for any positive integers n, d that d divides n if and only if 
ad - 1 divides an - 1 (cf. the previous exercise). Conclude in particular that IF Pd � IF p" 
if and only if d divides n.  

5.  For any prime p and any nonzero a E IF p prove that x P -x + a  is  irreducible and separable 
over IF p ·  [For the irreducibility: One approach - prove first that if a is a root then a + 1 
is also a root. Another approach - suppose it's reducible and compute derivatives.] 

6. Prove that xF
"-1 - 1  = flaEIFx (x - a) . Conclude that flaEIFx a =  (- l)P" so the product � � 

of the nonzero elements of a finite field is + 1 if p = 2 and - 1  if p is odd. For p odd and 
n = 1 derive Wilson 's Theorem: (p - 1 ) !  = - 1  (mod p). 
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7. Suppose K is a field of characteristic p which is not a perfect field: K =f. K P .  Prove there 
exist irreducible inseparable polynomials over K. Conclude that there exist inseparable 
finite extensions of K.  

8.  Prove that f(x)P = f(xP) for any polynomial f(x) E IF p[x] .  
9. Show thatthe binomial coefficient (�7) is the coefficient of x pi in the expansion of ( 1  + x )Pn . 

Working over IF P show that this is the coefficient of (xP)i in ( 1  + xP)n and hence prove 
that (�7) = (7) (mod p). 

10. Let f(xt . xz , . . .  , Xn ) E Z[xt . xz, . . . , xn] be a polynomial in the variables XJ , xz , . . .  , Xn 
with integer coefficients. For any prime p prove that the polynomial 

f(xt ,  xz , . . .  , Xn)P - f(xf ,  xf,  . . . , xf:) E Z[xt , xz , . . . , Xn] 

has all its coefficients diviSible by p .  
11 .  Suppose K[x] is a polynomial ring over the field K and F i s  a subfield of  K. If F is a 

perfect field and f(x) E F[x] has no repeated irreducible factors in F[x], prove that f(x) 
has no repeated irreducible factors in K[x]. 

1 3.6 CYCLOTOM IC POLYNOMIALS AND EXTENSIONS 

The purpose of this section is to prove that the cyclotomic extension 

Q(�n )/Q 
generated by the nth roots of unity over Q introduced in Section 4 is of degree f{J(n) 
where f/J denotes Euler's phi-function ( = the number of integers a, 1 ::::: a < n relatively 
prime to n =  the order of the group (7/.,fn'l!.,) x ). 

Definition. Let 1-'-n denote the group of nth roots of unity over Q. 

Then as we have already observed, 7/.,fn'l!., � 1-'-n as groups (under multiplication 
on the right, addition on the left), given explicitly by the map a �---+ (�n )a for a fixed 
primitive nth root of unity. The primitive nth roots of unity are given by the residue 
classes prime to n so there are precisely f{J(n) primitive nth roots of unity. 

If d i� a divisor of n and � is a dth root of unity, then � is also an nth root of unity 
since �n = (�d)nfd = 1 .  Hence 

for all d I n . 
Conversely, the order of any element of the group 1-'-n is a divisor of n so that if � is an 
nth root of unity which is also a dth root of unity for some smaller d then d I n. 

Definition. Define the nth cyclotomic polynomial l!>n (x) to be the polynomial whose 
roots are the primitive nth roots of unity: 

11>n (X) = 

(which is of degree f{J(n)). 
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The roots of the polynomial xn - 1 are precisely the nth roots of unity so we have 
the factorization 

xn - 1 = n (x - {) .  

s"=I 
i.e. s EJL, 

If we group together the factors (x - l;) where l; is an element of order d in lin (i.e., l; 
is a primitive � root of unity) we obtain 

xn - 1 = n n (x - 1;) .  
d in /; Ef.Ld 

I; primitive 

The inner product is cJJd (x) by definition so we have the factorization 
... 

xn - 1 = n c]Jd (x) .  
din 

Note incidentally that comparing degrees gives the identity 

n = L ifJ(d) . 
din 

( 1 3.4) 

This factorization allows us to compute ctJn (x) for any n recursively: clearly 
cJJ1 (x) = x - 1 and cJJ2 (x) = x + 1 .  Then 

x3 - 1 = cJJI (x)cJJ3 (x) = (x - l )cJJ3 (x) 

which gives 

Similarly 

gives 
cJJ4(x) = x2 + 1 

(in these cases these could also be obtained directly from the explicit roots of unity). 
Continuing in this fashion we can compute ctJn (x) for any n. Note also that for p a 
prime we recover our polynomial 

ctJp (x) = .x,.P-1 + xP-2 + · · · + x + 1 .  
For some small values of n the polynomials are 

cJJs (x) = x4 + x3 + x2 + x + 1 
cJJ6 (X) = x2 - X + } 

cJJ7 (x) = x6 + x5 + x4 + x3 + x2 + x  + 1 
cJJs (x) = x4 + 1 
cJJ9(x) = x6 + x3 + 1 

ctJw(x) = x4 - x3 + x2 - x + 1 

cJJn (x) = x 10 + x9 + · · · + x  + 1 

cJJ12 (x) = x4 - x2 + 1 .  
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For all the values computed above, <P, (x) was a (monic) polynomial with integer 
coefficients. This is always the case: 

Lemma 40. The cyclotomic polynomial <P, (x) is a monic polynomial in Z[x] of degree 
(j)(n) . 

Proof· It is clear that <P, (x) is monic and has degree (/) (n) .  We must show the 
coefficients lie in Z. We use induction on n. The result is true for n = 1 (and n .:'S 12). 
Assume by induction that <Pd (x) E Z[x] for all 1 .:'S d < n. Then x" - 1 = f(x)<P, (x) 
where f(x) = Ti din <Pd (x) is monic and has coefficients in Z. Since f(x) clearly 

d..>n 
divides x" - 1 in F[x] where F = Q(s, )  is the field of nth roots of unity and both 
f(x) and x" - 1 have coefficients in Q, f(x) divides x" - 1 in Q[x] by the Division 
Algorithm (cf. the remark at the end of Section 9.2). By Gauss' Lemma, f(x) divides 
x" - 1 in Z[x], hence <P, (x) E Z[x]. 

We remark in passing that while all the coefficients of <P, (x) in the examples 
computed above were 0, ±1 .  it is known that there are cyclotomic polynomials with 
arbitrarily large coefficients. 

Theorem 41. The cyclotomic polynomial <P, (x) is an irreducible monic polynomial in 
Z[x] of degree (/J(n) . 

Proof" We must show that <P, (x) is irreducible. If not then we have a factorization 

<P, (x) = f(x)g(x) with f(x) , g(x) monic in Z[x] 

where we take f(x) to be an irreducible factor of <P, (x) .  Let s be a primitive nth root 
of 1 which is a root of f (x) (so then f (x) is the minimal polynomial for s over Q) and 
let p denote any prime not dividing n .  Then Sp is again a primitive nth root Of 1 ,  hence 
is a root of either f(x) or g(x) . 

Suppose g(sP) = 0. Then s is a root of g(xP) and since f(:i) is the minimal 
polynomial for s. f(x) must divide g(xP) in Z[x], say 

g(xP) = f(x)h(x) , h(x) E Z[x]. 

If we reduce this equation mod p. we obtain 

g(xP) = f(x)h(x) 

By the remarks of the last section, 

so we have the equation 

in lFp[x ] . 

(g(x))P = J(x)h (x) 

in the U.F.D. lFp [x]. It follows that f(x)  and g(x) have a factor in common in 1Fp[x] .  
Now, from <P, (x) = f(x)g(x) we see by reducing mod p that <P, (x) = f(x)g(x) ,  

and so by the above it follows that <P, (x) E 1Fp[x] has a multiple root. But then also 
x" - 1 would have a multiple root over lF P since it has <P, (x) as a factor. This is a 
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contradiction since we have seen in the last section that there are n distinct roots of 
xn - 1 over any field of characteristic not dividing n. 

Hence �P must be a root of f(x).  Since this applies to every root � of f(x), 
it follows that �a is a root of f(x) for every integer a relatively prime to n :  write 
a = Pt P2 · · · Pk as a product of (not necessarily distinct) primes not dividing n so 
that �p, is a root of f(x), so also (� P, )P2 is a root of f(x), etc. But this means that 
every primitive nth root of unity is a root of f(x), i.e., f(x) = tPn (x), showing tPn (x) 
is irreducible. � 

Corollary 42. The degree over <Ql of the cyclotomic field of nth roots of unity is <p(n) : 
[<Ql(�n) : <Ql] = <p(n) . 

Proof" By the theorem, tPn (x) is the minimal polynomial for any primitive nth root 
of unity �n · 

Example 

The cyclotomic field Q(�s) of the gth roots of unity is of degree cp(8) = 4 over Q. This field 
contains the 4th roots of unity, i.e., Q(i) c Q(�s) as well as the element �8 + �8 7 = .J2 
(recall the explicit roots of unity in Section 4). It follows that 

Q(�s) = Q(i, .J2 ). 

One interesting number-theoretic application of the cyclotomic polynomials out
lined in the exercises is the proof that for any n there are infinitely many primes which 
are congruent to 1 modulo n. The complete factorization in Fp [x] of tPe(x) for a prime 
£ (which is irreducible in Z[x]) is described in Exercise 8 below. 

We shall return to the example of cyclotomic fields after we have developed some 
Galois Theory. 

E X E R C I S E S 

1. Suppose m and n are relativ�ly prime positive integers. Let �m be a primitive mth root of 
unity and let {n be a primitive nth root of unity. Prove that �m �n is a primitive mnth root of 
unity. 

2. Let �n be a primitive nth root of unity and let d be a divisor of n. Prove that �! is a primitiwe 
(njd)th root of unity. 

3. Prove that if a field contains the nth roots of unity for n odd then it also contains the 2nth 
roots of unity. 

4. Prove that if n = pkm where p is a prime and m is relatively prime to p then there are 
precisely m distinct nth roots of unity over a field of characteristic p.  

5. Prove there are only a finite number of roots of unity in any finite extension K of Q. 

6. Prove that for n odd, n > I ,  <P211 (x) = <Pn (-x).  

7. Use the Mobius Inversion formula indicated in Section 14.3 to prove 

<Pm (X) = TI<xd - 1)1-L(mjd) _ 

din 
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8. Let £ be a prime and let C!>e (x) = :'�l = xl- l + xl-2 + . . . + x + 1 E Z[x] be the 
eth cyclotomic polynomial, which is irreducible over Z by Theorem 

4
1 .  This exercise 

determines the factorization of C!>e (x) modulo p for any prime p. Let � denote any fixed 
primitive eth root of unity. 
(a) Show that if p = l then C!>t (x) = (x - 1 )f-l E IF'e [x] .  
(b) Suppose p =/=- £ and let f denote the order of p mod £, i.e., f is  the smallest power of 

p with pf = I mod £. Use the fact that IF';. is a cyclic group to show that n = f is 
the smallest power pn of p with � E IF' p" .  Conclude that the minimal polynomial of 
� over IF' P has degree f. 

(c) Show that IF'p (S) = IF'p (�a) for any integer a not divisible by £. [One inclusion is 
obvious. For the other, note that � = (� a )h where b is the multiplicative inverse of 
a mod £.] Conclude using (b) that, in IF'p[x], C!>e (x) is the product of lfl distinct 
irreducible polynomials of degree f. 

(d) In particular, prove that, viewed in lF'p [x], cJ>7 (x) = x6 +x5 + . . .  +x + 1 is (x - 1 )6 for 
p = 7, a product of distinct linear factors for p = 1 mod 7, a product of 3 irreducible 
quadratics for p = 6 mod 7, a product of 2 irreducible cubics for p = 2, 4 mod 7, 
and is irreducible for p = 3 ,  5 mod 7. 

9. Suppose A is an n x n matrix over C for which Ak = I for some integer k :::':: 1.  Show that 
A can be diagonalized. Show that the matrix A = ( � 7 ) where a is an element of a 
field of characteristic p satisfies AP = I and cannot be diagonalized if a =/=- 0. 

10. Let <p denote the Frobenius map x �---+ xP on the finite field IF' p" · Prove that <p gives an 
isomorphism of IF' p" to itself (such an isomorphism is called an automorphism). Prove that 
<pn is the identity map and that no lower power of <p is the identity. 

11. Let <p denote the Frobenius map x �---+ xP  on the finite field IF' p" as in the previous ex
ercise. Determine the rational canonical form over IF' P for <p considered as an IF' p-linear 
transformation of the n-dimensional lF' p-vector space IF' p" .  

12. Let <p denote the Frobenius map x �---+ xP on the finite field IF' p" as in the previous exercise. 
Determine the Jordan canonical form (over a field containing all the eigenvalues) for <p 
considered as an IF' p-linear transformation of the n-dimensional lF' p-vector space IF' p" . 

13. (Wedderburn 's Theorem on Finite Division Rings) This exercise outlines a proof (following 
Witt) of Wedderburn's Theorem that a finite division ring D is a field (i.e., is commutative). 
(a) Let Z denote the center of D (i.e., the elements of D which commute with every 

element of D). Prove that Z is a field containing IFp for some prime p. If Z = !Fq 
prove that D has order q

n for some integer n [ D is a vector space over Z] . 
(b) The nonzero elements Dx of D form a multiplicative group. For any x E Dx show 

that the elements of D which commute with x form a division ring which contains Z. 
Show that this division ring is of order qm for some integer m and that m < n if x is 
not an element of Z. 

(c) Show that the class equation (Theorem 4.7) for the group Dx is 
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where x1 . x2 • . . .  , Xr are representatives of the distinct conjugacy classes in Dx not 
contained in the center of Dx . Conclude from (b) that for each i , I CDx (x; ) l  = q

m' - 1  
for some m; < n. 
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(d) Prove that since 
qn - 1 is an integer (namely, the index IDx  : Cvx (x; ) l  ) then m; 
qm; - 1  

divides n (cf. Exercise4 of Section 5). Conclude that t1>n (x) divides (xn - 1)/(xm' - 1) 
and hence that the integer t1>n (q) divides (qn - 1)/(qm' - 1 )  for i = 1 ,  2, . . . , r .  

(e) Prove that (c) and (d) imply that t1>n (q) = Os primitive (q - S )  divides q - 1 .  Prove 
that lq - s I > q - 1 (complex absolute value) for any root of unity s =I= 1 [note that 
1 is the closest point on the unit circle in <C to the point q on the real line]. Conclude 
that n = 1 ,  i.e., that D = Z is a field. 

The following exercises provide a proof that for any positive integer m there are infinitely many 
primes p with p = 1 (mod m) . This is a special case of Dirichlet's Theorem on Primes in 
Arithmetic Progressions which states more generally that there are infinitely many primes p 

with p = a  (mod m) for any a relatively prime to m. 

14. Given any monic polynomial P(x) E Z[x] of degree at least one show that there are 
infinitely many distinct prime divisors of the integers 

P(l) ,  P(2) , P(3) ,  . . . , P(n), . . . .  
[Suppose Pl . p2 , . . .  , Pk are the only primes dividing the values P(n), n = 1 ,  2 . . . . . Let 
N be an integer with P(N) = a  =1= 0. Show that Q(x) = a-1 P(N + a PlP2 . . .  Pk x) is an 
element of Z[x] and that Q(n) = 1 (mod Pl P2 . . .  Pk) for n = 1 ,  2, . . . . Conclude that 
there is some integer M such that Q(M) has a prime factor different from P l .  P2 • . . .  , Pk 
and hence that P(N + ap1 P2 · · · PkM) has a prime factor different from Pl . P2 • . . .  , Pk -1 

15. Let p be an odd prime not dividing m and let t1>m(x) be the mth cyclotomic polynomial. 
Suppose a � Z  satisfies t1>m (a) = 0 (mod p). Prove that a is relatively prime to p and 
that the order of a in (Z/ pZ) x is precisely m .  [Since 

Xm - 1 = n tl>d(X) = t1>m(X) n tl>d (X) 
dim dim 

d<m 
we see first that am - 1 = 0 (mod p) i.e., am = 1 (mod p ) . If the order of a mod p were 
less than m, then ad = 1 (mod p) for some d dividing m, so then tl>d(a) = 0  (mod p) for 
some d < m. But then xm - 1 would have a as a multiple root mod p, a contradiction.] 

16. Let a E Z. Show that if p is an odd prime dividing t1>m (a) then either p divides m or p = 1 
(mod m). 

17. Prove there are infinitely many primes p with p = 1 (mod m) . 
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CHAPTER 1 4  

Ga l o i s  Th eo ry 

1 4.1 BASIC DEFIN ITIONS 

In the previous chapter we proved the existence of a finite extension of a field F which 
contains all the roots of a given polynomial f (x) whose coefficients are in F. The 
main idea of Galois Theory (named for Evariste Galois, 1 8 1 1-1832) is to consider the 
relation of the group of permutations of the roots of f (x) to the algebraic structure of 
its splitting field. The connection is given by the Fundamental Theorem of the next 
section. It can be viewed as another (extremely elegant) application of the important 
idea in mathematics that one (in our case algebraic) object acting on another provides 
structural information about both. 

In this section we introduce the terminology and basic properties of the objects of 
interest. Let K be a field. 

Definition. 
(1) An isomorphism a of K with itself is called an automorphism of K. The 

collection of automorphisms of K is denoted Aut(K). If a E K we shall write 
a a for a(a). 

(2) An automorphism a E Aut(K) is said to fix an element a E K if aa = a. If 
F is a subset of K (for example, a subfield), then an automorphism a is said to 
fix F if it fixes all the elements of F, i.e., a a = a for all a E F. 

Note that any field has at least one automorphism, the identity map, denoted by 1 
and sometimes called the trivial automorphism. 

The prime field of K is generated by 1 E K and since any automorphism a takes 
1 to 1 (and 0 to 0), i.e., a ( 1 )  = 1 ,  it follows that a a = a for all a in the prime field. 
Hence any automorphism of a field K fixes its prime subfield. In particular we see that 
Q and IFP have only the trivial automorphism: Aut(Q) = { 1 }  and Aut(IFp) = { 1 } .  

Definition. Let KIF be an extension of fields. Let Aut( KIF) be the collection of 
automorphisms of K which fix F. 

Note that if F is the prime subfield of K then Aut(K) = Aut(KI F) since every 
automorphism of K automatically fixes F. 
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If (j and T are automorphisms of K then the composite (j T (and also the composite 
T(j,  which may not be the same) is defined and is again an automorphism of K.  

Proposition 1 .  Aut(K) i s  a group under composition and Aut(K I F) is a subgroup. 

Proof" It is clear that Aut(K) is a group. If (j and T are automorphisms of K which 
fix F then also (jT  and (j-l are the identity on F, which shows that Aut(KI F) is a 
subgroup. 

The following proposition is extremely useful for determining the automorphisms 
of algebraic extensions. 

Proposition 2. Let KIF be a field extension and let a E K be algebraic over F. 
Then for any (j E Aut( KIF), (j a is a root of the minimal polynomial for a over F i.e., 
Aut(K I F) permutes the roots of irreducible polynomials. Equivalently, any polynomial 
with coefficients in F having a as a root also has (fa as a root. 

Proof· Suppose a satisfies the equation 

an + an- lan-l + . . .  + ala + ao = 0 
where ao, a1 , . . . , an-I are elements of F. Applying the automorphism (j we obtain 
(using the fact that (j is an additive homomorphism) 

(f (an) + (f (an-lan-l ) + · · · + (f(ata) + (f (ao) = (1 (0) = 0. 
Using the fact that (j is also a multiplicative homomorphism this becomes 

((f (a))n + (f(an- I ) ((f (a)t-1 + · · · + (f(at ) ((f (a)) + (f (ao) = 0. 
By assumption, (j fixes all the elements of F, so (j (a; ) = a; ,  i = 0, 1 ,  . . . , n - 1 .  Hence 

((fat + an-I ((fa)n-I + · · · + at ((fa) + ao = 0. · 
But this says precisely that (fa is a root of the same polynomial over F as a. This 
proves the proposition. 

Examples 

(1) Let K = Q(.J2 ) . If r E Aut(Q(.J2)) = Aut(Q(.J2 )/Q) , then r (.J2 ) = ±.J2 

since these are the two roots of the minimal polynomial for ,J2. Since r fixes Q, this 
determines r completely: 

r (a + b.J2) = a ±  b.J2. 
The map .J2 r+ .J2 is just the identity automorphism 1 of Q(.J2 ). The map 
a : .J2 r+ -.J2 is the isomorphism considered in Example 2 following Corollary 
1 3.7. Hence Aut(Q(.J2 )) = Aut(Q(.J2)/Q) = { 1 ,  a }  is a cyclic group of order 2 
generated by a .  

(2) Let K = Q(.{/2 ) .  A s  before, if r E Aut(K/Q), then r i s  completely determined by 
its action on V2 since 

r(a + b Vl  + c( V2)2) = a +  br V2 + c(r V2 )2 .  

Since r V2 must b e  a root of x3 - 2 and the other two roots of this equation are not 
elements of K (recall the splitting field of this polynomial is degree 6 over Q), the 
only possibility is r V2 = V2 i.e., r = 1 .  Hence Aut(Q( V2) /Q) = 1 is the trivial 
group. 
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In general, if K is generated over F by some collection of elements, then any auto
morphism a E Aut(K I F) is completely determined by what it does to the generators. 
If KIF is finite then K is finitely generated over F by algebraic elements so by the 
proposition the number of automorphisms of K fixing F is finite, i.e., Aut(K I F) is a 
finite group. In particular, the automorphisms of a finite extension can be considered 
as permutations of the roots of a finite number of equations (not every permutation 
gives rise to an automorphism, however, as Example 2 above illustrates). It was the 
investigation of permutations of the roots of equations that led Galois to the theory we 
are describing. 

We have associated to each field extension KIF (equivalently, with a subfield F of 
K) a group, Aut(K I F), the group of automorphisms of K which fix F. One can also 
reverse this process and associate to each group of automorphisms a field extension. 

Proposition 3. Let H :::: Aut( K) be a subgroup of the group of automorphisms of K.  
Then the collection F of elements of K fixed by all  the elements of H is  a subfield of K .  

Proof: Let h E  H and let a ,  b E  F.  Then by definition h(a) = a, h (b) = b so that 
h (a±b) = h (a)±h(b) = a±b, h (ab) = h (a)h (b) = ab and h(a-1 ) = h (a)- 1 = a-1 , 
so that F is closed, hence a subfield of K. 

Note that it  is nqJ: important in this proposition that H actually be a subgroup of 
Aut(K) - the collection of elements of K fixed by all the elements of a subset of 
Aut(K) is also a subfield of K.  

Definition. If  H is  a subgroup of the group of automorphisms of K,  the subfield of 
K fixed by all the elements of H is called the fixed field of H.  

Proposition 4. The association of groups to fields and fields to groups defined above 
is inclusion reversing, namely 

(1) if Ft � F2 � K are two subfields of K then Aut(K I F2) :::: Aut(K I Ft ) .  and 
(2) if H1 :::: H2 :::: Aut(K) are two subgroups of automorphisms with associated 

fixed fields Ft and F2, respectively, then F2 � Ft . 

Proof: Any automorphism of K that fixes F2 also fixes its subfield Ft , which gives 
( 1 ). The second assertion is proved similarly. 

Examples 

(1) Suppose K = Q( ,fi) as in Example I above. Then the fixed field of Aut(Q( ,fi)) = 
Aut(Q( ,fi) fQ) = { I ,  a } will be the set of elements of Q( ,fi) with 

a (a + bh ) = a + bh 
since everything is fixed by the identity automorphism. This is the equation 

a - bh = a + bh. 
which is equivalent to b = 0, so the fixed field of Aut(Q( ,fi) /Q) is just Q. 

(2) Suppose now that K = Q( V2) as in Example 2 above. In this case Aut(K)  = I, so 
that every element of K is fixed, i.e., the fixed field of Aut(Q( V2 )  /Q) is Q( V2 ) .  
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Given a subfield F of K,  the associated group is the collection of automorphisms 
of K which fix F. Given a group of automorphisms of K, the associated extension is 
defined by taking F to be the fixed field of the automorphisms. In the first example 
above, starting with the subfield Q of Q( .J2 )  one obtains the group { 1 ,  a}  and starting 
with the group { 1 ,  a } one obtains the subfield Q, so there is a "duality" between the two. 
In the second example, however, starting with the subfield Q of Q( ifi )  one obtains only 
the trivial group and starting with the trivial group one obtains the full field Q( ifi ). 

An examination of the two examples suggests that for the second example there 
are "not enough" automorphisms to force the fixed field to be Q rather than the full 
Q( ifi ). This in tum seems to be due to the fact that the other roots of x3 - 2, which are 
the only possible images of ifi under an automorphism, are not elements of Q( ifi ) .  
(Although even if they were we would need to check that the additional maps we could 
define were automorphisms.) We now make precise the notion of fields with "enough" 
automorphisms (leading to the definition of a Galois extension). As one might suspect 
even from these two examples (and we prove in the next section) these are related to 
splitting fields. 

We first investigate the size ofthe automorphism group in the case of splitting fields. 
Let F be a field and let E be the splitting field over F of j (x) E F[x] .  The main 

tool is Theorem 1 3.27 on the existence of extensions of isomorphisms, which states 

that any isomorphism ({J : F ...::;. F' of F with F' can be extended to an isomorphism 

a : E ...::;. E' between E and the splitting field E' for f'(x) = ({J(/(x)) E F' [x] .  
We now show by induction on [E : F] that the number of such extensions i s  at 

most [E : F], with equality if f(x) is separable over F. If [E : F] = 1 then E = F, 
E' = F', a = ({J and the number of extensions is 1. If [E : F] > 1 then f(x) has at 
least one irreducible factor p (x) of degree > 1 with corresponding irreducible factor 
p' (x) of f'(x) .  Let a be a fixed root of p(x).  If a is any extension of ({J to E, then a 
restricted to the subfield F(a) of E is an isomorphism T of F(a) with some subfield of 
E'. The isomorphism T is completely determined by its action on a, i.e., by Ta, since 
a generates F(a) over F. Just as in Proposition 2, we see that Ta must be some root 
f3 of p'(x) .  Then we have a diagram 

a :  E ----+ E' 

I I 
T : F (a) ----+ F'(/3) 

I I 
(/J : F ----+ F' 

Conversely, for any f3 a root of p' (x) there are extensions T and a giving such a diagram 
(this is Theorem 13 .8  and Theorem 13.27). Hence to count the number of extensions 
a we need only count the possible number of these diagrams. 

The number of extensions of ({J to an isomorphism T is equal to the number of distinct 
roots f3 of p' (x) .  Since the degree of p (x) and p'(x) are both equal to [F(a) : F], we 
see that the number of extensions of ({J to a T  is at most [F(a) : F], with equality if the 
roots of p (x) are distinct. 

Since E is also the splitting field of f(x) over F(a), E' is the splitting field of f' (x) 
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over F'(,B), and [E : F(a)] < [E : F], we may apply our induction hypothesis to these 
field extensions. By induction, the number of extensions of r to a is � [E : F(a)], 
with equality if f (x) has distinct roots . 

From [E : F] = [E : F(a)][F(a) : F] it follows that the number of extensions of 
rp to a is � [E : F].  We have equality if p(x) and f(x) have distinct roots, which is 
equivalent to f(x) having distinct roots since p(x) is a factor of f(x) , completing the 
proof by induction. 

In the particular case when F = F' and rp is the identity map we have f (x) = f' (x) 
and E = E' so the isomorphisms of E to E' restricting to rp on F are the automorphisms 
of E fixing F. We state this as follows: 

' 
Proposition 5. Let E be the splitting field over F of the polynomial f(x) E F[x].  
Then 

IAut(EIF) I � [E :  F] 

with equality if f (x) is separable over F .  

Remark: While we  were primarily interested in counting the automorphisms of  E 
which fix F (which is the situation of F = F', rp = 1 above), it would still have been 
necessary to consider the situation of more general rp (and different fields F') because 
of the induction step in the proof (which involves the fields F(a) and F(,B) for two 
roots of the same polynomial p(x) ). 

One can modify the proof above to show more generally that IAut(K 1 F) I � [ K : F] 
for any finite extension Kl F (we shall prove this in the next section from a slightly 
different point of view). This gives us a notion of field extensions with "enough" 
automorphisms. 

Definition. Let K 1 F be a finite extension. Then K is said to be Galois over F and 
K 1 F is a Galois extension if IAut( KIF) I = [K : F]. If KIF is Galois the group of 
automorphisms Aut(KI F) is called the Galois group of Kl F, denoted Gal(KI F). 

Remark: The Galois group of an extension K 1 F is sometimes defined to be the group 
of automorphisms Aut( K 1 F) for all K 1 F. We have chosen the definition above so 
that the notation Gal( K 1 F) will emphasize that the extension K 1 F has the maximal 
number of automorphisms. 

Corollary 6. If K is the splitting field over F of a separable polynomial f (x) then 
Kl F is Galois. 

We shall see in the next section that the converse is also true, which will completely 
characterize Galois extensions. 

Note also that Corollary 6 implies that the splitting field of any polynomial over Q 
is Galois, since the splitting field of f (x) is clearly the same as the splitting field of the 
product of the irreducible factors of f (x) (i.e., the polynomial obtained by removing 
multiple factors), which is separable (Corollary 1 3.34). 
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Definition. If f (x) is a separable polynomial over F, then the Galois group off (x) 
over F is the Galois group of the splitting field of f (x) over F. 

Examples 

(1) The extension Q(.J2 )/Q is Galois with Galois group Gal(Q(.J2 )/Q) = { 1 ,  a} � 
Zj2Z where a is the automorphism 

a :  Q(.J2 ) � Q(.J2 ) 

a + b.J2 � a - b.J2. 

(2) More generally, any quadratic extension K of any field F of characteristic different 
from 2 is Galois. This follows from the discussion of quadratic extensions following 
Corollary 13 . 1 3, which shows that any extension K of degree 2 of F  (where the 
characteristic of F is not 2) is of the form F(-Ji5 ) for some D hence is the splitting 
field of x2 - D (since if -Ji5 E K then also --JD E K). 

(3) The extension Q( V2 )  jQ is not Galois since its group of automorphlsms is only of 
order 1 .  

(4) The extension Q(  .J2,  .J3 )  i s  Galois over Q since it i s  the splitting field of the poly
nomial (x2 - 2)(x2 - 3). Any automorphism a is completely determined by its action 
on the generators .J2 and .JJ, which must be mapped to ±.J2 and ±.JJ, respectively. 
Hence the only possibilities for automorphisms are the maps 

Since the Galois group is of order 4, all these elements are in fact automorphisms of 
Q( .J2 ,  .J3) over Q. 

Define the automorphisms a and r by 

or, more explicitly, by 

a : a +  b.J2 + c.JJ + d.J6 � a - b.J2 + c.JJ - d.J6 

r :  a +  b.J2 + c.J3 + d.J6 � a +  b.J2 - c.JJ - d.J6 

(since, for example, 

a (.J6) = a (.J2.J3) = a(.J2)a (.J3) = (-.J2) (.J3) = -.J6 ) .  

Then a2(.J2) = a (a.J2) = a (-.J2 ) = .J2 and clearly a2(.J3 ) = .JJ. Hence 
a2 = 1 is the identity automorphism. Similarly, r2 = 1 .  The automorphism ar can 
be easily computed: 

ar(.J2) = a(r(.J2 )) = a(.J2 ) = -.J2 

and 
ar(.J3 ) = a(r(.J3 )) = a (-.J3 ) = -.J3 

so that a r is the remaining nontrivial automorphism in the Galois group. Since this 
automorphism also evidently has order 2 in the Galois group, we have 

Gal(Q(.J2 , .J3 )/Q) = { 1 , a, 'f, a r} 
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i.e., the Galois group is isomorphic to the Klein 4-group. 
Associated to each subgroup of Gal(!Q( .v2 ,  .J3 ) JQ) is the corresponding fixed 

subfield of !Q( .v2 , .J3 ). For example, the subfield corresponding to { 1 ,  a -r} is the set 
of elements fixed by the map 

a -r : a +  bVZ + c.J3 + d.J6 �---+ a - bVZ - c.../3 + d.J6 

which is the set of elements a +d �. i.e., the field !Q( .J6). One can similarly determine 
the fixed fields for the other subgroups of the Galois group: 

subgroup fixed field 

{ 1 }  
{ 1 ,  a }  

{ 1 ,  a-r}  
{ 1 ,  -r }  

{ 1 ,  a ,  -r,  a-r}  

Q<VZ • .J3 ) 
!Q(.J3 ) 
!Q(.J6) 
!Q(VZ )  

Q 

(5) The splitting field of x3 - 2 over Q is Galois of degree 6. The roots of this equation 
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3F; 3F;2 2 3F;2 h 
- 1  + .J=3 . . . . 

b f 
. 

are v £-, p v £-, p v £. w ere p = sJ = 2 1s a pnrruttve cu e root o umty. 

Hence the splitting field can be written !Q( 0 ,  p 0 ) . Any automorphism maps each 
of these two elements to one of the roots of x3 - 2, giving 9 possibilities, but since 
the Galois group has order 6 not every such map is an automorphism of the field 

To determine the Galois group we use a more convenient set of generators, namely 

0 and p. Then any automorphism a maps 0 to one of 0. p 0. p2 0 and maps 
- 1 - .J=3 

p to p or p2 = 2 since these are the roots of the cyclotomic polynomial 

<1>3 (x) = x2 + x + 1 .  Since a is completely determined by its action on these two 
elements this gives only 6 possibilities and so each of these possibilities is actually an 
automorphism. To give these automorphisms explicitly, let a and r be the automor
phisms defined by 

a :  { V2 �--+ p .{l2 

p i--+ p 
{ V2 �--+ V2 

T . . 
p !--+ p2 = - 1  - p. 

As before, these can be given explicitly on the elements of !Q( 0 ,  p ) , which are linear 
combinations of the basis { 1 ,  0 , ( 0)2, p, p 0 ,  p( 0)2} .  For example 

a (p 0) = (p) (p .{l2) = p2 0  = (- 1 - p) 0 

= - 0 - p Vl 

and we may similarly determine the action of a on the other basis elements. This 
gives 

a : a + b V2 + c V4 + dp + ep V2 + f p V4 1---+ 

a - e Vl  + (f - c) V4  + dp + (b - e)p 0 - cp W. 
( 14. 1 )  

The other elements of the Galois group are 

{ V2 �--+ V2 
1 : 

p i--+ p 
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i.e., 

Computing a r we have 

ar : 
� V2 � V2 � p V2 

p � p2 � p2 

ar : { V2 � p� 
P � P 

so that ar = ra2 • Similarly one computes that a3 = r2 = 1 .  Hence 

Gal(<QJ( V2 , {3)/<QJ) = ( a, r } � S3 
� 

is the symmetric group on 3 letters. Alternatively (and less computationally), since 
G = Gal(<QJ( V2 , {3)/<QJ) acts as permutations of the 3 roots ofx3 - 2, G is a subgroup 
of S3, hence must be S3 since it is of order 6. The computations above explicitly 
identify the automorphisms in G and give an explicit isomorphism of G with S3. 

As in the previous example we can determine the fixed fields for any of the 
subgroups of the Galois group. For example, consider the fixed field of the subgroup 
{ 1 ,  a, a2} generated by a. These are just the elements fixed by a (given explicitly in 
equation ( 1)) since if an element is fixed by a then it is also fixed by a2 . (In general, the 
fixed field of some subgroup is the field fixed by a set of generators for the subgroup.) 
The elements fixed by a are those with 

a = a b = -e c = f - c d = d e = b - e f = -c 

which is equivalent to b = c = f = e = 0. Hence the fixed field of { 1 , a, a2) is the 
field <Ql(p) . 

Remark: This example shows that some care must be exercised in determining Galois 
groups from the actions on generators. As mentioned, not every map taking 'V2 and p 'V2 
to roots of x3 - 2 gives rise to an automorphism of the field (for example, the map 

Vl � p Vl  

p Vl � p Vl  

· clearly cannot be an automorphism since it is evidently not an injection). The point is 
that there may be (sometimes very subtle) algebraic relations among the generators and 
these relations must be respected by an automorphism. For example, the quotient of the 
generators here is p, which is mapped to 1 and not to a root of the minimal polynomial for 
p. Put another way, the quotient of these generators satisfies a quadratic equation and this 
map does not respect that property. 

For another (less trivial) example, compare with the discussion of the splitting field of 
x8 - 2 in Section 2. 
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(6) As in Example 3, the field Q( � ) is not Galois over Q since any automorphism is 
determined by where it sends � and of the four possibilities {± �. ±i �}. only 
two are elements of the field (the two real roots). 

Note that we have 
4 

c Q(-./2 ) c 

2 2 

Q( � )  

where Q (  -./2 )  /Q and Q( � ) /Q( -./2) are both Galois extensions by Example 2 since 
both are quadratic extensions. This shows that a Galois extension of a Galois extension 
is not necessarily Galois. 

(7) The extension of finite fields IF p" /IF P constructed after Proposition 13 .37 is Galois 
by Corollary 6 since IF P" is the splitting field over IF p of the separable polynomial 

xP" - x .  It follows that the group of automorph�ms for this extension is of order n. 
The injective homomorphism 

of Proposition 13 .35 is smjective in this case since IF p" is finite, hence is an isomor
phism. This gives an automorphism of IF P" ,  called the Frobenius automorphism, which 

we shall denote by ap . Iterating ap we have a}(a) = ap (ap (a)) = (aP)P = aP
2
• 

Similarly we have 

i = 0, 1 , 2, . . .  

Since aP" = a, we see that a{ = 1 is the identity automorphism. No lower power of 

ap can be the identity, since this would imply aP
' 

= a  for all a E IF P" for some i < n, 
which is impossible since there are only / roots of this equation. It follows that a p 
is of order n in the Galois group, which means that Gal (IF p" /IF p) is cyclic of order n, 
with the Frobenius automorphism a P as generator. 

(8) The inseparable extension IF2(x) over IF2(t) where x2 - t = 0 considered in Section 
13 .5 is not Galois. Any automorphism of this degree 2 extension is determined by its 
action on x, which must be sent to a root of the equation x2 - t. We have already seen 
that there is only one root of this equation (with multiplicity 2) since we are in a field 
of characteristic 2. Hence the extension has only the trivial automorphism. Note that 
IF2(x) is the splitting field for x2 - t over IF2(t) ,  so this example shows the separability 
condition in Corollary 6 is necessary. 

E X E R C I S E S 

1. (a) Show that if the field K is generated over F by the elements a1 ,  . . .  , an then an 
automorphism a of K fixing F is uniquely determined by a (a1 ) ,  . . .  , a (an) - In 
particular show that an automorphism fixes K if and only if it fixes a set of generators 
for K .  

(b) Let G :::; Gal(K I F )  b e  a subgroup of the Galois group of the extension K I F  and 
suppose a1 , . . .  , ak are generators for G. Show that the subfield E IF is fixed by G if 
and only if it is fixed by the generators a1 , . . .  , ak . 
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2. Let r be the map r : C � C defined by r (a + bi ) = a - bi (complex conjugation). Prove 
that r is an automorphism of C. 

3. Detennine the fixed field of complex conjugation on C. 

4. Prove that Q( ,J2) and Q( -/3) are not isomorphic. 

5. Determine the automorphisms of the extension Q( � )  IQ( ,J2) explicitly. 

6. Let k be a field. 
(a) Show that the mapping cp : k[t] � k[t] defined by cp (f(t)) = f(at + b) for fixed 

a, b E k, a =I 0 is an automorphism of k[t] which is the identity on k. ., 
(b) Conversely, let cp be an automorphism of k[t] which is the identity on k. Prove that 

there exist a, b E  k with a =I 0 such that cp(f(t)) = f(at + b) as in (a). 

7. This exercise detennines Aut(IRIQ) . 
(a) Prove that any a E Aut(IRIQ) takes squares to squares and takes positive reals to 

positive reals. Conclude that a < b implies a a < ab for every a, b E  JR. 

(b) Prove that - _!_ < a -b < _!_ implies -_!_ < a a - a  b < _!_ for every positive integer 
m m m m 

m. Conclude that a is a continuous map on JR. 
(c) Prove that any continuous map on IR which is the identity on Q is the identity map, 

hence Aut(IRIQ) = 1 .  
8. Prove that the automorphisms of the rational function field k(t) which fix k are precisely the 

. at + b 
fractional lineartransformations determmed by t r-+ --

d 
for a ,  b, c, d E  k, ad-bc =I 0 

ct + 
(so f(t) E k(t) maps to f(

at + b
) )  (cf. Exercise 1 8  of Section 1 3.2) . 

ct + d  
9. Determine the fixed field of the automorphism t r-+ t + I of k(t ) . 

10. Let K be an extension of the field F. Let cp : K � K' be an isomorphism of K with a 
field K' which maps F to the subfield F' of K'.  Prove that the map a r-+ cpacp

-1 defines 

a group isomorphism Aut(K I F) � Aut(K' IF') . 

1 4.2 THE FUNDAMENTAL THEOREM OF GALOIS THEORY 

In the Galois extension Gal(Q( .Ji ,  ../3 )  /Q) considered in the previous section, there 
was a strong similarity between the diagram of subgroups of the Galois group: 

{ 1 } y' z� 
{ l , r } { l . crr } { l , cr }  � 2/ 

{ 1 ,  cr, r, err} 

and the diagram of corresponding fixed fields 
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(we have inverted the lattice of subgroups because of the inclusion-reversing nature of 
the correspondence). 

Note that this is also the diagram of all known subfields of the extension and that 
in this case each of the subfields is also a Galois extension of Q. 

In a similar way there is a strong similarity between the diagram 

of subgroups of the Galois group and the diagram of known subfields for the splitting 
field of x3 - 2: 

where the subfields in the second diagram are precisely the fixed fields of the subgroups 
in the first diagram. 

Note in this pair of diagrams only the subgroup { a } generated by a is normal in 
S3 and that the subfield Q(p) is the only subfield Galois over Q. 

The Fundamental Theorem of Galois Theory states that the relations observed in 
the two examples above are not coincidental and hold for any Galois extension. Before 
proving this we first develop some preliminary results on group characters, of which 
field automorphisms give particular examples. 
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Definition. A character1 x of a group G with values in a field L is a homomorphism 
from G to the multiplicative group of L: 

X : G -+  LX  
i.e., x (gtg2) = x (gt )x (g2) for all gt , g2 E G and x (g) i s  a nonzero element of L for 
all g E G. 

Definition. The characters Xt . X2 • . . .  , Xn of G are said to be linearly independent 
over L if they are linearly independent as functions on G, i.e., if there is no nontrivial 
relation 

a1 X1 + a2X2 + · · · + an Xn = 0 (at . . . . , an E L not all 0) ( 14.2) 

as a function on G (that is, a1 Xt (g) + a2X2 (g) + · · · + anxn (g) = 0 for all g E G). 

Theorem 7. (Linear Independence of Characters) If Xt . x2 , . . .  , Xn are distinct char
acters of G with values in L then they are linearly independent over L. 

Proof" Suppose the characters were linearly dependent. Among all the linear 
dependence relations (2) above, choose one with the minimal number m of nonzero 
coefficients a; . We may suppose (by renumbering, if necessary) that the m nonzero 
coefficients are at . a2 , . . .  , am : 

a1 X1 + a2X2 + · · · + amXm = 0. 

Then for any g E G we have 

at Xt (g) + a2X2(g) + · · · + amXm (g) = 0. ( 14.3) 
Let go be an element with Xt (go) # Xm (go) (which exists, since Xl # Xm)· Since (3) 
holds for every element of G, in particular we have 

atXt (gog) + a2X2(gog) + · · · + amxm (gog) = 0 

i.e., 

(14.4) 

Multiplying equation (3) by Xm (g0) and subtracting from equation (4) we obtain 

lxm {go) - Xt (go)]at Xt (g) + lxm (go) - X2(go)]a2X2(g) + · · · 
+ [Xm (go) - Xm-l (go)]am-l Xm-l (g) = 0, 

which holds for all g E G. But the first coefficient is nonzero and this is a relation with 
fewer nonzero coefficients, a contradiction. 

Consider now an injective homomorphism a of a field K into a field L, called an 
embedding of K into L. Then in particular a is a homomorphism of the multiplicative 
group G = K x into the multiplicative group L x , so a may be viewed as a character of 
K x with values in L. Note also that this character contains all of the useful information 
about the values of a viewed simply as a function on K, since the only point of K not 
considered in K x is 0, and we know a maps 0 to 0. 

1 This is the definition of a linear character. More general characters will be studied in Chapter 18. 
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Corollary 8. If at , o-2 , . . .  , a, are distinct embeddings of a field K into a field L, then 
they are linearly independent as functions on K .  In particular distinct automorphisms 
of a field K are linearly independent as functions on K .  

We now use Corollary 8 to prove the fundamental relation between the orders of 
subgroups of the automorphism group of a field K and the degrees of the extensions 
over their fixed fields. 

Theorem 9. Let G = {at = l ,  o-2, . . .  , a, } be a subgroup of automorphisms of a field 
K and let F be the fixed field. Then 

[K : F] = n = I G 1 -

Proof" Suppose first that n > [K : F] and let Wt , Wz , . . .  , Wm be a basis for K over 
F (m = [K : F]). Then the system 

at (Wt )Xt + az(wi )xz + · · · + a, (wt )x, = 0 

ITt (wm)Xt + az(wm)Xz + · · · + a, (wm)x, = 0 
of m equations in n unknowns Xt , Xz, . . . , x, has a nontrivial solution f3t , f3z, . . .  , f3, in 
K since by assumption there are more unknowns than equations. 

Let a1 , a2, . . .  , am be m arbitrary elements of F. The field F is by definition 
fixed by o-1 ,  • • •  , a, so each of these elements is fixed by every O"j ,  i.e., ai (aj) = aj , 
i = 1 ,  2, . . .  , n, j = 1 ,  2, . . .  , m.  Multiplying the first equation above by at . the second 
by a2, . . . , the last by am then gives the system of equations 

o-1 (atWt )f3I + o-z(aJWt )f3z + · · · + a, (aJWt )f3, = 0 

ITt (amWm)f3I + lTz(amwm)f)z + · · · + a, (amWm)f3, = 0. 
Adding these equations we see that there are elements {31 , • • •  , {3, in K, not all 0, 
satisfying 

O"J (aJWJ + azwz + · · · + amwm)f3I + · · · + a, (atWJ + azwz + · · · + amwm)f3, = 0 

for all choices of a1 , . . .  , am in F. Since w1 ,  . . .  , Wm is an F -basis for K,  every a E K 
is of the form aJWJ + azevz + · · · + amwm, so the previous equation means 

o-1 (a)f3t + · · · + a, (a)f3, = 0 

for all a E K.  But this means the distinct automorphisms O"t , . . •  , a, are linearly 
dependent over K,  contradicting Corollary 8. 

We have proved n ::::= [K : F] .  Note that we have so far not used the fact that 
at , o-z , . . .  , a, are the elements of a group. 

Suppose now that n < [ K : F]. Then there are more than n F -linearly independent 
elements of K, say a1 , . . .  , a,+ I · The system 

O"J (aJ )XJ + O"t (az)Xz + · · · + O"J (an+J )Xn+I = 0 

( 14.5) 
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of n equations in n +  1 unknowns x1 , . . .  , Xn+l has a solution .Br . . . .  , .Bn+l in K where 
not all the ,8; , i = 1 ,  2, . . . , n + 1 are 0. If all the elements of the solution .81 , . . .  , .Bn+ 1 
were elements of F then the first equation (recall o-1 = 1 is the identity automorphism) 
would contradict the linear independence over F of a1 , az , . . .  , an+l · Hence at least 
one ,B; , i = 1 , 2, . . . , n + 1 ,  is not an element of F. 

Among all the nontrivial solutions (,81 , . . .  , .Bn+l ) of the system (5) choose one with 
the minimal number r of nonzero ,B; . By renumbering if necessary we may assume 
.Bt • . . .  , .Br are nonzero. Dividing the equations by .Br we may also assume .Br = 1 .  We 
have already seen that at least one of .81 • . . .  , .Br-l • 1 is not an element of F (which 
shows in particular that r > 1 ), say ,81 (j F. Then our system of equations reads 

D'l (ar ).BJ + ·  · · + o-l (ar- l ).Br-1 + o-1 (ar) = 0  
(14.6) 

or more briefly 

o-; (ai ).Bt + · · · + o-; (ar-d.Br- 1 + o-; (ar) = 0 i = 1 ,  2, . . . , n .  ( 14.7) 

Since .81 (j F, there is an automorphism o-ko (ko E { 1 ,  2, . . . , n}) with o-ko.Bt # .BJ . 
If we apply the automorphism o-ko to the equations in (6), we obtain the system of 
equations 

D'k0D'j (ai )D'k0 (.81 ) + · · · + D'k0D'j (ar- I )D'k0 (.Br-l ) + D'k0D'j (ar) = 0 
for j = 1 ,  2, . . . , n. But the elements 

are the same as the elements 

( 14.8) 

in some order since these elements form a group. In other words, if we define the index 
i by D'ko D'J = o-; then i and j both run over the set { 1 , 2, . . . , n}. Hence the equations in 
(8) can be written 

If we now subtract the equations in (8') from those in (7) we obtain the system 

for i = 1 ,  2, . . . , n. But this is a solution to the system of equations (5) with 

X1 = .81 - O'k0 (,81 ) "I 0 

(14.8') 

(by the choice of k0), hence is nontrivial and has fewer than r nonzero x; . This is a 
contradiction and completes the proof. 

Our first use of this result is to prove that the inequality of Proposition 5 holds for 
any finite extension KIF. 
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Corollary 10. Let KIF be any finite extension. Then 

IAut(KIF) I :S [K : F] 

with equality if and only if F is the fixed field of Aut(K I F) . Put another way, KIF is 
Galois if and only if F is the fixed field of Aut(K 1 F) . 

Proof" Let F1 be the fixed field of Aut(K I F) , so that 

F � F1 � K. 

By Theorem 9, [K : FJ ] = IAut(KIF) I .  Hence [K : F] = IAut(KIF) I [FI F], 
which proves the corollary. 

Corollary 11. Let G be a finite subgroup of automorphisms of a field K and let F 
be the fixed field. Then every automorphism of K fixing F is contained in G, i.e., 
Aut( KIF) = G, so that KIF is Galois, with Galois group G.  

Proof" By definition F is  fixed by all the elements of G so  we have G :S Aut(K I F)  
(and the question is  whether there are any automorphisms of K fixing F not in G i.e., 
whether this containment is proper). Hence I G I  :S IAut(K I F) I. By the theorem we 
have I G I = [ K : F] and by the previous corollary IAut(K I F) I :::: [ K : F] .  This gives 

[K : F] = I G I :::: IAut(KIF) I :S [K : F] 

and it follows that we must have equalities throughout, proving the corollary. 

Corollary 12. If G 1  =f. G2 are distinct finite subgroups of automorphisms of a field K 
then their fixed fields are also distinct. 

Proof: Suppose F1 is the fixed field of G 1  and F2 is the fixed field of G2• If F1 = F2 
then by definition F1 is fixed by G2• By the previous corollary any automorphism fixing 
F1 is contained in G 1 ,  hence G2 :::: G 1 .  Similarly G 1  :S Gz and so G 1  = Gz. 

By the corollaries above we see that taking the fixed fields for distinct finite sub
groups of Aut(K) gives distinct subfields of K over which K is Galois. Further, the 
degrees of the extensions are given by the orders of the subgroups. We saw this ex

plicitly for the fields K = Q( ,.J2 ,  -J3 )  and K = Q( ifi ,  p) above. A portion of the 
Fundamental Theorem states that these are all the subfields of K.  

The next result provides the converse of Proposition 5 and characterizes Galois 
extensions. 

Theorem 13. The extension KIF is Galois if and only if K is the splitting field of some 
separable polynomial over F. Furthermore, if this is the case then every irreducible 
polynomial with coefficients in F which has a root in K is separable and has all its roots 
in K (so in particular KIF is a separable extension). 

Proof" Proposition 5 proves that the splitting field of a separable polynomial is 
Galois. 
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We now show that if KIF is Galois then every irreducible polynomial p(x) in F[x] 
having a root in K splits completely in K. Set G = Gal(K I F). Let a E K be a root 
of p(x)  and consider the elements 

a, a2 (a) , . . . , crn (a) E K 

where { 1 ,  cr2 , . . . , ern } are the elements of Gal(KI F). Let 

(14.9) 

denote the distinct elements in (9). If r E G then since G is a group the elements 
{ r, rcr2 ,  . . .  , ran }  are the same as the elements { 1 ,  cr2, . . .  , ern } in some order. It follows 
that applying r E G to the elements in (9) simply permutes them, so in particular 
applying r to a. a2 , a3 , . . .  , ar also permutes these elements. The polynomial 

f(x) = (x - a)(x - a2) · · · (x - ar) 

therefore has coefficients which are fixed by all the elements of G since the elements of 
G simply permute the factors. Hence the coefficients lie in the fixed field of G, which 
by Corollary 10 is the field F. Hence f(x) E F[x].  

Since p(x) is irreducible and has a as a root, p(x) is the minimal polynomial for a 
over F, hence divides any polynomial with coefficients in F having a as a root (this is 
Proposition 13.9). It follows that p(x) divides f(x) in F[x] and since f(x) obviously 
divides p(x) in K[x] by Proposition 2, we have 

p(x) = f(x) .  

In  particular, this shows that p(x) i s  separable and that all its roots lie in K (in fact they 
are among the elements a, a2a, . . .  , ana ), proving the last statement of the theorem. 

To complete the proof, suppose KIF is Galois and let Wt , w2 ,  . . . , Wn be a basis for 
Kl F. Let p; (x) be the minimal polynomial for w; over F, i = 1 ,  2, . . .  , n .  Then by 
what we have just proved, Pi (x) is separable and has all its roots in K. Let g(x) be the 
polynomial obtained by removing any multiple factors in the product PI (x) · · · Pn (x) 
(the "squarefree part"). Then the splitting field of the two polynomials is the same and 
this field is K (all the roots lie in K, so K contains the splitting field, but w1 ,  w2 ,  . . .  , Wn 
are among the roots, so the splitting field contains K). Hence K is the splitting field of 
the separable polynomial g(x) . 

Definition. Let KIF be a Galois extension. If a E K the elements era for a in 
Gal(KIF) are called the conjugates (or Galois conjugates) of a over F. If E is a  
subfield of K containing F, the field cr (E) is called the conjugate field of E over F. 

The proof of the theorem shows that in a Galois extension KIF the other roots 
of the minimal polynomial over F of any element a E K are precisely the distinct 
conjugates of a under the Galois group of KIF. 

The second statement in this theorem also shows that K is not Galois over F if we 
can find even one irreducible polynomial over F having a root in K but not having all its 
roots in K. This justifies in a very strong sense the intuition from earlier examples that 
Galois extensions are extensions with "enough" distinct roots of irreducible polynomials 
(namely, if it contains one root then it contains all the roots). 
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Finally, notice that we now have 4 characterizations of Galois extensions KIF : 
(1) splitting fields of separable polynomials over F 
(2) fields where F is precisely the set of elements fixed by Aut(K I F) (in general, the 

fixed field may be larger than F) 
(3) fields with [K : F] = IAut(KI F) I (the original definition) 
(4) finite, normal and separable extensions. 

Theorem 14. (Fundamental Theorem of Galois Theory) Let KIF be a Galois extension 
and set G = Gal(K I F). Then there is a bijection { subfields E n of K +------+ 

containing F 

{ su��s H : }  
of G H 

I 
G 

given by the correspondences 

E -----+ 
{ the elements of G } 

fixing E 

{ the fixed field } 
of H 

� H 

which are inverse to each other. Under this correspondence, 
(1) (inclusion reversing) If E1 , E2 correspond to H1 , H2, respectively, then Et � E2 

if and only if H2 � Ht 
(2) [K : E] = I H I  and [E : F] = I G : H I , the index of H in G: 

K 
I I H I 

E 
I I G : H I 
F 

(3) K IE is always Galois, with Galois group Gal(K I E) = H: 

K 

I H 

E 

( 4) E is Galois over F if and only if H is a normal subgroup in G. If this is the 
case, then the Galois group is isomorphic to the quotient group 

Gal(EIF) � GIH. 

More generally, even if H is not necessarily normal in G, the isomorphisms of 
E (into a fixed algebraic closure of F containing K) which fix F are in one to 
one correspondence with the cosets {cr H} of H in G. 

(5) If E1 , E2 correspond to H1 , H2, respectively, then the intersection E1 n E2 
corresponds to the group { H1 , H2 ) generated by H1 and H2 and the composite 
field E 1 E2 corresponds to the intersection H1 nH2 •  Hence the lattice of subfields 
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of K containing F and the lattice of subgroups of G are "dual" (the lattice 
diagram for one is the lattice diagram for the other turned upside down). 

Proof" Given any subgroup H of G we obtain a unique fixed field E = K H by 
Corollary 12. This shows that the correspondence above is injective from right to left. 

If K is the splitting field of the separable polynomial f(x) E F[x] then we may 
also view f(x) as an element of E[x] for any subfield E of K containing F. Then K 
is also the splitting field of f (x) over E, so the extension K IE is Galois. By Corollary 
10, E is the fixed field of Aut(K I E) ::::= G, showing that every subfield of K containing 
F arises as the fixed field for some subgroup of G. Hence the correspondence above is 
surjective from right to left, hence a bijection. The correspondences are inverse to each 
other since the automorphisms fixing E are precisely Aut(K 1 E) by Corollary 10. 

We have already seen that the Galois correspondence is inclusion reversing in 
Proposition 4, which gives (1 ) . 

If E = KH is the fixed field of H, then Theorem 9 gives [K : E] = I H I and 
[K : F] = I G I .  Taking the quotient gives [E : F] = IG  : H i ,  which proves (2). 

Corollary 1 1  gives (3) immediately. 
Suppose E = KH is the fixed field of the subgroup H.  Every u E G = Gal(KI F) 

when restricted to E is an embedding u IE of E with the sub field u (E) of K. Conversely, 
let r : E -=+ r (E) £;;; F be any embedding of E (into a fixed algebraic closure F of 
F containing K) which fixes F. Then r (E) is in fact contained in K:  if a E E has 
minimal polynomial ma (x) over F then r (a) is another root of ma (x) and K contains 
all these roots by Theorem 13 .  As above K is the splitting field of f(x) over E and so 
also the splitting field of rf(x) (which is the same as f(x) since f(x) has coefficients 
in F) over r (E). Theorem 13.27 on extending isomorphisms then shows that we can 
extend r to an isomorphism u :  

u :  K ---+ K 
I I 

r : E ---+ r(E). 
Since u fixes F (because r does), it follows that every embedding r of E fixing F 
is the restriction to E of some automorphism u of K fixing F, in other words, every 
embedding of E is of the form u I E for some u E G. 

Two automorphisms u, u' E G restrict to the same embedding of E if and only if 
u-1u' is the identity map on E. But then u-1u' E H (i.e., u' E u H) since by (3) the 
automorphisms of K which fix E are precisely the elements in H. Hence the distinct 
embeddings of E are in bijection with the cosets u H of H in G. In particular this gives 

!Emb(EIF) I = [G : H] = [E : F) 

where Emb(E 1 F) denotes the set of embeddings of E (into a fixed algebraic closure 
of F) which fix F. Note that Emb(E I F) contains the automorphisms Aut(E I F) . 

The extension E 1 F will be Galois if and only if IAut(E I F) I = [E : F]. By the 
equality above, this will be the case if and only if each ofthe embeddings of E is actually 
an automorphism of E, i.e., if and only if u (E) = E for every u E G. 

If  u E G, then the subgroup of G fixing the field u (E) i s  the group u Hu-I , i.e., 

u (E) = KaHa-' · 
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To see this observe that if a a E a (E) then 

(aha-
1
) (aa) = a(ha) = aa for all h E H, 

since h fixes a E E, which shows that a Ha -
1 fixes a(E). The group fixing a(E) has 

order equal to the degree of K over a (£). But this is the same as the degree of K over 
E since the fields are isomorphic, hence the same as the order of H. Hence a H a-

1 is 
precisely the group fixing a (E) since we have shown containment and their orders are 
the same. 

Because of the bijective nature of the Galois correspondence already proved we 
know that two sub fields of K containing F are equal if and only if their fixing subgroups 
are equal in G. Hence a (E) = E for all a E G if and only if a H a-

1 = H for all 
a E G, in other words E is Galois over F if and only if H is a normal subgroup of G. 

We have already identified the embeddings of E over F as the set of cosets of H in 
G and when H is normal in G seen that the embeddings are automorphisms. It follows 
that in this case the group of cosets G I H is identified with the group of automorphisms 
of the Galois extension E IF by the definition of the group operation (composition of 
automorphisms). Hence Gl H � Gal(EI F) when H is normal in G, which completes 
the proof of (4). 

Suppose H1 is the subgroup of elements of G fixing the subfield £1 and H2 is the 
subgroup of elements of G fixing the subfield £2. Any element in H1 n H2 fixes both 
£1 and £2, hence fixes every element in the composite £1 £2, since the elements in 
this field are algebraic combinations of the elements of £1 and £2. Conversely, if an 
automorphism a fixes the composite £1 £2 then in particular a fixes £1 , i.e. ,  a E H1 , 

and a fixes £2, i.e., a E H2, hence a E H1 n H2. This proves that the composite £1 £2 
corresponds to the intersection H1 n H2. Similarly, the intersection E 1 n £2 corresponds 
to the group ( H1 , H2 ) generated by H1 and H2, completing the proof of the theorem. 

Example: (Q( .J2, ,J3) and Q( ifi ,  p)) 
We have already seen examples of this theorem at the beginning of this section. We now see 
that the diagrams of subfields for the two fields Q( ../2 , .J3 ) and Q( V2 , p) given before 
indicate all the subfields for these two fields. 

Since every subgroup of the Klein 4-group is normal, all the subfields of Q( ../2 , .J3 ) 
are Galois extensions of Q. 

Similarly, since the only nontrivial normal subgroup of S3 is the subgroup of order 3, 
we see that only the subfield Q(p) of K = Q( V2, p) is Galois over Q, with Galois group 
isomorphic to S3j ( a  ) , i.e., the cyclic group of order 2. For example, the nontrivial auto
morphism of Q(p) is induced by restricting any element (r,  for instance) in the nontrivial 
coset of ( a ) to Q(p ). This is clear from the explicit descriptions of these automorphisms 
given before - each of the elements r, ra, ra2 in this coset map p to p2 . The restrictions 
of the elements of Gal(K /Q) to the (non-Galois) cubic subfields do not give automorphisms 
of these fields in general, rather giving isomorphisms of these fields with each other, in 
accordance with (4) of the theorem. 

Example: (Q( .J2 + ,J3)) 
Consider the field Q( ../2 + .J3 ). This is clearly a subfield of the Galois extension 
Q( ../2 , .J3 ). The other roots of the minimal polynomial for ../2 + .J3 over Q are therefore 
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the distinct conjugates of ../2 + .J3 under the Galois group. The conjugates are 

±h ± ./3  
which are easily seen to be distinct. The minimal polynomial is therefore 

[x - (h + ./3)] [x - (h - ./3)][x - (-h + ./3)][x - (-h - ./3)] 
which is quickly computed to be the polynomial x4 - 10x2 + I .  It follows that this 
polynomial is irreducible and that 

Q( v'2 , ./3) = Q( v'2 + ./3) , 
either by degree considerations or by noting that only the automorphism I of { I  , a, T, aT}  
fixes v'2 + ./3 so the fixing group for this field is  the same as  for Q( v'2 , .J3). 

Example: (Splitting Field of x8 - 2) 
The splitting field of x8 - 2 over Q is generated by e = V2 (any fixed gth root of 2, say 
the real one) and a primitive gth root of unity t = ts . Recall from Section 1 3 .6 that 

Q(ts) = Q(i, h) .  
Since e4 = v'2 w e  see that the splitting field i s  generated by e and i . The subfield Q(B) is 
of degree 8 over Q (since x8 - 2 is irreducible, being Eisenstein), and all the elements of 
this field are real. Hence i ¢:. Q(B) and since i generates at most a quadratic extension of 
this field, the splitting field 

Q( V2 .  ts) = Q( V2 ,  i) 
is of degree 1 6  over Q. 

The Galois group is determined by the action on the generators e and i which gives 
the possibilities 

a = 0, I ,  2, . . . , 7 

Since we have already seen that the degree of the extension is 1 6  and there are only I 6  
possible such maps, it follows that i n  fact each o f  the maps above i s  an automorphism of 

Q( V2 ,  i) over Q. 
Define the two automorphisms 

a : { � � �
e 

r :  { � � e 
. l � l l � -l 

( T is the map induced by complex conjugation). Since 

.J2 .J2 I 
t = ts = 2 + i 2 = 2( 1  + i)h 

I 
= 2 ( 1  + i)84 

we can easily compute what happens to t from the explicit expressions for the powers of 
t in the following Figure I .  
Using these explicit values we find 

a :  { � :  �e 

t � -t = t5 
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- i 
Fig. 1 

Note that the reason we are interested in also keeping track of the action on the element 
� is that it will be needed in computing the composites of automorphisms, for example in 
computing 

578 

a2 (e) = a (�e) = a (Oa (e) = (-O(�e) = -�2e 

= -ie . 

We can similarly compute the following automorphisms: 

I � r+ �e I � r+ � 1
_
e 

a : t r+ t <a 1 r+ -t 

� r+ �5 � r+ � 3 

a2 : t r+ t 1:a2 : 1 r+ -t I � r+ � 6e I � r+ �z
_
e 

� r+ �  � r+ �7 

a3 : I " e+ t'' 

T:a3 :  I " e+ (0 
I r+ l l r+ -1 

� r+ -� � r+ �3 

I " e+ _, I ' e+ -0 a4 : ; : � 1:0'4 : I r+ -l 

� r+ �7 

a5 : I " e+ t'' 

<a5 : 

r e+ t'· 
I r+ l l r+ -1 
� 1--+ -� � r+ �3 

I ' e+ t 'o r e+ t'· 
a6 : ; : � T:a6 : l r+ -l 

� r+ �7 
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I () I-+ t3() 

a7 : i �--+ i 

t I-+ -t 

Since this exhausts the possibilities, these elements (together with 1 and r) are the Galois 
group. We see in particular that a and r generate the Galois group. To determine the 
relations satisfied by these elements, we observe first that clearly r2 = 1 and (a4)2 = 1 ,  
s o  that 

Also, we compute 

so that 

It is not too difficult to show that these relations define the group completely, i.e., 

s r;:;; • 8 2 3 Gal(Q( -v � . z ) /Q) = { a, r l a = r = 1 , ar = ra ) .  

Such a group is called a quasidihedral group (recall that the dihedral group of order 16 
would have the relation ar = ra 7 instead of ar = ra3) and is a subgroup of Ss since the 

Galois group is a subgroup of the permutations of the 8 roots of x8 - 2. 
This example again illustrates that one must take care in determining Galois groups 

from the actions on generators. We first computed the degree of the Galois extension above 
to determine the number of elements in the Galois group. Had we proceeded directly from 

the original generators () = V2 and t = ts we might have (incorrectly) concluded that 
there were a total of 32 elements in the Galois group, since the first generator is mapped to 
any of 8 possible roots of x8 - 2 and the second generator is mapped to any of 4 possible 
roots of its minimal polynomial <P4 (x) = x4 + 1. The problem, as previously indicated, 
is that these choices are not independent. Here the reason is provided by the algebraic 
relation 

which shows that one cannot specify the images of () and t independently - their images 
must again satisfy this algebraic relation. This relation is perhaps sufficiently subtle to serve 
as a caution against rashly concluding maps are automorphisms. We note that in general it is 
necessary to provide justification that maps are automorphisms. This can be accomplished 
for example by using the extension theorems or by using degree considerations as we did 
here. 

Determining the lattice of subgroups of this group G is a straightforward problem. 
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The lattice is the following: 

Determining the subfields corresponding to these subgroups (which by the Funda

mental Theorem gives all the subfields of Q( V2 ,  i ))  is quite simple for a number of the 
subgroups above using (2) of the Fundamental Theorem, which states that the degree of 
the extension over Q is equal to the index of the fixing subgroup. It then suffices to find 
a subfield of the right degree which is fixed by the subgroup in question. Remember also 
that if a subfield is fixed by the generators of a subgroup, then it is fixed by the subgroup. 
For example, from the explicit description for the automorphism a we see that Q(i) is fixed 
by the group generated by a .  Since this is a subgroup of index 2 and Q(i) is of degree 2 
over Q, it must be the full fixed field. Most of the fixed fields for the subgroups above can 
be determined in as simple a manner. 

For the subgroups of order 4 on the right (namely, generated by ra3 and by ra), it is 
perhaps not so easy to see how to determine the corresponding fixed field. For the subgroup 

H generated by ra3 we may proceed as follows: the element rP = V2 is clearly fixed by 
a4. By the diagram above, a4 is a normal subgroup of H of index 2, with representatives 
1 ,  ra3 for the cosets. Consider the element 

a =  ( 1  + ra3)82 = rP + ra3fP . 

Then a is fixed by a4 (we are in a commutative group H of order 4, so a4 commutes with 
1 and ra3 and we already know rP is fixed by a4). But (and this is the point), a is also 
fixed by ra3 : 

ra3a = ra3 (1  + ra3)82 = [ra3 + (ra3)2]82 

= (ra3 + a4)82 

and the last expression is just a since a4rP = e2 • Hence a is an element of the fixed field 
for H. Explicitly 

a =  V2" + i V2" = (1 + i ) V2". 

A quick check shows that a is not fixed by the automorphism a2, so by the diagram of 
subgroups above, it follows that the fixing subgroup for the field Q(a) is no larger than H, 
hence is precisely H. which gives us our fixed field. This also gives the fixed field for ( ra ) 
by recalling that in general if E is the fixed field of H then the fixed field of r H r -l is the 

field r (E).  For H = ( ra3 ) ,  r Hr-1 = ( ra ) , with fixed field given by r (a) = (1 - i) V2. 
In general one tries to determine elements which are fixed by a given subgroup H 

of the Galois group (cf. the exercises, which indicate where the element above arose) and 
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attempts to generate a sufficiently large field to give the full fixed field. In our case we 
were able to accomplish this with a single generator. We shall see later that every finite 
extension of Q is a simple extension, so there will be a single generator of this type, but in 
general it may be difficult to produce it directly. 

The element a is a root of the polynomial 

x4 + 8  

which must therefore be irreducible since we have already determined that a root of this 
polynomial generates an extension of degree 4 over Q. 

In a similar way it is possible to complete the diagram of subfields of Q( ,W ,  i} ,  which 
we have inverted to emphasize its relation with the subgroup diagram above (8 = V2 ): 

Note that the group { a4 ) is normal in G (in fact it is the center of G) with quotient 
G/{ a4 ) � Ds, so the corresponding fixed field Q(i, � } is Galois over Q with Ds as 
Galois group. Being Galois it is a splitting field, evidently the splitting field for x4 - 2. 
The lattice of subfields for this field is then immediate from the lattice above. 

We end this example with the following amusing aspect of this Galois extension. It is 
an easy exercise to verify that 

{ a2 , -r )  � Ds { a ) ;;;::: Z/8Z { a2 , -ra3 ) ;;;::: Qs 

where Ds is the dihedral group of order 8 and Qs is the quaternion group of order 8. It 
follows that the field Q( V2 ,  i) is Galois of degree 8 over its three quadratic subfields 

Q(J2 ) Q(i) Q(.J-=2) 
with dihedral, cyclic and quaternion Galois groups, respectively, so that three of the 5 
possible groups of order 8 (and both non-abelian ones) appear as Galois groups in this 
extension. 

We shall consider additional examples and applications in the following sections. 

E X E R C I S E S  

1. Determine the minimal polynomial over Q for the element .../2 + ./5. 
2. Determine the minimal polynomial over Q for the element I + -V2 + W. 
3. Determine the Galois group of (x2 - 2) (x2 - 3) (x2 - 5) . Determine all the subfields of 

the splitting field of this polynomial. 
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4. Let p be a prime. Determine the elements of the Galois group of xP - 2. 
5. Prove that the Galois group of x P - 2 for p a prime is isomorphic to the group of matrices 

(� �) where a , b e !Fp, a :;i: O. 

6. Let K = Q( .v2 , i) and let Ft = Q(i), F2 = Q(.J2) , F3 = Q(,J=2 ). Prove that 
Gal(KIFt ) � Zs, Gal(KIF2) � Ds, Gal(KIF3) � Qs. 

7. Determine all the subfields of the splitting field of x8 - 2 which are Galois over Q. 
8. Suppose K is a Galois extension of F of degree p" for some prime p and some n � 1 .  

Show there are Galois extensions of F contained i n  K of degrees p and pn-l . 

9. Give an example of fields Ft . F2. F3 with Q c Ft c F2 c F3 , [F3 : Q] = 8 and each 
field is Galois over all its subfields with the exception that F2 is not Galois over Q. 

10. Determine the Galois group of the splitting field over Q of x8 - 3 .  
11 .  Suppose f(x) e Z[x] is an irreducible quartic whose splitting field has Galois group S4 

over Q (there are many such quartics, cf. Section 6). Let (} be a root of f(x) and set 
K = Q((}). Prove that K is an extension of Q of degree 4 which has no proper subfields. 
Are there any Galois extensions of Q of degree 4 with no proper subfields? 

12. Determine the Galois group of the splitting field over Q of x4 - 14x2 + 9. 

13. Prove that if the Galois group of the splitting field of a cubic over Q is the cyclic group of 
order 3 then all the roots of the cubic are real. 

14. Show that Q( J 2 + .J2 )  is a cyclic quartic field, i.e., is a Galois extension of degree 4 with 
cyclic Galois group. 

15. (Biquadratic Extensions) Let F be a field of characteristic ,= 2. 
(a) If K = F(.JDl , -JDi. )  where Dt . D2 e F have the property that none of Dt . D2 

or Dt D2 is a square in F, prove that KIF is a Galois extension with Gal(KIF) 
isomorphic to the Klein 4-group. 

(b) Conversely, suppose KIF is a Galois extension with Gal(KIF) isomorphic to the 
Klein 4-group. Prove that K = F( .Jl5l ,  -/l5i. )  where Dt , D2 E F have the property 
that none of Dt , � or Dt � is a square in F. 

16. (a) Prove that x4 - 2x2 - 2 is irreducible over Q. 
(b) Show the roots of this quartic are 

at =  Jl + .J3 

a2 = Jl - .J3 

a3 = -J 1 + .J3 
a4 = -Jl - .J3 .  

(c) Let Kt = Q(at ) and K2 = Q(a2). Show that Kt :;i: K2, and Kt n K2 = Q(.J3) = F. 
(d) Prove that K 1 . K2 and K 1 K2 are Galois over F with Gal(K 1 K2l F) the Klein 4-group. 

Write out the elements of Gal(K 1 K2l F) explicitly. Determine all the subgroups of 
the Galois group and give their corresponding fixed subfields of K 1 K2 containing F. 

(e) Prove that the splitting field of x4 - 2x2 - 2 over Q is of degree 8 with dihedral Galois 
group. 

The following two exercises indicate one method for constructing elements in subfields of a 
given field and are quite useful in many computations. ' 
17. Let K 1 F be any finite extension and let a e K. Let L be a Galois extension of F containing 

K and let H s Gal(L 1 F) be the subgroup corresponding to K. Define the norm of a from 
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K to F to be 
NKjF (a) = n a (a) ,  

(J 
where the product is taken over all the embeddings of K into an algebraic closure of F 
(so over a set of coset representatives for H in Gal(L/ F) by the Fundamental Theorem 
of Galois Theory). This is a product of Galois conjugates of a. In particular, if Kj F is 
Galois this is naEGal(K/F) a (a). 
(a) Prove that NKfF (a) E F. 
(b) Prove that NKfF (af3) = NKfF (a)NK/F (/3), so that the norm is a multiplicative map 

from K to F. 
(c) Let K = F(.Ji5) be a quadratic extension of F. Show that NKfF (a + h.Ji5) = 

a2 - Db2• 
(d) Let ma (x) = xd + ad-JXd-1 + · · · + a1 x + ao E F[x] be the minimal polynomial 

for a E K over F. Let n = [K : F]. Prove that d divides n, that there are d distinct 
Galois conjugates of a which are all repeated njd times in the product above and 
conclude that NKjF (a) = (- l )na;;fd . 

18. With notation as in the previous problem, define the trace of a from K to F to be 

a sum of Galois conjugates of a. 
(a) Prove that TrKfF (a) E F. 

TrK/ F (a) = L a (a) , 
(J 

(b) Prove that TrKfF (a + /3) = TrKfF (a) + TrKfF (f3), so that the trace is an additive map 
from K to F. 

(c) Let K = F(.Ji5) be a quadratic extension of F. Show that TrKfF(a + h.Ji5) = 2a. 

(d) Let ma (x) be as in the previous problem. Prove that TrKfF (a) = -�ad-1 · 

19. With notation as in the previous problems show that NKfF (aa) = anNKfF (a) and 
TrKfF (aa) = aTrKfF (a) for all a in the base field F, In particular show that NKfF (a) = 
an and TrKfF (a) = na for all a E F. 

20. With notation as in the previous problems show more generally that Oa <x - a (a)) = 
(ma (x))nfd . 

21. Use the linear independence of characters to show that for any Galois extension K of F 
there is an element a E K with TrKfF(a) =!=- 0. 

22. Suppose K j F is a Galois extension and let a be an element of the Galois group. 

(a) Suppose a E K is of the form a = _!!_ for some nonzero f3 E K. Prove that 
af3 

NKjF (a) = 1 .  
(b) Suppose a E K i s  of  the form a = f3 - af3 for some f3 E K. Prove that TrKfF (a) = 0. 

The next exercise and Exercise 26 following establish the multiplicative and additive forms of 
Hilbert's Theorem 90. These are instances of the vanishing of a first cohomology group, as 
will be discussed in Section 17 .3 . 
23. (Hilbert's Theorem 90) Let K be a Galois extension of F with cyclic Galbis group of order 

n generated by a .  Suppose a E K has N K 1 F (a) = 1 .  Prove that a is of the form a = _!!_ 
af3 

for some nonzero f3 E K. [By the linear independence of characters show there exists 
some 8 E K such that 

f3 = 8 + aa (8) + (a aa)a2 (8) + · · · + (a a a . . .  an-2a)an-1 (8) 
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is nonzero. Compute .!!.... using the fact that a has nonn 1 to F.] 
af3 

24. Prove that the rational solutions a, b E Q of Pythagoras' equation a2 + b2 = 1 are of 
s2 - t2 2st 

the fonn a = ----:r-2 and b = ----:r-2 for some s,  t E Q and hence show that any right 
s + t s + t 

triangle with integer sides has sides of lengths (m2 - n2 , 2mn, m2 + n2) for some integers 
m,  n. [Note that a

2 + b2 
= 1 is equivalent to NQ(i)fQ(a + ib) = 1 , then use Hilbert's 

Theorem 90 above with f3 = s + i t .] 
25. Generalize the previous problem to determine all the rational solutions of the equation 

a2 + Db2 = l for D E Z, D > 0, D not a perfect square in z. 
26. (Additive Hilbert's Theorem 90) Let K be a Galois extension of F with cyclic Galois group 

of order n generated by a .  Suppose a E K has TrK;F (a) = 0. Prove that a is of the fonn 
a =  f3 - af3 for some f3 E K.  [Let e E K be an element with TrK;F (e) f= 0 by a previous 
exercise, let 

1 
f3 = [aa (B) + (a + aa)a2 (e) + . . . + (a + aa + . . .  + a"-2a)a"-1 (B}] TrKjF (B) 

and compute f3 - af3.] 

27. Let a = J (2 + .J2 )  (3 + ,J3 )  (positive real square roots for concreteness) and consider 
the extension E = Q(a) . 
(a) Show that a =  (2 + .J2 )(3 + ,J3 ) is not a square in F = Q(.JZ ,  ,J3 ).  [If a =  c2 , 

c E F, then arp (a) = (2 + .J2)2(6) = (c rpc)2 for the automorphism rp E Gal(F /Q) 
fixing Q(.J2 ). Since c rpc = NF/Q(� ) (c) E Q(.J2 ) conclude that this implies 

� E Q(.J2 }, a contradiction.] 
(b) Conclude from (a) that [ E : Q] = 8. Prove that the roots of the minimal polynomial 

over Q for a are the 8 elements ±j (2 ± .J2)(3 ± .J3) . 
(c) Let f3 = J<2 - .J2)(3 + ,J3 ). Show that af3 = .J2(3 + ,J3 )  E F so that f3 E E. 

Show similarly that the other roots are also elements of E so that E is a Galois 
extension of Q. Show that the elements of the Galois group are precisely the maps 
determined by mapping a to one of the eight elements in (b). 

(d) Let a E Gal(E/Q) be the automorphism which maps a to {3 . Show that since 
a(a2) = {32 that a(.J2) = -.JZ and a (,J3 ) = ,J3. From af3 = .J2 (3 + ,J3 ) 
conclude that a (af3) = -af3 and hence a(f3) = -a . Show that a is an element of 
order 4 in Gal(E/Q) . 

(e) Show similarly that the map r defined by r (a) = J (2 + .J2 )  (3 - ,J3 ) is an element 

of order 4 in Gal(E /Q). Prove that a and r generate the Galois group, a4 = r4 = 1,  
a2 = r2 and that ar = ra3 . 

(f) Conclude that Gal(E /Q) � Qs, the quaternion group of order 8. 

28. Let f(x) E F[x] be an irreducible polynomial of degree n over the field F, let L be the 
splitting field of f (x) over F and let a be a root of f (x) in L. If K is any Galois extension 
of F contained in L, show that the polynomial f (x) splits into a product of m irreducible 
polynomials each of degree d over K, where m = [F(a) n K : F] and d = [K(a)  : K] 
( cf. also the generalization in Exercise 4 of Section 4 ) . [If H is the subgroup of the Galois 
group of L over F corresponding to K then the factors of f (x) over K correspond to the 
orbits of H on the roots of f(x) .  Then use Exercise 9 of Section 4. 1 .] 
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29. Let k be a field and let k(t) be the field of rational functions in the variable t. Define the 

maps a and r of k(t) to itself by af(t) = /(-
1 

1 ) and rf(t) = /(!) for f(t) E k(t) . 
- t t 

(a) Prove that a and r are automorphisms of k(t) (cf. Exercise 8 of Section 1 )  and that 
the group G = ( a, r ) they generate is isomorphic to S3 . 

(t2 - t + 1 )3 
(b) Prove that the element t = 

12 (t 
_ 

1 )2 is fixed by all the elements of G. 

(c) Prove that k(t) is precisely the fixed field of G in k(t) [compute the degree of the 
extension] . 

30. Prove that the fixed field of the subgroup of automorphisms generated by r in the previous 

problem is k(t + ! ) . Prove that the fixed field of the subgroup generated by the automor
t 

phism ra2 (which maps t to 1 - t) is k(t ( 1 - t)). Determine the fixed field of the subgroup 
generated by ra and the fixed field of the subgroup generated by a .  

31. Let K b e  a finite extension of F of degree n.  Let a b e  an element of K. 
(a) Prove that a acting by left multiplication on K is  an F -linear transformation Ta of K. 
(b) Prove that the minimal polynomial for a over F is  the same as  the minimal polynomial 

for the linear transformation Ta . 
(c) Prove that the trace TrK; F (a) is the trace of the n x n matrix defined by Ta (which 

justifies these two uses of the same word "trace"). Prove that the norm NKJF (a) is 
the determinant of Ta . 

1 4.3 FIN ITE FIELDS 

A finite field lF has characteristic p for some prime p so is a finite dimensional vector 
space over 1Fp . Ifthe dimension is n, i.e., [lF : 1Fp] = n, then lF has precisely pn elements. 
We have already seen (following Proposition 13.37) that lF is then isomorphic to the 
splitting field of the polynomial xP" 

- x, hence is unique up to isomorphism. We denote 
the finite field of order pn by lF P" • 

The field lF P" is Galois over lF P• with cyclic Galois group of order n generated by 
the Ftobenius automorphism 

Gal(lFpn llFp) = { ap ) � ZlnZ 

where 

(Example 7 following Corollary 6). By the Fundamental Theorem, every sub field oflF P" 

corresponds to a subgroup of Zl nZ. Hence for every divisor d of n there is precisely 
one sub field oflF P" of degree d over lF P' namely the fixed field of the subgroup generated 
by a; of order n 1 d, and there are no other sub fields. This field is isomorphic to lF vt ,  
the unique finite field of order pd

. 

Since the Galois group is abelian, every subgroup is normal, so each of the sub fields 
1Fpd (d a divisor of n) is Galois over lFP (which is also clear from the fact that these 
are themselves splitting fields). Further, the Galois group Gal(lF vt llF P) is generated by 
the image of a P in the quotient group Gal(lF P" jlF P) I { a; ) . If we denote this element 
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again by a P • we recover the Frobenius automorphism for the extension IF pd /IF P . (Note, 
however, that a P has order n in Gal (IF P" /IF P) and order d in Gal (IF pd /IF P) .) 

We summarize this in the following proposition. 

Proposition 15. Any finite field is isomorphic to IF P" for some prime p and some integer 
n ::: 1 .  The field IF P" is the splitting field over IF P of the polynomial x P" - x, with cyclic 
Galois group of order n generated by the Frobenius automorphism ap . The subfields 
of IF P" are all Galois over IF P and are in one to one correspondence with the divisors d 
of n .  They are the fields IF pd ,  the fixed fields of a Pd .  

The corresponding statements for the finite extensions of any finite field are easy 
consequences of Proposition 15 and are outlined in the exercises. 

As an elementary application we have the following result on the polynomial x4 + 1 
in IZ[x] .  

Corollary 16. The irreducible polynomial x4 + 1 E Z[x] is reducible modulo every 
prime p .  

Proof" Consider the polynomial x4 + 1 over IFp[x] for the prime p. If p = 2 we 
have x4 + 1 = (x + 1 )4 and the polynomial is reducible. Assume now that p is odd. 
Then p

2 - 1 is divisible by 8 since p is congruent mod 8 to 1 ,  3, 5 or 7 and all of 
these square to 1 mod 8. Hence xP2 -I - 1 is divisible by x8 - 1 . Then we have the 
divisibilities 

x4 + 1 I xs - 1 I xP2-I - 1 I xP2 - x 

which shows that all the roots of x4 + 1 are roots of x P2 - x.  (Equivalently, these roots 
are fixed by the square of the Frobenius automorphism a;.) Since the roots of xP2 - x 
are the field IF pz ,  it follows that the extension generated by any root of x4 + 1 is at most 
of degree 2 over IF P• which means that x4 + 1 cannot be irreducible over IF p ·  

The multiplicative group IF P" x is obviously a finite subgroup of the multiplicative 
group of a field. By Proposition 9. 1 8, this is a cyclic group. If e is any generator, then 
clearly IF P" = IF  p (O) .  This proves the following result. 

Proposition 17. The finite field IF P" is simple. In particular, there exists an irreducible 
polynomial of degree n over IF P for every n ::: 1 .  

We have described the finite fields IF p" above as the splitting fields of the polynomials 
xP" - x. By the previous proposition, this field can also be described as a quotient of 
IFp[x], namely by the minimal polynomial for e .  Since e is necessarily a root of xP" - x ,  
we see that the minimal polynomial for e is a divisor of xp'' - x of  degree n .  

Conversely, let p(x ) be any irreducible polynomial of degree d, say, dividing 
xP" -x. If a is a root of p(x) , then the extension IFp (a) is a subfield of IFP" of de
gree d. Hence d is a divisor of n and the extension is Galois by Proposition 15 (in fact, 
the extension IF pd)  so in particular all the roots of p (x) are contained in IFp (a) . 
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The elements of IF P" are precisely the roots of x P" - x.  If we group together the 
factors x - a  of this polynomial according to the degree d of their minimal polynomials 
over IF P • we obtain 

Proposition 18. The polynomial xP" - x is precisely the product of all the distinct 
irreducible polynomials in IFp[x] of degree d where d runs through all divisors of n .  

This proposition can be used to  produce irreducible polynomials over IFp recur
sively. For example, the irreducible quadratics over IF2 are the divisors of 

x4 - x  
x(x - 1 )  

which gives the single polynomial x2  + x + 1 .  Similarly, the irreducible cubics over 
this field are the divisors of 

x8 - x  
--- = x6 + x5 + x4 + x3 + x2 + x  + 1 
x (x - 1)  

which factors into the two cubics x3 + x + 1 and x3 + x2 + 1 .  The irreducible quartics 
are given by dividing x 16 - x by x (x - 1 ) and the irreducible quadratic x2 + x + 1 
above and then factoring into irreducible quartics: 

x 16 - x  
------:-2--- = (x4 + x3 + x2 + x + l )(x4 + x3 + l ) (x4 + x  + 1 ) .  
x(x - l )(x + x + 1)  
This gives a method for determining the product of all the irreducible polynomials 

over IF P of a given degree. There exist efficient algorithms for factorization of polyno
mials mod p which will give the individual irreducible polynomials (cf. the exercises) 
in practice. The importance of having irreducible polynomials at hand is that they give 
a representation of the finite fields IFP" (as quotients IFp [x]/(f(x)) for f(x) irreducible 
of degree n) conducive to explicit computations. 

Note also that since the finite field IF P" is unique up to isomorphism, the quotients 
of IFp [x] by any of the irreducible polynomials of degree n are all isomorphic. If 
ft (x) and h (x) are irreducible of degree n, then h (x) splits completely in the field 
IF pn � IFp [x]j(f1 (x)). If we denote a root of h(x) by a(x) (to emphasize that it is a 
polynomial of degree < n in x in IFp [x]/(/1 (x)) ) , then the isomorphism is given by 

IFp [x]/ (h(x)) � IFp [x]/(ft (x)) 

x �---+ a(x) 

(we have mapped a root of h (x) in the first field to a root of h (x) in the second field). 
For example, if ft (x) = x4 + x3 + I ,  h (x) = x4 + x + 1 are two of the irreducible 
quartics over IF2 determined above, then a simple computation verifies that 

a (x) = x3 + x2 

is a root of h(x) in IF16 = IF2[x]j(x4 + x3 + 1 ) .  Then we have 

IF2 [x]j(x4 + x + 1 )  � IF2 [x]j(x4 + x3 + 1 )  (� IFt6) 

x �---+ x3 + x2 . 
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If we assume a result from elementary number theory we can give a formula for 
the number of irreducible polynomials of degree n .  Define the Mobius J.L-function by 

J.L(n) = 0 if n has a square factor 

{ 1 for n = 1 

( - 1Y if n has r distinct prime factors. 

If now f(n) is a function defined for all nonnegative integers n and F(n) is defined by 

F(n) = L f(d) n = 1 ,  2, . . .  
din 

then the Mobius inversion formula states that one can recover the function f (n) from 
F(n) :  

f(n) = LJ.L(d)F(�) 
din 

d n = 1 ,  2, . . . .  
1bis is an elementary result from number theory which we take for granted. Define 

1/f(n) = the number of irreducible polynomials of degree n in IF p [x] . 
Counting degrees in Proposition 1 8  we have 

pn = Ld1/J(d). 
din 

Applying the Mobius inversion formula (for f(n) = n1/J(n)) we obtain 

n1/J(n) = L J.L(d)pnfd 
din 

which gives us a formula for the number of irreducible polynomials of degree n over 
IFp : 

1 1/J(n) = - LJ.L(d)pnfd _ 
n din 

For example, in the case p = 2, n = 4 we have 

1/1(4) = � [J.L(l)24 + J.L(2)22 + J.L(4)21] = � ( 16 - 4 + 0) = 3 
as we determined directly above. 

We have seen above that 

IF I"" 5;; IF p" if and only if m divides n.  
In particular, given any two finite fields IFP"' and IFp•2 there is  a third finite field containing 
(an isomorphic copy of) them, namely IFp"' "2 . 1bis gives us a partial ordering on these 
fields and allows us to think of their union. Since these give all the finite extensions 
of iFp, we see that the union of IF P" for all n is an algebraic closure of IFp , unique up to 
isomorphism: 

1bis provides a simple description of the algebraic closure of IF P . 

588 Chap. 14 Galois Theory 



E X E R C I S E S  

1. Factor x8 - x into irreducibles in Z[x] and in lF2 [x] .  

2. Write out the multiplication table for lF4 and lFg . 

3. Prove that an algebraically closed field must be infinite. 

4. Construct the finite field of 16 elements and find a generator for the multiplicative group. 
How many generators are there? 

5. Exhibit an explicit isomorphism between the splitting fields of x3 - x + 1 and x3 - x - 1 
over lF3 . 

6. Suppose K = Q(B) = Q(,JDI , .Ji52 )  with D1 , D2 E Z, is a biquadratic extension and 
that B = a + b,JDl + c%2 + dJD1 D2 where a , b, c, d E  Z are integers. Prove that the 
minimal polynomial me (x) for e over Q is irreducible of degree 4 over Q but is reducible 
modulo every prime p. In particular show that the polynomial x4 - 1 Ox2 + 1 is irreducible 
in Z[x] but is reducible modulo every prime. [Use the fact that there are no biquadratic 
extensions over finite fields.] 

7. Prove that one of2, 3 or 6 is a square in lF P for every prime p. Conclude that the polynomial 

x6 - 1 1x4 + 36x2 - 36 = (x2 - 2) (x2 - 3) (x2 - 6) 

has a root modulo p for every prime p but has no root in Z. 

8. Determine the splitting field of the polynomial xP - x - a over lF P where a =f. 0, a E lF p · 
Show explicitly that the Galois group is cyclic. [Show a r+ a + 1 is an automorphism.] 
Such an extension is called an Artin-Schreier extension (cf. Exercise 9 of Section 7). 

9. Let q = pm be a power of the prime p and let lF q = lF 1"" be the finite field with q elements. 
Let aq = a; be the m1h power of the Frobenius automorphism ap. called the q-Frobenius 
automorphism. 
(a) Prove that aq fixes lFq . 

(b) Prove that every finite extension of lF q of degree n is the splitting field of xq" - x over 
lF q , hence is unique. 

(c) Prove that every finite extension of lFq of degree n is cyclic with aq as generator. 
(d) Prove that the subfields of the unique extension of lFq of degree n are in bijective 

correspondence with the divisors d of n.  

10. Prove that n divides qJ(pn - 1 ) . [Observe that qJ(pn - 1 ) i s  the order of the group of 
automorphisms of a cyclic group of order pn - 1 .] 

11. Prove that xP" - x + 1 is irreducible over lF P only when n = 1 or n = p = 2. [Note that 
if a is a root, then so is a + a for any a E lF p" . Show that this implies lF P (a) contains lF p" 
and that [JF p (a) : lF p" ] = p . ]  

(Berlekamp 's Factorization Algorithm) The following exercises outline the Berlekamp factor
ization algorithm for factoring polynomials in lF P [x ] .  The efficiency of this algorithm is based 
on the efficiency of computing greatest common divisors in lF P [x ] by the Euclidean Algorithm 
and on the efficiency of row-reduction matrix algorithms for solving systems of linear equa
tions. 

Let j(x) E lF p [x ] be a monic polynomial of degree n and let j(x) = Pl (x)p2(x) . . .  pk (x) 
where Pl (x) ,  P2 (x) , . . .  , pk {x) are powers of distinct monic irreducibles in lFp [x ] . 

12. Show that in order to write f(x) as a product of irreducible polynomials in lFp [x] it suffices 
to determine the factors Pl (x) , . . .  , Pk (x) .  [If p(x) = q (x) N E lFp [x] with q (x) monic 
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and irreducible, show that q (x) can be determined from p(x) by checking for pth powers 
and by computing greatest common divisors with derivatives.] 

13. Let g(x) E lF  p [x] be any polynomial of degree < n . Denote by R(h (x)) the remainder of 
h (x) after division by f(x).  Prove the following are equivalent: 
(a) R (g (xP)) = g(x).  
(b) f(x) divides [g(x) -O] [g(x) - 1] . . .  [g(x) - (p - 1)] .  [Use the fact that g(xP)  = g(x)P 

together with the factorization of xP - x in lF p [x ] . ]  
(c) p; (x) divides the product in (b) for i = 1 ,  2, . . . , k .  
(d) For each i ,  i = 1,  2, . . .  , k there is an s;  E lFp such that p; (x) divides g(x) - s; ,  i.e., 

g(x) = s; (mod p; (x)) . 
14. Prove that the polynomials g(x) of degree < n satisfying the equivalent conditions of 

the previous exercise form a vector space V over lF P of dimension k. [Use the Chinese 
Remainder Theorem applied to the pk possible choices for the s; in 13(d)] . 

15. Let g(x) = bo + hix + · · · + hn-IXn- i E V. For j = 0, 1 ,  . . . , n  - I  let 

R (xpj ) = ao,j + GJ , jX + . . . + Gn-l ,jXn-
i 

and let A be the n x n matrix ( ao,o 
G i ,O 

A = 

Gn� i ,O 

ao, J 
G l , l  

Gn- i , i  

ao.n- i ) 
GI .n- i 

Gn- : . n- 1 

. 

Show that condition (a) of Exercise 13 for g(x) E V is equivalent to 

(A - I)B = 0 

where B is the column matrix with entries bo ,  hi , . . . , bn - i · Conclude that the rank of the 
matrix A - I is n - k. Note that this already suffices to determine if f(x) is irreducible, 
without actually determining the factors. 

16. Let g1 (x) , gz (x) ,  . . .  , gk (x) be a basis of solutions to (**) (so a basis for V), where we 
may take gi (X)  = 1 .  Beginning with w (x) = f(x), compute the greatest common divisor 
(w(x),  g; (x) - s) for i = 2, 3, . . .  , k and s E JFP for every factor of f(x) already computed. 
Note by Exercise 13(d) that every factor p; (x) of f (x) divides such a g.c.d. The process 
terminates when k relatively prime factors have been determined. 

Prove that this procedure actually gives all the factors p1 (x) ,  pz (x) ,  . . .  , Pk (x) ,  i.e. , 
one can separate the individual factors Pi (x) ,  pz (x) ,  . . .  , Pk (x) by this procedure, as fol
lows: 

If this were not the case, then for two of the factors, say Pi (x) and pz (x ) ,  for each 
i = 1 ,  2, . . . , k there would exist s; E lF P such that g; (x) - s; is divisible by both Pi (x) 
and pz (x) .  By the Chinese Remainder Theorem, choose a g(x) E V satisfying g(x) = 0 
(mod pi (x)) and g(x) = 1 (mod pz(x)).  Write g (x) = L�=i c; g; (x) in terrns of the 
basis for V and let s = L�=i c;s; (x) E lFp ·  Show that s = 0 (mod PI (x)) so that s = 0 
and s = 1 (mod pz (x)) so that s = 1 ,  a contradiction. 

17. This exercise follows Berlekamp's Factorization Algorithm outlined in the previous exer
cises to determine the factorization of f(x) = x5 + x2 + 4x + 6 in lF7[x] .  

590 

(a) Show that x 7 = x2 + 3x3 + 6x4 (mod f (x )). Similarly compute x i4,  x2i , and x28 
modulo f(x) (note that x 14 can most easily be computed by squaring the result for 
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x 7 and then reducing, etc.) to show that in this case the matrix A in Exercise 1 5  is (� � ! i iJ . 0 3 4 2 2 
0 6 3 1 1 

(b) Show that the reduced row echelon form for A - I is the matrix (g � ! � � ) -
0 0 0 0 0 
0 0 0 0 0 

Conclude that k = 2 (so f (x) is the product of precisely two factors which are powers 
of irreducible polynomials) and that g1 (x) = 1 and g2 (x) = x4 + 5x3 + x2 + x give 
a basis for the solutions to (**) in Exercise 15 .  

(c) Following the procedure in Exercise 1 6, show that (f(x),  g2 (x) - 1 ) = x2 + 3x + 5 = 
PI (x ), with f (x) I PI (x) = x3 + 4x2 + 4x + 4 = P2 (x ) , giving the powers of the 
irreducible polynomials dividing f(x) in IF7 [x] .  Show that neither factor is a 7th 
power in IF7 [x] and that each is relatively prime to its derivative to conclude that both 
factors are irreducible polynomials, giving the complete factorization of f(x) into 
irreducible polynomials: 

f(x) = (x2 + 3x + 5)(x3 + 4x2 + 4x + 4) E IF7 [x] .  

1 4.4 COMPOSITE EXTENSIONS AND SIMPLE EXTENSIONS 

We now consider the effect of taking composites with Galois extensions. The first result 
states that "sliding up" a Galois extension gives a Galois extension. 

Proposition 19. Suppose KIF is a Galois extension and F' IF is any extension. Then 
K F' IF' is a Galois extension, with Galois group 

Gal(K F' IF') � Gal(K I K n F') 
isomorphic to a subgroup of Gal(K I F) . Pictorially, 

KF' 
/ � 

K F' 
� / 

K n F' 

I 
F 

Proof" If KIF is Galois, then K is the splitting field of some separable polynomial 
f (x) in F[x] . Then K F' IF' is the splitting field of f (x) viewed as a polynomial in 
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F'[x], hence this extension is Galois. Since Kl F is Galois, every embedding of K 
fixing F is an automorphism of K, so the map 

rp :  Gal ( K F'I F') -+  Gal(KIF) 

a � a iK 

defined by restricting an automorphism a to the subfield K is well defined. It is clearly 
a homomorphism, with kernel 

ker rp = {a E Gal( K F'I F') I a i K = 1 } . 
Since an element in Gal(K F' I F') is trivial on F', the elements in the kernel are trivial 
both on K and on F', hence on their composite, so the kernel consists only of the 
identity automorphism. Hence rp is injective. 

Let H denote the image of rp in Gal( KIF) and let K H denote the corresponding fixed 
subfield of K containing F. Since every element in H fixes F', K H contains K n F'. On 
the other hand, the composite KH F' is fixed by Gal(K F' IF') (any a E Gal(K F' I F') 
fixes F' and acts on K H � K via its restriction a I K E H, which fixes K H by definition). 
By the Fundamental Theorem it follows that KH F' = F', so that KH � F', which 
gives the reverse inclusion KH � K n F'. Hence KH = K n F', so again by the 
Fundamental Theorem, H = Gal(K I K n F') ,  completing the proof. 

Corollary 20. Suppose KIF is a Galois extension and F' I F  is any finite extension. 
Then 

I [K : F] [F' : F] 
[K F : F] = 

[K n F' : F] . 

Proof: This follows by the proposition from the equality [ K F' : F'] = [K : K n F'] 
given by the orders of the Galois groups in the proposition. 

The example F = <Ql, K = <Ql( ifi ), F' = <Ql(p ifi ), p a primitive 3rd root of unity, 
shows that the formula of Corollary 20 does not hold in general if neither of the two 
extensions is Galois. 

Proposition 21. Let K1 and K2 be Galois extensions of a field F. Then 
(1) The intersection K1 n K2 is Galois over F .  
(2) The composite K 1  K2 is Galois over F. The Galois group is isomorphic to the 

subgroup 

592 

H = {(a, r) I a iK1 nK2 = r i K1 nK2 } 

of the direct product Gal( Ki f F) x Gal(K21 F) consisting of elements whose 
restrictions to the intersection K1 n K2 are equal. 

K1 K2 

K / �K I� / 2 

K1 n K2 

I 
F 
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Proof" ( 1 )  Suppose p(x) is an irreducible polynomial in F[x] with a root a in 
K 1 n K2 • Since a E K 1 and K 1 IF is Galois, all the roots of p(x) lie in K 1 .  Similarly 
all the roots lie in Kz, hence all the roots of p (x) lie in K1 n K2• It follows easily that 
K1 n Kz is Galois as in Theorem 13 .  

(2) If K1 is  the splitting field of the separable polynomial f1 (x) and Kz is  the 
splitting field of the separable polynomial h (x) then the composite is the splitting field 
for the squarefree part of the polynomial !1 (x)fz(x), hence is Galois over F. 

The map 

cp : Gal(K 1 Kz! F) -+ Gal(K t /  F) x Gal(Kz/ F) 

a � (a iKI ' a iK2 ) 

is clearly a homomorphism. The kernel consists of the elements a which are trivial on 
both K1 and K2, hence trivial on the composite, so the map is injective. The image lies 
in the subgroup H, since 

(a iK) i K1 nK2 = a iK, nK2 = (a iK2) i K, nK2 ·  

The order of H can be computed by observing that for every a E Gal(Kt / F) there 
are 1Gal(Kz!K1 n Kz) l  elements r E Gal(Kz/F) whose restrictions to K1 n Kz are 
a iK,nK2 · Hence 

I H I = iGal(Kt / F) I · IGal(Kzl K1 n Kz) i  

iGal(Kz/ F) I 
= iGal(KJ /F) I

IGal(K1 n Kz!F) i 

By Corollary 20 and the diagram above we see that the orders of H and Gal(K1 Kz! F) 
are then both equal to 

[K1 : F] [Kz : F] 
[K1 Kz : F] = 

[K1 n Kz : F] 
. 

Hence the image of cp is precisely H, completing the proof. 

Corollary 22. Let K1 and Kz be Galois extensions of a field F with K1 n Kz = F. 
Then 

Gal(K1 Kz! F) � Gal(Kt / F) x Gal(Kz/ F) . 

Conversely, if K is Galois over F and G = Gal(K 1 F) = G 1  x G2 is the direct product 
of two subgroups G1 and Gz, then K is the composite of two Galois extensions K1 and 
K2 of F with K1 n K2 = F. 

Proof" The first part follows immediately from the proposition. For the second, 
let K1 be the fixed field of G1 C G and let Kz be the fixed field of Gz C G. Then 
K1 n K2 is the field corresponding to the subgroup G 1 G2, which is all of G in this 
case, so K1 n K2 = F. The composite K1 K2 is the field corresponding to the subgroup 
G 1  n G2, which is the identity here, so K1 K2 = K, completing the proof. 
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Corollary 23. Let E IF be any finite separable extension. Then E is contained in an 
extension K which is Galois over F and is minimal in the sense that in a fixed algebraic 
closure of K any other Galois extension of F containing E contains K.  

Proof" There exists a Galois extension of F containing E,  for example the com
posite of the splitting fields of the minimal polynomials for a basis for E over F (which 
are all separable since E is separable over F). Then the intersection of all the Galois 
extensions of F containing E is the field K.  

Definition. The Galois extension K of F containing E in the previous corollary is 
called the Galois closure of E over F. 

It  is often simpler to work in a Galois extension (for example in computing degrees 
as in Corollary 20). The existence of a Galois closure for a separable extension is 
frequently useful for reducing computations to consideration of Galois extensions. 

Recall that an extension K of F is called simple if K = F(B) for some element 8, 
in which case 8 is called a primitive element for K. 

Proposition 24. Let KIF be a finite extension. Then K = F (B) if and only if there 
exist only finitely many subfields of K containing F. 

Proof" Suppose first that K = F (B) is simple. Let E be a subfield of K containing 
F: F � E � K.  Let f(x) E F[x] be the minimal polynomial for 8 over F and let 
g(x)  E E[x] be the minimal polynomial for B over E. Then g(x) divides f(x)  in E[x].  
Let E' be the field generated over F by the coefficients of g(x ) .  Then E' � E and 
clearly the minimal polynomial for 8 over E' is still g(x). But then 

[K :  E] = deg g(x) = [K :  E'] 
implies that E = E'. It follows that the subfields of K containing F are the subfields 
generated by the coefficients of the monic factors of f (x ), hence there are finitely many 
such subfields. 

Suppose conversely that there are finitely many subfields of K containing F. If F 
is a finite field, then we have already seen that K is a simple extension (Proposition 17). 
Hence we may suppose F is infinite. It clearly suffices to show that F (a, {3) is generated 
by a single element since K is finitely generated over F. Consider the subfields 

F(a + c/3) ,  c E F. 

Then since there are infinitely many choices for c E F and only finitely many such 
subfields, there exist c, c' in F, c ::j:. c', with 

F(a + c/3) = F(a + c' {3) .  

Then a +  cf3 and a +  c' {3 both lie in  F(a + cf3), and taking their difference shows that 
(c - c')/3 E F(a + c/3) Hence {3 E F(a + c/3) and then also a E F(a + c/3) .  Therefore 
F(a, {3)  � F(a + c/3) and since the reverse inclusion is obvious, we have 

F(a, {3) = F(a + c/3), 
completing the proof. 
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Theorem 25. (The Primitive Element Theorem) If KIF is finite and separable, then 
KIF is simple. In particular, any finite extension of fields of characteristic 0 is simple. 

Proof: Let L be the Galois closure of K over F. Then any subfield of K containing 
F corresponds to a subgroup of the Galois group Gal(LI F) by the Fundamental Theo
rem. Since there are only finitely many such subgroups, the previous proposition shows 
that K 1 F is simple. The last statement follows since any finite extension of fields in 
characteristic 0 is separable. 

As the proof of the proposition indicates, a primitive element for an extension can 
be obtained as a simple linear combination of the generators for the extension. In the 
case of Galois extensions it is only necessary to determine a linear combination which 
is not fixed by any nontrivial element of the Galois group since then by the Fundamental 
Theorem this linear combination could not lie in any proper subfield. 

Examples 

(1) The element ,J2 + .J3 generates the field Q( ,J2 ,  .J3) as we have already seen (it is 
not fixed by any of the four Galois automorphisms of this field). 

(2) The field IF' P (x , y) of rational functions in the variables x and y over the algebraic 
closure IF' P of IF' P is not a simple extension of the subfield F = IF'  p(xP ,  yP). It is easy 
to see that 

and that the subfields 
F(x .f. cy) , 

are all of degree p over .IF'p(xP , yP) (note that (x + cy)P = xP + cPyP E .IF'p(xP , yP)). 
If any two of these subfields were equal, then just as in the proof of Proposition 24 we 
would have 

IF' p(x ,  y) = F(x + cy) 

which is impossible by degree considerations. Hence there are infinitely many such 
subfields and the extension cannot be simple. 

E X E R C I S E S  

1. Determine the Galois closure of the field Q( J 1 + ,J2) over Q. 

2. Find a primitive generator for Q( ,J2 ,  .J3 ,  ../5 ) over Q. 

3. Let F be a field contained in the ring of n x n matrices over Q. Prove that [F : Q] :S n .  
(Note that, by Exercise 19 of  Section 13 .2, the ring of  n x n matrices over Q does contain 
fields of degree n over Q.) 

4. Let f(x) E F[x] be an irreducible polynomial of degree n over the field F, let L be 
the splitting field of f(x) over F and let a be a root of f(x) in L. If K is any Galois 
extension of F, show that the polynomial f(x) splits into a product of m irreducible 
polynomials each of degree d over K, where d = [K(a) : K] = [(L n K)(a) : L n K] 
and m = nfd = [F(a) n K : F]. [Show first that the factorization of j(x) over K is the 
same as its factorization over L n K. Then if H is the subgroup of the Galois group of L 
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over F corresponding to L n K the factors of f (x) over L n K correspond to the orbits of 
H on the roots of f (x) .  Use Exercise 9 of Section 4. 1 .] 

5. Let p be a prime and let F be a field. Let K be a Galois extension of F whose Galois 
group is a p-group (i .e., the degree [K : F] is a power of p). Such an extension is called 
a p-extension (note that p-extensions are Galois by definition). 
(a) Let L be a p-extension of K. Prove that the Galois closure of L over F is a p-extension 

of F. 
(b) Give an example to show that (a) need not hold if [K : F] is a power of p but K f F 

is not Galois. 

6. Prove thatlF p (x , y)flF p(xP ,  yP) is not a simple extension by explicitly exhibiting an infinite 
number of intermediate subfields. 

7. Let F s; K s; L and let (} E L with p(x) = me, F (x) .  Prove that K ®F F(8) � 
K[x]f(p(x)) as K-algebras. 

8. Let K 1 and K2 be two algebraic extensions of a field F contained in the field L of charac
teristic zero. Prove that the F-algebra K1 ®F K2 has no nonzero nilpotent elements. [Use 
the preceding exercise.] 

1 4.5  CYCLOTOMIC EXTENSIONS AND ABELIAN EXTENSIONS 
OVER Q 

We have already determined that the cyclotomic field Q(sn) of nth roots of unity is 
a Galois extension of Q of degree cp (n) where cp denotes the Euler cp-function. Any 
automorphism of this field is uniquely determined by its action on the primitive nth root 
of unity {, . This element must be mapped to another primitive nth root of unity (recall 
these are the roots of the irreducible cyclotomic polynomial 4>, (x)). Hence a ({n)  = s: 
for some integer a ,  1 .:::; a < n, relatively prime to n. Since there are precisely cp (n) 
such integers a it follows that in fact each of these maps is indeed an automorphism of 
Q({,) .  Note also that we can define aa for any integer a relatively prime to n by the 
same formula and that a a depends only on the residue class of a modulo n. 

Theorem 26. The Galois group of the cyclotomic field Q({, ) of n1h roots of unity is 
isomorphic to the multiplicative group (7Ljn7L) x .  The isomorphism is given explicitly 
by the map 

(7Ljn7L) x ------+ Gal(Q(sn)/Q) 
a (mod n) t-----* O"a 

where O"a is the automorphism defined by 

aa (sn) = s: . 

Proof" The discussion above shows that aa is an automorphism for any a (mod n), 
so the map above is well defined. It is a homomorphism since 

(aaab) (sn)  = aa (s:) = <s:>'' 
= s:b 
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which shows that aaah = O'ab · The map is bijective by the discussion above since 
we know that every Galois automorphism is of the form a a for a uniquely defined a 
(mod n) .  Hence the map is an isomorphism. 

Examples 

(1) The field Q(�s) is Galois over Q with Galois group (Zj571 Y � Z/4Z. This is our 
first example of a Galois extension of Q of degree 4 with a cyclic Galois group. 
The elements of the Galois group are {at = 1 ,  az , a3 , a4} in the notation above. A 
generator for this cyclic group is az : �5 �--+ �f (since 2 has order 4 in (Z/SZ)x ). 

There -is precisely one nontrivial subfield, a quadratic extension of Q, the fixed 
field of the subgroup { 1 ,  a4 = a_t ) . An element in this subfield is given by 

-1 a = �s + a-1 �5 = �s + �s 
since this element is clearly fixed by a -l · The element �5 satisfies 

Notice then that 

�t + �g + �l + (5 + 1 = 0. 

a2 + a - I = (�l + 2 + �s-2 ) + (�s + �s-1 ) - I 
= �l + 2 + �l + �5 + �t - 1 = 0. 

Solving explicitly for a we see that the quadratic extension of Q generated by a is 
Q(v's): 

Q(�s + �s- 1 ) = Q(.J5 ) . 
It can be shown in general (this is not completely trivial) that for p an odd prime 
the field Q(�p )  contains the quadratic field Q(.J:EP), where the + sign is correct if 
p = I mod 4 and the - sign is correct if p = 3 mod 4 (cf. Exercise I l in Section 7). 

(2) Q(�13 ),For p an odd prime we can construct a primitive element for any of the subfields 
of Q(�p) as in the previous example. A basis for Q(�p) over Q is given by 

Since 

2 p-2 l , �P • �p • · · · · �P . 

�:-l + �:-"2 + . . .  + �p + 1 = o 

we see that also the elements 

2 p-2 p-l �p . �p · . . .  , �p • �p 
form a basis. The reason for choosing this basis is that any a in the Galois group 
Gal(Q(�p)/Q) simply permutes these basis elements since these are precisely the 

primitive pth roots of unity. Note that it is at this point that we need p to be a prime 
in general the primitive nth roots of unity do not give a basis for the cyclotomic field 
of nth roots of unity over Q (for example, the primitive 4th roots of unity, ±i , are not 
linearly independent). 

Let H be any subgroup of the Galois group of Q(�p) over Q and let 

(14. 10) 

the sum of the conjugates of �P by the elements in H. For any T E H, the elements ra 
run over the elements of H as a runs over the elements of H. It follows that T a = a, so 
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that ex lies in the fixed field for H. If now r is not an element of H, then rex is the sum 
of basis elements (recall that any automorphism permutes the basis elements here), 
one of which is r (sp).  If we had rex = ex  then since these elements are a basis, we 
must have r (sp) = a (sp) for one of the terms a Sp in ( 10). But this implies ra-1  = 1 
since this automorphism is the identity on Sp · Then r = a  E H, a contradiction. This 
shows that ex is not fixed by any automorphism not contained in H, so that Q(ex) is 
precisely the fixed field of H .  

For a specific example, consider the subfields of Q(sJ3),  which correspond to the 
subgroups of (Z/1 3/Z) >< � Z/12/Z. A generator for this cyclic group is the automor
phism a = az which maps sB to sf3 . The nontrivial subgroups correspond to the 
nontrivial divisors of 12, hence are of orders 2, 3, 4, and 6 with generators a6, a4, a3 
and a2, respectively. The corresponding fixed fields will be of degrees 6, 4, 3 and 2 
over Q, respectively. Generators are given by (s = sB) 

s + a6s = s + s26 = { + s -1  
s + a4{ + a8s = { + s24 + s2" = s + s3 + s9  

s + a3 s + a6s + a9s = { + s8 + s l2 + s5 

{ + a2{ + (J4s + (J6s + a8{ + (J IOS = { + s4 + s3 + s l2 + s9 + S IO· 
The lattice of subfields for this extension is the following: 

QCO �1;_,) 
Q<s+s3 +s9> � � 3 Q<s +ss +ss +s •z> 

Q<s+s3 +s4+s9+{ w+s •z> 3 � 
Q 

The elements constructed in equation (1 0) and their conjugates are called the periods 
of s and are useful in the study of the arithmetic of the cyclotomic fields. The study 
of their combinatorial properties is referred to as cyclotomy. 

Suppose that n = p�1 p�2 • • • p�k is the decomposition of n into distinct prime powers. 
n2 ak 

Since �!:2 · · ·Pk is a primitive p� 1 -th root of unity, the field K1 = Q(�P�� )  is a subfield 
of Q(�n) .  Similarly, each of the fields K; = Q({P�' ), i = l ,  2, . . . , k is a subfield of 

Q(�n) .  The composite of the fields contains the product �P71 �P�2 • • • �P? , which is a 

primitive nth root of unity, hence the composite field is Q(�n) .  Since the extension 
degrees [K; : Q] equal q;(p�' ) ,  i = l ,  2, . . . , k and q;(n) = q;(p�1 )q;(p�2 ) . . .  q;(p�k ) ,  
the degree of the composite of the fields K; is precisely the product of the degrees of 
the K; .  It follows from Proposition 21 (and a simple induction from the two fields 
considered in the proposition to the k fields here) that the intersection of all these fields 
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is precisely Q. Then Corollary 22 shows that the Galois group for Q({n ) is the direct 
product of the Galois groups over Q for the subfields K; . We summarize this as the 
following corollary. 

Corollary 27. Let n = p� ' p�2 • • • P%k be the decomposition of the positive integer n 
into distinct prime powers. Then the cyclotomic fields Q({P�' ) , i = 1 ,  2, . . . , k intersect 
only in the field Q and their composite is the cyclotomic field Q({n ) .  We have 

which under the isomorphism in Theorem 26 is the Chinese Remainder Theorem: 

Proof: The only statement which has not been proved is the identification of the 
isomorphism of Galois groups with the statement of the Chinese Remainder Theorem 
on the group (7lf..n7l) x ,  which is quite simple and is left for the exercises. 

By Theorem 26 the Galois group of Q({n )IQ is in particular an abelian group. 

Definition. The extension KIF is called an abelian extension if KIF is Galois and 
Gal(K I F) is an abelian group. 

Since all the subgroups and quotient groups of abelian groups are abelian, we see 
by the Fundamental Theorem of Galois Theory that every subfield containing F of an 
abelian extension of F is again an abelian extension of F. By the results on composites 
of extensions in the last section, we also see that the composite of abelian extensions is 
again an abelian extension (since the Galois group of the composite is isomorphic to a 
subgroup of the direct product of the Galois groups, hence is abelian). 

It is an open problem to determine which groups arise as the Galois groups of 
Galois extensions of Q. Using the results above we can see that every abelian group 
appears as the Galois group of some extension of Q, in fact as the Galois group of some 
subfield of a cyclotomic field. 

Let n = p1p2 · · · Pk be the product of distinct primes. Then by the Chinese 
Remainder Theorem 

(7!.1 Pt'1l) X X (7!.1 P27l) X X . . .  X (7!.1 Pk7l) X 

Zp,- 1  X Zp2-l X . . .  X Zpk- 1 ·  ( 14. 1 1 ) 

Now, suppose G is any finite abelian group. By the Fundamental Theorem for 
Abelian Groups, 

for some integers n1 , n2 , . . .  , nk. We take as known that given any integer m there are 
infinitely many primes p with p = 1 mod m (see the exercises following Section 13.6 
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for one proof using cyclotomic polynomials). Given this result, choose distinct primes 
Pt . pz , . . .  , Pk such that 

and let n = PlP2 · · · Pk as above. 

Pl = 1 mod nt 

pz = 1 mod nz 

By construction, n; divides p; - 1 for i = 1 ,  2, . . . , k, so the group Zp; -l has a 

subgroup H; of order p; - 1 
for i = 1 ,  2, . . .  , k, and the quotient by this subgroup is 

n; 
cyclic ofordern; . Hence the quotient of (Z/nZ) x in equation ( l l) by H1 x H2 x · · ·  x Hk 
is isomorphic to the group G. 

By Theorem 26 and the Fundamental Theorem of Galois Theory, we see that there is 
a subfield ofQ(tptJ>r-·Pk ) which is Galois over Q with G as  Galois group. We summarize 
this in the following corollary. 

Corollary 28. Let G be any finite abelian group. Then there is a subfield K of a 
cyclotomic field with Gal(K /Q) � G. 

There is  a converse to this result (whose proof is beyond our scope), the celebrated 
Kronecker-Weber Theorem: 

Theorem (Kronecker-Weber) Let K be a finite abelian extension of Q. Then K is 
contained in a cyclotomic extension of Q. 

The abelian extensions of Q are the "easiest" Galois extensions (at least in so far 
as the structure of their Galois groups is concerned) and the previous result shows they 
can be classified by the cyclotomic extensions of Q. For other finite extensions of Q 
as base field, it is more difficult to describe the abelian extensions. The study of the 
abelian extensions of an arbitrary finite extension F of Q is referred to as class field 
theory. There is a classification of the abelian extensions of F by invariants associated 
to F which greatly generalizes the results on cyclotomic fields over Q. In general, 
however, the construction of abelian extensions is not nearly as explicit as in the case of 
the cyclotomic fields. One case where such a description is possible is for the abelian 
extensions of an imaginary quadratic field (Q( Fl5 )  for D positive), where the abelian 
extensions can be constructed by adjoining values of certain elliptic functions (this is 
the analogue of adjoining the roots of unity, which are the values of the exponential 
function r for certain x ). The study of the arithmetic of such abelian extensions and 
the search for similar results for non-abelian extensions are rich and fascinating areas 
of current mathematical research. 

We end our discussion of the cyclotomic fields with the problem of the constructibil
ity of the regular n-gon by straightedge and compass. 
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Recall (cf. Section 13.3) that an element a is constructible over Q if and only if the 
field Q(a) is contained in a field K obtained by a series of quadratic extensions: 

Q = Ko C K1 C · · · c Ki C Ki+1 c · · · c Km = K (14. 1 2) 

with 
i = 0, 1 ,  . . . , m - 1 .  

The construction of the regular n-gon in JR2 i s  evidently equivalent to the construc
tion of the nth roots of unity, since the nth roots of unity form the vertices of a regular 
n-gon on the unit circle in <C with one vertex at the point 1 .  

The construction of l;n i s  equivalent to the constructibility of the first coordinate x 
in IR2 of l;n , namely the real part of l;n . Since the complex conjugate of Sn is just Sn-1 , 

1 
the real part of Sn is x = 2(l;n + t;n-1 ) .  Note that Sn satisfies the quadratic equation 

t;; - 2xt;n + 1 = 0 over Q(x) . Since Q(x) consists only of real numbers, it follows 
that [Q(t;n)  : Q(x)] = 2, so that Q(x) is an extension of degree q; (n)/2 of Q. 

It follows that if the regular n..gon can be constructed by straightedge and compass 
then q;(n) must be a power of 2. Conversely, if q;(n) = 2m is a power of 2, then the 
Galois group Gal(Q(t;n )  /Q) is an abelian group whose order is a power of2, so the same 
is true for the Galois group Gal(Q(x) /Q) . It is easy to see by the Fundamental Theorem 
for Abelian Groups that an abelian group G of order 2m has a chain of subgroups 

G = Gm > Gm-1 > · · · > Gi+ 1 > Gi > · · · > Go = 1 

with 
i = 0, 1 ,  2, . . .  , m - 1 .  

Applying this to the group G = Gal(Q(x)/Q) and taking the fixed fields for the sub
groups Gi , i = 0, 1 ,  . . . , m - 1 ,  we obtain (by the Fundamental Theorem of Galois 
Theory) a sequence of quadratic extensions as in ( 12) above. 

We conclude that the regular n-gon can be constructed by straightedge and compass 
if and only if q;(n) is a power of 2. Decomposing n into prime powers to compute q;(n) 
we see that this means n = 2k p1 • · · Pr is the product of a power of 2 and distinct odd 
primes Pi where Pi - 1 is a power of 2. It is an elementary exercise to see that a prime 
p with p - 1 a power of 2 must be of the form 

p = 22s + 1 
for some integer s .  Such primes are called Fermat primes. The first few are 

3 = 21 + 1 

5 = 22 + 1 

17  = 24 + 1 

257 = 28 + 1 

65537 = 216 + 1 

(but 232 + 1 is not a prime, being divisible by 641). It is not known if there are infinitely 
many Fermat primes. We summarize this in the following proposition. 
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Proposition 29. The regular n-gon can be constructed by straightedge and compass if 
and only if n = 2k 

PI · · · Pr is the product of a power of 2 and distinct Fermat primes. 

The proof above actually indicates a procedure for constructing the regular n-gon 
as a succession of square roots . For example, the construction of the regular 17 -gon 
(solved by Gauss in 1796 at age 19) requires the construction of the subfields of degrees 
2, 4, 8 and 16 in Q( � 17) . These subfields can be constructed by forming the periods of 
�17 as in the example of the 13th roots of unity above. In this case, the fact that Q(�17) 
is obtained by a series of quadratic extensions reflects itself in the fact that the periods 
can be "halved" successively (i.e., if H1 < H2 are subgroups with [H2 : HI ] =  2 then 
the periods for H1 satisfy a quadratic equation whose coefficients involve the periods 
for H2). For example, the periods for the subgroup of index 2 (generated by a2) in the 
Galois group are ( � = � 17) 

1} 1 = � + �2 + �4 + � 8 + �9 + �
13 + �

15 + �
16 

1}2 = � 3 + �5 + �6 + �
7 

+ �
10 + � l l  + �

12 + �
14 

which "halve" the period for the full Galois group and which satisfy 

1} 1 + 1}2 = - 1 

(from the minimal polynomial satisfied by �17) and 

1J1 1J2 = -4 

(which requires computation - we know that it must be rational by Galois Theory, 
since this product is fixed by all the elements of the Galois group). Hence these two 
periods are the roots of the quadratic equation 

x2 + x - 4 = 0 

which we can solve explicitly. In a similar way, the periods for the subgroup of index 4 
(generated by a4) naturally halve these periods, so are quadratic over these, etc. In this 
way one can determine � 17 explicitly in terms of iterated square roots. For example, one 

2rr 
finds that 8(� + C

1) = 16 cos(- ) (which is enough to construct the regular 17-gon) 
17 

is given explicitly by 

- 1 + m +J2o7 - m ) + 2J17 + 3.Jf7 - J2(17 - m) - 2J2o7 + m ) . 
A relatively simple construction of the regular 17 -gon (shown to us by J .H. Conway) 

is indicated in the exercises . 

While we have seen that it is not possible to solve for �n using only successive 
square roots in general, by definition it is possible to obtain �n by successive extraction 
of higher roots (namely, taking an nth root of 1 ). This is not the case for solutions 
of general equations of degree n, where one cannot generally determine solutions by 
radicals, as we shall see in the next sections. 
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E X E R C I S E S  

1. Detennine the minimal polynomials satisfied by the primitive generators given in the text 
for the subfields of Q(s13) .  

2.  Detennine the subfields of Q(ss) generated by the periods of ss and in particular show 
that not every subfield has such a period as primitive element. 

3. Detennine the quadratic equation satisfied by the period a = ss + t5- 1 of the 5th root 
of unity t;s . Determine the quadratic equation satisfied by t;s over Q(a) and use this to 
explicitly solve for the 5th root of unity. 

4. Let aa E Gal(Q(sn )/Q) denote the automorphism of the cyclotomic field of nth roots of 
unity which maps sn to s:: where a is relatively prime to n and sn is a primitive nth root of 
unity. Show that aa (s) = sa for every nth root of unity. 

5. Let p be a prime and let Et ,  Ez , . . .  , Ep-1 denote the primitive pth roots of unity. Set 
Pn = E! + Ez + · · · + E;_1 , the sum of the nth powers of the E; . Prove that Pn = - 1  if p 
does not divide n and that Pn = p - 1 if p does divide n. [One approach: PI = - 1  from 
<Pp (x) ;  show that Pn is a Galois conjugate of PI for p not dividing n, hence is also - 1 .] 

6. Let sn denote a primitive nth root of unity and let K = Q(sn )  be the associated cyclotomic 
field. Let a denote the trace of sn from K to Q (cf. Exercise 1 8  of Section 2). Prove that 
a = 1 if n = 1 ,  a = 0 if n is divisible by the square of a prime, and a = ( - t r  if n is the 
product of r distinct primes. 

7. Show that complex conjugation restricts to the automorphism a-1 E Gal(Q(sn) /Q) of 
the cyclotomic field of nth roots of unity. Show that the field K+ = Q(sn + t;n-I )  is the 
subfield of real elements in K = Q(sn) ,  called the maximal real subfield of K.  

8 .  Let Kn = Q(szn+2 ) be  the cyclotomic field of 2n+2-th roots of unity, n � 0 .  Set ctn = 

szn+2 + t;_;;!2 and K;t = Q(ctn) ,  the maximal real subfield of Kn . 
(a) Show that for all n � 0, [Kn : Q] = 2n+l , [Kn : K;t] = 2, [K;t : Q] = 2n , and 

[K:+l : K;t] = 2. 
(b) Detennine the quadratic equation satisfied by szn+2 over K;t in terms of ctn . 
(c) Show that for n � 0, a�+ I = 2 + ctn and hence show that 

Cln = J 2 + J 2 + l · · + J2 (n times), 

giving an explicit formula for the (constructible) 2n+2-th roots of unity. 
9. Notation as in the previous exercise. 

(a) Prove that K;t is a cyclic extension of Q of degree 2n . [Use an explicit isomorphism 
(7l./2n+2z) x � 'll./271. x 7l.f2n 'll. as abelian groups (i.e., (7l./2n+2z) x is isomorphic to 
a cyclic group of order 2 and a cyclic group of order 2n - cf. Exercises 22 and 23 of 
Section 2.3] 

(b) Prove that K n is a biquadratic extension of K,;-_1 and that two of the three intermediate 
subfields are K;t and K n -1 · Prove that the remaining field intermediate between K,;-_1 
and Kn is a cyclic extension of Q of degree 2n . 

10. Prove that Q( :lfi )  is not a subfield of any cyclotomic field over Q. 
11. Prove that the primitive nth roots of unity form a basis over Q for the cyclotomic field of 

nth roots of unity if and only if n is squarefree (i.e., n is not divisible by the square of any 
prime). 
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12. Let a p denote the Frobenius automorphism x �---+ x P of the finite field IF q of q = pn 

elements. Viewing IF q as a vector space V of dimension n over IF p we can consider a p as a 
linear transformation of V to V. Determine the characteristic polynomial of a P and prove 
that the linear transformation a p is diagonalizable over IF p if and only if n divides p - 1 ,  
and i s  diagonalizable over the algebraic closure of IF p i f  and only i f  (n , p )  = 1 .  

13. Let n = p� 1 p�2 • • •  p�k be the prime factorization of n and let sn be a primitive nth root of 

unity. For each i = 1 ,  2, . . .  , k define d; by n = p�' d; and let sp�' = s�' ,  so that sp�' is 

a particular primitive p�; -th root of unity. Let a a E Gal(Q(sn )/Q) be the automorphism 
mapping l;n to s:: for a relatively prime to n. 
(a) Prove that for i = 1, 2, . . .  , k, aa maps sp�' to s;�, and gives an automorphism of 

Q(sp�' )/Q) which depends only on a (mod p�' ) ,  which.we may denote aa (mod P�' ) "  
(b) Prove that the map aa �---+ (a a (mod P? l ·  . . . , a a (mod P:k ) )  is the isomorphism of Corol

lary 27 corresponding to the Chinese Remainder Theorem for (71../ n'lL.) x . 

The following Exercises 14 to 18  determine the periods associated to a primitive 17th root of 
unity and provide a proof for the simple geometric construction indicated in Exercise 17 for 

the regular 17-gon. Let s = s17 = cos �; + i sin �; be a fixed primitive 17th root of unity 

in <C. 

14. Define the periods of s as follows: 

m = s+s2+s4+ss+s9+s l3+s ts+s 16 

7]2 = s 3+ss +s6+s7+s w+s l l +s 12+s l4 

1]� = s+s4+s 13+s 16 

1J2 = s2+s s+s9+s ls 

1]; = s6+s 7+1; w+s u 

1]� = s3+ss+s 12+s l4 

1Jl.' = s +s 16 

1]� = s4+s 13 -

(a) Show that all of these periods are real numbers and that 7JJ' = 2 cos �; . Show that 

as real numbers these periods are approximately 

7]1 � 1 .562 
7]2 � -2.562 

1]� � 2.049 
1]2 � -0.488 

1]; � -2.906 
1]� � 0.344 

7Jl' � 1 .865 
1]� � 0. 1 85 .  

(b) Prove that 7Jl and 7]2 are roots of the equation x2 + x - 4 = 0. 
(c) Prove that 1]� and 7J2 are roots of the equation x2 - 1JtX - 1 = 0 and that 7]; and 7]� 

are roots of the equation x2 - 1J2X - l = 0. 
(d) Prove that 7JJ' and 1]� are roots of the equation x2 - 1]� x + 1]� = 0. 

15. Prove that if tan 2() = a  (0 < 28 < � ) then tan () satisfies the equation x2 - �x - I  = 0. 
2 a 

16. Let C be the circle in JR.2 having the points (h, k) and (0, 1) as a diameter. Prove that this 
circle intersects the x-axis if and only if h2 - 4k :::_ 0 and in this case the two intercepts 
are the roots of the equation x2 - hx + k = 0. 

17. (Construction of the Regular 17-gon) Draw a circle of radius 2 centered at the origin (0, 0) . 
(a) Join the point (4, 0) to the point (0, 1) and construct the line £ 1 bisecting the angle 
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between this line and the y-axis. Construct the line £2 perpendicular to £ 1 in Figure 2. 

:Y 

Fig. 2 

(b) Using the intersection of £1 and the x-axis as center and radius equal to the distance 
to (0, 1) ,  construct the circle Ct and let A = (s, 0) be the right-hand point of inter
section of Ct with the x-axis. Similarly, let B = (t , 0) denote the right-hand point of 
intersection of the x-axis and the circle C2 whose center is the intersection of £2 and 
the x-axis and whose radius is equal to the distance to (0, 1) as in Figure 3.  

' y ' 

Fig. 3 

(c) Construct a perpendicular to the x-axis at the point A and mark off the distance t from 
(0, 0) to B to construct the point (s ,  t) . Construct the circle with (s , t) and (0, 1)  as a 
diameter and let P denote the right-hand point of intersection of this circle with the 
x-axis. The perpendicular to the x-axis at P intersects the circle of radius 2 at the 
second vertex of a regular 17-gon whose first vertex is at (2,0), hence constructs the 
regular 17-gon by straightedge and compass as in Figure 4. 
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18. Notation as in the previous exercises . 
(a) Prove that £1 intersects the x-axis in the point (TJI /2, 0) and that £2 intersects the 

x-axis in the point (rJ2/2, 0) .  
(b) Prove that C1 is the circle having the points (TJl , -1) and (0, 1 )  as diameter. Prove 

that s = '7t · Similarly prove that C2 is the circle having the points (172, - 1 )  and (0, 1 )  
as  diameter and that t = '74 . 

(c) Prove that P has coordinates ('7t • 0) and hence that the construction in the previous 
problem constructs the regular 17 -gon by straightedge and compass . 

1 4.6 GALOIS GROUPS OF POLYNOM IALS 

Recall that the Galois group of a separable polynomial f(x) E F[x] is defined to be 
the Galois group of the splitting field of f (x) 0\�er F. 

If  K is  a Galois extension of F then K is  the splitting field for some separable poly
nomial f(x) over F. Any automorphism (!' E Gal(KI F) maps a root of an irreducible 
factor of f (x) to another root of the irreducible factor and (J' is uniquely determined by 
its action on these roots (since they generate K over F). If we fix a labelling of the roots 
at . . . .  , an of f(x) we see that any (J' E Gal(KI F) defines a unique permutation of 
a1 , . . . , an , hence defines a unique permutation of the subscripts { 1 ,  2, . . . , n} (which 
depends on the fixed labelling of the roots). This gives an injection 

Gal{K I F) "--+ Sn 
of the Galois group into the symmetric group on n letters which is clearly a homo
morphism (both group operations are composition). We may therefore think of Galois 
groups as subgroups of symmetric groups. Since the degree of the splitting field is the 
same as the order of the Galois group by the Fundamental Theorem. this explains from 
the group-theoretic side why the splitting field for a polynomial of degree n over F is 
of degree at most n !  over F (Proposition 13 .26). 

In general, if the factorization of f (x) into irreducibles is f (x) = !1 (x ) · · · A (x) 
where J; (x) has degree n ; ,  i = 1 ,  2, . . . , k, then since the Galois group permutes the 
roots of the irreducible factors among themselves we have Gal(K I F) ::::: Sn 1 x · · · x Snk .  

If f (x) is irreducible, then given any two roots of f (x) there is an automorphism 
in the Galois group G of f (x) which maps the first root to the second (this follows from 
our extension Theorem 13 .27). Such a group is said to be transitive on the roots, i.e., 
you can get from any given root to any other root by applying some element of G. The 
fact that the Galois group must be transitive on blocks of roots (namely, the roots of the 
irreducible factors) can often be helpful in reducing the number of possibilities for the 
structure of G ( cf. the discussion of Galois groups of polynomials of degree 4 below). 

Examples 

(1) Consider the biquadratic extension Q( ,.fi , .J3 ) over Q, which is the splitting field of 
(x2 - 2)(x2 - 3).  Label the roots as cx1 = ,.fi ,  az = -,.fi , cx3 = .J3 and cx4 = -./3. 
The elements of the Galois group are { 1 ,  a, 1:, a 1: )  where a maps ,.fi to -,.fi and 
fixes .J3 and 1: fixes ,.fi and maps .J3 to -./3. As permutations of the roots for this 
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labelling we see that a interchanges the first two and fixes the second two and r fixes 
the first two and interchanges the second two, i.e., 

a = (12) and t' = (34) 

as elements of S4. Similarly, or by taking the product of these two elements, we see 
that 

ar = (12) (34) E S4. 

Hence 
Gal(Q(.J2 , ..J3 )/Q) � { 1 , ( 12) , (34) , (12) (34) } c s4 

identifying this Galois group with the Klein-4 subgroup of S4. Note that if we had 
changed the labelling of the roots above we would have obtained a different (isomor
phic) representation of the Galois group as a subgroup of S4 (for example, interchang
ing the second and thirdroots would have given the subgroup { 1 ,  (1 3) , (24) , (13) (24) }). 

(2) The Galois group of x3 - 2 acts as permutations on the three roots V'i, p V2 and 
p2 V2 where p is a primitive 3rd root of unity. With this ordering, the generators a 
and r we have defined earlier give the permutations 

a =  (123) t' = (23) 

which gives 

{ 1 ,  a, a2 , t', w, w2} = { 1 , ( 123) , ( 132) , (23) , ( 1 3) , ( 12)} = s3 . 

in this case the full symmetric group on 3 letters. 

Recall that every finite group is isomorphic to a subgroup of some symmetric group 
Sn . It is an open problem to determine whether every finite group appears as the Galois 
group for some polynomial over Q. We have seen in the last section that every abelian 
group is a Galois group over Q (for some subfield of a cyclotomic field). We shall 
explicitly determine the Galois groups for polynomials of small degree (:S: 4) below 
which will in particular show that every subgroup of S4 arises as a Galois group. 

We first introduce some definitions and show that the "general" polynomial of 
degree n has Sn as Galois group (so the second example above should be viewed as 
"typical") .  

Definition. Letx 1 , x2 , . . •  , Xn be indeterminates. Tbe elementarysymmetricfunctions 
St , Sz , • • •  , sn are defined by 

St = XI + Xz + · · · + Xn 

Sz = XtXz + XtX3 + · · · + X2X3 + XzX4 + · · · + Xn-IXn 

Sn = XtX2 · · · Xn 

i.e. , the ;th symmetric function s; of x1 , xz , . . .  , Xn is the sum of all products of the Xj 's 
taken i at a time. 

Definition. The general polynomial of degree n is the polynomial 

(x - Xt ) (x - xz) · · · (x - Xn) 

whose roots are the indeterminates Xt . xz , . • •  , Xn .  
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It is easy to see by induction that the coefficients of the general polynomial of 
degree n are given by the elementary symmetric functions in the roots: 

(x - x! ) (x - xz) · · · (x - Xn)  = xn - StXn-l + SzXn-Z + · · · + (- 1 tsn .  ( 14. 1 3) 

For any field F, the extension F (xt , xz , . . . , Xn )  is then a Galois extension of the 
field F (s1 , sz , . . .  , sn )  since it is the splitting field of the general polynomial of degree 
n .  

If cr E Sn is any permutation of { 1 ,  2,  . . .  , n} , then cr acts on the rational functions in 
F(xt . xz , . . .  , Xn) by permuting the subscripts of the variables Xt , xz , . . . , Xn . It is clear 
that this gives an automorphism of F(xt .  xz , . . .  , Xn) .  Identifying cr E Sn with this au
tomorphism of F(xJ , xz , . . . , Xn) identifies Sn as a subgroup ofAut(F(xt , xz , . . .  , Xn)) . 

The elementary symmetric functions St , sz ,  . . .  , Sn are fixed under any permutation 
of their subscripts (this is the reason they are called symmetric), which shows that the 
subfield F (st , sz , . . .  , sn )  is contained in the fixed field of Sn . By the Fundamental The
orem of Galois Theory, the fixed field of Sn has index precisely n !  in F (xt , Xz, . . .  , Xn) .  
Since F(xt . xz , . . . , Xn) i s  the splitting field over F(st , Sz , . . .  , sn ) of the polynomial 
of degree n in ( 13), we have 

(14. 14) 

It follows that we actually have equality and that F (s 1 ,  sz , . . .  , sn) is precisely the fixed 
field of Sn . This proves the following result. 

Proposition 30. The fixed field of the symmetric group Sn acting on the field of 
rational functions in n variables F (xt . xz , . . . , Xn )  is the field of rational functions in 
the elementary symmetric functions F(st . sz , . . . , sn ). 

Definition. Arational function f (xt , Xz ,  . . .  , Xn) is called symmetric if it is not changed 
by any permutation of the variables Xt , Xz , . . .  , Xn · 

Corollary 31. (Fundamental Theorem on Symmetric Functions) Any symmetric func
tion in the variables Xt , xz , . . . , Xn is a rational function in the elementary symmetric 
functions St , Sz , . . . , Sn · 

Proof· A symmetric function lies in the fixed field of Sn above, hence is a rational 
function in St , . . . , Sn . 

This corollary explains why these are called the elementary symmetric functions. 

Remark: If f (xt , . . . , Xn )  is a polynomial in Xt , xz , . . . , Xn which is symmetric then it 
can be seen that f is actually a polynomial in St ,  sz , . . .  , sn . which strengthens the state-
ment of the corollary. It is in fact true that a symmetric polynomial whose coefficients 
lie in R, where R is any commutative ring with identity, is a polynomial in the elemen
tary symmetric functions with coefficients in R. A proof of this fact is implicit in the 
algorithm outlined in the exercises for writing a symmetric polynomial as a polynomial 
in the elementary symmetric functions. 
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Examples 

(1) The expression (xi - x2)2 is symmetric in x1 , x2 . We have 

(XI - X2)2 = (X1 + X2)2 - 4XIX2 = Sf - 4S2 ,  
a polynomial in  the elementary symmetric functions. 

(2) The polynomial Xf + xi + xj is symmetric in X1 , X2 , X3, and in this case We have 

Xf + xi + xj = (Xt + X2 + X3)2 - 2(X1X2 + X1X3 + X2X3) 

= sr - 2s2 . 

(3) The polynomial xrxi + xrxj + xixj is symmetric. Since 

(X1X2 + X1X3 + X2X3)2 = XfXi + XfX� + xixj + 2(XfX2X3 + xiX1X3 + xjX1X2) 

= Xfxi + XfX� + xixj + 2X1X2X3 (X1 + X2 + X3) 

we have 

Suppose now we start with the general polynomial 

n n-1 + n-2 + + ( l)n X - StX S2X · · · - Sn 

over the field F(si . s2 , . . .  , sn) where we view the s; , i = 1 ,  2, . . . , n as indeterminates. 
If we define the roots of this polynomial to be x1 , x2 , . . .  , Xn then the si are precisely 
the elementary symmetric functions in the roots XI , . . .  , Xn . Moreover, these roots 
are indeterminates as well in the sense that there are no polynomial relations over F 
between them. For suppose p(t1 , . . .  , tn ) is a nonzero polynomial in n variables with 
coefficients in F such that p(x1 , • • . , Xn) = 0. Then the product, p, over all u in 
Sn of p(tu(1 ) •  . . .  , lu (n) ) is a nonzero symmetric polynomial with p(Xt . • • . , Xn) = 0. 
This gives a nonzero polynomial relation over F among s1 , . . .  , sn , a contradiction. 
Conversely, if the roots of a polynomial f (x) are independent indeterminates over F, 
then so are the coefficients of f(x) - cf. the beginning of Section 9. Thus defining the 
general polynomial over F as having indeterminate roots or indeterminate coefficients 
is equivalent. From this point of view our result can be stated in the following form. 

Theorem 32. The general polynomial 

Xn - StXn-1 + S2Xn-2 + · · · + ( - l)n Sn 

over the field F(s. , s2 , . . .  , sn ) is separable with Galois group Sn . 

This result says that if there are no relations among the coefficients of a polynomial 
of degree n (which is what we mean when we say the si are indeterminates above) then 
the Galois group of this polynomial over the field generated by its coefficients is the 
full symmetric group Sn . Loosely speaking, this means that the "generic" polynomial 
of degree n will have Sn as Galois group. Note, however, that over finite fields every 
polynomial has a cyclic Galois group (all extensions of finite fields are cyclic), so that 
"generic" polynomials in this sense do not exist. Over Q one can make precise the 
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notion of "generic" polynomial and then it is true that most polynomials have the full 
symmetric group as Galois group. 

For n � 5 there is only one normal subgroup of Sn , namely the subgroup An 
of index 2. Hence in general there is only one normal subfield of F(xt . xz , . . . , Xn) 
containing F(st . sz , . . . , sn) and it is an extension of degree 2. 

Definition. Define the discriminant D of Xt , xz , . . . , Xn by the formula 

D = n(x; - Xj)2 • 
i <j 

Define the discriminant of a polynomial to be the discriminant of the roots of the 
polynomial. 

The discriminant D is a symmetric function in Xt , . . . , Xn , hence is an element of 
K = F(st , Sz , . . .  , Sn ) . 

When we first defined the alternating group An we saw that a permutation a E Sn 
is an element of the subgroup An if and only if a fixes the product 

rv = n(x; - Xj) E Z[xt . Xz , . . . • Xn] . 
i <j 

It follows (by the Fundamental Theorem) that if F has characteristic different from 2 
then ,JD generates the fixed field of An and generates a quadratic extension of K. This 
proves the following proposition. 

Proposition 33. If ch(F) #- 2 then the permutation a E Sn is an element of An if and 
only if it fixes the square root of the discriminant D.  

We now consider the Galois groups of separable polynomials of small degree (::::: 4) 
over a field F which we assume is of characteristic different from 2 and 3. Note that 
over Q or over a finite field (or, more generally, over any perfect field) the splitting field 
of an arbitrary polynomial f (x) is the same as the splitting field for the product of the 
irreducible factors of f (x) taken precisely once, which is a separable polynomial. 

If the roots of the polynomial j(x) = Xn + an-tXn-l + · · · + atX + ll() are 
at , az , . . .  , an , then the discriminant of f(x) is2 

D = n(a; - aj)2 • 
i <j 

Note that D = 0 if and only if f (x) is not separable, i.e., if the roots at , . . . , an are 
not distinct. Recall that over a perfect field (e.g., Q or a finite field) this implies f(x) 
is reducible since every irreducible polynomial over a perfect field is separable. 

The discriminant D is symmetric in the roots of f(x), hence is fixed by all the au
tomorphisms of the Galois group of f (x ) . By the Fundamental Theorem it follows that 

2If f(x) = anxn + · · · + ao is not monic then its discriminant is defined to be a?;n-Z times the D 
defined above. 
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D E F. The discriminant can in general be written as a polynomial in the coefficients 
of f (x) (by Corollary 3 1 )  which are fairly complicated for larger degrees (we shall give 
formulas for n � 4 below). Finally, note that since 

rn = TI<a; - aj) 
i <j 

we have the useful fact that ,Ji5 is always contained in the splitting field for f(x) .  
If the roots of f (x) are distinct, fix some ordering of the roots and view the Galois 

group of f(x) as a subgroup of Sn as above. 

Proposition 34. The Galois group of f(x) E F [x] is a subgroup of An if and only if 
the discriminant D E F is the square of an element of F. 

Proof: This is a restatement of Proposition 33 in this case. The Galois group is 
contained in An if and only if every element of the Galois group fixes 

,Jij = n(a; - aj) 
i<j 

i.e., if and only if ,Ji5 E F. 

This property, together with the fact that D = 0 determines the presence of multiple 
roots, is the reason D is called the discriminant. 

Polynomials of Degree 2 

Consider the polynomial x2 +ax + b with roots a, {3. The discriminant D for this poly
nomial is (a - {3)2, which can be written as a polynomial in the elementary symmetric 
functions of the roots. We did this in Example 1 above: 

D = s� - 4sz = (-a)2 - 4(b) = a2 - 4b, 
the usual discriminant for this quadratic. 

The polynomial is separable if and only if a2 - 4b =j:. 0. The Galois group is a 
subgroup of �.  the cyclic group of order 2 and is trivial (i.e. , Az in this case) if and 
only if a2 - 4b is a rational square, which completely determines the possible Galois 
groups. 

Note that this restates results we obtained previously by explicitly solving for the 
roots: if the polynomial is reducible (namely D is a square in F), then the Galois group 
is trivial (the splitting field is just F), while if the polynomial is irreducible the Galois 
group is isomorphic to Z/2Z since the splitting field is the quadratic extension F(,Ji5 ). 

Polynomials of degree 3 

Suppose the cubic polynomial is 

f(x) = x3 + ax2 + bx + c. 
If we make the substitution x = y - a f3 the polynomial becomes 

g(y) = y3 + py + q 

Sec. 14.6 Galois Groups of Polynomials 

( 14. 1 5) 

( 14. 16) 

61 1  



where 
1 2 p = - (3b - a ) 3 

1 
q = 27 (2a3 - 9ab + 27c) .  ( 14. 17) 

The splitting fields for these two polynomials are the same since their roots differ by the 
constant a /3 E F and since the formula for the discriminant involves the differences of 
roots, we see that these two polynomials also have the same discriminant. 

Let the roots of the polynomial in ( 1 6) be a, {3, and y .  We first compute the 
discriminant of this polynomial in terms of p and q .  Note that 

g(y) = (y - a) (y - {J)(y - y) 
so  that if we differentiate we have 

Then 

Dyg(y) = (y - a) (y - {3) + (y - a) (y - y) + (y - {J)(y - y) .  

Dyg(a) = (a - {J)(a - y)  
Dyg({J) = ({J - a) ({J - y) 
Dyg(y) = (y - a) (y - {3) . 

Taking the product we see that 

D = [(a - {J)(a - y) ({J - y)]2 = -Dyg(a)Dyg({J)Dyg(y) .  
Since Dyg(y) = 3y2 + p, we have 

-D = (3a2 + p) (3{32 + p)(3y2 + p) 
= 27a2{32y2 + 9p (a2{32 + a2y2 + {J2y2) + 3p2 (a2 + {32 + y2) + p3 . 

The corresponding expressions in the elementary symmetric functions of the roots were 
determined in Examples 2 and 3 above. Note that here s1 = 0, s2 = p and s3 = -q. 
We obtain 

so that 
(14. 1 8) 

This is the same as the discriminant of f(x) in ( 15) .  Expressing D in terms of a ,  b, c 
using ( 17) we obtain 

( 14. 1 8') 

(Galois Group of a Cubic) 

a. If the cubic polynomial f (x) is reducible, then it splits either into three linear 
factors or into a linear factor and an irreducible quadratic. In the first case the Galois 
group is trivial and in the second case the Galois group is of order 2. 

b. If the cubic polynomial f(x) is irreducible then a root of f(x) generates an 
extension of degree 3 over F, so the degree of the splitting field over F is divisible by 
3. Since the Galois group is a subgroup of S3, there are only two possibilities, namely 
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A3 or S3 . The Galois group is A3 (i.e., cyclic of order 3) if and only if the discriminant 
D in ( 18) is a square. 

Explicitly, if D is the square of an element of F, then the splitting field of the 
irreducible cubic f(x) is obtained by adjoining any single root of f(x) to F. The 
resulting field is Galois over F of degree 3 with a cyclic group of order 3 as Galois 
group. If D is not the square of an element of F then the splitting field of f (x) is of 
degree 6 over F, hence is the field F(O,  .Ji5 )  for any one of the roots e of f(x) . This 
extension is Galois over F with Galois group S3 (generators are given by (j, which takes 
e to one of the other roots of f(x) and fixes .Ji5, and r, which takes .Ji5 to -.Ji5 and 
fixes 0). 

We see that in both cases the splitting field for the irreducible cubic f (x) is obtained 
by adjoining .Ji5 and a root of f (x) to F. 

We shall give explicit formulas for the roots of ( 16) (Cardano 's Formulas) in the 
next section after introducing the notion of a Lagrange Resolvent. 

Polynomials of Degree 4 

Let the quartic polynomial be 

f (x) = x4 + ax3 + bx2 + ex + d 

which under the substitution x = y - aj4 becomes the quartic 

with 

g(y) = y4 + py2 + qy + r 

1 p = S (-3a2 + 8b) 
1 q = - (a3 - 4ab + 8c) 8 
1 r = - (-3a4 + 16a2b - 64ac + 256d) . 256 

Let the roots of g(y) be at . a2, a3, and a4 and let G denote the Galois group for the 
splitting field of g(y) (or of f(x)). 

Suppose first that g(y) is reducible. If g (y) splits into a linear and a cubic, then 
G is the Galois group of the cubic, which we determined above. Suppose then that 
g(y) splits into two irreducible quadratics .  Then the splitting field is the extension 
F (%I , ,Jl5i. )  where D1 and D2 are the discriminants of the two quadratics. If D1 
and D2 do not differ by a square factor then this extension is a biquadratic extension 
and G is isomorphic to the Klein 4-subgroup of S4• If D1 is a square times D2 then this 
extension is a quadratic extension and G is isomorphic to 7l.j27l.. 

We are reduced to the situation where g(y) is irreducible. In this case recall that 
the Galois group is transitive on the roots, i.e., it is possible to get from a given root 
to any other root by applying some automorphism of the Galois group. Examining the 
possibilities we see that the only transitive subgroups of S4, hence the only possibilities 
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for our Galois group G, are the groups 

s4, A4 
D8 = { 1 ,  ( 1324) , ( 12) (34) , ( 1423) ,  ( 13)(24) , ( 14) (23) ,  ( 12) , (34) } and its conjugates 

v = { 1 ,  ( 12) (34) , (13) (24) , (14) (23)} 

C = { 1 ,  ( 1234) , ( 13)(24) ,  (1432) } and its conjugates. 

(Ds is the dihedral group, a Sylow 2-subgroup of S4, with 3 (isomorphic) conjugate 
subgroups in S4, V is the Klein 4-subgroup of S4, normal in S4, and C is a cyclic group, 
with 3 (isomorphic) conjugates in S4). 

Consider the elements 

(Jl = (al + a2)(a3 + a4) 
(}2 = (al + a3) (a2 + a4) 
(}3 = (al + a4)(a2 + a3) 

in the splitting field for g(y) . These elements are permuted amongst themselves by the 
permutations in S4 . The stabilizer of (Jl in S4 is the dihedral group Ds . The stabilizers 
in S4 of (}2 and (}3 are the conjugate dihedral subgroups of order 8. The subgroup of 
s4 which stabilizes all three of these elements is the intersection of these subgroups, 
namely the Klein 4-group V.  

Since S4 merely permutes e1 , e2 . (}3 i t  follows that the elementary symmetric func
tions in the (J 's  are fixed by all the elements of S4, hence are in F. An elementary 
computation in symmetric functions shows that these elementary symmetric functions 
are 2p, p2 - 4r, and -q2, which shows that (Jl , e2 . (}3 are the roots of 

h(x) = x3 - 2px2 + (p2 - 4r)x + q2 

called the resolvent cubic for the quartic g(y) .  Since 

and similarly 

(Jl - e2 = a1a3 + a2a4 - a1a2 - a3a4 
= -(al - a4) (a2 - a3) 

(Jl - (}3 = -(al - a3) (a2 - a4) 
(}2 - (}3 = -(al - a2) (a3 - a4) 

we see that the discriminant of the resolvent cubic is the same as the discriminant of 
the quartic g(y), hence also as the discriminant of the quartic f(x) .  Using our formula 
for the discriminant of the cubic, we can easily compute the discriminant in terms of 
p, q , r : 

D = 16p4r - 4p3q2 - 128p2r2 + 144pq2r - 27q4 + 256r3 

from which one can give the formula for D in terms of a ,  b, c, d :  
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D = - 128b2d2 - 4a3c3 + 16b4d - 4b3c2 - 27a4d2 + 1 8abc3 

+ 144a2bd2 - 192acd2 + a2b2c2 - 4a2b3d - 6a2c2d 
+ 144bc2d + 256d3 - 27c4 - 80ab2cd + 1 8a3bcd. 
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The splitting field for the resolvent cubic is a subfield of the splitting field of the 
quartic, so the Galois group of the resolvent cubic is a quotient of G .  Hence knowing 
the action of the Galois group on the roots of the resolvent cubic h (x) gives information 
about the Galois group of g(y) ,  as follows: 

(Galois group of a quartic) 

a. Suppose first that the resolvent cubic is irreducible. If D is not a square, then G 
is not contained in A4 and the Galois group of the resolvent cubic is S3 , which implies 
that the degree of the splitting field for g(y) is divisible by 6. The only possibility is 
then G = S4 . 

b. If the resolvent cubic is irreducible and D is a square, then G is a subgroup of 
A4 and 3 divides the order of G (the Galois group of the resolvent cubic is A3). The 
only possibility is G = A4. 

cl. We are left with the case where the resolvent cubic is reducible. The first 
possibility is that h (x) has 3 roots in F (i.e. , splits completely). Since each of the 
elements Ot , 02 , 03 is in F, every element of G fixes all three of these elements, which 
means G � V.  The only possibility is G = V. 

c2. If  h (x) splits into a linear and a quadratic, then precisely one of 01 , 02 , 03 is  in 
F, say Ot . Then G stabilizes Ot but not 02 and 03, so we have G � Ds and G Sf; V. 
This leaves two possibilities: G = Ds or G = C. One way to distinguish between 

these is to observe that F ( ,Ji5) is the fixed field of the elements of G in �. For the 
two cases being considered, we have D8 n A4 = V, C n A4 = { 1 ,  ( 1 3) (24) } .  The first 
group is transitive on the roots of g(y), the second is not. It follows that the first case 

occurs if and only if g(y) is irreducible over F(,.Ji5). We may therefore determine 

G completely by factoring g(y) in F(,.Ji5 ), and so completely determine the Galois 
group in all cases. ( cf. the exercises following and in the next section, where it is shown 
that over Q the Galois group cannot be cyclic of degree 4 if D is not the sum of two 
squares - so in particular if D < 0.) 

We shall give explicit formulas for the roots of a quartic polynomial at the end of 
the next section. 

The Fundamental Theorem of Algebra 

We end this section with two proofs of the Fundamental Theorem of Algebra. We need 
two facts regarding the field C: 

(a) Every polynomial with real coefficients of odd degree has a root in the reals . Equiv
alently, there are no nontrivial finite extensions of JR. of odd degree. 

(b) Quadratic polynomials with coefficients in C have roots in C Equivalently, there 
are no quadratic extensions of C 

The first result follows from the Intermediate Value Theorem in calculus, since the 
graph of a monic polynomial f (x) E JR.[ x] of odd degree is negative for large negative 
values of x and positive for large positive values of x, hence crosses the axis somewhere. 
The equivalence with the second statement follows since a finite extension of JR. is a 
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simple extension and the minimal polynomial of a primitive element would have odd 
degree, hence would be both irreducible over IR and have a root in IR, hence must be of 
degree 1 .  

The second result follows by a direct computation. B y  the quadratic formula it 
suffices to show that every complex number a = a + bi , a ,  b E IR, has a square root 
in C. Write a = reie for some r ::: 0 and some e E [0, 2rr) .  Then ,Jrei812 is a square 

a + Ja2 + b2 
root of a. (Explicitly, let c E IR be a square root of the real number 

2 
and 

-a + Ja2 + b2 
let d E IR be a square root of the real number 

2 
where the signs of the 

two square roots are chosen so that cd has the same sign as b. Then multiplying out we 
see that (c + di)2 = a + bi .) 

Theorem 35. (Fundamental Theorem of Algebra) Every polynomial f(x) E <C[x] of 
degree n has precisely n roots in C (counted with multiplicity). Equivalently, C is 
algebraically closed. 

Proof I. It suffices to prove that every polynomial f (x) E <C[x] has a root in C. 
Let T denote the automorphism complex conjugation. If f (x) has no root in C then 
neither does the conjugate polynomial f (x) = T f (x) obtained by applying T to the 
coefficients of f(x) (since its roots are the conjugates of the roots of f (x)). The product 
f (x) f (x) has coefficients which are invariant under complex conjugation, hence has 
real coefficients. It suffices then to prove that a polynomial with real coefficients has a 
root in C. 

Suppose that f (x) is a polynomial of degree n with real coefficients and write 
n = 2km where m is odd. We prove that f (x) has a root in C by induction on k. 
For k = 0, f (x) has odd degree and by (a) above f (x) has a root in IR so we are 
done. Suppose now that k ::: 1 .  Let a1 , a2 , . . .  , an be the roots of f(x) and set 
K = IR(a1 , a2 , . . .  , an , i) .  Then K is a Galois extension of IR containing C and the 
roots of f(x).  For any t E IR consider the polynomial 

L, = n [x - (a; + aj + tai aj)] .  
1 <) <j-::;n 

Any automorphism of K fiR permutes the terms in this product so the coefficients of L1 
are invariant under all the elements of Gal(K fiR) . Hence L1 is a polynomial with real 
coefficients. The degree of L1 is 

n (n - 1 )  
--- = 2k-1 m (2km - 1) = 2k- 1m' 

2 
where m' is odd (since k ::: 1 ). The power of 2 in this degree is therefore less than k, 
so by induction the polynomial L1 has a root in C. Hence for each t E IR one of the 
elements ai + aj + ta; aj for some i , j ( 1  � i < j � n) is an element of C. Since there 
are infinitely many choices for t and only finitely many values of i and j we see that 
for some i and j (say, i = 1 and j = 2) there are distinct real numbers s and t with 
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Since s =/= t it follows that a = a1 + a2 E C and b = a1a2 E C. But then a1 and a2 
are the roots of the quadratic x2 - ax + b with coefficients in C, hence are elements of 
C by (b) above, completing the proof. 

II. The second proof again uses (a) and (b) above, but replaces the computations with the 
polynomials L, above with a simple group-theoretic argument involving the nilpotency 
of a Sylow 2-subgroup of the Galois group: 

Let f (x) be a polynomial of degree n with real coefficients and let K be the splitting 
field of f(x) over JR. Then K(i) is a Galois extension of JR. Let G denote its Galois 
group and let P2 denote a Sylow 2-subgroup of G. The fixed field of P2 is an extension 
of lR of odd degree, hence by (a) is trivial. 

It follows that Gal(K (i )/C) is a 2-group. Since 2-groups have subgroups of all 
orders (recall this is true of a finite p-group for any prime p, cf. Theorem 6. 1 ), if this 
group is nontrivial, there would exist a quadratic extension of C, impossible by (b), 
completing the proof. 

The Fundamental Theorem of Algebra was first rigorously proved by Gauss in 
18 16 (his doctoral dissertation in 1798 provides a proof using geometric considerations 
requiring some topological justification). The first proof above is essentially due to 
Laplace in 1795 (hence the reason fornarning the polynomials L, ) . The reason Laplace's 
proof was deemed unacceptable was that he assumed the existence of a splitting field 
for polynomials (i.e., that the roots existed somewhere in some field), which had not 
been established at that time. The elegant second proof is a simplification due to Artin. 

E X E R C I S E S  

1. Show that a cubic with a multiple root has a linear factor. Is the same true for quartics? 

2. Determine the Galois groups of the following polynomials: 
(a) x3 - x2 - 4 
(b) x3 - 2x + 4  
(c) x3 - x + 1 
(d) x3 + x2 - 2x - 1 .  

3. Prove for any a,  b E IF P" that if x 3  + ax + b is irreducible then -4a3 - 27b2 is a square 
in 1Fp" · 

4. Determine the Galois group of x4 - 25. 

5. Determine the Galois group of x4 + 4. 
6. Determine the Galois group of x4 + 3x3 - 3x - 2. 

7. Determine the Galois group of x4 + 2x2 + x + 3. 
8. Determine the Galois group of x4 + 8x + 12. 

9. Determine the Galois group of x4 + 4x - 1 (cf. Exercise 19). 

10. Determine the Galois group of x5 + x - 1 .  

11. Let F be an extension of Q of degree 4 that is not Galois over Q .  Prove that the Galois 
closure of F has Galois group either S4, A4 or the dihedral group Ds of order 8. Prove 
that the Galois group is dihedral if and only if F contains a quadratic extension of Q. 

12. Prove that an extension F of Q of degree 4 can be generated by the root of an irreducible 
biquadratic x4 + ax

2 + b over Q if and only if F contains a quadratic extension of Q. 
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13. (a) Let ±a, ±{3 denote the roots of the polynomial f(x) = x4 + ax2 + b E  /Z[x] .  Prove 
that f (x) is irreducible if and only if a2 , a ± f3 are not elements of <Q. 3 

(b) Suppose f(x) is irreducible and let G be the Galois group of f(x). Prove that 
(i) G � V ,  the Klein 4-group, if and only if b is a square in <Q if and only if a{J E <Q 

is rational. 
(ii) G � C, the cyclic group of order 4, if and only if b(a2 - 4b) is a square in <Q if 

and only if <Q(a{J) = <Q(a2) . 
(iii) G � Ds, the dihedral group of order 8, if and only if b and b(a2 - 4b) are not 

squares in <Q if and only if af3 ¢ <Q(a2) . 

14. Prove the polynomial x4 - px2 + q E <Q[x] is irreducible for any distinct odd primes p 

and q and has as Galois group the dihedral group of order 8.4 
15. Prove the polynomial x4 + px + p E <Q[x] is irreducible for every prime p and for p f=- 3, 5 

has Galois group S4. Prove the Galois group for p = 3 is dihedral of order 8 and for p = 5 
is cyclic of order 4.5 

16. Determine the Galois group over <Q of the polynomial x4 + 8x2 + 8x + 4. Determine which 
of the subfields of this field are Galois over <Q and for those which are Galois determine a 
polynomial f(x) E <Q[x] for which they are the splitting field over <Q. 

17. Find the Galois group of x4 - 7 over <Q explicitly as a permutation group on the roots. 

18. Let 6 be a root of x3 - 3x + I .  Prove that the splitting field of this polynomial is <Q( 6) and 
that the Galois group is cyclic of order 3. In particular the other roots of this polynomial 
can be written in the form a +  b6 + c62 for some a ,  b, c E <Q. Determine the other roots 
explicitly in terms of 6. 

19. Let f(x) be an irreducible polynomial of degree 4 in <Q[x] with discriminant D. Let K 
denote the splitting field of f(x), viewed as a subfield of the complex numbers C. 
(a) Prove that <Q(..JD ) c K. 
(b) Let r denote complex conjugation and let t'K denote the restriction of  complex con

jugation to K. Prove that t'K is an element of Gal(K f<Q) of order 1 or 2 depending 
on whether every element of K is real or not. 

(c) Prove that if D < 0 then K cannot be cyclic of degree 4 over <Q (i.e., Gal(K/<Q) 
cannot be a cyclic group of order 4). 

(d) Prove generally that <Q( ..JD) for squarefree D < 0 is not a subfield of a cyclic quartic 
field (cf. also Exercise 19 of Section 7). 

20. Determine the Galois group of (x3 - 2)(x3 - 3) over <Q. Determine all the subfields which 
contain <Q(p) where p is a primitive 3rd root of unity. 

21. Let G ::::; Sn be a subgroup of the symmetric group and suppose at , . . .  , ak are generators 
for G. If the function f(xt , xz , . . . , Xn ) is fixed by the generators a; show it is fixed by G. 

22. (Newton 's Fonnulas) Let f (x) be a monic polynomial of degree n with roots at • . . .  , an . 
Let s; be the elementary symmetric function of degree i in the roots and define s; = 0 for 
i > n.  Let p; = ai + · · · + a� ,  i :::: 0, be the sum of the ;th powers of the roots of f(x). 

3cf. the note An Elementary Test for the Galois Group of a Quartic Polynomial, Luise-Charlotte 
Kappe and Bette Warren, Amet. Math. Monthly, 96( 1989), pp. 133-137. 

41bid. 
51bid. 
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Prove Newton 's Formulas: 

P1 - S} = 0 

P2 - S1 P1 + 2s2 = 0 

P3 - Sl P2 + S2P1 - Js3 = 0 

23. (a) If x + y + z = I, x2 + y2 + z2 = 2 and x3 + y3 + z3 = 3, determine x4 + y4 + z4 . 
(b) Prove generally that x, y, z are not rational but that xn + yn + zn is rational for every 

positive integer n .  

24. Prove that an  n x n matrix A over a field of  characteristic 0 i s  nilpotent if  and only if  the 
trace of Ak is 0 for all k ::: 0. 

25. Prove that two n x n matrices A and B over a field of characteristic 0 have the same 
characteristic polynomial if and only if the trace of A k equals the trace of Bk for all k ::: 0. 

26. Use the fact that the trace of AB is the same as the trace of B A for any two n x n matrices 
A and B to show that AB and BA have the same characteristic polynomial over a field of 
characteristic 0 (the same result is true over a field of arbitrary characteristic). 

27. Let f(x). be a monic polynomial of degree n with roots a1 , a2 , . . .  , an . 
(a) Show that the discriminant D of f(x) is the square of the Vandermonde determinant 

0'2 n-1 0'1 1 0'1 
I 0'2 n-1 0'2 2 0'2 = n (a; - O'j) . i >j 

O'n 0'2 n- 1 
n an 

(b) Taking the Vandermonde matrix above, multiplying on the left by its transpose and 
taking the determinant show that one obtains 

D =  

PO P1 P2 Pn-1 
P1 P2 P3 Pn 

Pn-1 Pn Pn+1 P2n-2 

where p; = a� + · · · + a� is the sum of the ;th powers of the roots of f(x), which 
can be computed in terms of the coefficients of f (x) using Newton's formulas above. 
This gives an efficient procedure for calculating the discriminant of a polynomial. 

28. Let a be a root of the irreducible polynomial f(x) E F[x] and let K = F(a).  Let D be the 
discriminant of f(x).  Prove that D = (- l )n(n-l)f2NK;F (f'(a)), where f' (x) = Dx f(x) 
is the derivative of f(x). 

The following exercises describe the resultant of two polynomials and in particular provide 
another efficient method for calculating the discriminant of a polynomial. 

29. Let F be a field and let f(x) = anxn + an- 1Xn- 1 + · · · + a1x + ao and g(x) = bmxm + 
bm-1Xm-l + · · · + btx + bo be two polynomials in F[x].  
(a) Prove that a necessary and sufficient condition for f (x) and g(x) to have a common 

root (or, equivalently, a common divisor in F[x]) is the existence of a polynomial 
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a(x) E F[x] of degree at most m - I and a polynomial b(x) E F[x] of degree at most 
n - I with a(x)f(x) = b(x)g(x). 

(b) Writing a (x) and b(x) explicitly as polynomials show that equating coefficients in 
the equation a(x)f(x) = b (x)g(x)  gives a system of n + m linear equations for the 
coefficients of a(x) and b(x) .  Prove that this system has a nontrivial solution (hence 
f(x) and g(x) have a common zero) if and only if the determinant 

an an-1 ao 
an an-1 ao 

an an-1  ao 

R(f, g) = 
an an-1 . . . ao 

bm hm- 1  bo 
bm bm-l bo 

bm hm-1 bo 

bm hm-l . . . bo 

is zero. Here R(f, g), called the resultant of the two polynomials, is the determinant 
of an (n+m) x (n+m) matrix R with m rows involving the coefficients of f(x) and 
n rows involving the coefficients of g(x).  

30. (a) With notations as in the previous problem, show that we have the matrix equation ( xn+m-1 ) 
xn+m-2 

R : = 

X 

1 

xm -1 f(x)  
xm-2 f(x)  

f(x) 
xn- l g(x) 
xn-2g(x) 

g(x) 

(b) Let R' denote the matrix of co factors of R as in Theorem 30 of Section 1 1 .4, so 
R' R = R (f, g)/,  where I is the identity matrix. Multiply both sides of the matrix 
equation above by R' and equate the bottom entry of the resulting column matrices 
to prove that there are polynomials r (x), s (x) E F[x] such that R(f, g) is equal to 
r (x)f(x) + s (x)g(x), i.e., the resultant of two polynomials is a linear combination 
(in F[x]) of the polynomials. 

31. Consider f(x) and g(x) as general polynomials and suppose the roots of f(x) are x1 , . . .  , Xn 
and the roots of g (x) are Yl , . . .  , Ym . The coefficients of f (x) are powers of an times the 
elementary symmetric functions in XJ , x2 , . . . , Xn and the coefficients of g(x)  are powers 
of bm times the elementary symmetric functions in Yl ,  y2 , . . . , Ym · 

620 

(a) By expanding the determinant show that R(f, g) is homogeneous of degree m in the 
coefficients a; and homogeneous of degree n in the coefficients bj .  

(b) Show that R (f, g )  is a: h::, times a symmetric function in XI , . . .  , Xn and y1 , . . .  , Ym . 
(c) Since R(f, g) is 0 if f(x) and g(x) have a common root, say x; = Yj . show that 

R (f, g) is divisible by x; - Yj for i = 1 , 2, . . . , n, j = 1 ,  2, . . . , m. Conclude by 
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degree considerations that 
n m 

R = a:;'b::Z n n(x; - Yj). 
i=l j=l 

(d) Show that the product in (c) can be also be written 
n m 

R(f, g) = a:;' n g(x; ) = (- l)nmb::Z n /(yj). 
i=l j=l 

This gives an interesting reciprocity between the product of g evaluated at the roots 
of f and ihe product of f evaluated at the roots of g. 

32. Consider now the special case where g(x) = f'(x) is the derivative of the polynomial 
f(x) = xn + an-lXn-l + · · · + atx + ao and suppose the roots of f(x) are a1 , a2 , . . .  , an . 
Using the formula 

n 
R(f, /') = n /'(a;) 

i=l 
of the previous exercise, prove that 

D = <- nn<n-t>t2R(f, /') 
where D is the discriminant of f (x). 

33. (a) Prove that the discriminant of the cyclotomic polynomial IZ>p (x) of the pth roots of 
unity for an odd prime p is ( - l)(p-l)/2 pP-2 [One approach: use Exercise 5 of the 
previous section together with the determinant form for the discriminant in terms of 
the power sums p; .] 

(b) Prove that Q(.jr(-
'-'-

l
-=-
)..,.--<P--=l)/--;,.2-p ) c Q(sp) for p an odd prime. (Cf. also Exercise I I  of 

Section 7.) 

34. Use the previous exercise to prove that every quadratic extension of Q is contained in a 
cyclotomic extension (a special case of the Kronecker-Weber Theorem). 

35. Prove that the discriminant D of the polynomial xn + px + q is given by the formula 
( - l)n(n-l)f2nnqn-l + ( - l)(n-l)(n-2)/2(n _ l )n-1 Pn .  

36. Prove that the discriminant ofxn +nxn-l +n(n - l)xn-2 + · · · + n(n - 1) . . . (3)(2)x + n ! 
is (- l)n(n-l)f2(n !)n . 

The following exercises 37 to 43 outline two procedures for writing a symmetric function in 
terms of the elementary symmetric functions. Let f(xt . . . .  , Xn) be a polynomial which is 
symmetric in Xl , . . .  , Xn . Recall that the degree (sometimes called the weight) of the monomial 
Axf1 x�2 • • •  x�· (a; � O) is a1 + a2 + · · · + an and that a polynomial is lwmogeneous (ofdegree 
m) if every monomial has the same degree (m). 

37. (a) Show that every polynomial f(xt • . . .  , Xn) can be written as a sum of homogeneous 
polynomials. Show that if f(xt , . . .  , Xn) is symmetric then each of these homoge
neous polynomials is also symmetric. 

(b) Show that the monomial Bsf1 s�2 • • •  s�" in the elementary symmetric functions is a 
homogeneous polynomial in Xt ,  x2 , . . .  , Xn of degree a1 + 2a2 + · · · + nan . 

In writing f(xt , . . .  , Xn) as a polynomial in the symmetric functions it therefore suffices to 
assume that f(xt . . . .  , Xn) is homogeneous. 
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Recall the lexicographic monomial order with Xt > xz > · · · > Xn defined in Section 9.6, 
where the nonzero monomial term with exponents (at , az ,  . . .  , an ) comes before the nonzero 
monomial term with exponents (bt , hz , . . .  , bn ) if the initial components of the two n-tuples 
of expon�nts are equal and the first component where they differ has a; > b; . If f(xt , . . .  , xn) 
contains the monomial Axf 1 x�2 • • •  x�" then since f (xt ,  . . .  , Xn) is symmetric it also contains 
all the permuted monomials. Among these choose the lexicographically largest monomial, 
which therefore satisfies at 2: a2 2: · · · 2: an 2: 0. 

38. (a) Show that the monomial Asf 1 -02 s�2-a3 • • • s�" in the elementary symmetric functions 
has the same lexicographic initial term. 

(b) Show that subtracting Asf 1 -02 s�2-03 • • • s�" from f(x) yields either 0 or a symmetric 
polynomial of the same degree whose terms are lexicographically smaller than the 
terms in f(xt , . . .  , Xn) · 

(c) Show that the iteration of this procedure (lexicographic ordering, choosing the lex
icographically largest term, subtracting the associated monomial in the elementary 
symmetric functions) terminates, expressing f(xt , . . . , Xn )  as a polynomial in the 
elementary symmetric functions. 

39. Use the algorithm described in Exercise 38 to prove that a polynomial f (xt , . . .  , xn) that 
is symmetric in xt , . . . , Xn can be expressed uniquely as a polynomial in the elementary 
symmetric functions. 

40. Use the procedure in Exercise 38 to express each of the following symmetric functions as 
a polynomial in the elementary symmetric functions: 
(a) (xt - xz)2 
(b) x2 + x2 + x2 t 2 3 
(c) x[xi + x[x� + xix�. 

41. Use the procedure in Exercise 38 to express Li#J xf Xj as a polynomial in the elementary 
symmetric functions. 

We now know that a symmetric polynomial f (xt ,  . . . , Xn) can be written uniquely as a poly
nomial in the elementary symmetric functions. Using this existence and uniqueness we can 
describe an alternate and computationally useful method for determining the coefficients of 
the elementary symmetric functions in this polynomiaL As in Exercise 37 we may assume 
that f(xt , . . . , Xn) is homogeneous of degree M. Let N be the maximum degree of any of the 
variables Xt , . . . , Xn in f(xt , . . .  , Xn) .  

(a) Determine all of  the possible monomials A;sf 1 s�2 • • • s�" appearing in f(xt , . . .  , Xn ) 
from the constraints 

at + 2az + · · · + nan = M 

at + az +  · · · + an �  N. 

(b) Since f (xt , . . . , Xn) = L A;sf 1 s�2 • • • s�" is  a polynomial identity, it  i<> valid for 
any substitution of values for xt , . . . , Xn . Each substitution into this equation gives a 
linear relation on the coefficients A; and so a sufficient number of substitutions wil1 
determine the A; . 

42. Show that the function (xt + xz - x3 - x4)(xt + x3 - xz - x4) (xt + x4 - xz - x3) is 
symmetric in xt , xz , x3 , X4 and use the preceding procedure to prove it can be expressed 
as a polynomial in the elementary symmetric functions as si - 4stsz + 8s3 . 

43. Express each of the following in terms of the elementary symmetric functions: 
(a) Liof-j XfXj (b) Li,j ,k distinct xfXjXk (c) Li,j ,k distinct x'fxJx'f . 
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44. Let at , a2 , a3 , a4 be the roots of a quartic polynomial f (x) over Q. Show thatthe quantities 
a1a2 + a3a4, a1a3 + a2a4, and a1a4 + a2a3 are permuted by the Galois group of f(x).  
Conclude that these elements are the roots of a cubic polynomial with coefficients in Q 
(also sometimes referred to as the resolvent cubic of f (x)). 

45. If f(x) = x3 + px +q E Z[x] is irreducible, prove that its discriminant D = -4p3 - 27q2 
is an integer not equal to 0, ± 1 .  

46. Prove that every finite group occurs as the Galois group of a field extension of the form 
F(xt , X2 , . . .  , Xn)/ E. 

47. Let F be a field of characteristic 0 in which every cubic polynomial has a root. Let f (x) be 
an irreducible quartic polynomial over F whose discriminant is a square in F. Determine 
the Galois group of f(x). 

48. This exercise determines the splitting field K for the polynomial f(x) = x6 - 2x3 - 2 
over Q (cf. also Exercise 2 of Section 8). 
(a) Prove that f (x) is irreducible over Q with roots the three cube roots of 1 ± .J3. 
(b) Prove that K contains the field Q( .J=3) of 3rd roots of unity and contains Q( .J3 ), 

hence contains the biquadratic field F = Q(i, .J3 ). Take the product of two of the 
roots in (a) to prove that K contains 0 and conclude that K is an extension of the 
field L = Q( 0 ,  i ,  .J3 ). 

(c) Prove that [L : Q] = 1 2  and that K is obtained from L by adjoining the cube root of 
an element in L, so that [K : Q] = 1 2  or 36. 

(d) Prove that if [K : Q] = 12 then K = Q( 0 ,  i , .J3 ) and that Gal(K/Q) is isomorphic 
to the direct product of the cyclic group of order 2 and S3 . Prove that if [ K : Q] = 1 2  
then there is a unique real cubic subfield in K,  namely Q (  0 ) .  

(e) Take the quotient ofthe two real roots in (a) to show that V2 + .J3 and V2 - .J3 (real 

roots) are both elements of K .  Show that a = V2 + .J3 + V2 - .J3 is a real root of 
the irreducible cubic equation x3 - 3x - 4 whose discriminant is -2234. Conclude 
that the Galois closure of Q(a) contains Q(i) so in particular Q(a) -=!= Q( 0). 

(f) Conclude from (e) that G = Gal(K /Q) i s  of order 36. Determine all the elements of 
G explicitly and in particular show that G is isomorphic to s3 X s3 . 

49. Prove that the Galois group over Q of x6 - 4x3 + 1 is isomorphic to the dihedral group of 
order 1 2. [Observe that the two real roots are inverses of each other.] 

50. (Criterion for the Galois Group of an Irreducible Cubic over an Arbitrary Field) Suppose 
K is a field and f(x) = x3 + ax2 + bx + c E K [x] is irreducible, so the Galois group of 
f(x) over K is either S3 or A3. 
(a) Show that the Galois group of f(x) is A3 if and only if the resultant quadratic poly

nomial g(x) = x2+(ab-3c)x+(b3+a3c-6abc+9c2) has a root in K. [If a, fJ, y 
are the roots of f(x) show that the Galois group is A3 if and only if the element 
() = afJ2 + {Jy2 + ya2 is an element of K and that () is a root of g (x).] Show that the 
discriminant of g(x) is the same as the discriminant of f(x) .  

(b) (ch(K) -=!= 2) If  K has characteristic different from 2 show either from (a) or directly 
from the definition of the discriminant that the Galois group of f (x) is A3 if and only 
if the discriminant of f (x) is a square in K .  

(c) (ch(K) = 2) If K has characteristic 2 show that the discriminant of f(x) is always 
a square. Show that f(x) can be taken to be of the form x3 + px + q and that the 
Galois group of f(x) is A3 if and only if the quadratic x2 + qx + (p3 + q2) has a root 
in K (equivalently, if (p3 + q2) j q2 E K is in the image of the Artin-Schreier map 
x �---+ x2 - x mapping K to K). 
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(d) If K = IF'2(t) where t is transcendental over IF'2. Prove that the polynomials x3 + 
t2x + t3 , x3 + (t2 + t + 1 )x + (t2 + t + 1) ,  and x3 + (t2 + t + 1 )x + (t3 + t2 + t) 
have A3 as Galois group while x3 + t2x + t and x3 = x + t have S3 as Galois group. 

51. This exercise proves Stunn 's Theorem determining the number of real roots of a polynomial 
f(x) E .IR[x] in an interval [a, b] . The multiple roots of f(x) are zeros of the g.c.d. of 
f(x) and its derivative f'(x), and it follows that to determine the real roots of f(x) in 
[a, b] we may assume that the roots of f(x) are simple. 

Apply the Euclidean algorithm to fo(x) = f(x) and its derivative ft (x) = f'(x) 
using the negative of the remainder at each stage to find a sequence of polynomials 
f(x) , f'(x), h(x), . . .  , fn (x) with 

/;-t (x) = q; (x)f; (x) - /i+t (x) i = 0, 1 .  . . . , n - 1 

where fn (x) E 1R is a nonzero constant. 
(a) Prove that consecutive polynomials /; (x) , f;+t (x) for i = 0, 1 , . . .  , n - 1 have no 

common zeros. [Show that otherwise /;+2(c) = /;+3 (c) = · · · = 0, and derive a 
contradiction.] 

(b) If /; (c) = 0 for some i = 0, 1, . . .  , n - 1 ,  prove that one of the two values /;-t (c), 
f; + 1 (c) is strictly negative and the other is strictly positive. 

For any real number a, let V (a) denote the number of sign changes in the Stunn sequence 
of real numbers 

f(a) , !'(a) , h(a) , . . .  , fn (a), 

ignoring any 0' s that appear (for example - 1 ,  -2, 0, + 3, -4 has signs --+- disregarding 
the 0, so there are 2 sign changes, the first from -2 to +3, the second from +3 to -4). 
(c) Suppose a < fJ and that all the elements in the Sturm sequences for a and for fJ 

are nonzero. Prove that unless f; (c) = 0 for some a < c < fJ and some i = 
0, 1 ,  . . . , n - 1 ,  then the signs of all the elements in these two Sturm sequences are 
the same, so in particular V(a) = V(fJ). 

(d) If jj (c) = 0 prove that there is a sufficiently small interval (a, fJ) containing c so that 
jj (x) has no zero other than c for a < x < fJ . 

(e) If j ::: 1 in (d), prove that the number of sign changes in jj-1 (a) , jj (a), jj+l (a) 
and in jj-1 (fJ) , jj (fJ) , jj+l (fJ) are the same. [Observe that jj-1 (c) and jj+l (c) have 
opposite signs by (b) and jj-1 (x) and jj+t (x) do not change sign in (a, fJ).] 

(f) If j = 0 in (d) show that the number of sign changes in f(a) , f' (a) is one more than 
the number of sign changes in f(fJ) , f' (fJ) .  [If f' (c) > 0 then f(x) is increasing at 
c, so that f(a) < 0, f(fJ) > 0, and f' (x) does not change sign in (a, fJ), so the signs 
change from -+ to ++. Similarly if f' (c) < 0.] 

(g) Prove Stunn's Theorem: if f(x) is a polynomial with real coefficients all of whose 
real roots are simple then the number of real zeros of f(x) in an interval [a, b] where 
f(a) and f(b) are both nonzero is given by V(a) - V(b) . [Use (c), (e) and (f) to 
see that as a runs from a to b the number V (a) of sign changes is constant unless a 
passes through a zero of f(x), in which case it decreases by precisely 1 .] 

(h) Suppose f(x) = x5 + px + q E .IR[x] has simple roots. Show that the sequence 
of polynomials above is given by f(x), 5x4 + p, (-4pj5)x + q, and -Dj(256p4) 
where D = 256p5 + 3 125q4 is the discriminant of f(x) .  Conclude for p > 0 that 
f (x) has precisely one real root and for p < 0 that f (x) has precisely 1 or 3 real roots 
depending on whether D > 0 or D < 0, respectively. [E.g. ,  if p < 0 and D < 0 then 
at -oo the signs are - + -+ with 3 sign changes and at +oo the signs are + + ++ 
with no sign changes.] 
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1 4.7  SOLVABLE AND RADICAL EXTENSIONS: 
INSOLVABILITY OF TH E QUINTIC 

We now investigate the question of solving for the roots of a polynomial by radicals, that 
is, in terms of the algebraic operations of addition, subtraction, multiplication, division 
and the extraction of nth roots. The quadratic formula for the roots of a polynomial 
of degree 2 is familiar from elementary algebra and we shall derive below similar 
formulas for the roots of cubic and quartic polynomials. For polynomials of degree 
� 5, however, we shall see that such formulas are not possible - this is Abel's Theorem 
on the insolvability of the general quintic . The reason for this is quite simple: we shall 
see that a polynomial is solvable by radicals if and only if its Galois group is a solvable 
group (which explains the terminology) and for n � 5 the group Sn is not solvable. 

We first discuss simple radical extensions, namely extensions obtained by adjoining 
to a field F the n th root of an element a in F. Since all the roots of the polynomial xn -a 
for a E F differ by factors of the nth roots of unity, adjoining one such root will give a 
Galois extension if and only if this field contains the nth roots of unity. Simple radical 
extensions are best behaved when the base field F already contains the appropriate roots 
of unity. The symbol :j{i for a E F will be used to denote any root of the polynomial 
xn - a E F[x] . 

Definition. The extension KIF is said to be cyclic if i t  is Galois with a cyclic Galois 
group. 

Proposition 36. Let F be a field of characteristic not dividing n which contains the 
nth roots of unity. Then the extension F ( :j{i ) for a E F is cyclic over F of degree 
dividing n. 

Proof" The extension K = F ( :j{i) is Galois over F if F contains the nth roots 
of unity since it is the splitting field for xn - a, For any a E Gal(KI F), a(  :j{i) is 
another root of this polynomial, hence a( :./{i) = l;a :j{i for some nth root of unity l;a . 
This gives a map 

Gal(K I F) -+ f.Ln 
a � l;a 

where J.Ln denotes the group of nth roots of unity. Since F contains J.Ln, every nth root 
of unity is fixed by every element of Gal(KI F). Hence 

ar ( Va ) = a(l;r Va ) 
= l;ra (:j{i) 

= l;rl;a Va = l;al;r Va 
which shows that t:ar = l;a l; r , so the map above is a homomorphism. The kernel consists 
precisely of the automorphisms which fix :j{i, namely the identity. This gives an 
injection of Gal( KIF) into the cyclic group J.Ln of order n, which proves the proposition. 

Let now K be any cyclic extension of degree n over a field F of characteristic not 
dividing n which contains the nth roots of unity. Let a be a generator for the cyclic 
group Gal(K I F) . 
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Definition. For a E K and any nth root of unity l; ,  define the Lagrange resolvent 
(a, l;) E K by 

If we apply the automorphism a to (a, l;) we obtain 

a (a, l;)  = aa + t;a2 (a) + t;2a3 (a) + · · · + t;"-1a" (a) 

since l; is an element of the base field F so is fixed by a . We have l;"  = 1 in /in and 
a" = 1 in Gal(K I F) so this can be written 

a (a, l;) = aa + l;a2 (a) + t;2a3 (a) + · · · + C1a 

= Cl (a + l;a (a) + l;2a2 (a) + . . .  + l;"-l an-l (a)) 

= C 1 (a, l;) .  ( 14. 19) 

It follows that 
a (a, l;)" = (C1 )" (a, l;)"  = (a, l;)" 

so that (a, l;)" is fixed by Gal(K I F) , hence is an element of F for any a E K .  
Let l; b e  a primitive nth root of unity. B y  the linear independence of the auto

morphisms 1 , a, . . .  , a"-1 (Theorem 7), there is an element a E K with (a, l;) =f:. 0. 
Iterating ( 19) we have 

i = 0, 1 ,  . . . ' 
and it follows that a ; does not fix (a, l;) for any i < n.  Hence this element cannot lie in 
any proper subfield of K , so K  = F((a, l;)) .  Since we proved (a, l;)" = a  E F above, 
we have F( :f{i )  = F((a, l;)) = K. This proves the following converse of Proposition 
36. 

Proposition 37. Any cyclic extension of degree n over a field F of characteristic not 
dividing n which contains the nth roots of unity is of the form F ( :fO. )  for some a E F. 

Remark: The two propositions above form a part of what is referred to as Kummer 
theory. A group G is said to have exponent n if g" = 1 for every g E G. Let F be a 
field of characteristic not dividing n which contains the nth roots of unity. If we take 
elements a1 , . . .  , ak E Fx then as in Proposition 36 we can see that the extension 

F ( iftil , ::jii2 ' . . . , ::fiik ) ( 14.20) 
is an abelian extension of F whose Galois group is of exponent n. Conversely, any 
abelian extension of exponent n is of this form. 

Denote by ( F x )n the subgroup of the multiplicative group Fx consisting of the nth 
powers of nonzero elements of F. The quotient group F x  I (Fx)n is an abelian group 
of exponent n .  The Galois group of the extension in (20) is isomorphic to the group 
generated in Fx  I ( F x )" by the elements a1 , . . . , ak and two extensions as in (20) are 
equal if and only if their associated groups in Fx I(Fx )n are equal. 

Hence the (finitely generated) subgroups of Fx I(Fx )'' classify the abelian exten
sions of exponent n over fields containing the nth roots of unity (and characteristic not 
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dividing n). Such extensions are called Kummer extensions. 
These results generalize the case k = 1 above and can be proved in a similar way. 

For simplicity we now consider the situation of a base field F of characteristic 0. 
As in the previous propositions the results are valid over fields whose characteristics do 
not divide any of the orders of the roots that will be taken. 

Definition. 
(1) An element a which is algebraic over F can be expressed by radicals or solved 

for in terms of radicals if a is an element of a field K which can be obtained 
by a succession of simple radical extensions 

F = Ko C K1 C · · · C K; C K;+I c · · · C Ks = K ( 14.21)  

where K;+I = K; ( Vfii ) for some a; E K; , i = 0, 1 ,  . . . , s - 1 .  Here Viii 
denotes some root of the polynomial xn' - a; . Such a field K will be called a 
root extension of F. 

(2) A polynomial f (x) e F[x] can be solved by radicals if all its roots can be 
solved for in terms of radicals. 

This gives a precise meaning to the intuitive notion that a is obtained by successive 
algebraic operations (addition, subtraction, multiplication and division) and successive 
root extractipns. For example, the element 

encountered at the end of Section 5 (used to construct the regular 17-gon) is expressed 
by radicals and is contained in the field K4, where 

Ko = Q  
K1 = Ko(,JiiO ) 
K2 = K1 (-/ii]) 
K3 = K2(-Jiii .) 

ao = 17 

a1 = 2(17 - .Ji7 )  
a2 = 2(17 + .Ji7) 

K4 = K3 (-Jii3) a3 = 17 + 3.Ji7 - J2(17 - .Ji7 ) - 2J2(17 + .Ji7 ). 
Eacl� of these extensions is a radical extension. The fact that no roots other than square 
roots are required reflects the fact that the regular 17 -gon is constructible by straightedge 
and compass. 

In considering radical extensions one may always adjoin roots of unity, since by 
definition the roots of unity are radicals. This is useful because then cyclic extensions 
become radical extensions and conversely. In particular we have: 
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Lemma 38. If a is contained in a root extension K as in (21 )  above, then a is contained 
in a root extension which is Galois over F and where each extension K; + t 1  K; is cyclic. 

Proof" Let L be the Galois closure of K over F. For any a E Gal(LI F) we have 
the chain of subfields 

F = a Ko C a K1 C · · · C a K; C a K;+I C · · · C a Ks = a K  

where a K;+Ifa K; is again a simple radical extension (since it is generated by the 
element a (  "{j(ii ), which is a root of the equation xn' - a (a; ) over a (K; )). It is easy 
to see that the composite of two root extensions is again a root extension (if K' is 
another root extension with subfields K[, first take the composite of K1 with the fields 
K0, Kt , . . .  , K5 , then the composite of these fields with K�. etc. so that each individual 
extension in this process is a simple radical extension). It follows that the composite 
of all the conjugate fields a (K) for a E Gal(LI F) is again a root extension. Since this 
field is precisely L, we see that a is contained in a Galois root extension. 

We now adjoin to F the n; -th roots of unity for all the roots "{j(ii of the simple 
radical extensions in the Galois root extension KIF, obtaining the field F', say, and 
then form the composite of F' with the root extension: 

F � F' = F'Ko � F'Kt � · · ·  � F'K; � F'Ki+t  � · · · � F'Ks = F'K. 

The field F' K is a Galois extension of F since it is the composite of two Galois 
extensions. The extension from F to F' = F' K0 can be given as a chain of subfields with 
each individual extension cyclic (this is true for any abelian extension). Each extension 
F' K;+tf  F' K; is a simple radical extension and since we now have the appropriate roots 
of unity in the base fields, each of these individual extensions from F' to F' K is a cyclic 
extension by Proposition 36. Hence F' KIF is a root extension which is Galois over F 
with cyclic intermediate extensions, completing the proof. 

Recall from Section 3 .4 (cf. also Section 6. 1 )  that a finite group G is solvable if 
there exists a chain of subgroups 

1 = G, :S Gs-1 :S . . . :S G;+t :S G; :S . . .  :S Go = G (14.22) 
with G; I G i+ 1 cyclic, i = 0, 1 ,  . . .  , s - 1 .  We have proved that subgroups and quotient 
groups of solvable groups are solvable and that if H :S G and G I H are both solvable, 
then G is solvable. 

We now prove Galois' fundamental connection between solving for the roots of 
polynomials in terms of radicals and the Galois group of the polynomial. We continue 
to work over a field F of characteristic 0, but it is easy to see that the proof is valid over 
any field of characteristic not dividing the order of the Galois group or the orders of the 
radicals involved. 

Theorem 39. The polynomial f (x) can be solved by radicals if and only if its Galois 
group is a solvable group. 

Proof" Suppose first that f(x) can be solved by radicals. Then each root of f(x) 
is contained in an extension as in the lemma. The composite L of such extensions is 
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again of the same type by Proposition 21 .  Let G; be the subgroups corresponding to 
the subfields K; , i = 0, 1 ,  . . .  , s - 1 .  Since 

i = 0, 1 ,  . . .  ' s - 1 
it follows that the Galois group G = Gal(L j F) is a solvable group. The field L contains 
the splitting field of f (x) so the Galois group of f (x) is a quotient group of the solvable 
group G, hence is solvable. 

Suppose now that the Galois group G of f (x) is a solvable group and let K be the 
splitting field for j(x). Taking the fixed fields of the subgroups in a chain (22) for G 
gives a chain 

F = Ko C Kt C · · · C K; C Ki+t C · · · C Ks = K 

where K;+t l  K; , i = 0, 1 ,  . . . , s - 1 is a cyclic extension of degree n; . Let F' be the 
cyclotomic field over F of all roots of unity of order n; , i = 0, 1 ,  . . .  , s - 1 and form 
the composite fields K; = F' K; . We obtain a sequence of extensions 

F � F' = F'Ko � F'Kt � · · ·  � F' K; � F'Ki+t � · · · � F' Ks = F'K. 

The extension F' K;+t l  F' K; is cyclic of degree dividing n; , i = 0, 1 ,  . . .  , s - 1 (by 
Proposition 19). Since we now have the appropriate roots of unity in the base fields, 
each of these cyclic extensions is a simple radical extension by Proposition 37. Each 
of the roots of f (x) is therefore contained in the root extension F' K so that f (x) can 
be solved by radicals. 

Corollary 40. The general equation of degree n cannot be solved by radicals for n � 5 .  

Proof" For n � 5 the group Sn i s  not solvable as  we showed in  Chapter 4.  The 
corollary follows immediately from Theorems 32 and 39. 

This corollary shows that there is no formula involving radicals analogous to the 
quadratic formula for polynomials of degree 2 for the roots of a polynomial of degree 
5. To give an example of a specific polynomial over Q of degree 5 whose roots cannot 
be expressed in terms of radicals we must demonstrate a polynomial of degree 5 with 
rational coefficients having S5 (or A5, which is also not solvable) as Galois group (cf. 
also Exercise 21 ,  which gives a criterion for the solvability of a quintic). 

Example 

Consider the polynomial f(x) = x5 - 6x + 3  E Q[x].  This polynomial is irreducible since 
it is Eisenstein at 3. The splitting field K for this polynomial therefore has degree divisible 
by 5, since adjoining one root of f (x) to Q generates an extension of degree 5. The Galois 
group G is therefore a subgroup of Ss of order divisible by 5 so contains an element of 
order 5. The only elements in Ss of order 5 are 5-cycles, so G contains a 5-cycle. 

Since f(-2) = - 17, f(O) = 3, f(l)  = -2, and f(2) = 23 we see that f(x) has a 
real root in each of the intervals ( -2, 0), (0, 1 )  and ( 1 ,  2) . By the Mean Value Theorem, 
if there were 4 real roots then the derivative f' (x) = 5x4 - 6 would have at least 3 real 
zeros, which it does not. Hence these are the only real roots. (This also follows easily by 
Descartes' rule of signs.) By the Fundamental Theorem of Algebra f (x) has 5 roots in C. 
Hence f (x) has two complex roots which are not real. Let r denote the automorphism of 
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complex conjugation in C. Since the coefficients of f(x) are real, the two complex roots 
must be interchanged by T (since they are not fixed, not being real). Hence the restriction 
of complex conjugation to K fixes three of the roots of f(x) and interchanges the other 
two. As an element of G, T I K is therefore a transposition. 

It is now a simple exercise to show that any 5-cycle together with any transposition 
generate all of Ss . It follows that G = Ss , so the roots of x5 - 6x + 3 cannot be expressed 
by radicals. 

As indicated in this example, a great deal of information regarding the Galois group 
can be obtained by understanding the cycle types of the automorphisms in G considered 
as a subgroup of Sn . In practice this is the most efficient way of determining the Galois 
groups of polynomials of degrees � 5 (becoming more difficult the larger the degree, 
of course, if only because the possible subgroups of Sn are vastly more numerous). We 
describe this procedure in the next section. 

By Theorem 39, any polynomial of degree n :::=: 4 can be solved by radicals, since 
Sn is a solvable group for these n. For n = 2 this is just the familiar quadratic formula. 
For n = 3 the formula is known as Cardano 's Formula (named for Geronimo Cardano 
(1501-1576)) and the formula for n = 4 can be reduced to this one. The formulas are 
valid over any field F of characteristic =fi 2, 3, which are the characteristics dividing 
the orders of the radicals necessary and the orders of the possible Galois groups (which 
are subgroups of S3 and S4). For simplicity we shall derive the formulas over Q. 

Solution of Cubic Equations by Radicals: Cardano's Formulas 

From the proof of Theorem 39 and the fact that a composition series for S3 as in equation 
(22) is given by 1 :::: A3 :::: S3 we should expect that the solution of the cubic 

f (x) = x3 + ax2 + bx + c 

(or equivalently, under the substitution x = y - a/3, 

g(y) = Y3 + PY + q ,  

where 
1 q = 27 (2a3 - 9ab + 27c) ) 

to involve adjoining the 3rct roots of unity and the formation of Lagrange resolvents 
involving these roots of unity. 

Let p denote a primitive 3rd root of unity, so that p2 + p + l = 0. Let the roots of 
g(y) be a, {3, and y ,  so that 

a + f3 + y = 0 

(one of the reasons for changing from f(x) to g(x)). Over the field Q(,JL)) where D 
is the discriminant (computed in the last section) the Galois group of g (y) is A3, i.e., 
a cyclic group of order 3. If we adjoin p then this extension is a radical extension of 
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degree 3, with generator given by a Lagrange Resolvent, as in the proof of Proposition 
37. Consider therefore the elements 

(a, 1 )  = a + f3 + y = 0 
e1 = (a, p) = a +  pf3 + p2y 

e2 = (a, p2) = a + p2 f3 + py. 
Note that the sum of these resolvents is 

since 1 + p + p2 = 0. Similarly 

p2e1 + Pe2 = 3f3 
pel + p2e2 = 3y. 

( 14.23) 

( 14.23') 
We also showed in general before Proposition 37 that the cube of these resolvents must 

lie in Q(,Ji5 , p) .  Expanding e'f we obtain 

a3 + {33 + y3 + 3p (a2 f3 + f32y + ay2) 
(14.24) 

We have 

.Ji5 = (a - f3)(a - y) (f3 - y) 
= (a2 f3 + {32y + ay2) _ (af32 + f3y2 + a2y) .  

Using this equation we see that (24) can be written 

1 1 a3 + {33 + y3 + 3p[:2 (S + .Ji5 )] + 3p2[2 (S - .Ji5 )] + 6af3y ( 14.24') 

where for simplicity we have denoted by S the expression 

(a2 f3 + f32y + ay2) + (a/32 + {3y2 + a2y ) . 
Since S is symmetric in the roots, each of the expressions in (24') is a symmetric 
polynomial in a, f3 and y ,  hence is a polynomial in the elementary symmetric functions 
s1 = 0, s2 = p, and s3 = -q. After a short calculation one finds 

so that from (24') we find (p + p2 = - 1  and p - p2 = H) 
3 3 e'f = -3q + 2p(3q + .Ji5 )  + 2p2(3q - .Ji5 ) - 6q 

Similarly, we find 

-27 3 
= -q + -J-3D. 2 2 

3 -27 3 � e2 = -q - - v -3D. 2 2 
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Equations (25) and (23) essentially give the solutions of our cubic. One small point 
remains, however, namely the issue of extracting the cube roots of the expressions 
in (25) to obtain lh and e2 . There are 3 possible cube roots, which might suggest a 
total of 9 expressions in (23). This is not the case since e1 and e2 are not independent 
(adjoining one of them already gives the Galois extension containing all of the roots). 
A computation like the one above (but easier) shows that 

e1 e2 = -3p (14.26) 
showing that the choice of cube root for e1 determines e2 • Using D = -4p3 - 21q2, 
we obtain Cardano's explicit formulas, as follows. 

Let 

i-27 3 A =  3 -q + -J-3D 
2 2 

3/ -27 3 B = v -2-q - ZJ-3D 

where the cube roots are chosen so  that AB = -3p. Then the roots of the equation 

l + py + q = O 
are 

A + B a = ---3 (14.27) 

1 1 
where p = -- + -R. 

2 2 

Examples 

(1) Consider the cubic equation x3 - x + 1 = 0. The discriminant of this cubic is 

D = -4( - 1)3 - 27( 1 )2 = -23 
which is not the square of a rational number, so the Galois group for this polynomial 
is S3 . Substituting into the formulas above we have 

A =  3 /-27 
+ �,)69 v 2 2 

3 / -27 3 1m B = V T - -rv69 
where we choose A to be the real cube root and then from AB = 3 we see that B is 
also reaL The roots of the cubic are given by (27) and we see that there is one real root 
and two (conjugate) complex roots (which we could have determined without solving 
for the roots, of course). 

(2) Consider the equation x3 + x2 - 2x - 1 = 0. Letting x = s - 1/3 the equation 
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becomes s3 - �s - ;7 = 0. Multiplying through by 27 to clear denominators and 

letting y = 3s we see that y satisfies the cubic equation 

y3 - 21y - 7 = 0. 
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The discriminant D for this cubic is 

D = -4(-21)3 - 27(-7)2 = 3672 
which shows that the Galois group for this (Eisenstein at 7) cubic is A3. Substituting 
into the formulas above we have 

3/7 21 r-;; A = 3 v 2 + 2v -3 

B = 3 3/� -
21 N " 2  2 

and the roots of our cubics can be expressed in terms of A and B using the formulas 
above. This cubic arises from trying to express a primitive 7th root of unity /;7 in terms 
of radicals similar to the explicit formulas for the other roots of unity of small order 
(cf. the exercises). 

In this case we have g(-5) = -27, g(-1)  = 1 3, g(O) = -7 and g(5) = 1 3, so 
that this cubic has 3 real roots. The expressions above for these roots are sums of the 
conjugates of complex numbers. We shall see later that this is necessary, namely that 
it is impossible to solve for these real roots using only radicals involving real numbers. 

A cubic with rational coefficients has either one real root and two complex conjugate 
imaginary roots or has three real roots. These two cases can be distinguished by the 
sign of the discriminant: 

Suppose in the first case that the roots are a and b ± ic where a, b, and c are real 
and c =f:. 0. Then 

rv = [a - (b + ic)] [a - (b - ic)] [(b + ic) - (b - ic)] 
= 2ic[(a - b)2 + c2] 

is purely imaginary, so that the discriminant D is negative. Then in the formulas for A 
and B above we may choose both to be real. The first root in (27) is then real and the 
second two are complex conjugates. 

If all three roots are real, then clearly ,J/5 is real, so D 2:: 0 is a nonnegative 
real number. If D = 0 then the cubic has repeated roots. For D > 0 (sometimes 
called the Casus irreducibilis), the formulas for the roots involve radicals of nonreal 
numbers, as in Example 2. We now show that for irreducible cubics this is necessary. 
The exercises outline the proof of the following generalization: if all the roots of the 
irreducible polynomial f (x) E Q[x] are real and if one of these roots can be expressed 
by real radicals, then the degree of j(x) is a power of 2, the Galois group of j(x) is a 
2-group, and the roots of f (x) can be constructed by straightedge and compass. 

Suppose that the irreducible cubic f (x) has three real roots and that it were possible 
to express one of these roots by radicals involving only real numbers. Then the splitting 
field for the cubic would be contained in a root extension 

Q = Ko c K, = Q( rv ) c · · · c K; c K;+I c · · · c Ks = K 
where each field K; , i = 0, 1 ,  . . . , s ,  is contained in the real numbers lR and s 2:: 2 since 
the quadratic extension Q( rv )  cannot contain the root of an irreducible cubic. We 

have begun this root extension with Q( ,JD )  because over this field the Galois group 
of the polynomial is cyclic of degree 3.  
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Note that for any field F the extension F ( m:ifji ) of F can be obtained by two smaller 
simple radical extensions: let 

F, = F( :ja )  

and let b = :ifii E F1 , so that 

F ( m:ja ) = F, ( ':/b) .  
We may therefore always assume our radical extensions are of the form F ( (Ia )  where 
p is a prime. 

Suppose now that F is a subfield of the real numbers ffi. and let a be an element of 
F .  Let p be a prime and let a = (Ia denote a real p

th 
root of a. Then [F( (/a )  : F] 

must be either 1 or p, as follows. The conjugates of a over F all differ from a by a p1h 
root of unity. It follows that the constant term of the minimal polynomial of a over F 
is ad{ where d = [F( (/a )  : F] is the degree of the minimal polynomial and { is some 
p1h root of unity. Since a is real and ad{ E F is real, it follows that { = ± 1 ,  so that 
ad E F. Then, if d =j:. p, ad E F and aP = a E F implies a E F, so d = 1 .  

Hence we may assume for the radical extensions above that [Ki+l : Ki ] is a prime 
Pi and Ki+ l  = Ki ( P,{jiii ) for some ai E Ki , i = 0, 1 ,  . . . , s - 1 .  In other words, the 
original tower of real radical extensions can be refined to a tower where each of the 
successive radical extensions has prime degree. 

If any field containing ..Ji5 contains one of the roots of f (x) then it contains the 
splitting field for f (x ), hence contains all the roots of the cubic. We suppose s is chosen 
so that K,_, does not contain any of the roots of the cubic. 

Consider the extension Ks/ Ks- 1 · The field Ks contains all the roots of the cubic 
f (x) and the field K s-l contains none of these roots. It follows that f (x) is irreducible 
over K,_. ,  so [K, : K,_t ] is divisible by 3. Since we have reduced to the case where 
this extension degree is a prime, it follows that the extension degree is precisely 3 and 
that the extension K,f K,_ ,  is Galois (being the splitting field of f(x) over K,_1 ). Since 
also K, = Ks-t (V£i)  for some a E Ks-b the Galois extension Ks must also contain 
the other cube roots of a . This implies that K, contains p, a primitive 3rd root of unity. 
This contradicts the assumption that K, is a subfield offfi. and shows that it is impossible 
to express the roots of this cubic in terms of real radicals only. 

Solution of Quartic Eq uations by Radicals 

Consider now the case of a quartic polynomial 

f(x) = x4 + ax3 + bx2 + ex +  d 
which under the substitution x = y - af4 becomes the quartic 

with 
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g(y) = l + Pi + qy + r 

1 p = - (-3a2 + 8b) 
8 
1 q = - (a3 - 4ab + 8c) 
8 

1 r = - (-3a4 + 16a2b - 64ac + 256d). 
256 
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Let the roots of g(y) be a. , az, a3 , and a4 . The resolvent cubic introduced in the 
previous section for this quartic is 

and has roots 

h(x) = x3 - 2px2 + (p2 - 4r)x + q2 

lh = (a1 + az) (a3 + a4) 
Oz = (a1 + a3) (az + a4) 
03 = (al + a4) (a2 + a3) .  

The Galois group of the splitting field for f(x) (or g(y)) over the splitting field of 
the resolvent cubic h(x) is the Klein 4-group. Such extensions are biquadratic, which 
means that it is possible to solve for the roots a1 , az, a3 , and a4 in terms of square roots 
of expressions involving the roots lh , 02, and 03 of the resolvent cubic. In this case we 
evidently have 

which gives 

Similarly, 

(a1 + az) (a3 + a4) = 01 (at + az) + (a3 + a4) = 0 

al + a3 = Fe; 
a1 + a4 = � 

az + a4 = -Fii; 
az + a3 = -�. 

An easy computation shows that Fei �Fe?, = -q, so that the choice of two 
of the square roots determines the third. Since a1 + a2 + a3 + a4 = 0, if we add the 
left-hand equations above we obtain 2a1 , and similarly we may solve for the other roots 
of g(y).  We find 

2a1 = �  + Fih. + � 
2az = � - Fii; - � 
2a3 = -� + Fii; - � 
2a4 = -� - Fii; + � 

which reduces the solution of the quartic equation to the solution of the associated 
resolvent cubic. 

E X E R C I S E S 

1. Use Cardano's Formulas to solve the equation x3 + x2 - 2 = 0. In particular show that 
the equation has the real root � ( �26 + 15� + �26 - 1 5� - 1) .  

Show directly that the roots of this cubic are 1 , - 1  ± i .  Explain this by proving that 

�26 + 15� = 2 + � �26 - 15� = 2 - � 
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so that 

«26 + 15.J3 + «26 - 15.J3 = 4. 

2. Let /;7 be a primitive 7th root of unity and let a = t; + t; -l . 
(a) Show that /;7 is a root of the quadratic z2 - az + 1 over Q(a) . 
(b) Show using the minimal polynomial for /;7 that a is a root of the cubic x3 + x2 -2x - 1 . 
(c) Use (a) and (b) together with the explicit solution of the cubic in (b) in the text to 

express /;7 in terms of radicals similar to the expressions given earlier for the other 
roots of unity of small order. (The complicated nature of the expression explains why 
we did not include /;7 earlier in our list of explicit roots of unity.) 

3. Let F be a field of characteristic =1= 2. State and prove a necessary and sufficient condition 

on a, fJ E F so that F(.,fii ) = F(-./"P ) .  Use this to determine whether Q(J1 - ,J2 ) = 
Q(i , ,J2 ). 

4. Let K = Q( ::ja ) , where a E Q, a > 0 and suppose [K : Q] = n (i.e., xn -a is irreducible). 
Let E be any subfield of K and let [ E : Q] = d. Prove that E = Q( ifti). [Consider 
NKjE ( ::ja )  E E .] 

5. Let K be as in the previous exercise. Prove that if n is odd then K has no nontrivial 
subfields which are Galois over Q and if n is even then the only nontrivial subfield of K 
which is Galois over Q is Q( Ja). 

6. Let L be the Galois closure of K in  the previous two exercises (i .e., the splitting field 

of xn - a). Prove that [L : Q] = mp(n) or �nqJ(n). [Note that Q(l;n ) n K is a Galois 

extension of Q.] 

7. (Kummer Generators for Cyclic Extensions) Let F be a field of characteristic not dividing 
n containing the nth roots of unity and let K be a cyclic extension of degree d dividing n.  
Then K = F ( ::ja )  for some nonzero a E F. Let a be a genemtor for the cyclic group 
Gal(K/F). 
(a) Show that a ( ::ja) = t; ::ja for some primitive dth root of unity t; .  

,. a (::ja) (a( :;Jb) ) i 
(b) Suppose K = F( ::ja )  = F( :;Jb ) .  Use (a) to show that Va = :;jb for 

some integer i relatively prime to d. Conclude that a fixes the element "� . so this 
( -\t b )' 

is an element of F. 
(c) Prove that K = F(  ::ja) = F(  :;Jb ) if and only if a = bi � and b = ai dn for some 

c, d E F, i.e., if and only if a and b generate the same subgroup of Fx  modulo nth 
powers. 

8. Let p, q and r be primes in IZ with q =/= r. Let li/fi denote any root of xP - q and let I:/7 
denote any root of xP - r. Prove that Q( f/fi) =1= Q( f/7).  

9. (Artin-Schreier Extensions) Let F be a field of characteristic p and let K be a cyclic 
extension of F of degree p. Prove that K ·= F(a) where a is a root of the polynomial 
x P - x - a for some a E F. [Note that Tr K 1 F ( - 1) = 0 since F is of characteristic p so 
that - 1  = a - a a for some a E K where a is a generator of Gal(K 1 F) by Exercise 26 
of Section 2. Show that a =  aP - a  is an element of F.] Note that since F contains the 
pth roots of unity (namely, 1 )  that this completes the description of all cyclic extensions 
of prime degree p over fields containing the pth roots of unity in all characteristics. 

10. Let K = Q(l;p) be the cyclotomic field of pth roots of unity for the prime p and let 
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G = Gal(K /Q) . Let t denote any p1h root of unity. Prove that LaEG a (t) (the trace 
from K to Q of t) is - 1 or p - 1 depending on whether t is or is not a primitive p1h root 
of unity. 

11. (The Classical Gauss Sum) Let K = Q(tp) be the cyclotomic field of pth roots of unity 
for the odd prime p, viewed as a subfield of C, and let G = Gal(K /Q). Let H denote the 
subgroup of index 2 in the cyclic group G. Define 170 = LTEH r (tp). 171 = LTEaH r (tp). 
where a is a generator of Gal(K /Q) (the two periods of tp with respect to H, i.e., the sum 
of the conjugates of tp with respect to the two cosets of H in G, cf. Section 5). 
(a) Prove that a (17o) = 1]1, a(m) = 170 and that 170 = I: t; 171 = I: t% .  a=square h#square 

where the sums are over the squares and nonsquares (respectively) in ('ll/ p'll) x .  [Ob
serve that H is the subgroup of squares in ('ll/ p'll) x .] 

(b) Prove that 170 + 171 = (tp . 1) = - 1 and 17o - 171 = (tp . - 1) where (tp . 1 ) and (tp . - 1 )  
are two of the Lagrange resolvents of tp -

(c) Let g = L::f:01 t�2 (the classical Gauss sum). Prove that p-2 g = (tp .  - 1 )  = L(- 1); ai (tp)-i=O 
(d) Prove that rg = g if -r E H and -rg = -g if -r ¢. H. Conclude in particular that [Q(g) : Q] = 2. Recall that complex conjugation is the automorphism a-1 on K 

(cf. Exercise 7 of Section 5). Conclude that g = g if - 1 is a square mod p (i.e., if p = 1 mod 4) and g = -g if - 1 is not a square mod p (i.e., if p = 3 mod 4) where g denotes the complex conjugate of g. 
(e) Prove that gg = p. [The complex conjugate of a root of unity is its reciprocal. Then g = L:):g( - l)j (aj (tp))-1 gives 

gg = E (- 1); (- l)j ai_ (tp) = E (- 1)i-jaj [ ai-j (tp) ] i , j=O a 1 (tp) i , j=O tp 
= E<- 1l E aj [ak(tp) ]  

k=O j=O tp 
where k = i - j .  If k = O the element 

ak(tp) 
is 1 ,  and if k # O then this is a primitive tp p1h root of unity. Use the previous exercise to conclude that the inner sum is p - 1 

when k = 0 and is - 1 otherwise.] 
(t) Conclude that g2 = (-1)(P-1)/2p and that Q(J(- l) <P- 1)/2p )  is the unique qua

dratic subfield of Q(tp) .  (Cf. also Exercise 33 of Section 6.) 
12. Let L be the Galois closure of the finite extension Q(a) of Q. For any prime p dividing 

the order of Gal(L/Q) prove there is a subfield F of L with [L : F] = p and L = F(a) . 
13. Let F be a subfield of the real numbers JR. Let a be an element of F and let K = F( ::/{i) 

where ::/{i denotes a real nth root of a.  Prove that i f  L i s  any Galois extension of F 
contained in K then [L : F] S 2. 

14. This exercise shows that in general it is necessary to use complex numbers when expressing 
real roots in terms of radicals and generalizes the Casus irreducibilis of cubic equations. 
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Let f(x) E Q[x] be an irreducible polynomial all of whose roots are real. S.1ppose further 
that one of the roots, a, of f (x) can be expressed in terms of real radicals (i.e., there is a 
root extension of real fields Q = Ko c K1 c . . .  c Km c lR with K;+I = K; (  "i,fiil ), 
i = 1, 2, . . . , m - 1 ,  for some integers n ;  and some a; E K; and a E Km ). Prove that 
the Galois group of f(x) is a 2-group. Conclude in particular that the degree of f(x) is a 
power of 2 and that the real roots of such a polynomial can be expressed entirely in terms 
of real radicals if and only if these roots can be constructed by straightedge and compass. 
[The argument is similar to the case of cubics. Let L E lR be the Galois closure of Q( a) 
and suppose the order of Gal(L/Q) is divisible by some odd prime p. Let F be a subfield 
of L with [L : F] = p and L = F(a) (by Exercise 12) and consider the composite fields 
K; = F K; , i = 0, 1 ,  . . . , m. These are again real radical extensions and by the argument 
in the text for the Casus irreducibilis, we may assume each [Kf+I : K;J is a prime. Since 
a �  F = FK0, there is an integer s with a � K;_ i '  a E K; . Since the extensions are of 
prime degree, we have K; = K�-I (a) . Since L = F(a) is Galois of degree p. K; is a 
Galois extension of K;_1 of degree p, contradicting the previous exercise.] 

15. ( 'Cardano 's Formulas 'for a Cubic in Characteristic 2) Suppose f(x) = x3 + px + q is 
an irreducible cubic over a field of characteristir.: 2. Let p be a primitive 3rd root of unity 
and let e. e' be the roots of the quadratic x2 + qx + (p3 + q2) (cf. Exercise 50 of Section 
6). Let 81 and 82 be cube roots of pq + e and pq + e', respectively, where the cube roots 
are chosen so that ele2 = p. Prove that the roots of f(x) are given by a = el + e2. 
{3 = pa + 81 , and y = pa + 82 = a +  {3. 

16. Let a be a nonzero rational number. 
(a) Determine when the extension Q(.J(ii ) (i2 = - 1 )  is of degree 4 over Q. 
(b) When K = Q(.J(ii ) is of degree 4 over Q show that K is Galois over Q with the 

Klein 4-group as Galois group. In this case determine the quadratic extensions of Q 
contained in K .  

17. Let D E Z be a squarefree integer and let a E Q b e  a nonzero rational number. Show that 

Q( J a .Ji5) cannot be a cyclic extension of degree 4 over Q. 

18. Let D E Z be a squarefree integer and let a E Q be a nonzero rational number. Prove that 

if Q( J a.Ji5 ) is Galois over Q then D = - 1 .  

19. Let D E Z be a squarefree integer and let K = Q (  .Ji5 ).  
(a) Prove that i f  D = s2 + t2 i s  the sum of  two rational squares then there exists an 

extension LfQ containing K which is Galois over Q with a cyclic Galois group of 

order 4. [Consider the extension Q(J D + s.Ji5 ) .] (Note also that D is the sum of 
two rational squares if and only if D is also the sum of two integer squares, so one 
may assume s and t are integral without loss.) 

(b) Prove conversely that if K can be embedded in a cyclic extension L of degree 4 as 
in (a) then D is the sum of two squares. [One approach: (i) observe first that L 

is quadratic over K, so L = K ( J a + b../i5 ) for some a, b E Q, (ii) show that L 
contains the quadratic subfield Q( .J a2 - b2 D ), which must be Q( .Ji5 )  if L fQ is 
cyclic, and use Exercise 7.] 

(c) Conclude in particular that Q( ../3) is not a subfield of any cyclic extension of degree 
4 over Q. Similarly conclude that the fields Q( .Ji5 )  for squarefree integers D < 0 
are never contained in cyclic extensions of degree 4 over Q (this gives an alternate 
proof for Exercise 19, Section 6). 

20. Let p be a prime. Show that any solvable subgroup of Sp of order divisible by p is 
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contained in the normalizer of a Sylow p-subgroup of Sp (a Frobenius group of order 
p(p - 1)). Conclude that an irreducible polynomial f (x) E Q[x] of degree p is solvable 
by radicals if and only if its Galois group is contained in the Frobenius group of order 
p(p - 1) .  [Let G :::; Sp be a solvable subgroup of order divisible by p. Then G contains 
a p-cycle, hence is transitive on { 1 ,  2, . . .  , p}. Let H < G be the stabilizer in G of the 
element 1 ,  so H has index p in G. Show that H contains no nontrivial normal subgroups 

of G (note that the conjugates of H are the stabilizers of the other points). Let G(n-1) be 
the last nontrivial subgroup in the derived series for G. Show that H n G(n-1> = 1 and 
conclude that I G(n-1) I = p, so that the Sylow p-subgroup of G (which is also a Sylow 
p-subgroup in Sp) is normal in G.] 

21. (Criterion for the Solvability of a Quintic) By the previous exercise, an irreducible poly
nomial f (x) in Q[x] of degree 5 can be solved by radicals if and only if its Galois group 
(considered as a subgroup of S5) is contained in the Frobenius group of order 20. It is 
known that this is the case if and only if an associated polynomial g(x) of degree 6 has a 
rational root (cf. Dummit, Solving Solvable Quintics, Math. Comp., 57(1991), pp. 387-
401). If the quintic is in the general form (where a translation is performed so that the 
coefficient of x4 is zero) 

f(x) = x5 + px3 + qx2 + rx + s  p, q , r, s  E Q 

then the associated polynomial of degree 6 is 

g(x) = x6 + 8rx5 + (2pq2 - 6p2r + 40r2 - 50qs) x4 

+ (-2q4 + 21pq2r - 40p2r2 + 160r3 - 15p2qs - 400qrs + 125ps2) x3 

+ (p2q4 - 8q4r + 9p4r2 - 136p2r3 + 625q2s2 + 400r4 - 6p3q2r 

+ 76pq2r2 - 50pq3s - 1400qr2s + 500prs2 + 90p2qrs) x2 

+ (- 108p5s2 + 32p4r3 - 256p2r4 - 3 125s4 + 512r5 - 2pq6 + 3q4r2 

- 58q5s + 2750q2rs2 - 3 1p3q3s - 500pr2s2 + 19p2q4r 

- 51p3q2r2 + 76pq2r3 - 2400qr3s - 325p2q2s2 + 525p3rs2 

+ 625pqs3 + 1 17p4qrs + 105pq3rs + 260p2qr2s) x 

+ (q8 + 256r6 + 17q4r3 - 27 p7 s2 - 4p6r3 + 48p4r4 - 192p2r5 

+ 3 125p2s4 - 9375rs4 - 1600qr4s - 99p5rs2 - 125pq4s2 

- 124q5rs + 3250q2r2s2 - 2000pr3s2 - 13pq6r + p5q2r2 

+ 65p2q4r2 - 128p3q2r3 - 16pq2r4 - 4p5q3s - 12p2q5s 

- 150p4q2s2 + 1200p3r2s2 + 18p6qrs + 12p3q3rs + 196p4qr2s 

+ 590pq3r2s - 160p2qr3s - 725p2q2rs2 - 1250pqrs3) .  
In the particular case where f (x) = x5 + Ax + B this polynomial is  simply 

g(x) = x6+8Ax5+40A2x4+160A3x3+400A4x2+(512A5 -3125B4)x-9375AB4+256A6. 
(a) Use this criterion to prove that the Galois group over Q of the polynomial x5 -5x + 12 

is the dihedral group of order 10. [Show the associated sixth degree polynomial is 

x6 - 40x5 + 1000x4 - 20000x3 + 250000x2 - 66400000x + 976000000 
and has x = 40 as a rational root. Cf. also Exercise 35 in Section 6.] 

(b) Use this criterion to prove that x5 - x - 1 is not solvable by radicals. 
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1 4.8 COM PUTATION OF GALOIS GROUPS OVER Q 

In the determination of the Galois groups of polynomials of degrees � 4 in Section 6 and 
in the determination of the Galois group of the polynomial x5 - 6x + 3 in the previous 
section we observed that it was possible to obtain useful information regarding the 
Galois group from the cycle types of the automorphisms as elements in Sn . This is very 
useful in computing Galois groups of polynomials over Q and we now briefly describe 
the theoretical justification. 

Let f (x) be a polynomial with rational coefficients. In determining the Galois 
group of f (x) we may assume that f (x) is separable and has integer coefficients. Then 
the discriminant D of f (x) is an integer and is nonzero. 

For any prime p, consider the reduction 7(x) E IFp [x] of f (x)  modulo p. If p 
divides D then the reduced polynomial 7 (x) has discriminant D = 0 in IF P ' so is not 
separable. 

If p does not divide D, then 7(x ) is a separable polynomial over IFp and we can 
factor f (x) into distinct irreducibles 

Let n; be the degree off; (x) ,  i = 1 ,  2, . . . , k .  
The importance of this reduction i s  provided b y  the following theorem from alge

braic number theory which is an elementary consequence of the study of the arithmetic 
in finite extensions of Q (and which we take for granted). 

Theorem. For any prime p not dividing the discriminant D of f (x) E /Z[x],  the Galois 
group over IF P of the reduction 7 (x) = f (x) (mod p) is permutation group isomorphic 
to a subgroup of the Galois group over Q of f(x) .  

The meaning of the statement "permutation group isomorphic" in the theorem is 
that not only is the Galois group of the reduction f (x) mod p of f (x) isomorphic to 
a subgroup of the Galois group of f (x) but that there is an ordering of the roots of 
7(x) and of f (x)  (depending on p) so that under this isomorphism the action of the 
corresponding automorphisms as permutations of these roots is the same. In particular 
there are automorphisms in the Galois group of f (x) with the same cycle types as the 
automorphisms of 7{x) .  

The Galois group of 7 (x) is  a cyclic group since every finite extension of IF P is 
a cyclic extension. Let a be a generator for this Galois group over IF P (for example, 
the Frobenius automorphism). The roots of 71 (x) are permuted amongst themselves 
by the Galois group, and given any two of these roots there is a Galois automorphism 
taking the first root to the second (recall that the group is said to be transitive on the 
roots when this is the case). Similarly, the Galois group permutes the roots of each of 
the factors f; (x) ,  i = 1 , 2, . . .  , k transitively. Since these factors are relatively prime 
we also see that no root of one factor is mapped to a root of any other factor by any 
element of the Galois group. 

View a as an element in Sn by labelling the n roots of 7(x) and consider the cycle 
decomposition of a, which is a product of k distinct permutations since a permutes 
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the roots of each of the factors 7; (x) amongst themselves. By the observations we just 

made, the action of a on the roots of71 (x) must be a cycle of length n; since otherwise 
the powers of a could not be transitive on the roots of 71 (x ) . Similarly the action of a 
on the roots of f; (x) gives a cycle of length n; , i = 1 ,  2, . . .  , k.  

We see that the automorphism a generating the Galois group of 7(x) has cycle 
decomposition (n t ,  n2 , . . .  , nk) where n 1 , n 2 ,  . . .  , nk are the degrees of the irreducible 
factors of f(x) reduced modulo p, which gives us the following result. 

Corollary 41. For any prime p not dividing the discriminant of f(x) E Z[x], the Galois 
group of f(x) over Q contains an element with cycle decomposition (n t ,  n2,  . . .  , nk) 
where n 1 , n2 , . . .  , nk are the degrees of the irreducible factors of f (x) reduced modulo 
p. 

Example 

Consider the polynomial x5 -x - I .  The discriminant of this polynomial is 2869 = 19 · 15 1  
so we reduce at primes =f. I9, I 5 1 .  Reducing mod 2 the polynomial x5 - x - I factors 
as (x2 + x + I ) (x3 + x2 + I) (mod 2) so the Galois group has a (2,3)-cycle. Cubing this 
element we see the Galois group contains a transposition. 

Reducing mod 3 the polynomial is irreducible, as follows: x5 - x - 1 has no roots 
mod 3 so if it were reducible mod 3 then it would have an irreducible quadratic factor, 
hence would have a factor in common with x9 - x (which is the product of all irreducible 
polynomials of degrees 1 and 2 over F 3 ), hence a factor in common with either x4 - 1 or 
x4 + 1 ,  hence a factor in.common with either x5 - x or x5 + x, hence a factor in common 
with either - 1  or 2x + 1 which it obviously does not. This shows both that x5 - x - 1 is 
irreducible in Z[x] and that there is a 5-cycle in its Galois group. 

Since Ss is generated by any 5-cycle and any transposition, it follows that the Galois 
group of x5 - x - 1 is Ss (so in particular this polynomial cannot be solved by radicals, 
(cf. ExeiCise 21 of Section 7). 

The arguments in the example above indicate how to construct polynomials with 
Sn as Galois group. We use the fact that a transitive subgroup of Sn containing a 
transposition and an n - 1 -cycle is Sn . Let it be an irreducible polynomial of degree 
n over IF2 . Let h E IF3 [x] be the product of an irreducible polynomial of degree 2 
with irreducible polynomials of odd degree (for example, an irreducible polynomial of 
degree n - 3 and x if n is even and an irreducible polynomial of degree n - 2 if n is 
odd). Let h E lFs [x] be the product of x with an irreducible polynomial of degree 
n - 1 .  Finally, let f (x) E Z[x] be any polynomial with 

f(x) = it (x) (mod 2) 

= h(x) (mod 3) 

= !J (x) (mod 5) . 
The reduction of f(x) mod 2 shows that f(x) is irreducible in Z[x], hence the Galois 
group is transitive on the n roots of f(x). Raising the element given by the factorization 
of f (x) mod 3 to a suitable odd power shows the Galois group contains a transposition. 
The factorization mod 5 shows the Galois group contains an n - 1 -cycle, hence the 
Galois group is Sn . 
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Proposition 42. For each n E .z+ there exist infinitely many polynomials f (x) E .Z[x] 
with Sn as Galois group over Q. 

There are extremely efficient algorithms for factoring polynomials f(x) E .Z[x] 
modulo p (cf. Exercises 12 to 17 of Section 3), so the corollary above is an effective 
procedure for determining some of the cycle types of the elements of the Galois group. 
In using Corollary 41  some care should be taken not to assume that a particular cycle 
is an element of the Galois group. For example, one factorization might imply the 
existence of a (2,2) cycle, say ( 1 2)(34) and another factorization imply the existence of 
a transposition. One cannot conclude that the transposition is necessarily ( 1 2), however 
(nor (34), nor ( 1 3), etc.). The choice of ( 1 2)(34) to represent the first cycle fixes a 
particular ordering on the roots and this may not be the ordering with respect to which 
the transposition appears as ( 1 2). 

Corollary 41 is particularly efficient in determining when the Galois group is large 
(e.g., Sn), since a transitive group containing sufficiently many cycle types must be 
Sn (for example, a transitive subgroup of Sn containing a transposition and an n - 1 -
cycle is  Sn , as  used above). The most difficult Galois groups to determine in  this 
way are the small Galois groups (e.g., a cyclic group of order n), since factorization 
after factorization will produce only elements of orders dividing n and one is not sure 
whether there will be some p yet to come producing a cycle type inconsistent with the 
assumption of a cyclic Galois group. If one could "compute forever" one could at least 
be sure of the precise distribution of cycle types among the elements of the Galois group 
in the following sense: suppose the Galois group G � Sn .has order N and that there 
are nT elements of G with cycle type T (e.g., (2,2)-cycles, transpositions, etc.) so that 
the "density" of cycle type T in G is dT = nT IN. Then it is possible to define a density 
on the set of prime numbers (so that it makes sense to speak of "1/2" the primes, etc.) 
and we have the following result (which relies on the Tchebotarov Density Theorem in 
algebraic number theory). 

Theorem. The density of primes p for which f(x) splits into type T modulo p is 
precisely dT. 

This says that if we knew the factorization of f(x) modulo every prime we could 
at least determine the number of elements of G with a given cycle type. Unfortunately, 
even this would not be sufficient to determine G (up to isomorphism): it is known 
that there are nonisomorphic groups containing the same number of elements of all 
cycle types (there are two nonisomorphic groups of order 96 in Ss both having cycle 
type distributions: 1 1 -cycle, 6 (2,2)-cycles, l3 (2,2,2,2)-cycles, 32 (3,3)-cycles, 1 2  
(4,4)-cycles, 3 2  (2,6)-cycles). There are infinitely many such examples (the regular 
representation of the elementary abelian group of order p3 and for the nonabelian group 
of order p3 of exponent p give two nonisomorphic groups in Sp3 whose nonidentity 

elements are all the product of p2 p-cycles for any prime p ).  
In practice one uses the factorizations of f (x) modulo small primes to get an idea of 

the probable Galois group (based on the previous result). One then tries to prove this is 
indeed the Galois group - often a difficult problem. For polynomials of small degree, 
definitive algorithms exist, based in part on the computation of resolvent polynomials. 
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These are analogues of the cubic resolvent used in the previous sections to determine 
the Galois group of quartic polynomials. These resolvent polynomials have rational 
coefficients and have as roots certain combinations of the roots of f(x) (similar to the 
combinations (at + a2) (a3 + a4) for the cubic resolvent). One then determines the 
factorization of these resolvent polynomials to obtain information on the Galois group 
of f (x) - for example the existence of a linear factor implies the Galois group lies 
in the stabilizer in Sn of the combination of the roots of f (x) chosen (for example, 
the dihedral group of order 8 for our resolvent cubic). It should be observed, however, 
that the degree of the resolvent polynomials constructed, unlike the situation of the 
resolvent cubic for quartic polynomials, are in general much larger than the degree of 
f (x). The effectiveness of this computational technique also depends heavily on the 
explicit knowledge of the possible transitive subgroups of Sn . For n = 2, 3, . . .  , 8 
the number of isomorphism classes of transitive subgroups of Sn is 1 ,  2, 5, 5, 16, 7, 
50, respectively. There is a great deal of interest in the computation of Galois groups, 
motivated in part by the problem of determining which groups occur as Galois groups 
over Q. 

We illustrate these techniques with some easier examples (from The Computation 
of Galois Groups, L. Soicher, Master's Thesis, Concordia University, Montreal, 198 1 ). 

Examples 

(1) There are 5 isomorphism classes of transitive subgroups of Ss given by the groups Zs ,  
Dw, F2o, the so-called Frobenius group of order 20 (the Galois group of x5 - 2 with 
generators (1 2 3 4 5) and (2 3 5 4) in Ss ), As and Ss . The cycle type distributions for 
these groups are as follows: 

cycle tyQe : 1 2 (2, 2} 3 (2, 3} 4 5 

Zs 1 4 
Dw 1 5 4 
F2o 1 5 10 4 
As 1 15  20 24 
Ss 1 10 15  20 20 30 24. 

Given this information, the irreducibility of xs - x - 1 (giving the transitivity on the 5 
roots) and the cycle type (2,3) intmediately shows that the Galois group of xs - x - 1  
is Ss .  

Consider now the polynomial x s  + 1 5x + 1 2. The discri1ninant is 210345s so the 
Galois group is not contained in As. There are two possibilities: Ss or F2o- One can 
easily determine which is more likely by factoring the polynomial modulo a number 
of small primes and comparing the distribution of cycle types with those in the table 
above. This does not prove the probable Galois group is actually correct. To decide 
which of Ss and F2o is correct one can compute the resolvent polynomial R(x) of 
degree 15 whose roots are the distinct permutations under Ss of (a! + a2 - a3 - a4)2 
for 4 of the roots at , a2 , a3 , a4 of f(x).  By definition, Ss is transitive on the roots of 
R(x) and it is not difficult to check using the explicit generators for F2o given above 
that F2o is not transitive on these 15 values. It follows that R(x) will be a reducible 
polynomial over Q if and only if the Galois group of the quintic is F2o- One finds that 
for xs + 15x + 12 the resolvent polynomial R(x) factors into a polynomial of degree 
5 and a polynomial of degree 10, hence the Galois group for this quintic is F2o- One 
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can also use Exercise 21 of the previous section (cf. Exercise 6), which is also based 
on the computation of a related resolvent polynomial. 

(2) Consider the polynomial x 
7 

- 14x5 + 56x3 - 56x + 22. The discriminant is computed 
to be 26710 so the Galois group is contained in A7 . 

Factoring the polynomial for the 42 primes not equal to 7 between 3 and 193 
gives a cycle type distribution of 1 1-cycle (2.38 %), 30 (3,3)-cycles (71 .43 %), 1 1 
7-cycles (26. 19  %). There are 7 isomorphism classes of transitive subgroups of S7, 
4 of them contained in A7 • Of these, one contains no (3,3)-cycles, which leaves the 
three possibilities A7, GL3 0Fz),  or F21 , the Frobenius group of order 2 1  (which has 
generators (1 2 3 4 5 6  7) and (2 3 5) ( 4 7 6) in S7 ). The cycle type distributions for these 
three are as follows: 

cycle type: 1 2 (2, 2) 3 (2, 2, 3) (3 , 3) (2, 4) 5 7 

1 
1 
1 21 

21 
1 05 70 210 

14 
56 

280 

6 
42 48 
630 504 720 

It follows that there is a strong probability that the Galois group of this polynomial 
is the Frobenius group of order 2 1 .  This is actually the case (the verification requires 
computation of a resolvent of degree 35 and factoring it over /l - there are three 
factors, of degrees 7,7, and 21) .  

E X E R C I S E S  

1. Let p be a prime. Prove that the polynomial x4 + 1 splits mod p either into two irreducible 
quadratics or into 4 linear factors using Corollary 41 together with the knowledge that the 
Galois group of this polynomial is the Klein 4-group. 

2. (Cf. Exercise 48 of Section 6). 
(a) Let K be the splitting field of x6 - 2x3 - 2. Prove that if [K : CQl] = 12 then 

K = CQl( V2 ,  i , .J3 ) and K is generated over the biquadratic field F = CQl( i, .J3) by 

ex = V 1 + .J3 and by f3 = V 1 - .JJ. Show that if this is the case then the elements 
of order 3 in Gal(K /CQl) lie in Gal(K j F) . Conclude that any element of Gal(K /CQl) 
of order 3 maps ex to another cube root of 1 + .J3 and maps f3 to another cube root of 
1 - .J3 and if it is the identity on ex or f3 then it is the identity on all of K.  

(b) Show that the factorization of f (x) into irreducibles over IF 13 is the polynomial (x -
7) (x - 8) (x - 1 1 ) (x3 + 3) and use Corollary 41 to show that [K : Q] = 36. 

(c) Knowing that G = Gal(K /CQl) is of order 36 determine all the elements of G explicitly 
and in particular show that G is isomorphic to s3 X s3 . 

3. Prove that the Galois group of x5 + 20x + 16 is As.  

4. Prove that the Galois group of x5 + x4 - 4x3 - 3x2 + 3x + 1 is cyclic of order 5. [Show 
this is the minimal polynomial of {u +

}
·01 .] 

5. Prove that the Galois group of x5 + 1 1x + 44 is the dihedral group Dw ( cf. Exercise 21 
of Section 7). 

6. Prove that the Galois group of x5 + 15x + 12 is F2o,  the Frobenius group of order 20 (cf. 
Exercise 21 of Section 7).  

7. Prove that the Galois group of x6 + 24x - 20 is A6. 

8. Prove that the Galois group of x7 + 7x4 + 14x + 3 is A7 . 
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9. Determine a polynomial of degree 7 whose Galois group is cyclic of order 7. 

10. Determine the probable Galois group of x 7 - 7x + 3. 

1 4.9 TRANSCENDENTAL EXTENSIONS, I NSEPARABLE EXTENSIONS, 
I NFIN ITE GALOIS GROUPS 

This section collects some results on arbitrary extensions E I P. These results supple
ment those of the preceding sections and complete the basic picture of how an arbitrary 
(possibly infinite) extension decomposes. Since this section is primarily intended as a 
survey, none of the proofs are included; whenever these proofs can be easily supplied 
by the reader we indicate this either in the text or (with hints) in the exercises. 

Throughout this section E IF is an extension of fields. Recall that an element of E 
which is not algebraic over F is called transcendental over F. Keep in mind that exten
sions involving transcendentals are always of infinite degree. We generally reserve the 
expression "t is an 'indeterminate' over F", when we are thinking of evaluating t .  Field 
theoretically, however, the terms transcendental and indeterminate are synonymous (so 
that the subfield <Q(rr) of � and the field <Q(t) are isomorphic). 

Definition. 
(1) A subset {ai . a2 , • • •  , all } of E is called algebraically independent over F if 

there is no nonzero polynomial f(xJ , Xz , . . .  , xll ) E F[xJ , xz , . . .  , xll ] such 
that f(a1 , a2 , • • •  , all ) = 0. An arbitrary subset S of E is called algebraically 
independent over F if every finite subset of S is algebraically independent. The 
elements of S are called independent transcendentals over F. 

(2) A transcendence base for E IF is  a maximal subset (with respect to  inclusion) 
of E which is algebraically independent over F. 

Note that if E IF is algebraic, the empty set is the only algebraically independent 
subset of E. In particular, elements of an algebraically independent set are necessarily 
transcendental. Moreover, one easily checks that S � E is an algebraically independent 
set over F if and only if each s E S is transcendental over F(S - {s }) . It is also an 
easy exercise to see that S is a transcendence base for E IF if and only if S is a set of 
algebraically independent transcendentals over F and E is algebraic over F(S) . 

Theorem. The extension E IF has a transcendence base and any two transcendence 
bases of E IF have the same cardinality. 

Proof" The first statement is a standard Zorn's Lemma argument. The proof of the 
second uses the same "Replacement Lemma" idea as was used to prove that any two 
bases of a vector space have the same cardinality. 

Definition. The cardinality of a transcendence base for E IF is called the transcen
dence degree of E IF. 

Algebraic extensions are precisely the extensions of transcendence degree 0.  
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One special case of this theorem is when E is finitely generated over F, that is, 
E = F(a1 , a2 , • . •  , a, ) , for some (not necessarily algebraically independent) elements 
ai , . . .  , a, of E. It is clear that we may renumber ai , . . .  , a, so that ai , . . .  , am are 
independent transcendentals and am+I · . . .  , a, are algebraic over F(ai , . . .  , am) (so 
E is a finite extension of the latter field). In this case E is called a function field in 
m variables over F.  Such fields play a fundamental role in algebraic geometry as 
fields of functions on m-dimensional surfaces. For instance, when F = tC and m = 1 ,  
these fields arise i n  analysis a s  fields of meromorphic functions on compact Riemann 
surfaces. 

Note that if S1 and S2 are transcendence bases for E IF it is not necessarily the case 
that F(SI ) = F(S2) .  For example, if t is transcendental over Q, {t} and {t2} are both 
transcendence bases for Q(t)IQ but (as we shall see shortly) Q(t2) is a proper subfield 
of Q(t) . 

We now see that if XI , x2 , • . •  , x, are indeterminates over F and 

f (x) = (x - XJ ) (X - Xz) · · · (x - x, ) (14.28) 

is the general polynomial of degree n, then the set of n elementary symmetric functions 
SI , s2 , • • •  , s, in the x/s are also independent transcendentals over F. This is because 
XI , . . .  , x, is a transcendence base for E = F(xi , . . .  , x, ) over F (so the transcendence 
degree is n) and E is algebraic over F(si , . . .  , s, ) (of degree n !). The theorem forces 
SI , . . .  , s, to be a transcendence base for this extension as well (in particular, they are 
independent transcendentals ). The general polynomial of degr�e n over F may therefore 
equivalently be defined by taking a I , . . .  , a, to be any independent transcendentals (or 
indeterminates) and letting 

f (x) = x
" + aix

n- I + · · · + a, ( 14.29) 

where the roots of f are denoted by XI , . . .  , x, (and s; = ( - 1  ) ; a; ). 

Definition. An extension E IF is called purely transcendental if it has a transcendence 
base S such that E = F(S) . 

In the preceding discussion, both F(xi , . . .  , x, ) and F (si ,  . . .  , s, ) are purely tran
scendental over F. As an exercise (following) one can show that Q(t ,  � ) is not 
a purely transcendental extension of Q even though it contains no elements that are 
algebraic over Q other than those in Q itself (i.e., the process of decomposing a general 
extension into a purely transcendental extension followed by an algebraic extension 
cannot generally be reversed so that the algebraic piece occurs first). 

If E is a purely transcendental extension of F of transcendence degree n = 1 or 2 
and L is an intermediate field, F £; L £; E with the same transcendence degree, then L 
is again a purely transcendental extension of F (Liiroth (n = 1), Castelnuovo (n = 2)). 
This result is not true if the transcendence degree is :;:: 3, however, although examples 
where L fails to be purely transcendental are difficult to construct. For extensions of 
transcendence degree 1 the intermediate fields are described by the following theorem. 
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Theorem. Let t be transcendental over F. 
(1) (Ltiroth) If F 5; K 5; F(t) , then K = F(r), for some r E F(t) .  In particu

lar, every nontrivial extension of F contained in F(t) is purely transcendental 
over F. 

(2) If P = P(t) , Q = Q(t) are nonzero relatively prime polynomials in F[t] which 
are not both constant, 

[F(t) : F(P/Q)] = max(deg P, deg Q). 

Proof: The proof of (2) is outlined in Exercise 18  of Section 1 3.2. 

By part (2) of this theorem we see that F(P/Q) = F(t) if and only if P, Q 
are nonzero relatively prime polynomials of degree ::=:: 1 (not both constant). Thus 

. at + b  F(r) = F(t) If and only if r = -- , where a,  b, c ,  d E  F and ad - be =j:. O (called a 
ct + d  

fractional linear transfonnation oft). For any r E F(t) - F the map t 1--+ r extends to 
an embedding of F (t) into itself which is the identity on F. This embedding is surjective 
(i.e., is an automorphism of F(t)) precisely for tqe fractional linear transformations. 
Furthermore, the map 

GLz (F) -+ Aut(F(t)j F) defined by A =  ( � � )  �--+ a A ,  

where a A denotes the automorphism of F(t) defined by mapping t to (at +b)j(ct +d), 
is a smjective homomorphism with kernel consisting of the scalar matrices. Thus 

Aut(F(t)j F) �  PGL2(F) 
where PGL2(F) = GL2(F)j{Al I A. E Fx } gives the group of automorphisms of this 
transcendental extension (cf. Exercise 8 of Section 1 ). 

When IF is a finite field of order q,  Aut(IF(t)/IF) � PGLz(lF) is a finite group of 
order q (q - 1) (q + 1) .  By Corollary 1 1  if K is the fixed field ofAut(IF(t)/IF), then IF(t) 
is Galois over K with Galois group equal to Aut(IF(t)jJF) . In particular, the fixed field 
of Aut(IF(t) /IF) is not IF in this case. 

This also provides further examples of the Galois correspondence which can be 
written out completely for small values of q. For instance, if q = IIF I  = 2, PGLz(lF) 
is nonabelian of order 6, hence is isomorphic to s3 . and has the following lattice of 
subgroups: / 1 � 

(e�)} (C �) ) ( ( � � )) ( ( :� � 
PGLz (lF'z) Fig. 5 

The field IF(t) is of degree 6 over the fixed field K of Aut(IF(t)/IF) and the lattice 
of subfields K 5; L 5; IF(t) is dual to the lattice of subgroups of S3 . The fixed field of a 
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cyclic subgroup ( a ) is easily found (via the preceding theorem) by finding a rational 
function r in t which is fixed by a such that [IF(t) : IF(r)] = la l .  For example, if 
a : t 1-+ 1/( 1  + t), then a has order 3. The rational funct\on 

t3 + t + 1 r = t + a (t) + a2 (t) = ---t (t + 1) 
is  fixed by a and [IF(t) : IF(r)] = 3 (by part (2) of the theorem). Since IF(r) is  contained 
in the fixed field of ( a  ) and the degree of IF(t) over the fixed field is 3, IF(r) is the fixed 
field of ( a  ) . In this way one can explicitly describe the lattice of all subfields of IF(t) 
containing K shown in Figure 6. 

Fig. 6 

Purely transcendental extensions of Q play an important role in the problem of real
izing finite groups as Galois groups over Q. We describe a deep result of Hilbert which 
is fundamental to this area of research. If a1 , az , . . . , an are independent indeterminates 
over a field F, we may evaluate (or specialize) a1 , . . . , an at any elements of F, i.e., 
substitute values in F for the "variables" a1 , a2 , . • .  , an . If E is a  Galois extension of 
F(al , . . .  , an) , then E is obtained as a splitting field of a polynomial whose coefficients 
lie in F[ a1 , . . .  , an] . Any specialization of a1 , . . . , an into F maps this polynomial into 
one whose coefficients lie in F. The specialization of E is the splitting field of the 
resulting specialized polynomial. 

Theorem. (Hilbert) Let x1 , x2 , • • •  , Xn be independent transcendentals over Q, let E = 

Q(x1 , . . .  , Xn) and let G be a finite group of automorphisms of E with fixed field K. 
If K is  a purely transcendental extension of Q with transcendence basis a1 , az , . . . , an , 

then there are infinitely many specializations of a1 , . . .  , an in Q such that E specializes 
to a Galois extension of Q with Galois group isomorphic to G. 

Hilbert's Theorem gives a sufficient condition for the specialized extension not to 
collapse. In general, the Galois group of the specialized extension is a subgroup of G 
( cf. Proposition 19) and may be a proper subgroup of G. It is also known that the fixed 
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field K need not always be a purely transcendental extension of Q. An example of this 
occurs when G is the cyclic group of order 4 7. 

This theorem can be used to give another proof of Proposition 42: 

Corollary. Sn is a Galois group over Q, for all n .  

Proof of the Corollary: We have already proved that the fixed field of Sn acting in 
the obvious fashion on Q(x1 , . . .  , Xn) is purely transcendental over Q (with the elemen
tary symmetric functions as a transcendence base), so Hilbert's Theorem immediately 
implies the corollary. 

The hypothesis that K be purely transcendental over Q is crucial to the proof of 
Hilbert's Theorem. Every finite group is isomorphic to a subgroup of Sn and so acts 
on Q(x1 , . . .  , Xn ) for some n.  It is not known, however, even for the subgroup An of 
Sn whether its fixed field under the obvious action is a purely transcendental extension 
of Q (although it is known by other means that An is a Galois group over Q for all n ) . 
Thus there are a number of important open problems in this area of research. 

One should also notice that Hilbert's Theorem does not work when the base field Q 
is replaced by an arbitrary field F (suppose F were algebraically closed, for instance). 
In particular, as noted earlier, the general polynomial f (x) in Section 6 has Galois group 
Sn over F(a1 , . . .  , an) for any F, but when F is a finite field, the specialized extension 
obtained from its splitting field is always cyclic. 

We next expand on the theory of inseparable extensions described in Section 1 3 .5. 
Let p be a prime and let F be a field of characteristic p. 

Definition. An algebraic extension E IF is called purely inseparable if for each a E E 
the minimal polynomial of a over F has only one distinct root. 

It is easy to see that the following are equivalent: 

(1) E 1 F is purely inseparable 
(2) if a E E is separable over F, then a E F 
(3) if a E E, then aP" E F for some n (depending on a), and ma, F (x) = xF" - afl' . 

The following easy proposition describes composites of separable and purely in
separable extensions. 

Proposition. If E 1 and £2 are sub fields of E which are both separable (or both purely in
separable) extensions of F, then their composite E 1 £2 is separable (purely inseparable, 
respectively) over F. 

Proof: Exercise. 

One immediate consequence of this is the following result. 
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Proposition. Let E IF be an algebraic extension. Then there is a unique field Esep with 
F � Esep � E such that Esep is separable over F and E is purely inseparable over 
Esep · The field Esep is the set of elements of E which are separable over F. 

The degree of Esepl F is called the separable degree of E IF and the degree of 
El Esep is called the inseparable degree of ElF (often denoted as [E : F]s and [£ : F]i 
respectively). The product of these two degrees is the (ordinary) degree. The proposi
tions immediately give the following corollary. 

Corollary. Separable degrees (respectively inseparable degrees) are multiplicative. 

When E is generated over F by the root of an irreducible polynomial p(x) E F [x] 
the separable and inseparable degrees of the extension E IF are the same as the separable 
and inseparable degrees of the polynomial p (x) defined in Section 1 3 .5. 

The proposition asserts that any algebraic extension may be decomposed into a 
separable extension followed by a purely inseparable one. Exercise 3 at the end of 
this section outlines an example illustrating that this decomposition cannot generally 
be reversed, namely an extension which is not a separable extension of a purely insep
arable extension. We shall shortly state conditions on an extension under which the 
decomposition into separable and purely inseparable subextensions may be reversed. 

We now know that an arbitrary extension E IF can be decomposed into a purely 
transcendental extension F (S) of F followed by a separable extension £1 of F(S) 
followed by a purely inseparable extension El £1 . In certain instances the insepara
bility in the algebraic extension at the "top" may be removed by a judicious choice of 
transcendence base: 

Proposition. If E is a finitely generated extension of a perfect field F, then there is a 
transcendence base T of ElF such that E is a  separable (algebraic) extension of F(T).  

A transcendence base T as described in the proposition is called a separating 
transcendence base. Exercise 4 at the end of this section illustrates this with a nontrivial 
example. 

Recall that an extension E IF is IWrmal if it is the splitting field of some (possibly 
infinite) set of polynomials in F[ x] (in particular, normal extensions are algebraic but not 
necessarily finite or separable). We previously used the synonymous term splitting field 
and the term normal is reintroduced here in the context of arbitrary algebraic extensions 
since it is used frequently in the literature, often in the context of em beddings of a field 
into an algebraic closure. Although the following set of equivalences can be gleaned 
from the preceding sections, the reader should write out a complete proof, checking 
that the arguments work for both infinite and inseparable extensions: 

Proposition. Let E IF be an arbitrary algebraic extension and let Q be an algebraic 
closure of E. The following are equivalent: 

(1) E IF is a normal extension (i.e., is the splitting field over F of some set of 
polynomials in F[x]) 
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(2) whenever a : E � Q is an embedding such that a I F is the identity, a (E) = E 
(3) whenever an irreducible polynomial f(x) E F[x] has one root in E, it has all 

its roots in E. 

In general, any embedding of a normal extension E IF into an algebraic closure 
of E which extends the identity embedding of F is an automorphism of E, i.e., is 
an element of Aut(E I F). Moreover, the number of such automorphisms equals the 
separable degree of E f F, provided the latter is finite: 

if E IF is a normal extension and [E : F1 is finite, IAut(E f F) I = [E : F]5 • 

If [E : Fls is infinite we shall see shortly that IAut(E I F) I is also infinite but need not 
be of the same cardinality. 

If E f F is a normal extension whose separable degree is finite, let Eo be the fixed 
field of Aut(E/F). By Corollary 1 1 , E/Eo is a (separable) Galois extension whose 
degree equals IAut(E/ F) I .  It follows that Eo/ F must be purely inseparable (of degree 
equal to [E : F]; ), i.e., the separable and purely inseparable pieces of the extension 
may be reversed for normal extensions. More precisely, we easily obtain the following 
proposition. 

Proposition. If Ef F is normal with [E : Fls < oo, then E = Esep Ep; , where Ep; is 
a purely inseparable extension of F (Ep; consists of all purely inseparable elements of 
E over F) and Esep n Ep; = F. 

Finally, we mention how Galois Theory generalizes to infinite extensions. 

Definition. An extension E IF is called Galois if it is algebraic, normal and separable. 
In this case Aut(Ef F) is called the Galois group of the extension and is denoted by 
Gal(E/F). 

For infinite extensions there need not be a bijection between the set of all subgroups 
of the Galois group and the set of all subfields of E containing F, as the following 
example illustrates. 

Let E be the subfield of R obtained by adjoining to Q all square roots of positive 
rational numbers. One easily sees that E may also be described as the splitting field 
of the set of polynomials x2 - p, where p runs over all primes in z+. Note that E 
is a (countably) infinite Galois extension of Q. Since every automorphism a of E is 
determined by its action on the square roots of the primes and a either fixes or negates 
each of these, a2 is the identity automorphism. It follows that Aut( E) is an infinite 
elementary abelian 2-group. Thus Aut( E) is an infinite dimensional vector space over 
lF 2 · By an exercise in the section on dual spaces (Section 1 1 .3) the number of nonzero 
homomorphisms of Aut(E) into lF2 is uncountable, whence their kernels (which are 
subspaces of co-dimension 1) are uncountable in number (and distinct). Thus Aut(E) 
has uncountably many subgroups of index 2, whereas Q has only a countable number 
of quadratic extensions. 

The basic problem is that many (most) subgroups of Gal(E f F) do not correspond 
(in a bijective fashion) to subfields of E containing F. In order to pick out the ••nght'' 
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set of subgroups of Gal(E I F) we must introduce a topology on this group (called the 
Krull topology). The axioms for the collection of (topologically) closed subsets of a 
topological space are precisely the bookkeeping devices which single out the relevant 
subgroups (these are listed in Section 15 .2). Galois theory for finite extensions force 
certain subgroups of finite index to be closed sets and these in turn determine the 
topology on the entire group (as we might expect since every extension of F inside E 
is a composite of finite extensions). Moreover, the Galois group of E 1 F is the inverse 
limit of the collection of finite groups Gal(K I F), where K runs over all finite Galois 
extensions of F contained in E (cf. Exercise 10, Section 7.6). 

Theorem. (Krull) Let E 1 F be a Galois extension with Galois group G. Topologize G by 
taking as a base for the closed sets the subgroups of G which are the fixing subgroups of 
the finite extensions of F in E, together with all left and right cosets of these subgroups. 
Then with this ("Krull") topology the closed subgroups of G correspond bijectively with 
the subfields of E containing F and the corresponding lattices are dual. Closed normal 
subgroups of G correspond to normal extensions of F in E. 

One important area of current research is to describe (as a topological group) the 
Galois group of certain field extensions such as F IF, where F is the algebraic closure 
of F. Little is known about the latter group when F = Q (in particular, its normal 
subgroups of finite index, i.e., which finite groups occur as Galois groups over Q, are 
not known). If E is the algebraic closure of the finite field lF P • the Galois group of 

this extension is the topologically cyclic group Z with the Frobenius automorphism 
as a topological generator. The group Z is an uncountable group (in particular, is not 
isomorphic to Z) with the property that every closed subgroup of finite index is normal 
with cyclic quotient. Note that Z must also have nontrivial infinite closed subgroups 
(unlike Z) since E contains proper subfields which are infinite over lF P (such as the 
composite of all extensions of lF P of q-power degree, for any prime q - this Galois 
extension of lFp has Galois group Zq , the q-adic integers, as described in Exercise 1 1  
of Section 7.6). 

E X E R C I S E S 

l. Prove that every purely inseparable extension is normal. 

2. Let p be a prime and let K = IF  p (x , y) with x and y independent transcendentals over IF p ·  
Let F = IFp (xP - x , yP - x) . 
(a) Prove that [K : F] = p2 and the separable degree and inseparable degree of KIF are 

both equal to p. 

(b) Prove that there is a subfield E of K containing F which is purely inseparable over F 
of degree p (so then K is a separable extension of E of degree p ) . [Let s = x P -x E F 
and t = yP - x E F and consider s - t.] 

3. Let p be an odd prime, let s and t be independent transcendentals over IF P • and let F be 
the field IF p(s , t).  Let ,8 be a root of x2 - sx + t = 0 and let a  be a root of xP - ,8 = 0 (in 
some algebraic closure of F). Set E = F(,B) and K = F(a). 
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(a) Prove that E is a Galois extension of F of degree 2 and that K is a purely inseparable 
extension of E of degree p. 
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(b) Prove that K is not a normal extension of F. [If it were, conjugate f3 over F to show 
that K would contain a pth root of s and then also a pth root of t, so [K : F] ::=: p2, a 
contradiction.] 

(c) Prove that there is no field Ko such that F � Ko � K with Ko/ F purely inseparable 
and K f Ko separable. [If there were such a field, use Exercise 1 and the fact that 
the composite of two normal extensions is again normal to show that K would be a 
normal extension of F.] 

4. Under the notation of the previous exercise prove that a, s is a separating transcendence 
base for K over IF P . 

5. Let p be a prime, let t be transcendental over IF P and let K be obtained by adjoining to 
IF P (t) all p-power roots of t .  Prove that K has transcendence degree 1 over IF P and has no 
separating transcendence base. 

6. Show that if t is transcendental over Q then Q(t , �) is not a purely transcendental 
extension of Q. (This is an example of what is called an elliptic function field.) 

7. Let k be the field with 4 elements, t a transcendental over k, F = k(t4 + t) and K = k(t). 
(a) Show that [K : F] = 4. 
(b) Show that K is separable over F. 
(c) Show that K is Galois over F. 
(d) Describe the lattice of subgroups of the Galois· group and the corresponding lattice of 

subfields of K, giving each subfield in the form k(r ), for some rational function r .  

8.  Let p be an odd prime, k an algebraically closed field of characteristic p and let t be 
transcendental over k. Suppose F is a degree 2 field extension of k(t) .  Show that F can 
be written in the form k(t ,  y), for some y e F with y2 e k(t) and y transcendental over k. 
If l = 4t3 - t - 1, find [F : k(y)] and describe k(t) n k(y) as k(r), for some r e k(t) .  

9. Let t be transcendental over IF3 , let K = IF3 (t) , let G = Aut(K jiF3) and let F be the fixed 
field of G. 
(a) Prove G � S4 and deduce that there is a unique field E with F � E � K and 

[E : F] = 2. [Recall that G � PGLz(IF3) ;  show that GLz (IF3) permutes the 4 
lines in a 2-dimensional vector space over IF 3 and the kernel of this permutation 
representation is the scalar matrices.] 

(b) Complete the description of the lattice of subfields of K containing E: 

K /�c::,' ) 
** 

E U'-�;, ) I 
� �·· 

E 
( (t6 + r4 + r2 + 1 )2 ) 

(t3 + t)3 

** 

Give each subfield in the form E (r) for some rational function r. (The lattice of 
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subgroups of A4 appears in Section 3.5). 
10. Prove that a purely transcendental proper extension of a field is never algebraically closed. 

11. Let S be a set of independent transcendentals over a field F and let Q be an algebraic 
closure of F(S) .  Prove that any permutation on S extends to an element of Aut(F(S)I F). 
Prove that any such automorphism of F(S} extends to an automorphism of n. Deduce 
that C has infinitely many automorphisms. 

12. Let K be a subfield of C maximal with respect to the property ".../2 ¢ K." 
(a) Show such a field K exists. 
(b) Show that C is algebraic over K .  
(c) Prove that every finite extension of K i n  C is Galois with Galois group a cyclic 

2-group. 
(d) Deduce that [C : K] is countable (and not finite). 

13. Let K be the fixed field in C of an automorphism of C. Prove that every finite extension 
of K in C is cyclic. 

14. Let Kn be the splitting field of (x2 - Pl ) (x2 - P2) · · · (x2 - Pn )  over Q, where Pl , . . .  , Pn are 
the first n primes. Prove that the Galois group of K" IQ is an elementary abelian 2-group 
of order 2" . 

15. Let Ko = Q and for n ::=: 0 define the field Kn+l as the extension of Kn obtained by 
adjoining to Kn all roots of all cubic polynomials over Kn . Let K be the union of the 
subfields Kn , n ::=: 0. Prove that K is a Galois extension of Q. Prove that every cubic 
polynomial over K splits completely over K. Prove that there are nontrivial algebraic 
extensions of K .  

16. Let F be th e  composite o f  all the splitting fields o f  irreducible cubics over Q.  Prove that 
F does not contain all quadratic extensions of Q. 

17. Let Ko = Q and for n ::=: 0 define the field Kn+I as the extension of Kn obtained by 
adjoining to Kn all radicals of elements in Kn . Let K be the union of the subfields Kn , 
n ::=: 0. Prove that K is a Galois extension of Q. Prove that there are no nontrivial solvable 
Galois extensions of K. Prove that there are nontrivial Galois extensions of K .  

18. Let Fo = Q and for n ::=: 0 define the field Fn+I a s  the extension o f  Fn obtained by 
adjoining to Fn all real radicals of elements in Fn . Let F be the union of the subfields Fn , 
n ::=: 0. Let K+ be the fixed field of complex conjugation restricted to the field K in the 
previous exercise (the maximal real subfield of K).  Prove that F =1= K+. 

19. This exercise proves that if KIF is a Galois extension of fields, then Gal (K I F) is isomor
phic to ijm Gal(LI F), where the inverse limit is taken over all the finite Galois extensions 
L of F contained in K .  
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(a) Show that K is the union of the fields L. 
(b) Prove that the map ({J : Gal(K I F) --+ ijm Gal(LI F) defined by mapping a in 

Gal(K I F) to ( . . . , a I L  . . .  }, where a I L is the restriction of a to L, is a homomor
phism. 

(c) Show that ({J is injective. 
(d) If ( . . . , aL , . . .  ) E ijm Gal(LI F), define a E Gal(K I F) by a (a) = aL (a) if a E L.  

Prove that a is  a well defined automorphism and deduce that ({J is  surjective. 
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Pa rt V 

I NTRO D U CTI O N  TO CO M M UTATIVE RI N GS,  

ALG E B RAI C  G EO M ETRY, AN D 

H O M O LOG I CAL ALG E B RA 

In this part of the book we continue the study of rings and modules, concentrating 
first on commutative rings. The topic of commutative algebra, which is of interest in 
its own right, is also a basic foundation for other areas of algebra. To indicate some 
of the importance of the algebraic topics introduced, we parallel the development of 
the ring theory in Chapter 15  with an introduction to affine algebraic geometry. Each 
section first presents the basic algebraic theory and then follows with an application of 
those ideas to geometry together with an indication of computational methods using 
the theory of Grabner bases from Chapter 9. The purpose here is twofold: the first is to 
present an application of algebraic techniques in the important branch of mathematics 
called Algebraic Geometry, and the second is to indicate some of the motivations for 
the algebraic concepts introduced from their origins in geometric questions. 

This connection of geometry and algebra shows a rich interplay between these two 
areas of mathematics and demonstrates again how results and structures in one circle 
of mathematical ideas provide insights into another. 

In Chapter 16 we continue with some of the fundamental structures involving 
commutative rings, culminating with Dedekind Domains and a structure theorem for 
modules over such rings which is a generalization of the structure theorem for modules 
over P.I.D.s in Chapter 12. 

In Chapter 17 we describe some of the basic techniques of "homological algebra," 
which continues with some of the questions raised by the failure of exactness of some 
of the sequences considered in Chapter 10. The cohomology of groups in this chapter 
is intended to serve both as a more in-depth application of homological algebra to see 
its uses in practice, and as a relatively self contained exposition of this important topic. 
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CHAPTER 1 5  

Co m m utative Ri ngs 
a nd Alge b ra ic Geo m etry 

Throughout this chapter R will denote a commutative ring with 1 =f=. 0. 

1 5. 1  NOETH ERIAN RINGS AND AFFI NE ALGEBRAIC SETS 

In this section we study Noetherian rings in greater detail. These are a natural gener
alization of Principal Ideal Domains and were introduced briefly in Chapter 12. Note 
that when R is considered as a left module over itself, its R-submodules are precisely 
its ideals, so the definition in Section l of Chapter 12 may be phrased in the following 
form: 

Definition. A commutative ring R is said to be Noetherian or to satisfy the ascending 
chain condition on ideals (or A. C. C. on ideals) if there is no infinite increasing chain 
of ideals in R, i.e., whenever It � [z � h � · · · is an increasing chain of ideals of R, 
then there is a positive integer m such that Ik = Im for all k � m .  

Proposition 1 .  If I is an ideal of the Noetherian ring R, then the quotient R j  I is a 
Noetherian ring. Any homomorphic image of a Noetherian ring is Noetherian. 

Proof" If R is a ring and I is an ideal in R, then any infinite ascending chain of 
ideals in the quotient R/ I would correspond by the Lattice Isomorphism Theorem to 
an infinite ascending chain of ideals in R. This gives the first statement, and the second 
follows by the first Isomorphism Theorem. 

Theorem 2. The following are equivalent: 
(1) R is a Noetherian ring. 
(2) Every nonempty set of ideals of R contains a maximal element under inclusion. 
(3) Every ideal of R is finitely generated. 

Proof" The proof is identical to that of Theorem 1 in Section 12. 1  in the special 
case where the R-module M is R itself (and submodules are ideals). 
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Examples 

Every Principal Ideal Domain is Noetherian since it satisfies condition (3) of Theorem 2. 
In particular, Z, the polynomial ring k[x] where k is a field, and the Gaussian integers Z[i ] ,  
are Noetherian rings. The ring Z[x1 , x2 • . . .  ] i s  not Noetherian since the ideal (x1 , xz , . . . ) 
cannot be generated by any finite set (any finite set of generators involves only finitely 
many of the x; ) . Exercise 33( d) in Section 7.4 shows that the ring of continuous real valued 
functions on [0, 1 ]  is not Noetherian. 

A Noetherian ring may have ·arbitrarily long ascending chains of ideals and may have 
infinitely long descending chains of ideals. For example, Z has the infinite descending 
chain 

(2) :J (4) :J (8) :J . . . 

i.e., aNoetherianring need not satisfy the descending chain condition on ideals (D. C. C.). 
We shall see, however, that a commutative ring satisfying D.C.C. on ideals necessarily 
also satisfies A.C.C., i.e., is Noetherian; such rings are called Artinian and are studied 
in Chapter 16. 

The following theorem and its corollary, which we record here for completeness, 
were proved in Section 9.6 (Theorem 21 and Corollary 22, respectively). 

Theorem 3. (Hilbert 's Basis Theorem) If R is a Noetherian ring then so is the polynomial 
ring R[x] .  

Note that Hilbert's Basis Theorem shows how larger Noetherian rings may be built 
from existing ones in a manner analogous to Theorem 7 of Section 9.3 (which proved 
that if R is a U.F.D., then so is R[x]). 

Corollary 4. The polynomial ring k[x1 , xz ,  . . . , x, ] with coefficients from a field k is 
a Noetherian ring. 

Let k be a field. Recall that a ring R is a k-algebra if k is contained in the center of 
R and the identity of k is the identity of R. 

Definition. 
(1) The ring R is a finitely generated k-algebra if R is generated as a ring by k 

together with some finite set r1 , r2 , . . . , r, of elements of R. 
(2) Let R and S be k-algebras. A map 1/1 : R -+ S is a k-algebra homomorphism 

if 1/1 is a ring homomorphism that is the identity on k.  

If  R is  a k-algebra then R i s  both a ring and a vector space over k, and it  is 
important to distinguish the sense in which elements of R are generators for R. For 
example, the polynomial ring k [x1 , . . .  , x,] in a finite number of variables over k is a 
finitely generated k-algebra since x1 ,  . . .  , x, are ring generators, but for n > 0 this ring 
is an infinite dimensional vector space over k. 
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Corollary 5. The ring R is a finitely generated k-algebra if and only if there is some 
surjective k-algebra homomorphism 

cp :  k[Xt , Xz ,  . . .  , Xn ] -+  R 
from the polynomial ring in a finite number of variables onto R that is the identity map 
on k. Any finitely generated k-algebra is therefore Noetherian. 

Proof" If R is generated as a k-algebra by rt , . . . , rn , then we may define the map 
cp : k[xt • . . .  , xn ] -+ R by cp (x; ) = r; for all i and cp.(a) = a for all a E k. Then cp 
extends uniquely to a surjective ring homomorphism. Conversely, given a surjective 
homomorphism cp, the images of Xt , • • .  , Xn under cp then generate R as a k-algebra, 
proving that R is finitely generated. Since k[xt . . . .  , xn] is Noetherian by the previous 
corollary, any finitely generated k-algebra is therefore the quotient of a Noetherian ring, 
hence also Noetherian by Proposition 1 .  

Example 

Suppose the k-algebra R is finite dimensional as a vector space over k, for example when 
R = k[x]f(f(x)), where f is any nonzero polynomial in k[x] .  Then in particular R is a 
finitely generated k-algebra since a vector space basis also generates R as a ring. In this 
case since ideals are also k-subspaces any ascending or descending chain of ideals has at 
most dim k R + 1 distinct terms, hence R satisfies both A. C. C. and D.C. C. on ideals. 

The basic idea behind "algebraic geometry" is to equate geometric questions with 
algebraic questions involving ideals in rings such as k[xt , . . .  , Xn] .  The Noetherian 
nature of these rings reduces many questions to consideration of finitely many algebraic 
equations (and this was in tum one of the main original motivations for Hilbert's Basis 
Theorem). We first consider the principal geometric object, the notion of an "algebraic 
set" of points. 

Affine Algebraic Sets 

Recall that the set An of n-tuples of elements of the field k is called affine n -space 
over k (cf. Section 10. 1 ) .  If Xt , xz , . . .  , xn are independent variables over k, then the 
polynomials f in k[xt . xz , . . .  , Xn] can be viewed as k-valued functions f : An -+ k 
on An by evaluating f at the points in An : 

f : (at . az , . . .  , an ) r-+ f(at , az , . . .  , an) E k. 

This gives a ring of k-valued functions on An , denoted by k[A n] and called the coordinate 
ring of An . For instance, when k = IR:. and n = 2, the coordinate ring of Euclidean 
2-space IR:.2 is denoted by IR:.[A 2] and is the ring of polynomials in two variables, say x 
and y, acting as real valued functions on IR:.2 (the usual "coordinate functions"). 

Each subset S of functions in the coordinate ring k[An] determines a subset Z(S) 
of affine space, namely the set of points where all functions in S are simultaneously 
zero: 

Z(S) = {(at . az ,  . . .  , an) E An I f(at . az , . . .  , an ) = 0 for all f E S}, 
where Z(0) = An . 
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Definition. A subset V of An is called an affine algebraic set (or just an algebraic set) 
if V is the set of common zeros of some set S of polynomials, i.e., if V = Z(S) for 
some S � k[An] .  In this case V = Z(S) is called the locus of S in An . 

If S = (f} or {fl , . . .  , fm } we shall simply write Z(f) or Z(f1 , . . . , fm) for Z(S) 
and call it the locus of f or fl ,  . . .  , fm , respectively. Note that the locus of a single 
polynomial of the form f - g is the same as the solutions in affine n-space of the 
equation f = g, so affine algebraic sets are the solution sets to systems of polynomial 
equations, and as a result occur frequently in mathematics. 

Examples 

(1) If n = 1 then the locus of a single polynomial f E k[x] is the set of roots of f in k. 
The algebraic sets in AJ are 0, any finite set, and k (cf. the exercises). 

(2) The one point subsets of ttn for any n are affine algebraic since { (a1 , a2 , . . .  , an)}  is 
Z(xl - a1 , x2 - a2 , . . .  , Xn - an) .  More generally, any finite subset of ttn is an 
affine algebraic set. 

(3) One may define lines, planes, etc. in An - these are linear algebraic sets, the loci 
of sets of linear (degree 1 )  polynomials of k[xl • . . .  , xn] .  For example, a line in 
A2 is defined by an equation ax + by = c (which is the locus of the polynomial 
f(x , y) = ax + by - c E k[x, y]). A line in A3 is the locus of two linear polynomials 
of k[x ,  y, z] that are not multiples of each other. In particular, the coordinate axes, 
coordinate planes, etc. in ttn are all affine algebraic sets. For instance, the x-axis in 
A3 is the zero set Z (y , z) and the x,y plane is the zero set Z (z). 

(4) In general the algebraic set Z (f) of a nonconstant polynomial f is called a hyper
suiface in ttn . Conic sections are familiar algebraic sets in the Euclidean plane R2. 
For example, the locus of y - x2 is the parabola y = x2, the locus of x2 + y2 - 1 
is the unit circle, and Z(xy - 1) is the hyperbola y = 1jx. The x- and y-axes are 
the algebraic sets Z (y) and Z (x) respectively. Likewise, quadric surfaces such as the 

2 2 
ellipsoid defined by the equation x2 + � + � = 1 are affine algebraic sets in R3 . 

We leave as exercises the straightforward verification of the following properties 
of affine algebraic sets. Let S and T be subsets of k[An] .  

(1) If  S � T then Z(T) � Z(S) (i.e., Z i s  inclusion reversing or contravariant). 
(2) Z(S) = Z(I), where I =  (S) is the ideal in k[An]  generated by the subset S. 
(3) The intersection of two affine algebraic sets is again an affine algebraic set, in 

fact Z(S) n Z(T) = Z(S U T). More generally an arbitrary intersection of affine 
algebraic sets is an algebraic set: if {Sj }  is any collection of subsets of k[An], then 

nZ(Sj)  = Z(USj) .  

(4) The union of two affine algebraic sets i s  again an affine algebraic set, in  fact 
Z (I) U Z ( J) = Z (I J), where I and J are ideals and I J is their product. 

(5) Z(O) = An and Z(l)  = 0 (here 0 and 1 denote constant functions). 

By (2), every affine algebraic set is the algebraic set corresponding to an ideal of 
the coordinate ring. Thus we may consider 

Z : { ideals of k[A n] } ---+ ( affine algebraic sets in An } . 
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Since every ideal I in the Noetherian ring k[xt , x2 , . . .  , x,] is finitely generated, say 
I = Ut . /2,  . . . , fq ),  it follows from (3) that Z(/) = Z(ft ) n Z(f2) n . . . n Z(fq ). i.e., 
each affine algebraic set is the intersection of a finite number of hypersuifaces in A" .  
Note that this "geometric" property i n  affine n-space i s  a consequence of an "algebraic" 
property of the corresponding coordinate ring (namely, Hilbert's Basis Theorem). 

If V is an algebraic set in affine n-space, then there may be many ideals I such 
that V = Z(I).  For example, in affine 2-space over lR the y-axis is the locus of the 
ideal (x) of JR[x , y], and also the locus of (x2) ,  (x3), etc . More generally, the zeros 
of any polynomial are the same as the zeros of all its positive powers, and it follows 
that Z(l) = Z(lk) for all k :::: 1 .  We shall study the relationship between ideals that 
determine the same affine algebraic set in the next section when we discuss radicals of 
ideals. 

While the ideal whose locus determines a particular algebraic set V is not unique, 
there is a unique largest ideal that determines V, given by the set of all polynomials 
that vanish on V. In general, for any subset A of A" define 

I(A) = {f E k[Xt . . . .  , x,] I f(at , a2 ,  . . . , a,) = 0 for all (at , a2 , . . .  , a,) E A} .  
I t  i s  immediate that I(A) i s  an ideal, and i s  the unique largest ideal of functions that 
are identically zero on A . This defines a correspondence 

I : { subsets in A" } ---+ { ideals of k[A"] } .  

Examples 

(1) In the Euclidean plane, I(the x-axis) is the ideal generated by y in the coordinate ring 
IR[x , y]. 

(2) Over any field k, the ideal of functions vanishing at (at , a2 , . . .  , a,) E A" is a maximal 
ideal since it is the kernel of the surjective ring homomorphism from k[xt , . . .  , x, ] to 
the field k given by evaluation at (at , a2 , . . .  , a11 ) .  It follows that 

I( (at ,  a2 , . . .  , a, ) ) =  (xt - at . X2 - a2 , . . . , Xn - a, ) . 

(3) Let V = Z(x3 - y2) in A2 . If (a ,  b) E A2 is an element of V then a3 
= b2 . If 

a f= 0, then also b f= 0 and we can write a = (bfa)2, b = (bfa)3 • It follows 
that V is the set { (a2 , a3) I a E k} . For any polynomial f (x ,  y) E k[x , y] we can 
write f(x ,  y) = fo (x) + ft (x)y + (x3 - y2)g(x ,  y) .  For f(x ,  y) E I(V), i.e., 
f(a2 , a3) = 0 for all a E k, it follows that fo (a2) + ft (a2)a3 = 0 for all a E k. If 
fo (x) = arxr + · · · + ao and ft (x) = hsx' + · · · + bo then 
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fo (x2) + x3 ft (x
2) = (arx2r + . . .  + ao) + (b,x2s+J + . . .  + box

3
) 

and this polynomial is 0 for every a E k. If k is infinite. this polynomial has infinitely 
many zeros, which can happen only if all of the coefficients are zero. The coefficients 
of the terms of even degree are the coefficients of fo (x) and the coefficients of the 
terms of odd degree are the coefficients of ft (x ), so it follows that fo(x) and ft (x) 
are both 0. It follows that f(x ,  y) = (x3 - y2)g(x ,  y), and so 

I( V) = (x3 - y2) C k[x , y] . 

If k is finite, however, there may be elements in I(V) not lying in the ideal (x3 - i). 
For example, if  k = IF2, then V is simply the set { (0, 0) , ( 1 , 1 ) } and so I(V) .contains 
the polynomial x (x - 1) (cf. Exercise 1 5). 
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The following properties of the map I are very easy exercises. Let A and B be 
subsets of A" . 

(6) If A � B then I(B) � I(A) (i.e .• I is also contravariant). 
(7) I(A U B) = I(A) n I(B) .  
(8) I(0) = k[x1 , • . •  , x,] and, if k i s  infinite, I(A") = 0 .  

Moreover, there are easily verified relations between the maps Z and I: 

(9) If A is any subset ofA" then A � Z(I(A)), and if l is any ideal then i � I(Z(J)) .  
(10) If V = Z(l) is an affine algebraic set then V = Z(I(V)),  and if I = I(A) then 

I(Z(J)) = I, i.e., Z(I(Z(l))) = Z(l) and i(Z(I(A))) = I(A) .  

The last relation shows that the maps Z and I act as inverses of  each other provided 
one restricts to the collection of affine algebraic sets V = Z (I) in A" and to the set of 
ideals in k[A"] of the form I(V). In the case where the field k is algebraically closed 
we shall (in the following two sections) characterize those ideals I that are of the form 
I(V) for some affine algebraic set V in terms of purely ring-theoretic properties of the 
ideal I (this is the famous "Zeros Theorem" of Hilbert, cf. Theorem 32). 

Definition. If V � A" is an affine algebraic set the quotient ring k[A"]/I(V) is called 
the coordinate ring of V, and is denoted by k[V] .  

Note that for V = A" and k infinite we have I(V) = 0, so this definition extends 
the previous terminology. The polynomials in k[A"] define k-valued functions on V 
simply by restricting these functions on A" to the subset V. Two such polynomial 
functions f and g define the same function on V if and only if f - g is identically 0 
on V,  which is to say that f - g E I(V). Hence the cosets 7 = f + I(V) giving the 
elements of the quotient k[ V] are precisely the restrictions to V of ordinary polynomial 
functions f from A" to k (which helps to explain the notation k[V]). If x; denotes the 
i1h coordinate function on A" (projecting an n-tuple onto its i 1h component), then the 
restriction x; of x; to V (which also just gives the i1h component of the elements in V 
viewed as a subset of A") is an element of k[V],  and k[V] is finitely generated as a 
k-algebra by x1 , • • •  , x, (although this need not be a minimal generating set). 

Example 

If V = Z(xy - 1) is the hyperbola y = 1 jx in IR2 , then IR[V] = IR[x , y]j(xy - 1) .  The 
polynomials f(x ,  y) = x (the x-coordinate function) and g(x, y) = x + (xy - 1 ), which 
are different functions on JR2, define the same function on the subset V. On the point 
( 1 /2, 2) E V, for example, both give the value 1/2. In the quotient ring IR[V] we have 
xy = 1 ,  so IR[V] � IR[x, 1 jx]. For any function 7 E IR[V] and any (a , b) E V we have 
7<a. b) = f(a , 1 ja) for any polynomial f E k[x ,  y] mapping to 7 in the quotient. 

Suppose now that V � A" and W � Am are two affine algebraic sets. Since V 
and W are defined by the vanishing of polynomials, the most natural algebraic maps 
between V and W are those defined by polynomials: 
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Definition. A map rp : V --+ W is called a morphism (or polynomial map or regular 
map) of algebraic sets if there are polynomials ifJI , . . .  , ifJm E k[xi . x2 , . . .  , Xn] such that 

rp((ai ,  . . .  ' an )) = (rpi (ai ,  . . .  ' an ) • . . . ' ifJm (ai ,  . . .  ' an )) 

for all (ai , . . .  , an) E V.  The map rp :  V --+ W is an isomorphism of algebraic sets if 
there is a morphism l/r : W --+ V with rp o l/r = 1 w and l/r o rp = 1 v . 

Note that in general ifJI , ifJ2 , . . .  , ifJm are not uniquely defined. For example, both 
f = x and g = x + (xy - 1) in the example above define the same morphism from 
V = Z(xy - 1) to W =  AI . 

Suppose F is a polynomial in k[xi , . . .  , Xm].  Then F o rp = F(rpi , ifJ2, . . .  , ifJm) 
is a polynomial in k[xi , . . .  , Xn] since ifJI , ifJ2 , . . .  , ifJm are polynomials in XI , . . . , Xn . 
If F E I(W), then F o rp((a, , a2 , . . . , an)) = 0 for every (a, , a2 , . . . , an) E V 
since rp((a, , a2 , . . .  , an )) E W. Thus F o rp E I(V) . It follows that rp induces 
a well defined map from the quotient ring k[x, , . . .  , Xm]/I(W) to the quotient ring 
k [x, ,  . . .  , Xn ]/I(V) : 

'fP : k[W] --+ k[V] 

f r-+ f o rp  

where f o rp is given by F o rp + I(V ) for any polynomial F = F(x� o  . . .  , Xm) with 
f = F + I(W). It is easy to check that iP is a k-algebra homomorphism (for example, 

'ifi(f + g) = (f + g) o rp = f o rp + g o rp = (fi(f) + 'ifi(g) shows that 'iP is additive) . 
Note also the contravariant nature of '(fi : the morphism from V to W induces a k-algebra 
homomorphism from k[W] to k[V] .  

Suppose conversely that (/) is any k-algebra homomorphism from the coordinate 
ring k[W] = k[xi , . . .  , Xm]/I(W) to k[ V] = k[xi , . . .  , Xn ]/I(V) . Let Fi be a repre-
sentative in k [xi , . . .  , Xn ] for the image under (/) of xi E k[W] (i .e., (/) (xi mod i(W)) 
is Fi mod i(V)). Then rp = (FI ,  . . .  , Fm) defines a polynomial map from An to A

m
, 

and in fact rp is a morphism from V to W. To see this it suffices to check that rp maps a 
point of V to a point of W since by definition rp is already defined by polynomials. If 
g E I(W) C k[xi , . . .  , Xm], then in k[W] we have 

g(x! + I(W) , . . .  , Xm + I(W)) = g(xi , . . . , Xm) + I(W) = I(W) = 0 E k[W], 

and so 
(/) (g(XI + I(W) , . . .  , Xm + I(W))) = 0 E k [V] . 

Since (/) is a k-algebra homomorphism, it follows that 

g ((/)(xi + I(W)) , . . .  , (/) (xm + I(W))  = 0 E k[V].  

By definition, (/) (xi + I(W)) = Fi mod i( V), so 

g(FI mod i( V), . . .  , Fm modi( V)) = 0 E k[ V] , 

i.e . , 
g(FI ,  . . .  , Fm) E I(V). 

It follows that g (FI (a I ,  . . . , an) ,  . . .  , Fm (ai , . . .  , an)) = 0 for every (a I ,  . . . , an) in 
V .  This shows that if (ai ,  . . .  , an ) E V, then every polynomial in I(W) vanishes 
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on fP (ai , . . .  , an) - By property ( 10) of the maps Z and I above, this means that 
fP(ai , . . .  , an ) E Z(I(W)) = W, which proves that fP maps a point in V to a point 
in W. It follows that fP = (F1 , . . .  , Fm) is a morphism from V to W. Since the F; are 
well defined modulo i(V), this morphism from V to W does not depend on the choice 
ofthe F; . Furthermore, the morphism fP induces the original k-algebra homomorphism 
lP from k[W] to k[V] ,  i.e., (i5 = lP , since both homomorphisms take the value F; +I(V) 
on x; + I(W) E k[W]. This proves the first two statements in the following theorem. 

Theorem 6. Let V � An and W � Am be affine algebraic sets. Then there is a bijective 
correspondence 

{ morphisms from V to W } { k-algebra homomorphisms } 
as algebraic sets 

� 
from k[W] to k[V] 

· 
More precisely, 

(1) Every morphism fP : V � W induces an associated k-algebra homomorphism 
(i5 : k[W] � k[V] defined by (iJ(f) = f o fP. 

(2) Every k-algebra homomorphism lP : k[W] � k[V] is induced by a unique 
morphism fP : V � W, i.e., lP = (iJ. 

(3) If fP : V -r W and 1/1 : W � U are morphisms of affine algebraic sets, then 

;;-;; = (i5 o ';f, : k[U] � k[V] .  
(4) The morphism fP : V � W is  an isomorphism if  and only if  (i5 : k[W] � k[V] 

is  a k-algebra isomorphism. 

Proof: The proof of (3) is left as an exercise and ( 4) is then immediate. 

Example 

For any infinite field k let V = AJ and let W = Z(x3 - y2) = {(a2 , a3) 1 a E k}. The 
map cp :  V -r W defined by cp(a) = (a2 ,  a3) is a morphism from V to W. Note that cp is 
a bijection. The coordinate rings are k[ V] = k[x] and k[W] = k[x,  y]f(x3 - y2) (by the 
computations in a previous example - it is at this point we need k to be infinite) and the 
associated k-algebra homomorphism of coordinate rings is determined by 

q5 : k[W] � k[V] 

x r+ x2 

y r+ x3 . 

The image of q5 is the subalgebra k[x2, x3] = k + x2k(x] of k[x], so in particular q5 is not 
smjective. Hence q5 is not an isomorphism of coordinate rings, and it follows that cp is not 
an isomorphism of algebraic sets, even though the morphism cp is a bijective map. The 
inverse map is given by 1/f (O, 0) = 0 and 1/f (a ,  b) = bfa for b =!= 0, and this cannot be 
achieved by a polynomial map. 

The bijection in Theorem 6 gives a translation from maps between two geomet
rically defined algebraic sets V and W into algebraic maps between their coordinate 
rings. It also allows us to define a morphism intrinsically in terms of V and W without 
explicit reference to the ambient affine spaces containing them: 

Sec. 1 5. 1  Noetherian Ri ngs a nd Affine Algebra ic Sets 663 



Corollary 7. Suppose rp : V ---+ W is a map of affine algebraic sets. Then rp is a 
morphism if and only if for every f E k[W] the composite map f o rp is an element of 
k[V] (as a k-valued function on V). When rp is a morphism, rp(v) = w with v E V and 
w E W if and only if �-1 (I({v})) = I({w}) .  

Proof" We first prove that if rp is  any map from V to W such that � is a k-algebra 
homomorphism then rp(v) = w if and only if �-1 (I({v})) = I({w}), which will in 
particular establish the second statement. Note that rp(v) = w if and only if every poly
nomial f vanishing at w vanishes at rp(v) (by property ( 10) above: {w }  = Z(I({w }))). 
Since f vanishes at rp(v) if and only if �(f) vanishes at v, this is equivalent to the 
statement that �(f) E I({v}) for every f E I({w}) ,  i.e., �(I({w}))  � I({v}) ,  or 
I({w}) � �-1 (I({v})) .  Since both I({w }) and I({v}) are maximal ideals, this is 
equivalent to �-1 (I({v})) = I({w}) .  

We now prove the first statement. If rp is a morphism, then f o rp E k[V] for every 
f E k[W]. For the converse, observe first that composition with any map rp : V ---+ W 
defines a k-algebra homomorphism � from the k-algebra of k-valued functions on W to 
the k-algebra of k-valued functions on V (this is immediate from the pointwise definition 
of the addition and multiplication of functions). If f o rp E k[V] for every f E k[W], 
then � is a k-algebra homomorphism from k[W] to k[V], so by the proposition, � = lP 

for a unique morphism cp : V ---+ W. Also, since � is a k-algebra homomorphism from 
k[W] to k[V] it follows by what we have already shown that cp(v) = w if and only if 
�-1 (I({v})) = I({w}) .  Because � = lP, this is equivalent to £P-1 (I({v})) = I({w}) ,  
and so C/>(v) = w.  Hence rp and cp define the same map on V and so rp is a morphism, 
completing the proof. 

Corollary 7 and the last part of Theorem 6 show that the isomorphism type of the 
coordinate ring of V (as a k-algebra) does not depend on the embedding of V in a 
particular affine n-space. 

Computations in Affine Algebraic Sets and k-a lgebras 

The theory of Grobner bases developed in Section 9.6 is very useful in computa
tions involving affine algebraic sets, for example in computing in the coordinate rings 
k[A" ]/I(V). When n > 1 it can be difficult to describe the elements in this quotient 
ring explicitly. By Theorem 23 in Section 9.6, each polynomial f in k[A" ] has a unique 
remainder after general polynomial division by the elements in a Grobner basis for 
I(V), and this remainder therefore serves as a unique representative for the coset J of 
f in the quotient k[A" ]/I(V). 

Examples 

(1) In the example W = Z(x3 - yl) above, we showed I =  I(W) = (x3 - y2) for any 
infinite field k and so k[W] = k[x ,  y]j(x3 - y2) .  Here x3 - y2 gives a Grobner basis for 
I with respect to the lexicographic monomial ordering with y > x,  so every polynomial 
t = t(x ,  y) can be written uniquely in the form t(x ,  y) = to(x) + fi (x)y + [I with 
to (x) ,  fi (x) E k[x]  and [I E I. Then to (x) + fi (x) y gives a unique representative 
for l in k[W].  With respect to the lexicographic monomial ordering with x > y, 
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x3 - y2 is again a Grobner basis for I, but now the remainder representing J in k[W] 
is of the form ho(y) + ht (y)x + h2(y)x2 . 

(2) Let V = Z(xz +y2 +z2 , xy -xz + yz - 2z2) c C3 and W = Z(u3 - uv2 + v3)  c C2. 
We shall show later that / = I( V) = (xz + y2 + z2 ,  xy - xz +  yz - 2z2) c C[x, y , z] 
and J = I(W) = (u3 - uv2 + v3) c C[u , v]. In this case u3 - uv2 + v3 gives a 
Grobner basis for J for the lexicographic monomial ordering with u > v similar to 
the previous example. The situation for I is more complicated. With respect to the 
lexicographic monomial ordering with x > y > z the reduced Grobner basis for I is 
given by 

Unique representatives for C[V] = C[x ,  y, z]j(x2 + xz + y2 , 2x2 - xy + xz - yz) 
are given by the remainders after general polynomial division by {gt , g2 , g3 }.  

We saw already in Section 9.6 that Grobner bases and elimination theory can be used 
in the explicit computation of affine algebraic sets Z(S), or, equivalently, in explicitly 
solving systems of algebraic equations. The same theory can be used to determine 
explicitly a set of generators for the image and kernel of a k-algebra homomorphism 

tP : k[yt , · · · , Ym]/ J ----+ k[Xt , · · · , Xn]/ I 
where I and J are ideals. In the particular case when I = I(V) and J = I(W) are 
the ideals associated to affine algebraic sets V � An and W � Am 

then by Theorem 
6, the k-algebra homomorphism tP corresponds to a morphism from V to W, and we 
shall apply the results here to affine algebraic sets in Section 3 .  

For 1 � i � m, let cp; E k[xt , . . .  , Xn] be any polynomial representing the coset 
tP (y; ), where as usual we use a bar to denote the coset of an element in a quo
tient. The polynomials (/Jt , . . .  , CfJn are unique up to elements of I .  Then the image 
of a coset f(Yt • . . .  , Ym) + J under tP is the coset f(cpt • . . .  , CfJm) + I. Given any 
(/Jt , . . .  , CfJn , the map sending y; to cp; induces a k-algebra homomorphism tP if and only 
if f (Yt • • . •  , Ym) E I for every f E J, a condition which can be checked on a set of 
generators for J. 

Proposition 8. With notation as above, let R = k[yt • . . .  , Ym · Xt , . . .  , Xn] and let A be 
the ideal generated by Yt - (/Jt , . . .  , Ym - CfJm together with generators for I .  Let G be 
the reduced Grobner basis of A with respect to the lexicographic monomial ordering 
Xt > · · · > Xn > Yl > · · · > Ym · Then 

(a) The kernel of tP is A n k[Yt , . • .  , Ym] modulo J. The elements of G in 
k[yt , . . .  , Ym] (taken modulo J) generate ker tP. 

(b) If f E k[xt • . . .  , xn]. then J is in the image of tP if and only if the remainder 
after general polynomial division of f by the elements in G is an element 
h E  k[yt • . . .  , Ym ]. in which case tP (h) = ]. 

Proof· If we show ker tP = A n  k[yt • . . .  , Ym] modulo J then (a) follows by 
Proposition 30 in Section 9.6. Suppose first that f E A n  k[yt • . . .  , Ym] .  If ft • . . .  , is 
are generators for I in k[xt , . . .  , xn] ,  then 

n 
f(Yl · • • .  , Ym) = La; (y; - cp;} + L b;J; 

i=l j=l 
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as polynomials in R, where a1 , • • .  , an , ht . . . .  , hs E R. Substituting y; = (/); we see that 
f ( (/Jt , . . .  , (/Jm ) is an element of I .  Since tP (]) = f ( (/Jt , . . .  , (/Jm ) modulo I , it follows 
that f represents a coset in the kernel of cJJ . Conversely, suppose f E k[yt ,  . . . , Yml 
represents an element in ker tP. Then f ( (/Jt , . . .  , (/Jm) E I (in k[xt , . . .  , Xn]) and so also 
f(({Jt • • • •  , ({Jm) E A (in R). Since y; - ({J; E A, 

f(yt ,  · · · ,  Ym ) = f((/Jt , · . .  , (/Jm) = O mod A 

so f E A n k[yt • . . .  , Ym l 
For (b), suppose first that f E k[xt • . . .  , Xn] represents an element in the image of 

tP, i.e., ] = tP(h) for some polynomial h E  k[yt • . . .  , Ym l .  Then 

f(xt , . . . , Xn) - h(({Jt ,  . . .  , (/Jm ) E I 

as polynomials in k[xt , . . .  , Xn] ,  and so f(xt , . . .  , Xn) - h (({Jt ,  . . .  , (/Jm ) E A as poly-
nomials in R. As before, since each y; - (/); E A it follows that 

f (xt , . . .  , Xn ) - h (yt , . . . , Ym ) E A. 

Then f(x1 , • • •  , Xn) and h (y1 , • • •  , Ym ) leave the same remainder after general poly
nomial division by the elements in G. Since Xt > · · · > Xn > Yt > · · · > Ym • 
the remainder of h (Yt , . . .  , Ym ) is again a polynomial ho only involving Yt , . . .  , Ym . 
Note also that h - ho E A n  k[yt , . . .  , Yml so h and ho differ by an element in 
ker tP by (a), so tP(ho) = tP(h) = ]. For the converse, if f leaves the remain
der h E k[yt , . . .  , Yml after general polynomial division by the elements in G then 
f (xt , . . .  , Xn ) - h (yt , . . . , Ym ) E A, i.e., 

n 

j(Xt , . . .  , Xn ) - h (yt , . . .  , Ym ) = L a; (y; - (/); ) + L b;J; 
i=l j=l 

as polynomials in R, where at , . . . , an , b1 , . • .  , hs E R. Substituting y; = (/); we obtain 

j(Xt ,  . . .  , Xn) - h((/Jt ,  . . .  , (/Jm ) E I 

as polynomials in Xt , . . .  Xn , and so ] = tP (h) .  
It follows in particular from Proposition 8 that tP will be a surjective homomorphism 

if and only if for each i = 1 ,  2, . . . , n, dividing x; by the elements in the Grobner basis 
G leaves a remainder h; in k[yt • . . .  , Ym l In particular, Xn - hn leaves a remainder 
of 0. But this means the leading term of some element gn in G divides the leading 
term of Xn - hn and since Xt > · · · > Xn > Yt > · · · > Ym by the choice of the 
ordering, the leading term of Xn - hn is just Xn · It follows that L T(gn) = Xn and so 
gn = Xn - hn,O E G for some hn,O E k[yt ,  . . . , Ym J (in fact hn,O is the remainder of hn 
after division by the elements in G). Next, since Xn-l - hn-l leaves a remainder of 0, 
there is an element gn-l in G whose leading term is Xn- 1 · Since G is a reduced Grobner 
basis and gn E G , the leading term of gn ,  i.e., Xn , does not divide any of the terms in 
gn-1 and it follows that gn- 1 = Xn-1 - hn-1 ,0  E G for some hn- 1 ,0 E k[Yt , . . .  , Yml ·  
Proceeding in  a similar fashion we obtain the following corollary, showing that whether 
tP is smjective can be seen immediately from the elements in the reduced Grobner basis. 
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Corollary 9. The map C/J is surjective if and only if for each i ,  1 :::; i :::; n, the reduced 
Grobner basis G contains a polynomial x; - h; where h; E k[y1 , • • •  , Yml ·  

Examples 

(1) Let 4> : Q[u , v] � Q[x] be defined by 4>(u) = x2 + x and 4>(v) = x3• The reduced 
Grobner basis G for the ideal A = (u -x2-x, v-x3) with respect to the lexicographic 
monomial ordering x > u > v is 

Kl = x2 + x - u , 
K2 = ux + x - u - v, 

K3 = vx - x - u2 + u + 2v, 
K4 = u3 - 3uv - v2 - v. 

The kernel of 4> is the ideal generated by G n Q[u , v] = {g4} . By Corollary 9, we 
see that 4> is not surjective. The remainder after general polynomial division of x4 
by {g1 ,  g. , g3 , g4} is x + u2 - u - 2v ¢ Q[u , v], so x4 is not in the image of 4>. The 
remainder ofx5 +x is -u2 +uv+u +2v E Q[u , v] so x5 +-x = 4>(-u2+uv+u+2v) 
is in the image of 4>, as a quick check will confinn. 

(2) Let V = Z(I) c <C3 and W = Z(J) c <C2 where I = (xz+y2+z2 , xy-xz+yz-2z2) 
and J = (u3 - uv2 + v3) as in Example 2 following Corollary 7. Then the map 
(/) :  V � W defined by qJ((a , b, c)) = (c, b) is a morphism from V to W. To see this, 
we must check that (c, b) E W if (a , b, c) E V. Equivalently, by Theorem 6, we must 
check that the map 

q; :  <C[u , v]f(u3 - uv2 + v3) � <C[x, y , z]f(xz + y2 + z2 , xy - xz + yz - 2z2) 
induced by mapping u to z and v to y is a <C-algebra homomorphism. This in turn is 
equivalent to verifying that f = z3 - zy2 + y3 is an element of the ideal I. In this 
case f is actually an element in the reduced Grobner basis for I:  

xy + y2 + yz - z2 , xz + i + z2 , y3 - y2z + z3 , 
so certainly f E I. (Note that dividing f by the original two generators for I leaves 
the nonzero remainder f itself, from which it is much less clear that f E I, so it is 
important to use a Grobner basis when working in coordinate rings.) 

(3) In the previous example, let A =  (u - z , v - y, xz + y2 + z2 , xy - xz + yz -
2z2) c <C[ u, v, x , y , z] as in Proposition 8. With respect to the lexicographic monomial 
ordering x > y > z > u > v the reduced Grobner basis G for A is 

xu + u2 + v2 , xv - u2 + uv + v2 , y - v , z - u , u3 - uv2 + v3 . 
By Proposition 8, we see that ker q; is generated by u3 - uv2 + v3 = 0 mod J, so q; is 
injective. Since there is no element of the form x - h(u , v) in G, q; is not surjective 
(in fact x is not in the image). 

As a final example, we use the determination of the kernel of k-algebra homomor
phisms to compute minimal polynomials of elements in simple algebraic field exten
sions. 

Proposition 10. Suppose a is a root of the irreducible polynomial p(x) E k[x] and 
{3 E k(a), say {3 = f(a) for the polynomial f E k[x] .  Let G be the reduced Grobner 
basis for the ideal (p, y - f) in k[x ,  y] for the lexicographic monomial ordering x > y.  
Then the minimal polynomial of {3 over k is the monic polynomial in G n k[y ] .  
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Proof: The kernel of the k-algebra homomorphism k[y] --+ k[x]j(p) � k(a) 
defined by mapping y first to f and then to {3 is the principal ideal generated by the 
minimal polynomial of {3 in k[y ],  and the result follows by Proposition 8. 

Example 

Take k  = Q, and let ,B = l + V2+3 W E Q( 0).  Then the ideal (x3 -2, y - ( l +x+3x2)) 
in Q[x , y] has reduced Grabner basis {53x - 3y2 + 7y + 32, y3 - 3y2 - 1 5y - 93} 
for the lexicographic monomial ordering x > y, so the minimal polynomial for ,8 is 
y3 - 3y2 - 15y - 93 . 

E X E R C I S E S 

Let R be a commutative ring with l =1- 0 and let k be a field. 

1. Prove the converse to Hilbert's Basis Theorem: if the polynomial ring R[x] is Noetherian, 
then R is Noetherian. 

2. Show that each of the following rings are not Noetherian by exhibiting an explicit infinite 
increasing chain of ideals: 
(a) the ring of continuous real valued functions on [0, 1 ] ,  
(b) the ring of all functions from any infinite set X to Zj2Z. 

3. Prove that the field k(x) of rational functions over k in the variable x is not a finitely 
generated k-algebra. (Recall that k(x) is the field offractions of the polynomial ring k[x] .  
Note that k(x) is a finitely generated .field extension over k.) 

4. Prove that if R is Noetherian, then so is the ring R[[x]] of formal power series in the 
variable x with coefficients from R ( cf. Exercise 3, Section 7 .2). [Mimic the proof of 
Hilbert's Basis Theorem.] 

5. (Fitting's Lemma) Suppose M is a Noetherian R-module and 9 :  M -+  M is an R-module 
endomorphism of M. Prove that ker(9" ) n image(911 )  = 0 for n sufficiently large. Show 
that if 9 is surjective, then 9 is an isomorphism. [Observe that ker(9) � ker(92) � . . . .  ] 

6. Suppose that 0 � M' � M � M" � 0 is an exact sequence of R-modules. Prove 
that M is a Noetherian R-module if and only if M' and M" are Noetherian R-modules. 

7. Prove that submodules, quotient modules, and finite direct sums of Noetherian R-modules 
are again Noetherian R-modules. 

8. If R is a Noetherian ring, prove that M is a Noetherian R-module if and only if M is a 
finitely generated R-module. (Thus any submodule of a finitely generated module over a 
Noetherian ring is also finitely generated) 

9. For k a field show that any subring of the polynomial ring k[x] containing k is Noetherian. 
Give an example to show such subrings need not be U.F.D.s. [If k c R � k[x] and 
y E R - k show that k[x] is a finitely generated k[y]-module; then use the previous two 
exercises. For the second, consider k[x2 , x3] . ]  

10. Prove that the subring k[x ,  x2y, x3yl , . . .  , xi yi- l
, . . .  ] ofthe polynomial ring k[x ,  y] is not 

a Noetherian ring, hence not a finitely generated k-algebra. (Thus subrings of Noetherian 
rings need not be Noetherian and subalgebras of finitely generated k-algebras need not be 
finitely generated.) 

11. Suppose R is a commutative ring in which all the prime ideals are finitely generated. This 
exercise proves that R is Noetherian. 
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(a) Prove that if the collection of ideals of R that are not finitely generated is nonempty, 
then it contains a maximal element I, and that R I I is a Noetherian ring. 

(b) Prove that there are finitely generated ideals lt and h containing I with lt h � I 
and that J1 ]z is finitely generated. [Observe that I is not a prime ideal.] 

(c) Prove that I I lt Jz is a finitely generated R I I-submodule of lt I lt ]z .  [Use Exercise 
8.] 

(d) Show that (c) implies the contradiction that I would be finitely generated over R and 
deduce that R is Noetherian. 

12. Suppose R is a Noetherian ring and S is a finitely generated R-algebra. If T � S is an 
R-algebra such that S is a finitely generated T -module, prove that T is a finitely generated 
R-algebra. [If s1 , . . •  , s, generate S as an R-algebra, and si , . . .  , s:r, generate S as a T
module, show that the elements s; and sjsi can be written as finite T -linear combinations of 
the s; . If To is the R-subalgebra generated by the coefficients of these linear combinations, 
show S (hence To) is finitely generated (by the s;) as a To-module, and conclude that T is 
finitely generated as an R-algebra.] 

13. Verify properties ( 1 )  to ( 10) of the maps Z and I. 

14. Show that the affine algebraic sets in A 1 over any field k are 0, k, and finite subsets of k. 

15. If k = lFz and V = { (0, 0) , ( 1 , 1 ) }  c A2, show that i(V) is the product ideal mt mz where 
mt = (x , y) and mz = (x - 1 ,  y - 1 ) .  

16. Suppose that V i s  a finite algebraic set i n  A" . I f  V has m points, prove that k[V] is 
isomorphic as a k-algebra to I(" .  [Use the Chinese Remainder Theorem.] 

17. If k is a finite field show that every subset of A" is an affine algebraic set. 

18. If k = lF q is the finite field with q elements show that I (A 1 ) = (xq - x) c k[x] .  

19. For each nonconstant f E k[x] describe Z{f) � A 1 in  terms of the unique factorization 
of f in k[x],  and then use this to describe I(Z(f)) .  Deduce that I(Z(f)) = (f) if and 
only if f is the product of distinct linear factors in k[x] .  

20. If f and g are irreducible polynomials in k[x , y] that are not associates (do not divide each 
other), show that Z((J, g)) is either 0 or a finite set in A2 . [If {f. g) =f. ( 1 ), show (/, g) 
contains a nonzero polynomial in k[x] (and similarly a nonzero polynomial in k[y]) by 
letting R = k[x] ,  F = k(x),  and applying Gauss's Lemma to show f and g are relatively 
prime in F[y ] . ]  

21. Identify each 2 x 2 matrix (: � )  with entries from k with the point (a , b, c, d) in A4. 

Show that the group S Lz (k) of matrices of determinant 1 is an algebraic set in A 4. 

22. Prove that SL, (k) is an affine algebraic set in A"2 • [Generalize the preceding exercise.] 

23. Let V be any line in IR2 (the zero set of any nonzero linear polynomial ax + by - c). 
Prove that IR[V] is isomorphic as an IR-algebra to the polynomial ring IR[x] ,  and give the 
corresponding isomorphism from A 1 to V .  

24. Let V = Z(xy - z )  � A3 • Prove that V is isomorphic to A2 and provide an explicit 
isomorphism q; and associated k-algebra isomorphism q; from k[Vl to k[A2],  along with 
their inverses. Is V = Z(xy - z2) isomorphic to A2? 

25. Suppose V � A" is an affine algebraic set and f E k[V] .  The graph of f is the collection 
of points { (at . . . .  , a, ,  f(at • . . .  , a,)) }  in A"+l . Prove that the graph of f is an affine 
algebraic set isomorphic to V. [The morphism in one direction maps (at , . . . , a, ) to 
(at , . . .  , a, , f(at • . . .  , a, ) ) .] 
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26. Let V = Z(xz - y2 , yz - x3 , z2 - x2y) � A3 . 
(a) Prove that the map (JJ : A1 � V defined by (JJ(t) = (t3 , t4 , t5) is a smjective morphism. 

[For the smjectivity, if (x ,  y , z) f= (0, 0, 0), let t = ylx .] 
(b) Describe the corresponding k-algebra homomorphism � : k[V] � k[A1 ] explicitly. 
(c) Prove that fP is not an isomorphism. 

27. Suppose fP : V � W is a morphism of affine algebraic sets. If W' is an affine algebraic 
subset of W prove that the preimage V' = fP-1 (W') of W' in V is an affine algebraic 
subset of V .  If W' = Z(l) show that V' = Z(�{I)) for the corresponding morphism 
� : k[W] � k[V]. 

28. Prove that if V and W are affine algebraic sets, then so is V x W and k[V  x W] :::::::: 
k[V] 0k k[W]. 

The following seven exercises introduce the notion of the associated primes of an R-module 
M. Cf. also Exercises 30-40 in Section 4 and Exercises 25-30 in Section 5. 

Definition. A prime ideal P of R is said to be associated to the R-module M (sometimes 
called an assassin for M) if P is the annihilator of some element m of M, i.e., if M contains 
a submodule Rm isomorphic to R 1 P. The collection of associated primes for M is denoted 
AssR (M). 

When M = I is an ideal in R, it is customary to abuse the terminology and refer instead to 
the elements of AssR (RI I) (rather than the less interesting collection AssR {I)) as the primes 
associated to I. (Cf. Exercises 28-29 in Section 5.) 

29. If R = &': and M = &':In&':, show that AssR (M) consists of the prime ideals (p) for the 
prime divisors p of n.  

30. If M is  the union of some collection of submodules M; , prove that AssR (M) is  the union 
of the collection AssR (M; ) .  

31. Suppose that Ann(m) = P, i .e. , that Rm � RIP. Prove that if 0 f= m' E Rm then 
Ann(m') = P. Deduce thatAssR (RIP) = {P} .  [Observe that RI P is an integral domain.] 

32. Suppose that M is an R -module and that P is a maximal element in the collection of ideals 
of the form Ann(m), for m E M. Prove that P is a prime ideal. [If P = Ann(m) and 
ab E P, show that bm f= 0 implies Ann(m) � Ann(bm) and use the maximality of P to 
deduce that a E Ann(bm) = P .] 

33. Suppose R is a Noetherian ring and M f= 0 is an R-module. Prove that AssR (M) f= 0. 
[Use Exercise 32.] 

34. If L is a submodule of M with quotient N � MIL, prove that there are containments 
AssR (N) � AssR (M) � AssR (L) U AssR (N), and show that both containments can be 
proper. [If Rm � Rl P, show that Rm n L = 0 implies P E AssR (N) and if Rm n L f= 0 
then P E AssR (L) (by Exercise 3 1 ). For the second statement, consider n&': c &':.] 

35. Suppose M is an R-module and let S be a subset of the prime ideals in AssR (M) . Prove 
there is a submodule N of M with AssR (N) = S and AssR (MIN) = AssR (M) - S. 
[Consider the collection of submodules N' of M with AssR (N') � S. Use Exercise 30 and 
Zorn's Lemma to show that there is a maximal submodule N subject to AssR (N) � S. If 
P E AssR (MIN),  there is a submodule M' IN � Rl P. Use the previous exercise to show 
thatAssR (M') � AssR (N) U {P} and then use maximality of N to show P E AssR (M) -S, 
so that AssR (MIN) � AssR (M) - S and AssR (N) � S. Use the previous exercise again 
to conclude that equality holds in each.] 
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Suppose M is a finitely generated module over the commutative ring R with generators 
m , , . . .  , mn . The Fitting ideal :FR (M) (of level 0) of M (also called a determinant ideal) 
is the ideal in R generated by the determinants of all n x n matrices A = (r;j) where Yij E R 
and ri l m l  + · · · + nnmn = O in M, i.e . ,  the rows of A consist of the coefficients in R of relations 
among the generators m; (A is called an n x n "relations matrix" for M). The following five 
exercises outline some of the properties of the Fitting ideal. 

36. (a) Show that the Fitting ideal of M is also the ideal in R generated by all the n x n minors 
of all p x n matrices A = (r; j ) for p � 1 whose rows consist of the coefficients in R 
of relations among the generators m; . 

(b) Let A be a fixed p x n matrix as in (a) and let A' be a p x n matrix obtained from 
A by any elementary row or column operation. Show that the ideal in R generated 
by all the n x n minors of A is the same as the ideal in R generated by all the n x n 
minors of A'. 

37. Suppose m 1 ,  . . . , mn and m; , . . .  , m�, arc two sets of R-module generators for M. Let 
:F denote the Fitting ideal for M computed using the generators m 1 , . . .  , mn and let :F' 
denote the Fitting ideal for M computed using the generators m 1 ,  . . . , mn , m; , . . .  , m;1, . 
(a) Show that m� = a,., , m ,  + · · · + as'nmn for some as' I •  . . . , as'n E R, and deduce that 

(-as' ! , . . .  , -as'n • 0, . . .  , 0, 1 , 0, . . . 0) is a relation among m 1 , . . .  , mn , m; , . . .  , m�, . 
(b) If A = (r;j ) is an n x n matrix whose rows are the coefficients of relations among 

m 1 ,  . . .  , mn show that det A = det A' where A' is an (n + n') x (n + n') matrix whose 
rows are the coefficients of relations among m , , . . .  , mn , m� , . . . .  m�, . Deduce that 
:F � :F'. [Use (a) to find a block upper triangular A' having A in the upper left block 
and the n' x n' identity matrix in the lower right block.] 

(c) Prove that :F' � :F and conclude that :F' = :F. [Use the previous exercise.] 
(d) Deduce from (c) that the Fitting ideal :F R (M) of M is an invariant of M that does not 

depend on the choice of generators for M used to compute it. 

38. All modules in this exercise are assumed finitely generated. 
(a) If M can be generated by n elements prove that Ann(M)n 

� :FR (M) � Ann(M), 
where Ann(M) is the annihilator of M in R. [If A is an n x n relations matrix for M, 
then AX = 0, where X is the column matrix whose entries are m 1 ,  . . .  , mn. Multiply 
by the adjoint of A to deduce that det A annihilates M.] 

(b) If M = M, x Mz is the direct product of the R-modules M, and Mz prove that 
:FR (M) = :FR (M, ):FR (Mz). 

(c) If M = (R/ h )  x · · · x (R/ In) is the direct product of cyclic R-modules for ideals /; 
in R prove that :FR (M) = h h  . . .  ln . 

(d) If R = Z and M is a finitely generated abelian group show that :Fz (M) = 0 if M is 
infinite and :Fz (M) = I M IZ if M is finite. 

(e) If I is an ideal in R prove thatthe image of :FR (M) in thequotient R/ I is :FR;I (M/ I M) . 
(f) Prove that :FR (Mj/M) � (:FR (M) , I) � R. 
(g) If q:; :  M ----+ M' is a smjective R-module homomorphism prove :FR (M) � :FR (M'). 
(h) If 0 ----+ L ----+ M ----+ N ----+ 0 is a short exact sequence of R-modules, prove that 

:FR (L):FR (N) � :FR (M). 
(i) Suppose R is the polynomial ring k[x ,  y ,  z] over the field k. Let M = Rj(x ,  y2, yz, z2) 

and let L be the submodule (x , y , z)j(x , yl , yz, z2)  of M. Prove that :FR (M) is 
(x , y2 , yz, z2) and :FR (L) is (x , y ,  z)2 . (This shows that in general the Fitting ideal 
of a submodule L of M need not contain the Fitting ideal for M.) 

39. Suppose M is an R-module and that q:; : Rn ----+ M is a smjective R-module homomorphism 
(i.e. ,  M can be generated by n elements). Let L = ker q:;. Prove that the image of the 
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R-module homomorphism from 1\n (L) � 1\n (Rn) � R induced by the inclusion of L 
in Rn is the Fitting ideal :FR (M). 

40. Suppose R and S are commutative rings, f{J : R � S is a ring homomorphism, M is a 
finitely generated R-module, and M' = S ®R M is the S-module obtained by extending 
scalars from R to S. Prove that the Fitting ideal :Fs (M') for M' over S is the extension to 
S of the Fitting ideal :FR (M) for M over R.  

The following two exercises indicate how the remainder in Theorem 23 of Chapter 9 can be 
used to effect computations in quotients of polynomial rings. 

41. Suppose {gt , . . .  , gm } is a Grobner basis for the ideal I in k[xt , . . .  , xn 1 - Prove that the 
monomials m not divisible by any LT(g; ) ,  1 � i � m, give a k-vector space basis for the 
quotient k[xt , . . .  , Xn ]/ I .  

42. Let I = (x3y - xl + I ,  x2y2 - y3 - 1 )  as  in  Example 1 following Proposition 9.26. 
(a) Use the previous exercise to show that { 1 , y, y2 , y3 } is a basis for the k-vector space 

k[x, y]fi. 
(b) Compute the 4 x 4 multiplication table for the basis vectors in (a). 

43. Suppose K[x1 , • . .  , xn] is a polynomial ring in n variables over a field K and k is a subfield 
of K. If I is an ideal in k[x1 , • . .  , xn]. let I' be the ideal generated by I in K[xt , . . .  , xn 1 -
(a) If G i s  a Grobner basis for the ideal I in  k[xt , . . .  , xn] with respect to some monomial 

ordering, show that G is also a Grobner basis for the ideal I' in K[xt , . . .  , xn] with 
respect to the same monomial ordering. [Use Buchberger's Criterion.] 

(b) Prove that the dimension of the quotient k[xt , . . .  , xn]/  I as a vector space over k is 
the same as the dimension of the quotient K[xt • . . .  , xn]/ I' as a vector space over K. 
[One method: use (a) and Exercise 41 .] 

(c) Prove that I = k[xt , . . .  , xn ] if and only if I' = K[xt , . . .  , Xn ] -

44 .  Let V = Z(x3 -x2z-y2z) and W = Z(x2+y2-z2) in <C3 . Theni(V) = (x3 -x2z-y2z) 
and I(W) = (x2 + y2 - z2) in <C[x,  y, z] (cf. Exercise 23 in Section 3). Show that 
f{J((a , b, c)) = (a2c - b2c, 2abc, -a3) defines a morphism from V to W. 

45. Let V = Z(x3 + y3 + 7z3) c <C3 . Then I(V) = (x3 + y3 + 7z3) in <C[x, y, z] (cf. 
Exercise 24 in Section 3). 
(a) Show that 

q}(z) = z(x3 - l) 
defines a <C-algebra homomorphism from k[V] to itself. 

(b) Let f{J : V � V be the morphism corresponding to q;. Observe that (-2, I , I )  E V 
and compute f{J((-2, 1 ,  1)) E V.  

(c) Prove there are infinitely many points (a , b, c) on V with a ,  b, c E Z and the greatest 
common divisor of a, b, and c is 1 .  

46. Let V = Z(xz +y2 +z2 , xy -xz+yz - 2z2) C <C3 and W = Z(u3 - uv2 + v3) C <C2 as in 
Example 2 followingCorollary 9. Show that the map f{J((a ,  b)) = (-2a2+ab, ab-b2 , a2 -
ab) defines a morphism from W to V. Show the corresponding <C-algebra homomorphism 
from k[V] to k[W] has a kernel generated by x2 - 3y2 + yz. 

47. Define 4> : Q[u, v , w] � Q[x, y] by 4> (u) = x2 + y, 4> (v) = x + y2, and 4> (w) = x - y. 
Show that neither x nor y is in the image of 4> . Show that f = 2x3 - 4xy - 2y3 - 4y is 
in the image of 4> and find a polynomial in Q[u, v, w] mapping to f. Show that ker 4> is 
the ideal generated by 
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u2 - 2uv - 2uw2 + 4uw + v2 - 2vw2 - 4vw + w4 + 3w2. 
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48. Suppose a is a root of the irreducible polynomial p(x) E k[x] and f3 = f(a)fg(a) with 
polynomials f(x) ,  g(x) E k[x] where g(a) i= 0. 
(a) Show ag + bp = 1 for some polynomials a,  b E k[x] and show f3 = h(a) where 

h = af . 
(b) Show that the ideals (p, y - h) and (p, gy - f) are equal in k[x ,  y] .  
(c) Conclude that the minimal polynomial for f3 is the monic polynomial in  G n k[y] 

where G is the reduced Grabner basis for the ideal (p, gy - f) in k[x , y] for the 
lexicographic monomial ordering x > y.  

(d) Find the minimal polynomial over Q of (3 - V2 + .W)/(1 + 3 V2 - 3 ,v4). 

1 5.2 RADICALS AND AFFINE VARIETIES 

Since the zeros of a polynomial f are the same as the zeros of the powers /2, f3 , • • •  
in general there are many different ideals in the ring k [xt , x2 , . . .  , xn J whose zero locus 
define the same algebraic set V in affine n-space. This leads to the notion of the radical 
of an ideal, which can be defined in any commutative ring: 

Definition. Let I be an ideal in a commutative ring R. 
(1) The radical of 1 ,  denoted by rad I,  is the collection of elements in R some 

power of which lie in I ,  i.e., 

rad i = {a E R I ak E I for some k � 1 } .  

(2) The radical of the zero ideal i s  called the nilradical of R .  
(3) A n  ideal I i s  called a radical ideal if I = rad I .  

Note that a E R is in  the nilradical of  R if  and only if some power of a is 0, so  the 
nilradical of R is the set of all nilpotent elements of R. 

Proposition 11. Let I be an ideal in the commutative ring R.  Then rad I is an ideal 
containing I, and (rad /)/I is the nilradical of R/ I .  In particular, Rj I has no nilpotent 
elements if and only if I = rad I is a radical ideaL 

Proof" It is clear that I 5; rad I. By definition, the nilradica] of R/I consists of 
the elements in the quotient some power of which is 0. Under the Lattice Isomorphism 
Theorem for rings this collection of elements corresponds to the elements of R some 
power of which lie in I, i.e., rad I. It is therefore sufficient to prove that the nilradical N 
of any commutative ring R is an ideaL Since 0 E N, N =j:. 0. If a E N and r E R, then 
since an = 0 for some n � 1 ,  the commutativity of R implies that (ra)n = rnan = 0, 
so ra E N. It remains to see that if a ,  b E N then a + b E N. Suppose an = 0 and 
bm = 0. Since the Binomial Theorem holds in the commutative ring R (cf. Exercise 25 
in Section 7.3), 

n+m 
(a + bt+m = L r;ai bn+m-i 

i=O 

for some ring elements r; (the binomial coefficients in R). For each term in this sum 
either i � n (in which case a; = 0) or n + m - i � m, (in which case bn+m-i = 0). 
Hence (a + b t+m = 0, which shows that a + b is nilpotent, i.e., a + b E N. 

Sec. 1 5.2 Rad icals and Affine Varieties 673 



Proposition 12. The radical of a proper ideal I is the intersection of all prime ideals 
containing I. In particular, the nilradical is the intersection of all the prime ideals in R. 

Proof Passing to R /I,  Proposition 1 1  shows that it suffices to prove this result for 
I = 0, and in this case the statement is that the nilradical N of R is the intersection of 
all the prime ideals in R. Let N' denote the intersection of all the prime ideals in R. 

Let a be any nilpotent element in  R and let P be any prime ideal. Since ak = 0 
for some k, there is a smallest positive power n such that a" E P .  Then the product 
a"-1 a E P, and since P is prime, either a"-1  E P or a E P. The former contradicts 
the rninirnality of n, and so a E P .  Since P was arbitrary, a E N', which shows that 
N � N'. 

We prove the reverse containment N' � N by showing that if a f/: N, then a f/: N'. 
If a is an element of R not contained in N, let S be the family of all proper ideals not 
containing any positive power of a. The collection S is not empty since 0 E S. Also, if 
ak is not contained in any ideal in the chain I1 � /z � · · · , then ak is also not contained 
in the union of these ideals, which shows that chains in S have upper bounds. By Zorn's 
Lemma, S has a maximal element, P. The ideal P must in fact be a prime ideal, as 
follows. Suppose for some x and y not contained in P, the product xy is an element of 
P .  By the maximality of P, a" E (x) + P and am E (y) + P for some positive integers 
n and m .  Then an+m E (xy) + P = P contradicting the fact that P is an element 
of S. This shows that P is indeed a prime ideal not containing a, and hence a f/: N', 
completing the proof. 

Note that in Noetherian rings, Theorem 2 can be used to circumvent the appeal to 
Zorn's Lemma in the preceding proof. 

Corollary 13. Prime (and hence also maximal) ideals are radical. 

Proof· If P is a prime ideal, then P is clearly the intersection of all the prime ideals 
containing P, so P = rad P by the proposition. 

Examples 

(1) In the ring of integers Z, the ideal (a) is a radical ideal if and only if a is square
free or zero. More generally, if a = p�1 p�2 • • •  p�' with a; ;::.: 1 for all i, is the 
prime factorization of the positive integer a, then rad(a) = (PI P2 · · · Pr ) .  For in
stance, rad(l 80) = (30). Note that (p1 ) ,  (P2) • . . .  , (Pr) are precisely the prime ideals 
containing the ideal (a) and that their intersection is the ideal (pt P2 · · · Pr ). More 
generally, in any U.F.D. R, rad(a) = (Pt P2 · · · Pr) if a = p�1 p�2 • • • p�' is the unique 
factorization of a into distinct irreducibles. 

(2) The ideal (x3 - y2) in k[x ,  y] is a prime ideal (Exercise 14, Section 9. 1 ), hence is 
radical. 

(3) If l1 , . . . , lm are linear polynomials in k[x . ,  x2 , . . .  , x11 ] then I = Ut , . . . , lm ) is either 
k[x1 , x2 , . . .  , x,1 ] or a prime ideal, hence I is a radical ideal. 

Proposition 14. If R is a Noetherian ring then for any ideal I some positive power 
of rad I is contained in I .  In particular, the nilradical, N, of a Noetherian ring is a 
nilpotent ideal: Nk = 0 for some k � 1 .  
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Proof" For any ideal I ,  the ideal rad I is finitely generated since R is Noetherian. If 
a1 , . . . , am are generators of rad I, then by definition of the radical, for each i we have 

a�; E I for some positive integer k; . Let k be the maximum of all the k; . Then the ideal 

(rad I)km is generated by elements of the form af1 ag2 • • • a�m where d1 + · · · + dm = km, 
and each of these elements has at least one factor a1; with d; :=: k. Then a1; E I, hence 

each generator of (rad I)km lies in I,  and so (rad I)km f: I .  

The Zariski Topology 

We saw in the preceding section that if we restrict to the set of ideals I of k[An] arising 
as the ideals associated with some algebraic set V, i.e., with I = I(V),  then the maps 
Z (from such ideals to algebraic sets) and I (from algebraic sets to ideals) are inverses 
of each other: Z(I(V)) = V and i(Z{l)) = I.  The elements of the ring k[An]/I(V) 
give k-valued functions on V and, since k has no nilpotent elements, powers of nonzero 
functions are also nonzero functions. Put another way, the ring k[An]/I(V) has no 
nilpotent elements, so by Proposition 1 1 ,  the ideal I(V) is always a radical ideal. 

For arbitrary fields k, it is in general not true that every radical ideal is the ideal 
of some algebraic set, i.e., of the form I (V) for some algebraic set V. For example, 
the ideal (x2 + 1) in JR[x] is maximal, hence is a radical ideal (by Corollary 1 3), but 
is not the ideal of any algebraic set - if it were, then x2 + 1 would have to vanish on 
that set, but x2 + 1 has no zeros in JR. A similar construction works for any field k that 
is not algebraically closed - there exists an irreducible polynomial p(x) of degree at 
least 2 in k[x] ,  which then generates the maximal (hence radical) ideal (p(x)) in k[x] 
that has no zeros in k. It is perhaps surprising that the presence of polynomials in one 
variable that have no zeros is the only obstruction to a radical ideal (in any number 
of variables) not being of the form I(V). This is shown by the next theorem, which 
provides a fundamental connection between "geometry" and "algebra" and shows that 
over an algebraically closed field (such as C) every radical ideal is of the form I(V) .  
Over these fields the "geometrically defined" ideals I = I(V) are therefore the same 
as the radical ideals, which is a "purely algebraic" property of the ideal I (namely that 
I =  rad i). 

Theorem. (Hilbert 's Nullstellensatz) Let E be an algebraically closed field. Then 
I(Z(l)) = rad I for every ideal I of E[x1 , x2 • . . .  , Xn] .  Moreover, the maps Z and I 
in the correspondence 

{affine algebraic sets} 

are bijections that are inverses of each other. 

I ---+ 
+-

z 
{radical ideals} 

Proof" This will be proved in the next section (cf. Theorem 32). 

Example 

The maps I and Z in the Nullstellensatz are defined over any field k, and as mentioned 
are not bijections if k is not algebraically closed. For any field k, however, the map Z is 
always surjective and the map I is always injective (cf. Exercise 9). 

Sec. 1 5.2 Rad ica ls and Affine Varieties 675 



One particular consequence of the Nullstellensatz is that for any proper ideal I we 
have Z(/) =/:. 0 since rad I =/:. k[An] . Hence there always exists at least one common 
zero ("nullstellen" in German) for all the polynomials contained in a proper ideal (over 
an algebraically closed field). 

We next see that the affine algebraic sets define a topology on affine n-space. Recall 
that a topological space is any set X together with a collection of subsets T of X, called 
the closed sets in X, satisfying the following axioms: 

(i) an arbitrary intersection of closed sets is closed: if S; E T for i in any index set, 
then nS; E /, 

(ii) a finite union of closed sets is closed: if S1 , . . .  , Sq E T then S1 U · · · U Sq E /, 
and 

(iii) the empty set and the whole space are closed: 0, X E T 
A subset U of X is called open if its complement, X - U, is dosed (i.e., X - U E /). 
The axioms for a topological space are often (equivalently) phrased in terms of the 
collection of open sets in X. 

There are many examples of topological spaces, and a wealth of books on topology. 
A fixed set X may have a number of different topologies on it, and the collections of 
closed sets need not be related in these different structures. On any set X there are 
always at least two topologies: the so-called discrete topology in which every subset 
of X is closed (i.e., T is the collection of all subsets of X), and the so-called trivial 
topology in which the only closed sets are 0 and X required by axiom (iii) . 

Suppose now that X = An is affine n-space over an arbitrary field k. Then the 
collection T consisting of all the affine algebraic sets in An satisfies the three axioms 
for a topological space - these are precisely properties (3), (4) and (5) of algebraic sets 
in the preceding section. It follows that these sets can be taken to be the closed sets in 
a topology on An : 

Definition. The Zariski topology on affine n-space over an arbitrary field k is the 
topology in which the closed sets are the affine algebraic sets in An . 

The Zariski topology is quite "coarse" in the sense that there are "relatively few" 
closed (or open) sets. For example, for the Zariski topology on A 1 the only closed sets 
are 0, k and the finite sets (cf. Exercise 14 in Section 1), and so the nonempty open 
sets are the complements of finite sets. If k is an infinite field it follows that in the 
Zariski topology any two nonempty open sets in A 1 have nonempty intersection. In 
the language of point-set topology, the Zariski topology is always T1 (points are closed 
sets), but for infinite fields the Zariski topology is never T2 (Hausdorff), i .e. , two distinct 
points never belong to two disjoint open sets (cf. the exercises). For example, when 
k = IR., a nonempty Zariski open set is just the real line IR. with some finite number of 
points removed, and any two such sets have (infinitely many) points in common. Note 
also that the Zariski open (respectively, dosed) sets in IR. are also open (respectively, 
closed) sets with respect to the usual Euclidean topology. The converse is not true; for 
example the interval [0, 1 ]  is closed in the Euclidean topology but is not closed in the 
Zariski topology. In this sense the Euclidean topology on IR. is much "finer"; there are 
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many more open sets in the Euclidean topology, in fact the collection of Euclidean open 
(respectively, closed) sets properly contains the collection of Zariski open (respectively, 
closed) sets. 

The Zariski topology on A" is defined so that the affine algebraic subsets of A" 
are closed. In other words, the topology is defined by the zero sets of the ideals in the 
coordinate ring of A" . A similar definition can be used to define a Zariski topology 
on any algebraic set V in A" , as follows. If k[ V] is the coordinate ring of V, then the 
distinct elements of k[V] define distinct k-valued functions on V and there is a natural 
way of defining 

Z : { ideals in k[ V] } ----* { algebraic subsets of V } 

I : { subsets of V } ----* { ideals in k[V] } 

just as for the case V = A" . For example, if J is an ideal in k[V] ,  then Z (J) is the set 
of elements in V that are common zeros of all the functions in the ideal 7. It is easy to 
verify that the resulting zero sets in V satisfy the three axioms for a topological space, 
defining a Zariski topology on V, where the closed sets are the algebraic subsets, Z 0). 
for any ideal J of k[V] .  By the Lattice Isomorphism Theorem, the ideals of k[V] are 
the ideals of k[x1 , . . .  , x,] that contain I( V) taken mod I(V).  If J is the complete 
preimage in k[x1 , . . .  , x,] of }, then the locus of J in A" is the same as the locus of } 
in V. It follows that this definition of the Zariski topology on V is just the subspace 
topology for V � A" . (Recall that in a topological space X, the closed sets with respect 
to the subspace topology of a subspace Y are defined to be the sets C n Y,  where C is 
a closed set in X.) The advantage to the definition of the Zariski topology on V above 
is that it is defined intrinsically in terms of the coordinate ring k[V] of V,  and since the 
isomorphism type of k[V] does not depend on the affine space A" containing V,  the 
Zariski topology on V also depends only on V and not on the ambient affine space in 
which V may be embedded. 

If V and W are two affine algebraic spaces, then since a morphism cp : V --+ W 
is defined by polynomial functions, it is easy to see that cp is continuous with respect 
to the Zariski topologies on V and W (cf. Exercise 27 in Section 1 ,  which shows that 
the inverse image of a Zariski closed set under a morphism is Zariski closed). In fact 
the Zariski topology is the coarsest topology in which points are closed and for which 
polynomial maps are continuous. There exist maps that are continuous with respect to 
the Zariski topology that are not morphisms, however (cf. Exercise 17). 

We have the usual topological notions of closure and density with respect to the 
Zariski topology. 

Definition. For any subset A of A" , the Zariski closure of A is the smallest algebraic 
set containing A .  If A � V for an algebraic set V then A is Zariski dense in V if the 
Zariski closure of A is V . 

For example, if k = IR, the algebraic sets in A 1 are 0, IR, and finite subsets of IR by 
Exercise 14 in Section 1 .  The Zariski closure of any infinite set A of real numbers is 
then all of A 1 and A is Zariski dense in A 1 . 
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Proposition 15. The Zariski closure of a subset A in .A_n is Z(I(A)) .  

Proof Certainly A � Z(I(A)) . Suppose V is  any algebraic set containing A :  
A � V .  Then I( V) � I(A) and Z(I(A)) � Z(I(V)) = V, so Z(I(A)) i s  the 
smallest algebraic set containing A.  

If  q; : V � W is a morphism of algebraic sets, the image q; ( V) of V need not be an 
algebraic subset of W, i.e., need not be Zariski closed in W. For example the projection 
of the hyperbola V = Z(xy - 1) in IR2 onto the x-axis has image IR1 - {0}, which as 
we have just seen is not an affine algebraic set. 

The next result shows that the Zariski closure of the image of a morphism is deter
mined by the kernel of the associated k-algebra homomorphism. 

Proposition 16. Suppose q; : V � W is a morphism of algebraic sets and qi : k[W] � 
k[ V] is the associated k-algebra homomorphism of coordinate rings. Then 

(1) The kernel of qy is I(q;( V)) .  
(2) The Zariski closure of q; ( V) is  the zero set in W of ker qy. In particular, the 

homomorphism q5 is injective if and only if q;(V) is Zariski dense in W.  

Proof: Since q; = f o q;, we have q}(f) = 0 if  and only if  (f o q;) (P) = 0 for 
all P E V, i.e., f(Q) = 0 for all Q = q; (P) E q;(V), which is the statement that 
f E I(q; ( V)) ,  proving the first statement. Since the Zariski closure of q; ( V) is the zero 
set of I(q; ( V)) by the previous proposition, the first statement in (2) follows. 

Ifqy is injective then the Zariski closure of q; ( V) is Z(O) = W and so q; ( V) is Zariski 
dense. Conversely, suppose q;(V) is Zariski dense in W, i.e. , Z(I(q; (V))) = W. Then 
I(q; ( V)) = I(Z(I(q;(V)))) = I( W) = 0 and so ker qy = 0. 

By Proposition 16 the ideal of polynomials defining the Zariski closure of the 
image of a morphism q; is the kernel of the corresponding k-algebra homomorphism q5 
in Theorem 6. Proposition 8( 1) allows us to compute this kernel using Grobner bases. 

Example: (Implicitization) 

A morphism rp : An � Am is just a map 

rp((a1 , az , . . . , an )) = (rpt (at , az , . . . , an) • . . .  , f/Jm (at .  az , . . . •  an)) 

where rp; is a polynomial. If k is an infinite field, then I(Am ) and I(An) are both 0, 
so we may write k[Am] = k[yl ,  . . .  , Ym ] and k[An ] = k[xt , . . . • xn ] . The k-algebra 
homomorphism 'iP :  k[Am] � k[An] corresponding to rp is then defined by mapping y; to 
rp; = rp; (xt . . . .  , Xn ) . The image rp(An ) consists of the set of points (ht ,  . . .  , bm ) with 

ht = f/Jl (at , az • . . . •  an ) 

hz = rpz(at . az ,  . . .  , an) 

bm = f/Jm (at . az ,  . . .  , an) 

where a; E k. This is the collection of points in Am parametrized by the functions 
f/Jt , . . . , f/Jm (with the a; as parameters). In general such a parametrized collection of points 
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is not an algebraic set. Finding the equations for the smallest algebraic set containing these 
points is referred to as implicitization, since it amounts to finding a ( ' smallest' )  collection 
of equations satisfied by the b; (the 'implicit' algebraic relations). 

By Proposition 16, this algebraic set is the Zariski closure of cp(An) and is the zero set 
of ker �- By Proposition 8 this kernel is given by A n  k[yl , . . .  , Ym J.  where A is the ideal 
in k[xt , . . .  , Xn , Yl , . . .  , Ym J generated by the polynomials Yl - fPl , . . .  , Ym - Cflm · If we 
compute the reduced Grobner basis G for A with respect to the lexicographic monomial 
ordering Xt > · · · > Xn > Yl > · · · > Ym , then the polynomials of G lying in k[y1 , . . .  , Ym ] 
generate ker ir .  The zero set of these polynomials defines the Zariski closure of cp (An) and 
therefore give the implicitization. 

For an explicit example, consider the points A = { (a2 ,  a3) I a E IR} in IR2. Using 
coordinates x ,  y for JR2 and t for IR1 , the ideal A in IR[x ,  y, z, t] is (x - t2 , y - t3) .  The only 
element of the reduced Grobner basis for A for the ordering t > x > y lying in IR[x ,  y] is 
x3 - y2, so Z(x3 - y2) is the smallest algebraic set in IR2 containing A. 

Example: (Projections of Algebraic Sets) 

Suppose V � An is an algebraic set and m < n. Let rr : V ----+ Am be the morphism 
projecting onto the first m coordinates:  

n ((a 1 , a2 • . . .  , an)) = (at , a2 , . . .  , am) . 
Ifwe use coordinates x1 , . . .  , Xn in k[V] and coordinates Yl , . . .  , Ym in k[ Am ] ,  the k-algebra 
homomorphism corresponding to rr is given by the map 

ir : k[Yl , . . .  , Ym] ----+ k[x1 , . . .  , Xn ]/L(V) 

Yi 1---+ X; . 

Suppose V = Z(l) and I = <ft . . . .  , fs) ·  The Zariski closure of n( V) is the zero set of 
ker ir = A n  k[yl , . . . , Ym] where A is the ideal in k[xt , . . . • Xn , Yl • . . .  , Ym] generated 
by the polynomials Yl - x1 • . . .  , Ym - Xm together with a set of generators for I( V). The 
polynomials involving only Yt • . . .  , Ym in the requced Grobner basis G for A with respect 
to the lexicographic monomial ordering x1 > · · · > Xn > Yl > · · · > Ym are generators 
for the Zariski closure of rr (V) . 

If k is algebraically closed we can actually do better with the help of the Nullstellensatz, 
which gives I(V) = rad I. Then it is straightforward to see that we obtain the same zero 
set if in the ideal A we replace the generators for I(V) by the generators ft , . . .  , fs of I 
(cf. Exercise 46). 

For an explicit example, consider projection onto the first two coordinates of V = 
Z(xy - z2 , xz - y, x2 - z) in <C3 . Using u , v as coordinates in <C2, we find the reduced 
Grobner basis G for the ideal (u - x ,  v - y, xy - z2 , xz - y ,  x2 - z) for the ordering 
x > y > z > u > v contains only the polynomial u3 - v in <C[u, v] . The smallest algebraic 
set containing rr ( V) is then the cubic v = u3. 

Affine Varieties 

We next consider the question of whether an algebraic set can be decomposed into 
smaller algebraic sets and the corresponding algebraic formulation in terms of its co
ordinate ring. 

Definition. A nonempty affine algebraic set V is called irreducible if it cannot be 
written as V = V1 U V2, where Vt and V2 are proper algebraic sets in V. An irreducible 
affine algebraic set is called an affine variety. 
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Equivalently, an algebraic set (which is a closed set in the Zariski topology) is 
irreducible if it cannot be written as the union of two proper, closed subsets. 

Proposition 17. 
(1) The affine algebraic set V is irreducible if and only if .I(V) is a prime ideaL 
(2) Every nonempty affine algebraic set V may be written uniquely in the form 

v = vi u v2 u . . .  u vq 

where each V; is irreducible, and V; 1; V; for all j =/= i (i.e., the decomposition 
is "minimal" or "irredundant"). 

Proof" Let I = I(V) and suppose first that V = Vt U V2 is reducible, where VI and 
V2 are proper closed subsets. Since Vt =/= V, there is some function /1 that vanishes on 
V1 but not on V, i.e. , /1 E I(V1 ) - I .  Similarly, there is a function h E  I(V2) - I . Then 
f1 h vanishes on V1 U V2 = V, so /I h E I which shows that I is not a prime ideal. 
Conversely, if I is not a prime ideal, there exists ft , h E k[A'' ] such that ft h E I 
but neither /I nor h belongs to I .  Let V1 = Z(/I)  n V and V2 = Z(h) n V. Since 
the intersection of closed sets is closed, V1 and V2 are algebraic sets. Since neither /I 
nor h vanishes on V, both V1 and V2 are proper subsets of V. Because /I h E I,  
V � Z(/t h) = Z(/I) U Z(f2), and so V is reducible. This proves ( 1 ). 

To prove (2), let S be the collection of non empty algebraic sets that cannot be written 
as a finite union of irreducible algebraic sets, and suppose by way of contradiction that 
S =/= 0. Let lo be a maximal element ofthe corresponding set of ideals, {I(V) I V E S}, 
which exists (by Theorem 2) since k[.A"] is Noetherian. Then Vo = Z(/o) is a minimal 
element of S. Since V0 E S, it cannot be irreducible by the definition of S. On the 
other hand, if Vo = Vt U V2 for some proper, closed subsets Vt ,  V2 of Vo, then by 
the minimality of Vo both V1 and V2 may be written as finite unions of irreducible 
algebraic sets . Then V0 may be written as a finite union of irreducible algebraic sets, a 
contradiction. This proves S = 0, i.e., every affine algebraic set has a decomposition 
into affine varieties .  

To prove uniqueness, suppose V has two decompositions into affine varieties (where 
redundant term..<; have been removed from each decomposition): 

V = Vt U V2 U · · · U V, = U1 U U2 U · · · U Us . 
Then V1 is contained in the union of the U; . Since V1 n U; is an algebraic set for each 
i ,  we obtain a decomposition of VI into algebraic subsets: 

V1 = CVt n u. ) u CVt n U2) u · · · u CVt n Us) .  
Since V1 i s  irreducible, we must have V1 = V1 n Uj for some j ,  i.e., V1 � Uj . By 
the symmetric argument we have UJ � V;, for some j'. Thus V1 � V;, , so j'  = 1 
and V1 = U1 . Applying a similar argument for each V; it follows that r = s and that 
{ Vt , . . .  , V, } = { U 1 , . . .  , Us } .  This completes the proof. 

Corollary 18. An affine algebraic set V is a variety if and only if its coordinate ring 
k[V] is an integral domain. 

Proof" This follows immediately since I(V) is a prime ideal if and only if the 
quotient k[V] = k[.A" ]/I(V) is an integral domain (Proposition 13 of Chapter 7). 
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Definition. If V is a variety, then the field of fractions of the integral domain k[V] is 
called the field of rational functions on V and is denoted by k(V).  The dimension of a 
variety V, denoted dim V, is defined to be the transcendence degree of k(V) over k. 

Examples 

(1) Single points in An are affine varieties since their corresponding ideals in k[An] are 
maximal ideals. The coordinate ring of a point is isomorphic to k, which is also the 
field of rational functions. The dimension of a single point is 0. Any finite set is 
the union of its single point subsets, and this is its unique decomposition into affine 
subvarieties. 

(2) The x-axis in IR2 is irreducible since it has coordinate ring IR[x ,  y ]f(y) � IR[x], which 
is an integral domain. Similarly, the y-axis and, more generally, lines in IR2 are also 
irreducible (cf. Exercise 23 in Section 1) .  Linear sets in m.n are affine varieties. The 
field of rational functions on the x-axis is the quotient field IR(x) of IR[x ], which is 
why IR(x)  is called a rational function field. The dimension of the x-axis (or, more 
generally, any line) is 1 .  

(3) The union ofthe x  and y axes in JR2, namely Z(xy), is not a variety: Z(xy) = Z(x) U 
Z(y) is its unique decomposition into subvarieties. The corresponding coordinate 
ring IR[x ,  y ]j(xy) contains zero divisors. 

(4) The hyperbola xy = 1 in IR2 is a variety since we saw in Section 1 that its coordinate 
ring is the integral domain IR[x , l fx ]. Note that the two disjoint branches of the 
hyperbola (defined by x > 0 and x < 0) are not subvarieties (cf. also Exercises 
12-13). 

(5) If V = Z(lt , h . . . .  , lm) is thezero setoflinearpolynomials lt , . . .  , lm ink[xt • . . .  , xm] 
and V :f. 0, then V is an affine variety (called a linear variety). Note that determining 
whether V :f. 0 is a linear algebra problem. 

We end this section with some general ring-theoretic results that were originally 
motivated by their connection with decomposition questions in geometry. 

Primary Decomposition of Ideals in Noetherian Rings 

The second statement in Proposition 17 shows that any ideal of the form I(V) in 
k[An] may be written uniquely as a finite intersection of prime ideals, and by Hilbert's 
Nullstellensatz this applies in particular to all radical ideals when k is algebraically 
closed. In a large class of commutative rings (including all Noetherian rings) every 
ideal has a primary decomposition, which is a similar decomposition but allows ideals 
that are analogous to "prime powers" (but see the examples below). This decomposition 
can be considered as a generalization of the factorization of an integer n E Z into the 
product of prime powers. We shall be primarily concerned with the case of Noetherian 
rings. 

Definition. A proper ideal Q in the commutative ring R is called primary if whenever 
ab E Q and a rt Q, then bn E Q for some positive integer n .  Equivalently, if ab E Q 
and a rt  Q,  then b E  rad Q .  

Some of the basic properties of primary ideals are given in the following proposition. 
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Proposition 19. Let R be a commutative ring with 1 .  
(1) Prime ideals are primary. 
(2) The ideal Q is primary if and only if every zero divisor in Rj Q is nilpotent. 
(3) If Q is primary then rad Q is a prime ideal, and is the unique smallest prime 

ideal containing Q.  
(4) If  Q i s  an ideal whose radical i s  a maximal ideal, then Q is  a primary ideal. 
(5) Suppose M is a maximal ideal and Q is an ideal with M" � Q � M for some 

n � L Then Q is a primary ideal with rad Q = M. 

Proof" The first two statements are immediate from the definition of a primary 
ideal. For (3), suppose ab E rad Q. Then am bm = (ab )111 E Q, and since Q is primary, 
either am E Q, in which case a E rad Q, or (bmyz E Q for some positive integer n ,  in 
which case b E rad Q. This proves that rad Q is a prime ideal, and it follows that rad Q 
is the smallest prime ideal containing Q (Proposition 12). 

To prove ( 4) we pass to the quotient ring R j Q;  by (2), it suffices to show that every 
zero divisor in this quotient ring is nilpotent. We are reduced to the situation where 
Q = (0) and M = rad Q = rad(O), which is the nilradical, is a maximal ideal. Since 
the nilradical is contained in every prime ideal (Proposition 12), it follows that M is 
the unique prime ideal, so also the unique maximal ideal. If d were a zero divisor, then 
the ideal (d) would be a proper ideal, hence contained in a maximal ideal. This implies 
that d E M, hence every zero divisor is indeed nilpotent. 

Finally, suppose M" � Q � M for some n � 1 where M is a maximal ideal. Then 
Q � M so rad Q � rad M = M. Conversely, M" � Q shows that M � rad Q,  so 
rad Q = M is a maximal ideal, and Q is primary by (4). 

Definition. If Q is a primary ideal, then the prime ideal P = rad Q is called the 
associated prime to Q,  and Q is said to belong to P (or to be P-primary). 

It is easy to check that a finite intersection of P-primary ideals is again a P-primary 
ideal (cf. the exercises). 

Examples 

(1) The primary ideals in Z are 0 and the ideals (pm) for p a prime and m 2: 1 .  
(2) For any field k ,  the ideal (x) i n  k[x ,  y ]  i s  primary since it i s  a prime ideal. For any 

n 2: 1 ,  the ideal (x , y)" is primary since it is a power of the maximal ideal (x , y) .  
(3) The ideal Q = (x2 , y) in the polynomial ring k[x ,  y] is primary since we have 

(x ,  y)2 � (x2 , y) � (x , y).  Similarly, Q' = (4, x) in Z[x] is a (2, x)-primary ideal. 
(4) Primary ideals need not be powers of prime ideals. For example, the primary ideal Q 

in the previous example is not the power of a prime ideal, as follows. If (x2, y) = pk 
for some prime ideal P and some k 2: 1 , then x2 • y E pk � P so x ,  y E P. Then 
P = (x , y ), and since y ¢. (x ,  y )2• it would follow that k = 1 and Q = (x , y ). Since 
x ¢. (x2 , y),  this is impossible. 

(5) If R is Noetherian, and Q is a primary ideal belonging to the prime ideal P, then 

682 

pm � Q � p 

for some m 2: 1 by Proposition 14. If P is a maximal ideal, then the last statement 
in Proposition 19 shows that the converse also holds. This is not necessarily true if P 
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is a prime ideal that is not maximal. For example, consider the ideal I = (x2 , xy) in 
k[x , y]. Then (x2) c I c (x) ,  and (x) is a prime ideal, but I is not primary: xy E I 
and x ¢. I, but no positive power of y is an element of I. This example also shows 
that an ideal whose radical is prime (but not maximal as in (4) of the proposition) is 
not necessarily primary. 

(6) Powers of prime ideals need not be primary. For example, consider the quotient ring 
R = JR.[x, y, z]/(xy - z2), the coordinate ring of the cone z2 = xy in JR3, and let 
P = (i , z) be the ideal generated by i and z in R. This is a prime ideal in R since the 
quotient is Rf(x , z) � JR.[x , y ,  z]f(x , z) � JR[y] (because (xy - z2) c (x , z)). The 
ideal 

p2 = (x2 , xz. z2> = (x2 , xz, xy) = x (x , y , z) . 

however, is not primary: x y = z2 E P2, but x ¢. P2, and no power of y is in P2• Note 
that P2 is another example of an ideal that is not primary whose radical is prime. 

(7) Suppose R is a U.F.D. If :rr is an irreducible element of R then it is easy to see that 
the powers (rrn ) for n = 1 , 2, . . .  are (rr)-primary ideals. Conversely, suppose Q is 
a (:rr)-primary ideal, and let n be the largest integer with Q � (:rrn)  (such an integer 
exists since, for example, :rrk E Q for some k 2':: 1 ,  so n � k). If q is an element of Q 
not contained in (:rrn+l ), then q = r:rrn for some r E R and r ¢. (:rr) . Since r ¢. (:rr ) 
and Q is (:rr )-primary, it follows that :rrn E Q .  This shows that Q = (:rrn ) .  

In  the examples above, the ideal (x2 , xy) in  k[x , y] is not a primary ideal, but it 
can be written as the intersection of primary ideals: (x2 , xy) = (x) n (x , y)2 . 

Definition. 
(1) An ideal I in R has a primary decomposition if it may be written as a finite 

intersection of primary ideals: 

m 

Q; a primary ideal. 

(2) The primary decomposition above is minimal and the Q; are called the primary 
components of I if 

(a) no primary ideal contains the intersection of the remaining primary 
ideals, i .e. ,  Q; � nu; Q1 for all i ,  and 

(b) the associated prime ideals are all distinct: rad Q; =f:. rad Q i for i =f:. j . 

We now prove that in a Noetherian ring every proper ideal has a minimal primary 
decomposition. This result is often called the Lasker-Noether Decomposition Theorem, 
since it was first proved for polynomial rings by the chess master Emanuel Lasker and 
the proof was later greatly simplified and generalized by Emmy Noether. 

Definition. A proper ideal I in the commutative ring R is said to be irreducible if I 
cannot be written nontrivially as the intersection of two other ideals, i.e., if I = J n K 
with ideals J, K implies that I = J or I = K. 

It  is easy to see that a prime ideal is  irreducible (see Exercise 1 1  in Section 7.4). 
The ideal (x , yf in k[x ,  y] in Example 2 earlier shows that primary ideals need not 
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be irreducible since it is the intersection of the ideals (x) + (x , y)2 = (x , y2) and 
(y)+(x ,  y)2 = (y, x2) .  In a Noetherian ring, however, irreducible ideals are necessarily 
primary: 

Proposition 20. Let R be a Noetherian ring. Then 
(1) every irreducible ideal is primary, and 
(2) every proper ideal in R is a finite intersection of irreducible ideals. 

Proof To prove ( 1 ) let Q be an irreducible ideal and suppose that ab E Q and 
b ¢. Q. It is easy to check that for any fixed n the set of elements x E R with an x E Q 
is an ideal, An, in R. Clearly A1 5; A2 � . . . and since R is Noetherian this ascending 
chain of ideals must stabilize, i.e. ,  An = An+ I = . . .  for some n > 0. Consider the 
two ideals I =  (an ) +  Q and J = (b) + Q of R, each containing Q. If y E I n  J then 
y = anz + q for some z E R and q E Q. Since ab E Q, it follows that al � Q, and 
in particular ay E Q. Then an+I z = ay - aq E Q, so z E An+l = An . But z E An 
means that anz E Q, so y E Q. It follows that I n  J = Q. Since Q is irreducible and 
(b) + Q =I= Q (since b ¢. Q), we must have an E Q, which shows that Q is primary. 

The proof of (2) is the same as the proof of the second statement in Proposition 
17 .  Let S be the collection of ideals of R that cannot be written as a finite intersection 
of irreducible ideals. If S is not empty, then since R is Noetherian, there is a maximal 
element I in S. Then I is not itself irreducible, so I = J n K for some ideals J and K 
distinct from I .  Then I c J and I c K and the maximality of I implies that neither J 
nor K is in S. But this means that both J and K can be written as finite intersections 
of irreducible ideals, hence the same would be true for I .  This is a contradiction, so 
S = 0, which completes the proof of the proposition. 

It is immediate from the previous proposition that in a Noetherian ring every proper 
ideal has a primary decomposition. If any of the primary ideals in this decomposition 
contains the intersection of the remaining primary ideals, then we may simply remove 
this ideal since this will not change the intersection. Hence we may assume the de
composition satisfies (a) in the definition of a minimal decomposition. Since a finite 
intersection of P -primary ideals is again P -primary (Exercise 3 1  ), replacing the primary 
ideals in the decomposition with the intersections of all those primary ideals belonging 
to the same prime, we may also assume the decomposition satisfies (b) in the definition 
of a minimal decomposition. This proves the first statement of the following: 

Theorem 21. (Primary Decomposition Theorem) Let R be a Noetherian ring. Then 
every proper ideal I in R has a minimal primary decomposition. If 

m n 

i=l i=l 

are two minimal primary decompositions for I then the sets of associated primes in the 
two decompositions are the same: 

{ rad Q1 , rad Q2,  . . . , rad Qm } = { rad Q; ,  rad Q; ,  . . .  , rad Q� } . 

Moreover, the primary components Q; belonging to the minimal elements in this set of 
associated primes are uniquely determined by I .  
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Proof: The proof of the uniqueness of the set of associated primes is outlined in 
the exercises, and the proof of the uniqueness of the primary components associated to 
the minimal primes will be given in Section 4. 

Definition. If I is an ideal in the Noetherian ring R then the associated prime ideals 
in any primary decomposition of I are called the associated prime ideals of I .  If an 
associated prime ideal P of I does not contain any other associated prime ideal of I 
then P is called an isolated prime ideal; the remaining associated prime ideals of I are 
called embedded prime ideals. 

The prime ideals associated to an ideal I provide a great deal of information about 
the ideal I (cf. for example Exercises 41 and 43): 

Corollary 22. Let I be a proper ideal in the Noetherian ring R. 
(1) A prime ideal P contains the ideal I if and only if P contains one of the 

associated primes of I ,  hence if and only if P contains one of the isolated 
primes of I ,  i.e. , the isolated primes of I are precisely the minimal elements 
in the set of all prime ideals containing I .  In particular, there are only finitely 
many minimal elements among the prime ideals containing I .  

(2) The radical of I i s  the intersection of the associated primes of I ,  hence also the 
intersection of the isolated primes of I .  

(3) There are prime ideals P1 , . . .  , Pn (not necessarily distinct) containing I such 
that P1 P2 · · · Pn � I . 

Proof" The first statement in ( 1 )  is an exercise ( cf. Exercise 37), and the remainder 
of ( 1 )  follows. Then (2) follows from ( 1 )  and Proposition 12, and (3) follows from (2) 
and Proposition 14. 

The last statement in Theorem 21 states that not only the isolated primes, but also 
the primary components belonging to the isolated primes, are uniquely determined by 
I. In general the primary decomposition of an ideal I is itself not unique. 

Examples 

(1) Let I =  (x2 , xy) in IR[x ,  y]. Then 

(x2 , xy) = (x) n (x , y)2 = (x) n (x2 , y) 
are two minimal primary decompositions for I. The associated primes for I are (x) and 
rad((x , y)2) = rad((x2 , y)) = (x , y) .  The prime (x) is the only isolated prime since 
(x) c (x , y), and (x , y) is an embedded prime. A prime ideal P contains I if and only if 
P contains (x) .  The (x)-primary component of I corresponding to this isolated prime 
is just (x) and occurs in both primary decompositions; the (x , y )-primary component 
of I corresponding to this embedded prime is not uniquely determined - it is (x , y )2 
in the first decomposition and is (x2 , y) in the second. The radical of I is the isolated 
prime (x) .  

This example illustrates the origin of the terminology: in general the irreducible 
components of the algebraic space Z (/) defined by I are the zero sets of the isolated 
primes for I, and the zero sets of the embedded primes are irreducible subspaces of 
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these components (so arc "embedded" in the irreducible components). In this example, 
Z (/) is the set of points with x2 = xy = 0, which is just the y-axis in JR2 . There is 
only one irreducible component of this algebraic space (namely the y-axis), which is 
the locus for the isolated prime (x). The locus for the embedded prime (x , y) is the 
origin (0. 0) , which is an irreducible subspace embedded in the y-axis. 

(2) Suppose R is a U.F.D. If a = PI e1 • • • Pm em is the unique factorization into distinct 
prime powers of the element a E R, then (a) = (Pt)e1 n · · · n (p111 )em is the minimal 
primary decomposition of the principal ideal (a) . The associated primes to (a) are 
(pJ ) ,  . . .  , (p111 ) and arc all isolated. The primary decomposition of ideals is a gener
alization of the factorization of elements into prime powers. See also Exercise 44 for 
a characterization of U.F.D.s in terms of minimal primary decompositions. 

For any Noetherian ring, an ideal I is radical if and only ifthe primary components of 
a minimal primary decomposition of I are all prime ideals (in which case this primary 
decomposition is unique) , cf. Exercise 43 . This generalizes the observation made 
previously that Proposition 17 together with Hilbert's Nullstellensatz shows that any 
radical ideal in k[An ] may be written uniquely as a finite intersection of prime ideals 
when the field k is algebraically closed - this is the algebraic statement that an algebraic 
set can be decomposed uniquely into the union of irreducible algebraic sets. 

E X E R C I S E S  

1. Prove (3) of Corollary 22 directly by considering the collection S of ideals that do not 
contain a finite product of prime ideals. [If I is a maximal element in S, show that since 
I is not prime there are ideals J, K properly containing I (hence not in S) with J K � /. ]  

2. Let I and J be ideals in the ring R. Prove the following statements: 
(a) If Jk � J for some k :::-: 1 then rad I � rad J.  
(b) I f  I k � J � I for some k :::-: 1 then rad I = rad J.  
(c) rad(l J) = rad(l n J) = rad I n rad J.  
(d) rad(rad I) = rad / .  
(e) rad I + rad J � rad(l + J) and rad(l + J) = rad(rad I + rad J) .  

3 .  Prove that the intersection of two radical ideals is again a radical ideal. 

4. Let / = m1m2 be the product of the ideals m1 = (x , y) and m2 = (x - 1 , y - 1) in lF2 [x , y] .  
Prove that I is a radical ideal. Prove that the ideal (x3 - y2) is a radical ideal in lF2 [x , y ] .  

5. If I = (xy,  (x - y)z) c k[x , y ,  z]  prove that rad I = (xy , xz, yz) . For this ideal prove 
directly that Z(l) = Z(rad /), that Z(l) is not irreducible, and that rad I is not prime. 

6. Give an example to show that over a field k that is not algebraically closed the containment 
I � I(Z(I)) can be proper even when I is a radical ideal. 

7. Suppose R and S are rings and ({! : R ----? S is a ring homomorphism. If I is an ideal of R 
show that ({J(rad I) � rad(({J(/)) .  If in addition ({! is surjective and I contains the kernel of 
({! show that ({J (rad I) = rad(({J(/)). 

8. Suppose the prime ideal P contains the ideal / .  Prove that P contains the radical of /.  

9. Prove that for any field k the map Z in the Nullstellensatz is always surjective and the map 
I in the Nullstellensatz is always injective. [Use property (10) of the maps Z and I in 
Section 1 . ] Give examples (over a field k that is not algebraically closed) where Z is not 
injective and I is not surjective. 
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10. Prove that for k a finite field the Zariski topology is the same as the discrete topology: 
every subset is closed (and open). 

11. Let V be a variety in An and let UI and Uz be two subsets of An that are open in the Zariski 
topology. Prove that if V n UI i= 0 and V n Uz i= 0 then V n UI n Uz i= QJ. Conclude that 
any nonempty open subset of a variety is everywhere dense in the Zariski topology (i.e., 
its closure is all of V). 

12. Use the fact that nonempty open sets of an affine variety are everywhere dense to prove that 
an affine variety is connected in the Zariski topology. (A topological space is connected 
if it is not the union of two disjoint, proper, open subsets.) 

13. Prove that the affine algebraic set V is connected in the Zariski topology if and only if k[V] 
is not a direct sum of two nonzero ideals. Deduce from this that a variety is connected in 
the Zariski topology. 

14. Prove that if k is an infinite field, then the varieties in A I are the empty set, the whole 
space, and the one point subsets. What are the varieties in A I in the case of a finite field 
k? 

15. Suppose V is a hypersurface in An and I(V) = (f) for some nonconstant polynomial 
f E k[xi , xz , . . .  , xn l ·  Prove that V is a variety if and only if f is irreducible. 

16. Suppose V s; An is an affine variety and f E k[V].  Prove that the graph of f (cf. Exercise 
25 in Section 1 ) is an affine variety. 

17. Prove that any permutation of the elements of a field k is a continuous map from A I to 
itself in the Zariski topology on A I .  Deduce that if k is an infinite field, there are Zariski 
continuous maps from A I to itself that are not polynomials. 

18. Let V be an affine algebraic set in An over k = C . 
(a) Prove that morphisms of algebraic sets over <C are continuous in the Euclidean topol

ogy (the topology on en obtained by identifying en with JR2n with its usual Euclidean 
topology). 

(b) Prove that V is a closed set in the Euclidean topology on <Cn (so the Zariski closed 
sets of An over <C are also Euclidean closed). 

(c) Give an example of a set that is closed in the Euclidean topology but is not closed in 
the Zariski topology, i.e., is not an affine algebraic set (so the Euclidean topology is 
"finer'' than the Zariski topology). 

19. Give an example of an injective k-algebra homomorphism 9? : k[W] � k[V] whose 
associated morphism ({! : V � W is not swjective. 

20. Suppose ({! : V � W is a swjective morphism of affine algebraic sets. Prove that if V is 
a variety then W is a variety. 

21. Let V be an algebraic set in An and let f E k[V] . Define VJ = {v E V I f(v) i= 0}.  
(a) Show that VJ is a Zariski open set in V (called a principal open set in V). 
(b) Let J be the ideal in k[x i , . . .  , Xn , Xn+I l  generated by I(V) and Xn+I f - 1 ,  and let 

W = Z(J) s; An+l . Show that J = I(W) and that the map n : An+l � An by 
projection onto the first n coordinates is a Zariski continuous bijection from W onto 
VJ (so the principal open set VJ in V may be embeddea as a closed set in some (larger) 
affine space). 

(c) If U is any open set in V show that U = Vft U · · · U Vfm for some fi ,  . . . , fm E k[V].  
(This shows that the principal open sets form a base for the Zariski topology.) 

22. Prove that GLn (k) is an open affine algebraic set in An2 and can be embedded as a closed 
affine algebraic set in An2+ 1 .  In particular, deduce that the set k x  of nonzero elements in 
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A.l embeds into .A2 as the hyperbola xy = 1 .  [Use the preceding exercise.] 

23. Show that if k is infinite then { (a , a2, a3) 1 a E k} c .A3 is an affine algebraic variety. If k 
is finite show that this set is always reducible. 

24. Let V = Z(xz - y2, yz - x3 ,  z2 - x2y) c .A3 . Show that if k is infinite then V is an affine 
variety. [Usc Exercise 26 of Section 1 and Exercise 20.] 

25. Suppose f(x) = x3 + ax2 + bx + c is an irreducible cubic in Q[x] of discriminant D. Let 
I =  (x + y + z + a, xy + xz + yz - b, xyz + c) in Q[x , y, z] . 
(a) Prove that I is a prime ideal if and only if D is not a square in Q, in which case I is a 

maximal ideal and Q[x,  y, z]/ I is a splitting field for f(x) over Q. 
(b) If D = r2, prove that the primary decomposition of I is I = Q+ n Q- where 

Q± = (/, (x - y)(x - z)(y - z) ± r) .  Prove Q+ and Q_ are maximal ideals, and 
Q[x , y ,  z] modulo Q+ or Q- is a splitting field for f(x) over Q. 

26. A topological space X is called quasicompact if whenever any collection of closed sub
sets V; of X has empty intersection, then some finite number of these also has empty 
intersection, i.e., 

N 
whenever n V; = 0 there exists V;, ,  V;2 , • • •  , V;N such that n V;, = 0. 

; 1=1 
Prove that every affine algebraic set is quasicompact. [Translate the definition into a prop-
erty of ideaL<> in k[xt , . . .  , xn ] . ]  (A quasicompact and Hausdorff space is called compact.) 

27. When k is an infinite field prove that the Zariski topology on k2 is not the same as taking 
the Zariski topology on k and then forming the product topology on k x k. [By Exercise 
14 of Section 1 ,  in the product topology on k x k the Zariski closed sets in k x k are finite 
unions of sets of the form {a} x {b}, {a} x k and k x {b} , for any a, b E  k.] 

28. Prove that each of the following rings have infinitely many minimal prime ideals, and that 
(0) is not the intersection of any finite number of these (so (0) docs not have a primary 
decomposition in these rings): 
(a) the infinite direct product ring 7!./27!. x 7l.j27!. x · · · (which is a Boolean ring, cf. 

Exercise 23 in Section 7.4). 
(b) k[XI , Xz ,  . . .  ]/(XIXz , X3X4 , . . .  , XZi-IXZi , . . . ), where x1 , xz , . . .  arc independent vari

ables over the field k. 

29. Suppose that A and B are ideals with AB � Q for a primary ideal Q. Prove that if A rt_ Q 
then B c rad Q. 

30. Let Q be a P-primary ideal and suppose A is an ideal not contained in Q. Define 
A' = {r. E R 1 r A � Q }  to be the elements of R that when multiplied by elements of 
A give clements of Q .  Prove that A' is a P-primary ideaL 

31. Prove that if Q1 and Qz are primary ideals belonging to the same prime ideal P, then 
Q1 n Qz is a primary ideal belonging to P .  Conclude that a finite intersection of P
primary ideals is again P-primary. 

32. Prove that if Q1 and Qz are primary ideals belonging to the same maximal ideal M, then 
Q1 + Qz and Q 1  Qz are primary ideals belonging to M.  Conclude that finite sums and 
finite products of M -primary ideals are again M -primary. 

33. Let I = (x2 ,  xy, xz, yz) in k[x , y , z] .  Prove that a primary decomposition of I is 
I =  (x, y) n (x, z) n (x , y, z)2, determine the isolated and embedded primes of I, and 
find rad l .  

34. Suppose <p : R -+ S i s  a surjective ring homomorphism. Prove that an  ideal Q in  R 
containing the kernel of <p is primary if and only if <p ( Q) is primary in S. and when this is 
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the case the prime associated to rp( Q) is the image rp (P) of the prime P associated to Q. 

35. Suppose rp : R � S is a ring homomorphism. 
(a) Suppose I is an ideal of R containing ker rp with minimal primary decomposition 

I = Q1  n · · · n Qm with rad Q; = P; . If rp is a surjective homomorphism prove that 
rp(/) = rp ( Q l )  n · · · n rp ( Q111 ) ,  where rad rp ( Q; )  is given by rp(P; ) ,  is a minimal primary 
decomposition of rp(/) .  [Use the previous exercise.] 

(b) Suppose I is an ideal of S with minimal primary decomposition I =  Q1 n · · · n Qm 
withrad Q; = P; . Prove that rp- 1 (1) = rp-1 ( Q 1 ) n ·  · -nrp- 1 ( Q111 ) ,  where rad rp-1 (Q; )  
i s  given by rp- 1 (P; ) ,  i s  a primary decomposition of rp-1 (1), and i s  minimal i f  rp is 
surjective. 

36. Let I = (xy, x - yz) in k[x , y, z].  Prove that (x , z) n (y2 , x - yz) is a minimal primary 
decomposition of /.  [Consider the ring homomorphism rp :  k[x ,  y, z] � k[y , z] given by 
mapping x to yz. y to y, and z to z and use the previous exercise.] 

37. Prove that a prime ideal P contains the ideal I if and only if P contains one of the 
associated primes of a minimal primary decomposition of / .  [Use Exercise 3 and Exercise 
1 1  in Section 7.4.] 

38. Show that every associated prime ideal for a radical ideal is isolated. [Suppose that 
P2 = rad Q2 � P1 = rad Q1 in the decomposition of Theorem 21 for the radical ideal /.  
Show that if a E Q2 n · · · n Q111 � P2 then a" E I for some n � 1 ,  conclude that a E Q1 
and derive a contradiction to the minimality of the primary decomposition.] 

39. Fix an element a in the ring R. For any ideal / in the ring R let Ia = {r E R I ar E /} .  
(a) Prove that Ia is an ideal and Ia = R if and only if  a E / .  
(b) Prove that (I n l)a  = Ia n la for ideals I and 1 .  
(c) Suppose that Q is a P-primary ideal and that a ¢. Q. Prove that Qa is a P-primary 

ideal and that Qa = Q if a ¢. P.  

40. With notation as in  the previous exercise, suppose I = Q 1 n · · · n Q111 i s  a minimal primary 
decomposition of the ideal / and let P; be the prime ideal associated to Q; . 
(a) Prove that /a = ( Q I )a n · · - n ( Qm)a and thatrad(/0 ) = rad( ( Q I )a ) n · · - nrad((Q111 )a ) . 
(b) Prove that rad(/a )  is the intersection of the prime ideals P; for which a ¢. Q; . [Use 

the previous exercise.] 
(c) Prove that if rad(/a )  is a prime ideal then rad(/a )  = Pj for some j. [Use the fact that 

prime ideals are irreducible.] 
(d) FQr each i = 1, . . .  , m ,  prove that rad (/0 ) = P; for some a E R. [Show there exists 

an a E R with a ¢.  Q; but a E Qj for all j =f. i . )  
(e) Show from (c) and (d) that the associated primes for a minimal primary decomposition 

are precisely the collection of prime ideals among the ideals rad(la )  for a E R, and 
conclude that they are uniquely determined by I independent of the minimal primary 
decomposition. 

41. Let P1 • . . .  , Pm be the associated prime ideals of the ideal (0) in the Noetherian ring R. 
(a) Show that P1 n · · · n Pm is the collection of nilpotent elements in R. [Apply Corol

lary 22 to 1 = (0) .] 
(b) Show that P1 U · · · U Pm is the collection of zero divisors in R. [Let 1 = (0) 

in the previous exercise and show that the set of zero divisors is given by the set 
UaER-{0} (O)a = UaER-(0} rad((O)a ) .] 

42. Suppose R is a Noetherian ring. Prove that R is either an integral domain, has nonzero 
nilpotent elements, or has at least two minimal prime ideals. [Use the previous exercise.] 

43. Prove that the ideal / in the Noetherian ring R is radical if and only if the primary compo-
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nents of a minimal primary decomposition are all prime ideals, and conclude that in this 
case the minimal primary decomposition is unique. [If I = Q1 n · · · n Qm is radical with 
Q; a P;-primary component of a minimal decomposition, show that if a E P1 n · · · n Pm 
then some power of a is in I, hence a E I since 1 is radical. Deduce that I = P1 n · · · n P m 
and show that this is also a minimal primary decomposition, i.e., for any i there exists b 
with b 1/j P; , but b E Pj for j =ft i. If a E P; , show that ab E Q; , and that a E Q; . 
Conclude that Q; = P; .] 

44. Prove that a Noetherian integral domain R is a U.F.D. if and only if for every a E R the 
isolated primes associated to the principal ideal (a) are principal ideals . [See Example 2 
following Corollary 22. To prove R is a U.F.D., show that an irreducible a E R is prime 
and then follow the proof of Theorem 14 in Section 8.3.] 

45. Let R be the ring of all real valued functions on the open interval ( - 1 .  1) that have 
derivatives of all orders (the ring of C00 functions). Let { - l/x4 

F(x) = � if X =ft 0 

if x = 0 

(you may assume F E R and F(n) (O) = 0 for all n .::: 0) . Let (F) be the principal ideal 
generated by F and let A = rad((F)). Let M be the (maximal) ideal of all functions in R 
that are zero at x = 0 and let P = n�1 Mn . 
(a) Prove that M = (x) is the ideal generated by the function x in R and that Mn = (xn)  

consists of the functions whose first n - 1 derivatives vanish at the origin. 
(b) Prove that R is not Noetherian (compare Exercise 33 in Section 7.4). [One approach 

is the following: Let G (x) be the function that is 0 for x < 0 and is equal to F(x) for 
x .::: 0. Let In be the ideal of functions in R vanishing for all x � 1 f n . Use translates 
of G(x) to show that It c h c 13 c · · · is an infinite ascending chain.] 

(c) Prove that P consists of the functions all of whose derivatives are zero at x = 0 (i.e., 
the functions whose associated Taylor series at x = 0 is identically zero), and that P 
is a prime ideal. 

(d) Prove that F E P and deduce that A s; P.  
(e) Prove that A =ft P. [Let G(x) = e- lfx2 when x =ft 0 and G(O) = 0. Show that G E P 

but G 1/j A.] 
(f) Show that there is a prime ideal Q containing (F) with Q =ft P, M. Prove that Q c P 

i.e., there are nonzero prime ideals properly contained in P .  
46. Let A be any ideal in  R = k[x t , . . .  , Xn , Yt • . . .  , Ym1 ·  

(a) Show that rad(A n k[yt ,  . . .  , YmD = rad An k[Yt , . . .  , Ym1 ·  
(b) Suppose U1 , . . .  , f, ) is an ideal in  k[ Xt , . . .  , Xn] .  Let Ft , . . .  , F1 be generators for 

the radical of Ut , . . .  , f,), computed in k[xt , . . .  , xn ] .  Suppose J is an ideal in R 
and let A = J + (fl , . . . , f,), 13 = J + (Ft • . . . .  F1) as ideals in R. Prove that 
rad A = rad 13. 

(c) Conclude from (a) and (b) that A = (yi -Xt , . . .  , Ym -Xm , fl ,  . . . , f, )nk[yt • . . .  , Ym1 
and 13 = (Yt - x1 , . . .  , Ym - xm . Ft • . . .  , F1) n k[yl • . . .  , Ym1 have the same zero sets 
over an algebraically closed field k. [Use Hilbert's Nullstellensatz.] 

47. Determine the Zariski closure in C3 of the points on the curve { (a2 , a3 , a4) 1 a E q. 
48. Show that Z(x3 - xyz + z2) is  the smallest algebraic set in JR3 containing the points 

{(st, s + t, s2t)  I s , t E IR}. 

49. Show that Z(x3z2 - 3xy2z2 - y6 - z4) is the smallest algebraic set in JR3 containing the 
points {(s2 + t2 , st, s3) I s , t E IR}. 
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50. Find equations defining the Zariski closure of the set of points { (s4 , s3t ,  st3 , r4) 1 s ,  t E JR.}. 

51. Show that V = Z(x2 - y2z) (the Whitney umbrella surface) is  the smallest algebraic set 
in IR.3 containing the points S = { (st ,  s, t2) 1 s, t E JR.} . Show that S is not Zariski closed 
in V (the missing points explain the name for the surface). Do the same over C, but show 
that in this case S = V is closed. 

52. Let v = z (x z2 - w3 ' X w2 - y4 ' y4 z2 - w5) c C4 . Determine the Zariski closure of the 
image of V under the projection n((x , y , z,  w)) = (x , y ,  z) .  

53. Let V = Z (xy - 1 )  in A.Z and let S be the projection of V onto the x -axis in A 1 . 
(a) If k = JR., show that i(V) = (xy - 1 ) c JR.[x , y] and that (u - x ,  xy - 1 )  n JR.[u] = 0 

in IR.[x, y, u] .  Use Propositions 8 and 16  to conclude that the Zariski closure of S is 
A 1 and show that S is not itself closed. 

(b) If k = F3 , show that I( V) = (xy - 1 ,  x3 - x , y3 - y) c 1B'3 [x , y] and that (u 
x, xy - 1 ,  x3 - x ,  y3 - y) n 1B'3 [u] = (u2 - 1 )  in 1B'3 [x , y, u] .  Use Propositions 8 and 
16 to conclude that S is Zariski closed in A1 • 

54. Recall the ideal quotient (I : J) = {r E R I r J E I } of two ideals I, J in a ring R ( cf. 
Exercise 34 ff. in Section 9.6). Clearly I � (I : J).  
(a) Show that Z(l) - Z(J), the set of elements of Z(I) not lying in Z(J), is contained 

in Z((l : J)) and conclude that the Zariski closure of Z(l) - Z(J) is contained in 
Z((I : J)).  

(b) Show that if k is algebraically closed and I is a radical ideal then Z((/ : J)) is 
precisely the Zariski closure of Z(I) - Z(J). 

(c) Show that if V and W are affine algebraic sets then (I(V) : I(W)) = I( V - W). 

1 5.3 I NTEGRAL EXTENSIONS AND H ILBERT'S NU LLSTELLENSATZ 

In this section we consider the important concept of an integral extension of rings, 
which is a generalization to rings of algebraic extensions of fields. This leads to the 
definition of the "integers" in finite extensions of Q (the basic subject of the branch 
of mathematics called algebraic number theory) and is also related to the existence of 
tangent lines for algebraic curves. 

Definition. Suppose R is a sub ring of the commutative ring S with 1 = 1 s E R. 
(1) An element s E S is integral over R if s is the root of a monic polynomial in 

R[x] .  
(2) The ring S is an integral extension of R or just integral over R if every s E S is 

integral over R. 
(3) The integral closure of R in  S is  the set of elements of S that are integral over 

R. 
(4) The ring R is said to be integrally closed in S if R is equal to its integral closure 

in S. The integral closure of an integral domain R in its field of fractions is 
called the normalization of R .  An integral domain is called integrally closed or 
normal if it is integrally closed in its field of fractions . 

Before giving some examples of integral extensions we prove some basic properties 
of integral elements analogous to those of algebraic elements over fields . 
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Proposition 23. Let R be a subring of the commutative ring S with 1 E R and let s E S. 
Then the following are equivalent: 

(1) s is integral over R, 
(2) R[s] is a finitely generated R-module (where R[s] is the ring of all R-linear 

combinations of powers of s ), and 
(3) s E T for some subring T, R � T � S, that is a finitely generated R-module. 

Proof Suppose first that ( 1 )  holds and let s be a root of the monic polynomial 
xn + an-!Xn- i + . . .  + ao E R[x].  Then 

Sn = -(an-1Sn-1 + an-2Sn-2 + · · · + ao) 

and so sn , and then all higher powers of s, can be expressed as R -linear combinations 
of sn-1 , . . .  , s, 1 .  Hence R[s] = R 1 + Rs + · · · + Rsn-1 is finitely generated as an 
R-module, which gives (2). 

If (2) holds, then (3) holds with T = R[s ] .  
Suppose that (3)  holds and let v1 , v2 , . . .  , Vn be a finite generating set for T.  Then 

for i = 1 ,  2, . . .  , n the element s v; is an element of T since T is a ring, and so can be 
written as R-linear combinations of v 1  • . . .  , vn : 

i.e., 

n 
S V; = L: aij Vj , 

j=1 

n 
0 = L(<Sijs - aij ) Vj 

j=1 
i = 1 ,  2, . . .  , n 

where <Sij is the Kronecker delta. If B is the n x n matrix whose i, j entry is <Sij s - aij , 
and v is the n x 1 column vector whose entries are v1 , . . .  , Vn ,  then these equations are 
simply B v  = 0. It follows from Cramer's Rule that (det B)v; = 0 for all i (cf. Exercise 
3, Section 1 1 .4). Since I E T is an R-linear combination of v1 , . . .  , Vn , it follows that 
det B = 0. But B = s I - A, where A is the matrix (a;j ) . Thus s is a root of the monic 
polynomial det(x / - A) E R[x] (the characteristic polynomial of A), and so s is a root 
of a monic polynomial with coefficients in R, which gives ( 1 ), completing the proof. 

Corollary 24. Let R � S be as in Proposition 23 and let s ,  t E S. 
(1) If s and t are integral over R then so are s ± t and st.  
(2) The integral closure of R in S is a subring of S containing R. 
(3) Integrality is transitive: let S be a subring of T;  if T is integral over S and S is 

integral over R, then T is integral over R.  

Proof Let s and t be integral over R. By Proposition 23 both R[s] and R[t] are 
finitely generated R-modules, say 
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R[s] = Rs1 + Rs2 + · · · + Rsn 
R[t] = Rt1 + Rt2 + · · · + Rtm . 
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Then 

R [s, t] = Rs1 t1 + · · · + Rs; tj + · · · + Rsn tm 

· is a ring containing s ± t and st that is also a finitely generated R-module. Hence s ± t 
and st are also integral over R, which proves ( 1 )  and also (2). 

To prove (3), let t E T. Since t is integral over S, it is the root of some monic 
polynomial p (x) = xn+an- ]Xn- l+ · ·+ao E S[x]. Since a; E S is integral over R, each 
ring R[ai l is a finitely generated R-module and so the ring R1 = R[ao, a1 , . . . , an-d is 
also a finitely generated R -module. Since the monic polynomial p(x) has its coefficients 
in Rt , t is integral over R1 and it follows that the ring Rt [t] = R [ao , a1 , . . .  , an- t .  t] is 
a finitely generated R-module. By the proposition, this means that t is integral over R,  
which gives (3). 

The second statement in Corollary 24 shows that taking the elements of S that are 
integral over R gives a (possibly larger) subring of S, and the last statement in the 
corollary shows that the process of taking the integral closure stops after one step: 

Corollary 25. Let R be a subring of the commutative ring S with 1 E R .  Then the 
integral closure of R in S is integrally closed in S.  

Examples 

(1) If R and S are fields then S is integral over R if and only if S is algebraic over R -
if s E S is a root of the polynomial p(x) with coefficients in R then it is a root of the 
monic polynomial obtained by dividing by the (nonzero) leading coefficient of p(x). 

(2) Suppose S is an integral extension of R and I is an ideal in S. Then S I I is an integral 
ring extension of Rj(R n I) (reducing the monic polynomial over R satisfied by s E S 
modulo I gives a monic polynomial satisfied by s E S/ I over Rj(R n I)). 

(3) If R is a U.F.D. then R is integrally closed, as follows. Suppose ajb is an element in 
the field of fractions of R (with b f= 0 and a and b having no common factors) and 
satisfies (ajb)n + rn- 1 (ajb)n- l + ·  · · + rt (ajb) + ro  = 0 with ro , . . .  , rn- 1  E R. Then 

an = b(-rn- lan- 1 - . . .  - qabn-2 - robn-1 ) 

shows that any irreducible element dividing b divides an , hence divides a .  Since ajb 
is in lowest terms, this shows that b must be a unit, i.e., ajb E R. 

(4) The polynomial ring k[x ,  y] over the field k is integrally closed in its fraction field 
k(x,  y) by example (3) above. The ideal (x2 - y3) is prime (cf. Exercise 14, Section 
9. 1), so the quotient ring R = k[x, y]j(x2 - y3) = k[x , y] is an integral domain. This 
domain is not integrally closed, however, since x jy is an element of the fraction field 
of R that is integral over R (since (xjy)3 - x = 0), but is not an element of R. In 
particular, R is not a U.F.D. by the previous example. 

We next consider the behavior of ideals in integral ring extensions. 

Definition. Let cp : R � S be a homomorphism of commutative rings. 
(a) If I is an ideal in R then the extension of I to S is the ideal cp (I) S of S generated 

by the image of I .  

(b) If  J is an ideal of S ,  then the contraction in R of J i s  the ideal cp- 1  (J) .  
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In the special case where R is a subring of S and cp is the natural injection, the 
extension of I � R is the ideal IS  in S and the contraction of J � S is the ideal J n R 
of R. 

It  is immediate from the definition that 

(1) I � IS  n R, more generally, I is contained in the contraction of its extension 
to S, and 

(2) (J n R) S � J, more generally, J contains the extension of its contraction in 
R.  

In general equality need not hold in either situation (cf. the exercises). 

If Q is a prime ideal in S, then its contraction is prime in R (although the contraction 
of a maximal ideal need not be maximal). On the other hand, if P is a prime ideal in 
R, its extension need not be prime (or even proper) in S; moreover, it is not generally 
true that P is the contraction of a prime ideal of S (cf. the exercises). For integral ring 
extensions, however, the situation is more controlled: 

Theorem 26. Let R be a subring of the commutative ring S with 1 E R and suppose 
that S integral over R. 

(1) Assume that S is an integral domain. Then R is a field if and only if S is a field. 
(2) Let P be a prime ideal in R. Then there is a prime ideal Q in S with P = Q n R.  

Moreover, P i s  maximal if and only if Q i s  maximal. 
(3) (The Going-up Theorem) Let P1 � P2 � · · · � Pn be a chain of prime ideals 

in R and suppose there are prime ideals Q 1 � Q2 � · · · � Qm of S with 
P; = Q; n R, 1 � i � m and m < n.  Then the ascending chain of ideals 
can be completed: there are prime ideals Qm+1 � · · · � Qn in S such that 
P; = Q; n R for all i .  

(4) (The Going-down Theorem) Assume that S is an integral domain and R is 
integrally closed in S. Let P1 2 P2 2 · · · 2 Pn be a chain of prime ideals 
in R and suppose there are prime ideals Q 1 2 Q2 2 · · · 2 Qm of S with 
P; = Q; n R, 1 � i � m and m < n. Then the descending chain of ideals 
can be completed: there are prime ideals Qm+1 2 · · · 2 Qn in S such that 
P; = Q; n R for all i .  

Proof" To prove ( 1 )  assume first that R i s  a field and let s be a nonzero element of 
S. Then s is integral over R, so 

Sn + an-1Sn-1 + · · · + a1s + ll{) = 0 

for some ao , a1 , . . .  , an-1 in R. Since S is an integral domain, we may assume ao =/= 0 
(otherwise cancel factors of s ). Then 

s (sn-1 + an-JSn-2 + · · · + a1) = -ao 

and since (- 1 /ao) E R, this shows that (- 1 /ao) (sn- 1 + an_1sn-2 + - · · + a! )  is an 
inverse for s in S, so S is a field. Conversely, suppose S is a field and r is a nonzero 
element of R. Since r-1 E S is integral over R we have 
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r-m + am- t r-m+ 1 + - - - + a1r-1 + ao = 0 
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for some ao, . . .  , Um-l  E R.  Then r-1 
= -(am-l + · · · + Ut rm-2 + aorm- l) E R, so 

R is a field. 
The proof of the first statement in (2) is given in Corollary 50. For the second state

ment, observe that the integral domain S I Q is an integral extension of Rl P (Example 
2 following Corollary 25). By ( 1 ), S I Q is a field if and only if Rl P is a field, i.e., Q 
is maximal if and only if P is maximal. 

To prove (3), it suffices by induction to prove that if Pt 5; P2 and Ql is a prime of 
S with Q 1  n R = Pt then there is a prime Q2 of S with Q1  5; Q2 and Q2 n R = P2 . 
Since S = SIQ1  is an integral extension of R = Rl P1 , the first part of (2) shows that 

there exists a prime Q2 of S with Q2 n R = P21 P1 • Then the preimage Q2 of Q2 in S 
is a prime ideal containing Q1  with Q2 n R = P2. 

The proof of (4) is outlined in Exercise 24 in Section 4. 

Corollary 27. Suppose R is a subring of the ring S with 1 E R and assume S is integral 
and finitely generated (as a ring) over R. If P is a maximal ideal in R then there is a 
nonzero and finite number of maximal ideals Q of S with Q n R = P.  

Proof' There exists at least one maximal ideal Q lying over P by (2) of the theorem, 
so we must see why there are only finitely many such maximal ideals in S. If Q is a 
maximal ideal of S with Q n R = P then S I Q is a field containing the field RIP . 
To prove that there are only finitely many possible Q it suffices to prove that there are 
only finitely many homomorphisms from S to a field containing Rl P that extend the 
homomorphism from R to Rl P .  Let S = R[s1 , . . .  , sn] ,  where the elements s; are 
integral over R by assumption, and let p; (x) be a monic polynomial with coefficients 
in R satisfied by s; .  If Q is a maximal ideal of S then SIQ = (RI P)[s1 , . . .  , sn] is 
the field extension of the field RIP with generators s1 , • • • , sn . The element s; is a 
root of the monic polynomial p; (x) with coefficients in RIP obtained by reducing the 
coefficients of p; (x) mod P. There are only a finite number of possible roots of this 
monic polynomial (in a fixed algebraic closure of Rl P), and so only finitely many 
possible field extensions of the form (RI P)[s1 , . . .  , sn] ,  which proves the corollary. 

Algebraic Integers 

We can use the concept of an integral ring extension to define the "integers" in extension 
fields of the rational numbers Q: 

Definition. Let K be an extension field of Q. 
(1) An element a E K is called an algebraic integer if a is integral over Z, i.e., if 

a is the root of some monic polynomial with coefficients in Z. 
(2) The integral closure of Z in K is called the ring of integers of K, and is denoted 

by th . 

An algebraic integer is clearly algebraic over Q, so the ring of all algebraic integers 

is the ring of integers in Q, an algebraic closure of Q. Examples of algebraic integers 

include ,Ji., .J=I. VS, etc. since these elements are certainly roots of monic polyno
mials with coefficients in Z. The definition of an algebraic integer a is that a be a root 
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of some monic polynomial in Z[x ] ,  a condition which seems difficult to check. The 
next proposition gives a simple criterion for a to be an algebraic integer in terms of the 
minimal polynomial for a .  

Proposition 28. An element a in  some field extension of Q is  an  algebraic integer 
if and only if a is algebraic over Q and its minimal polynomial ma,Q (X) has integer 
coefficients. In particular, the algebraic integers in Q are the integers Z, i.e., OQ = Z. 

Proof: If a is algebraic over Q with ma.Q (X) E Z[x ], then by definition a is integral 
over Z. Conversely, assume a is integral over Z, and let f(x) be a monic polynomial in 
Z[x] ofminimum degree having a as a root. Iff were reducible in Q[x], then by Gauss' 
Lemma f(x) = g (x)h (x) for some monic polynomials g (x) , h (x) in Z[x] of degree 
smaller than the degree of f. But then a would be a root of either g or h, contradicting 
the minimality of f. Hence f is irreducible in Q[x] ,  so f(x) = ma,Q (x) and so the 
minimal polynomial for a has coefficients in Z. Finally, the minimal polynomial of 
a = afb E Q (afb reduced to lowest terms and b > 0) is bx - a, which is monic if 
and only if b = 1 ,  so a E Q is an algebraic integer if and only if a E Z. 

Because the integers Z are the algebraic integers in Q, for emphasis (and clarity) 
the elements of Z are sometimes referred to as the "rational integers" to distinguish 
them from the "integers" in extensions of finite degree over Q (called number fields) . 
The next result gives some of the basic structure of the ring of integers in a general 
number field. 

Theorem 29. Let K be a number field of degree n over Q. 
(1) The ring OK of integers in K is a Noetherian ring and is a free Z-module of 

rank n.  
(2) For every f3 E K there i s  some nonzero d E Z such that df3 i s  an  algebraic 

integer. In particular, K is the field of fractions of OK .  
(3) If {31 , fJ2 • . . .  , f3n is any Q-basis of K ,  then there is an integer d such that 

df31 , df32 , . . .  , df3n is a basis for a free Z-submodule of OK of rank n.  Any basis 
of the Z-module 0 K is also a basis for K as a vector space over Q. 

Proof: Note first that any Z-linear dependence relation among elements in OK is a 
Q-linear dependence relation in K, and multiplying a Q-linear dependence relation of 
elements of OK in K by a common denominator for the coefficients yields a Z-linear 
dependence relation in 0 K .  Let f3 be any element of K and let xk +ak-l xk-l + · · · +ao be 
the minimal polynomial of f3 over Q. If d is a common denominator for the coefficients, 
then multiplying through by dk shows that 

(df3)k + dak-1 (df3l-1 + · · · + dk-1a1 (df3) + dkao = 0, 

and dkao, dk- 1a1 , . . .  , dak- l E Z. Hence df3 is an algebraic integer, which proves the 
first part of (2) and then the second statement in (2) follows immediately. 

If {31 , . . .  , f3n are a Q-basis for K over Q, then there is a nonzero integer d such that 
df31 , . . .  , df3n all lie in 0 K .  These elements are still linearly independent over Q, so in 
particular are independent over Z, hence generate a free submodule of OK of rank n, 
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which proves the first statement in (3). 
Since Ch is a subring of the field K, it is a torsion free Z-module. If OK were 

contained in some finitely generated Z-module it would follow that 0 K is also finitely 
generated over Z, hence is a free Z-module. If L is the Galois closure of K, then 
OK s; OL and so it suffices to see that OL is contained in a finitely generated Z
module. Let at , . . .  , am be a Q-basis for L. Multiplying by an integer d E .Z, if 
necessary, we may assume that each a; is an algebraic integer, i.e., at , . . .  , am E OL .  
For each fixed 0 =f=. 0 in L, the map 

To : L � Q defined by To (a) = TrL/Q (Oa) 

(where TrL/Q denotes the trace map from L to Q, cf. Exercise 18 in Section 14.2) is 
a Q-linear transformation from L to Q. This linear transformation is nonzero because 
T0 (0- 1) = TrL/IQ ( 1 )  = m .  It follows that the map from L to HomiQ! {L , Q) mapping 0 
to To is an injective homomorphism of vector spaces over Q. Since both spaces have 
the same dimension over Q, the map is an isomorphism. Put another way, every linear 
functional on L is of the form To for some 0 E L .  In particular, there are elements 
a� , . . .  , a� in L whose corresponding linear transformations Ta; give the dual basis of 
at , . . .  , am , i.e., 

I { 1 ,  if i = j 
TrL/Q (a;aj ) = . 

0. otherwise. 

Since a� , . . .  , a� are linearly independent, they give a basis for L over Q. Hence every 
element f3 E 01. can be written 

with at • . . .  , am E Q. Multiplying by ai and taking the trace shows that 

TrL/Q ({Jaj) = a1 TrL!Q (a;aj ) + · · · + a;TrLfQ (a;aj) + · · · + am TrL/Q (a�aj) = ai . 

But f3 and ai are both elements of 01. , so also {Jai is an element of 01. , and this implies 
that ai = Tri./Q ({Jaj) is an element of .Z (cf. Exercise 1 8(d) of Section 14.2). It follows 
that 

so that OL is contained in a finitely generated Z-module, proving that OK (and also 
0 L) is a free Z-module. 

Since K has dimension n as a vector space over Q, it follows that 0 K is a free Z
module of rank at most n (by Theorem 5 of Section 1 2. 1  ). Because 0 K also contains a 
free Z-submodule of rank n, it follows that the Z-rank of 0 K is precisely n, proving ( 1 ), 
and then the second statement in (3) follows by the remarks on Z-linear and Q-linear 
dependence relations. 

Finally, any ideal I in 0 K is a Z-submodule of a free Z-module of rank n, so is a 
free Z-module of rank at most n, and a set of Z-module generators for I is also a set 
of 0K -generators. Hence every ideal of OK can be generated by at most n elements, 
which implies that OK is a Noetherian ring and completes the proof. 
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Definition. An integral basis for the number field K is a basis of the ring of integers 
in K considered as a free Z-module of rank [K : Q] . 

If P is a nonzero prime ideal in the ring of integers 0 K of a number field K then 
P n Z is a prime ideal in Z. If a E P,  then the constant term of the minimal polynomial 
for a over Q is then an element in P n Z, which shows that P n Z = pZ is also a 
nonzero prime ideal in Z. By Theorem 26, every prime ideal (p) in Z arises in this 
way. Since pZ is a maximal ideal, it also follows from (2) in Theorem 26 that nonzero 
prime ideals in 0 K are maximal, and then by Corollary 27, there are finitely many 
prime ideals P in OK with P n Z = pZ. We shall see later (Corollary 16 in Section 
16.3) that every nonzero ideal in the ring of integers of a number field can be written 
uniquely as the product of prime ideals, and in the case of the ideal pO K the distinct 
prime factors are precisely the finitely many ideals P in OK with P n Z = pZ. This 
property replaces the unique factorization of elements in OK into primes (which need 
not hold since OK need not be a U.F.D.). We shall also see that primary ideals in OK 

are powers of prime ideals (in fact this is equivalent to the unique factorization of ideals 
of 0 K into products of prime ideals, cf. the exercises). 

Example: (The Ring of Integers in Quadratic Extensions of Q) 

If K is a quadratic extension of Q then K = Q( ...Ji5) for some square free integer D. Then 

()Q(-.{i5) = Z[w] = Z · I +  Z · w,  

with integral basis I , w,  where 

I ...Ji5. w = I +  ....[i5 
2 

. 

if D = 2, 3 mod 4 

if D = I  mod 4. 

This is the quadratic integer ring introduced in Section 7 . I .  Since w satisfies w2 - D = 0 
(respectively, w2 - w + (I - D)/4) for D  = 2, 3 mod 4 (respectively, D = I mod 4), it 
follows that w is an algebraic integer in K and so Z[w] � () K . To prove that this is the full 

ring of integers in K, let a = a + b....[i5 with a , b E Q, and suppose that a is an algebraic 
integer. If b = 0, then a E Q and so a E Z. If b i=- 0, the minimal polynomial of a is 
x2 - 2ax + (a2 - b2 D). Then Proposition 28 shows that 2a and a2 - b2 D are elements 
of Z. Then 4(a2 - b2 D) = (2a)2 - (2b)2 D E Z, hence 4b2 D E Z. Since D is squarefree 
it follows that 2b is an integer. Write a = x j2 and b = y j2 for some integers x ,  y. Since 
a2 - b2 D is an integer, x2 - y2 D = 0 (mod 4). Since 0 and I are the only squares mod 4 
and D is not divisible by 4, it is easy to check that the only possibilities are the following: 

(i) D = 2 or 3 (mod 4) and x, y are both even, or 
(ii) D = I (mod 4) and x, y are both even or both odd. 

In case (i), a ,  b E Z and a E Z[w] . In case (ii), a + b....[i5 = r + sw where r = (x - y)/2 
and s = y are bo!h integers, so again a E Zfw] . 

Example: (The Ring of Integers in Cyclotomic Fields) 

The ring of integers in the cyclotomic field Q(s11 ) of n1h roots of unity is Z[s11 ] ,  where sn 
is any primitive n1h root of I .  The elements I , sn . . . . .  s-,f<n )-l are an integral basis. It is 
clear that Sn is an algebraic integer since it is a root of x" - I, so the ring Z[ sn ] is contained 
in the ring of integers. The proof that this is the full ring of algebraic integers in Q(s11 ) 
involves techniques from algebraic number theory beyond the scope of the material here. 
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Noether's Normalization Lemma and Hi lbert's Nul lstellensatz 

We now apply some of the techniques from the algebraic theory of integral ring exten
sions to affine geometry. 

Definition. If k is a field the elements y1 , Y2 • . . .  , yq in some k-algebra are called 
algebraically independent over k if there is no nonzero polynomial p in q variables 
over k such that p(y1 , Y2 • . . .  , Yq) = 0. 

Thus Yt , Y2 • . . .  , Yq are algebraically independent if and only if the k-algebra homo
morphism from the polynomial ring k[x1 , . . .  , Xq] to k[y! , . . .  , Yq ] defined by x; � y; 
is an isomorphism. Elements in a field extension of k are algebraically independent if 
and only if they are independent transcendentals over k. 

Theorem 30. (Noether's Normalization Lemma) Let k be a field and suppose that 
A =  k[r1 , r2 , . . .  , rm ] is a finitely generated k-algebra. Then for some q,  0 :::: q :::: m, 
there are algebraically independent elements Y1 , Y2 · . . .  , yq E A such that A is  integral 
over k[y1 .  Y2 · . . . •  Yql 

Proof" Proceed by induction on m. If rt , . . . , r m are algebraically independent 
over k then take y; = r; , i = l ,  . . . , m . Otherwise, there exists j(x1 , . . .  , Xm) E 
k [xt , . . .  , Xm ]  such that f(rt , . . .  , rm) = 0. The polynomial f is a sum of monomials 
of the form ax� ' x�2 • • • x:,m , where the degree of this monomial is e1 + · · · + em and 
the degree, d, of f is the maximum of the degrees of its monomials. Renumbering the 
variables if necessary, we may assume that f is a nonconstant polynomial in Xm with 
coefficients in the ring k[x1 , x2 , . . .  , Xm-1l We now perform a change of variables that 
transforms (or "normalizes") f into a monic polynomial in Xm with coefficients from a 
subring of A which is generated over k by m - 1 elements, at which point we shall be 
able to apply induction. 

Define integers ct; = ( 1  + d)i and new variables X; = x; - x�' for 1 :::: i :::: m - 1 .  
Let 

g(X1 . x2 • . . .  ' Xm-1 . Xm) = f(X1 + x�' ' x2 + x�\ . . .  ' Xm-1 + x�m- ) ' Xm) . 
so g E k[X1 , . . .  , Xm-1 • Xm] .  Each monomial term of f contributes a single term of the 
form a constant times x:, to g.  It is also easy to check that the choice of ct; ensures that 
distinct monomials in f give different values of e (for example by viewing the degrees 
of the monomials in the new variables as integers expressed in base b = d + 1 ). If N 
is the highest power of Xm that occurs, then it follows that 

N-1 
N '""' i g = cxm + � h; (X1 , . . .  , Xm-t )Xm 

i=O 
for some nonzero c E k. If now s; = r; - r,�' then 

1 1 -g(s1 , S2 , . . .  , Sm-1 , rm) = - j(rt , r2 , . . .  , rm-J , rm) = 0, c c 
which shows that rm is integral over B = k[s1 , • • •  , Srn- t 1· Each r; for 1 :::: i :::: m - I 
is integral over B[rrn ] since r; is a root of the monic polynomial x - s; - r�' , so A is 
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integral over B [r m l . By transitivity of integrality, A is therefore integral over B.  Since 
B is a k-algebra generated by m - 1 elements, induction completes the proof. 

A more "geometric" interpretation of Noether's Normalization Lemma is indicated 
in Exercise 15 . We next use the Normalization Lemma to prove that if k is an alge-
braically closed field then the maximal ideals of the polynomial ring k[Xt , x2 , . . .  , Xn ] 
are ofthe form (Xt -at , . . .  , Xn -an) for some at ,  . . .  , an E k. Viewing k[Xt , X2 , . . .  , Xn] 
as the ring of polynomial functions on An , this says that the maximal ideals correspond 
to the kernels of evaluation maps at points of An - similar to the corresponding result 
for rings of continuous functions on a compact set ( cf. Exercises 33, 34 in Section 7.4 ). 

Theorem 31. (Hilbert's Nullstellensatz- Weak Form) Let k be an algebraically closed 
field. Then M is a maximal ideal in the polynomial ring k[xt , x2 , . . .  , Xn] if and only if 
M = (Xt - at ,  . . .  , Xn - an)  for some at , . . .  , an E k. Equivalently, the maps Z and I 
give a bijective correspondence 

{points in An } 
I 

---+ 
� 

z 
{maximal ideals in k[An] } .  

Moreover, i f  I i s  any proper ideal i n  k[xt , x2 , . . .  , Xn ] then Z(J) -=/= 0 .  

Proof: Certainly (Xt - at , . . .  , Xn - an) i s  a maximal ideal i n  k[Xt , X2 , . . .  , Xn ] .  
Conversely, for any maximal ideal M in k[Xt , x2 , . . .  , Xn] ,  let £ = k[Xt , x2 , . . .  , Xn]/ M. 
Then E is a field containing k that is finitely generated over k (by x; , . . .  , Xn ). By 
Noether's Normalization Lemma, E is integral over a polynomial ring k[yt , . . .  , Yq ] .  
Then k[yt , . . .  , Yq ] is a field by Theorem 26(1), and since a polynomial ring in one or 
more variables is never a field, it follows that q = 0. Hence E is integral over k, so E is 
algebraic over k. Because k is algebraically closed, E = k, i.e., X; E k for 1 :::; i :::; n .  
Hence for i = 1 ,  . . . , n there i s  some a; E k such that x; - a; E M. This means that the 
maximal ideal (Xt - at ,  . . .  , Xn - an)  is contained in M, so M = (Xt - at ,  . . .  , Xn - an) .  
Finally, if I i s  any nonzero ideal in  k[xt , x2 , . . .  , Xn] then I i s  contained in  a maximal 
ideal M = (Xt - at , 0 0 0 , Xn - an).  and so (at ,  0 0 0 ' an ) E Z(J).  

Theorem 32. (Hilbert's Nullstellensatz) Let k be an algebraically closed field. Then 
I(Z(J)) = rad I for every ideal I of k[x t ,  x2 , . . .  , Xn] .  Moreover, the maps Z and I 
define inverse bijections 

I 
{affine algebraic sets} � {radical ideals} . 

z 

Proof" Since rad i � I(Z(J)) it remains to prove the reverse inclusion. By 
Hilbert's Basis Theorem, I = (ft , /2,  . . .  , fm) .  Let g E I(Z(J)) .  Introduce a new 
variable Xn+t and consider the ideal I' generated by ft ,  . . . , fm and Xn+tg  - 1 in 
k[Xt , . . .  , Xn , Xn+t l ·  At any point of An+t where ft . . . .  , fm vanish the polynomial g 
also vanishes since g E I(Z(J)),  so that Xn+t g - 1 is nonzero. Hence Z(I') = 0 in 
An+t . By the Weak Form of the Nullstellensatz, I' cannot be a proper ideal, i.e., 1 E I'.  
Write 
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Letting y = l fxn+l and multiplying by a high power of y in this equation shows that 

YN = cJ /1 + · · · + cm fm + Cm+l (g - y) for some c; E k[XJ , . . .  , Xn , y].  

Substituting g for y in this polynomial equation shows that gN E I (in k[x1 , . . . , xnD. 
i.e., g E rad i.  Hence i(Z(/)) 5; rad i and so i(Z(/)) = rad i , completing the proof. 

It follows directly from Proposition 12  and Theorem 26(2) that if S is an integral 
extension of R with 1 E R and if I is an ideal of R, then 

(rads I S) n R = radR I 

where IS is the ideal generated by I in S, and the subscript indicates the ring in which 
the radicals are being computed. This has the following geometric interpretation. 

Corollary 33. (Variant of Hilbert's Nullstellensatz) If k is any field with algebraic 
closure k and I is an ideal in k[xJ , Xz ,  . . .  , xn l .  then Ik (Z�c (/)) = rad I ,  where Z�c (/) 

is the zero set in j(n of the polynomials in I and Ik (Z�c (/)) is the ideal of polynomials 
in k[xJ , Xz , . . .  , Xnl vanishing at all the points in Z�c (/). In particular, I = ( 1 )  if and 
only if there are no common zeros in j(n of the polynomials in I .  

Proof" Since k[xl , xz , . . .  , Xn ] is an integral extension of k[xl , xz , . . .  , Xn l (gener
ated by the integral elements k), the corollary follows immediately from Theorem 32 
and the remarks on radicals above. 

From the Nullstellensatz we now have a dictionary between geometric and ring
theoretic objects over the algebraically closed field k :  

Geometry 

affine algebraic set V 
points of V 
affine algebraic subsets in V 
subvarieties in V 
morphism q; : V � W 

Computing Radicals 

Algebra 

coordinate ring k[V]  
maximal ideals of k[V] 
radical ideals of k[V] 
prime ideals in k[V]  
k-algebra homomorphism 

q5 : k[W] � k[V] 

There are algorithms for computing radicals and primary decompositions in polynomial 
rings using Grabner bases. While they are relatively elementary, they are somewhat 
technical and so we limit our discussion here to some preliminary results. 

For hypersurfaces V = Z(f) defined by a single polynomial f E k[XJ , . . .  , Xn], 
determining I(V )  = rad(f) is straightforward. Since k[Xt . . . .  , Xn l is a U.F.D., f 
factors uniquely as the product of powers of nonassociate irreducibles: f = p�1 • • • p�s 
and then rad(f) is generated by Pl · · · Ps (the 'squarefree part' of f). 
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Example 

Suppose W = Z(J) with J = (u3 - uv2 + v3) E Q[u , v] . The polynomial x3 - x + 1 is 
irreducible over Q, so f = u3 - uv2 + v3 is irreducible in Q[u , v] . Hence rad J = J and 
I(W) = J .  

For nonprincipal ideals I ,  determining rad I i s  more complicated. The following 
proposition (based on Hilbert's Nullstellensatz) gives a criterion determining when an 
element is contained in rad I .  

Proposition 34. Suppose k is  any field. If I = Ut , . . .  , fs) is a proper ideal in 
k[Xt ,  . . .  , x, ], then f E rad I if and only if Ut • . . .  , fs , 1 - yf) = k[xt ,  . . . , x, , y] . 

Proof By Corollary 33, Ut • . . .  , !s , 1 - y f) = k[xt , . . .  , x, , y] if and only if the 
equations 

1 - yf(xt • . . .  , x,) = 0, ft (Xt ,  . . .  , x, ) = 0, fs (Xt , . . .  , x,) = 0 

have no common zero over the algebraic closure k of k. For a given (at , . . .  , a, ) E k" , 
the equation 1 - yf(at • . . .  , a,) = O has a solution y unless f(at , . . .  , a,) = 0. Hence, 
the system of equations has no common zero if and only if for every (at ,  . . .  , a, ) E k" 
with ft (at • . . .  , a, ) = · · · = fs (at ,  . . . .  an ) = 0 we also have f(at • . . .  , a11 ) = 0. 
Equivalently, if (at , . . .  , a,) E Zk (/), then also f(at • . . .  , a, ) = 0, i.e., we have 
f E Ik(Zk (/)) = rad I, by Corollary 33. 

Since the reduced Grobner basis (with respect to any fixed monomial ordering) 
for an ideal is unique, we immediately obtain the following algorithmic method for 
determining when a polynomial lies in the radical of an ideal. 

Corollary 35. Suppose I = Ut , . . .  , !s ) in k[xt , . . .  , x,] .  Then f E rad I if and only 
if { 1 }  is the reduced Grobner basis for the ideal (/1 , • . •  , f. , l - yf) in k[x1 , • • •  , x, , y] 
with respect to any monomial ordering. 

Example 

Consider I =  (x2 - y2, xy) in k[x ,  y]. The reduced Grobner basis for (x2 - y2, xy, 1 - tx) 
in k[x ,  y ,  t] with respect to the order x > y > t is { 1 } , showing x E rad(I) . To determine 
the smallest power of x lying in I, we find that the ideal (x2 - y2 , xy ,  x3) in k[x ,  y] has 
the same reduced Grabner basis as I (namely {x2 - y2 , xy , y3 }), but (x2 - y2, x2 , xy) has 
basis {x2 , xy. y2} . It follows that x3 E I and x2 ¢ I (alternatively, x3 leaves a nonzero 
remainder after general polynomial division by {x2 - y2, xy ,  y3 }, but x3 has a remainder 
of 0) . By a similar computation (or by symmetry), y E rad I, with y3 E I but y2 ¢ I.  
Since (x , y) � rad I ,  it  follows that rad I = (x , y) .  

Some additional results for computing radicals are presented in the exercises. 
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E X E R C I S E S  

Let R be a subring of the commutative ring S with 1 E R. 

1. Use the fact that a U.F.D. is integrally closed to prove that the Gaussian integers, Z[i], is 
the ring of integers in Q(i) .  

2.  Suppose k is a field and let t = ify in  the field of fractions of the integral domain 
R = k[x ,  y]j(x2 - y3) .  Prove that K = k(t) is the fraction field of R and k[t] is the 
integral closure of R in K .  

3. Suppose k is a field and i and j are relatively prime positive integers. Find the normalization 
of the integral domain R = k[x ,  y]j(x; - yj ) (cf. Exercise 14, Section 9 .1 ) . 

4. Suppose k is a field and let P be the ideal (y2-x3 -x2) in the polynomial ring k[ x ,  y] .  Prove 
that P is a prime ideal and find the normalization of the integral domain R = k[x , y ]/ P. 
[To prove P is prime, show that y2 - x3 - x2 is irreducible in the U.F.D. k[x, y] .  Then 
consider t = y fi E R.] 

5. If R is an integral domain with field of fractions F, show that F is a finitely generated 
R-module if and only if R = F. 

6. For each of the following give specific rings R � S and explicit ideals in these rings that 
exhibit the specified relation: 
(a) an ideal I of R such that I =f. Sf n R (so the contraction of the extension of an ideal 

I need not equal I) 
(b) a prime ideal P of R such that there is no prime ideal Q of S with P = Q n R 
(c) a maximal ideal M of S such that M n R is not maximal in R 
(d) a prime ideal P of R whose extension P S to S is not a prime ideal in S 
(e) an ideal J of S such that J =f. (J n R)S (so the extension of the contraction of an ideal 

J need not equal J). 

7. Let 0 K be the ring of integers in a number field K. 
(a) Suppose that every nonzero ideal I of 0 K can be written as the product of powers 

of prime ideals. Prove that an ideal Q of 0 K is P-primary if and only if Q = pm 
for some m � 1 .  [Show first that since nonzero primes in 0 K are maximal that 
p1 m 1  � f>2.m2 for distinct nonzero primes Pt , Pz implies P1 = Pz .] 

(b) Suppose that an ideal Q of OK is P-primary if and only if Q = pm for some m � 1 .  
Assuming all of Theorem 2 1 ,  prove that every nonzero ideal I of OK can be written 
uniquely as the product of powers of prime ideals. [Prove that Pt m 1  and Pzm2 are 
comaximal ideals if Pt and Pz are distinct nonzero prime ideals and use the Chinese 
Remainder Theorem.] 

8. Prove that if st • . . .  , s11 E S are integral over R, then the ring R[st • . . .  , s11 ]  is a finitely 
generated R-module. 

9. Suppose that S is integral over R and that P is a prime ideal in R. Prove that every element s 
in the ideal PS generated by P in S  satisfies an equation s" +a11-ts"-

1 
+ ·  · · +ats + ao = 0 

where the coefficients ao ,  a1 ,  . . . , an-1 are elements of P. [If s = P1S1 + ·  · · +  P
mSm E PS, 

show that T = R [st , . . .  , sm ] satisfies the hypotheses in Proposition 23(3). Follow the 
proof in Proposition 23 that s is integral, noting that s E PT so that the aij are elements 
of P .] 

10. Prove the following generalization of Proposition 28: Suppose R is an integrally closed 
integral domain with field of fractions k and a is an element of an extension field K 
of k. Show that a is integral over R if and only if a is algebraic over k and the minimal 
polynomial ma,k (x) for a over k has coefficients in R. [If a is integral prove the conjugates 
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of a, i.e., the roots of ma,k (x) ,  are also integral, so the elementary symmetric functions of 
the conjugates are elements of k that are integral over R .] 

11. Suppose R is an integrally closed integral domain with field of fractions k and p(x) E 
R[x] is a monic polynomial. Show that if p(x) = a(x)b(x) with monic polynomials 
a(x) , b(x) E k[x] then a(x) ,  b(x) E R[x] (compare to Gauss' Lemma, Proposition 5, 
Section 9.3). [See the previous exercise.] 

12. Suppose S is an integral domain that is integral over a ring R as in the previous exercise. 
If P is a prime ideal in R, let s be any element in the ideal P S generated by P in S. Prove 
that, with the exception of the leading term, the coefficients of the minimal polynomial 
ms,k (x) for s over k are elements of P.  [By Exercise 10, ms,k (x) E R[x].  Exercise 9 
shows that s is a root of a monic polynomial p(x) = x" + a11-txn-l + · · · + ao with 
ao, . . .  , an-I E P. Use the previous exercise to show that p(x) = ms,k (x)b(x) with b(x) 
in R[x ] , and consider this equation in the integral domain (Rj P)[x ] .  ] 

The next two exercises extend Exercise 6 in Section 7.5 by characterizing fields that are not 
fields of fractions of any of their proper subrings. 

13. Let K be a field of characteristic 0 and let A be a subring of K maximal with respect to 
1j2 ¢ A. (Such A exists by Zorn's Lemma.) Let F be the field of fractions of A in K. 
(a) Show that K is algebraic over F. [If t is transcendental over F, show that 1 /2 ¢ A[t] .] 
(b) Show that A is integrally closed in K. [Show that 1 j2 is not in the integral closure of 

A in K.]  
(c) Deduce from (a) and (b) that K = F. 

14. Show that a field K is the field of fractions of some proper subring of K if and only if K 
is not a subfield of the algebraic closure of a finite field. [If K contains t transcendental 
over IF' P argue as in the preceding exercise with 1 j t in place of 1/2 to show that K is the 
quotient field of some proper subring.] 

The next exercise gives a "geometric" interpretation ofNoether's Normalization Lemma, show
ing that every affine algebraic set is a finite covering of some affine n-space. 

15. Let V be an affine algebraic set over an algebraically closed field k. Prove that for some 
n there is a surjective morphism from V onto A" with finite fibers, and that if V is a 
variety, then n can be taken to be the dimension of V. [By Noether's Normalization 
Lemma the finitely generated k-algebra S = k[V] contains a polynomial subalgebra R = 

k[xt , x2 , . . .  , x11 ] such that S is integral over R. Apply Theorem 6 to the inclusion of R in 
S to obtain a morphism ({J from V to A" . To see that ({J is surjective with finite fibers, apply 
Corollary 27 to the maximal ideal (xt - at , . . .  , x11 - a11 ) of R corresponding to a point 
(at ,  . . .  , an) of A" .] 

16. Let V be an affine algebraic set in <C" . Prove that V is compact in the Euclidean topology 
(i .e., closed and bounded) if and only if it is finite. [Use Exercise 1 8  in Section 2, the 
previous exercise, and the behavior of compact sets with respect to continuous functions.] 

17. Let R be a subring of the commutative ring S with ls E R and suppose that S is integral 
over R. This exercise proves that R and S have the same Krull dimension, cf. Section 16. 1 .  
(a) If Pt c P2 c · · · c Pn is a chain of distinct prime ideals in R prove that there is a 

chain Q 1 c Q2 c · · · c Qn of distinct prime ideals in S with Q; n R = P; . 
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(b) Prove conversely that if Q 1 c Q2 c · · · c Qn is a chain of distinct prime ideals in S 
and P; = Q; n R then Pt c P2 c · · · c Pn is a chain of distinct prime ideals in R.  
[To prove the P; are distinct, pass to a quotient and reduce the problem to showing that 
if Q is a nonzero prime ideal in the integral domain S then Q n R is a nonzero prime 
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ideal in R. In this case, if s E Q is nonzero, show that the constant coefficient of a 
polynomial of minimal degree in R[x] satisfied by s is a nonzero element in Q n R .] 

18. Let V = Z(l) and W = Z(I) where I is the ideal (uv + v) c C[u , v] and J is the ideal 
(-2y - y2 + 2z + z2, 2x - yz - z2) c C[x,  y, z] . 
(a) Show that I and J are prime ideals. Conclude that I = I(V) and J = I(W) and that 

V and W are varieties. 
(b) Show that the map q; : V --+ W defined by q;((at , a2)) = (ai + a2 , at + a2 , a1 - a2) 

is an isomorphism. 
19. Let I = (x3 + y3 + z3 , x2 + y2 + z2 , (x + y + z)3) c k[x,  y, z] . Use Grobner bases to 

show that x ,  y, z E rad I if ch(k) =/= 2, 3. 
20. Let I =  (x3 + y3 + z3, xy + xz + yz, xyz) c k[x ,  y , z] . Use Grobner bases to show that 

x , y , z E rad i .  
21. Let I =  (x4 + y4 + z4 ,  x + y + z) c k[x , y,  z] . 

(a) Use Grobner bases to show that xy + xz + yz E rad I if ch(k) =1= 2 and determine 
the smallest power of xy + xz + yz contained in I. Show that none of x ,  y or z is 
contained in rad I .  

(b) If J = (x4 + y4 + z4 ,  x + y + z ,  x y  + xz + yz) show that the reduced Grobner basis 
of J relative to the lexicographic ordering x > y > z is {x + y + ::: , y2 + yz + z2} .  
Deduce that k[x ,  y ,  z]/ J � k[y , z]j(y2 + yz + z2) and that J is radical if ch(k) =1= 3.  

(c) If ch(k) :;i 2, 3, show that rad I =  J. 
(d) If ch(k) = 3, show that rad I =  (x - y ,  y - z). 
(e) If ch(k) = 2, show that I =  (x + y + z) is a prime, hence radical, ideal. 

22. Let I = (x2y + z3 , x + y3 - z, 2y4z - yz2 - z3) c k[x ,  y, z]. Use Grobner bases to 
show that x, y, z E rad I and conclude that rad I = (x , y, z). Show that x9, y 7 , z9 are the 
smallest powers of x ,  y ,  z. respectively, lying in I .  

23. Let V = Z(x3 - x2z - y2z) and W = Z(x2 + y2 - z2) in C3 . Show that I(V) = 
(x3 - x2z - y2z) and i(W) = (x2 + y2 - z2) in C[x , y ,  z]. 

24. Let V = Z(x3 + y3 + 7z3) c C3• Show that i(V) = (x3 + y3 + 7z3) in C[x , y, z]. 
25. Let / = (xz + y2 + z2 , xy - xz + yz - 2z2) and let K = I + (x2 - 3y2 + yz) c C[x , y, z] . 

(a) By Exercise 46 in Section 1 ,  there is an injective C-algebra homomorphism from 
C[x , y ,  z]/ K to C[u, v]f(u3 - uv2 + v3) .  Use this together with the example preceding 
Proposition 34 to prove that K is a radical ideal and deduce that rad I � K.  

(b) Show that rad i � (y , z).  
(c) Show that K n (y, z) = I and deduce that I is radical, so that i(V) = I if V = Z(l).  
(d) Show that y (x2 - 3y2 + yz) and z(x2 - 3y2 + yz) are elements of I but none of y, 

z, or x2 - 3y2 + yz is contained in I.  
26. Let I be an ideal in k[xt • . . .  , Xn ] .  Prove that the following are equivalent (an ideal 

satisfying any of these conditions is called a zero-dimensional ideal because of (d)): 
(a) The quotient k[xt , . . .  , xn] /  I has finite dimension as a vector space over k. 
(b) I n  k[xi ] =1= 0 for each i = 1, 2, . . .  , n. 
(c) If G is any reduced Grobner basis for I then for each i = 1, . . . , n, there is a g; E G 

with leading term x;• for some n; � 1 .  
(d) The set of common zeros Zk (I) of the polynomials i n  I in an algebraic closure k of 

k is finite. 
[For (a) implies (b) use the injection k[xi ]f(l n k[x; ]) � k[XJ , . . .  , Xn]/I .  For (b) implies 
(c) note some LT(g; ) divides the leading term of a generator for Ink[x; ] .  For (c) implies (a) 
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use Exercise 37 in Section 9.6. Show (b) implies (d). For (d) implies (b) show the product 
ma1 ,k (x; ) . . .  maN , k (x; ) of the minimal polynomials of the ;th coordinates a1 , . . .  , aN of 
the points in Z�c (I) is a nonzero polynomial in I(Z�c (l)) and apply Corollary 33.] 

27. Let I be a zero-dimensional ideal in k[x1 , . . .  , Xn ] and let I' be the ideal generated by I 
in k[x1 ,  . . .  , Xn] where k is the algebraic closure of k. Let Z(l) be the zero set of I in � 
and let Z�c (I) be the zero set of I (equivalently, of I') in i(n , 
(a) Prove that IZ�c (l) i = dim�ck[xl , . . .  , Xn]f rad i'.  [Show that rad I' is the product of 

the maximal ideals corresponding to the points in Vk and use the Chinese Remainder 
Theorem.] 

(b) Show IZ(I) I .::: dim kk[x1 , . . . , xn ]/I.  [One approach: use Exercise 43 in Section I 
and observe that dim �ckfx1 , . . . , Xn ]/ rad I' .::: dim�ck[xl ,  . . .  , Xn ]/  I'.] 

28. Suppose I is a zero-dimensional ideal in k[x1 , . . .  , Xn] , and suppose I n k[x; ] is generated 
by the nonzero polynomial h; (cf. Exercise 26). Let r; be the product of the irreducible 
factors of h; (the 'squarefree part' of h; ) . 
(a) Prove that I + (q , . . . , rn) � rad I.  
(b) (Radicals of zero-dimensional ideals for perfect fields) If k is  a perfect field, prove 

that rad I = I + (q , . . .  , rn ) .  [Use induction on n .  Write r1 = Pl . . .  p1 with distinct 
irreducibles Pi in k[x! l .  If 1 = I + (q , . . .  , rn ) show that 1 = 11 n · · · n 11 where 
11 = 1 + (p1 ) .  Show for each i that reduction modulo p; induces an isomorphism 
k[x1 , . . . , Xn ]/ 1; � K [x2 , . . .  , Xn ]/  1{ where K is the extension field k[x]j(p; ) and 
1( � K[x2 , . . . , Xn ] is the reduction of the ideal 1; modulo (p; ) .  Use Exercise 1 1  of 
Section 13 .5 to show that the image of rj in 1( n K[xj ] remains a nonzero squarefree 
polynomial for each j = 2, . . . , n since k is perfect. Conclude by induction that 1( is 
a radical ideal. Deduce that 1; is a radical ideal, and finally that 1 is a radical ideal.] 

(c) Find the radicals of (x 7 + x + y3 , x4 + y3 + y ) , (x3 - xy2 + x ,  x2y + y3), and 
(x4 + y3 , x3 - xy + y2) in Q[x, y] and of (x2 + y2z, x2y2 + z3 , y2 + z2) in Qfx ,  y , z] . 

(d) Let k = lFp(t). Show that I =  (xP + t ,  yP - t) is a zero-dimensional ideal in k[x ,  y] 
such that both I n  k[x] and I n  k[y] contain nonzero squarefree polynomials, but that 
I is not a radical ideal (so the result in (b) need not hold if k is not perfect). [Show 
that x + y E rad i but x + y f/:. 1 .] 

1 5.4 LOCALIZATION 

The idea of "localization at a prime" in a ring is an extremely powerful and pervasive 
tool in algebra for isolating the behavior of the ideals in a ring. It is an algebraic 
analogue of the familiar idea of localizing at a point when considering questions of, 
for example , the differentiability of a function f (x) on the real line. In fact one of the 
important applications (and also one of the original motivations for the development) of 
this technique is to translate such "local" properties in the geometry of affine algebraic 
spaces to corresponding properties of their coordinate rings. 

We first consider a very general construction of "rings of fractions." Let D be a 
multiplicatively closed subset of R containing 1 (i.e., 1 E D and ab E D if a,  b E D). 
The next result constructs a new ring D- 1R which is the "smallest" ring in which the 
elements of D become units. This generalizes the construction of rings of fractions in 
Section 7.5 by allowing D to contain zero or zero divisors, and so in this case R need 
not embed as a subring of D- 1R . 
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Theorem 36. Let R be a commutative ring with 1 and let D be a multiplicatively 
closed subset of R containing 1 .  Then there is a commutative ring n-1R and a ring 
homomorphism rr : R ---+ D-1R satisfying the following universal property: for any 
homomorphism 1/f : R ---+ S of commutative rings that sends 1 to 1 such that 1/f(d) is a 
unit in S for every d E  D, there is a unique homomorphism '11 : D-1R ---+ S such that 
\}1 0 1T = 1/f. 

Proof: The proof is very similar to the proof of Theorem 1 5  in Section 7 .5. In this 
case we define a relation on R x D by 

(r, d) "' (s, e) if and only if x (er - ds) = 0 for some x E D. 

This relation is clearly reflexive and symmetric. If (r, d) "' (s ,  e) and (s, e) "' (t , f) 
then x(er - ds) = 0 and y (fs - et) = 0 for some x ,  y E D. Multiplying the first 
equation by fy and the second by dx and adding gives exy (fr - dt) = 0. Since D is 
closed under multiplication, (r, d) "' (t , f) and so "' is transitive. 

Let rjd denote the equivalence class of (r, d) under "' and let D-1R be the set of 
these equivalence classes. Define addition and multiplication in D-1R by 

a c ad + be a c ac 
b + d = 

bd 
and b x d = 

bd · 

It is an exercise to check that these operations are well defined and make n-1R into a 
commutative ring with 1 = 1 / l .  For each d E D, d/ 1 is a unit in D-1R (even in the 
degenerate case when D-1R is the zero ring). 

Finally, define rr : R ---+ D-1R by rr(r} = rj l .  It follows easily that rr is a ring 
homomorphism. Suppose that 1/f : R ---+ S is a homomorphism of commutative rings 
that sends 1 to 1 such that 1/f(d) is a unit in S for every d E D. Define 

'11 : D-1R ---+ S by '11 (�) = 1/f (r}lfr(d)-1 • 

This map is welJ defined because if rjd = sje then x (er - ds) = 0 for some x E D. 
Then 1/f(x}(lfr (er) - 1/f(ds)) = 0 in S, so 1/f (er) - 1/f(ds) = 0 since 1/f(x) is a unit 
in S, and therefore 1/f (r}1/f(dr1 = 1/f(s}lfr(e)-1 . It is immediate that '11 is a ring 
homomorphism and '11 o rr = 1/f .  

Finally, '11 i s  unique because every element of D-1R can be written as a product 
(r/ 1 ) (djl )-1 • The value of '11 on each element of the form xj 1 is uniquely determined 
by lfr, namely 'll (x/ 1 )  = 'll (rr(x)) = 1/f(x).  Since 'll is a ring homomorphism, its value 
on u-1 for any unit u is uniquely determined by 'll (u) .  Thus '11 is uniquely determined 
on every element of D-1R, completing the proof. 

Corollary 37. In the notation of Theorem 36, 
(1) ker rr = {r E R I xr = 0 for some x E D} ;  in particular, rr :  R ---+ D-1R is an 

injection .if and only if D contains no zero divisors of R, and 
(2) D-1R = 0 if and only if 0 E D, hence if and only if D contains nilpotent 

elements. 

Proof By definition, we have rr(r) = 0 if and only if (r, 1) "' (0, 1 ) ,  i.e. , if and 
only if xr = 0 for some x E D, which is ( 1 ). For (2), note that D-1R = 0 if and only 
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if the 1 of this ring is zero, i.e., ( 1 ,  l) '"'"' (0, l ) .  This occurs if and only if x 1 = 0 for 
some x E D, i.e., if and only if O E D. 

Definition. The ring v-1R is called the ring of fractions of R with respect to D or the 
localization of R at D. 

Examples 

(1) Let R be an integral domain and let D = R - {0} . Then v-1R is the field of fractions, 
Q, of R described in Section 7.5. More generally, if D is any multiplicatively closed 
subset of R - {0} , then v-1R is the subring of Q consisting of elements rjd with 
r E R and d E D. 

(2) Let R be any commutative ring with 1 and let f be any element of R. Let D be the 
multiplicative set {f" I n :::: 0} of nonnegative powers of f in R. Define RJ = v-1R . 
Note that RJ = 0 if and only if f is nilpotent. If f is not nilpotent, then f becomes a 
unit in R f. It is not difficult to see that 

RJ � R[x]j(xf - 1 ) ,  
where R[x] is the polynomial ring in  the variable x (cf. the exercises). Note also that 
RJ and Rr are naturally isomorphic for any n :::: I since both f and fn are units 
in both rings. If f is a zero divisor then n : R � R f does not embed R into R f .  
For example, let R = k[x, y ]j(xy), and take f = x. Then x i s  a unit in  Rx and y is 
mapped to 0 by the first part of the corollary (explicitly: y = xyjx = 0 in Rx). In this 
case n(R) = k[x] C RJ = k[x , x - 1 ] .  

(3) (Localizing at a Prime) Let P be a prime ideal in any ring R and let D = R - P. 
By definition of a prime ideal D is multiplicatively closed. Passing to the ring v - 1R 
in this case is called localizing R at P and the ring v-1R is denoted by Rp . Every 
element of R not in P becomes a unit in Rp.  For example, if R = IZ and P = (p) is 
a prime ideal, then 

a Z(p) = { b E Q I p t b} s; Q 

and every integer b not divisible by p is a unit. 
(4) If V is any nonempty set and k is a field, let R be any ring of k-valued functions on V 

containing the constant functions (for instance, the ring of all continuous real valued 
functions on the closed interval [0, 1 ]). For any a E V let Ma be the ideal of functions 
in R that vanish at a. Then Ma is the kernel of the ring homomorphism from R to 
the field k given by evaluating each function in R at a. Since R contains the constant 
functions, evaluation is surjective and so Ma is a maximal (hence also prime) ideal. 
The localization of R at this prime ideal is then 

RMa = { f l f, g E R, g(a) ]i: O} . 

Each function in RMa can then be evaluated at a by (fjg) (a) = f(a)jg(a), and 
this value does not depend on the choice of representative for the class ffg, so RMa 
becomes a ring of k-valued "rational functions" defined at a. 

We next consider extensions and contractions of ideals with respect to the map 
1r : R � v-1R in Theorem 36. To ease some of the notation, if I is an ideal of R, let 
ei denote the extension of I to v-1R (instead of the more cumbersome v-1R 1r(l)), 
and if J is an ideal of v-1R, let cJ denote the contraction of J to R.  
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If I is an ideal of R then it is easy to see that every element of ei can be written 
in the form aid for some a E I and d E D, so the extension of I to D-1R is also 
frequently denoted by D-1 I .  

Proposition 38. In  the preceding notation we have 
(1) For any ideal J of D-1R we have J = e ( cl).  In particular, every ideal of D-1R 

is the extension of some ideal of R, and distinct ideals of D-1R have distinct 
contractions in R. 

(2) For any ideal I of R we have 

c c en = {r E R I dr E I for some d E D}. 

Also, ei = D-1R if and only if I n  D # 0. 
(3) Extension and contraction give a bijective correspondence 

{ prime ideals P of R } with P n D = 0  
e 

---+ 
+

c 
{ 

prime ideals of D-1R 
} . 

(4) If R is Noetherian (or Artinian) then D-1R is Noetherian (Artinian, respec
tively). 

Proof· We always have e ( cl) � J. For the reverse inclusion let aid E J.  Then 
al1  = d(ald) E J, and so a E rr-1 (1) = c1 . Thus al1  E e( cJ), so we also have 
(al 1)(lld) = aid E e ( CJ) , hence J = e( CJ) .  This proves the first statement in (1) 

and the second statement follows immediately. 
Let I' = {r E R I dr E I for some d E D}. We first show I' £;; c (  en. If r E I' 

then there is some d E  D such that dr = a  E I.  Then rl 1 = aid E ei , so r E c ( ei) . 
To show the reverse containment c ( en £;; I I' let r E c ( en so that r I 1 = aId for some 
a E I and d E D. Then x (dr - a) = O for some x E D, so xdr = xa E I, and because 
xd E D it follows that r E I'. This proves the first assertion of (2) . Now ei = D- 1R 
if and only if 1 1 1  E ei , if and only if 1 E c ( ei) = I'.  The second assertion of (2) then 
follows from the definition of I' .  

To prove (3) observe first that if Q is a prime ideal in D-1R, then its preimage 
under any homomorphism sending 1 to 1 is a prime ideal (cf. Exercise 13 ,  Section 7.4), 
so c  maps prime ideals of D-1R to prime ideals of R disjoint from D. In the reverse 
direction, let P be a prime ideal of R disjoint from D and let Q = ep and suppose 
(aldt )(bldz) E Q.  Then (ab)l(dtdz) E Q, so abl(dtdz) = cld for some c E P and 
d E D. Then x (dab - dtdzc) = 0 for some x E D. Since c E P we have xdab E P,  
and since P i s  a prime ideal disjoint from D we have ab E P .  Since P i s  prime, either 
a E P or b E P,  hence a I d1 or b I dz is in Q .  This proves Q is a prime ideal and shows 
that e maps prime ideals of R disjoint from D to prime ideals of D-1R.  Finally, it 
follows immediately from (2) that P = c ( ep) for every prime ideal of R disjoint from 
D. Thus c and e are inverse correspondences, hence are bijections between these sets 
of prime ideals. This establishes (3). 

By (1)  every ascending (respectively, descending) chain of distinct ideals in D-1R 
contracts to an ascending (respectively, descending) chain of distinct ideals in R, giving 
(4) and completing the proof. 
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Because 1 E D, first localizing the ideal I and then contracting that localization as 
in (2) results in an ideal in R containing I :  I � c ( e I) .  

Definition. Suppose R is  a commutative ring with 1 and D is  a multiplicatively closed 
subset containing 1 .  The saturation of the ideal l in R with respect to D is the ideal c ( el)  
in R, where contraction and extension are computed with respect to rr : R H- v-1 R. 
If I = c ( el)  then I is said to be saturated with respect to D. 
Loosely speaking, (2) of Proposition 38 shows that the saturation of I consists of 
elements of R that would lie in I if we allowed denominators from D. The ideal is 
saturated with respect to D if we don't obtain any additional elements even if we allow 
denominators from D. 

We can apply our results on localization to give an algorithm for determining 
whether an ideal P in the polynomial ring k[x1 , . . .  , Xn] with coefficients in the field 
k is prime. The basic idea is to use the fact that k[x1 , . . .  , X; ] = k[x1 , . . .  , X;-I ] [x; ] to 
consider inductively whether the ideals P; = P n k[x1 , • • •  , X; ] are prime. 

In general, suppose R is a commutative ring. If P is a prime ideal in R[x] then 
P n R is a prime ideal in R and so S = Rj(P n R) is an integral domain. Let F denote 
its quotient field. We then have two natural ring homomorphisms: 

R[x] -----+ (R/ P n R)[x] = S[x] -----+ F[x] 

where the first is the natural projection homomorphism and the second is the natural 
inclusion induced by S � F. Note that F[x] is the localization of S[x] with respect 
to the multiplicatively closed set D = S - (0} . The next proposition shows that the 
image of P under the first homomorphism is a prime ideal in S[x] that is saturated 
with respect to D and extends to a prime ideal in F[x ], and that, conversely, we can 
determine whether an ideal is prime in R[x] by these properties. 

Proposition 39. Suppose R is a commutative ring with 1 and I is an ideal in R[x].  
Then I is a prime ideal in R[x] if and only if 

i. J = I n R is a prime ideal in R, i.e., S = Rf J is an integral domain, and 
ii. if I is the image of I in S[x] then I F[x] is a prime ideal in F[x] satisfying 

IF[x] n S[x] = I. 
Proof Suppose I is a prime ideal in R[x], so that J = I n  R is a prime ideal in 

R and S = Rf J is an integral domain. By Proposition 2 in Chapter 9, the kernel of 
the reduction homomorphism R[x] H- S[x] = (R/ J)[x] is J[x], which is contained 
in l [x], so we have a ring isomorphism R[x]ji � S[x]//. Since R[x]ji is an integral 
domain, it follows that I is a prime ideal in the integral domain S[x] .  The elements of 
I n  S are the images of the elements in R n I ,  so I n S = 0. Since the ring F[x] is the 
localization of S[x] with respect to the multiplicatively closed set S - {0}, condition 
(ii) follows by Proposition 38(3). 

Conversely, if I is not prime, then either J is not prime in R or J is prime in R 
but I is not prime in S[x].  In the latter case either I F[x] is not prime in F[x] or, again 
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by Proposition 38(3), Y is not saturated. Thus, if I is not prime, either (i) or (ii) fails, 
completing the proof. 

Since F[x] is a Euclidean Domain, the ideal IF[x] = (h(x)) in Proposition 39 is 
principal, and is prime if and only if h(x) is either 0 or is irreducible in F[x] . Suppose 
h(x) is an element in I whose image in S[x] has leading coefficient a E S. The next 
proposition shows that a gives a bound on the denominators necessary for the saturation 
Y F[x] n S[x] and can be used to compute this saturation. 

Proposition 40. Let S be an integral domain with fraction field F and let A be a 
nonzero ideal in S[x]. Suppose AF[x] = (h(x)) where h(x) is a polynomial in S[x] 
with leading coefficient a E S. Let Sa be the localization of S with respect to the powers 
of a .  Then 

(1) AF[x] n S[x] = ASa [x] n S[x], and 
(2) if A denotes the ideal generated by A and 1 - at in the polynomial ring S[x ,  t ], 

then ASa [x] n S[x] = A n S[x] . 

Proof: We first show AF[x] n Sa [x] = ASa [x] .  Since Sa � F, the containment 
ASa [x] � AF[x] n Sa [x] is immediate. Suppose now that f(x) E AF[x] n Sa [x] .  
If  the leading term of f(x) is  sxN and the leading term of h(x) i s  axm , then since 
AF[x] = (h(x)) we have N � m .  Then the polynomial f(x) - (sja)xN-mh(x) is 
again in AF[x] n Sa [x] and is of lower degree than f(x) . Iterating, we see that f(x) 
can be written as a polynomial in Sa [x] times h(x), so f(x) E ASa [x] . Intersecting 
both sides of AF[x] n Sa [x] = ASa [x] with S[x] gives the first statement in the 
proposition. 

To prove the second statement, suppose first that f(x) E A n  S[x] . Then we 
can write f(x) = /l (x , t)b(x) + fz(x, t) ( l - at) for some polynomials b(x) E A 
and /1 ,  fz E S[x ,  t] . Substituting t = 1/a gives f(x) = ft (x , l ja)b(x), and since 
j, (x , l ja) E Sa [x], we obtain f(x) E ASa [x] n S[x] . Conversely, suppose that 
f(x) = b(x)g(x) E S[x] where g(x) E Sa (x) and b(x) E A . If aN is the largest power 
of a appearing in the denominators of the coefficients of g(x) then aN g(x) E S[x] . 
Writing f(x) = (at)N f(x) + ( 1 - (at)N )f(x) = b(x)tN (aN g(x)) + ( 1 - (at)N)f(x) 
we see that f (x) E An S[x ], giving the reverse containment and completing the proof. 

Suppose now that P is an ideal in k[x1 , . • .  , Xn ] .  Let P; for i = 1 ,  . . .  , n be 
the intersection of P with k[x1 , • • •  , x; ] .  We use Propositions 39 and 40 to determine 
inductiyely whether P, , P2, . . .  , Pn = P are prime ideals in their respective polynomial 
rings. 

The ideal P, will be prime in the Euclidean Domain k[xd if and only if it is 0 
or is generated by an irreducible polynomial. Suppose now that i � 2 and we have 
already proved that P;- ! is a prime ideal in k[x, , . . .  , x;-d, so that the quotient ring 
S = k[x, , . . .  , x; -d/ P;-! is an integral domain. If F denotes the quotient field of S, 
then by Proposition 39, P; is a prime ideal in k[x, , . . .  , x; ] if and only if its image in 
(k[x. , . . .  , X;-d/ P;-! ) [xi ] = S[x; ] is a saturated ideal whose extension to the Euclidean 
Domain F[x; ] is a prime ideal. Suppose h(x; ) E S[x; ] is a generator for this ideal and 
a is the leading coefficient of h(x; ) .  Then (h(x; )) is a prime ideal in F[x; ] if and only if 
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h(x;) = 0 or h(x;) is an irreducible polynomial. By Proposition 40, the image of P; in 
S[x; ] will be saturated if and only if it equals A n  S[x; ] where A is the ideal generated 
by P; and 1 - at in S[x; , t] . This latter condition can be checked in k[x1 , . . .  , x; , t] : it 
is equivalent to checking that the intersection of the ideal generated by P; and 1 - at 
in k[x1 ,  . . .  , x; , t] with k[xt • . . .  , x; ]  is just P; (cf. Exercise 3). 

Combining these observations with our results on Grobner bases from Chapter 9 
we obtain the following algorithm for determining whether the ideal P in k[x1 , • • •  , Xn] 
is prime (or, equivalently, whether the associated affine algebraic set is a variety). 

Algorithm for Determining when an Ideal  in  k[x1 , • • •  , xn] is Prime 

(1) Compute the reduced Grobner basis G = {g1 ,  . • .  , gm } for P with respect to the 
lexicographic monomial ordering Xn > · · · > Xt . 

By Proposition 29 in Section 9.6 the elements of G lying in k[xt • . . .  , x; ] will be the 
reduced Grobner basis {g1 , • • •  , gm. J  for P; = P n k[x1 , . . .  , x; ] .  

(2) Determine whether Pt is a prime ideal in k [xtl by checking that P1 = 0 or the 
nonzero generator of P1 is irreducible in k[xt ] .  

For each i 2: 2,  suppose P;_ 1 has been determined to be a prime ideal in k[x1 , . . .  , x;_t ]  
(otherwise, P is not a prime ideal in k[xt • . . .  , xnD· Let S = k[xt • . . .  , x;_ t ]j P;- 1  and 
let F be the fraction field of S. Apply steps (3) and (4) to determine whether P; is a 
prime ideal in k[x1 , . . .  , x; ] .  

(3) Ifm; = m;_ 1  then P; maps to the zero ideal in S[x; ] ,  hence is prime. Otherwise the 
image of P; in S[x; ] and in F[x; ] is a nonzero ideal, and is generated by the images 
of gm,_,+l , . . . , gm, · Apply the Euclidean algorithm in F[x; ] to these generators 
to find an element h(x;) in P; whose image in F[x; ] generates the image of P; in 
F[x; ] .  Determine whether h(x; ) is irreducible in F[x; ]-if not then P; and P are 
not prime ideals. 

(Note that after applying the Euclidean algorithm to the generators of the image of 
P; in F[x; ] we can multiply by a single element of S to 'clear denominators' in each 
equation so that all remainders (and in particular the last nonzero remainder h(x; )) will 
be elements in the image of P; .) 

(4) Let a E k[xt , . . .  , x;_ t ]  be the leading coefficient of h(x; ) (as a polynomial in x; ). 
Compute the reduced Grobner basis in k[x1 , . . .  , x; , t] for the ideal generated by P; 
and 1 - at with respect to the lexicographic monomial ordering t > x; > · · · > Xt . 
Determine whether the elements of this reduced basis that lie in k[x1 , • • •  , x; ] are 
{gt , . . .  , gm, }-if so, then P; is a prime ideal in k[xt , . . .  , x; ]  and if not then P; and 
P are not prime ideals. 

Finally, we note that similar ideas (together with some minor modifications to 
extend results on Grobner bases to polynomial rings R[xt , . . .  , Xn] with coefficients in 
an integral domain R) can be used to provide algorithms for determining when an ideal 
in, for example, Z[x1 , . . •  , Xn ] is prime. 
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Examples 

(1) Consider the ideal P = (xz - l, yz - x3 , z2 - x2y) in k[x ,  y, z] for any infinite field 
k. It follows from Exercise 26 in Section 1 that P is a prime ideal since there is an 
injection of k[x , y, z]/ P into the integral domain k[A 1 ] (cf. Exercise 24 in Section 2). 
Here we prove P c Q[x , y,  z] is prime using the ideas in this section. The reduced 
Grobner basis for P with respect to the lexicographic monomial ordering x > y > z 
is {x3 - yz, x2y - z2 , xy3 - z3 , xz - y2 , y5 - z4} .  Hence Pt = P n Q[z] = (0), and 
P2 n Q[y, z] = (y5 - z4) .  Since Pt = 0, the ideal Pt is prime in Q[z] . 

We next check P2 is prime in Q[y , z] , which can be done directly (cf. Exercise 4 
or Exercise 14 in Section 9.1) .  In this case S = Q[z] and F = Q(z) . The image of P2 
in F[y] is generated by h(y) = y5 - z4, which is irreducible in Q(z)[y]. The leading 
coefficient of h(y) is 1, and the reduced Grobner basis for (y5 - z4 , 1 - t) in Q[y,  z, t] 
with respect to the lexicographic monomial ordering t > y > z is {y5 - z4 , 1 - t} .  
The element in the reduced Grobner basis for P2 is  the only element of this basis lying 
in Q[y , z] so P2 is a prime ideal in Q[y , z]. 

We now use the fact that P2 is prime to prove that P is prime. In this case S is 
the integral domain Q[y, z]/ P2 = Q[y, z]j(y5 - z4) with quotient field F given by 

s = Q[zl + Q[zl.Y + Q[zl.Y2 + Q[zl.Y3 + Q[zl.Y4 

F = Q(z) + Q(z).Y + Q(z).Y2 + Q(z)y3 + QCz).Y4 

where y5 = z4 •  The image of P in S[x] is the ideal P generated by the elements 
g} = x3 - yz, g2 = yx2 - z2,  g3 = y3 X - z3 , g4 = ZX - )'2, and ji5 - z4 = 0. 

The greatest common divisor in F[x] of g1 , g2 , g3 , g4 generating the image of P 
in F[x] is the irreducible polynomial x - y2 jz. The polynomial h(x) = zx - y2 in 
P has image generating the same ideal in F[x], so we may take a =  z in (4) of the 
algorithm. The reduced Grobner basis for (xz - y2, yz - x3 , z2 - x2y, 1 - zt) with 
respect to the lexicographic monomial ordering t > x > y > z consists of the reduced 
Grobner basis for P together with the elements tl - x and tz - 1 involving t, so P 
is a prime ideal in Q[x, y, z] . 

(2) Consider the ideal P = (xz - y3 , xy -z2) in Q[x ,  y ,  z], with reduced Grobner basis for 
the lexicographic monomial ordering x > y > z given by {xy - z2 , xz - y3 , y4 - z3 } . 
Here P1 = 0 and P2 = P n Q[y, z] = (y4 - z3) are prime ideals as in Example 1. In 
this case S = Q[y, z]/ P2 is given by 

s = Q[zl + Q[zl.Y + Q[zl.Y2 + Q[z]y3 

with y4 = z3 , with quotient field F similar to the previous example, and P = (gJ , g2) 
in S[x] where g1 = yx - z2 and g2 = zx - y3 . The extension ofP to F[x] is generated 
by the irreducible polynomial yx - z2• and h(x) = yx - z2 is an element of p having 
the same image in F[x], with leading coefficient a = y. The reduced Grobner basis 
for the ideal (xz - y3 , xy - z2 , 1 - yt) in Q[x , y, z, t] using the lexicographic ordering 
t > x > y > z is {x2 - y2z , xy - z2,  xz - y3 , y4 - z3 , ty - 1 ,  tz2 - x}, containing 
the element x2 - y2z not in the reduced Grobner basis for P, so P is not a prime ideal 
in Q[x , y ,  z] .  This computation not only shows P is not a prime ideal, it does so by 
explicitly showing the image of P in S[x] is not saturated using the localization Sa . 
The computation of a = y allows us to find an explicit pair of elements not in P whose 
product is in P :  f = x2 - y2z !ifi P and y lifi P, but some power of y times f lies in 
P. In this case a quick computation verifies that y f E P. 
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Local izations of Modules 

Suppose now that M is an R-module and D is a multiplicatively closed subset of R 
containing 1 as above. Then the ideas used in the construction of v-IR can be used to 
construct a v-IR-module n-I M from M in a similar fashion, as follows. Define the 
relation on D x M by 

(d, m) ,....., (e, n) if and only if x(dn - em) = 0 for some x E D, 

which is easily checked to be an equivalence relation. Let mjd denote the equiva
lence class of (d, m) and let v-IM denote the set of equivalence classes. It is then 
straightforward to verify that the operations : + � = 

em�dn 
and (�) (:) = �: 

are well defined and give v-IM the structure of a v-IR-module. 

Definition. The v-IR-module v-IM is called the module of fractions of M with 
respect to D or the localization of M at D. 

Note that the localization v-IM is  also an R-module (since each r E R acts by r/1 
on v-IM), and there is an R-module homomorphism 

m 
1r :  M -+  D-IM defined by rr(m) = - .  

1 
It follows directly from the definition of the equivalence relation that 

ker rr = {m E  M I dm = 0 for some d E D} .  

The homomorphism 1r has a universal property analogous to that in Theorem 36. Sup
pose N is an R -module with the property that left multiplication on N by d is a bijection 
of N for every d E D. If 1/f : M -+ N is any R-module homomorphism then there is a 
unique R-module homomorphism \}1 :  v-IM -+ N such that \}1 o 1r = 1/f. 

If M and N are R-modules and lfJ : M -+ N is an R-module homomorphism, then 
for any multiplicative set D in R it is easy to check that there is an induced v-IR -module 
homomorphism from v-IM to n-IN defined by mapping mjd to ({J(m)jd. 

The next result shows that the localization of M at D is related to the tensor product. 

Proposition 41. Let D be a multiplicatively closed subset of R containing 1 and let M 
be an R-module. Then n-I M � v-IR 0R M as v-IR-modules, i.e., n-I M is the 
v-IR-module obtained by extension of scalars from the R-module M. 

Proof: The map from D-IR x M to D-IM defined by mapping (rjd, m) to rmjd is 
well defined and R -balanced, so induces a homomorphism from v-IR 0 R M to v-IM. 
The map sending mfd to ( ljd) 0 m gives a well defined inverse homomorphism (if 
mjd = m'jd' in v-IM then x(d'm - dm') = 0 for some x E D, and then ( 1/d) 0 m 
can be written as ( I jxd'd) 0 (xd'm) = (lfxd'd) 0 (xdm') = ( 1/d') 0 m'). Hence 
v-IM is isomorphic to v-IR 0 R M as an R -module since these inverse isomorphisms 
are also v-IR-module homomorphisms. 

Localizing a ring R or an R-module M at D behaves very well with respect to 
algebraic operations on rings and modules, as the following proposition shows: 
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Proposition 42. Let R be a commutative ring with I and let v-IR be its localization 
with respect to the multiplicatively closed subset D of R containing 1 .  

(1) Localization commutes with finite sums and intersections of ideals: If I and J 
are ideals of R, then 

v-Iu + J) = v-I{l) + v-I{J) and v-I(i n J) = v-�n n v-I(J). 

Localization commutes with quotients: 

v-IR 1 v-II � v-I<RI I), 

(where the localization on the right is with respect to the image of D in the 
quotient Rl I). 

{2) Localization commutes with taking radicals: If N is the nilradical of R, then 
v-IN is the nilradical of v-IR. If I is an ideal in R, then rad(D-II) is 
v-I(rad i). 

(3) Primary ideals correspond to primary ideals in the correspondence (3) of Propo
sition 38. More precisely, suppose Q is a P-primary ideal in R.  If V n P :f: 0 
then v-IQ = v-IR. If v n p = 0 then v-Ip is a prime ideal, the extension 
v-IQ of Q is a v-IP-primary ideal in v-IR, and the contraction back to R of 
v-IQ is Q.  

(4) Localization commutes with finite sums, intersections and quotients of modules: 
If L and N are submodules of the R-module M, then 
{a) v-I(L + N) = v-IL + v-IN and v-I(L n N) = v-IL n v-IN, 
(b) v-IN is a submodule of v-IM and v-IM I v-IN = v-I(MIN). 

(5) Localization commutes with finite direct sums of modules: If M and N are 
R-modules, then v-I(M $ N) � v-IM $ v-IN. 

(6) Localization is exact (i.e., v-IR is  a flat R-module): If  0 � L .! M � 
N � 0 is a short exact sequence of R -modules, then the induced sequence 

"'' , 
0 � v-IL � v-IM � v-IN � 0 of v-IR-modules is also exact. 

Proof: We first prove (6). Suppose that 0 � L .! M � N � 0 is a short exact 
sequence of R -modules. Every element of v-IN is of the form n I d for some n E N and 
d e  D. Since q:l is surjective, n = 97(m) for somem E M, so97' (mld) = 97(m)ld = nld 
and 97' : v-IM � v-IN is surjective. Ifmld is in the kemel of97' then di97(m) = O for 
some di e D. Then 97(dim) = 0 implies dim = 1/J(l) for some l e L by the exactness 
of the original sequence at M, so mid = diml(dtd) = 1/J(l)l(did) = 1/l'(ll(did)) 
and ker(97') � image(l/1'). If 1/J(l}ld e image(l/1') then 97'(1/J(l)ld) = 97(1/J (l))ld = 0, 
which shows the reverse inclusion image( 1/1') � ker( 97'), and we have exactness of the 
induced sequence at v-IM. Finally, suppose 1/J'(lld) = 0. Then d21/f (l) = 0 for some 
d2 e V, i.e., 1/1 (d2l) = 0, so d2l = 0 by the injectivity of 1/J .  Hence lId = d2l I (d2d) = 0 

"'' , 
and 1/1' is injective. This proves that the sequence 0 � v-IL � v-IM � v-IN � 0 
is exact. 

To prove the first statement in ( 1 ), note that (i + j)ld = i ld + j ld for i E I, j E J 
andd E D shows D-I{l+J) � v-I{l)+D-I(J) ; and ildi +jld2 = (d2i+dd)l(did2) 
for i E I, j E J and di , d2 E D shows D-Xl) + v-I(J) � D-XI + J). For the 
second statement, the inclusion v-Iu n J) � v-I(I) n v-I(J) is immediate. If 
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ajd E v-1(1) n v-1(1) then d1a E I and d2a E J for some d1 , d2 E D. Then 
d1d2a E I n 1 and ajd = (didza)j(dtdzd) gives the inclusion v-I(/) n n- I(J) £; 
v-1(1 n J). The last statement in ( 1 )  follows by applying (6) to the exact sequence 

1/1 rp 0 """"* I """"* R """"* Rjl """"* 0. 
To prove (2), suppose first that a E rad I ,  so that an E I for some n � 1 .  Then 

(ajd)n = an jdn E D-1/ so D-1(rad /) � rad(D-11) .  Conversely, if ajd E rad(D-1/) 
then (ajd)n E v-I/ for some n � 1 ,  i.e., dian E I for some di E D. Hence 
(dia)n = d�-I (dian ) E /, so dia E rad I and then ajd = diaj(d1d) E v-1(rad /) 
shows that rad(D-IJ) � v-�rad /) .  This proves the second statement in (2), and the 
first statement follows by applying this to the ideal / = (0) . 

For (3), note first that D n P = 0 if and only if D n Q = 0 (one inclusion is 
obvious and the other follows since d E  D n P implies dn E D  n Q for some n). The 
statement for D n P # 0 and the fact that v-Ip is a prime ideal for D n P = 0 were 
proved in Proposition 38. To see that v-1Q is a primary ideal in v- IR, suppose that 
(ajdt) (bfdz) E v- IQ and ajd1 rl. D-1Q. Then there is some element d E D so that 
dab E Q, and since a rl. Q and Q is primary, we have (db)n E Q for some n � 1 . 
Then (bfdz)n = dnbn j(dnd'd )  E D-IQ, so that D-1Q is primary. The radical of v-IQ 
is v-Ip by (2). Finally, by (2) of Proposition 38, the contraction of v-IQ is an ideal 
of R containing Q and consists precisely of the elements r E R with dr E Q for some 
d E D. Since Q is P-primary, the definition of primary implies that if dr E Q and 
d r1. P, then r E Q, hence the contraction of D -IQ is Q.  

The proof of ( 4) is  essentially the same as the proof of ( 1 )  and is left as an exercise. 

It is easy to see that if the exact sequence 0 """"* L � M 4 N """"* 0 of R -modules 

splits, then the exact sequence 0 """"* D-1L � v-IM � D-1N """"* 0 of D-1R-modules 
also splits, which gives (5). 

Proposition 38 shows that localizing at the multiplicatively closed set D emphasizes 
the ideals of R not containing any elements of D since the other ideals of R become 
trivial when extended to v-IR. The following proposition provides a more precise 
statement in terms of the effect of localization on primary decomposition of ideals. 

Proposition 43. Let R be a Noetherian ring and let 

I =  Q1 n · · ·  n Qm 

be a minimal primary decomposition of the proper ideal / ,  where Q; is a P; -primary 
ideal. Suppose D is a multiplicatively closed set of R containing 1 and the primary 
ideals Q I , . . .  , Qm are numbered so that D n P; = 0 for 1 :=::: i :=::: t and D n P; # 0 for 
t + 1 :=::: i :=::: m .  Then 

v-11 = D-1Q1 n · · · n v- IQr 

is a minimal primary decomposition of v-11 in v-IR and v-IQ; is a D-1P; -primary 
ideal. Further, the contraction of v-1Q; back to R is Q; for 1 :::= i :=::: t and 

c(D-I/) = QI n · · · n Qr 

is a minimal primary decomposition of the contraction of v-11 back to R. 
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Proof" By (3) of Proposition 42, v-IQ; = v-IR for t +  1 ::S: i ::S: m, and v-IQ; is 
a v-IP; -primary ideal with pullback Q; for 1 :::: i :::: t .  By ( 1 )  of the same proposition, 
v-I] = v-IQI n · · · n v-IQ1, and (3) shows that this is a primary decomposition. 
Contracting to R shows that c(V-1/) = Q1 n · · · n Q1 , which also implies that the 
decompositions are minimal. 

In particular we can finish the proof of Theorem 21 : 

Corollary 44. The primary ideals belonging to the isolated primes in a minimal primary 
decomposition of I are uniquely defined by I .  

Proof: Let P be a minimal element in  the set { PI , . . .  , P m } of primes belonging 
to I ,  and take V = R - P in Proposition 43. Then V n P; = 0 only for P = P; , so 
the contraction of the localization of I at V is precisely the primary ideal Q belonging 
to the minimal prime P.  Since the prime ideals { Pt • . . .  , Pm } of primes belonging to 
I are uniquely determined by I ,  it follows that the primary ideals Q belonging to the 
isolated primes of I are also uniquely determined by I .  

The effect of isolating in on certain prime ideals by localization is  particularly 
precise in the case of localizing at a prime P (considered in Example 3 following 
Corollary 37 above). We first recall the definition of an important type of ring (cf. 
Exercises 37-39 in Section 7.4). 

Definition. A conunutative ring with 1 that has a unique maximal ideal is called a 
local ring. 

Proposition 45. Let R be a conunutative ring with 1 .  Then the following are equivalent: 
(1) R is a local ring with unique maximal ideal M 
(2) if M is the set of elements of R that are not units, then M is an ideal 
(3) there is a maximal ideal M of R such that every element 1 + m with m E M is 

a unit in R.  

Proof· If  a E R then the ideal (a) is  either R, in  which case a is a unit, or is a proper 
ideal, in which case (a) is contained in a maximal ideal (Proposition 1 1  of Section 7 .4). 
It follows that if R is a local ring and M is its unique maximal ideal then every a (j. M 
is a unit, so M consists precisely of the set of nonunits in R, showing that ( 1 )  implies 
(2). It also follows that if the set M of nonunits in R is an ideal then this ideal must be 
the unique maximal ideal in R, so that (2) implies ( 1). 

Suppose now that (3) is satisfied. If a is an element of R not contained in the 
maximal ideal M, then (a) + M = R, so that ab + m  = 1 for some b E  R and m E M. 
Then ab = 1 - m is a unit by assumption, so a is also a unit. This shows that M is 
the unique maximal ideal in R, so (3) implies ( 1 ). Conversely, if R is a local ring, then 
1 + m (j. M for any m E M, so 1 + m is a unit, so ( 1 )  implies (3). 
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Proposition 46. For any commutative ring R with 1 ,  let R P be the localization of R at 
the prime ideal P and let "P be the extension of P to R P .  

(1) The ring R p  i s  a local ring with unique maximal ideal ep . The contraction of 
ep to R is P, i.e., c ( eP) = P, and the map from R to Rp induces an injection 
of the integral domain Rl P into Rp I ep . The quotient Rp I ep is a field and is 
isomorphic to the fraction field of the integral domain R 1 P.  

(2) I f  R is an integral domain, then R p i s  an integral domain. The ring R injects into 
the local ring Rp, and, identifying R with its image in Rp,  the unique maximal 
ideal of Rp is P Rp .  

(3) The prime ideals in  R p are in  bijective correspondence with the prime ideals of 
R contained in P. 

(4) If  P is a minimal nonzero prime ideal of R then Rp has a unique nonzero prime 
ideal. 

(5) If P = M is a maximal ideal and I is any M -primary ideal of R then 
RMi ei � RII . In particular, RMi eM � RIM and (eM)I(eM)n � MIMn 
for all n :=: 1 .  

Proof" If P '  i s  a prime ideal of R,  then P' n (R - P) = 0 if and only i f  P'  � P,  
s o  (3) i s  immediate from (3) i n  Proposition 38, and (4) follows. Since ep =f. Rp by (2) 
of Proposition 38, it follows from (3) that Rp is a local ring with unique maximal ideal 
e P,  which proves the first statement in ( 1  ) . 

By Proposition 38(2) the contraction c (  ep) is the set {r E R I dr E P for some d E 
R - P},  and since P is prime, dr E P with d fj. P implies r E P.  This shows that 
c (  ep) = P,  which is the second statement in ( 1). 

The kernel of the map from R to Rpl ep is c ( eP) = P, so the induced map from 
RIP into R pI e  P is injective. The quotient R pI e  P is a field by the first part of ( 1 ), so 
there is an induced homomorphism from the fraction field of the integral domain R 1 P 
into R pI e P .  The universal property of the localization R p shows there is an inverse 
homomorphism from R pI e  P to the fraction field of RIP (since every element of R not 
in P maps to a unit in Rl P). It follows that Rp I ep is isomorphic to the fraction field 
of RIP.  

I f  R i s  an integral domain, then R - P has no  zero divisors, so  R injects into Rp by 
Corollary 37; if R is identified with its image in Rp then ep = P Rp, so (2) follows. 

To prove (5), by Proposition 42( 1) we may pass to the quotient Rl I and so reduce 
to the case I = 0. In this case the maximal ideal P = M in R is the nilradical of R, 
hence is the unique maximal ideal of R. By Proposition 45 every element of R - M is 
a unit, so Rp = R, and each of the statements in (5) follows immediately, completing 
the proof of the proposition. 

Example 

The results of (5) of the proposition are not true in general if P is a prime ideal that is not 
maximal. For example, P = (0) in R = Z has R/ P = Z and Rpf P Rp = <Q; in this case 
(P Rp )/(P Rp )n � P f pn = 0 for all n :=:: 1 (cf. the exercises). 

Definition. Let M be an R -module, let P be a prime ideal of R and set D = R - P.  
The R p-module v-t M i s  called the localization of M at  P, and i s  denoted by M p .  
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By Proposition 41 ,  Mp can also be identified with the tensor product Rp 0R M. 
When R is an integral domain and P = (0), then M(o) is a module over the field of 
fractions F of R, i.e., is a vector space over F. 

The element m/1 is zero in Mp if and only if rm = 0 for some r E R - P, so 
localizing at P annihilates the P' -torsion elements of M for primes P' not contained 
in P. In particular, localizing at (0) over an integral domain annihilates the torsion 
subgroup of M. 

Definition. If R is an integral domain, then the rank of the R-module M is the di
mension of the localization M(o) as a vector space over the field of fractions of R .  

It i s  easy to see that this definition of rank agrees with the notion of rank introduced 
in Chapter 12. 

Example 

Let R = Z and let Z(p) be the localization of Z at the nonzero prime ideal (p) . Any abelian 
group M is a Z-module so we may localize M at (p) by forming M(p) .  This abelian group 
is the same as the quotient of M with respect to the subgroup of elements whose order is 
finite and not divisible by p. If M is a finite (or, more generally, torsion) abelian group, 
then M(p) is a p-group, and is the Sylow p-subgroup or p-primary component of M. The 
localization M(o) of M at (0) is the trivial group. For a specific example, let M = Z/6Z 
be the cyclic group of order 6, considered as a Z-module. Then the localization of M at 
p = 2 is Zj2Z, at p = 3 is Zj3Z, and reduces to 0 at all other prime ideals of Z. 

Localization of a module M at a prime P in general produces a simpler module 
M p whose properties are easier to determine. It is then of interest to translate these 
"local" properties of Mp back into "global" information about the module M itself. For 
example, the most basic question of whether a module M is 0 can be answered locally: 

Proposition 47. Let M be an R-module. Then the following are equivalent: 
(1) M = 0, 
(2) Mp = 0 for all prime ideals P of R, and 
(3) Mm = 0 for all maximal ideals m of R. 

Proof: The implications (1) implies (2) implies (3) are obvious, so it remains to 
prove that (3) implies ( 1 ). Suppose m is a nonzero element in M, and consider the 
annihilator I of m in R, i.e., the ideal of elements r E R with rm = 0. Since m is 
nonzero I is a proper ideal in R. Let m be a maximal ideal of R containing I and 
consider the element mf1 in the corresponding localization Mm of M. If this element 
were 0, then rm = 0 for some r E R - m. But then r would be an element in l not 
contained in m, a contradiction. Hence Mm f. 0, which proves that (3) implies (1) .  

It is  not in general true that a property shared by all of the localizations of a module 
M is also shared by M. For example, all of the localizations of a ring R can be 
integral domains without R itself being an integral domain (for example, 7l.f67l. above). 
Nevertheless, a great deal of information can be ascertained from studying the various 
possible localizations, and this is what makes this technique so useful. If R is an integral 
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domain, for example, then each of the localizations Rp can be considered as a subring 
of the fraction field F of R that contains R; the next proposition shows that the elements 
of R are the only elements of F contained in every localization. 

Proposition 48. Let R be an integral domain. Then R is the intersection of the local
izations of R: R = npRp.  In fact, R = nm Rm is the intersection of the localizations 
of R at the maximal ideals m of R. 

Proof: As mentioned, R f; nm Rm. Suppose now that a is an element ofthe fraction 
field F of R that is contained in Rm for every maximal ideal m of R, and consider 

la = {d E R I da E R}.  

It is easy to check that I is  an ideal of R, and that a E R if and only if 1 E /0 , i.e. , 
Ia = R. Suppose that Ia # R. Then there is a maximal ideal m containing Ia , and 
since a E Rm we have a =  rfd for some r E R and d E  R - m. But then d E  Ia and 
d fl. m, a contradiction. Hence a E R, so nm Rm f; R, and we have proved the second 
assertion in the proposition. The first is then immediate. 

Another important property of a ring R that can be detected locally is normality: 

Proposition 49. Let R be an integral domain. Then the following are equivalent: 
(1) R is normal, i.e., R is integrally closed (in its field of fractions) 
(2) R p is normal for all prime ideals P of R 
(3) Rm is normal for all maximal ideals m of R. 

Proof: Let F be the field of fractions of R, so all of the various localizations of R 
may be considered as subrings of F. 

Assume first that R is integrally closed and suppose y E F is integral over Rp. 
Then y is a root of a monic polynomial of degree n with coefficients of the form ai f di for 
some di fl. P. The element y' = y(dod1 • · · dn - I )n is then a root of a monic polynomial 
of degree n with coefficients from R, i.e. , y' is integral over R. Since R is assumed 
normal, this implies y' E R, and so y =  y' j(do · · · dn-d E Rp, which proves that (1)  
implies (2). The implication (2) implies (3) is  trivial. Suppose now that Rm is  normal 
for all maximal ideals m of R and let y be an element of F that is integral over R. Since 
R f; Rm, y is in particular also integral over Rm and so y E Rm for every maximal 
ideal by assumption. Then y E R by the previous proposition, which proves that (3) 
implies (1). 

We now may easily prove the first part of the Going-up Theorem ( cf. Section 3) 
that was used in the proof of Corollary 27. 

Corollary 50. Let R be a subring of the commutative ring S with 1 E R, and assume 
that S is integral over R. If P is a prime ideal in R, then there is a prime ideal Q of S 
with P = Q n R. 
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Proof: Let D = R - P so that D is a multiplicatively closed subset of both R and 
S. Then the following diagram commutes: 

R � v-1R = Rp 

s � n-•s 
where the vertical maps are inclusions. It is easy to see that n-•s is integral over Rp 
(Exercise 20). Let m be any maximal ideal of n-•s. Then m n R p is a maximal ideal in 
Rp by the second statement in Theorem 26(2) (note that the first part of Theorem 26(2) 
was not used in the proof of the second statement). By Proposition 38(1),  m n Rp is 
the extension of P to the local ring R p, and the contraction of this ideal to R is just P. 
Put another way, the preimage of m by the maps along the top and right of the diagram 
above is P. If Q C S denotes the preimage of m by the map along the bottom of the 
diagram, then Q is a prime idea] by Proposition 38(3). Since Q n R is the pullback of 
Q by the map along the left of the diagram above, the commutativity of the diagram 
shows that Q n R = P. 

local Rings of Affine Algebraic Varieties 

For the remainder of this section, let k be an algebraically closed field and let V be an 
affine variety over k with coordinate ring k[V] .  Then k[V] is an integral domain, so we 
may form its field of fractions: 

k(V) = {fig I J, g E k[V], g =1- 0} . 

The elements of k(V) are called rational functions on V and k(V) is called the field 
of rational functions on V .  When k[V] is a Unique Factorization Domain there is an 
essentially unique representative for fIg that is in "lowest terms," but in general each 
fraction fIg E k(V) has many representations as a ratio oftwo elements of k[V]. Since 
k[V] is an integral domain, fig = fiigi if and only if fgi = fig.  

The elements of k[V] can be considered as k-valued functions on V, and if the 
denominator doesn't vanish the same is true for an element of k(V) (which helps to 
explain the terminology for this field). Since the same element of k(V) may be written 
in the form fIg in several ways, we make the following definition: 

Definition. We say fIg is regular at v or defined at the point v E V if there is some 
fi , gl E k[V] with fig = /IIgi and gi (V) =f. 0. 

If /2, g2 is another such pair with g2(v) =1- 0, then !I (v)l gi (v) = h(v)l g2 (v) as 
elements of k, so whenever fIg is regular at v there is a well defined way of specifying 
its value in k at v. 

Example 

The variety V = Z(xz - yw) in A.4 has coordinate ring k[V] = k[x ,  y, z, w]f(xz - yw). 
Consider the element f = i fy in the quotient field k(V) of k[V]. Since iz = yw in k[ V], 
the element f can also be written as iiJ /z. From the first expression for f it follows that f 
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is regular at all points of V where ji # 0, and from the second expression it follows that f 
is regular at all point<> of V where z # 0. It is not too difficult to show that these are all the 
points of V where f is regular. Furthermore, there is no single expression f = afb for f 
with a, b E k[V] such that b(v) # 0 for every v where f is regular (cf. Exercise 25). 

If Jig E k(V) is regular at the point v, say Jig = fllgt with g1 (v) =/::. 0, then 
f1 g is also regular at all the points v in the Zariski open neighborhood Vg1 of v where 
g1 =/::. 0. As a k-valued function on V this means that if f1 g is defined at v, then it is 
also defined in a (Zariski open) neighborhood of v .  Since any nonempty open set of an 
affine variety is Zariski dense (cf. Exercise 1 1  in Section 2), we see that every rational 
function on V is defined at a dense set of points in V (so "almost everywhere" in a 
suitable sense). Also, each pair f1 jg1 and fzl g2 representing fl g agree as functions 
on the open neighborhood Vg1 n Vg2 of v, but the "size" of this neighborhood depends 
on g1 and gz - there is in general not a common open neighborhood of v where all 
representatives of f 1 g with nonzero denominator at v are simultaneously defined. 

If v is a fixed point in V, then a rational function fl g is regular at v if and only if 
Jig = ftlg1 for some ft .  g 1  E k[V] with g1 r;t I(v) , the ideal of functions on V that 
are zero at v. This means that the set of rational functions that are defined at v is the 
same as the localization of k[V] at the maximal ideal I(v) :  

Definition. For each point v E V the collection of rational functions on V that are 
defined at v, 

Ov, v = {fig E k(V) I Jig is regular at v},  

is called the local ring of V at v .  Equivalently, the local ring of V at v is the localization 
of k[V] at the maximal ideal I(v) . 

In particular, Ov. v is a local ring with unique maximal ideal mv, v ,  where 

is the set of rational functions on V that are defined and equal to 0 at v .  Since Ov, v 
is a localization of the Noetherian integral domain k[V] at a prime ideal, Ov, v is 
also a Noetherian integral domain. Note also that Ov. v lmv. v � k[V]II(v) � k by 
Proposition 46(5). 

Recall that the polynomial maps from V to k are also referred to as the regular 
maps of V to k. This is because these are precisely the rational functions on V that are 
regular everywhere: 

Proposition 51. If V is an affine variety over an algebraically closed field k then the 
rational functions on V that are regular at all points of V are precisely the polynomial 
functions k[V].  

Proof' This follows from Proposition 48, which shows that the intersection (in 
k(V)) of all of the localizations of k[ V] at the maximal ideals of k[V] is precisely k[V].  
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Since the maximal ideals of k[V] are in bijective correspondence with the points of 
V, the fact that the local ring Ov , v is the same as the localization of k[V] at the maximal 
ideal corresponding to v shows that Ov , v depends intrinsically on the ring k[V] and is 
independent of the embedding of V in a particular affine space. 

Suppose q; : V ---+ W is a morphism of affine varieties with associated k-algebra 
homomorphism 95 : k[W] ---+ k[V].  If v E V is mapped to w E W by q;, then it is 
straightforward to show that 95 induces a homomorphism (also denoted by 95) between 
the corresponding local rings: 

95 :  Ow, W ---+ Ov, V where 95(hjk) = 95(h)/95(k) , 

and that under this homomorphism, 95-1 (mv. v)  = mw, W (a homomorphism of local 
rings having this property is called a local homomorphism). Note that 95 does not in 
general extend to a field homomorphism from all of k(W) into k(V) since elements of 
k[W] lying in the kernel of95 do not map to invertible elements in k(V). It is also easy to 

check that if 1/r o q; is a composition of morphisms then on the local rings � = 95 o ';fr. 

The local ring Ov , v can be used to provide an algebraic definition of the "smooth
ness" (in the sense of the existence of tangents) of V at v, as we now indicate. Suppose 
first that V = Z(f) is the hypersurface variety in An defined by the zeros of an ir
reducible polynomial f in k[xt . . . .  , Xn ] .  For any point v = (Vt . . . .  , Vn) on V let 
Dv <f)(xt , . . .  , Xn) be the linear polynomial: 

n of 
Dv <f)(Xt . . . .  , Xn ) = "" - (v) x; , L..- ox· 

i=l I 

where the partial derivative of f with respect to x; is given by the usual formal rule 
for the derivative of a polynomial in x; (with all other variables considered constant). 
The polynomial Dv (f)(x1 - Vt , . • .  , Xn - Vn) is the first order Taylor polynomial of the 
function f at v, so gives the best linear approximation to f(x1 , • • •  , Xn) E k[x1 , . . .  , Xn ] 
at v. It follows that if T is the linear variety Z(Dv <f) (xt . . . .  , Xn)) consisting of those 
points where Dv<f) is zero, then the translate v + T is "tangent". to the hypersurface 
Z(f) at v. 

Example 

Suppose f = x2 - y E k[x , y], so that V = Z{f) is just the parabola y = x2. We have 
of! ox = 2x and of joy = - 1 , which at v = (3, 9) are equal to 6 and - 1 , respectively. 
Then 

D(3,9) (/)(x ,  y) = 6x - y, 

and the corresponding linear variety T is the line y = 6x through the origin. The translate 
(3, 9) + T is the usual tangent line to the parabola at (3, 9) . The Taylor expansion of 
x2 - y at (3 , 9) is x2 - y = [ 6(x - 3) - (y - 9) ] + (x - 3)2 . The first order terms are 
D(J,9) {f) (x - 3 ,  y - 9) and give the best linear approximation to x2 - y near (3,9). 

It is straightforward to extend these notions to any affine variety V in An . 
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Definition. Define the tangent space to V at v to be the linear variety 

1I'v. V  = Z({Dv (f) (x1 , . . .  , x, ) I f  E I(V)}) .  

The formal partial derivatives are k-linear and obey the usual product rule for 
derivatives, so the tangent space may be computed from the generators for I(V) :  

if I(V) = (ft , h, . . .  , fm) 
m 

then 1I'v , v = n Z(Dv (f;)) . 
i=l 

Note that ']!' v, v is an intersection of vector spaces, so is a vector subspace of k" . 
This definition of the tangent space ']!' v. v, while making apparent the connection 

with tangents to the variety V, seems to depend on the embedding of V in A" . In fact 
the tangent space can be defined entirely in terms of the local ring Ov, v ,  as the next 
proposition proves. 

Proposition 52. Let V be an affine variety over the algebraically closed field k and let 
v be a point on V with local ring 0 v, v and corresponding maximal ideal mv, v. Then 
there is a k-vector space isomorphism 

(1I'v, v)* � rnv, vfm�. v 
where (1!' v, v )"' denotes the vector space dual ( cf. Section 1 1 .3) of the tangent space 1!' v, v 
to V at v .  

Proof: Let (k")* denote the n-dimensional vector space dual to k" . Since each 
Dv (f) is a linear function, Dv is a linear transformation from k[x1 , . . .  , x, ] to (k" )* . 

Let Mv be the maximal ideal in k[x1 , . . .  , x, ] generated by the set x; - v; for 
1 :::::: i :::::: n.  The image Mvfi(V) of Mv in k[V] is the ideal I(v) of functions on V that 
are zero at v andi(v)2 = M;+I(V).  Then Ov. v is the localization ofk[V] ati(v) ; and 
identifying i(v) with its image in Ov, v we have mv, v = I(v)Ov , v (Proposition 46(2)). 
By definition of Dv we have Dv(x; - v; ) = x; , and since these linear functions form 
a basis of (k" )*, it follows that Dv maps Mv surjectively onto (k" )* . The kernel of Dv 
consists of the elements of k[x1 , . . .  , x, ] whose Taylor expansion at v starts in degree 
at least 2 and these are just the elements in M; . Hence Dv defines an isomorphism 

Dv : MvfM� � (k" )* . 

The tangent space ']!' v, v is a vector subspace of k" , so every linear function on k" restricts 
to a linear function on ']!' v, v .  Composing Dv with this restriction map gives a linear 
transformation D : Mv � (k" )* � (1I'v, v)* 
which is surjective since the individual maps are each surjective. We have already 
seen that I(v)2 = M; + I(V), so I(v)ji(v)2 � Mvf(M; + I(V)) . It follows 
by Proposition 46(5) that rnv, v/rn�, v � I(v)ji(v)2 • To prove the proposition it is 
therefore sufficient to show that ker D = M; + I(V), since then 
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rnv, v/rn�, v � Mvf (M� + I(V)) = Mvf ker D � ('JI'v , v )* . 

Chap. 1 5  Commutative Ri ngs a nd Algebraic Geometry 



The polynomial f is in ker D if and only if Dv (f) is zero on ']]' v, v ,  i.e. , if and only if 
the linear term of the Taylor polynomial of f expanded about v lies in I('ll'v, v ) .  Since 
the linear terms of the functions in I(V) generate the ideal I('ll' v, v ), it follows that f 
is in ker D if and only if f - g has zero linear term for some g in I(V). But this is 
equivalent to f E I(V) + M?;, so ker D = I(V) + M?;, completing the proof of the 
proposition. 

Recall that the dimension of a variety V is by definition the transcendence degree 
of the field k(V) over k. Since each local ring Ov, v has k(V) as its field of fractions, 
the dimension of V is determined by the transcendence degree over k of the field of 
fractions of any of its local rings. 

Definition. We say V is nonsingular at the point v E V (or v is a nonsingular point of 
V) if the dimension of the k-vector space ']]' v ,  v is dim V. Equivalently (by Proposition 
52), v is a nonsingular point of V if dimk (mv, v jm�. v) = dim V.  Otherwise the point 
v is called a singular point. The variety V is nonsingular or smooth if it is nonsingular 
at every point. 

The geometric picture is that at a nonsingular point v there are as many independent 
tangents as one would expect: a tangent line on a curve, a tangent plane on a surface, 
etc. 

Whether a variety V is nonsingular at a point v can be determined from properties of 
the local ring Ov, v .  namely whetherdimk (mv. v  jm� v) = dim Ov, V ·  A local ring having 
this property is said to be a regular local ring. In 

'
particular, the notion of singularity 

does not depend on the embedding of V in a specific affine space. This algebraic 
interpretation can be used to define smoothness for abstract algebraic varieties, where 
the geometric intuition of tangent planes to surfaces (for example) is not as obvious. 

If ft , . . .  , fm are generators for I ( V) defining V in An , then the dimension of V 
can be determined from a Grobner basis for I(V) (cf. Exercise 29). Determining the 
dimension ofthe tangent space ']]' v, v as a vector space over k is a linear algebra problem: 
this vector space is the set of solutions of them linear equations Dv<fi)(x1 , • • •  , Xn ) = 0. 
Ifr is the rank of the m x n matrix of coefficients aji jax1 (v) of this system of equations, 
then ']]' v, v is a vector space of dimension n-r. Using this it is not too difficult to establish 
the following: 

1. We have dim V ::::: dimk ('ll'v , v ) ::::: n for every point v in V 5; An . 

2. The set of singular points of V is a proper Zariski closed subset of V .  The set 
of nonsingular points of V is a nonempty open subset of V ;  in particular the 
nonsingular points of V are dense in V (so "most" points of V are nonsingular). 

We also state without proof the following result which further relates the local geometry 
of V to the algebraic properties of the local rings of V :  

3.  If  v i s  a nonsingular point, then the local ring Ov, v i s  a Unique Factorization 
Domain; in particular, Ov. v is integrally closed (cf. Example 3 following Corollary 
25). 
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The variety V is said to be factorial if Ov, v is a U.F.D. for every point v E V, and 
is said to be a normal variety if Ov, v is integrally closed for every v E V (which by 
Proposition 49 is equivalent to k[V] being integrally closed). By (3) above we have 

smooth varieties c factorial varieties c normal varieties. 
In general each of the above containments is proper. In the case when V has dimension 
l ,  i.e., V is an affine curve, however, these three properties are in fact equivalent: we 
shall prove later that an irreducible affine curve is smooth if and only if it is normal or 
factorial (cf. Corollary 13  in Section 16.2). It follows that over an algebraically closed 
field k, 

an irreducible affine curve C is smooth if and only if k [ C] is integrally closed. 
For any irreducible affine curve C the integral closure, S, of k[V] in k(V) is also the 
coordinate ring of an irreducible affine curve C. Then S is integral over k[V] and, 
by Theorem 30 and Corollary 27 it follows that there is a morphism from the smooth 
curve C onto C that has finite fibers. The curve C is called the normalization or the 
nonsingular model of C, and one can show that it is unique up to isomorphism. Note 
how the existence of a smooth curve mapping finitely to C (a problem in "geometry") is 
solved by the existence of integral closures in ring extensions (a problem in "algebra"). 

We shall give another characterization of smoothness for irreducible affine curves 
at the end of Section 16.2. 

E X E R C I S E S  

As usual R is a commutative ring with 1 and D is a multiplicatively closed set in R .  

1.  Suppose M is  a finitely generated R-module. Prove that D-1M = 0 if  and only if  dM = 0 
for some d E D. 

2. Let I be an ideal in R, let D be a multiplicatively closed subset of R with ring of fractions 
D-1R, and let c ( el) = R be the saturation of I with respect to D.  
(a) Prove that c ( el)  = R if  and only if el = D-1R if  and only if  I n  D i= 0.  
(b) Prove that I = C ( en is saturated if and only if for every d E D, if da E I then a E I .  
(c) Prove that extension and contraction define inverse bijections between the ideals of 

R saturated with respect to D and the ideals of D-1R. 
(d) Let I =  (2x , 3y) c Z[x, y]. Show the saturation of I with respect to /E - {O} is (x ,  y).  

3. If I is an ideal in the commutative ring R let rp : R[xt . . . .  , Xn] � (Rf I) [xt , . . . , Xn ] be 
the ring homomorphism with kernel l[xt , . . .  , Xn ] given by reducing coefficients modulo 
I .  If A is an ideal in (Rf /)[XJ ,  . . .  , Xn]. let A denote the inverse image of A under rp .  
(a) For any i � I show that the inverse image under rp of the subring (Rf l)[x1 , • • •  , x; ] 

is R [xt , . . .  , x; ] + I[Xt , . . . •  Xn] . 
(b) Prove that rp(A n R[x1 , • • •  , x; ])  = A n (Rf l}[x1 , . . .  , xi J 

4. Let f = y5 - z4, viewed as a polynomial in y with coefficients in Q[z]. 
(a) Prove that f has no roots in Q[z] . 
(b) Suppose f = (y2 + ay + b)(y3 + cy2 + dy + e) . Show that a, b, c, d, e satisfy the 

system of equations 
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a + c = 0, ac + b + d = 0, ad + be + e = 0, ae + bd = 0, be - z4 = 0. 

Deduce that e5 = z 12 and conclude that f is irreducible in Q[y, z]. [Use elimination.] 

Chap. 1 5  Commutative Rings and Algebraic Geometry 



5. Suppose R is a U .ED. with field of fractions F and p E R [ x] is a monic polynomial. 
(a) Show that the ideal pR[x] generated by p in R[x] is prime if and only if the ideal 

pF[x] generated by p in F[x] is prime. [Use Gauss' Lemma.] 
(b) Show that pR[x] is saturated, i.e., that pF[x] n R[x] = pR[x] .  

6. Show that I = (y3 - xz, xl - z2) is not a prime ideal in Q[x , y ,  z] and find explicit 
elements a, b E  Q[x , y, z] with ab E I but a ¢ I and b ¢ I.  

7. Show that P = (y3 - xz , xy2 - z2 , x2 - yz) is a prime ideal in Q[x , y , z] . 

8. Show that P = (x2 - yz,  w2 - x4z) is a prime ideal in Q[x , y, z . w] . 

9. Show that P = (xz2 - w3 , xw2 - y4 , y4z2 - w5) is a prime ideal in Q[x ,  y, z . w]. 

10. Show that I =  (xy - w3 , y2 - zw) is not a prime ideal in Q[x , y ,  z .  w] and find a , b with 
ab E I but a , b ¢ I . 

11. Let Rp be the localization of R at the prime P .  Prove that if Q is a P-primary ideal of R 
then Q = c ( eQ) with respect to the extension and contraction of Q to Rp.  Show the same 
result holds if Q is P' -primary for some prime P' contained in P. 

12. Let R = IR[x , y ,  z]j(xy - z2), let P = (.X , z) be the prime ideal generated by the images 
of x and y in R, and let Rp be the localization of R at P. Prove that P2 Rp n R = (i) and 
is strictly larger than P2 . 

13. Prove that if N and N' are two R-submodules of an R-module M with N p = N� in 
the localization Mp for every prime ideal P of R (or just for every maximal ideal) then 
N = N'. 

14. Suppose rp : M ---+ N is an R-module homomorphism. Prove that rp is injective (respec
tively, surjective) if and only if the induced Rp-module homomorphism rp : Mp ---+ Np is 
injective (respectively, surjective) for every prime ideal P of R (or just for every maximal 
ideal of R). 

15. Let R = Z[ N] be the ring of integers in the quadratic field Q( N) and let I be the 
prime ideal (2, 1 + N )  of R generated by 2 and 1 + N ( cf. Exercise 5, Section 8.2). 
Recall that every nonzero prime ideal P of R contains a prime p E Z. 
(a) If P is a prime ideal of R not containing 2 prove that Ip = Rp . 
(b) If P is a prime ideal of R containing 2 prove that P = I and that I p = ( 1  + N )Rp . 
(c) Prove that Ip � Rp as Rp-modules for every prime ideal P of R but that / and R are 

not isomorphic R-modules. (This example shows that it is important in Exercise 14 
to be given the R-module homomorphism rp.) [Observe that I � R as R-modules if 
and only if I is a: principal ideal.] 

16. Prove that localization commutes with tensor products: there is a unique isomorphism of 
v-IR-modules rp : (V-IM) 0v-tR (V-IN) � v-�M 0R N) with rp((mjd) 0 (nfd')) 
given by (m 0 n)fdd' for any R-modules M, N, and multiplicatively closed set V in R. 

17. Prove that the R-module A is a flat R-module if and only if Ap is a flat Rp-module for 
every prime ideal P of R (or just for every maximal ideal of R). [Use Proposition 41 ,  
Exercises 14 and 16 ,  and the exactness properties of  localization.] 

18. In the notation of Example 2 following Corollary 37, prove that Rt � R[x]j(fx - 1)  
if/ i s  not nilpotent in  R.  [Show that the map rp : R[x] � Rt defined by rp(r) = rj l 
and rp(x) = I ff gives a surjective ring homomorphism and the universal property in 
Theorem 36 gives an inverse.] 

19. Prove that if R is an integrally closed integral domain and V is any multiplicatively closed 
subset of R containing 1 ,  then v-IR is integrally closed. 
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20. Suppose that R is a subring of the ring S with 1 E R and that S is integral over R. If D is 
any multiplicatively closed subset of R, prove that v-ts is integral over v-1R. 

21. Suppose cp : R ---+ S is a ring homomorphism and D' is a multiplicatively closed subset of 
S. Let D = cp-t (D') . Prove that D is a multiplicatively closed subset of R and that the 
map cp' : v-1R ---+ D'-ts given by cp'(rfd) = cp(r)/cp(d) is a ring homomorphism. 

22. Suppose P � Q are prime ideals in R and let RQ be the localization of R at Q. Prove 
that the localization Rp is isomorphic to the localization of RQ at the prime ideal P RQ 
(cf. the preceding exercise). 

23. Let cp :  A ---+ B be a homomorphism of commutative rings with cp(lA)  = 18 ,  and let P be 
a prime ideal of A. Let contraction and extension of ideals with respect to cp be denoted 
by superscripts c and e respectively. Prove that P is the contraction of a prime ideal in B 
if and only if P = (Pe)c . [Localize B at cp (A - P) .] 

24. (The Going-down Theorem) Let S be an integral domain, let R be an integrally closed 
subring of S containing ls ,  and let k be the field of fractions of R. Suppose that P2 � Pt 
are prime ideals in R and that Qt  is a prime ideal in S with Qt n R = Pt . Let SQ1 be the 
localization of S at Qt . 
(a) Show that P2 � P2SQ1 n R. 
(b) Suppose that a E P2SQ1 n R and write a = s fd with s E P2S and d E S, d ¢ Qt .  

I f  the minimal polynomial of s over k i s  x n  + an-lXn-t + · · · + a1x + ao with 
ao , . . . , an-t E P2 (cf. Exercise 12  in Section 3) show that the minimal polynomial 
of d over k is xn + bn-tX

n- t + · · · + btx + bo where b; = a; jan-i and conclude that 
b; E R. [Use Exercise 10 in Section 3.] 

(c) Show that a E P2 and conclude that P2SQ1 n R = P2 . [Show a ¢ P2 implies b; E P2 
for i = 0, 1 ,  . . . , n - 1 ,  which would imply dn E P].S � PtS � Qt and so d E Qt .] 

(d) Prove that P2SQ1 is contained in a prime ideal P of SQ1 with P n R = P2. [Use (c) 
and the previous exercise for cp :  R ---+ SQ1 .] 

(e) Let Qz = P n S. Prove that Q2 � Q1  and that Q2 n R = P2. 
(f) Use induction together with the previous result to prove the Going-down Theorem: 

Theorem 26(4). 
25. Let k be an algebraically closed field and let V = Z(xz - yw) c A4. Prove that the set 

of points v where f = xfy E k(V) is regular is precisely the set of points (x , y, z, w) 
where y # 0 or Z # 0. [If f = ajb show that ay - bx E (xz - yw) as polynomials in 
k[x ,  y, z, w] and conclude that b E (y , z) .] Prove that there is no function ajb E k(V) 
with b(v) # 0 for every v where f is  regular. 

26. (Differentials of Morphisms) Let cp : V ---+ W be a morphism of affine varieties over the 
algebraically closed field k and suppose cp( v) = w. 
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(a) Show that cp induces a linear map from the k-vector space MwfM?;, to the k-vector 
space Mv! M�, and use this to show that cp induces a linear map dcp (called the differ
ential of cp) from the k-vector space 'll'v, v to the k-vector space 'll'w, w .  

(b) Prove that if V  � An , W � Am and cp = (Ft (Xt , . . .  , xn )  • . . .  , Fm (Xt , . . .  , xn))  then 
dcp : Tv. v ---+ 'li' w, w is given explicitly by 

(dcp) (a t , . . . , an ) = (Dv (Fl ) (at , . . .  , an ) , . . . , Dv (Fm ) (at , . . . , an )) . 

[If g = g(yt , . . . , Ym ) show that the chain rule implies 

B (  ) m a BF 
g 0 

cp (v) = L _l_(w) _j_(v) , 
ax · By · Bx· I j=t J I 
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so that Dv(g o cp)(at ,  . . . , an ) = Dw (g) (ht , . . .  , hm) where bj = Dv(Fj)(at , . . .  , an) · 
Then use the fact that g o cp E I(V) if g E I(W).] 

(c) If 1/1 : U � V is another morphism with 1/f'(u) = v, prove that the associated 
d(cp o 1/1) : Tu,U  � Tw, w is the same as dcp o d1/f. 

(d) Prove that if cp is an isomorphism then dcp is a vector space isomorphism from '][' v. v 
to Tw, w for every cp(v) = w. 

27. Let V = A 1 and W = Z(xz - y2 , yz - x3 , z2 - x2y) c A3• Let cp : V � W be the 
suijective morphism cp(t) = (t3 , t4 , t5) (cf. Exercise 26 in Section 1). For each t E A 1 
describe the differential dcp : Tr ,A' � ']['(t3 ,t4 ,ts) . W in the previous exercise explicitly; in 
particular prove that dcp is an isomorphism of vector spaces for all t # 0 and is the zero 
map for t =  0. Use this to prove that V and W are not isomorphic. 

28. If k is a field, the quotient k[x]j(x2) is called the ring of dual numbers over k. If V is an 
affine algebraic set over k, show that a k-algebra homomorphism from k[V] to k[x]j(x2) 
is equivalent to specifying a point v E V with Ov, v fmv, v = k (called a k-rational point 
of V) together with an element in the tangent space Tv, v of V at v. 

29. (Computing the dimension of a variety) Let P be a prime ideal in k[xt , . . .  , Xn]. set Po = 0 
and let P; = P n k[xt , . . . , xi ] .  Define the varieties V; = Z(P;)  � Ai with Vo the zero 
dimensional variety consisting of a single point and coordinate ring k. 
(a) Show that dim V;-t :S dim V; :S dim V;- t + 1. [First exhibit an injection from k(V;_t )  

into k [V; ] ;  then show that k [V;]  i s  a k-algebra generated by  k [  V; _ t ]  and one additional 
generator.] 

(b) If the ideal generated by P; _ 1 in k[ Xl , . . . , x; ] equals P; , show that V; 8:: V; _ 1 x A 1 
and deduce that dim V; = dim V;- t + 1 .  

(c) If the ideal generated by P; - l i n  k [  Xl , . . .  , x; ] is properly contained in P; , show that 
dim V; = dim V;-t · 

(d) Show that dim V equals the number of i E { 1 ,  2, . . .  , n }  such that the ideal generated 
by P; - l in k[ Xt , . . .  , x; ] equals the ideal P; . Deduce that if G is the reduced Grobner 
basis for P with respect to the lexicographic monomial ordering Xn > · · · > Xl and 
G; = G n k[xt • . . .  , x; ] where Go = 0, and N is the number of i with G; # G; - 1 for 
1 :S i :S n, then dim V = n - N .  

The following eleven exercises introduce the notion o f  the suppon of an R -module M and its 
relation to the associated primes of M. Cf. also Exercises 29 to 35 in Section 1 and Exercises 
25 to 30 in Section 5.  

Definition. If M is an R-module, then the set of prime ideals P of R for which the localization 
M p is nonzero is called the suppon of M, denoted Supp(M) . 

30. Prove that M = 0 if and only if Supp(M) = 0. [Use Proposition 47.] 
31. If 0 � L � M � N � 0 is an exact sequence of R-modules, prove that the localization 

M p is nonzero if and only if one of the localizations N p and L p is nonzero and deduce 
that Supp(M) = Supp(L) U Supp(N) . In particular, if M = Mt $ · · · $ Mn prove that 
Supp(M) = Supp(Mt) U · · · U Supp(Mn) .  

32. Suppose P � Q are prime ideals i n  R and that M i s  an R-module. Prove that the 
localization of the R-module MQ at P is the localization Mp, i .e., (MQ)P = Mp . [Argue 
directly, or use Proposition 41 and the associativity of the tensor product.] 

33. Suppose P � Q are prime ideals in R and that M is an R-module. Prove that if 
P E Supp(M) then Q E Supp(M) . [Use the previous exercise.] 

34. (a) Suppose M = Rm is a cyclic R-module. Prove that M p = 0 if and only if there is 
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an element r E R, r ¢ P with rm = 0. Deduce that P E Supp(M) if and only if P 
contains the annihilator of m in R (cf. Exercise 10 in Section 10. 1 ). 

(b) If M = Rm 1 + ·  · · + Rm, is a finitely generated R-module prove that P E Supp(M) if 
and only if P is contained in Supp(Rm; ) for some i = 1 . . . . , n .  [Use Proposition 42.] 
Deduce that P E Supp(M) if and only if P contains the annihilator Ann(M) of M in 
R. [Note Ann(M) = nj=

1
Ann(Rm; ), then use (a) and Exercise 1 1  of Section 7.4.] 

35. Suppose P is a prime ideal of R with P n D = 0. Prove that if P E AssR (M) then 
D-1p E Assn-1R (D-1M). [Use Proposition 38(3) and Proposition 42.] 

36. Suppose D-lp E Assn-1R (D- 1M) where P = (at , . . .  , a, ) is a finitely generated prime 
ideal in R with P n D = 0. 
(a) Suppose mjd E D-1M has annihilator D-1p in D-1R.  Show that d;a;m = 0 E R 

for some dt , . . .  , d, E D. 
(b) Let d' = d1 d2 . . .  d, . Show that P = Ann(d'm) and conclude that P E AssR (M) . 

[The inclusion P � Ann(d'm) is immediate. For the reverse inclusion, show that 
b E Ann(d'm) implies that bj i annihilates mjd in D-1M, hence bj i E D-1p, and 
conclude b E P . ]  

37. Suppose M is a module over the Noetherian ring R. Use the previous two exercises to 
show that under the bijection of Proposition 38(3) the prime ideals P of AssR (M) with 
P n D = 0 correspond bijectively with the prime ideals of Assn- 1R (D-1M) . 

38. Suppose M is a module over the Noetherian ring R and D is a multiplicatively closed subset 
of R. Let S be the subset of prime ideals P in AssR (M) with P n D =I= 0. This exercise 
proves that the kernel N of the localization map M � D-1M is the unique submodule N 
of M with AssR (N) = S and AssR (M/ N) = AssR (M) - S. 
(a) If N' is a submodule of M with AssR (N') = S and AssR (M/N') = AssR (M) - S  as 

in Exercise 35 in Section 1, prove that the diagram 

M 
7T 

-------+ 

n' -------+ 

MfN' 

D-1(M/N') 
is commutative, where rr and rr'  are the natural projections (cf. Proposition 42(6)) 
and cp, cp

' are the localization homomorphisms. 
(b) Show thatAssn-1R (D-1N') = 0 and conclude that D- 1N' = O and thatrr' is injective. 

[Use the previous exercise, the definition of S, and Exercise 34 in Section 1 . ] 
(c) If x is the kernel K of cp' show that Ann(x) n D =I= 0 and that AssR (K) � S. Show 

that AssR (K) � AssR (M/ N') implies that Ass R (K) = 0, and deduce that K = 0. 
(d) Prove cp and rr have the same kernel, i.e., N = N', and this submodule of M is unique. 

The next two exercises establish a fundamental relation between the sets Ass R (M) and Supp(M) 
of prime ideals related to the R-module M. 

39. Prove that Ass R(M) � Supp(M). [If Rm � Rj P use Proposition 42(4) and Proposition 
46( 1 )  to show that 0 =1= (Rm) p � Mp.j 

40. Suppose that R is Noetherian and M is an R-module. 
(a) If P E Supp(M) prove that P contains a prime ideal Q with Q E AssR (M) . 
(b) If P is a minimal prime in Supp(M), show that P E AssR (M). [Use Exercise 33 in 

Section 1 to show that AssRp (Mp) =1= 0 and then use Exercise 37.] 
(c) Conclude that AssR (M) � Supp(M) and that these two sets have the same minimal 

elements. 
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1 5.5 TH E PRI M E  SPECTRU M OF A RING 

Throughout this section the term "ring" will mean commutative ring with 1 and all ring 
homomorphisms q; : R ---+ S will be assumed to map 1 R to 1 s .  

We have seen that most of the geometric properties of affine algebraic sets V over 
k can be translated into algebraic properties of the associated coordinate rings k[V] 
of k-valued functions on V. For example, the morphisms from V to W correspond to 
k-algebra ring homomorphisms from k[W] to k[V] .  When the field k is an algebraically 
closed field this translation is particularly precise: Hilbert's Nullstellensatz establishes 
a bijection between the points v of V and the maximal ideals M = I(v) of k[V], and if 
q; :  V ---+ W is a morphism then q;(v) E W corresponds to the maximal ideal 95-1 (M) 
in k[W]. In this development we have generally started with geometric properties of the 
affine algebraic sets and then seen that many of the algebraic properties common to the 
associated coordinate rings can be defined for arbitrary commutative rings. Suppose 
now we try to reverse this, namely start with a general commutative ring as the algebraic 
object and attempt to define a corresponding "geometric" object by analogy with k[V] 
and V. 

Given a commutative ring R, perhaps the most natural analogy with k[V] and V 
would suggest defining the collection of maximal ideals M of R as the "points" of the 
associated geometric object. Under this definition, if 95 : R' ---+ R is a ring homomor
phism, then 95-1 (M) should correspond to the maximal ideal M. Unfortunately, the 
inverse image of a maximal ideal by a ring homomorphism in general need not be a 
maximal ideal. Since the inverse image of a prime ideal under a ring homomorphism 
(that maps I to 1) is prime, this suggests that a better definition might include the prime 
ideals of R .  This leads to the following: 

Definition. Let R be a commutative ring with I .  The spectrum or prime spectrum of 
R, denoted Spec R, is the set of all prime ideals of R. The set of all maximal ideals of 
R, denoted mSpec R, is called the maximal spectrum of R.  

Examples 

(1) If R is a field then Spec R = mSpec R = { (0)} .  
(2) The points in  Spec Z are the prime ideal (0) and the prime ideals (p) where p > 0 is 

a prime, and mSpec Z consists of all the prime ideals of Spec Z except (0) . 
(3) The elements of Spec Z[ x] are the following: 

(a) (0) 
(b) (p) where p is a prime in Z 
(c) (f) where f =1 1 is a polynomial of content 1 (i .e., the g .c.d. of its coefficients is 

equal to 1) that is irreducible in Q[x] 
(d) (p, g) where p is a prime in Z and g is a monic polynomial that is irreducible 

mod p. 
The elements of mSpec Z[x] are the primes in (d) above. 

In the analogy with k[V] and V when k is algebraically closed, the elements f E 
k[V] are functions on V with values in k, obtained by evaluating f at the point v in 
V. Note that "evaluation at v" defines a homomorphism from k[V] to k with kernel 
I(v), and that the value of f at v is the element of k representing f in the quotient 
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k[V]ji(v) � k. Put another way, the value of f E k[V] at v E V can be viewed as the 
element ] E k[V]ji(v) � k. A similar definition can be made in general: 

Definitio�. If f E R then the value of f at the point P E Spec R is the element 
/(P) = f E RjP . 
Note that the values of f at different points P in general lie in different integral domains. 
Note also that in general f E R is not uniquely determined by its values, rather f is 
determined only up to an element in the nilradical of R (cf. Exercise 3). 

There are analogues of the maps Z and I and also for the Zariski topology. For 
any subset A of R define 

Z(A) = {P E X I A � P}  � Spec R, 

the collection of prime ideals containing A.  It is  immediate that Z(A) = Z(l) ,  where 
I = (A) is the ideal generated by A so there is no loss simply in considering Z(l) 
where I is an ideal of R.  Note that, by definition, P E Z(I) if and only if I � P, 
which occurs if and only if f E P for every f E I .  Viewing f E R as a function on 
Spec R as above, this says that P E Z(I) if and only if f(P) = f mod P = 0 E Rj P 
for all f E I .  In this sense, Z (I) consists of the points in Spec R at which all the 
functions in I have the value 0. 

For any subset Y of Spec R define 

I(Y) = n P,  
PEY 

the intersection of the prime ideals in Y. 

Proposition 53. Let R be a commutative ring with 1 .  The maps Z and I between R 
and Spec R defined above satisfy 

(1) for any ideal I of R, Z(l) = Z(rad(l)) = Z(I(Z(l))), and i(Z(l)) = rad I,  
(2) for any ideals I ,  J of R, Z(l n J) = Z(l J) = Z(l) U Z(J),  and 
(3) if {Ij } is an arbitrary collection of ideals of R, then Z(Uij )  = nZ(lj ) ·  

Proof: I f  P i s  a prime ideal containing the ideal I then P contains rad I (Exercise 
8, Section 2), which implies Z(l) = Z(rad(I)) .  Since rad I is the intersection of all the 
prime ideals containing I (Proposition 12), the definition of I(l) gives Z(rad(l)) = 
Z(I(l)) .  Similarly, 

I(Z(l)) = n P = n P = rad i, 
PEZ(/) Jc;_ p  

which completes the proof of ( 1). It is immediate that Z(l n J) = Z(l) U Z(J). 
Suppose the prime ideal P contains I J .  If P does not contain 1 then there is some 
element i E I with i f/:. P .  Since i J � P, it follows that J � P .  This proves 
Z(l J) = Z(l) U Z(J) and completes the proof of (2). The proof of (3) is immediate. 

The first statement in the proposition shows that every set Z(l) in Spec R occurs 
for some radical ideal I ,  and since I(Z(l)) = rad I ,  this radical ideal is unique. 
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The second two statements in the proposition show that the collection 

T = {Z{l) I I is an ideal of R} 

satisfies the three axioms for the closed sets of a topology on Spec R as in Section 2. 

Definition. The topology on Spec R defined by the closed sets Z {I) for the ideals I 
of R is called the Zariski topology on Spec R.  

By definition, the closure in the Zariski topology of the singleton set {P}  in Spec R 
consists of all the prime ideals of R that contain P. In particular, a point P in Spec R 
is closed in the Zariski topology if and only if the prime ideal P is not contained in any 
other prime ideals of R, i.e., if and only if P is a maximal ideal (so the Zariski topology 
on Spec R is not generally Hausdorff). These points are given a name: 

Definition. The maximal ideals of R are called the closed points in Spec R.  

In terms of the terminology above, the points in  Spec R that are closed in the Zariski 
topology are precisely the points in mSpec R.  

A closed subset of a topological space is  irreducible if i t  is  not the union of two 
proper closed subsets, or, equivalently, if every nonempty open set is dense. Arguments 
similar to those used to prove Proposition 17 show that the closed subset Y = Z {I) in 
Spec R is irreducible if and only if I(Y) = rad I is prime (cf. Exercise 16). 

The following proposition summarizes some of these results: 

Proposition 54. The maps Z and I define inverse bijections 

I 
{Zariski closed subsets of Spec R} 2. {radical ideals of R}.  

z 

Under this correspondence the closed points in Spec R correspond to the maximal ideals 
in R, and the irreducible subsets of Spec R correspond to the prime ideals in R. 

Examples 

(1) If X = Spec Z then X is irreducible and the nonzero primes give closed points in X .  
The point (0) i s  not a closed point, in fact the closure of (0) i s  all of X ,  i.e., (0) i s  dense 
in Spec Z. For this reason the element (0) is called a generic point in Spec Z. 

Since every ideal of Z is principal, the Zariski closed sets in Spec Z are 0, Spec Z 
and any finite set of nonzero prime ideals in Z. 

(2) Suppose X = Spec Z[x] as in Example 3 previously. For each integer prime p the 
Zariski closure of the element (p) E X consists of the maximal ideals (p, g) of type 
(d) . Likewise for each Q-irreducible polynomial f of type (c), the Zariski closure of 
the element (f) is the collection of prime ideals of type (d) where g is some divisor 
of f in Z/ pZ[x ] .  
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Example: (Affine k-algebras) 

Suppose R = k[V] is the coordinate ring of some affine algebraic set V £; A11 over an 
algebraically closed field k. Then R = k[xt , . . .  , x11 ]/I(V) where I(V) is a radical ideal 
in k[xt ,  . . .  , x11 ] .  In particular R is a finitely generated k-algebra and since i(V) is radical, 
R contains no nonzero nilpotent elements. 

Definition. A finitely generated algebra over an algebraically closed field k having no 
nonzero nilpotent elements is called an affine k-algebra. 

If R is an affine k-algebra, then by Corollary 5 there is a surjective k-algebrahomomorphism 
n : k[x t ,  . . .  , x11 I � R whose kernel / = ker n must be a radical ideal since R has no 
nonzero nilpotent elements. Let V = Z(l) £; A11 • Then R � k[xt , . . .  , x11 ]/l = k[V] is 
the coordinate ring of an affine algebraic set over k. Hence affine k-algebras are precisely 
the rings arising as the rings of functions on affine algebraic sets over algebraically closed 
fields. 

By the Nullstellensatz, the points of mSpec R are in bijective correspondence with V, 
and the points of Spee R are in bijective correspondence with the subvarieties of V. By 
Theorem 6, morphisrns between two affine algebraic sets correspond bijectively with (k
algebra) homomorphisms of affine k-algebras. In the language of categories these results 
show that over an algebraically closed field k there is an equivalence of categories { affine algebraic sets } { affine k-algebras } 

morphisrns of algebraic sets +---+ k-algebra homomorphisms · 

The map from left to right sends the affine algebraic set V to its coordinate ring k[V].  The 
map from right to left sends the affine k-algebra R to mSpec R. The pair (mSpec R ,  R) is 
sometimes called the canonical model of the affine k-algebra R.  

Over an algebraically closed field k, a k-algebra homomorphism cp : R � S 
between two affine k-algebras as in the previous example has the property (by the 
Nullstellensatz) that the inverse image of a maximal ideal in S is a maximal ideal 
in R. As previously mentioned, one reason for considering Spec R rather than just 
mSpec R for more general rings is that inverse images of maximal ideals under ring 
homomorphisms are not in general maximal ideals. When R is an affine k-algebra 
corresponding to an affine algebraic set V, the space Spec R contains not only the 
"geometric points" of V (in the form of the closed points in Spec R), but also the non
closed points corresponding to all of the subvarieties of V (in the form of the non-closed 
points in Spec R, i.e., the prime ideals P of R that are not maximal). 

In general, if cp : R � S is a ring homomorphism mapping 1 R to 1 s and P is a prime 
ideal in S then cp-1 (P) is a prime ideal in R. This defines a map cp* : Spec S � Spec R 
with cp* (P) = cp-1 (P). If Z(I) � Spec R is a Zariski closed subset of Spec R, then 
it is easy to show that (cp*)- 1 (2(/)) is the Zariski closed subset Z(cp(I)S) defined by 
the ideal generated by cp(/) in S. Since the inverse image of a closed subset in Spec R 
is a closed subset in Spec S, the induced map cp* is continuous in the Zariski topology. 
This proves the following proposition. 

Proposition 55. Every ring homomorphism cp : R � S mapping 1 R  to 1 s  induces a 
map cp* : Spec S � Spec R that is continuous with respect to the Zariski topologies on 
Spec R and Spec S. 
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While the generalization from affine algebraic sets to Spec R for general rings R has 
made matters slightly more complicated, there are (at least) two very important benefits 
gained by this more general setting. The first is that Spec R can be considered even for 
commutative rings R containing nilpotent elements; the second is that Spec R need not 
be a k-algebra for any field k, and even when it is, the field k need not be algebraically 
closed. The fact that many of the properties found in the situation of affine k-algebras 
hold in more general settings then allows the application of "geometric" ideas to these 
situations (for example, to Spec R when R is finite) . 

Examples 

(1) The natural inclusion <p : /L � /L[i] induces a map <p* : Spec /L[i] � Spec /L. The fiber 
of <p* over the nonzero prime P in /L consists of the prime ideals of /L[i] containing P. 
If P = (p) where p = 2 or p is a prime congruent to 3 mod 4, then there is only one 
element in this fiber; if p is a prime congruent to I mod 4, then there are two elements 
in the fiber: the primes (rr) and (rr') where p = rrrr' in /L[i] ,  cf. Proposition 18 in 
Section 8.3. This can be represented pictorially in the following figure: 

I 

I I + (2+i) I + (rr)  
+ (0) + (I +i) + (3) + (p) Spec /L[i ] 

+ (2-i) + (rr') 
I 

<p* 

! ! ! ! ! ! 
Spec /L 

(0) (2) (3) (5) (p) (p) 
p ==3 (4) p = I  (4) 

(2) If k is an algebraically closed field then Spec k[x] consists of (0) and the ideals (x - a) 
for a E k; the natural inclusion <p : k[x]  � k[x ,  y] induces the Zariski continuous 
map <p* : Spec k[x ,  y] � Spec k[x] .  The elements of Spec k[x ,  y] are 

(a) (0), 
(b) (f) where f is an irreducible polynomial in k[x ,  y], and 
(c) (x - a, y - b) with a, b E k 

(cf. Exercise 4). The prime (0) is Zariski dense in Spec k[x ,  y] ;  the Zariski closure of 
the primes in (b) consists of the primes (x - a, y - b) in (c) with f(a,  b) = 0; the 
closed points, i.e., the elements of mSpec k[x ,  y], are the primes in (c) . 

By the Nullstellensatz, each prime ideal P in Spec k[x ,  y] is uniquely determined 
by the corresponding zero set Z(P). The prime (0) E k[x , y] corresponds to A2• 
The prime (f) corresponds to the points where f (x , y) = 0, and P = (f) is the 
intersection of all the maximal ideals containing P. The maximal ideal (x - a, y - b) 
corresponds to the point (a, b) E A2. Fibered over Spec k[x] by the map <p* these 
primes can be pictured geometrically as in the diagram on the following page. 

In this diagram, the prime (x - a) in Spec k[x] is identified with the element 
a E k. The prime (x) E Spec k[x ,  y] corresponds to the points in A2 with x = 0, i.e., 
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I 

HO) 

1 
(0) 

(y = b) 

(x = 0) 

1 
0 

(a , b) 

Spec k[x , yj 

cp* 

(x = a) 

1 
Spec k[xj 

a 

with the y-axis in A2 ; the prime (y) E Spec k[x ,  y] similarly corresponds to the x
axis. The prime (f) E Spec k[x ,  y] corresponds to the irreducible curve f(x ,  y) = 0 
in A2 ; the points (a , b) E A2 lying on this curve correspond to the maximal ideals 
(x - a, y - b) E Spec k[x ,  y] containing (f). The closed point (x - a, y - b) E 
Spec k[x ,  y] corresponds to the "geometric point" (a , b) E A2. 

Note that Spec k[x ,  y] captures all of the geometry of algebraic sets in A2 : every 
algebraic set in A2 is the finite union of some subset of the irreducible algebraic sets 
corresponding to the elements of Spec k[x , y] pictured above. With the exception of 
the everywhere dense point (0),  the "geometric" picture of Spec k[x ,  y] is precisely 
the usual geometry of the affine plane A2 . When k is not algebraically closed the 
situation is slightly more complicated, but the picture is similar, cf. Exercise 4. 

(3) The situation for Spec Z[x ], viewed as fibered over Spec Z by the natural inclusion 
Z ---+ Z[x] is very similar to the situation of Spec k[x ,  y] in the previous example. The 
elements of Spec Z[x] were discussed in Example 2 following Proposition 54 and can 
be pictured as in the diagram on the following page. 
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The element (0) is Zariski dense in Spec Z[x) .  The closure of (p) consists of 
(p) and all the closed points (p, g) where g is a monic polynomial in Z(x] that is 
irreducible mod p. The closure of (f) consists of (f) together with the maximal 
ideals (p, g) that contain (f), which is the same as saying that the image of f in the 
quotient Z[x]f(p ,  g) is 0, i.e., the irreducible polynomial g is a factor of f mod p. 
The closed points, mSpec Z[x], are the maximal ideals (p, g). 

Note that the maximal ideals (p, g) containing (f) are precisely the closed points 
in mSpec Z[x) in the diagram above where the "function" f on Spec Z[x) (taking 
the prime P to f (P) = f mod P E Z[x]/ P) is zero. For example, the polynomial 
f = x3 - 4x2 + x - 9 E Z[x] fits the diagram above: f is irreducible in Z[x),  and 
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I 
+ (0) 

(2) (3) (5) (p) 

1 1 1 1 1 
(0) (2) (3) (5) (p) 

over IF P factors into irreducibles as follows: 

f = x3 + x + I mod 2 

f = x(x + I )2 mod 3 

(x -a) 

(f) 

/ 

f = (x + l ) (x + 2) (x + 3) mod 5. 

Spec Z[x] 

q;* 

Spec :£: 

There is one point in the fiber over (2) intersecting (f), namely the closed point 
(2, x3 + x + I ) .  There are two closed points in the fiber over (3) given by (3, x) 
and (3, x + I )  (with some "multiplicity" at the latter point). Over (5) there are three 
closed points: (5, x + I ) , (5, x + 2), and (5, x + 3) . For the diagram above, the 
prime p might be p = 53, since this is the first prime p greater than 5 for which 
this polynomial has three irreducible factors mod p. Note that while the prime (f) is 
drawn as a smooth curve in this diagram to emphasize the geometric similarity with 
the structure of Spec k[x .  y] in the previous example, the fibers above the primes in 
Spec Z are discrete, so some care should be exercised. For example, since f factors 
as (x + 2) (x2 + x + 6) mod 7, the intersection of (f) with the fiber above (7) contains 
only the two points (7 ,  x + 2) and (7, x2 + x + 6) , each with multiplicity one. 

The possible number of closed points in (f) lying in a fiber over (p) E Spec Z 
is controlled by the Galois group of the polynomial f over <Ql (cf. Section I4.8). For 
example, f = x4 + I has one closed point in the fiber above (2) and either two or four 
closed points in a fiber above (p) for p odd (cf. Exercise 8). 

The space Spec R together with its Zariski topology gives a geometric generaliza
tion for arbitrary commutative rings 6f the points in a variety V.  We now consider the 
question of generalizing the ring of rational functions on V.  

When V is  a variety over the algebraically closed field k the elements in the quotient 
field k(V) of the coordinate ring k[V] define the rational functions on V. Each element 
a in k(V) can in general be written as a quotient aj f of elements a, f E k[V] in 
many different ways. The set of points U at which a is regular is an open subset of 
V ;  by definition, it consists of all the points v E V where a can be represented by 
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some quotient a If with f ( v) =j:. 0, and then the representative a If defines an element 
in the local ring Ov, V ·  Note also that the same representative alf defines a not only 
at v, but also at all the other points where f is nonzero, namely on the open subset 
vf = {w E v I f(w) =I 0} of v.  These open sets vf (called principal open sets, 
cf. Exercise 21  in Section 2) for the various possible representatives al f for a give an 
open cover of U. The example of the function a = ily for V = Z(xz - yw) C A4 
preceding Proposition 5 1  shows that in general a single representative for a does not 
suffice to determine all of U - for this example, U = V:v U Vz , and U is not covered 
by any single v1 (cf. Exercise 25 of Section 4). 

This interpretation of rational functions as functions that are regular on open subsets 
of V can be generalized to Spec R.  We first define the analogues X f in X = Spec R of 
the sets V1 and establish their basic properties. 

Definition. For any f E R let X f denote the collection of prime ideals in X = Spec R 
that do not contain f. Equivalently, X f is the set of points of Spec R at which the value 
of f E R is nonzero. The set X f is called a principal (or basic) open set in Spec R. 

Since X f is the complement of the Zariski closed set Z (f) it is indeed an open set 
in Spec R as the name implies. Some basic properties of the principal open sets are 
indicated in the next proposition. Recall that a map between topological spaces is a 
homeomorphism if it is continuous and bijective with continuous inverse. 

Proposition 56. Let f E R and let X f be the corresponding principal open set in 
X = Spec R. Then 

(1) X f = X if and only if f is a unit, and X f = 0 if and only if f is nilpotent, 
(2) x1 n Xg = x1g. 
(3) Xf � Xg, U ·  · · U Xg, if and only if f E rad(gJ , . . .  , gn ) ;  in particular Xf = Xg 

if and only if rad(f) = rad(g ), 
(4) the principal open sets form a basis for the Zariski topology on Spec R, i.e., 

every Zariski open set in X is the union of some collection of principal open 
sets xf . 

(5) the natural map from R to Rt induces a homeomorphism from Spec R f to X f ,  
where R1 i s  the localization of  R at f ,  

(6) the spectrum of any ring i s  quasicompact (i.e., every open cover has a finite 
subcover); in particular, xf is quasicompact, and 

(7) if qJ : R � S is any homomorphism of rings (with ({J(lR )  = l s) then under 
the induced map qJ* : Y = Spec S � Spec R the full preimage of the principal 
open set X f in X is the principal open set Y10<n in Y.  

Proof Parts ( 1 ), (2) and (7) are left as  easy eXercises. For (3), observe that, by defi
nition, Xg, U · · · U Xg" consists of the primes P not containing at least one of g1 , . . .  , gn . 
Hence Xg, U ·  · · U Xg, is the complement ofthe closed set Z((gJ , . . .  , gn )) consisting of 
the primes P that contain the ideal generated by g1 , . . .  , gn . If (g1 , . . .  , gn) = R then 
Xg, U · · · U Xg, = X  and there is nothing to prove. Otherwise, X1 � Xg, U · · · U Xg, 
if and only if every prime P with f fj. P also satisfies P fj. Z((gJ , . . .  , gn)) .  This 
latter condition is equivalent to the statement that if the prime P contains the ideal 
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(gt , . . . , g11) then P also contains j, i.e., f is contained in the intersection of all the 
prime ideals P containing (gt , . . . , g11) .  Since this intersection is rad(gt ,  . . .  , g11) by 
Proposition 12, this proves (3). 

If U = X - Z (/) is a Zariski open subset of X, then U is the union of the sets X r 
with f E I ,  which proves (4) . 

· 
The natural ring homomorphism from R to the localization Rr establishes a bi

jection between the prime ideals in Rr and the prime ideals in R not containing (f) 
(Proposition 38). The corresponding Zariski continuous map from Spec Rr to Spec R 
is therefore continuous and bijective. Since every ideal of Rr is the extension of some 
ideal of R (cf. Proposition 38( 1)), it follows that the inverse map is also continuous, 
which proves (5). 

In (6), every open set is the union of principal open sets by (4), so it suffices to 
prove that if X is covered by principal open sets X g; (for i in some index set :J) then X 
is a finite union of some of the Xg; · If the ideal I generated by the g; were a proper ideal 
in R, then I would be contained in some maximal ideal P.  But in this case the element 
P in X = Spec R would not be contained in any principal open set X g; , contradicting 
the assumption that X is covered by the X g; . Hence I = R and so 1 E R can be written 
as a finite sum 1 = a1 g;1 + · · · + a11g;" with it , . . . , i11 E :T. Consider the finite union 
X g1 U · · · U X 8" . Any point P in X not contained in this union would be a prime in 
R that contains g; 1 , • • •  , g;" , hence would contain 1 ,  a contradiction. It follows that 
X =  X81 U · · · U X8" as needed. The second part of (6) follows from (5). 

We now define an analogue for X = Spec R of the rational functions on a variety 
V.  As we observed, for the variety V a rational function a E k(V) is a regular function 
on some open set U.  At each point v E U there is a representative a If for a with 
f(v) -I 0, and this representative is an element in the localization Ov. v = k[Vlz:(v) · 
In this way the regular function a on U can be considered as a function from U to the 
disjoint union of these localizations: the point v E U is mapped to the representative 
a If E k[Vlz:(v) . Furthermore the same representative can be used simultaneously not 
only at v but on the whole Zariski neighborhood Vr of v (so, "locally near v," a is 
given by a single quotient of elements from k[V]) .  Note that a If is an element in the 
localization k[V]r ,  which is contained in each of the localizations k[Vlz:<w> for w E Vr . 

We now generalize this to Spec R by considering the collection of functions s from 
the Zariski open subset U of Spec R to the disjoint union of the localizations Rp for 
P E U such that s (P) E Rp and such that s is given locally by quotients of elements 
of R. More precisely: 

Definition. Suppose U is a Zariski open subset of Spec R. If U = 0, define O(U) = 0. 
Otherwise, define O(U) to be the set of functions s : U -+ UQEU RQ from U to the 
disjoint union of the localizations R Q for Q E U with the following two properties: 

(1) s ( Q) E RQ for every Q E U, and 
(2) for every P E U there is an open neighborhood Xr � U of P in U and an 

element al jll in the localization Rr defining s on Xr,  i.e., s ( Q) = al jll E RQ 
for every Q E Xr. 

If s ,  t are elements in O(U) then s + t and st are also elements in O(U) (cf. 
Exercise 1 8), so each O(U) is a ring. Also, every a E R gives an element in O(U) 
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defined by s (Q) = a E RQ. and in particular 1 E R gives an identity for the ring O(U). 
If U' is an open subset of U, then there is a natural restriction map from O(U) to O(U') 
which is a homomorphism of rings ( cf. Exercise 19). 

Definition. Let R be a commutative ring with 1, and let X = Spec R. 
(1) The collection of rings 0( U) for the Zariski open sets of X together with the 

restriction maps O(U) -+ O(U') for U' � U is called the structure sheaf on 
X, and is denoted simply by 0 (or Ox). 

(2) The elements s of O(U) are called the sections of 0 over U. The elements of 
O(X) are called the global sections of 0. 

The next proposition generalizes the result of Proposition 5 1  that the only rational 
functions on a variety V that are regular everywhere are the elements of the coordinate 
ring k[V] .  

Proposition 57. Let X = Spec R and let 0 = 0 x be its structure sheaf. The global 
sections of 0 are the elements of R, i.e. , O(X) � R. More generally, if X 1 is a principal 
open set in X for some f E R, then O(X1) is isomorphic to the localization R1 . 

Proof" Suppose that aIr is an element of the localization R t .  Then the map defined 
by s (Q) = air E RQ for Q E X1 gives an element in O(X1), and it is immediate 
that the resulting map 1/1 from R 1 to O(X 1) is a ring homomorphism. Suppose that 
air = hlr' in RQ for every Q E X1, i.e., g (ar' - hr) = 0 in R for some g ¢ Q. 
If I i s  the ideal in R of elements r E R with r (af'n - br) = 0,  it follows from g E I 
that I is not contained in Q for any Q E X 1 .  Put another way, every prime ideal of R 
containing I also contains f. Hence f is contained in the intersection of all the prime 
ideals of R containing I, which is to say that f E rad I .  Then f N E I for some integer 
N :::: 0, and so fN (ar' - hr) = 0 in R. But this shows that al r = bl r' in Rr and 
so the map 1/1 is injective. Suppose now that s E O(X 1 ) .  Then by definition X f can be 
covered by principal open sets X g, on which s ( Q) = a;/ g;• E R Q for every Q E X g, . 
By (6) of Proposition 56, we may take a finite number of the g; and then by taking 
different a; we may assume all the n; are equal (since a; / g;• = (a; g;-n• )  I g� if n is the 
maximum ofthe n; ). Since s (Q) = a;/g;' = a;lgj in RQ for all Q E Xg,gj = Xg, n Xgj • 
the injectivity of 1/1 (applied to Rg,g) shows that a; /g� = ajlgj in Rg,gr This means 
that g; gj N  (a; gj - a;g7) = 0, i.e. , 

a;g!" g n+N = a · gn+N g ·N  
l .I .I l .I 

in R for some N :=:: 0, and we may assume N sufficiently large that this holds for every 
i and .i . Since X f is the union of the X g, = X g;•+N , f is contained in the radical of the 
ideal generated by the g7 by (3) of Proposition 56, say 

fM = 'L, b;g�+N 

for some M :=:: 1 and b; E R.  Define a = L, b; a; g[" E R.  Then 
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N fM " b ( n+N N) " b  ( N n+N) n+N gi aj = � ; ajg; gj = � ; a;g; gj = gj a .  
i i 
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It follows that al JM = aj I g'j in R8i , and so the element in O(X f) defined by al fM 
in R f agrees with s on every X gi , and so on all of X 1 since these open sets cover X f .  
Hence the map l/1 gives an isomorphism Rt � O(X f ) .  Taking f = l gives R � O(X), 
completing the proof. 

In the case of affine varieties V the local ring Ov , v at the point v E V is the 
collection of all the rational functions in k(V) that are defined at v. Put another way, 
Ov. v is the union of the rings of regular functions on U for the open sets U containing 
P. where this union takes place in the function field k(V) of V.  In the more general 
case of X = Spec R, the rings O(U) for the open sets containing P E Spec R are not 
contained in such an obvious common ring. In this case we proceed by considering the 
collection of pairs (s, U) with U an open set of X containing P and s E O(U). We 
identify two pairs (s, U) and (s' , U') if there is an open set U" 5:; U n U' containing 
P on which s and s' restrict to the same element of O(U") . In the situation of affine 
varieties, this says that two functions defined in Zariski neighborhoods of the point v 
define the same regular function at v if they agree in some common neighborhood of 
v .  The collection of equivalence classes of pairs (s, U) defines the direct limit of the 
rings O(U), and is denoted li!p O(U) (cf. Exercise 8 in Section 7.6). 

Definition. If P E X = Spec R, then the direct limit, li!p O(U), of the rings O(U) 
for the open sets U of X containing P is called the stalk of the structure sheaf at P, and 
is denoted 0 p .  

Proposition 58. Let X = Spec R and let 0 = Ox be its structure sheaf. The stalk of 
0 at the point P E X is isomorphic to the localization Rp of R at P: Op � Rp.  In 
particular, the stalk 0 p is a local ring. 

Proof: If (s , U) represents an element in the stalk Op, then s(P) is an element of 
the localization R p .  By the definition of the direct limit, this element does not depend 
on the choice of representative (s, U), and so gives a well defined ring homomorphism 
cp from Op to Rp . If a, f E R with f � P, then the map s (Q) = alf E RQ defines 
an element in O(X f) .  Then the class of (s , X f )  in the stalk 0 p is mapped to al f 
in Rp by cp, so cp is a surjective map. To see that cp is also injective, suppose that the 
classes of (s, U) and (s', U') in Op satisfy s(P) = s'(P) in Rp .  By definition of O(U), 
s = algn on X8 for some g � P .  Similarly, s' = hl(g')m on X8, for some g' � P. 
Since al gn = hl(g')m in Rp ,  there is some h � P with h(a(g')m - bgn ) = 0 in R. If 
Q E Xgg'h = X8 n Xg' n Xh this last equality shows that algn = hl (g')m in RQ, so 
that s and s' agree when restricted to Xgg'h · By definition of the direct limit, (s, U) and 
(s' , U') define the same element in the stalk Op , which proves that cp is injective and 
establishes the proposition. 

Proposition 58 shows that the algebraically defined localization Rp for P E Spec R 
plays the role of the local ring Ov. v of regular functions at v for the affine variety 
V. If mp denotes the maximal ideal PRp in Rp and k(P) = Rplmp denotes the 
corresponding quotient field (which by Proposition 46(1)  is also the fraction field of 
RIP), then the tangent space at P is defined to be the k( F)-vector space dual of mp lm� . 
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This is an algebraic definition that generalizes the definition of the tangent space 11' v, v 
to a variety V at a point v (by Proposition 52). This can now be used to define what it 
means for a point in Spec R to be nonsingular: the point P E Spec R is nonsingular or 
smooth if the local ring Rp is what is called a "regular local ring" (cf. Section 16.2). 

Proposition 58 also suggests a nice geometric view of the structure sheaf on Spec R. 
If we view each point P E Spec R as having the local ring Rp above it, then above the 
open set U in X = Spec R is a "sheaf' (in the sense of a "bundle") of these "stalks" 
(in the sense of a "stalk of wheat"), which helps explain some of the terminology. A 
section s in the structure sheaf O(U) is a map from U to this bundle of stalks. The 
image of U under such a section s is indicated by the shaded region in the following 
figure. 

./ 
r � 

..... � I-

'-... ___..-' 

Definition. Let R be a commutative ring with 1 .  The pair (Spec R, Ospec R),  consisting 
of the space Spec R with the Zariski topology together with the structure sheaf Ospec R ·  
i s  called an affine scheme. 

The notion of an affine scheme gives a completely algebraic generalization of the 
geometry of affine algebraic sets valid for arbitrary commutative rings, and is the starting 
point for modem algebraic geometry. 

Examples 

(1) If F is any field then X = Spec F = { (0)} .  In this case there are only two open sets 
X and !ZJ, both of which are principal open sets: X = X 1 and QJ = Xo. The global 
sections are O(X) = F. There is only one stalk: O(o) = Fo = F. 

(2) If R = Z then because R is a P.I.D. every open set in X = Spec Z is principal open: 
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X, = { (p) I p f n} and 

O(X,) = Z, = Z[l/n] = {afb E Q I if the prime p I b then p I n} .  
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For nonzero p the stalk at (p) is the local ring Z(p} • and the stalk at (0) is Q. All the 
restriction maps as well as the maps from sections to stalks are the natural inclusions. 

(3) For a general integral domain R with quotient field F the stalks and sections are 

O(U) = {afb E F I b rf. P for all P E U} 

Op = Rp = {afb E F I b rf. P} 

where the stalk at (0) is  F, i.e., 0(0) = F. Again, the restriction maps and the maps 
to the stalks are all inclusions. 

(4) For the local ring R = Z(2) = {ajb E Q I b odd} we have Spec R = { (0) , (2)} with 
(2) the only closed point and { (0)} = Xz a principal open set. The sections 0({(0) }) 
are Rz = Q, and the stalks are O(o) = R(o) = Q and 0(2} = R(2) = R. 

We next consider the relationship of the affine schemes corresponding to rings R 
and S with respect to a ring homomorphism from R to S. 

Suppose that <p : R � S is a ring homomorphism. We have already seen in 
Proposition 56(7) that there is an induced continuous map <p* from Y = Spec S to 
X = Spec R and that under this map the full preimage of the principal open set X 8 
for g E R is the principal open set Y10(g) · It follows that <p also induces a map on 
corresponding sections, as follows. Let Q' E Y be any element in Spec S and let 
Q = <p*(Q') = <p-1 (Q') E X be the corresponding element in Spec R.  If U is a Zariski 
open set in X containing Q, then U' = ( <p*) -t ( U) is a Zariski open set in Y containing 
Q'. Note that <p induces a natural ring homomorphism, (/JQ say, from the localization 
RQ to the localization SQ' defined by ({JQ(ajf) = <p(a)j<p(f) E SQ' for f ¢. Q. Let 
s E 0 x ( U) be a section of the structure sheaf of X given locally in the neighborhood 
X 8 of P E X by a j gn . It is easy to check that the composite 

s' : U' � U � U RQ � U SQ' 
QEU Q'EU 

defines a map given locally in the neighborhood Y10(g) by the element <p(a)j<p(gt, so 
that s' E Oy (U') is a section of the structure sheaf of Y. It is then straightforward to 
check that the resulting map <p# : 0 x ( U) � Oy ( U') is a ring homomorphism (mapping 
1 E Ox (U) to 1 E Oy (U') ) that is compatible with the restriction maps on Ox and 
Oy (cf. Exercise 20). It also follows that there is an induced ring homomorphism on 
the stalks: <p# : Ox.P � OY, P' for any point P' E Spec S and corresponding point 
P = <p*(P') E Spec R. Under the isomorphism in Proposition 58, the homomorphism 
<p# from Rp � Ox,P to SP' � OY, P' is just the natural ring homomorphism <pp on the 
localizations induced by the homomorphism <p. In particular, the inverse image under 
<p# of the maximal ideal in the local ring Oy, P' is the maximal ideal in the local ring 
Ox,P · 

Definition. Suppose (Spec R, Ospec R) and (Spec S, Ospecs) are two affine schemes. 
A morphism of affine schemes from (Spec S, Ospec s) to (Spec R,  Ospec R) is a pair 
( <p* , <p#) such that 

(1) <p* : Spec S � Spec R is Zariski continuous, 
(2) there are ring homomorphisms <p# : O(U) � 0(<p*-1 (U)) for every Zariski 

open subset U in Spec R that commute with the restriction maps, and 
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(3) if P' E Spec S with corresponding point P = qJ* (P) E Spec R, then under the 
induced homomorphism on stalks (/)# : Ospec R, p ---+ Ospec s, P' the preimage of 
the maximal ideal of Ospec s, P' is the maximal ideal of Ospec R, P .  

A homomorphism 1/J : A ---+ B from the local ring A to the local ring B with 
the property that the preimage of the maximal ideal of B is the maximal ideal of A is 
called a local homomorphism of local rings. The third condition in the definition is 
then the statement that the induced homomorphism on stalks is required to be a local 
homomorphism. 

With this terminology, the discussion preceding the definition shows that a ring ho
momorphism ({J : R ---+ S induces a morphism of affine schemes from (Spec S, Ospec s) 
to (Spec R ,  Ospec R) -

Conversely, suppose ( qJ* , ({J#) is a morphism of affine schemes from (Spec S, Ospec s) 
to (Spec R,  Ospec R) - Then in particular, for U = Spec R, (qJ*)-1 (U) = Spec S, so by 
assumption there is a ring homomorphism (/)# : Ospec R (Spec R) ---+ Ospec s (Spec S) 
defined on the global sections. By Proposition 57, we have Ospec R (Spec R) � R and 
Ospec s (Spec S) � S as rings. Composing with these isomorphisms shows that (/)# gives 
a ring homomorphism qJ : R ---+ S. By Proposition 58 we have a local homomorphism 
(/)# : R p ---+ S P' , and by the compatibility with the restriction homomorphisms it follows 
that the diagram 

R __!______,. S 

1 1 
lfi" 

--+ Sp, 

commutes, where the two vertical maps are the natural localization homomorphisms. 
Since qJ# is assumed to be a local homomorphism, ( ({J#) -1 ( P' S P' ) = P R P ,  from which 
it follows that qJ - 1 ( P') = P. Hence the continuous map from Spec S to Spec R induced 
by qJ is the same as qJ*, and it follows easily that qJ also induces the homomorphism (/)#. 
This shows that there is a ring homomorphism qJ : R ---+ S inducing both qJ* and qJ# as 
before. 

We summarize this in the following proposition: 

Theorem 59. Every ring homomorphism qJ : R ---+ S induces a morphism 

(qJ* , qJ#) : (Spec S, Ospcc s) ---+ (Spee R, Ospec R) 

of affine schemes. Conversely, every morphism of affine schemes arises from such a 
ring homomorphism qJ.  

Theorem 59 i s  the analogue for Spec R of Theorem 6 ,  which converted geometric 
questions relating to affine algebraic sets to algebraic questions for their coordinate 
rings. 

The condition that the homomorphism on stalks be a local homomorphism in the 
definition of a morphism of affine schemes is necessary: a continuous map on the 
spectra together with a set of compatible ring homomorphisms on sections (hence also 
on stalks) is not sufficient to force these maps to come from a ring homomorphism. 
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Example 

Let R = IZ(2) and S = Q as in the preceding set of examples. Define rp* : Spec Q -+ 
Spec /Z(2) by rp* ((O)) = (2) (which is Zariski continuous). Define rp# : 0(Spec R)  -+ 
0(Spec S) to be the inclusion map IZ(2) � Q and define rp# for all other U � Spec R simply 
to be the zero map. It is straightforward to check that these homomorphisms commute 
with the restriction maps. This family of maps does not arise from a ring homomorphism, 
however, because on the stalks for (0) E Spec S and rp* ( (0)) = (2) E Spec R the induced 
homomorphism 

rp# : Ospec R, (2) � Ospec S, (O) 

is the injection IZ(2) � Q, which is not a local homomorphism (the inverse image of (0) 
is (0) and not the maximal ideal 21Z(2J ). 

The proof ofTheorem 59 shows that a morphism ( rp* , rp#) of affine schemes necessarily 
comes from the ring homomorphism defined by rp# on global sections. In this example, 
the homomorphism on global sections is the inclusion map of R into S. The inclusion map 
from R to S defines a map from Spec S to Spec R that maps (0) E Spec S to (0) E Spec R 
and not to (2) E Spec R, so this map does not agree with the original map rp* . 

The previous example shows that the converse in Theorem 59 would not be true 
without the third (local homomorphism) condition in the definition of a morphism of 
affine schemes. As a result, Theorem 59 shows that the appropriate place to view affine 
schemes is in the category of locally ringed spaces. Roughly speaking, a locally ringed 
space is a topological space X together with a collection of rings O(U) for each open 
subset of X (with a compatible set of homomorphisms from O(U) to O(U') if U' � U 
and with some local conditions on the sections) such that the stalks 0 P = fup 0( U) for 
P E U are local rings. The morphisms in this category are continuous maps between the 
topological spaces together with ring homomorphisms between corresponding O(U) 
with precisely the same conditions as imposed in the definition of a morphism of affine 
schemes. 

A scheme is a locally ringed space in which each point lies in a neighborhood 
isomorphic to an affine scheme (with some compatibility conditions between such 
neighborhoods), and is a fundamental object of study in modern algebraic geometry. 
The affine schemes considered here form the building blocks that are "glued together" 
to define general schemes in the same way that ordinary Euclidean spaces form the 
building blocks that are "glued together" to define manifolds in analysis. 

E X E R C I S E S  

All rings are assumed commutative with identity, and all ring homomorphisms are assumed to 
map identities ro identities. 

1. If N is the nilradical of R, prove that Spec R and Spec Rj N are homeomorphic. [Show 
that the natural homomorphism from R to R j N induces a Zariski continuous isomorphism 
from Spec R/N to Spec R.] 

2. Let I be an ideal in the ring R.  Prove that the continuous map from Spec R/ I to Spec R 
induced by the canonical projection homomorphism R -+ Rj I maps Spec Rj I homeo
morphically onto the closed set Z(l) in Spec R .  
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3. Prove that two elements f, g E R have the same values at all elements P in Spec R if and 
only if f - g is contained in the nilradical of R. In particular, prove that an element in an 
affine k-algebra is uniquely determined by its values. 

4. Let k be an arbitrary field, not necessarily algebraically closed. Prove that the prime ideals 
in k[x , y] (i.e., the elements of Spec k[x , y]) are 
(i) (0), 
(ii) (/) where f is an irreducible polynomial in k[x , y], and 

(iii) (p(x), g(x ,  y)) where p(x) is an irreducible polynomial in k[x] and g(x ,  y) is an 
irreducible polynomial in k[x, y] that is irreducible modulo p(x), i.e., g(x ,  y) remains 
irreducible in the quotient k[x,  y]/(p(x)). 

Prove that mSpec kfx ,  y] consists of the primes in (iii). [Use Exercise 20 in Section 1 .] 
5. Let m = (p(x) ,  g(x ,  y)) be a maximal ideal in k[x ,  y] as in the previous exercise. Show 

that K = k[x ,  y ]/m is an algebraic field extension of k, so that k[x , y] can also be viewed 
as a subring of K[x ,  y] .  If x, y are mapped to a, f3 e K, respectively, under the canonical 
homomorphism k[x , y] � k[x ,  y]jm, prove that m = k[x ,  y] n (x - a, y - {3) � K[x, y] . 

6. Describe the elements in Spec IR[x] and Spec <C[x ]. Describe the elements in Spec Z(2) [x] 
where Z(2) = {afb E Q I b is odd} is the localization of Z at the prime (2) . 

7. Let (f) = (x5 + x + I ) in Spec Z[x] viewed as fibered over Spec Z as in Example 3 
following Proposition 55. Show that there are two closed points in the fiber over (2) , three 
closed points in the fiber over (5), four closed points in the fiber over ( 1 9), and five closed 
points in the fiber over (21 1 ) .  

8 .  Let (f) = (x4 + 1)  in  Spec Z[x] viewed as fibered over Spec Z as  in  Example 3 following 
Proposition 55. Prove that there is one closed point in the fiber over (2), four closed points 
in the fiber over p for p odd, p = 1 mod 8, and two closed points in the fiber over p for 
all other odd primes p (cf. Corollary 16  in Section 3 of Chapter 14). 

9. Prove that the elements in the fiber over (p) of the Zariski continuous map from Spec Z[x] 
to Spec Z are homeomorphic with the elements in Spec(Z[x] ®z 1Fp) . 

10. Let X = Spec R and let X 1 be the principal open set corresponding to f E R. Prove that 
Xf n Xg = Xfg · Prove that Xt = X if and only if f is a unit in R, and that Xf = 0 if 
and only if f is nilpotent. 

11. If X 1 and X g are principal open sets in X = Spec R, prove that the open set X 1 U X g is 
the complement of the closed set Z(/) where I =  (f, g) is the ideal in R generated by f 
and g. 

12. Prove that a Zariski open subset U of X = Spec R is quasicompact if and only if U is 
a finite union of principal open subsets. Give an example of a ring R, a Zariski open 
subset U of Spec R, and a Zariski open covering of U that cannot be reduced to a finite 
subcovering. 

13. Let f/J : R � S be a homomorphism of rings. Prove that under the induced map f/J* from 
Y = Spec S to X = Spec R the full preimage of the principal open set X 1 in X is the 
principal open set Y VJ<f> in Y.  

14. Suppose that R = Rt x Rz is the direct product of the rings Rt and Rz. Prove that 
X = Spec R is the disjoint union of open subspaces X 1 .  Xz (which are therefore also 
closed), where Xt is homeomorphic to Spec Rt and Xz is homeomorphic to Spec Rz.  

15. Prove that X = Spec R i s  not connected if  and only if  R i s  the direct product of  two 
nonzero rings if and only if R contains an idempotent e with e =1= 0, 1 (cf. the previous 
exercise). 
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16. Prove that X = Spec R is irreducible (i.e., any two nonempty open subsets have a nontrivial 
intersection) if and only if X f n X8 i= 0 for any two nonempty principal open sets X f and 
X 8 •  Deduce that X = Spec R is irreducible if and only if the nilradical of R is a prime 
ideal. [Use Exercise 1 0.] 

17. Let G = { a ) be a group of order 2, let R = Z[G] = {a + ba I a , b E Z} be the 
corresponding group ring, and let X = Spec R. 
(a) Prove that the nilradical of R is (0) but is not a prime ideal. Prove that X = x+ u x

where x+ = Z(l - a) and x- = Z(1 + a) .  [Use (1  + a) (l - a) = 0.] 
(b) Prove that the homomorphism Z[ G] � Z defined by mapping a to 1 induces a home

omorphism of x+ with Spec .Z, and the homomorphism mapping a to - 1  induces a 
homeomorphism of x- with Spec Z. 

(c) Prove that x+ n x- consists of the single element m = (1 + a, 1 - a) = (2, 1 - a) 
and that this is  a closed point in  X. 

(d) Show that (1 - a) and (1 + a) are the unique non-closed points in X, with closures 
x+ and x-, respectively. Describe the closed points, mSpec R. in X and prove that 
Spec Z[ { a  ) ] can be pictured as follows: 

x-
( l+a) (3, 1 -a) (5 ,  1 -a) 

Spec .Z[{ a )]  

x+ 
( 1 -a) (3, 1 +a) (5, 1 +a) 

q;* 

l l l l 
Spec .Z 

(0) (2) (3) (5) 

18. Let 0 be the structure sheaf on X = Spec R, let U be an open set in X, and suppose 
s ,  t E O(U). If s = aff} on Xft and t = bffi on Xh , show that 

st = (abft !2}/Ut h)n+m and S + t = (aft fi.n+n + hft+n /2)/(/t h)n+m 

on X ft fz . Deduce that 0(U) is a commutative ring with identity. 

19. Let 0 be the structure sheaf on X = Spee R, let V � U be open sets in X, and let 
s E 0(U). Suppose P E V and that s = afr on Xt � U. 
(a) Show that there is  a principal open set X f '  � V n X f containing P.  
(b) Show that (f')m = bf for some b E R.  
(c) Show that s = (a�)f(f')mn on Xr and conclude that restricting s to  V gives a well 

defined ring homomorphism from O(U) to O(V) . 
20. Let q; : R � S be a homomorphism of rings, let X = Spec R, Y = Spec S, and let 

V � U be Zariski open subsets of X. Set V' = (q�*)- 1 (V) and U' = (cp*)- 1 (U), the 
corresponding Zariski open subsets of Y with respect to the continuous map q;* : Y � X 
induced by q;. Prove that the induced map q;# : Ox(U) � Or(U') on sections is a ring 
homomorphism. Prove that V' � U' and that q;# is compatible with restriction i .e. , that 
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the diagram 

Ox (U) "'# 
Ov(U') � 

1 1 
Ox(V) "'# Ov(V') � 

is commutative, where the vertical maps are the restriction homomorphisms. 

21. Suppose D is a multiplicatively closed subset of R. Show that the localization homo
morphism R ---+ v-IR induces a homeomorphism from Spec(n-IR) to the collection of 
prime ideals P of R with P n D = 0. 

22. Show that Spec k[x , y]j(xy) is connected but is the union of two proper closed subsets 
each homeomorphic to Spec k[x] , hence is not irreducible (cf. Exercise 16). 

23. For each of the following rings R exhibit the elements of Spec R, the open sets U in Spec R, 
the sections O(U) of the structure sheaf for Spec R for each open U, and the stalks 0 p at 
each point P E Spec R:  
(a) 7lj47J, (b) 7lj67!, (c) 7lj27!, X 7lj37!, (d) 7lj27!, X 7lj27!, X 7lj27l. 

24. (a) If every ideal of R is principal, show every open set in Spec R is a principal open set. 
(b) Show that if R = 'll[x]/(4, x2) then R contains a nonprincipal ideal, but every open 

set in Spec R is a principal open set. 

25. (a) If M is an R-module prove that Supp(M) is a Zariski closed subset of Spec R. [Use 
Exercise 33 of Section 4.] 

(b) If M is a finitely generated R-module prove that Supp(M) = Z(Ann(M)) s; Spec R. 
[Use Exercise 34 of Section 4.] 

26. Suppose M is a finitely generated module over the Noetherian ring R .  
(a) Prove that there are finitely many minimal primes * PI , . . .  , Pn containing Ann(M). 

[Use Corollary 22.] 
(b) Prove that {PI , . . .  , Pn } is also the set of minimal primes in Ass R ( M) and that Supp( M) 

is the union ofthe Zariski closed sets Z(PI ) ,  . . .  , Z(Pn) in Spec R. [Use the previous 
exercise and Exercise 40 in Section 4.] 

The previous exercise gives a geometric view of a finitely generated module M over a Noetherian 
ring R: over each point P in Spec R is the localization Mp (the stalk over P). The stalk is 
nonzero precisely over the points in the Zariski closed subsets Z (PI ) ,  . . .  , Z ( Pn) where the P; 
are the minimal primes in Ass R ( M) . These ideas lead to the notion of the (coherent) module 
sheaf on Spec R associated to M (with a picture similar to that of the structure sheaf following 
Proposition 58), which is a powerful tool in modern algebraic geometry. 

27. Let R = k[x,  y] and let M be the ideal (x ,  y) in R. Prove that Supp(M) = Spec R and 
AssR (M) = {0} . 

The next two exercises show that the associated primes for an ideal / in a Noetherian ring R in 
the sense of primary decomposition are the associated primes for I in the sense ofAssR (R/ /) .  

28. This exercise proves that the ideal Q in a Noetherian ring R is P-primary if and only if 
AssR (R/Q) = {P} .  
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(a) Suppose Q is a P-primary ideal and let M be the R-module R/Q. If O -=f. m E M, 
show that Q s; Ann(m) s; P and that rad Ann(m) = P. Deduce that if Ann(m) is a 
prime ideal then it is equal to P and hence that AssR (R/ Q) = {P} .  [Use Exercise 33 
in Section 1 .] 

Chap. 1 5  Commutative Rings and Algebraic Geometry 



(b) For any ideal Q of R, let 0 i= M � RfQ.  Prove that the radical of Ann(M) is the 
intersection of the prime ideals in Supp(M) . [Use Proposition 12 and Exercise 25.] 

(c) For M as in (b), prove that the radical of AnnM is also the inters�ction of the prime 
ideals in AssR (M) . [Use Exercise 26(b).] 

(d) If Q is an ideal of R with AssR (R/ Q) = { P }  prove that rad Q = P. [Use the fact 
that Q = Ann(R/Q) and (c).] 

(e) If Q is an ideal of R with AssR (R/ Q) = {P}  prove that Q is P-primary. [If ab E Q 
with a ¢. Q consider 0 i= M = (Ra + Q)/Q � RfQ and show that b is con
tained in AnnM � rad Ann(M). Use Exercises 33-34 in Section 1 ,  to show that 
AssR (M) = {P} ,  then use (c) to show that rad Ann(M) = P, and conclude finally 
that b E P .] 

29. Suppose I = Q I  n · · · n Qn is a minimal primary decomposition of the ideal I in 
the Noetherian ring R with P; = rad Q; , i = 1 ,  . . .  , n. This exercise proves that 
AssR (R/ /) = {Pt . . . .  , Pn } -
(a) Prove that th e  natural projection homomorphisms induce an injection of R f l  into 

R / Q I  ffi · · · ffi R/ Qn and deduce that AssR (R/ I) S::: {Pt . . . .  , Pn } - [Use Exercise 34 
in Section 1 and the previous exercise.] 

(b) Let Q; = n#i Qj - Show that the minimality of the decomposition implies that 
0 i= Q; 1 I = ( Q; + Q; ) / Q; � R/ Q; . Deduce that AssR (Q; ! /) = { P; } . [Use Exer
cises 33-34 in Section 1 and the previous exercise.] Deduce that { P; }  E AssR (R/ 1), 
so that AssR (R/ I) = {PI , . . .  , Pn } - [Use Q; ! I � R/ I and Exercise 34 in Section 1 .] 

30. Let / be the ideal (x2 , xy, xz, yz) in R = k[x , y, z]. Prove that AssR (R/ /) consists of the 
primes {(x, y), (x , z), (x , y, z)}. 

31. (Spec for Quadratic Integer Rings) Let R be the ring of integers in the quadratic field 
K = Q!(-Ji5 ) where D is a squarefree integer and let P be a nonzero prime ideal in R. 
This exercise shows how the prime ideals in R are determined explicitly from the primes 
(p) in Z, giving in particular a description of Spec R fibered over Spec Z. 

As in the discussion and example following Theorem 29, we have R = Z[w] where 
w = -JD if D = 2, 3 mod 4 (respectively, w = ( 1 + -JD) f2 if D = 1 mod 4 ), with minimal 
polynomial mw(x) = x2 - D  (respectively, mw(x) = x2 - x + ( l - D)/4), and P n Z  = pZ 
is a nonzero prime ideal of Z. 
(a) For any prime p in Z show that R/ pR � Z[x]f(p, mw(x)) � lFp [x]j(mw (x)) as rings, 

where mw(x) is the reduction of mw (x) modulo p. Deduce that there is a prime ideal 
P in R with P n Z = (p) (this gives an alternate proof of Theorem 26(2) in this case). 

(b) Use the isomorphism in (a) to prove that P is determined explicitly by the factorization 
of mw(x) modulo p: 
(i) If mw(x) = (x - a)2 mod p where a E Z then P = (p, w - a) and pR = P2. 

Show that this case occurs only for the finitely many primes p dividing the 
discriminant of mw(x).  

(ii) If mw (x) = (x - a )(x - b) mod p with integers a , b E Z that are distinct modulo 
p then P is either PI = (p, w - a) or P2 = (p, w - b) and PI , P2 are distinct 
prime ideals in R with pR = P1 P2 . 

(iii) If mw(x)  is irreducible modulo p then P = pR . 
(c) Show that the picture for Spec R over Spec Z for any D is similar to that for the case 

R = Z[i] when D = - 1 :  there is precisely one nonclosed point (0) E Spec R over 
(0) E Spec Z, precisely one closed point P E Spec R over each of the primes (p) in 
Spec Z in (i) (called ramified primes) and over the primes in (iii) (called inert primes), 
and precisely two closed points over the primes in (ii) (called split primes). 
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CHAPTER 1 6  

Arti n ia n  Ri ngs,  
D iscrete Va l u atio n  Ri ngs, 
a n d Ded e ki n d  Doma i ns  

Throughout this chapter R will denote a commutative ring with 1 =P 0. 

1 6.1  ARTINIAN RINGS 

In this section we shall study the basic theory of commutative rings that satisfy the 
descending chain condition (D.C.C.) on ideals, the Artinian rings (named after E. Artin). 
While one might at first expect that these rings have properties analogous to those for 
the commutative rings satisfying the ascending chain condition (the Noetherian rings), 
in fact this is not the case. The structure of Artinian rings is very restricted; for example 
an Artinian ring is necessarily also Noetherian (Theorem 3). Noncommutative Artinian 
rings play a central role in Representation Theory (cf. Chapters 1 8  and 1 9). 

Definition. For any commutative ring R the Krull dimension (or simply the dimension) 
of R is the maximum possible length of a chain Po c P1 c P2 c · · · c Pn of distinct 
prime ideals in R.  The dimension of R is said to be infinite if R has arbitrarily long 
chains of distinct prime ideals. 

A ring with finite dimension must satisfy both the ascending and descending chain 
conditions on prime ideals (although not necessarily on all ideals). A field has dimension 
0 and a Principal Ideal Domain that is not a field has dimension 1 .  

We shall see shortly that rings with D.C.C. on ideals always have dimension 0 
(i.e., primes are maximal). If R is an integral domain that is also a finitely generated 
k-algebra over a field k, then the dimension of R is equal to the transcendence degree 
over k of the field of fractions of R ( cf. Exercise 1 1  ). In particular, the Krull dimension 
agrees with the definition introduced earlier for the dimension of an affine variety. The 
advantage of the definition above is that it does not refer to any k-algebra structure and 
applies to arbitrary commutative rings R.  

Definition. The Jacobson radical of R i s  the intersection of all maximal ideals of R 
and is denoted by Jac R.  
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The Jacobson radical is analogous to the Frattini subgroup of a group, and it enjoys 
some corresponding properties (cf. Exercise 24 in Section 6. 1) :  

Proposition 1. Let :J be the Jacobson radical of the conunutative ring R. 
(1) If I is a proper ideal of R, then so is (/, :J), the ideal generated by I and .7. 
(2) The Jacobson radical contains the nilradical of R:  rad O £; Jac R. 
(3) An element x belongs to :J if and only if 1 - rx is a unit for all r E R. 
(4) (Nakayama 's Lemma) If M is any finitely generated R-module and :JM = M, 

then M = 0. 

Proof: If I is a proper ideal in R, then I £; M for some maximal ideal M. Since 
:J £; M, also (/, .7) £; M, which proves ( 1 ). 

Part (2) follows from the definitions of the two radicals and Proposition 1 2  in 
Section 15.2 since maximal ideals are prime. 

Suppose 1 - r x is not a unit and let M be a maximal ideal containing 1 - r x. Since 
1 fj. M, r x fj. M, so x  cannot belong to :J because :J £; M. Conversely, suppose x fj. :J, 
i.e., there is a maximal ideal M with x fj. M. Then R = (x , M), hence 1 = rx + y for 
some y E M. Thus 1 - rx = y E M and so 1 - rx is not a unit, which proves (3). 

To prove (4), assume M # 0 and let n be the smallest integer such that M is 
generated by n elements, say m 1 , . . .  , mn . Since M = :J M we have 

for some r1 , r2 , . . .  , rn E .7. 

Thus (1 - rn)mn = r1m 1 + · · · + rn-1mn-1 · By (3), 1 - rn is a unit, so mn lies in the 
module generated by m1 , . . .  , mn-1 • contradicting the rninimality of n .  Hence M = 0, 
completing the proof. 

Definition. A conunutative ring R is said to be Artinian or to satisfy the descending 
chain condition on ideals (or D. C. C. on ideals) if there is no infinite decreasing chain of 
ideals in R, i.e., whenever h 2 h 2 h 2 · · · is a decreasing chain of ideals of R, then 
there is a positive integer m such that h = Im for all k :::: m .  Similarly, an R-module 
M is said to be Artinian if it satisfies D.C.C. on submodules. 

It is inunediate from the Lattice Isomorphism Theorem that every quotient R f I of 
an Artinian ring R by an ideal I is again an Artinian ring. 

The following result for Artinian rings is parallel to results in Theorem 15.2. The 
proof is completely analogous, and so is left as an exercise. 

Proposition 2. The following are equivalent: 
(1) R is an Artinian ring. 
(2) Every nonempty set of ideals of R contains a minimal element under inclusion. 

The next result gives the main structure theorem for Artinian rings. 
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Theorem 3. Let R be an Artinian ring. 
(1) There are only finitely many maximal ideals in R. 
(2) The quotient Rj(Jac R) is a direct product of a finite number of fields. More 

precisely, if Mt , . . .  , Mn are the finitely many maximal ideals in R then 

Rj(Jac R) � kt x · · · x kn , 

where k; is the field Rj M; for 1 :::; i :::; n .  

(3) Every prime ideal of R is  maximal, i.e., R has Krull dimension 0.  The Jacobson 
radical of R equals the nilradical of R and is a nilpotent ideal: (Jac R)m = 0 
for some m :=::: l .  

(4) The ring R is isomorphic to the direct product of a finite number of Artinian 
local rings. 

(5) Every Artinian ring is Noetherian. 

Proof: To prove ( 1 ), let S be the set of all ideals of R that are the intersection of 
a finite number of maximal ideals. By Proposition 2, S has a minimal element, say 
Mt n M2 n · · · n Mn . Then for any maximal ideal M we have 

M n Mt n M2 n · · · n Mn = Mt n M2 n · · · n Mn , 
so M 2 Mt n M2 n · · · n Mn. By Exercise 1 1  in Section 7.4, M 2 M; for some i .  
Thus M = M; and so Mt , . . .  , Mn are all the maximal ideals of R. 

The proof of (2) is immediate from the Chinese Remainder Theorem (Section 7 .6) 
applied to Mt , . . .  , Mn , since these maximal ideals are clearly pairwise co maximal and 
their intersection is Jac R.  

For (3), we first prove :r = Jac R is  nilpotent. By D.C.C. there is  some m > 0 
such that :rm = :rm+i for all positive i .  By way of contradiction assume :rm -=f. 0. Let 
S be the set of proper ideals I such that I :rm -=f. 0, so :r E S. Let Io be a minimal 
element of S. There is some x E Io such that x:rm -=f. 0, so by rninimality we must 
have Io = (x) .  But now ((x)J):Jm = x:rm+I = x:rm ,  so it follows by rninimality of 
(x) that (x) = (x):J. By Nakayama's Lemma above, (x) = 0, a contradiction. This 
proves Jac R is nilpotent. 

Since Jac R is nilpotent, in particular Jac R � rad 0, so these two ideals are equal 
by the second statement in Proposition 1 .  

Every prime ideal P in R contains the nilradical of R ,  hence contains Jac R by 
what has already been proved,. The image of P is a prime ideal in the quotient ring 
Rj(Jac R) = kt x · · · x kn . But in a direct product of rings R1 x R2 (where each R; 
has a 1) every ideal is of the form It x h where Ij is an ideal of Rj for j = 1 ,  2 (cf. 
Exercise 3 in Section 7.6). It follows that a prime ideal in kt x · · · x kn consists of the 
elements that are 0 in one of the components. In particular, such a prime ideal is also a 
maximal ideal in kt x · · · x kn and it follows that P was a maximal ideal in R, which 
finishes the proof of (3). 

Let Mt , . . .  , Mn be all the distinct maximal ideals of R and let (Jac R)m = 0 as in 
(3). Then 
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By the Chinese Remainder Theorem it follows that 

R � (RI M;n) x (RIM:;')  x · · · x (RIM:;'),  

and each Rl M;n is an Artinian ring with unique maximal ideal Md M;n, proving (4). 
To prove (5), it suffices by (4) to prove that an Artinian local ring is Noetherian, so 

assume R is Artinian with unique maximal ideal M. In this case we have M = Jac R, 
so Mm = (Jac R)m = 0 for some positive m .  Then R � Rl Mm, and in this case it  is 
an exercise to see that R I Mm is Noetherian if and only if it is Artinian ( cf. Exercise 8). 

Corollary 4. The ring R is Artinian if and only if R is Noetherian and has Krull 
dimension 0. 

Proof" The forward implication was proved in Theorem 3. Suppose now that R is 
Noetherian and that R has Krull dimension 0, i.e., that prime ideals of R are maximal. 
Since R is Noetherian, by Corollary 22(3) in Section 15.2, the ideal (0) = P1 • • • Pn 
is the product of (not necessarily distinct) prime ideals, and these prime ideals are 
then maximal since R has dimension 0. By the Chinese Remainder Theorem, R is 
isomorphic to the direct product of a finite number of Noetherian rings of the form 
R I Mm where M is a maximal ideal in R. As in the proof of (5) of the theorem, R I Mm 
is Artinian, and it follows that R is Artinian. 

Examples 

(1) Let n > 1 be an integer. Since the ring R = ZjnZ is finite, it is Artinian. If 
n = p�1 p�2 • • • p�' is the unique factorization of n into distinct prime powers, then 

ZjnZ � (Zjp�1 Z) x (Zjp�2Z) x · · · x (Zjp�' Z) . 

Each Zj p�; Z is an Artinian local ring with unique maximal ideal (p; ) j(p�; ), so this 
is the decomposition of ZjnZ given by Theorem 3(4). The Jacobson radical of R 
is the ideal generated by Pt P2 · · · p,. , the squarefree part of n and Rj(Jac R) � 
(Z/ ptZ) x · · · x (Z/ p,.Z) is a direct product of fields. The ideals generated by p; for 
i = 1 , . . .  , s are the maximal ideals of R. 

(2) For any field k, a k-algebra R that is finite dimensional as a vector space over k is 
Artinian because ideals in R are in particular k-subspaces of R, hence the length of 
any chain of ideals in R is bounded by dimkR .  

(3) Suppose f i s  a nonzero polynomial i n  k [  x ]  where k is a field. Then the quotient ring 
R = k[x]j(f(x)) is Artinian by the previous example. The decomposition of R as a  
direct product of Artinian local rings is given by 

k[x]j(f(x))  � k[x]/(/J (X )a1 )  X · · ·  X k[x]f (fs (X)a' ) 

where f (x) = ft (x)a1 • • • fs (x)a, is the factorization of f(x) into powers of distinct 
irreducibles in k[x] (cf. Proposition 16 in Section 9.5). The Jacobson radical of R is 
the ideal generated by the squarefree part of f (x) and the maximal ideals of R are the 
ideals generated by the irreducible factors f; (x) for i = 1 ,  . . .  , s similar to Example 1 .  
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E X E R C I S E S  

Let R be a commutative ring with 1 and let :r be its Jacobson radical. 

1. Suppose R is an Artinian ring and I is an ideal in R. Prove that R I I is also Artinian. 

2. Show that every finite commutative ring with 1 is Artinian. 

3. Prove that an integral domain of Krull dimension 0 is a field. 

4. Prove that an Arlin ian integral domain is a field. 

5. Suppose I is a nilpotent ideal in R and M = I M for some R -module M. Prove that 
M = O. 

6. Suppose that 0 ---+ M' ---+ M ---+ M" ---+ 0 is an exact sequence of R-modules. Prove 
that M is an Artinian R-module if and only if M' and M" are Artinian R-modules. 

7. Suppose R = F is a field. Prove that an R-module M is Artinian if and only if it is 
Noetherian if and only if M is a finite dimensional vector space over F. 

8. Let M be a maximal ideal of the ring R and suppose that Mn = 0 for some n ::=: 1. Prove 
that R is Noetherian if and only if R is Artinian. [Observe the each successive quotient 
Mi 1Mi+1 , i = 0, . . .  , n - 1  in the filtration R 2 M 2  . . · 2 Mn- l 2 Mn = O is a module 
over the field F = Rl M. Then use the previous two exercises and Exercise 6 of Section 
15 . 1 .] 

9. Let M be a finitely generated R -module. Prove that if XJ , . . . , Xn are elements of M whose 
images in M 1 :r M generate M I J M, then they generate M. Deduce that if R is Noetherian 
and the images of at • . . .  , an in J I .72 generate J I J2, then J = (at • . . .  , an) .  [Let N 
be the submodule generated by xt • . . .  , Xn and apply Nakayama's Lemma to the module 
A =  MIN.] 

10. Let R = Z(2) be the localization of Z at the prime ideal (2) . Prove that Jac R = (2) is the 
ideal generated by 2. If M = <Ql, prove that MI2M is a finitely generated R-module but 
that M is not finitely generated over R. Why doesn't this contradict the previous exercise? 
[Note the hypotheses in Nakayama's Lemma.] 

11. Let V be an affine variety over a field k and let R = k[ V] be its coordinate ring. Let 
d1 (R) denote the transcendence degree of the field of fractions k( V) over k, and let dp (R) 
be the Krull dimension of R defined in terms of chains of prime ideals. This exercise 
shows d1 (R) = dp (R) . By Noether's Normalization Lemma there is a polynomial subring 
Rt = k[Yt . . . . .  Ym ] of R such that R is integral over Rt . 
(a) Show that d1 (Rt ) = d1 (R) = m and that dp (Rt ) = dp(R) . Deduce that we may 

assume R = Rt . [Use the Going-up and Going-down Theorems (cf. Theorem 26, 
Section 1 5.3) to prove the second equality.] 

(b) When R = Rt show that dp (R) 2': d1 (R) by exhibiting an explicit chain of prime 
ideals of length m. 

(c) When R = R1 show that any nonzero prime ideal of R contains an element f such 
that R(f) is transcendental over R of transcendence degree 1. Use induction to show 
that dp (R) ::::: d1 (R), and deduce that dp (R) = d1 (R) . 

12. Let R be a N  oetherian local ring with maximal ideal M. 
(a) The quotient Ml M2 is a module (i.e., vector space) over the field Rl M. Prove that 

d = dim RfM (MI M2) is finite. 
(b) Prove that M can be generated as an ideal in R by d elements and by no fewer. [Use 

Exercise 9.] 
(c) Let R = k[xt . . . . , Xn ] (x, , . . .  ,x., ) be the localization of the polynomial ring k[xt . . . . , Xn ] 

over the field k at the maximal ideal (x1 • • • .  , xn ) . and let M be the maximal ideal in 
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R. Prove that dim RfM(MIM2} = n = dim R. [Cf. the previous exercise.] 

It can be shown that dim RfM(M 1M2} 2: dim R for any Noetherian local ring R with maximal 
ideal M. A Noetherian local ring R is called a regular local ring if dim Rf M (M I M2} = dim R. 
It is a fact that a regular local ring is necessarily an integral domain and is also integrally closed. 

13. If R is a Noetherian ring, prove that the Zariski topology on Spec R is discrete (i.e., every 
subset is Zariski open and also Zariski closed) if and only if R is Artinian. 

14. Suppose I is the ideal (xt . x! , xj , . . .  } in the polynomial ring k[xt , xz , x3 , . . .  ] where k is 
a field and let R be the quotient ring k[xt , xz , XJ , . . .  11 I. Prove that the image of the ideal 
(xt ,  xz , X3 , . . .  } in R is the unique prime ideal in R but is not finitely generated. Deduce 
that R is a local ring of Krull dimension 0 but is not Artinian. 

1 6.2 DISCRETE VALUATION RINGS 

In the previous section we showed that the Artinian rings are the Noetherian rings having 
Krull dimension 0. We now consider the easiest Noetherian rings of dimension 1 ,  the 
Discrete Valuation Rings first introduced in Section 8. 1 :  

Definition. 
(1) A discrete valuation on a field K is a function v : Kx ---+ Z satisfying 

(i) v is surjective, 
(ii) v(xy) = v(x) + v(y) for all x, y E K x ,  
(iii) v (x + y )  2:_ min{v(x) , v(y) } for all x, y E K x  with x + y "I 0. 

The subring {x E K I v(x) :::_ 0} U {0} is called the valuation ring of v. 
(2) An integral domain R is called a Discrete Valuation Ring (D.V.R.) if R is the 

valuation ring of a discrete valuation v on the field of fractions of R. 

The valuation v is often extended to all of K by defining v(O) = +oo, in which case 
(ii) and (iii) hold for all a, b E K.  

Examples 

(1) The localization Z(p) of Z at any nonzero prime ideal (p} is a D.V.R. with respect 
to the discrete valuation vp on Q defined as follows (cf. Exercise 27, Section 7. 1 }. 
Every element alb E Qx can be written uniquely in the form pn (a t lht } where n E Z, 
at lht E Qx and both at and bt are relatively prime to p. Define 

vp (�) = vp (pn :: ) = n. 

One easily checks that the axioms for a D.V.R. are satisfied. We call vp the p-adic 

valuation on Q. The corresponding valuation ring is the set of rational numbers with 
n 2: 0 together with 0, i.e., the rational numbers alb where b is not divisible by p, 

which is Z(p) · 
(2) For any field F, let f be an irreducible polynomial in F[x].  Every nonzero element in 

the field F(x) can be written uniquely in the form r<alb} where n E Z, alb E F[x]X  

and both a and b are relatively prime to f.  Then 
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defines a valuation on F (x) and the corresponding valuation ring is the localization 
F[x]f of F[x] at f consisting of the rational functions in F(x) whose denominator is 
not divisible by f. When f = x - a is a polynomial of degree 1 in F[x ], the valuation 
VJ gives the order of the zero (if n :::: 0) or pole (if n < 0) of the element in F(x) at 
x = a . 

(3) The ring of formal Laurent series F((x)) with coefficients in the field F has a discrete 
valuation v defined by 

v (�a;xi) = n  
1 �n 

(cf. Exercise 5, Section 7.2). The corresponding D.V.R. is the ring F[[x]] of power 
series in x with coefficients in F. 

Note that v(l)  = v(l )  + v(l)  implies that v(l)  = 0, so every Discrete Valuation 
Ring R is a ring with identity 1 =j:. 0. Since R is a subring of a field by definition, R is 
in particular an integral domain. It is easy to see that a D.V.R. is a Euclidean Domain 
(cf. Example 4 in Section 8.1), so in particular is also a P.I.D. and a U.F.D. In fact 
the factorization and ideal structure of a D.V.R. is very simple, as the next proposition 
shows. 

Proposition 5. Suppose R is a Discrete Valuation Ring with respect to the valuation v,  
and let t be any element of R with v(t) = 1 .  Then 

(1) A nonzero element u E R is a unit if and only if v(u) = 0. 
(2) Every nonzero element r E R can be written in the form r = utn for some unit 

u E R and some n :::. 0. Every nonzero element x in the field of fractions of R 
can be written in the form x = utn for some unit u E R and some n E Z. 

(3) Every nonzero ideal of R is a principal ideal of the form W) for some n :::. 0. 
In particular, R is a Noetherian ring. 

Proof" If u is a unit, then uv = l for some v E R and then v(u) + v (v) = v(u v) = 1 
with v(u) :::_ 0 and v(v) :::_ 0 shows that v(u) = 0. Conversely, if u is nonzero and 
v(u) = 0 then u-1 E K satisfies v(u-1) + v(u) = v(l)  = 0. Hence v(u-1 )  = 0 and 
u- 1  E R, so u is a unit. This proves ( 1 ). 

For (2), note that if v(x) = n then v(xt-n)  = 0, so xt-n = u is a unit in R by ( 1 ). 
Hence x = utn , where x E R if and only if n = v(x) :::_ 0. 

If I is a nonzero ideal in R, let r E I be an element with v(r) minimal. If v(r) = n, 
then r differs from tn by a unit by (2), so tn E I and (tn ) � I. If now a is any nonzero 
element of I, then v(a) :::_ n by choice of n. Then v(arn) :::_ 0 and so at-n E R, 
which shows that a E (tn ) .  Hence I = (tn ),  proving the first statement in (3). It is then 
clear that ascending chains of ideals in R are finite, proving that R is Noetherian and 
completing the proof. 

Definition. If R is a D.V.R. with valuation v,  then an element t of R with v(t) = 1 is 
called a unifonnizing (or local) parameter for R. 
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Corollary 6. Let R be a Discrete Valuation Ring. 
(1) The ring R is an integrally closed local ring with unique maximal ideal given by 

the elements with strictly positive valuation: M = {r E R I v (r) > 0}. Every 
nonzero ideal in R is of the form M" for some integer n 2::: 0. 

(2) The only prime ideals of R are M and 0, i.e., Spec R = {0, M} . In particular, 
a D.V.R. has Krull dimension 1 .  

Proof" Any U.F.D. i s  integrally closed in its fraction field (Example 3 i n  Section 
15.3), so R is integrally closed. The remainder of the statements follow immediately 
from the description of the ideals of R in Proposition 5. 

The definition of a Discrete Valuation Ring is extremely explicit in terms of a 
valuation on the fraction field, and as a result it appears that it might be difficult to 
recognize whether a given ring R is a D.V.R. from purely "internal" algebraic properties 
of R. In fact, the ring-theoretic properties in Proposition 5 and Corollary 6 characterize 
Discrete Valuation Rings. The following theorem gives several alternate algebraic 
descriptions of Discrete Valuation Rings in which there is no explicit mention of the 
valuation. 

Theorem 7. The following properties of a ring R are equivalent: 
(1) R is a Discrete Valuation Ring, 
(2) R is a P.I.D. with a unique maximal ideal P ::j:. 0, 
(3) R is a U.F.D. with a unique (up to associates) irreducible element t, 
( 4) R is a Noetherian integral domain that is also a local ring whose unique maximal 

ideal is nonzero and principal, 
(5) R is a Noetherian, integrally closed, integral domain that is also a local ring of 

Krull dimension 1 i.e., R has a unique nonzero prime ideal: Spec R = {0, M} . 

Proof: That ( 1 )  implies each of the other properties was proved above. 
If (2) holds then (3) is immediate since irreducible elements generate prime ideals 

in a U.F.D. (Proposition 12, Section 8.3). 
If (3) holds, then every nonzero element in R can be written uniquely in the form 

ut" for some unit u and some n 2: 0. Then every nonzero element in the fraction field 
of R can be written uniquely in the form ut" for some unit u and some n E Z. It is now 
straightforward to check that the map v (ut") = n is a discrete valuation on the field of 
fractions of R, and R is the valuation ring of 1!, and (1)  holds. 

Suppose (4) holds, let M = (t) be the unique maximal ideal of R, and let Mo = 
n�1 Mi .  Then Mo = M M0, and since R is Noetherian M0 is finitely generated. By 
hypothesis M = Jac R, so by Nakayama's Lemma Mo = 0. If I is any proper, nonzero 
ideal of R then there is some n 2: 0 such that / 5;; M" but ! cJ;. M"+ 1 . Let a E I - M"+ 1 
and write a = t"u for some u E R. Then u ¢ M, and so u is a unit in the local ring 
R. Thus (a) = (t") = M" for every a E I - M"+1 • This shows that I = (t" ) , and so 
every ideal of R is principal, which shows that (2) holds. 

We have shown that (1 ), (2), (3) and ( 4) are equivalent, and that each of these 
implies (5). To complete the proof we show that (5) implies (4), which amounts to 
showing that the ideal M in (5) is a principal ideal. Since 0 ::j:. M = Jac R and M is 
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finitely generated because R is Noetherian, by Nakayama's Lemma (Proposition 1 (4)), 
M =/:- M2. Let t E M - M2. We argue that M = (t) .  By Proposition 12 in Section 15.2, 
the assumption that M is the unique nonzero prime ideal in R implies that M = rad (t), 
and then Proposition 14 in Section 15.2 implies that some power of M is contained 
in (t) .  Proceeding by way of contradiction, assume (t) =/:- M, so that Mn � (t) but 
Mn-I CJ= (t ) for some n :::: 2. Then there is an element x E Mn-I - (t) such that 
xM � (t) .  Note that t =/:- 0 so y = xft belongs to the field of fractions of R. Also, 
y f/. R because x = ty f/. (t) .  However, by choice of x we have yM � R, and then 
one checks that yM is an ideal in R. If yM = R then 1 = ym for some m E  M. This 
leads to a contradiction because we would then have t = xm E M2, contrary to the 
choice of t .  Thus y M is a proper ideal, hence is contained in the unique maximal ideal 
of R, namely yM � M. Now M is a finitely generated R-module on which y acts by 
left multiplication as an R-module homomorphism. By the same (determinant) method 
as in the proof of Proposition 23 in Section 15 .3 there is a monic polynomial p with 
coefficients in R such that p(y)m = 0 for all m E M. Since p(y) is an element of a 
field containing R and M, we must have p(y) = 0. Hence y is integral over R. Since 
R is integrally closed by assumption, it follows that y E R, a contradiction. Hence 
M = ( t) is principal, so ( 5) implies ( 4 ), completing the proof of the theorem. 

Corollary 8. If R is any Noetherian, integrally closed, integral domain and P is a 
minimal nonzero prime ideal of R, then the localization Rp of R at P is a Discrete 
Valuation Ring. 

Proof: By results in Section 15 .4, the localization Rp is a Noetherian (Proposition 
38(4)), integrally closed (Proposition 49), integral domain (Proposition 46(2)), that is 
a local ring with unique nonzero prime ideal (Proposition 46(4)), so Rp satisfies (5) in 
the theorem. 

Examples 

(1) If R is any Principal Ideal Domain then every localization R p of R at a nonzero prime 
ideal P = (p) is a Discrete Valuation Ring. This follows immediate! y from Corollary 
8 since R is integrally closed (being a U.F.D., cf. Example 3 in Section 15.3) and 
nonzero prime ideals in a P.I.D. are maximal (Proposition 8.7). Note that the quotient 
field K of Rp is the same as the quotient field of R, so each nonzero prime p in R 
produces a valuation vp on K, given by the formula 

v (pn �) = n  

where a and b are elements of R not divisible by p. This generalizes both Examples 
1 and 2 above. 

(2) The ring Zp of p-adic integers is a Discrete Valuation Ring since it is a P.I.D. with 
unique maximal ideal p'Z'..p (cf. Exercise 1 1 , Section 7.6). The fraction field of Zp is 
called the field of p-adic numbers and is denoted <Qlp . The element p is a uniforrnizing 
parameter for Zp, so every nonzero element in <Qlp can be written uniquely in the form 
pnu for some n E Z and unit u E z; , (where u = ao + a1p + a2p2 + . . . with 
0 < ao < p as in Exercise l l(c), Section 7.6). The corresponding p-adic valuation 
Vp on <Qlp is then given by vp (pnu) = n.  
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A discrete valuation v on a field K defines an associated metric (or "distance 
function"), dv, on K as follows: fix any real number fJ > 1 (the actual value of fJ does 
not matter for verifying the axioms of a metric), and for all a , b E K define 

dv (a , b) = l l a - b l l v where l l a l l v = fJ-v(a) 

and where we set dv (a , a) = 0. It is easy to check that dv satisfies the three axioms for 
a metric: 

(i) dv (a, b) ?; 0, with equality holding if and only if a = b, 
(ii) dv (a ,  b) = dv (b, a), i.e., dv is symmetric, 
(iii) dv (a . b) :S: dv (a. c) +dv (c, b), for all a, b. c E K, i.e., dv satisfies the "triangle 

inequality." 

The triangle inequality is a consequence of axiom (iii) of the discrete valuation. Indeed, 
a stronger version of the triangle inequality holds: 

(iii)' dv (a , b) :::: max{dv (a , c) , dv (c, b) } , for all a, b, c E K. 
For this reason dv is sometimes called an ultrametric. One may now use Cauchy 
sequences to form the completion of K with respect to dv , denoted by Kv , in the same 
way that the real numbers IR are constructed from the rational numbers Q. It is not 
difficult to show that Kv is also a field with a discrete valuation that agrees with v on 
the dense subset K of K v .  

Examples 

(1) Consider the p-adic valuation Vp on Q and take fJ = p. Write I I  a l ip for I I a l l vP ' so 
that for a, b relatively prime to p, 

a 
I I P

n
b l ip = P-

n
. 

Note that integers (or rational numbers) have small p-adic absolute value if they are 
divisible by a large power of p. For example, the sequence 1 ,  p, p2 , p3 , • • .  converges 
to zero in the p-adic metric. 

It is not too difficult to see that the completion of Q with respect to the p-adic 
metric is the field Qp of p-adic numbers, and the completion of ::2:: is the ring Z::p of 
p-adic integers. One way to see this is to check that each element a of the completion 
may be represented as a p-adic Laurent series: 

co 
a = L ai/ where no E ::2:: and ai E {0, 1 ,  . . .  , p - 1 }  for all i ,  

n=no 

and then use Example 2 previously. In terms of this expansion, the p-adic valuation 
is given by vp(a) = no (when an0 =I= 0). 

(2) In a similar way, the completion of F(x) with respect to the valuation Vx in Example 
2 at the beginning of this section gives the field F((x)) with corresponding valuation 
ring F[[x]] in Example 3 in the same set of examples. 

The completion of a field K with respect to a discrete valuation v is a field Kv 
in which the elements can be easily described in terms of a uniforrnizing parameter. 
In addition, Kv is a topological space where the topology is defined by the metric dv . 
Furthermore, Cauchy sequences of elements in Kv converge to elements of Kv (i.e., Kv 
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is complete in the v-adic topology). This is similar to the situation of the completion 
lR of Q with respect to the usual Euclidean metric. This allows the application of ideas 
from analysis to the study of such rings, and is an important tool in the study of algebraic 
number fields and in algebraic geometry. 

Fractional Ideals 

We complete our discussion of Discrete Valuation Rings by giving another characteri
zation of D. V.R.s in terms of "fractional ideals," which can be defined for any integral 
domain: 

Definition. For any integral domain R with fraction field K, a fractional ideal of R 
is an R-submodule A of K such that dA � R for some nonzero d E  R (equivalently, a 
submodule of the form d-1 I for some nonzero d E R and ideal I of R). 

The equivalence of these two definitions follows from the observation that d A is 
an R-submodule (i.e. , an ideal) of R. 

The notion of a fractional ideal in K depends on the ring R. Loosely speaking, 
a fractional ideal is an ideal of R up to a fixed "denominator" d. The ideals of R are 
also fractional ideals of R (with denominator d = 1 ) and are the fractional ideals that 
are contained in R .  For clarity these are occasionally called the integral ideals of R.  
When R is  a Noetherian integral domain, a fractional ideal of R is  the same as a finitely 
generated R-submodule of K (cf. Exercise 6). 

For any x E K the (cyclic) R-module Rx = {rx I r E R} is called the principal 
fractional ideal generated by x. 

If A and B are fractional ideals, their product, AB, is  defined to be the set of all 
finite sums of elements of the form ab where a E A and b E B. If A = d-1 I and 
B = (d')-1 J for ideals I, J in R and nonzero d, d' E R, then AB = (dd')- 1 I J where 
I J is the usual product ideal. In particular, this shows that the product of two fractional 
ideals is a fractional ideal. 

Definition. The fractional ideal A is said to be invertible if there exists a fractional 
ideal B with AB = R, in which case B is called the inverse of A and denoted A - 1 • 

If A is an invertible fractional ideal, the fractional ideal B with AB = R is unique: 
AB = AC = R implies B = B(AC) = (BA)C = C . 

Proposition 9. Let R be an integral domain and let A be a fractional ideal of R. 
(1) If A is a nonzero principal fractional ideal then A is invertible. 
(2) If A is nonzero then the set A' = {x E K I xA � R} is a fractional ideal of 

R. In general we have AA' � R and AA' = R if and only if A is invertible, in 
which case A-1 = A'. 

(3) If A is an invertible fractional ideal of R then A is finitely generated. 
(4) The set of invertible fractional ideals is an abelian group under multiplication 

with identity R. The set of nonzero principal fractional ideals is a subgroup of 
the invertible fractional ideals. 
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Proof" If A = xR is a nonzero principal fractional ideal, then taking B = x - 1 R 
shows that A is invertible, proving ( 1 ). 

One easily sees that A' is an R-submodule of K .  If A is a nonzero fractional 
ideal there is some nonzero element d E R such that dA 5:; R, so A contains nonzero 
elements of R. Let a be any nonzero element of A contained in R. Then by definition 
of A' we have aA' 5:; R, so A' is a fractional ideal. Also by definition, AA' 5:; R. If 
AA' = R then A is invertible with inverse A - l = A'. Conversely, if AB = R, then 
B 5:; A' by definition of A'. Then R = AB 5:; AA' 5:; R, showing that AA' = R, 
proving (2). 

If A is invertible, then AA' = R by (2) and so 1 = a1ai + · · · + ana� for some 
a1 , . . .  , an E A and ai_ , . . .  , a� E A'. If a E A, then a =  (aai)a1 + · · · + (aa�)an , where 
each aa; E R by definition of A'. It follows that A is generated over R by a1 , . . .  , an 
and so A is finitely generated, proving (3). 

Finally, it is clear that the product of two invertible fractional ideals is again invert
ible. This product is commutative, associative, and RA = A for any fractional ideal. 
The inverse of an invertible fractional ideal is an invertible fractional ideal by definition, 
proving the first statement in (4). The second statement in (4) is immediate since the 
product of xR and yR is (xy)R and the inverse of xR is x- 1 R. 

Definition. If R is an integral domain, then the quotient of the group of invertible 
fractional ideals of R by the subgroup of nonzero principal fractional ideals of R is 
called the class group of R.  The order of the class group of R is called the class number 
of R. 

The class group of R is the trivial group and the class number of R is 1 if and only 
if R is a P.I.D. The class group of R measures how close the ideals of R are to being 
principal. 

Whether a fractional ideal A of R is invertible is also related to whether A is 
projective as an R-module. Recall that an R-module M is projective over R if and only 
if M is a direct summand of a free module (Proposition 30, Section 1 0.5). Equivalently, 
M is projective if and only if there is a free R-module F and R -module homomorphisms 
f : F -+ M and g : M -+ F with f o g = 1 (Proposition 25, Section 10.5). 

Proposition 10. Let R be an integral domain with fraction field K and let A be a nonzero 
fractional ideal of R.  Then A is invertible if and only if A is a projective R-module. 

Proof· Assume first that A is invertible, so I:7=1 aia; = 1 for some ai E A and 
a{ E A' as in (2) of Proposition 9. Let F be the free R-module on Yl ·  . . .  , Yn · Define 
f : F -+ A by f<L7=1 riYi ) = I:7=1 riai and g : A -+ F by f(c) = I:7=1 (ca;)Yi · It 
is immediate that both f and g are R-module homomorphisms (note that ca; E R by 
definition of A'). Since 

(f o g)(c) = f (t(ca;)Yi) = t(ca;)ai = c (taia;) = c, 
•=1  • =l 1=1 

so f o g = 1 and A is a direct summand of F, hence is projective. 
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Conversely, suppose that A is nonzero and projective, so there is a free R-module 
F and R-homomorphisms f : F --* A and g : A --* F with f o g  = 1 .  Fix any 
0 ::j:. a E A and suppose g(a) = I:7=t a;y; where a; E R and Yl · . . .  , Yn is part of a set 
of free generators for F. Define a; = f(y; ) and a; = a;/ a E K for i = 1 ,  . . .  , n. For 
any b E  A we have bg(a) = ag(b) = g(ab) since g is an R-module homomorphism. 
Write g(b) = I:7=1 b; y; + Lje..7 bj Yj where {yj } for j E .J are the remaining elements 
in the set of free generators for F. Then 

" n 

i=l i=l j e..7 

We may equate coefficients of the elements in the free R -module basis for F in this 
equation and it follows that g(b) = I:7=1 b;y; where b; E R and that ba; = ab; for 
i = 1 ,  . . .  , n.  In particular, it follows from the definition of a; that ba; = b(a;ja) = b; 
is an element of R for every element b of A. This shows that a; E A' for i = 1 , . . .  , n.  

Since f o g = 1 .  we have 

and so L�t a;a; = 1 .  It follows that AA' = R and so A is invertible by Proposition 
9, completing the proof. 

The next result shows that if the integral domain R is also a local ring, then whether 
fractional ideals are invertible determines whether R is a D.V.R. 

Proposition 11. Suppose the integral domain R is a local ring that is not a field. Then 
R is a Discrete Valuation Ring if and only if every nonzero fractional ideal of R is 
invertible. 

Proof" If R is a D.V.R. with uniformizing parameter t ,  then by Proposition 5 every 
nonzero ideal of R is of the form (t")  for some n 2: 0 and every element d in R can 
be written in the form utm for some unit u E R and some m 2: 0. It follows that every 
nonzero fractional ideal of R is of the form tN R for some N E Z, so is a principal 
fractional ideal and hence invertible by the previous proposition. 

Conversely, suppose that every nonzero fractional ideal of R is invertible. Then 
every nonzero ideal of R is finitely generated by (3) of Proposition 9, so R is Noetherian. 
Let M be the unique maximal ideal of R. If M = M2 then M = 0 by Nakayama's 
Lemma, and then R would be a field, contrary to hypothesis. Hence there is an element 
t with t E M - M2• By assumption M is invertible, and since t E M, the fractional 
ideal tM-1 is a nonzero ideal in R. If tM-1 s; M, then t E M2, contrary to the choice 
of t .  Hence t M-1 = R, so (t) = M, and M is a nonzero principal ideal. It follows by 
the equivalent condition 4 of Theorem 7 that R is a D.V.R., completing the proof. 

We end this section with an application to algebraic geometry. 
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Nonsingularity and Local Rings of Affine Plane Curves 

Let k be an algebraically closed field and let C be an irreducible affine curve over k .  
In  other words, C i s  an affine algebraic set whose coordinate ring k[ C]  i s  an integral 
domain and whose field of rational functions k (  C) has transcendence degree 1 over k 
(cf. Section 15.4) . 

Recall that, by definition, the point v on C is nonsingular if mv.cl�.c is a !
dimensional vector space over k, where mv.c is the unique maximal ideal in the local 
ring Ov,c of rational functions on C defined at v .  

Proposition 12. Let v be a point on the irreducible affine curve C over k .  Then C is 
nonsingular at v if and only if the local ring Ov.c is a Discrete Valuation Ring. 

Proof" Suppose first that v is nonsingular. Then dim k (mv,c/rn�,c) = 1 ,  and since 
Ov,c  is Noetherian, it follows from Exercise 12  in Section 1 that ffiv,c  is principal. 
Hence Ov,c is a D.V.R. by Theorem 7(4). Conversely, suppose Ov,c  is a D.V.R. and t is 
a uniformizing element for Ov,C ·  Then every element in mv.c can be written uniquely 
in the form at for some a in Ov,c - The map from mv,c to Ov.cfrnv,c defined by 
mapping at to a mod mv.c is easily checked to be a surjective Ov,c-module homomor
phism with kernel m�.c - Hence mv.c/m�,C  is isomorphic as an Ov ,cfmv .c-module to 
Ov.cfmv,C ·  Since Ov,cfmv,c � k (Proposition 46(5) in Section 15.4), it follows that 
dim k (mv,c/m�.c) = 1 ,  and so v is a nonsingular point on C. 

Definition. If v is a nonsingular point on C with corresponding discrete valuation Vv 
defined on k(C), then vv (f) = n for f E k(V) is the order of zero off at v (if n :=::: 0) 
or the order of the pole off at v (if n < 0). 

Using the criterion for nonsingularity for points on curves in Proposition 12  we can 
prove a result first mentioned in Section 15 .4: 

Corollary 13. An irreducible affine curve C over an algebraically closed field k is 
smooth if and only if its coordinate ring k[ C] is integrally closed. 

Proof" The curve C is smooth if and only if every localization Ov,c is a D.V.R. 
Since k[ C] has Krull dimension 1 (Exercise 1 1  in Section 1 ), the same is true for each 
Ov,C ·  It then follows by Theorem 7(5) that every localization Ov.c is a D.V.R. if and 
only if Ov,c is integrally closed. By Proposition 49 in Section 15.4, this in turn is 
equivalent to the statement that k [C] is integrally closed, which proves the corollary. 

E X E R C I S E S  

1. Suppose R is a Discrete Valuation Ring with respect to the valuation v on the fraction field 
K of R. If x, y E K with v (x) < v(y) prove that v (x + y) = min(v(x), v(y)). [Note that 
x + y = x (l + yjx).] 

2. Suppose R is a Discrete Valuation Ring with unique maximal ideal M and quotient 
F = RfM . For any n ;:::: 0 show that M" /M"+I is a vector space over F and that 
dim F ( M" I M"+1 ) = 1 .  
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3. Suppose R is an integral domain that is also a local ring whose unique maximal ideal 
M = (t) is nonzero and principal, and suppose that nn;:: l (tn) = 0. Prove that R is a 
Discrete Valuation Ring. [Show that every nonzero element in R can be written in the 
form utn for some unit u E R and some n :::: 0.] 

4. Suppose R is a Noetherian local ring whose unique maximal ideal M = (t) is  principal. 
Prove that either R is a Discrete Valuation Ring or tn = 0 for some n :::: 0. In the latter 
case show that R is Artinian. 

5. Suppose that R is a Noetherian integral domain that is also a local ring of Krull dimension 
1 .  Let M be the unique maximal ideal of R and let F = RIM, so that M I M2 is a vector 
space over F. 
(a) Prove that if dim F (MI M2) = l then R is a Discrete Valuation Ring. 
(b) If every nonzero ideal of R is a power of M prove that R is a Discrete Valuation Ring. 

6. Let R be an integral domain with fraction field K. Prove that every finitely generated R
submodule of K is a fractional ideal of R. If R is Noetherian, prove that A is a fractional 
ideal of R if and only if R is a finitely generated R -submodule of K.  

7 .  If  R is an integral domain and A is a fractional ideal of  R, prove that if  A is projective 
then A is finitely generated. Conclude that every integral domain that is not Noetherian 
contains an ideal that is not projective. 

8. Suppose R is a Noetherian integral domain that is also a local ring with nonzero maximal 
ideal M. Prove that R is a D.V.R. if and only if the only M-primary ideals in R are the 
powers of M. 

9. Let C = Z(xz - y2 , yz - x3 , z2 - x2y) c A.3 over the algebraically closed field k. If 
v = (0, 0, 0) E C, prove that dim k (mv,clm�,c) = 3 so that v is singular on C. Conclude 
that k[C] is not integrally closed in k(C) and determine its integral closure. [cf. Exercise 
27, Section 15 .4.] 

1 6.3 DEDEKIN D  DOMAI NS 

In the previous section we showed that Discrete Valuation Rings are the local rings that 
are integrally closed Noetherian integral domains of Krull dimension 1 .  In this section 
we consider the effect of relaxing the condition that the ring be a local ring: 

Definition. A Dedekind Domain is a Noetherian, integrally closed, integral domain 
of Krull dimension 1 .  

Equivalently, R is a Dedekind Domain i f  R i s  a Noetherian, integrally closed, 
integral domain that is not a field in which every nonzero prime ideal is maximal. 

The first result shows that Dedekind Domains are a generalization of the class of 
Principal Ideal Domains. We shall see later (Theorem 22) that there is a structure 
theorem for finitely generated modules over a Dedekind Domain extending the corre
sponding result for P.I.D.s proved in Section 1 2 . 1 .  

Proposition 14. 
(1) Every Principal Ideal Domain is a Dedekind Domain. 
(2) The ring of integers in an algebraic number field is a Dedekind Domain. 
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Proof" A P.LD. is clearly Noetherian, is integrally closed since it is a U.ED. (Ex
ample 3, Section 15 .3), and nonzero prime ideals are maximal (Proposition 7 in Section 
8.2), which proves ( 1 ). Let OK be the ring of integers in the number field K, i.e., 
the integral closure of Z in K.  Then Corollary 25 in Section 15.3 shows that OK is 
integrally closed, OK is Noetherian by Theorem 29 in Section 15.3, and the fact that 
nonzero prime ideals in 0 K are maximal was proved in the discussion following the 
same theorem. This proves (2). 

The following theorem gives a number of important equivalent characterizations of 
Dedekind Domains. Recall that the basic properties of fractional ideals were developed 
in the previous section. 

Theorem 15. Suppose R is an integral domain with fraction field K =f R .  The following 
are equivalent conditions for R to be a Dedekind Domain: 

(1) The ring R is Noetherian, integrally closed, and every nonzero prime ideal is 
maximal. 

(2) The ring R is Noetherian and for each nonzero prime P of R the localization 
Rp is a Discrete Valuation Ring. 

(3) Every nonzero fractional ideal of R in K is invertible. 
(4) Every nonzero fractional ideal of R in K  is a projective R-module. 
(5) Every nonzero proper ideal I of R can be written as a finite product of prime 

ideals: I = P1 P2 - - - Pn (not necessarily distinct). 
When the condition in (5) holds, the set of primes {Pt • . . .  , Pn} is uniquely 

determined and so every nonzero proper ideal I of R can be written uniquely 
(up to order) as a product of powers of prime ideals. 

Proof" If R satisfies ( 1 ), then Rp is a D.V.R by Corollary 8, so ( 1 )  implies (2). 
Conversely, assume each Rp is a D.V.R Then R is integrally closed by Proposition 
49 in Section 15.4 and every nonzero prime ideal is maximal by Proposition 46(3) in 
Section 15.4, so (2) implies ( 1 ). 

Suppose now that (1)  is satisfied and that A is a nonzero fractional ideal of R. 
Let A' = {x E K I xA � R } as in Proposition 9. For any prime ideal P of R the 
behavior of R-modules under localization shows that (AA') p = Ap(A') p = Ap (Ap)' 
( cf. Exercise 4 ) . Since Rp is a D. V.R by what has already been shown, A p (A p )' = Rp 
by Proposition 1 L Hence (AA') p = Rp for all nonzero primes P of R, so AA' = R 
(Exercise 13 in Section 15 .4), and A is invertible, showing (1)  implies (3). Conversely, 
suppose every nonzero fractional ideal of R is invertible. Then every ideal in R is 
finitely generated by Proposition 9(3), so R is Noetherian. Every localization Rp of R 
at a nonzero prime P is a local ring in which the nonzero fractional ideals are invertible 
( cf. Exercise 4 ), hence is a D. V.R by Proposition 1 1 .  Hence (3) implies (2) and so ( 1 ), 
(2) and (3) are equivalent. The equivalence of these with (4) is given by Proposition 10. 

Suppose now that (1)  is satisfied, and let I be any nonzero proper ideal in R. Since 
R is Noetherian, I has a minimal primary decomposition I = Q1 n - - - n Qn as in 
Theorem 21 of Section 15.2. The associated primes Pi = rad Qi for i = 1 ,  . . .  , n are 
all distinct, and since primes are maximal in R by hypothesis, the associated primes are 
all pairwise comaximal, and it follows easily that the same is true for the Qi (Exercise 
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5). It follows that Q I n . . .  n Qn = Q I . . .  Qn (Theorem 17 in Section 7 .6) so that I is 
the product of primary ideals. The P -primary ideals of R correspond bijectively with 
the P Rp-primary ideals in the localization Rp (Proposition 42(3) in Section 15.4), and 
since Rp is a D.V.R. (because ( 1 )  implies (2)), it follows from Corollary 6 that if Q is 
a P-primary ideal in R then Q = p

m for some integer m 2: 1 .  Applying this to Q; , 
i = 1 ,  . . . • n shows that I is the product of powers of prime ideals, which gives the first 
implication in (5). 

Conversely, suppose that all the nonzero proper ideals of R can be written as a 
product of prime ideals. We first show for any integral domain that a factorization of 
an ideal into invertible prime ideals is unique, i.e., if P1 · · · Pn = P1 · · · P m are two 
factorizations of I into invertible prime ideals then n = m and the two sets of primes 
{ P1 , . . .  , Pn } and { P1 ,  . . .  , P m }  are equal. Suppose P1 is a minimal element in the set 
{P1 ,  • • •  , Pm} .  Since P1 · · · Pn £; P1 ,  the prime ideal P1 contains one of the primes 
P1 , . . .  , Pn , say P1 £; P1 .  Similarly P1 contains P; for some i = 1 ,  . . .  , m . Then 
P; £; P1 £; P1 and by the minimality of P1 it follows that P; = P1 = P1 ,  so the 
factorization becomes P1 Pz · · · Pn = P1 Pz · · · P m .  Since P1 is invertible, multiplying 
by the inverse ideal shows that Pz · · · Pn = Pz · · · P m and an easy induction finishes the 
proof. In particular, the uniqueness statement in ( 5) now follows from the first statement 
in (5) since in a Dedekind domain every fractional ideal, in particular every prime ideal 
of R, is invertible. 

We next show that invertible primes in R are maximal. Suppose then that P is an 
invertible prime ideal in R and take a E R, a fj. P. We want to show that P + aR = R. 
By assumption, the two ideals P + a R  and P + a2 R can be written as a product of 
prime ideals, say P + aR = P1 · · · Pn and P + a2 R = P1 · · · Pm .  Note that P £; P; 
for i = 1 ,  . . .  , n and also P £; Pj for j = 1 ,  . . .  , m .  In the quotient Rl P, which 
is an integral domain, we have the factorization (a) = (PdP) · · · (Pn l  P), and each 
P; 1 P is a prime ideal in R 1 P.  Since the product is a principal ideal, each P; I P is 
also an invertible Rl P-ideal (cf. Exercise 2). Similarly, (a2) = (PdP) · · · (Pm l  P) 
is a factorization into a product of invertible prime ideals. Then (a)2 = (Pd P)2 • • • 
(Pn l  P)2 = (PdP) · · · (Pml  P) give two factorizations into a product of invertible 
prime ideals in the integral domain R 1 P, so by the uniqueness result in the previous 
paragraph, m = 2n and {Pi /  P. P1 l P, . . . •  Pnl P. Pnl P} = {Pi /  P, . . . , Pml P} .  It 
follows that the set of primes P1 ,  . . . , Pm in R consists of the primes P1 , . . . , Pn , each 
repeated twice. This shows that P + a2 R = (P + aR)2 • Since P £; P + a2 R and 
(P + aR)2 £; P2 + aR, we have P £; P2 + aR, so every element x in P can be written 
in the form x = y + az where y E P2 and z E R. Then az = x - y E P and since 
a fj. P, we have z E P, which shows that P £; P2 + aP.  Clearly P2 + aP £; P 
and so P = P2 + aP = P(P + a R). Since P is assumed invertible, it follows that 
R = P + a R  for any a E R - P, which proves that P is a maximal ideal. 

We now show that every nonzero prime ideal is invertible. If P is a nonzero prime 
ideal, let a be any nonzero element in P.  By assumption, Ra = P1 · · · Pn can be 
written as a product of prime ideals, and P1 , . . .  , Pn are invertible since their product is 
principal (by Exercise 2 again). Since P1 · · · Pn = Ra £; P, the prime ideal P contains 
P; for some 1 :::: i :::: n. Since P; is maximal by the previous paragraph, it follows that 
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P = Pi is invertible. 
Finally, since every nonzero proper ideal of R is a product of prime ideals, it follows 

that every nonzero ideal of R is invertible, and since every fractional ideal of R is of 
the form (d-1 )/ for some ideal in R, also every fractional ideal of R is invertible. This 
proves that (5) implies (3), and complete the proof of the theorem. 

The following corollary follows immediately from Proposition 14: 

Corollary 16. If C:h is the ring of integers in an algebraic number field K then every 
nonzero ideal I in OK can be written uniquely as the product of powers of distinct 
prime ideals: 

where P1 , . . .  , Pn are distinct prime ideals and ei � 1 for i = 1 ,  . . .  , n .  

Remark: The development of Dedekind Domains given here reverses the historical 
development. As mentioned in Section 9.3, the unique factorization of nonzero ideals 
into a product of prime ideals replaces the failure of unique factorization of nonzero 
elements into products of prime elements in rings of integers of number fields. This 
property of rings of integers in Corollary 16 is what led originally to the definition of an 
ideal, and Dedekind originally defined what we now call Dedekind Domains by property 
5 in Theorem 15.  It was Noether who observed that they can also be characterized by 
property (1 ), which we have taken as the initial definition of a Dedekind Domain. 

The unique factorization into prime ideals in Dedekind Domains can be used to 
explicitly define the valuations v p on R with respect to which the valuation rings are 
the localizations Rp in Theorem 15(2) (cf. Exercise 6). We now indicate how unique 
factorization for ideals can be used to define a divisibility theory for ideals similar to 
the divisibility of integers in Z. 

Definition. If A and B are ideals in the integral domain R then B is said to divide A 
(and A is divisible by B) if there is an ideal C in R with A = BC. 

If B divides A then certainly A � B. If R is a Dedekind Domain, the converse is 
true: A � B implies C = AB-1 � BB-1 = R so C is an ideal in R with BC = A. 

We can also define the notion of the greatest common divisor (A , B) of two ideals 
A and B :  (A , B) divides both A and B and any ideal dividing both A and B divides 
(A , B) .  The second statement in the next proposition shows that this greatest common 
divisor always exists for integral ideals in a Dedekind Domain and gives a formula for 
it similar to the formula for the greatest common divisor of two integers. 

Proposition 17. Suppose R is a Dedekind Domain and A ,  B are two nonzero ideals 
in R, with prime ideal factorizations A = P�1 • • • P:" and B = P(1 • • • P!" (where 
e; , fi � 0 for i = 1 .  . . . , n). Then 

(1) A � B if and only if B divides A (i.e., "to contain is to divide") if and only if 
fi � e; for i = 1 , . . .  , n, 
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(2) A + B = (A , B) = P;mn(ei ./1 ) · · · P:Un(e, , f" ) , so in particular A and B are 
relatively prime, A + B = R, if and only if they have no prime ideal factors in 
common. 

Proof: We proved the first statement in ( 1 )  above. If each f; :::: e; , then taking 

C = P:1 -!I · · · P;"-t.' £:; R shows that B divides A. Conversely, if B divides A, then 
writing C as a product of prime ideals in A = B C shows that f; :::: e; for all i ,  which 
proves all of (1). Since A + B is the smallest ideal containing both A and B, (2) now 
follows from (1) .  

Proposition 18. (Chinese Remainder Theorem) Suppose R is a Dedekind Domain, 
Pt . P2 , . . . , Pn are distinct prime ideals in R and a; :=:::: 0 are integers, i = 1 ,  . . . , n .  
Then 

RIPt · · · P:" � RIPt x RIP�2 x · · · x RIP:" . 

Equivalently, for any elements rt , r2 , . . .  , rn E R there exists an element r E R, unique 
up to an element in P:1 • • • P:" , with 

Proof' This is immediate from Theorem 17 in Section 7.6 since the previous propo
sition shows that the Pt' are pairwise comaximal ideals. 

Corollary 19. Suppose I is an ideal in the Dedekind Domain R. Then 
(1) there is an ideal J of R relatively prime to I such that the product I J = (a) is 

a principal ideal, 
(2) if I is nonzero then every ideal in the quotient Rl I is principal; equivalently, if 

It is an ideal of R containing I then It = I + Rb for some b E R, and 
(3) every ideal in R can be generated by two elements; in fact if I is nonzero and 

0 =f. a E I then I = Ra + Rb for some b E I. 

Proof' Suppose I = P:1 • • • P;n is the prime ideal factorization of I in R. For 

each i = 1 ,  . . . , n, let r; be an element of P;e; - Pt+t . By the proposition, there is an 

element a E R with a = r; mod Pt;+t 
for all i .  Hence a E P;e; - Pt;+t 

for all i ,  so the 
power of P; in prime ideal factorization of (a) is precisely e; by (1)  of Proposition 17: 

(a ) _ pel pen pen+ I pem - t · · · n n+t · · · m 
for some prime ideals Pn+t •  . . .  , Pm distinct from Pt . . . .  , Pn . Letting J = P:�t1 . .  • P::,m 
gives ( 1 ). For (2), by the Chinese Remainder Theorem it suffices to prove that every 
ideal in R 1 pm is principal in the case of a power of a prime ideal P, and this is immediate 
since Rl pm � Rp I pm Rp and the localization Rp is a P.I.D. Finally, (3) follows from 
(2) by taking I = Ra . 

The first statement in Corollary 19 shows that there is an integral ideal J relatively 
prime to I lying in the inverse class of I in the class group of R. One can even impose 
additional conditions on J, cf. Exercise 1 1 .  
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Corollary 20. If R is a Dedekind Domain then R is a P.I.D. (i.e., R has class number 
1) if and only if R is a U.F.D. 

Proof: Every P.I.D. is a U.F.D., so suppose that R is a U.F.D. and let P be any 
prime ideal in R. Then P = Ra + Rb for some a =/= 0 and b in R by Corollary 19. 
We have (a') 5;; P for one of the irreducible factors a' of a since their product is an 
element in the prime P, and then P divides (a') in R by Proposition 17(1) .  It follows 
that P = (a') is principal since (a') is a prime ideal (Proposition 12 in Section 8.3). 
Since every ideal in R is a product of prime ideals, every ideal of R is principal, i.e., R 
is a P.I.D. 

Corollary 20 shows that the class number of a Dedekind domain R gives a measure 
of the failure of unique factorization of elements. It is a fundamental result in algebraic 
number theory that the class number of the ring of integers of an algebraic number field 
is finite. For general Dedekind Domains, however, the class number need not be finite. 
In fact, for any abelian group A (finite or infinite) there is a Dedekind Domain whose 
class group is isomorphic to A. 

Modules over Dedekind Domains and the Fundamental Theorem 
of Finitely Generated Modules 

We tum next to the consideration of modules over Dedekind Domains R. Every frac
tional ideal of R is an R-module and the first statement in the following proposition 
shows that two fractional ideals of R are isomorphic as R-modules if and only if they 
represent the same element in the class group of R.  

Proposition 21.  Let R be a Dedekind Domain with fraction field K. 
(1) Suppose I and I are two fractional ideals of R. Then I � I as R-modules 

if and only if I and I differ by a nonzero principal ideal: I = (a)I for some 
0 #- a  E K. 

(2) More generally, suppose It , h, . . .  , In and i1 , h, . . . , Im are nonzero fractional 
ideals in the fraction field K of the Dedekind Domain R. Then 

It ED h ED · · · ED In � It ED I2 ED · · · ED Im 
as R-modules if and only if n = m and the product ideals lth · · · ln and 
It h · · · In differ by a principal ideal: 

for some 0 =/= a E K. 
(3) In particular, 

lt h · · · In = (a)I1 I2 · · · In 

It ED h ED . . · ED In � R ED · . . ED R ED(lt h · · · In) 
"--v-" 

n-1 factors 

and Rn ED I � Rn ED I if and only if I and I differ by a principal ideal: I = (a) I, 
a E K. 

Proof: Multiplication by 0 =/= a  E K gives an R-module isomorphism from I to 

(a)I, so if I = (a)I we have I �  I as R-modules. For the converse, observe that we 
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may assume 1 =1- 0 and then I � 1 implies R � 1-1 1 . But this says that 1- 1 1 = aR 
is principal (with generator a given by the image of l E R), i.e., I = (a) 1, proving (1) .  

We next show that for any nonzero fractional ideals I and 1 that I ffi 1 � R ffi I 1 .  
Replacing I and 1 by isomorphic R-modules a/ and b1, if  necessary, we may assume 
that I and 1 are integral ideals that are relatively prime (cf. Exercise 12), so that 
I + 1 = R and I n 1 = I 1.  It is easy to see that the map from I ffi 1 to I + 1 = R 
defined by mapping (x , y) to x + y is a surjective R -module homomorphism with kernel 
I n 1 = I 1,  so we have an exact sequence 

o � I 1 � / ffi 1 � R � O 

of R-modules. This sequence splits since R is free, so I ffi 1 � R ffi I 1, as claimed. 
The first statement in (3) now follows by induction, and combining this statement 

with ( 1 )  shows that if It · ·  · 1, = (a)1t · · · 1, for some nonzero a E K then It ffi · · · ffi I, 
is isomorphic to 11 ffi · · · ffi 1, . This proves the "if' statement in (2). It remains to prove 
the "only if" statement in (2) since the corresponding statement in (3) is a special case. 
So suppose It ffi h ffi · · · ffi I, � 11 ffi 12 ffi · · · ffi 1m as R-modules. 

Since I 0 R K is the localization of the ideal I in K ( cf. Proposition 41 in Section 
15 .4) it follows that I 0 R K � K for any nonzero fractional ideal / of K. Since tensor 
products commute with direct sums, (ft ffi · · · ffi /,) 0R K � K" is an n-dimensional 
vector space over K. Similarly, 1t ffi · · · ffi 1m 0 R K � Km , from which it follows that 
n = m .  

Note that replacing It by  the isomorphic fractional ideal at-1 ft for any nonzero 
element a1 E It does not effect the validity of the statements in (2) . Hence we may 
assume It contains R, and similarly we may assume that each of the fractional ideals 
in (2) contains R. Let q; denote the R-module isomorphism from It ffi · · · ffi I, to 
11 ffi · · · ffi 1, . For i = 1 ,  2, . . .  , n define 

q;((O, . . .  , 0, 1 ,  0, . . .  , 0)) = (at , ; . a2, ; , . . .  , a, , ; ) E 1t ffi 12 ffi · . . ffi 1, 

where 1 E /; on the left hand side occurs in position i .  Since q; is an R-module 
homomorphism it follows that 

1j = aj. 1 h + aj,2h + · · · + aj.Ji + · · · + aj.n ln 

for each j = 1 ,  2, . . .  , n. Taking the product of these ideals for j 
follows that 

(ah , 1ajz ,2 · · · ajn ,, )h h · · · 1, � 1t h · · · 1, 
for any permutation {h , h . . . .  , j, } of { 1 , 2, . . . , n} .  Hence 

dft h  · · · 1, � 1t h · · · 1, 

1 , 2, . . . , n it 

where d is the determinant of the matrix (a;, j ) , since the determinant is the sum of 
terms E (a)al.rr (l )  · · · an.rr(n) where E (a)  is the sign of the permutation a of { 1 ,  2, . . . , n} .  
Similarly, for j = 1 , . . .  , n,  define 

q;-1 ((0, . . .  , 0, 1 ,  0, . . .  , 0)) = (bt , j . �.j • . . .  , bn ,j ) E ft ffi h ffi · · · ffi 1, 
where 1 E .lj on the left hand side occurs in position j .  The product of the two matrices 
(a;,j ) and (b;,j ) is just the identity matrix., so d =1- 0 and the determinant of the matrix 
(b;, j ) is d-1 • As above we have 
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which shows that lt h · · · In = (a)J1 J2 · · · Jn , where 0 "I a =  d-
1 

E K, completing 
the proof of the proposition. 

We now consider finitely generated modules over Dedekind Domains and prove 
a structure theorem for such modules extending the results in Chapter 12 for finitely 
generated modules over P.I.D.s. 

Recall that the rank of M is the maximal number of R -linearly independent elements 
in M, or, equivalently, the dimension of M ®R K as a K-vector space, where K is the 
fraction field of R (cf. Exercises 1-4, 20 in Section 12. 1) .  

Theorem 22. Suppose M is a finitely generated module over the Dedekind Domain R. 
Let n :::: 0 denote the rank of M and let Tor(M) be the torsion submodule of M. Then 

M � R E9 R E9 • • · E9 R E9 I E9 Tor(M) 
n factors 

for some ideal I of R, and 

Tor(M) � R/ Pf1 x R/ P? x · · · x Rf P:• 

for some s :::: 0 and powers Pt; , e1 :::: 1 , of (not necessarily distinct) prime ideals. The 
ideals Pt; for i = 1 , . . . , s are unique and the ideal I is unique up to multiplication by 
a principal ideal. 

Proof: Suppose first that M is a finitely generated torsion free module over R, 
i .e. ,  Tor(M) = 0. Then the natural R-module homomorphism from M to M ®R K 
is injective, so we may view M as an R -submodule of the vector space M ® R K. If 
M has rank n over R, then M ®R K is a vector space over K of dimension n .  Let 
x1 , • • .  , Xn be a basis for M ® R K over K and let m 1 ,  • • .  , ms be R -module generators 
for M. Each m;,  i = 1 ,  . . .  , s can be written as a K-linear combination of x1 , • • .  , Xn · 
Let 0 "I d E R be a common denominator for all the coefficients in K of these linear 
combinations, and set y; = x; jd, i = 1 ,  . . .  , n. Then 

M s; Ry1 + · · · + Ryn C K X1 + · · · + K Xn 

which shows that M is contained in a free R -submodule of rank n and every element 
m in M can be written uniquely in the form 

m = a1Y1 + · · · + llnYn 

with a1 , . • •  , an E R. The map (/) : M � R defined by lp(a1 Y1 + · · · + anYn) = an is 
an R -module homomorphism, so we have an exact sequence 

0 -----+ ker (/) -----+ M 4 I1 -----+ 0 

where I1 is the image of (/) in R, hence is an ideal in R. The submodule ker (/) is 
also a torsion free R-module whose rank is at most n - 1 (since it is contained in 
Ry1 + · · · + RYn-1), and it follows by comparing ranks that It is nonzero and that ker (/) 
has rank precisely n - 1 .  By (4) of Theorem 15,  It is a projective R-module, so this 
sequence splits: 

M � It e (ker lp) . 
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By induction on the rank, we see that a finitely generated torsion free R-module is 
isomorphic to the direct sum of n nonzero ideals of R: 

M � ft  E9 h E9 · · · E9 ln . 

Since It , . . . , In are each projective R-modules, it follows that any finitely generated 
torsion free R-module is projective. 

If now M is any finitely generated R-module, the quotient MITor(M) is finitely 
generated and torsion free, hence projective by what was just proved. The exact se-
quence 

0 ---+ Tor(M) ---+ M ---+ MITor(M) ---+ 0 

therefore splits, and so 
M � Tor(M) E9 (MITor(M)) . 

By the results in the previous paragraph M ITor(M) is isomorphic to a direct sum of n 

nonzero ideals of R, and by Proposition 21 we obtain 

M � R E9 R E9 · · · E9 R E9 I E9 Tor(M) 
n factors 

for some ideal I of R.  The uniqueness statement regarding the ideal I is also immediate 
from the uniqueness statement in Proposition 21(3) .  

It  remains to prove the statements regarding the torsion submodule Tor(M) . Sup
pose then that N is a finitely generated torsion R-module. Let I = Ann(N) be the 
annihilator of N in R and suppose I = P:' · · · Pt' is the prime ideal factorization of I 
in R, where Pt • . . .  , P, are distinct prime ideals. Then N is a module over Rl I, and 

Rll � RIP:' X RIP;2 X · · ·  X RIP,e'. 

It follows that 

N � (NIPt1 N) X (NIP;2 N) X • • . X (NIPt' N) 

as R-modules. Each N I peN is a finitely generated module over Rl pe � Rp I pe Rp 
where Rp is the localization of R at the prime P, i.e., is a finitely generated module over 
Rp that is annihilated by pe Rp . Since R is a Dedekind Domain, each Rp is a P.I.D. 
(even a D.V.R.), so we may apply the Fundamental Theorem for Finitely Generated 
Modules over a P.I.D. to see that each N I peN is isomorphic as an Rp-module to a 
direct sum of finitely many modules of the form Rpl p! Rp where f :::::: e. It follows 
that each N I peN is isomorphic as an R -module to a direct sum of finitely many modules 
of the form Rl pf R where f :::::: e. This proves that N is isomorphic to the direct sum 
of finitely many modules of the form RIP/' for various prime ideals P; . Hence Tor(M) 
can be decomposed into a direct sum as in the statement in the theorem. 

Finally, it remains to prove that the ideals Pt; for i = 1 ,  . . . , s in the decomposition 
ofTor(M) are unique. This is similar to the uniqueness argument in the proof ofTheorem 
10 in Section 12. 1 (cf. also Exercises 1 1-12 in Section 12. 1): for any prime ideal P of 
R, the quotient pi- t Ml pi M is a vector space over the field Rl P and the difference 
dim R/P pi-I Ml pi M - dim R/P pi Ml pi+t M is the number of direct summands of M 
isomorphic to R I pi,  hence is uniquely determined by M. This concludes the proof of 
the theorem. 
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If M is a finitely generated module over the Dedekind Domain R as in Theorem 22, 
then the isomorphism type of M as an R -module is determined by the rank n, the prime 
powers Pt' for i = 1 ,  . . . , s (called the elementary divisors of M, and the class of the 
ideal I in the class group of R (called the Steinitz class of M). Note that a P.I.D. is the 
same as a Dedekind Domain whose class number is 1, in which case every nonzero ideal 
I of R is isomorphic as an R-module simply to R .  In this case, Theorem 22 reduces 
to the elementary divisor form of the structure theorem for finitely generated modules 
over P.I.D.s in Chapter 12. There is also an invariant factor version of the description 
of the torsion R-modules in Theorem 22 (cf. Exercise 14). 

The next result extends the characterization of finitely generated projective modules 
over P.I.D.s (Exercise 21 in Section 12. 1 )  to Dedekind Domains. 

Corollary 23. A finitely generated module over a Dedekind Domain is projective if 
and only if it is torsion free. 

Proof: We showed that a finitely generated torsion free R-module is projective in 
the proof of Theorem 22, so by the decomposition of M in Theorem 22, M is projective 
if and only if Tor(M) is projective (cf. Exercise 3 in Section 10.5). To complete the 
proof it suffices to show that no nonzero torsion R-module is projective, which is left 
as an exercise ( cf. Exercise 15). 

E X E R C I S E S  

1. If R is an integral domain, show that every fractional ideal of R is invertible if and only if 
every integral ideal of R is invertible. 

2. Suppose R is an integral domain with fraction field K and A1 , Az, . . .  , An are fractional 
ideals of R whose product is a nonzero principal fractional ideal: A 1 Az · · · An = Rx for 
some 0 f=- x E K .  For each i = 1 ,  . . .  , n prove that A; is an invertible fractional ideal with 
inverse (x-1 ) AI · · · Ai- I Ai+l · · · An . 

3. Suppose R is an integral domain with fraction field K and P is a nonzero prime ideal in 
R .  Show that the fractional ideals of Rp in K are the Rp-modules of the form ARp where 
A is a fractional ideal of R.  

4. Suppose R is an integral domain with fraction field K and A is a fractional ideal of R in 
K. Let A' = {x E K I xA � R} as in Proposition 9.  
(a) For any prime ideal P in R prove that the localization (A') p of A' at P is a fractional 

ideal of Rp in K.  
(b) If  A is  a finitely generated R-module, prove that (A') p = (Ap)' where (Ap)' i s  the 

fractional Rp ideal {x E K I xAp � Rp} corresponding to the localization A p .  

5 .  If Q1 i s  a P1 -primary ideal and Qz i s  a Pz-primary ideal where P1 and Pz are comaximal 
ideals in a Noetherian ring R, prove that Q 1  and Qz are also comaximal. [Use Proposition 
14 in Section 15.2.] 

6. Suppose R is a Dedekind Domain with fraction field K .  
(a) Prove that every nonzero fractional ideal of R in K can be written uniquely as the 

product of distinct prime powers Pt · · · P::" where the ai are nonzero integers, possibly 
negative. 
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(b) If 0 # x E K, let pvp (x) be the power of the prime P in the factorization of the 
principal ideal (x) as in (a) (where v p (x) = 0 if P is not one of the primes occurring). 
Prove v p is a valuation on K with valuation ring R p, the localization of R at P.  

7. Suppose R is a Noetherian integral domain that is not a field. Prove that R is a Dedekind 
Domain if and only if for every maximal ideal M of R there are no ideals I of R with 
M2 c I C M. [Use Exercise 12 in Section 1 and Theorems 7 and 15.] 

8. Suppose R is a Noetherian integral domain with Krull dimension 1 .  Prove that every 
nonzero ideal I in R can be written uniquely as a product of primary ideals whose radicals 
are all distinct. [Cf. the proof of Theorem 1 5. Use the uniqueness of the primary compo
nents belonging to the isolated primes in a minimal primary decomposition (Theorem 21  
in  Section 1 5.2).] 

9. Suppose R is an integral domain. Prove that Rp is a D.V.R. for every nonzero prime ideal 
Pif and only if RM is a D.V.R. for every nonzero maximal ideal. 

10. Suppose R is a Noetherian integral domain that is not a field. Prove that R is a Dedekind 
Domain if and only if nonzero primes M are maximal and every M-primary ideal is a 
power of M. 

11. If I and J are nonzero ideals in the Dedekind Domain R show there exists an integral ideal 
It in R that is relatively prime to both I and J such that h i  is a principal ideal in R. 

12. If I and J are nonzero fractional ideals for the Dedekind Domain R prove there are elements 
a, {3 E K such that a/ and {)J are nonzero integral ideals in R are relatively prime. 

13. Suppose I and J are nonzero ideals in the Dedekind Domain R. Prove that there is an ideal 
It � I that is relatively prime to J. [Use Corollary 19 to find an ideal /z with [z/ = (a) 
and (/z ,  J) = R. If /z = Pt . .  · P�" , choose b E R with b E Pt' - Pt'+l and b = 1 mod P 
for every prime P dividing J. Show that (b) = lz lt for some ideal It and consider (a)lt 
to prove that It � /.] 

14. Prove that every finitely generated torsion module over a Dedekind Domain R is isomorphic 
to a direct sum Rlh ffi Rl/z ffi · · · ffi Rlln with unique nonzero ideals It . . . .  , In of R 
satisfying It � lz � · · · � In (called the invariant factors of M). [cf. Section 1 2. 1 .] 

15. If P is a nonzero prime ideal in the Dedekind Domain R prove that R 1 pn is not a projective 
R-module for any n � 1 .  [Consider the exact sequence 0 � pn 1 pn+l � Rl pn+l � 

Rl pn � 0.] Conclude that if M =/= 0 is a finitely generated torsion R-module then M is 
not projective. [cf. Exercise 3, Section 10.5.] 

16. Prove that the class number of the Dedekind Domain R is 1 if and only if every finitely 
generated projective R-module is free. 

17. Suppose R is a Dedekind Domain. 
(a) Show that I � J if and only if I � J as R-modules defines an equivalence relation 

on the set of nonzero fractional ideals of R. Let C(R) be the corresponding set 
of R-module isomorphism classes and let [/] E C(R) denote the equivalence class 
containing the fractional ideal / of R. 

(b) Show that the multiplication [I][J] = [I ffi J] gives a well defined binary operation 
with respect to which C(R) is an abelian group with identity 1 = [R] . 

(c) Prove that the abelian group C(R) in (b) is isomorphic to the class group of R. 

18. If R is a Dedekind Domain and I is any nonzero ideal, prove that R I I contains only finitely 
many ideals. In particular, show that Rl I is an Artinian ring. 

19. Suppose I is a nonzero fractional ideal in the Dedekind Domain R. Explicitly exhibit I 
as a direct summand of a free R-module to show that I is projective. [Considel; I ffi r1 
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and use Proposition 21 .] 

20. Suppose l and J are two nonzero fractional ideals in the Dedekind Domain R and that 
In = r for some n i= 0. Prove that I = J. 

21. Suppose K is an algebraic number field and 0 K is the ring of integers in K. If P is a 
nonzero prime ideal in OK prove that P = (p , rr) for some prime p E Z and algebraic 
integer rr E 0 K .  

22. Suppose K = Q( ,Ji5) i s  a quadratic extension o f  Q where D i s  a square free integer and 
0 K is the ring of integers in K. 
(a) Prove that IOK I(P) I = p2 . [Observe that OK :::= Z2 as an abelian group.] 
(b) Use Corollary 16 to show that there are 3 possibilities for the prime ideal factorization 

of (p) in OK : 
(i) (p) = P is a prime ideal with IOK/ P I = p2 , 
(ii) (p) = Pt Pz with distinct prime ideals Pt , Pz and IOK I Pt l = IOK I Pz l  = p, 
(iii) (p) = P2 for some prime ideal P with I 0 KIP I = p. 

(In cases (i), (ii), and (iii) the prime p is said to be inert, split, or ramified in 0 K, respec
tively. The set of ramified primes is finite: the primes p dividing D if D = 1 ,  2 mod 4; 
p = 2 and the primes p dividing D if D = 3 mod4. Cf. Exercise 31 in Section 1 5.5.) 
(c) Determine the prime ideal factorizations of the primes p = 2, 3,  5 , 7, 1 1 in the ring 

of integers OK = Z[-v'-5] of K = Q(-v'-5). 

23. Let 0 be the ring of integers in the algebraic closure ij of Q. 
(a) Show that the infinite sequence of ideals in 0 (2) � ( .../2) � ( ti2) � ( V2) � · · · is 

strictly increasing, and so 0 is not Noetherian. 
(b) Show that 0 has Krull dimension 1 .  [Use Theorem 26 in Section 15.3.] 
(c) Let K be a number field and let I be any ideal in OK . Show that there is some finite 

extension L of K such that I becomes principal when extended to OL, i.e., the ideal 
IOL is principal (where L depends on /}-you may use the theorem that the class 
group of K is a finite group. [ cf. Exercise 20.] 

(d) Prove that 0 is a Bezout Domain (cf. Section 8. 1). 

24. Suppose F and K are algebraic number fields with Q � F � K, with rings of integers 
0 F and 0 K ,  respectively. Since 0 F � 0 K,  the ring 0 K is naturally a module over 0 F .  
(a) Prove OK i s  a torsion free 0 F-module of rank n = [K : F ] .  [Compute ranks over 

Z.] If 0 K is free over 0 F then 0 K is said to have a relative integral basis over 0 F.  
(b) Prove that if F has class number 1 then 0 K has a relative integral basis over 0 F .  

I f  K = Q(  .J=5, .../2 ) then the ring o f  integers 0 K i s  given by 

0 K = z + ZN + z.J=IO + Zw where {() = ( .J=W + .../2) 12. 

(c) If Ft = Q(.../2 ) prove that OK has a relative integral basis over OF1 and find an 
explicit basis {a, ,8} :  OK = 0p1 · a +  OF1 • ,8. 

(d) If Fz = Q(H),  show that P3 = (3, I +  H ) = (3, 5 - H )  is a prime ideal 
of OF2 that is not principal and that OK = OF2 • 1 + ( l /3)P3 · w. [Check that 
.J=W = -(5 - H )w/3.] Conclude that the Steinitz class of OK as a module over 
0 F2 is the nontrivial class of PJ in the class group of 0 F2 and so there is no relative 
integral basis of 0 K over 0 f2 . 

(e) Determine whether OK has a relative integral basis over the ring of integers of the 
remaining quadratic subfield F3 = Q( .J=W )  of K. 

25. Suppose C is a nonsingular irreducible affine curve over an algebraically closed field k .  
Prove that the coordinate ring k[C] is a Dedekind Domain. 
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CHAPTER 1 7  

I ntroductio n to H o m o l ogica l Alge b ra 
and G ro u p Co h o m o l ogy 

Let R be a ring with l .  In Section 10.5 we saw that a short exact sequence 

0 ----+ L � M � N ----+ 0 
of R-modules gives rise to an exact sequence of abelian groups 

rp' 1/t' 0 ----+ HomR (N, D) ----+ HomR (M, D) ----+ HomR (L , D) 

(17. 1) 

(17.2) 

for any R -module D and that the homomorphism 1/J' is in general not smjective so 
this sequence cannot always be extended to a short exact sequence. Equivalently, 
homomorphisms from L to D cannot in general be lifted to homomorphisms from M 
into D. In this chapter we introduce some of the techniques of "homological algebra," 
which provide a method of extending some exact sequences in a natural way. For 
the situation above one obtains an infinite exact sequence involving the "cohomology 
groups" Ext� (_, D) (cf. Theorem 8), and these groups provide a measure of the set 
of homomorphisms from L into D that cannot be extended to M. We then consider 
the analogous questions for the other two functors considered in Section 10.5, namely 
taking homomorphisms from D into the terms of the sequence ( 1) and tensoring the 
sequence ( 1) with D. 

In the subsequent sections we concentrate on an important special case of this 
general type of homological construction-the "cohomology of finite groups." We 
make explicit the computations in this case and indicate some applications of these 
techniques to establish some new results in group theory. In this sense, Sections 2-4 
may be considered as an explicit "example" illustrating some uses of the general theory 
in Section l .  

Cohomology and homology groups occur i n  many areas of mathematics. The for
mal notions of homology and cohomology groups and the general area of homological 
algebra arose from algebraic topology around the middle of the 201h century in the 
study of the relation between the higher homotopy groups and the fundamental group 
of a topological space, although the study of certain specific cohomology groups, such 
as Schur's work on group extensions (described in Section 4), predates this by half a 
century. As with much of algebra, the ideas common to a number of different areas were 
abstracted into general theories. Much of the language of homology and cohomology 
reflects its topological origins: homology groups, chains, cycles, boundaries, etc. 
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1 7.1 I NTRODUCTION TO HOMOLOGICAL ALGEBRA-EXT AND TOR 

In this section we describe some general terminology and results in homological al
gebra leading to the so called Long Exact Sequence in Cohomology. We then define 
certain (cohomology) groups associated to the sequence (2) and apply the general ho
mological results to obtain a long exact sequence extending this sequence at the right 
end. We then indicate the corresponding development for sequences obtained by taking 
homomorphisms from D to the terms in (1 )  or by tensoring the terms with D. 

We begin with a generalization of the notion of an exact sequence, namely a se
quence of abelian group homomorphisms where successive maps compose to zero (i.e. , 
the image of one map is contained in the kernel of the next): 

Definition. Let C be a sequence of abelian group homomorphisms: 

0 Co dl 1 cn-1 d, n dn+l 
----+ ----+ c ----+ . . . ----+ ----+ c ----+ . . • • ( 17.3) 

(1) The sequence C is called a cochain complex if the composition of any two 
successive maps is zero: dn+1 o dn = 0 for all n. 

(2) If C is a cochain complex, its nth cohomology group is the quotient group 
ker dn+If image dn . and is denoted by Hn (C) .  

There is  a completely analogous "dual" version in  which the homomorphisms are 
between groups in decreasing order, in which case the sequence corresponding to (3) is • dn+l 

C 
dn dl C 0 Th "f th 

. . f 
. 

wntten · · · -+ n -+ · · · -+ o -+ . en 1 e composttlon o any two successtve 
homomorphisms is zero, the complex is called a chain complex, and its homology 
groups are defined as Hn (C) = ker dnf image dn+1 · For chain complexes the notation 
is often chosen so that the indices appear as subscripts and are decreasing, whereas for 
cochain complexes the indices are superscripts and are increasing. We shall instead use 
a uniform notation for the maps on both, since it will be clear from the context whether 
we are dealing with a chain or a cochain complex. 

Chain complexes were the first to arise in topological settings, with cochain com
plexes soon following. With our applications in Section 2 in mind, we shall concentrate 
on cochains and cohomology, although all of the general results in this section have 
similar statements for chains and homology. We shall also be interested in the situation 
where each en is an R-module and the homomorphisms dn are R-module homomor
phisms (referred to simply as a complex of R -modules), in which case the groups Hn (C) 
are also R-modules. 

Note that if C is a cochain (respectively, chain) complex then C is an exact sequence 
if and only if all its cohomology (respectively, homology) groups are zero. Thus the 
nth cohomology (respectively, homology) group measures the failure of exactness of a 
complex at the nth stage. 

Definition. Let A = {An } and B = { Bn } be cochain complexes. A homomorphism 
of complexes a : A -+ B is a set of homomorphisms an : A

n 
-+ Bn such that for every 

n the following diagram commutes: 

Sec. 1 7.1  I ntroduction to Homologica l Algebra-Ext and Tor 777 



- An - An+t -! an ! an+l  (17.4) 

-Bn - Bn+t -

Proposition 1. A homomorphism a : A ---+ f3 of cochain complexes induces group 
homomorphisms from H11 (A) to H11 (B) for n ::=: 0 on their respective cohomology 
groups. 

Proof" It is an easy exercise to show that the commutativity of ( 4) implies that 
the images and kernels at each stage of the maps in the first row are mapped to the 
corresponding images and kernels for the maps in the second row, thus giving a well 
defined map on the respective quotient (cohomology) groups. 

Definition. Let A = { A11 } ,  f3 = { B11 } and C = {en } be cochain complexes. A short 

exact sequence of complexes 0 ---+ A � f3 .! C ---+ 0 is a sequence of homomorphisms 

of complexes such that 0 ---+ A11 � B11 !!;. C11 ---+ 0 is short exact for every n .  

One of  the main features of cochain complexes i s  that they lead to long exact 
sequences in cohomology, which is our first main result: 

Theorem 2. (The Long Exact Sequence in Cohomology) Let 0 ---+ A � f3 .! C ---+ 0 
be a short exact sequence of cochain complexes. Then there is a long exact sequence 
of cohomology groups: 

0 ---+ H0(A) ---+ H0(f3) ---+ H0(C) � H1 (A) 

---+ H 1 (f3) ---+ H 1 (C) � H2(A) ---+ . . .  
( 17.5) 

where the maps between cohomology groups at each level are those in Proposition 1 .  
The maps �11 are called connecting homomorphisms. 

Proof" The details of this proof are somewhat lengthy. For each n the verification 
that the sequence H11 (A) ---+ H11 (f3) ---+ H11 (C) is exact is a straightforward check of 
the definition of exactness of each map, similar to the proof of Theorem 33 in Section 
10.5. The construction of a connecting homomorphism �n is outlined in Exercise 2. 
Some work is then needed to show that �11 is a homomorphism, and that the sequence 
is exact at �11 • 

One immediate consequence of the existence of the long exact sequence in Theorem 
2 is the fact that if any two of the cochain complexes A, B, C are exact, then so is the 
third ( cf. Exercise 6). 
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Homomorphisms and the Groups � (A, B) 

To apply Theorem 2 to analyze the sequence (2), we try to produce a cochain complex 
whose first few cohomology groups in the long exact sequence (5) agree with the terms 
in (2). To do this we introduce the notion of a "resolution" of an R-module: 

Definition. Let A be any R-module. A projective resolution of A is an exact sequence 

� � E 
. . .  � Pn � Pn-1 � . . .  � Po � A �  0 

such that each P; is a projective R-module. 

( 17 .6) 

Every R-module has a projective resolution: Let Po be any free (hence projective) 
R-module on a set of generators of A and define an R-module homomorphism E from 
Po onto A by Theorem 6 in Chapter 10. This begins the resolution E : Po -+ A -+ 0. 
The smjectivity of E ensures that this sequence is exact. Next let Ko = ker E and let P1 
be any free module mapping onto the submodule Ko of Po ; this gives the second stage 
Pt -+ Po -+ A which, by construction, is also exact. We can continue this way, taking 
at the nth stage a free R-module Pn+l that maps sutjectively onto the submodule ker dn 
of Pn , obtaining in fact a free resolution of A. 

One of the reasons that projective modules are used in the resolution of A is  that 
this makes it possible to lift various maps ( cf. the proof of Proposition 4 following, for 
instance). 

In general a projective resolution is infinite in length, but if A is itself projective, then 

it has a very simple projective resolution of finite length, namely 0 -+ A � A -+ 0 
given by the identity map from A to itself. 

Given the projective resolution (6), we rllay form a related sequence by taking 
homomorphisms of each of the terms into D, keeping in mind that this reverses the 
direction of the homomorphisms. This yields the sequence 

( 17 .7) 

where to simplify notation we have denoted the induced maps from HomR(Pn-1 ,  D) to 
HomR(Pn ,  D) for n � l again by dn and similarly for the map induced by E (cf. Section 
10.5). This sequence is not necessarily exact, however it is a cochain complex (this 
is part of the proof of Theorem 33 in Section 10.5). The corresponding cohomology 
groups have a special name. 

Definition. Let A and D be a R-modules. For any projective resolution of A as in (6) 
let dn : HomR( Pn-l •  D) -+ HomR (Pn , D) for all n � 1 as in (7). Define 

Ext� (A , D) = ker dn+lf image dn 

where Ext� (A , D) = ker d1 . The group Ext� (A , D) is called the nth cohomology group 
derivedfrom the functor HomR L, D). When R = Z the group Exfi (A , D) is also 
denoted simply Extn (A . D) . 
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Note that the groups Ext� (A , D) are also the cohomology groups of the cochain 
complex obtained from (7) by replacing the term HomR (A, D) with zero (which does 
not effect the cochain property), i.e., they are the cohomology groups of the cochain 
complex 0 ---+ HomR (Po,  D) ---+ · • • .  

We shall show below that these cohomology groups do not depend on the choice 
of projective resolution of A. Before doing so we identify the Oth cohomology group 
and give some examples. 

Proposition 3. For any R-module A we have Ext� (A , D) � HomR (A, D). 

Proof" Since the sequence Pt � Po � A ---+ 0 is exact, it follows that the 

corresponding sequence 0 ---+ HomR (A , D) � HomR (Po ,  D) � HomR (Pt ,  D) is 
also exact by Theorem 33 in Section 10.5 (noting the first comment in the proof). 
Hence Ext� (A ,  D) = ker dt = image E � HomR (A, D), as claimed. 

Examples 

(1) Let R = /l and let A = /lfm/l for some m ;::: 2. By the proposition we have 
Ext�(/lfm/l, D) � Homz(/lfm/l, D), and it follows that Ext�(Z/mZ, D) � m D, 
where m D = {d E D I md = 0} are the elements of D that have order dividing m. 
For the higher cohomology groups, we use the simple projective resolution 

0 � /l � /l � /ljm/l � 0 

for A given by multiplication by m on /l. Taking homomorphisms into a fixed Z
module D gives the cochain complex 

0 � Homz(/lfm/l, D) � Homz(/Z, D) � Homz(/Z, D) � 0 � · · · . 
We have D � Homz(/Z, D) (cf. Example 4 following Corollary 32 in Section 10.5) 
and under this isomorphism we have Ext� (Z/ mil, D) � D f mD for any abelian group 
D. It follows immediately from the definition and the cochain complex above that 
Extz(llfm/l, D) = 0 for all n ::: 2 and any abelian group D, which we summarize as 

Ext�(/lfm/l, D) � m D  

Ext�(/lfm/l, D) � DfmD 
Ex!Z(Ilfm/l, D) = 0, for all n ;::: 2. 

(2) The same abelian groups may be modules over several different rings R and the ExtR 
cohomology groups depend on R. For example, suppose R = Ill mil for some integer 
m ;::: 1 .  An R-module D is the same as an abelian group D with exponent dividing m, 
i.e., mD = 0. In particular. for any divisor d of m, the group llfd/l is an R-module, 
and 
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m� d m� d · · · � lljm/l � llfm/l � /lfm/l � /lfm/l � /lfd/l � 0 

is a projective (in fact, free) resolution of /lfd/l as a Z/mZ-module, where the final 
map is the natural projection mapping x mod m to x mod d. Taking homomorphisms 
into the /Zfm/Z-module D, using the isomorphism Homzjmz(/lfm/l, D) � D, and 
removing the first term gives the cochain complex 

d mfd d mfd 
o � D � D � D � D � . . . . 
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Hence 

Ext�;mz(Z/d::Z, D) � dD, 

Extz;mz(Zjd::Z, D) � (mfd)D/dD, n odd, n :::: 1 ,  

Extz;mz(Z/dZ, D) � dD/(m/d)D, n even, n :::: 2,  

where kD = {d E D I kd = 0}  denotes the set of elements of D killed by k. In 
particular, Ext�/p2z:(Z/pZ, Zjp/Z) � Zjp/Z for all n :::: 0, whereas, for example, 
Ext;z(Z/ p/Z, Z/ p::Z) = 0 for all n :::: 2. 

In order to show that the cohomology groups Ext7? (A , D) are independent of the 
choice of projective resolution of A we shall need to be able to "compare" resolutions. 
The next proposition shows that an R-module homomorphism from A to B lifts to a 
homomorphism from a projective resolution of A to a projective resolution of B - this 
lifting property is one instance where the projectivity of the modules in the resolution 
is important. 

Proposition 4. Let I : A --+ A' be any homomorphism of R-modules and take 
projective resolutions of A and A', respectively. Then for each n 2: 0 there is a lift In 
of I such that the following diagram commutes: 

( 17.8) 

where the rows are the projective resolutions of A and A', respectively. 

Proof Given the two rows and map I in (8), then since Po is projective we may 
lift the map I € : Po --+ A' to a map lo : Po --+ P6 in such a way that €1 lo = I € 
(Proposition 30(2) in Section 1 0.5). This gives the first lift of I. Proceeding inductively 
in this fashion, assume In has been defined to make the diagram commutative to that 
point. Thus image lndn+I s; ker d� . The projectivity of Pn+I implies that we may lift 
the map lndn+l : Pn+I --+ P� to a map ln+I : Pn+I --+ P�+I to make the diagram 
commute at the next stage. This completes the proof. 

The commutative diagram in Proposition 4 implies that the induced diagram 

0 - HomR (A , D) - HomR (Po, D) - HomR(PI ,  D) -t j  Jo t ft i 
0 - HomR(A , D) - HomR (P6, D) - HomR (P{ , D) -

( 17.9) 
is also commutative. The two rows of this diagram are cochain complexes, and this 
commutative diagram depicts a homomorphism of these cochain complexes. By Propo
sition 1 we have an induced map on their cohomology groups: 
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Proposition 5. Let f : A ---+ A' be a homomorphism of R -modules and take projective 
resolutions of A and A' as in Proposition 4. Then for every n there is an induced group 
homomorphism (/)11 : Ext� (A', D) ---+ Ext� (A , D) on the cohomology groups obtained 
via these resolutions, and the maps (/)11 depend only on f, not on the choice of lifts fn 
in Proposition 4. 

Proof" The existence of the map on the cohomology groups Ext� follows from 
Proposition 1 applied to the homomorphism of cochain complexes (9). The more 
difficult part is showing these maps do not depend on the choice oflifts fn in Proposition 
4. This is easily seen to be equivalent to showing that if f is the zero map, then the 
induced maps on cohomology groups are also all zero. Assume then that f = 0. By the 
projectivity of the modules P; one may inductively define R-module homomorphisms 
Sn : Pn ---+ P�+I with the property that for all n, 

( 17 . 10) 

so the maps s11 give reverse downward diagonal arrows across the squares in (8). (The 
collection of maps {s11 } is called a chain homotopy between the chain homomorphism 
given by the fn and the zero chain homomorphism, cf. Exercise 4.) Taking homo
morphisms into D gives diagram (9) with additional upward diagonal arrows from the 
homomorphisms induced by the s11 , and these induced homomorphisms satisfy the re
lations in (10) (i.e., they form a homotopy between cochain complex homomorphisms). 
It is now an easy exercise using the diagonal maps added to (9) to see that any ele
ment in HomR (P� ,  D) representing a coset in Ext� (A', D) maps to the zero coset in 
Ext� (A , D) (cf. Exercise 4). This completes the argument. 

One may also check that the homomorphism ({Jo : Ext� (A', D) ---+ Ext� (A , D) in 
Proposition 5 is the same as the map f : HomR (A', D) ---+ HomR (A , D) defined in 
Section 1 0.5 once the corresponding groups have been identified via the isomorphism 
in Proposition 3. 

Theorem 6. The groups Ext� (A , D) depend only on A and D, i .e . ,  they are independent 
of the choice of projective resolution of A .  

Proof" In the notation of Proposition 4 let A '  = A, let f : A ---+ A' b e  the 
identity map and let the two rows of (8) be two projective resolutions of A.  For any 
choice oflifts of the identity map, the resulting homomorphisms on cohomology groups 
(/)11 : Ext� (A', D) ---+ Ext� (A , D) are seen to be isomorphisms as follows. Add a third 
row to the diagram (8) by copying the projective resolution in the top row below the 
second row. Let g be the identity map from A' to A and lift g to maps g11 : P� ---+ Pn 
by Proposition 4. Let 1/111 : Ext� (A , D) ---+ Ext� (A', D) be the resulting map on 
cohomology groups. The maps g11 o fn : P11 ---+ P11 are now a lift of the identity map 
g o f, and they are seen to induce the homomorphisms (/)11 o 1/111 on the cohomology 
groups. However, since the first and third rows are identical, taking the identity map 
from Pn to itself for all n is a particular lift of g o f, and this choice clearly induces the 
identity map on cohomology groups. The last assertion of Proposition 5 then implies 
that (/Jn o 1/111 is also the identity on Ext� (A , D) . By a symmetric argument 1/111 o (/)11 is the 
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identity on Ex�(A', D). This shows the maps 'Pn and 1/ln are isomorphisms, as needed 
to complete the proof. 

For a fixed R -module D and fixed integer n � 0, Proposition 5 and Theorem 6 show 
that Ex�(_, D) defines a (contravariant) functor from the category of R-modules to 
the category of abelian groups. 

The next result shows that projective resolutions for a submodule and corresponding 
quotient module of an R-module M can be fit together to give a projective resolution 
of M. 

Proposition 7. (Simultaneous Resolution) Let 0 � L � M � N � 0 be a short 
exact sequence of R-modules, let L = A have a projective resolution as in (6) above, 
and let N have a similar projective resolution where the projective modules are denoted 
by P n ·  Then there is a resolution of M by the projective modules Pn EB P n such that 
the following diagram commutes: 

1 1 1 
0 --.  P1 --- PI EB PI  --. pi --. o  

1 1 1 
0 --.  Po ___. Po EB Po ___. Po ___. 0 ( 17. 1 1 )  

1 1 1 
o --.  L --- M __. N  --. o  

1 1 1 
0 0 0 

Moreover, the rows and columns of this diagram are exact and the rows are split. 

Proof" The left and right nonzero columns of ( 1 1 )  are exact by hypothesis. The 
modules in the middle column are projective (cf. Exercise 3, Section 1 0.5) and the row 
maps are the obvious ones to make each row a split exact sequence. It remains then to 
define the vertical maps in the middle column in such a way as to make the diagram 
commute. This is accomplished in a straightforward manner, working inductively from 
the bottom upward - the first step in this process is outlined in Exercise 5.  

Theorem 2 and Proposition 7 now yield the long exact sequence for ExtR that 
extends the exact sequence (2). 
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Theorem 8. Let 0 � L � M � N � 0 be a short exact sequence of R-modules. 
Then there is a long exact sequence of abelian groups 

�o I 0 � HomR (N, D) � HomR (M, D) � HomR (L , D) � ExtR (N, D) 

� Extk (M, D) � Extk (L ,  D) � Ext1 (N, D) � · · · 

(17. 12) 

where the maps between groups at the same level n are as in Proposition 5 and the 
connecting homomorphisms �n are given by Theorem 2. 

Proof" Take a simultaneous projective resolution of the short exact sequence as 
in Proposition 7 and take homomorphisms into D. To obtain the cohomology groups 
Ext� from the resulting diagram, as noted in the discussion preceding Proposition 3 we 
replace the lowest nonzero row in the transformed diagram with a row of zeros to get 
the following commutative diagram: 

i i i 
0 ----+ HomR (P 1 , D) ----+ HomR (P1 E9 P 1 , D) ----+ HomR (PJ , D) ----+ 0 

i i i 
0 ----+ HomR (P0 , D) ----+ HomR (Po E9 P0,  D) ----+ HomR (Po ,  D) ----+ 0 

i i i 
0 0 0 ( 17. 1 3) 

The columns of ( 1 3) are cochain complexes, and the rows are split by Proposition 29(2) 
of Section 10.5 and the discussion following it. Thus ( 13) is a short exact sequence of 
cochain complexes. Theorem 2 then gives a long exact sequence of cohomology groups 
whose terms are, by definition, the groups Ext� {_, D), for n � 0. The Oth order terms 
are identified by Proposition 3, completing the proof. 

Theorem 8 shows how the exact sequence (2) can be extended in a natural way and 
shows that the group Ext1 (N, D) is the first measure of the failure of (2) to be exact on 
the right - in fact (2) can be extended to a short exact sequence on the right if and only 
if the connecting homomorphism �o in ( 12) is the zero homomorphism. In particular, if 
Ext1 (N, D) = 0 for all R-modules N, then (2) will be exact on the right for every exact 
sequence ( 1). We have already seen (Corollary 35 in Section 10.5) that this implies the 
R -module D is injective. Part of the next result shows that the converse is also true and 
characterizes injective modules in terms of ExtR groups. 

Proposition 9. For an R-module Q the following are equivalent: 
(1) Q is injective, 
(2) Ext1 (A , Q) = 0 for all R-modules A, and 
(3) Ext� (A , Q) = 0 for all R -modules A and all n � 1 .  
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Proof: We showed (2) implies ( 1 )  above, and (3) implies (2) is trivial, so it remains 
to show that if Q is injective then Ext� (A , Q) = 0 for all R-modules A and all n 2:: 1 .  
Take a projective resolution 

· · · ------+ P, ------+ P, - 1  ------+ · · · ------+ Po ------+ A ------+ 0 

for A .  Since Q is injective, the sequence 

is still exact (Corollary 35 in Section 10.5), so all of the cohomology groups for this 
cochain complex are 0. In particular, the groups Ext� {A , Q) for n 2:: 1 are all trivial, 
which is (3). 

For a fixed R-module D, the result in Theorem 8 can be viewed as explaining what 
happens to the short exact sequence 0 � L � M � N � 0 on the right after 
applying the left exact functor HomR {_, D) . This is why the (contravariant) functors 
Ex� L. D) are called the right derived functors for the functor HomR (_, D). 

One can also consider the effect of applying the left exact functor HomR ( D, __), i.e., 
by taking homomorphisms from D rather than into D. The next theorem shows that in 
fact the same ExtR groups define the (covariant) right derived functors for HomR ( D,  __) 
as well. 

Theorem 10. Let 0 � L � M � N � 0 be a short exact sequence of R-modules. 
Then there is a long exact sequence of abelian groups 

Yo 1 
0 � HomR (D, L) � HomR (D. M) � HomR (D, N) � ExtR (D, L) 

� Extk (D. M) � Extk (D, N) � Ex� (D, L) � · · · .  

( 17 . 14) 

Proof" Let 0 � L � M � N � 0 be a short exact sequence of R-modules. 
By taking a projective resolution of D and then applying HomR (_, L), HomR (_, M) 
and HomR L. N) to this resolution one obtains the columns in a commutative diagram 
similar to ( 13), but with L, M and N in the second positions rather than the first. 
Applying the Long Exact Sequence Theorem to this array gives ( 14). 

Theorem 10 shows that the group Extk ( D, L) measures whether the exact sequence 

can be extended to a short exact sequence - it can be extended if and only if Yo is 
the zero homomorphism. In particular, this will always be the case if the module D 
has the property that Extk (D, B) = 0 for all R-modules B;  in this case it follows by 
Corollary 32 in Section 10.5 that D is a projective R-module. As in the situation of 
injective R -modules in Proposition 9, the vanishing of these cohomology groups in fact 
characterizes projective R-modules: 
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Proposition 11. For an R-module P the following are equivalent: 
(1) P is projective, 
(2) Ext1 (P, B) = 0 for all R-modules B ,  and 
(3) Ext� (P, B ) = 0 for all R-modules B and all n � 1 .  

Proof" We proved (2) implies ( 1 )  above, and (3) implies (2) is trivial, so it remains 
to prove that ( 1 )  implies (3). If P is a projective R-module, then the simple exact 
sequence 

l 
O � P � P � O  

given by the identity map on P is a projective resolution of P. Taking homomorphisms 
into B gives the simple cochain complex 

l 
0 --+  HomR (P, B) --+ HomR (P, B) --+ 0 --+  · · · --+ 0 --+  · · · 

from which it follows by definition that Ext� (P, B)  = 0 for all n � 1 ,  which gives (3). 

Examples 

(1) Since zm is a free, hence projective, Z-module, it follows from Proposition 1 1  that 

Extz(Zm . B) = o 

for all abelian groups B, all m ::=:: 1, and all n ::=:: 1 .  
(2) It is not difficult to show that Ext� (At EB Az ,  B) � Ext� (At .  B) EB Ext� (Az ,  B )  for all 

n ::=:: 0 ( cf. Exercise 10), so the previous example together with the example following 
Proposition 3 determines Ext;E(A , B) for all finitely generated abelian groups A. In 
particular, Ext;E(A , B) = 0 for all finitely generated groups A, all abelian groups B, 
and all n :::: 2. 

We have chosen to define the cohomology group Ext� (A , B) using a projective 
resolution of A.  There is a parallel development using an injective resolution of B :  

0 --+ B --+ Qo --+ Q1 --+ · · · 

where each Q; is injective. In this situation one defines Ext� (A , B) as the nth co
homology group of the cochain sequence obtained by applying HomR (A , _) to the 
resolution for B. The theory proceeds in a manner analogous to the development of this 
section. Ultimately one shows that there is a natural isomorphism between the groups 
Ext� (A , B) constructed using both methods. 

Examples 

(1) Suppose R = Z and A and B are Z-modules, i.e., are abelian groups. Recall that a 
Z-module is injective if and only if it is divisible (Proposition 36 in Section 10.5). The 
group B can be embedded in an injective Z-module Qo (Corollary 37 in Section 10.5) 
and the quotient, Q1 , of Qo by the image of B is again injective. Hence we have an 
injective resolution 
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0 � B � Qo � Q 1 � 0 
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of B. Applying Homz (A , __) to this sequence gives the cochain complex 

0 ----+ Homz(A , B) ----+ Homz(A , Qo) ----+ Homz(A,  Q t) ----+ 0 ----+ · · · 
from which it follows immediately that 

Extz(A, B) = 0 

for all abelian groups A and B and all n � 2, showing that the result of the previous 
example holds also when A is not finitely generated. 

(2) Suppose A is a torsion abelian group. Then we have Exfl(A , ::£) � Hom(A , ::£) = 0 
since ::Z is torsion free. The sequence 0 -+ ::Z -+ Q -+ QIZ -+ 0 gives an injective 
resolution of ::£. Applying Hom( A, __) gives the cochain complex 

0 ----+ Hom(A, ::£) ----+ Hom(A , Q) ----+ Hom(A . QIZ) ----+ 0 ----+ . · · 
and since Q is also torsion free, this shows that 

Ext1 (A , ::£) � Homz (A . QIZ) . 

The group Hom(A, QIZ) is called the Pontriagin dual group to A. If A is a finite 
abelian group the Pontriagin dual of A is isomorphic to A ( cf. Exercise I4, Section 
5.2). In particular, Ext1 (A ,  Z::) � A is nonzero for all nonzero finite abelian groups A. 
We have Extn (A , Z::) = 0 for all n � 2 by the previous example. 

We record an important property of Extk , which helps to explain the name for these 
cohomology groups. Recall that equivalent extensions were defined at the beginning 
of Section 1 0.5. 

Theorem 12. For any R-modules N and L there is a bijection between Extk (N, L) 
and the set of equivalence classes of extensions of N by L. 

Although we shall not prove this result, in  Section 4 we establish a similar bijection 
between equivalence classes of group extensions of G by A and elements of a certain 
cohomology group, where G is any finite group and A is any ZG-module. 

Example 

Suppose R = Z:: and A = B = ZlpZ. We showed above thatExtk (ZipZ, ZlpZ) � ZlpZ, 
so by Theorem I2 there are precisely p equivalence classes of extensions of Z:: 1 pZ by Z:: 1 p Z. 
These are given by the direct sum ZlpZ EB ZlpZ (which corresponds to the trivial class in 
Extk (ZipZ, ZlpZ)) and the p - I extensions 

0 ----+ ZlpZ ----+ Zlp2Z � Zlp::Z ----+ 0 

defined by the map i (x) = ix mod p for i = I ,  2, . . .  , p - I . Note that while these are 
inequivalent as extensions, they all determine the same group Zl p2Z. 
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Tensor Products and the Groups To� (A,B) 

The cohomology groups Ext� (A , B) determine what happens to short exact sequences 
on the right after applying the left exact functors HomR(D, _) and HomR L. D) . One 
may similarly ask for the behavior of short exact sequences on the left after applying 
the right exact functor D ® R _ or the right exact functor _ ®  R D. This leads to the Tor 
(homology) groups (whose name derives from their relation to torsion submodules), 
and we now briefly outline the development of these left derived functors. In some 
respects this theory is "dual" to the theory for ExtR . We concentrate on the situation for 
D ® R _ when D is a right R -module. When D is a left R -module there is a completely 
symmetric theory for _ ®R D;  when R is commutative and all R-modules have the 
same left and right R action the homology groups resulting from both developments 
are isomorphic. 

Suppose then that D is a right R-module. Then for every left R-module B the 
tensor product D ® R B is an abelian group and the functor D ® _ is covariant and 
right exact, i.e., for any short exact sequence ( 1 )  of left R-modules, 

D ® L ---+ D ® M ---+ D ® N ---+ 0 

is an exact sequence of abelian groups. This sequence may be extended at the left end 
to a long exact sequence as follows. Let 

� � E 
· · · ---+ Pn ---+ Pn-1 ---+ · · · ---+ Po ---+ B � 0 

be a projective resolution of B, and take tensor products with D to obtain 

[181d, li81J1 l i81E 
· · · ---+ D ® Pn ---+ D ® Pn-1  ---+ · · · ---+ D ® Po ---+ D ® B ---+ 0. ( 17 . 15) 

It follows from the argument in Theorem 39 of Section 10.5 that (15) is a chain complex 
- the composition of any two successive maps is zero - so we may form its homology 
groups. 

Definition. Let D be a right R -module and let B be a left R -module. For any projective 
resolution of B by left R-modules as above let 1 ® dn : D ® Pn -+ D ® Pn- 1  for all 
n ::=: 1 as in ( 15). Then 

Tor� (D, B) = ker( l ® dn)/ image(l  ® dn+1 )  

where Tort (D,  B) = (D ® Po)/ image(l ®d1 ) .  The group Tor� (D, B) is called the nth 

homology group derived from the functor D ® _. When R = 2: the group Tor� (D, B) 
is also denoted simply Torn (D, B).  

Thus Tor� (D , B) is  the n1h homology group of the chain complex obtained from 
( 15) by removing the term D ® B.  

A completely analogous proof to Proposition 3 (but relying on Theorem 39 in 
Section 1 0.5) implies the following: 
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Proposition 13. For any left R -module B we have TorC (D, B) � D ® B.  

Example 

Let R = Z and let B = ZjmZ for some m :::=: 2. By the proposition, To� (D, ZjmZ) is 
isomorphic to D 0 ZjmZ, so we have To� (D, ZjmZ) ;::: Dfm D (Example 8 following 
Corollary 12 in Section 10.4). For the higher groups we apply D 0 _ to the projective 
resolution 

o �  z � z �  Zfmz � o  

of B and use the isomorphisms D 0 Z ;::: D and D 0 ZjmZ ;::: DfmD. This gives the 
chain complex 

· · · � 0 � D � D � DfmD � 0. 

It follows that Torf (D, ZjmZ) ;::: m D  is the subgroup of D annihilated by m and that 
To� (D, ZjmZ) = 0 for all n :::=: 2, which we summarize as 

Toro(D, ZjmZ) ;::: DjmD, 

Tor1 (D, ZjmZ) ;::: m D ,  

Torn (D, ZjmZ) = 0, for all n :::=: 2. 

As for Ext, the Tor groups depend on the ring R (cf. Exercise 20). 

Following a similar development to that for ExtR ,  one shows: 

Proposition 14. 
(1) The homology groups Tor� (D, B) are independent of the choice of projective 

resolution of B, and 
(2) for every R-module homomorphism f : B -+ B' there are induced maps 

1/ln : Tor� (D, B) -+ Tor� (D, B') on homology groups (depending only on f). 

There is a Long Exact Sequence in Homology analogous to Theorem 2, except that 
all the arrows are reversed, whose proof follows mutatis mutandis from the argument 
for cohomology. This together with Simultaneous Resolution gives: 

Theorem 15. Let 0 -+ L -+ M -+ N -+ 0 be a short exact sequence ofleft R -modules. 
Then there is a long exact sequence of abelian groups 

· · · -+ Torf (D, N) � Torf (D, L) -+ Torf (D, M) -+ 

R oo Tor1 (D , N) -+ D ® L -+ D ® M -+  D ® N -+ 0 

where the maps between groups at the same level n are as in Proposition 14 (and the 
maps �n are called connecting homomorphisms). 

There is a characterization of fiat modules corresponding to Propositions 9 and 1 1  
whose proof is very similar and is left as an exercise. 
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Proposition 16. For a right R-module D the following are equivalent: 
(1) D is a flat R-module, 
(2) Torf (D, B) = 0 for all left R-modules B, and 
(3) Tor: (D, B) = 0 for all left R-modules B and all n :=::: 1 .  

We have defined Tor: (A , B) as the homology of the chain complex obtained by ten
soring a projective resolution of B on the left with A .  The same groups are obtained by 
taking the homology of the chain complex obtained by tensoring a projective resolution 
of A on the right by B. Put another way, the Tor: (A , B) groups define the (covariant) 
left derived functors for both of the right exact functors A ®R _ and _ ®R B: if D 
is a left R-module, then the short exact sequence 0 ---+ L ---+ M ---+ N ---+ 0 of right 
R -modules gives rise to the long exact sequence 

· · · ---+ Torf (N, D) � Torf (L , D) ---+ Torf (M, D) ---+ 
R Yo Tor1 (N, D) ---+ L ®R D ---+ M ®R D ---+ N ®R D ---+ 0 

of abelian groups. In particular, the left R -module D is flat if and only ifTorf (A , D) = 0 
for all right R-modules A .  

When R i s  commutative, A ® R  B � B ® R  A (Proposition 20 in Section 10.4) for 
any two R -modules A and B with the standard R -module structures, and it follows that 
Tor: (A , B) � Tor: (B, A) as R-modules. When R is commutative the Tor long exact 
sequences are exact sequences of R-modules. 

Examples 

(1) If R = Z, then since zm is free, hence flat (Corollary 42, Section 10.5), we have 
Torn (A, zm) = 0 for all n ::: 1 and all abelian groups A.  

(2) Since Tor� (A, B1 Ee Bz) � Tor: (A . B1 ) EeTor: (A , Bz) (cf. Exercise 10), the previous 
two examples together determine Tor� (A, B) for all abelian groups A and all finitely 
generated abelian groups B .  

(3) As a particular case of  the previous example, Ton (A ,  B) is a torsion group and 
Tor, (A, B) = 0 for every abelian group A, every finitely generated abelian group 
B, and all n ::: 2. In fact these results hold without the condition that B be finitely 
generated. 

(4) The exact sequence 0 � Z � Q � Q/Z � 0 gives the long exact sequence 

· · · � Tor1 (D, Q) � Tor1 (D, QjZ) � D ® Z � D ® Q � D ® QfZ � 0. 

Since Q is a flat Z-module (Example 2 following Corollary 42 in Section 10.5), the 
proposition shows that we have an exact sequence 

o �  Tor1 (D, QjZ) � D � D ® Q 

and so Tor1 (D, Q/Z) is isomorphic to the kernel of the natural map from D into D ®Q, 
which is the torsion subgroup of D (cf. Exercise 9 in Section 10.4). 

The following results show that, for R = Z, the Tor groups are closely related to 
torsion subgroups. The Tor groups first arose in applications of torsion abelian groups 
in topological settings, which helps explain the terminology. 
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Proposition 17. Let A and B be ;z>modules and let t (A) and t (B) denote their respective 
torsion submodules. Then Tor1 (A , B) � Tor1 (t (A) ,  t (B)) .  

Proof" In the case where A and B are finitely generated abelian groups this follows 
by Examples 3 and 4 above. For the general case, cf. Exercise 16. 

Corollary 18. If A is an abelian group then A is torsion free if and only ifTor1 (A , B) = 0 
for every abelian group B (in which case A is fiat as a Z-module). 

Proof" By the proposition, if A has no elements of finite order then we have 
Tor1 (A , B) = Tor1 (t (A), B) = Tor1 {0, B) = 0 for every abelian group B.  Conversely, 
if Tort (A , B) = 0 for all B ,  then in particular Tort (A , Q/Z) = 0, and this group is 
isomorphic to the torsion subgroup of A by the example above. 

The results of Proposition 17 and Corollary 1 8  hold for any P.I.D. R in place of Z 
(cf. Exercise 26 in Section 10.5 and Exercise 16). 

Finally, we mention that the cohomology and homology theories we have described 
may be developed in a vastly more general setting by axiomatizing the essential proper
ties of R-modules and the HomR and tensor product functors. This leads to the general 
notions of abelian categories and additive functors. In the case of the abelian category 
of R-modules, any additive functor :F to the category of abelian groups gives rise to 
a set of derived functors, :Fn , also from R-modules to abelian groups, for all n :=::: 0. 
Then for each short exact sequence 0 --+ L --+ M --+ N --+ 0 of R -modules there is 
a long exact sequence of (cohomology or homology) groups whose terms are :Fn (L), 
:Fn (M) and :Fn (N), and these long exact sequences reflect the exactness properties of 
the functor :F. If :F is left or right exact then the 01h derived functor :F0 is naturally 
equivalent to :F (hence the Oth degree groups :F0(X) are isomorphic to :F(X)), and if :F 
is an exact functor then :Fn (X) = 0 for all n :=::: 1 and all R -modules X. 

E X E R C I S E S  

1. Give the details of the proof of Proposition 1 .  

2 .  This exercise defines the connecting map On in the Long Exact Sequence of Theorem 2 and 

proves it is a homomorphism. In the notation of Theorem 2 let 0 --+ A � l3 ! C --+ 0 
be a short exact sequence of cochain complexes, where for simplicity the cochain maps 
for A, l3 and C are all denoted by the same d. 
(a) If c E en represents the class x E Hn (C) show that there is some b E Bn with 

fJn (b) = c. 

(b) Show that dn+ 1 (b) E ker fJn+ 1 and conclude that there is a unique a E An+ 1 such that 
an+ I (a) = dn+I (b) . [Use c E ker dn+1 and the commutativity of the diagram.] 

(c) Show that dn+2 (a) = 0 and conclude that a defines a class a in the quotient group 
Hn+I (A). [Use the fact that an+2 is injective.] 

(d) Prove that a is independent of the choice of b, i.e., if b' is another choice and a' is its 
unique preimage in An+ I then a = ll, and that a is also independent of the choice of 
c representing the class x.  

(e) Define on (x) = a and prove that On  is  a group homomorphism from Hn (C) to 
Hn+l (A). [Use the fact that On (x) is independent of the choices of c and b to compute 
On (XI + X2) .] 
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3. Suppose 
a f3 

A ---+ B ---+ C ---+ 0 

f t a' 
g t {J' 

h t 
0 ---+ A' ---+ B' ---+ C' 

is a commutative diagram of R-modules with exact rows. 
(a) If c E ker h and {J(b) = c prove that g (b) E ker {3' and conclude that g (b) = a' (a') 

for some a' E A' . [Use the commutativity of the diagram.] 
(b) Show that 15 (c) = a' mod image f is a well defined R-module homomorphism from 

ker h to the quotient A' 1 image f. 
(c) (The Snake Lemma) Prove there is an exact sequence 

� 
ker f ----+ ker g ----+ ker h ----+ coker f ----+ coker g ----+ coker h 

where coker f (the cokernel of f) is A' /(image f) and similarly for coker g and 
coker h.  

(d) Show that if  a is  injective and {J' is  smjective (i.e., the two rows in the commutative 
diagram above can be extended to short exact sequences) then the exact sequence in 
(c) can be extended to the exact sequence 

� 0 ----+ ker f ----+ ker g ----+ ker h ----+ coker f ----+ coker g ----+ coker h ----+ 0 

4. Let A = {An } and B = {Bn }  be cochain complexes, where the maps An � An+l 

and Bn � Bn+l in both complexes are denoted by dn+l for all n. Cochain complex 
homomorphisms a and {3 from A to B are said to be homotopic if for all n there are 
module homomorphisms Sn : An+l � Bn such that the maps an - f3n from An to Bn 
satisfy 

The collection of maps {sn } is called a cochain homotopy from a to {3 .  One may similarly 
define chain homotopies between chain complexes. 
(a) Prove that homotopic maps of cochain complexes induce the same maps on cohomol

ogy, i.e., if a and {3 are homotopic homomorphisms of cochain complexes then the 
induced group homomorphisms from Hn (A) to Hn (B) are equal for every n ::: 0. 
(Thus "homotopy" gives a sufficient condition for two maps of complexes to induce 
the same maps on cohomology or homology; this condition is not in general neces
sary.) [Use the definition of homotopy to show (an - f3n) (z) E image dn for every 
z E ker dn+J .] 

(b) Prove that the relation a � {3 if a and {3 are homotopic is an equivalence relation on 
any set of cochain complex homomorphisms. 

S. Establish the first step in the Simultaneous Resolution result of Proposition 7 as follows: 
assume the first two nonzero rows in diagram ( 1 1 )  are given, except for the map from 
Po EB Po to M (where the maps along the row of projective modules are the obvious 
injection and projection for this split exact sequence). Let J-L : Po � M be a lifting to Po 
of the map Po � N (which exists because Po is projective). Let A. be the composition 
Po � L � M in the diagram. Define 

n : Po Ell Po � M by n(x ,  y) = A.(x) + J-L (y) .  

Show that with this definition the first two nonzero rows of  ( 1 1 )  form a commutative 
diagram. 
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6. Let 0 --+ A � 13 ! C --+ 0 be a short exact sequence of cochain complexes. Prove that 
if any two of A, 13, C are exact, then so is the third. [Use Theorem 2.] 

7. Prove that a finitely generated abelian group A is free if and only if Ext1 (A , Z) = 0. 
8. Prove that if 0 --+ L --+ M --+ N --+ 0 is a split short exact sequence of R-modules, then 

for every n :::: 0 the sequence 0 � Ext� (N, D) � Ext� (M, D) --+ Ext'R (L , D) --+ 0 is 
also short exact and split. [Use a splitting homomorphism and Proposition 5.] 

9. Show that 

d mW d mW 0 ----+ ZjdZ ----+ ZjmZ ----+ ZjmZ ----+ ZjmZ ----+ ZjmZ ----+ · · · 

is an injective resolution of ZjdZ as a Z/mZ-module. [Use Proposition 36 in Section 
10.5.] Use this to compute the groups Extz;mz (A, ZjdZ) in terms of the dual group 
Homz;mz(A,  ZjmZ) .  In particular, if m = p2 and d = p, give another derivation of the 
result ExtZ/p2z (Z/pZ, ZjpZ) � ZjpZ. 

10. (a) Prove that an arbitrary direct sum ffi;EI P; of projective modules P; is projective and 
that an arbitrary direCt product njEJ Qj Of injectiVe moduleS Qj iS injectiVe. 

(b) Prove that an arbitrary direct sum of projective resolutions is again projective and use 
this to show Ext'R CffiiE/  A; , B) � niEI Ext� (A; , B) for any collection of R-modules 
A; (i E 1). [cf. Exercise 12 in Section 10.5.] 

(c) Prove that an arbitrary direct product of injective resolutions is an injective resolution 
and use this to show Ext'R (A , njEJ Bj ) � njEJ Ext'R (A , Bj ) for any collection of 
R-modules Bj (j E J). [cf. Exercise 12  in Section 10.5.] 

(d) Prove that Tor� (A. EF!jEJBj )  � ffijEJTor� (A . Bj ) for any collection of R-modules 
Bj (j E 1). 

11. (Bass ' Characterization of Noetherian Rings) Suppose R is a commutative ring. 
(a) If R is Noetherian, and I is any nonzero ideal in R show that the image of any R

module homomorphism f : I � EF!jEJ Qj from I into a direct sum of injective 
R-modules Qj (j E 3) is contained in some finite direct sum of the Qj . 

(b) If R is Noetherian, prove that an arbitrary direct sum ffijEJ Qj of injective R-modules 
is again injective. [Use Baer's Criterion (Proposition 36) and Exercise 4 in Section 
10.5 together with (a) .] 

(c) Let lt � h � . . .  be an ascending chain ofideals of R with union I and let / jl; --+ Q; 
for i = 1, 2, . . .  be an injection of the quotient If I; into an injective R-module Q; (by 
Theorem 38 in Section 1 0.5). Prove that the composition of these injections with the 
product of the canonical projection maps I --+ I; gives an R -module homomorphism 
f : I --+ ffi;=t ,2, . . . Q; . 

(d) Prove the converse of (b): if an arbitrary direct sum EFljEJ Qj of injective R-modules 
is again injective then R is Noetherian. [If the direct sum in (c) is injective, use Baer's 
Criterion to lift f to a homomorphism F : R --+ ffii=l,2, . . .  Q; . If the component of 
F(l )  in Q; is 0 for i :::: n prove that I = In and the ascending chain of ideals is finite.] 

12. Prove Proposition 13 :  TorC (D, A) � D ® R A. [Follow the proof of Proposition 3.] 
13. Prove Proposition 16  characterizing flat modules. 
14. Suppose 0 --+  A --+ B --+ C --+ 0 is a short exact sequence of R-modules. Prove that if 

C is a flat R-module, then A is flat if and only if B is also flat. [Use the Tor long exact 
sequence.] Give an example to show that if A and B are flat then C need not be flat. 
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15. (a) If I is an ideal in R and M is an R-module, prove that Torf (M, RJ I) is isomorphic 
to the kernel of the map M ®R I ---+ M that maps m ® i to mi for i E I and m E  M.  
[Use the Tor long exact sequence associated to  0 ---+ I ---+ R ---+ R/ I ---+ 0 noting that 
R is flat.] 

(b) (A Flatness Criterion using Tor) Prove that the R-module M is flat if and only if 
Torf (M, RJI) = 0 for every finitely generated ideal / of R. [Use Exercise 25 in 
Section 10.5.] 

16. Suppose R is a P.I.D. and A and B are R-modules. If t (B) denotes the torsion submodule 
of B show that Torf (A, t (B)) � Torf (A , B) and deduce that Torf (A,  B) is isomorphic 
to Torf (t (A) , t (B)) . [Use Exercise 26 in Section 10.5 to show that Bft (B) is flat over 
R, then use the Tor long exact sequence with D = A applied to the short exact sequence 
0 ---+ t (B) ---+ B ---+ B Jt (B) ---+ 0 and the remarks following Proposition 16.] 

17. Let A = ZJ2Z $ ZJ3Z $ ZJ4Z $ · · · . Prove that Ext1 (A,  B) � (BJ2B) x (BJ3B) x 
(B J4B) x · · · for any abelian group A. [Use Exercise 10.] Prove that Ext1 (A , B) = 0 if 
and only if B is divisible. 

18. Prove that Zj2Z is a projective Z/6Z-module and deduce that Tor�16z 
(Z/2Z, Zj2Z) = 0. 

19. Suppose r # 0 is not a zero divisor in the commutative ring R. 
(a) Prove that multiplication by r gives a free resolution 0 ---+ R � R ---+ Rjr R ---+ 0 of 

the quotient RjrR. 
(b) Prove that Ext� (RjrR,  B) = rB is the set of elements b E B with rb = 0, that 

Ext1 (RjrR ,  B) � BjrB, and that Ext'R (RjrR , B) = 0 for n � 2 for every R
module B. 

(c) Prove that Tor� (A , RJrR) = AjrA, that Torf (A , RjrR) = rA is the set ofelements 
a E A with ra = 0, and that Tor: (A , RjrR) = 0 for n � 2 for every R-module A. 

20. Prove that Tor�/mZ(A , ZjdZ) � A  fdA, that Tor�/mZ(A , ZjdZ) � dA/(mjd)A for n odd, 

n � 1, and that Tor�fmZ(A , ZjdZ) � (mfd) A/dA for n even, n � 2. [Use the projective 
resolution in Example 2 following Proposition 3.]  

21. Let R = k[x , y] where k is a field, and let I be the ideal (x , y) in R. 
(a) Let a : R ---+ R2 be the map a(r) = (yr, -xr) and let f3 : R2 ---+ R be the map 

f3((r1 , r2)) = r1x + r2y.  Show that 

a 2 f3 0 --+ R --+ R  --+ R --+ k --+ 0  

where the map R -4 RJ I =  k is the canonical projection, gives a free resolution of k 
as an R -module. 

(b) Use the resolution in (a) to show that Torf (k , k) � k. 
(c) Prove that Torf (k, /) � k. [Use the long exact sequence corresponding to the short 

exact sequence 0 ---+ I ---+ R ---+ k ---+ 0 and (b).]-
(d) Conclude from (c) that the torsion free R-module I is not flat (compare to Exercise 

26 in Section 10.5). 

22. (Flat Base Change for Tor) Suppose R and S are commutative rings and f :  R � S is a 
ring homomorphism making S into an R-module as in Example 6 following Corollary 12 
in Section 10.4. Prove that if  S is flat as  an R-module, then Tor: (A,  B) � Tor�(S®R A ,  B) 
for all R -modules A and all S-modules B. [Show that since S is flat, tensoring an R -module 
projective resolution for A with S gives an S-module projective resolution of S ®R A.] 
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23. (Localization and Tor) Let v-1R be the localization of the commutative ring R with 
respect to the multiplicative subset D of R .  Prove that localization commutes with Tor, 
i.e., v-1 Tor� (A , B) � Tor�- 'R (v-1A , v-1B) for all R-modules A and B and all n ::: 0. 
[Use the previous exercise and the fact that v-1R is flat over R, cf. Proposition 42(6) in 
Section 15.4.] 

24. (Flatness is local) Suppose R is a commutative ring. Prove that an R-module M is flat if 
and only if every localization Mp is a flat Rp-module for every maximal (hence also for 
every prime) ideal in R.  [Use the previous exercise together with the characterization of 
flatness in terms of Tor.] 

25. If R is an integral domain with field of fractions F, prove that Torf (F I R, B) � t (B) for 
any R-module B, where t (B) denotes the R-torsion submodule of B .  

An R-module M i s  said to be finitely presented i f  there i s  an exact sequence 

Rs ---+ R1 ---+ M ---+ 0 

of R-modules for some integers s and t. Equivalently, M is finitely generated by t elements 
and the kernel of the corresponding R -module homomorphism R1 � M can be generated by 
s elements. 

26. (a) Prove that every finitely generated module over a Noetherian ring R is finitely pre
sented. [Use Exercise 8 in Section 15 . 1 .] 

(b) Prove that an R-module M is finitely presented and projective if and only if M is a 
direct summand of Rn for some integer n ::: 1 .  

27. Suppose that M i s  a finitely presented R-module and that 0 � A � B � M � 0 is 
an exact sequence of R-modules. This exercise proves that if B is a finitely generated 
R -module then A is also a finitely generated R -module. 

(a) Suppose Rs .i R1 � M � 0 and e1 , . . .  , e1 is an R -module basis for R1 • Show that 
there exist ht , . . .  , b1 E B so that tJ (bi ) = cp(ei ) for i = I ,  . . .  , t .  

(b) If f is the R-module homomorphism from R1 to B defined by f(ei ) = hi for 
i = 1 , . . .  , t , show that f ( 1/1 ( Rs)) s; ker tJ.  [Use cp o 1/1 = 0.] Conclude that there is 
a commutative diagram 

1/1 cp 
Rs - R1 _ M _ O 

g ! a 
f! tJ I I 

O _ A _ B _ M _ O 
of R-modules with exact rows. 

(c) Prove that A/ image g � B 1 image f and use this to prove that A is finitely generated. 
[For the isomorphism, use the Snake Lemma in Exercise 3. Then show that image g 
and A/ image g are both finitely generated and apply Exercise 7 of Section 1 0.3.] 

(d) If I is an ideal of R conclude that R/ I is a finitely presented R-module if and only if 
I is a finitely generated ideal. 

28. Suppose R is a local ring with unique maximal ideal m and M is a finitely presented 
R-module. Suppose m1 , . . .  , ms are elements in M whose images in MfmM form a basis 
for MfmM as a vector space over the field Rfm. 
(a) Prove that m1 , . . .  , ms generate M as an R-module. [Use Nakayama's Lemma.] 

(b) Conclude from (a) that there is an exact sequence 0 � ker cp � Rs � M � 0 that 
maps a set of free generators of R" to the elements m 1 , . . .  , m s . Deduce that there is 
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an exact sequence 

Torf (M. R/m) � (ker qJ)jm(ker qJ) � 0. 

[Use the Tor long exact sequence with respect to tensoring with Rjm, using the fact 
that N ® Rjm � N jmN for any R-module N (Example 8 following Corollary 12  in 
Section lOA] and the fact that qJ : (R/mf � M/mM is an isomorphism by the choice 
of m t , . . .  , ms -1 

(c) Provethat ifTorf (M , Rjm) = O then m t ,  . . .  , ms are a setoffree R-modulegenerators 
for M. [Use the previous exercise and Nakayama's Lemma to show that ker qJ = 0.] 

29. Suppose R is a local ring with unique maximal ideal m. This exercise proves that a finitely 
generated R-module is fiat if and only if it is free. 
(a) Prove that M = F I K is -the quotient of a finitely generated free module F by a 

submodule K with K £ mF. [Let F be a free module with F jmF � M jmM .] 
(b) Suppose x E K and write x = a tet + - - - + anen where et , . . .  , en are an R-basis 

for F. Let I =  (at , . . .  , an ) be the ideal of R generated by at • . . .  , an )- Prove that 
if M is fiat, then I = mi and deduce that K = 0, so M is free. [Use Exercise 25(d) 
of Section 10.5 to see that x E I K £ mi F and conclude that I £ mi. Then apply 
Nakayama's Lemma to the finitely generated ideal / .] 

30. Suppose R is a local ring with unique maximal ideal m, M is an R-module, and consider 
the following statements: 

(i) M is a free R-module, 
(ii) M is a projective R-module, 

(iii) M is a fiat R-module, and 
(iv) Torf (M, R/m) = 0. 

(a) Prove that (i) implies (ii) implies (iii) implies (iv). 
(b) Prove that (i) , (ii), and (iii) are equivalent if M is finitely generated. (Exercise 34 

below shows (iii) need not imply (i) or (ii) if M is finitely generated but R is not locaL) 
[Use the previous exercise.] 

(c) Prove that (i), (ii), (iii), and (iv) are equivalent if M is finitely presented. (Exercise 
35 below shows that (iv) need not imply (i), (ii) or (iii) if M is finitely generated but 
not finitely presented.) [Use Exercise 28.] 

Remark: It is a theorem of Kaplansky (cf. Projective Modules, Annals of Mathematics, 
68(1958), pp. 372-377) that (i) and (ii) are equivalent without the condition that M be 
finitely generated. 

31. (Localization and Hom for Finitely Presented Modules) Suppose v-tR is the localization 
of the commutative ring R with respect to the multiplicative subset D of R, and let M be 
a finitely presented R-module. 
(a) For any R-modules A and B prove there is a unique v-tR-module homomorphism 

from v-tHomR (A, B) to Homn-'R (D-tA ,  v-tB) that maps 'P E HomR (A, B) to 
the homomorphism from v- 1A to v-tB induced by 'P-

(b) For any R-module N and any m ::=:: 1 show that HomR (Rm , N) � Nm as R-modules 
and deduce that v-t HomR(Rm , N) � (D-tN)m as v-tR-modules. 

(c) Suppose Rs � R1 � M � 0 is exact. Prove there is a commutative diagram 

0--+ v-t HomR (M, N) --+ v-tHomR (R1 , N) --+ v-tHomR (Rs , N) 

t t t 
0 --+  Homn- 'R (D-tM, v-1N) --+ Homn-'R ((D-tR)1 , v-tN) �omn-tR ((D-tR)s , D-1N) 
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of v- tR-modules with exact rows. [For the first row first take R-module homomor-
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phisms from the terms in the presentation for M into N using Theorem 33 of Section 
10.5 (noting the first comment in the proof) and then tensor with the flat R-module 
D-1R, cf. Propositions 41 and 42(6) in Section 15 .4. For the second row first ten
sor the presentation with D-1R and then take D-1R-module homomorphisms into 
D-1N.] 

(d) Use (b) to prove that localization commutes with taking homomorphisms when M 
is finitely presented, i.e., D-1HomR (M, N) � Homv-1R (D- 1M, D-1N) as D-1R
modules. [Show the second two vertical maps in the diagram above are isomorphisms 
and deduce that the left vertical map is also an isomorphism.] (This result is not true 
in general if M is not finitely presented.) 

32. (Localization and Extfor Finitely Presented Modules) Suppose D-1R is the localization 
of the commutative ring R with respect to the multiplicative subset D of R. Prove that 
if M is a finitely presented R-module then D-1Ext� (M, N) � Ext�_1R(D- 1M, D-1N) 
as D- 1R-modules for every R-module N and every n ::: 0. [Use a projective resolution 
of N and the previous exercise, noting that tensoring the resolution with D-1R gives a 
projective resolution for the D-1R-module D-1N.] 

33. Suppose R is a commutative ring and M is a finitely presented R-module (for example a 
finitely generated module over a Noetherian ring, or a quotient, R/ I ,  of R by a finitely 
generated ideal I ,  cf. Exercises 26 and 27). Prove that the following are equivalent: 
(a) M is a projective R-module, 
(b) M is a flat R-module, 
(c) M is locally free, i.e., each localization Mp is a free Rp-module for every maximal 

(hence also for every prime) ideal P of R .  

In particular show that finitely generated projective modules are the same as finitely pre
sented flat modules. [Exercises 24 and 30 show that (b) is equivalent to (c). Use the Ext 
criterion for projectivity and Exercises 30 and 32 to see that (a) is equivalent to (c).] 

34. (a) Prove that every R-module for the commutative ring R is flat if and only if every 
finitely generated ideal I of R is a direct summand of R, in which case every finitely 
generated ideal of R is principal and projective (such a ring is said to be absolutely fiat). 
[Use Exercise 15, the previous exercise applied to the finitely presented R-module 
R/ I, and the remarks following Proposition 16.] 

(b) Prove that every Boolean ring is absolutely flat. [Use Exercise 24 in Section 7.4, 
noting that if I =  Rx then x is an idempotent so R = Rx E!1 R(l - x).] 

(c) Let R be the direct product and I the direct sum of countably many copies of 7lf27L 
Prove that I is an ideal of the Boolean ring R that is not finitely generated and that 
the cyclic R-module M = R/ I is flat but not projective (so finitely generated flat 
modules need not be projective). 

35. Let R be the local ring obtained by localizing the ring of C00 functions on the open interval 
( - 1 ,  1 )  at the maximal ideal of functions that are 0 at x = 0 ( cf. Exercise 45 of Section 
15.2), let m = (x) be the unique maximal ideal of R and let P be the prime ideal nn2:1 m" . 
Set M = RfP. 
(a) Prove that Torf (M, R/m) = 0. [Use Exercise 19 applied with r = x, noting that 

R/ P is an integral domain.] 
(b) Prove that M is not flat (hence not projective). [Let F be as in Exercise 45 of Section 

15  .2. Show that the sequence 0 -+ R -+ R -+ R I (F) -+ 0 induced by multiplication 
by F is exact, but is not exact after tensoring with M.] 
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1 7.2 THE COHOMOLOGY OF GROUPS 

In this section we consider the application of the general techniques of the previous 
section in an important special case. 

Let G be a group. 

Definition. An abelian group A on which G acts (on the left) as automorphisms is 
called a G-module. 

Note that a G-module is the same as an abelian group A and a homomorphism 
q; : G -+  Aut(A) of G into the group of automorphisms of A .  Since an abelian group 
is the same as a module over Z, it is also easy to see that a G-module A is the same as 
a module over the integral group ring,ZG, of G with coefficients in Z. When G is an 
infinite group the ring ZG consists of all the finite formal sums of elements of G with 
coefficients in Z. 

As usual we shall often use multiplicative notation and write ga in place of g ·a for 
the action of the element g E G on the element a E A .  

Definition. If A is a G-module, let A c = { a  E A 1 g a  = a for all g E G} be the 
elements of A fixed by all the elements of G _ 
Examples 

(1) If ga = a for all a E A and g E G then G is said to act trivially on A .  In this case 
A c = A. The abelian group IZ will always be assumed to have trivial G-action for 
any group G unless otherwise stated. 

(2) For any G-module A the fixed points A G of A under the action of G is clearly a 
ZG-submodule of A on which G acts trivially. 

(3) If V is a vector space over the field F of dimension n and G = GLn (F) then V is 
naturally a G-module. In this case vc = {0} since any nonzero element in V can be 
taken to any other nonzero element in V by some linear transformation. 

(4) A semidirect product E = A  >:1 G as in Section 5.5 in the case where A is an abelian 
normal subgroup gives a G-module A where the action of G is given by the homo
morphism rp : G � Aut( A) .  The subgroup A c consists of the elements of A lying 
in the center of E. More generally, if A is any abelian normal subgroup of a group 
E, then E acts on A by conjugation and this makes A into a £-module and also an 
E I A-module. In this case A E = A E/ A also consists of the elements of A lying in the 
center of E. 

(5) If KIF is an extension of fields that is Galois with Galois group G then the additive 
group K is naturally a G-module, with KG = F. Similarly, the multiplicative group 
K x  of nonzero elements in K is a G-module, with fixed points (K x )G = Fx . 

The fixed point subgroups in this last example played a central role in Galois Theory 
in Chapter 14. In general, it is easy to see that a short exact sequence 

0 ----+ A ----+ B ----+ C ----+ 0 

of G-modules induces an exact sequence 
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0 ----+ A G ----+ Be ----+ cG (17 . 15) 
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that in general cannot be extended to a short exact sequence (in general a coset in the 
quotient C that is fixed by G need not be represented by an element in B fixed by G). 
One way to see that ( 1 5) is exact is to observe that A G can be related to a Hom group: 

Lemma 19. Suppose A is a G-modu1e and HomzG (Z, A) is the group of all ZG-modu1e 
homomorphisms from Z (with trivial G-action) to A. Then AG � HomzG (Z, A).  

Proof Any G-module homomorphism a from Z to A is uniquely determined by 
its value on 1 .  Let aa denote the G-module homomorphism with a( 1) = a.  Since aa is 
a G-modu1e homomorphism. a = aa ( l )  = aa (g · 1) = g · aa (l)  = g · a  for all g E G, 
so that a must lie in A G . Likewise, for any a E A G it is easy to check that the map 
aa �---+ a gives an isomorphism from HomzG (Z, A) to A G. 

Combined with the results of the previous section, the lemma not only shows that 
the sequence ( 15) is exact, it shows that any projective resolution of Z considered as 
a ZG-module will give a long exact sequence extending ( 1 5). One such projective 
resolution is the standard resolution or bar resolution of Z: 

dn d1 aug 
· · · � Fn ----+ Fn-1 ---+ • • • ----+ Fo ----+ Z ----+ 0. (17. 16) 

Here F;, = ZG 0z ZG 0z · · · 0z ZG (where there are n + 1 factors) for n 2: 0, which 
is a G-module under the action defined on simple tensors by g · (go 0 g1 0 · · · 0 g11) = 
(ggo) 0 g1 0 · · · 0 g11 • It is not difficult to see that Fn is a free ZG-module of rank I G I" 
with ZG basis given by the elements 1 0 g1 0 g2 0 · · · 0 g11 , where g; E G. The map 
aug : Fo ---+ Z is the augmentation map aug(LgeG agg) = LgeG ag, and the map d1 
is given by d1 ( 1  0 g) = g - 1 . The maps dn for n 2: 2 are more complicated and their 
definition, together with a proof that ( 16) is a projective (in fact, free) resolution can be 
found in Exercises 1-3 .  

Applying (ZG-module) homomorphisms from the terms in ( 16)  to the G-module A 
(replacing the first term by 0) as in the previous section, we obtain the cochain complex 

� � � 0 ----+ HomzG (Fo, A) ----+ HomzG <Ft .  A) ----+ HomzG (F2,  A) ----+ · · · ,  (17 . 17) 

the cohomology groups of which are, by definition, the groups ExtzG (Z, A). Then, as 
in Theorem 8, the short exact sequence 0 ----+ A ----+ B ----+ C ----+ 0 of G-modules 
gives rise to a long exact sequence whose first terms are given by ( 1 5) and whose higher 
terms are the cohomology groups ExtzG (Z, A). 

To make this more explicit, we can reinterpret the terms in this cochain complex 
without explicit reference to the standard resolution of Z, as follows. The elements 
of HomzG (F11 , A) are uniquely determined by their values on the ZG basis elements 
of F11 , which may be identified with the n-tuples (g1 , g2, . . .  , g11 ) of elements g; of G.  
It follows for n 2: 1 that the group HomzG (F11 ,  A) may be identified with the set of 
functions from G x · · · x G (n copies) to A .  For n = 0 we identify HomzG (ZG, A) 
with A. 

Definition. If G is a finite group and A is a G-module, define C0(G, A) = A and for 
n 2: 1 define C" (G, A) to be the collection of all maps from en = G x . · · x G (n 
copies) to A. The elements of C11 (G, A) are called n-cochains (ofG with values in A). 
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Each C" (G,  A) is an additive abelian group: for C0(G, A) = A given by the 
group structure on A;  for n ::: 1 given by the usual pointwise addition of functions: 

Ut + fz)(g. , gz , . . . , g, ) = ft (gt .  gz , . . .  , g, ) + fz(g. , gz , . . . , g, ) .  Under the iden
tification of Hom;w (F, ,  A) with C" (G , A) the cochain maps d, in ( 17) can be given 
very explicitly (cf. also Exercise 3 and the following comment) : 

Definition. For n ::: 0, define the nth coboundary homomorphism from C" (G, A) to 
C"+1 (G , A) by 

d, (f)(gt . . . . , g,+t ) = gt · f(gz , . . . , gn+1 ) 
n 

i=1 

(17. 1 8) 

where the product g;g;+t occupying the ;th position of f is taken in the group G. 

It is immediate from the definition that the maps d, are group homomorphisms. It 
follows from the fact that (17) is a projective resolution that d, o dn-1 = 0 for n ::: 1 (a 
self contained direct proof just from the definition of d, above can also be given, but is 
tedious). 

Definition. 
(1) Let Z" (G, A) = ker dn for n ::: 0. The elements of Z" (G, A) are called n

cocycles. 
(2) Let B" (G, A) = image dn-1 for n ::: 1 and let B0(G, A) = 1 .  The elements of 

B" (G, A) are called n-coboundaries. 

Since d, o dn-1 = 0 for n ::: 1 we have image dn-1 � ker d, , so that B" (G, A) is 
always a subgroup of Z" (G, A). 

Definition. For any G-module A the quotient group Z" (G, A)/B" (G, A) is called the 
n1h cohomology group ofG with coefficients in A and is denoted by H" (G , A), n ::: 0. 

The definition of the cohomology group H" (G,  A) in terms of cochains will be 
particularly useful in the following two sections when we examine the low dimensional 
groups H 1 ( G, A) and H2 ( G, A) and their application in a variety of settings. It should 
be remembered, however, that H" (G , A) � Ext" (Z, A) for all n ::: 0. In particular, 
these groups can be computed using any projective resolution of Z. 

Examples 

(1) For f = a E C0(G , A) we have do (f) (g) = g · a  - a  and so ker do is the set 
{a E A I g ·a = a  for all g E G}, i.e., Z0 (G , A) =  AG and so 

800 

H0 (G , A) = Ac , 

for any group G and G-module A. 
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(2) Suppose G = 1 is the trivial group. Then on = {(1 , 1 ,  . . .  , 1 ) }  is also the trivial group, 
so f E cn (G, A) is completely determined by f ( l ,  1 ,  . . .  , 1 ) = a  E A. Identifying 
f = a  we obtain cn (G, A) = A for all n ;:: 0. Then, if f = a E A, 

� ; n+I { 0 if n is even 
dn (/) ( 1 ,  1 ,  . . .  , 1) = a +  L.., (- 1)  a +  (-1)  a =  . . , 

�1 1 rl n � o� 

so dn = 0 if n is even and dn = 1 is the identity if n is odd. Hence 

H0( 1 , A) = A0 = A  

Hn ( 1 ,  A) = 0 for all n ::: 1 .  

Example: (Cohomology of a Finite Cyclic Group) 

Suppose G is cyclic of order m with generator a .  Let N = 1 + a  + a2 + · · · + am- 1 E ZG. 
Then N(a - 1) = (a - 1)N = am - 1 = 0, and so we have a particularly simple free 
resolution 

a-1 N a-1  N a-1  aug 
. . .  � za � za �  . . .  � za � za � z � o  

where aug denotes the augmentation map (cf. Exercise 8). Taking ZG-module homomor
phisms from the terms of this resolution to A (replacing the first term by 0) and using the 
identification Homzc (ZG, A) = A gives the chain complex 

a - 1  N a -1 N 
O � A � A � A � A �  . . .  

whose cohomology computes the groups Hn (G, A) : 

o G n { A G / N A if n is even, n > 2 
H (G, A) = A  , and H (G, A) = -

NA/(a - l)A if n is odd, n ::: 1 
where N A = {a E A I N a = 0} is the subgroup of A annihilated by N, since the kernel of 
multiplication by a - 1 is A G . 

If in particular G = ( a  ) acts trivially on A, then N · a  = ma, so that in this case 
H0(G, A) = A, with Hn (G, A) = AjmA for even n ::: 2, and Hn (G, A) = m A, the 
elements of A of order dividing m,  for odd n ::: 1 .  Specializing even further to m = 1 gives 
Example 2 previously. 

Proposition 20. Suppose mA = 0 for some integer m :::: 1 (i.e., the e-module A has 
exponent dividing m as an abelian group).  Then 

mzn (e, A) =  m Bn (e, A) = m Hn (e, A) = 0 for all n :::: 0. 

In particular, if A has exponent p for some prime p then the abelian groups zn (e, A), 
Bn (e, A) and Hn (e , A) have exponent dividing p and so these groups are all vector 
spaces over the finite field IF P = 'llf p7L 

Proof" If f E cn (e, A) is an n-cochain then f E A (if n = 0), in which case 
mf = 0, or f is a function from en to A (if n :::: 1) ,  in which case mf is a function 
from en to mA = 0, so again mf = 0. Hence mzn (e , A) = mBn (e, A) = 0 since 
these are subgroups of cn (e , A) .  Then m Hn (e, A) = 0 since mzn ce.  A) =  0, and 
the remaining statements in the proposition are immediate. 

By Example 1 ,  the long exact sequence in Theorem 10  written in terms of the 
cohomology groups Hn (e, A) becomes 
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Theorem 21. (Long Exact Sequence in Group Cohomology) Suppose 

0 -----+ A -----+ B -----+ C -----+ 0 

is a short exact sequence of G-modules. Then there is a long exact sequence: 

0 -----+ AG -----+ Be -----+ Cc � H1 (G, A) -----+ H1 (G, B) -----+ H1 (G, C) � · · ·  

. . .  � Hn (G, A) -----+ Hn (G, B) -----+ Hn(G. C) � Hn+1 (G, A) -----+ . . .  

of abelian groups. 

Among many other uses of the long exact sequence in Theorem 21 is a technique 
called dimension shifting which makes it possible to analyze the cohomology group 
Hn+1 (G, A) of dimension n + 1 for A by instead considering a cohomology group of 
dimension n for a different G-module. The technique is based on finding a G-module 
almost all of whose cohomology groups are zero. Such modules are given a name: 

Definition. A G-module M is called cohomologically trivial for G if Hn ( G, M) = 0 
for all n :::: 1 .  

Corollary 22. (Dimension Shifting) Suppose 0 -+ A -+ M -+ C -+ 0 i s  a short exact 
sequence of G-modules and that M is cohomologically trivial for G. Then there is an 
exact sequence 

and 

Proof" Since M is cohomologically trivial for G, the portion 

of the long exact sequence in Theorem 21 reduces to 

0 -----+ Hn (G, C) -----+ Hn+1 (G, A) -----+ 0 

which shows that Hn (G, C) � Hn+1 (G, A) for n :::: 1 .  Similarly, the first portion of 
the long exact sequence in Theorem 2 1  gives the first statement in the corollary. 

We now indicate a natural construction that produces a G-module given a module 
over a subgroup H of G . When H = 1 is the trivial group this construction produces 
a cohomologically trivial module M and an exact sequence as in Corollary 22 for any 
G-module A. 
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Definition. If H is a subgroup of G and A is an H -module, define the induced G
module MZ(A) to be Hom�m (ZG, A). In other words, MZ(A) is the set of maps f 
from G to A satisfying f (hx) = hf (x) for every x E G and h E H. 

The action of an element g E G on f E MZ(A) is given by (g · f)(x) = f(xg) for 
x E G ( cf. Exercise 10  in Section 10.5). 

Recall that if H is a subgroup of G and A is an H -module, then the module 
ZG ®zH A obtained by extension of scalars from ZH to ZG is a G-module. For a finite 
group G, or more generally if H has finite index in G, we have MZ (A) � ZG®zH A ( cf. 
Exercise 10). When G is infinite this need no longer be the case (cf. Exercise 1 1 ). The 
module ZG ®zH A is sometimes called the induced G-module and the module MZ(A) 
is sometimes referred to as the coinduced G-module. For finite groups. associativity 
of the tensor product shows that MZ<Mf/ (A)) = Mf(A) for subgroups K :'S H :'S G, 
and the same result holds in general (this follows from the definition using Exercise 7). 

Examples 

(1) If H is a subgroup of G and 0 � A � B � C � 0 is a short exact sequence of 
H-modules then 0 � MZ (A) � MZ (B) � MZ (C) � 0 is a short exact sequence 

of G-modules, since MZ (A) � ZG ®zu A and 7/.,G is free, hence flat, over ZH. 

(2) When G is finite and A is the trivial H-module 7/.,, the module MZ (Z) is a free 7/.,
module of rank m = 1 G : H I .  There is a basis b1 , . . .  , bm such that G permutes 
these basis elements in the same way it permutes the left cosets of H in G by left 
multiplication, i.e., if we let b; � g; H then gb; = b1 if and only if gg; H = g1 H. The 

module MZ ('7/.,) is the permutation module over 7/., for G with stabilizer H. A special 
case of interest is when G = Sm and H = Sm-I where Sm permutes { 1 ,  2, . . .  , m} as 
usual. Permutation modules and induced modules over fields are studied in Part VI. 

(3) Any abelian group A is an H -module when H = 1 is the trivial group. The corre
sponding induced G-module Mf (A) is just the collection of all maps f from G into 

A. For g E G the map g ·  f E Mf(A) satisfies (g · f) (x) = f(xg) for x E G .  
(4) Suppose A is a G-module. Then there i s  a natural map 

cp : A ---+ Mf (A) 
from A into the induced G-module Mf (A) in the previous example defined by mapping 
a E A to the function fa with fa (x) = xa for all x E G. It is clear that cp is a group 
homomorphism, and f8a (x) = x(ga) = (xg)a = fa (xg) = (g·fa) (x) shows that cp is 
a G-module homomorphism as well. Since la O)  = a, it follows that fa is the zero 
function on G if and only if a = 0 in A, so that cp is an injection. Hence we may 
identify A as a G-submodule of the induced module Mf (A) . 

(5) More generally, if A is a G-module and H is any subgroup of G then the function 
fa (x) in the previous example is an element in the subgroup MZ(A) since we have 
fa (hx) = (hx)(a) = h(xa) = hfa (x) for all h E H. The associated map from A to 
MZ(A) is an injective G-module homomorphism. 

(6) The fixed points (MZ (A))G are maps f from G to A with gf = f for all g E G, i.e. , 

with (gf)(x)  = f(x) for all g, x E G. By definition of the G-action on MZ(A), this 
is the equation f(xg) = f(x) for all g, x E G. Taking x = 1 shows that f is constant 
on all of G :  f(g) = f(l)  = a E A. The constant function f = a is an element of 
MZ(A) if and only if a =  f(hx) = hf(x) = ha for all h E  H, so (MZ (A ))G � AH

. 
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An element fa (x) in the previous example is contained in the subgroup (M� (A))G if 
and only if xa is constant for x E G, i.e., if and only if a E A G .  

One of the important properties of the G-module M�(A) induced from the H
module A is that its cohomology with respect to G is the same as the cohomology of A 
with respect to H :  

Proposition 23. (Shapiro 's Lemma) For any subgroup H of G and any H-module A 
we have Hn (G, M� (A)) � Hn (H, A) for n :::_ 0. 

Proof: Let · · · --+ P
n 

--+ · · · --+ Po --+ Z --+ 0 be a resolution of Z by pro
jective G-modules (for example, the standard resolution). The cohomology groups 
Hn (G, M�(A)) are computed by taking homomorphisms from this resolution into 

M� (A) = Hom:m (ZG, A). Since ZG is a free ZH-module it follows that this G
module resolution is also a resolution of Z by projective H -modules, hence by taking 
homomorphisms into A the same resolution may be used to compute the cohomol
ogy groups Hn (H, A). To see that these two collections of cohomology groups are 
isomorphic, we use the natural isomorphism of abelian groups 

4> : Homzc (P
n . HomzH (ZG, A)) � HomzH (P

n . A) 

given by 4>(/)(p) = f(p)( l) ,  for all f E Homzc (P
n

. HomzH (ZG, A)) and p E P
n

. 
The inverse isomorphism is defined by taking \II (f')(p) to be the map from ZG to A that 
takes g E G to the element f'(gp) in A for all f' E HomzH (P

n
, A) and p E P

n
, i.e., 

(\ll (f')(p))(g) = f'(gp) . Note this is well defined because P
n 

is a G-module. (These 
maps are a special case of an Adjoint Associativity Theorem, cf. Exercise 7.) Since 
these isomorphisms commute with the cochain maps, they induce isomorphisms on the 
corresponding cohomology groups, i.e., Hn (G, M�(A)) � Hn (H, A), as required. 

Corollary 24. For any G-module A the module Mf (A) is cohomologically trivial for 

G, i.e., Hn(G, Mf(A)) = 0 for all n :::_ 1 .  

Proof" Thi s  follows immediately from the proposition applied with H = 1 together 
with the computation of the cohomology of the trivial group in Example 2 preceding 
Proposition 20. 

By the corollary, the fourth example above gives us a short exact sequence of 
G-modules 

o � A � M � c � o  

where M = Mf (A) is cohomologically trivial for G and where C is the quotient of 

Mf (A) by the image of A. The dimension shifting result in Corollary 22 then becomes: 

Corollary 25. For any G-module A we have Hn+1 (G, A) � Hn (G, Mf(A)/A) for 
all n :::_ 1 .  
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We next consider several important maps relating various cohomology groups. 
Some applications of the use of these homomorphisms appear in the following two 
sections. 

In general, suppose we have two groups G and G' and that A is a G-module and 
A' is a G' -module. If q; : G' ---+ G is a group homomorphism then A becomes a 
G' -module by defining g' · a  = q;(g')a for g' E G' and a E A.  If now 1/1 : A ---+ A' 
is a homomorphism of abelian groups then we consider whether 1/1 is a G' -module 
homomorphism: 

Definition. Suppose A is a G-module and A' is a G' -module. The group homo
morphisms q; : G' ---+ G and 1/1 : A ---+ A' are said to be compatible if 1/1 is a 
G' -module homomorphism when A is made into a G' -module by means of q;, i.e., if 
1/f(q;(g')a) = g'1/f(a) for all g' E G' and a E A. 

The point of compatible homomorphisms is that they induce group homomorphisms 
on associated cohomology groups, as follows. 

If q; :  G' ---+ G and 1/1 : A ---+ A' are homomorphisms, then q; induces a homomor
phism q;n : (G')n ---+ en , and so a homomorphism from en (G , A) to en (G' , A) that 
maps f to f o q;n . The map 1/1 induces a homomorphism from en ( G', A) to en ( G' , A') 
that maps f to 1/1 o f.  Taken together we obtain an induced homomorphism 

An : en (G , A) ---+ en (G' , A') 

J f----'; 1/1 o J 0 (/Jn • 
If in addition q; and 1/1 are compatible homomorphisms, then it is easy to check that 

the induced maps An commute with the coboundary operator: 

An+l o dn = dn 0 An 
for all n � 0. It follows that An maps cocycles to cocycles and coboundaries to 
coboundaries, hence induces a group homomorphism on cohomology: 

An : Hn (G, A) ---+ Hn (G', A') 

for n ?.  0. 
We consider several instances of such maps: 

Examples 

(1) Suppose G = G' and ({! is the identity map. Then to say that the group homomorphism 
1/J : A � A' is compatible with ({! is simply the statement that 1/J is a G-module 
homomorphism. Hence any G-module homomorphism from A to A' induces a group 
homomorphism 

Hn (G, A) - Hn (G, A') for n :::: 0. 

In particular, if 0 � A � B � C � 0 is a short exact sequence of G-modules we 
obtain induced homomorphisms from Hn (G, A) to Hn (G, B) and from Hn (G, B) to 
Hn ( G, C) for n :::: 0. These are simply the homomorphisms in the long exact sequence 
of Theorem 21 .  

(2) (The Restriction Homomorphism) If  A i s  a G-module, then A i s  also an H -module for 
any subgroup H of G. The inclusion map ({! : H � G of H into G and the identity 
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map 1/f : A � A are compatible homomorphisms. The corresponding induced group 
homomorphism on cohomology is called the restriction homomorphism: 

Res : Hn (a, A) - Hn (H, A), n :::: 0. 

The terminology comes from the fact that the map on cochains from cn (a, A) to 
cn (H, A) is simply restricting a map f from an to A to the subgroup Hn of an . 

(3) (The Inflation Homomorphism) Suppose H is a normal subgroup of a and A is a 
a-module. The elements A H of A that are fixed by H are naturally a module for the 
quotient group a; H under the action defined by (gH) ·a = g ·a . It is then immediate 
that the projection rp : a � a 1 H and the inclusion 1/f : A H � A are compatible 
homomorphisms. The corresponding induced group homomorphism on cohomology 
is called the inflation homomorphism: 

lnf : Hn (ajH, A11) - Hn (a, A) , n :::: 0. 

(4) (The Corestriction Homomorphism) Suppose that H is a subgroup of a of index m 
and that A is a a-module. Let g1 • . . .  , gm be representatives for the left cosets of H 
in a. Define a map 

1/1 : M� (A) - A by 
m 

t � L: g; · t<gi1 > ·  
i=l 

Note that if we change any coset representative g; by g; h, then (g;h)f((g;h)-1 ) = 
g; hf(h-I g;-1 ) = g; hh- I f(gj1 ) = g; f(g;- 1 ) so the map 1/f is independent of the 
choice of coset representatives. It is easy to see that 1/f is a a-module homomor
phism (and even that it is surjective), so we obtain a group homomorphism from 
Hn (a, MZ (A)) to Hn (a, A), forall n :::: 0. Since A is also an H-module, by Shapiro's 
Lemma we have an isomorphism Hn (a, MZ (A)) � Hn (H, A). The composition of 
these two homomorphisms is called the corestriction homomorphism: 

Cor : Hn (H, A) - Hn (a. A) , n :::: 0. 

This homomorphism can be computed explicitly by composing the isomorphism 111 
in the proof of Shapiro's Lemma for any resolution of Z by projective a-modules Pn 
(note these are a-modules and not simply H-modules) with the map 1/J, as follows. 
For a cocycle f E Homzm (Pn , A) representing a cohomology class c E Hn (H, A), a 
cocycle Cor {f) E Hom;w (Pn , A) representing Cor (c) E Hn (a, A) is given by 

m m 

i=l i= l 
for p E Pn . When n = 0 this is particularly simple since we can take Po = za. In 
this case f E Homtlm (Za, A) = M� (A) is a cocycle if f = a is constant for some 
a E A H and then Cor {f) is the constant function with value I:?'= I g; · a E A G : 

Cor : H0(H, A) = AH - AG = H0 (G, A) 

The next result establishes a fundamental relation between the restriction and core
striction homomorphisms. 
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Proposition 26. Suppose H is a subgroup of G of index m. Then Cor o Res = m, i.e., 
if e is a cohomology class in Hn (G, A) for some G-module A, then 

Cor(Res(e)) = me E Hn (G, A) for all n 2:: 0. 

Proof" This follows from the explicit formula for corestriction in Example 4 above, 
as follows. If f E Hom;;m (Pn , A) were in Hom;w (Pn , A), i.e., if f were also a G
module homomorphism, then gd (gj1 p) = g;gj1 f(p) = f(p), for 1 ::S i ::S m. Since 
restriction is the induced map on cohomology of the natural inclusion of Hom;w ( Pn , A) 
into Hom;;m (Pn , A), for such an f we obtain 

Res Cor 
Hom;w (Pn , A) ---+ Hom;;ZH (Pn , A) ---+ Hom;w (Pn , A) 

f �----+ f 1---+ m f. 

It follows that Res o Cor is multiplication by m on the cohomology groups as well. 

Corollary 27. Suppose the finite group G has order m. Then m Hn (G, A) = 0 for all 
n 2:: 1 and any G-module A. 

Proof" Let H = 1 ,  so that [G : H] = m, in Proposition 26. Then for any class 
e E Hn (G, A) we have me = Cor(Res(e)). Since Res(e) E Hn (H, A) = Hn ( 1 ,  A), 
we have Res(e) = 0 for all n 2:: 1 by the second example preceding Proposition 20. 
Hence me = 0 for all n 2:: 1, which is the corollary. 

Corollary 28. If G is a finite group then Hn (G, A) is a torsion abelian group for all 
n 2:: 1 and all G-modules A. 

Proof" This is immediate from the previous corollary. 

Corollary 29. Suppose G is a finite group whose order is relatively prime to the 
exponent of the G-module A. Then Hn ( G,  A) = 0 for all n 2:: 1 .  In particular, if A is 
a finite abelian group with ( IG I ,  lA I ) = 1 then Hn (G, A) = 0 for all n 2:: 1 .  

Proof" This follows since the abelian group Hn (G, A )  is annihilated b y  I G I  b y  the 
previous corollary and is annihilated by the exponent of A by Proposition 20. 

Note that the statements in the preceding corollaries are not in general true for 
n = 0, since then H0 ( G,  A) = A G, which need not even be torsion. 

We mention without proof the following result. Suppose that H is a normal sub
group of G and A is a G-module. The cohomology groups Hn (H, A) can be given 
the structure of G j H -modules ( cf. Exercise 17). It can be shown that there is an exact 
sequence 

0 -+  H1 (GjH, AH) � H1(G, A) � H\H, A)GJH � H2 (GjH, AH) � H2 (G, A) 

where H 1 (H, A)GfH denotes the fixed points of H1 (H, A) under the action of GjH 
and Tra is the so-called transgression homomorphism. This exact sequence relates the 
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cohomology groups for G to the cohomology groups for the normal subgroup H and 
for the quotient group G I H. Put another way, the cohomology for G is related to the 
cohomology for the factors in the filtration 1 ::::: H ::::: G for G. More generally, one 
could try to relate the cohomology for G to the cohomology for the factors in a longer 
filtration for G. This is the theory of spectral sequences and is an important tool in 
homological algebra. 

Galois Cohomology and Profinite Groups 

One important application of group cohomology occurs when the group G is the Galois 
group of a field extension KIF. In this case there are many groups of interest on which 
G acts, for example the additive group of K, the multiplicative group K x , etc. The 
Galois group G = Gal(KI F) is the inverse limit � Gal(LI F) of the Galois groups 
of the finite extensions L of F contained in K and is a compact topological group 
with respect to its Krull topology (i.e., the group operations on G are continuous with 
respect to the topology defined by the subgroups Gal(KI L) of G of finite index), cf. 
Section 14.9. In this situation it is useful (and often essential) to take advantage of the 
additional topological structure of G. For example the subfields of K containing F 
correspond bijectively with the closed subgroups of G = Gal(K I F), and the example 
of the composite of the quadratic extensions of Q discussed in Section 14.9 shows 
that in general there are many subgroups of G that are not closed. Fortunately, the 
modifications necessary to define the cohomology groups in this context are relatively 
minor and apply to arbitrary inverse limits of finite groups (the profinite groups). If G 
is a profinite group then G = � GIN where the inverse limit is taken over the open 
normal subgroups N of G (cf. Exercise 23). 

Definition. If G is a profinite group then a discrete G-module A is a G-module A 
with the discrete topology such that the action of G on A is continuous, i.e., the map 
G x A �  A mapping (g , a) to g -a  is continuous. 

Since A is given the discrete topology, every subset of A is open, and in particular 
every element a E A is open. The continuity of the action of G on A is then equivalent 
to the statement that the stabilizer G a of a in G is an open subgroup of G, hence is 
of finite index since G is compact (cf. Exercise 22). This in tum is equivalent to the 
statement that A =  UAH where the union is over the open subgroups H of G. 

Some care must be taken in defining the cohomology groups Hn (G, A) of a profi
nite group G acting on a discrete G-module A since there are not enough projectives 
in this category. For example, when G is infinite, the free G-module ZG is not a 
discrete G-module ( G does not act continuously, cf. Exercise 25). Nevertheless, the 
explicit description of Hn (G, A) given in this section (occasionally referred to as the 
discrete cohomology groups) can be easily modified - it is only necessary to require 
the cochains cn (G , A) to be continuous maps from en to A. The definition of the 
coboundary maps dn in equation ( 18) is precisely the same, as is the definition of the 
groups of cocycles, coboundaries, and the corresponding cohomology groups. It is 
customary not to introduce a separate notation for these cohomology groups, but to 
specify which cohomology is meant in the terminology. 
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Definition. If G is a profinite group and A is a discrete G-module, the cohomol
ogy groups Hn (G, A) computed using continuous cochains are called the profinite or 
continuous cohomology groups. When G == Gal(K I F) is the Galois group of a field 
extension KIF then the Galois cohomology groups Hn (G, A) will always mean the 
cohomology groups computed using continuous cochains. 

When G is a finite group, every G-module is a discrete G-module so the discrete 
and continuous cohomology groups of G are the same. When G is infinite, this need 
not be the case as shown by the example mentioned previously of the free G-module 
7LG when G is an infinite profinite group. All the major results in this section remain 
valid for the continuous cohomology '  groups when "G-module" is replaced by "discrete 
G-module" and "subgroup" is replaced by "closed subgroup." For example, the Long 
Exact Sequence in Group Cohomology remains true as stated, the restriction homomor
phism requires the subgroup H of G to be a closed subgroup (so that the restriction of 
a continuous map on en to Hn remains continuous), Proposition 26 requires H to be 
closed, etc. 

We can write G = �(GIN) and A = UA N where N runs over the open normal 
subgroups of G (necessarily of finite index in G since G is compact) . Then AN is a 
discrete GIN -module and it is not difficult to show that 

Hn (G, A) = � Hn (GIN, AN) ( 17 . 19) 
N 

where the cohomology groups are continuous cohomology and the direct limit is taken 
over the collection of all open normal subgroups N of G (cf. Exercise 24). Since 
GIN is a finite group, the continuous cohomology groups Hn (GIN, AN) in this direct 
limit are just the (discrete) cohomology groups considered earlier in this section. The 
computation of the continuous cohomology for a profinite group G can therefore always 
be reduced to the consideration of finite group cohomology where there is no distinction 
between the continuous and discrete theories. 

E X E R C I S E S  

1. Let Fn = ZG ®z 7l..G ®z - - - ®z 7l..G (n + 1 factors) for n � 0 with G-action defined on 
simple tensors by g · (go ® g1 ® · · · ® gn ) = (ggo) ® g1 ® · · · ® gn . 
(a) Prove that Fn is a free ZG-module of rank I G In with ZG basis 1 ® gr ® gz ® · · · ® gn 

with g; E G. 

Denote the basis element 1 ® gr ® gz ® · · · ® gn in (a) by (gr , g2 , . . . , gn) and define the 
G-module homomorphisms dn for n � 1 on these basis elements by dr (gr ) = gr - 1 and 

n-l  
dn (gr , . . .  , gn) = gr · (gz , - . .  , gn) + :�:)- 1)i (gr , . . .  , g;- r , g; g;+I ·  gi+2 · . .  - ,  gn) 

i=l 
+ (- 1)n (gr , . . .  , gn- J) , 

for n � 2. Define the 7l..-module contracting homomorphisms 
S-t So St S2 

z �  Fo �  Fr � Fz � · · ·  

on a Z  basis by L r (l)  = 1 and sn (go ® · · · ® gn ) = 1 ® go ®  . . . ® gn . 
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(b) Prove that 

ES-1 = 1 , d1 so + S-If' = 1 , dn+1Sn + Sn- 1dn = 1 ,  for all n � 1 
where the map aug : Fo � Z is the augmentation map aug(LgeG cx8g) = LgeG cx8 . 

(c) Prove that the maps s, are a chain homotopy (cf. Exercise 4 in Section 1) between 
the identity (chain) map and the zero (chain) map from the chain 

d, dn- 1 d1 aug 
· · · � F, � Fn-1 � · · ·  � Fo � z � o  

of Z-modules to itself. 
(d) Deduce from (c) that all Z-module homology groups of (*) are zero, i.e., (*) is an 

exact sequence of Z-modules. Conclude that ( *) is a projective G-module resolution 
of Z. 

2. Let P, denote the free Z-module with basis (go . g1 . g2 , . . . , g,) with g; E G and define 
an action of G on P, by g · (go , g1 . . . .  , g,) = (ggo , gg1 • . . . , gg,) .  For n � 1 define 

n 
d, (go , g1 , g2 • . . . •  g, ) = L:<- 1i (go • . . . •  g; , . . . . g, ) ,  

i=O 
where (go , . . .  , g; , . . .  , g, ) denotes the term (go . g1 . g2 , . . .  , g, ) with g; deleted. 
(a) Prove that P, is a free ZG-module with basis ( 1 , g1 , g2 • . . .  , g,) where g; E G. 
(b) Prove that dn-1 o d, = 0 for n � 1 .  [Show that the term (go ,  . . . , ii , . . . , ik . . . . , g,) 

missing the entries gj and gk occurs twice in dn-1 o d, (go ,  g1 .  g2 , . . . , g,) , with 
opposite signs.] 

(c) Prove that <p : P, � F, defined by 

<p((go , g1 , g2 , . .  · • g, )) = go ® (g()1 g1 ) ® (g11g2) · · · ® (g;;�1g, ) 
is a G-module isomorphism with inverse 1ft : P, � F, given by 

1/t(go ® g1 ® . . .  ® g, ) = (go , gog1 . gog1g2 • . . .  , gog1g2 · · · g,) . 
(d) Prove that if t<(go) = 1 for all go E G then 

is a free G-module resolution of Z. [Show that the isomorphisms in (c) take the 
G-module resolutions (**) and (*) of the previous exercise into each other.] 

3. Let F, and P, be as in the previous two exercises and let A be a G-module. 
(a) Prove that HomzG (F, ,  A) can be identified with the collection C" (G, A) of maps 

from G x G x · · · x G (n copies) to A and that under this identification the associated 
coboundary maps from C" (G, A) to C"+1 (G , A) are given by equation ( 18). 

(b) Prove that HomzG (P, , A) can be identified with the collection of maps f from n + 1 
copies G x G x · · · x G to A that satisfy f(ggo , gg1 • . . .  , gg,) = gf(go . g1 • . . .  , g,) . 

The group C" ( G, A) is sometimes called the group of inhomogeneous n-cochains of G in A, 
and the group in (b) of the previous exercise is called the group of homogeneous n-cochains 
of G in A. The inhomogeneous cochains are easier to describe since there is no restriction 
on the maps from G" to A, but the coboundary map d, on homogeneous cochains is less 
complicated (and more naturally suggested in topological contexts) than the coboundary map 
on inhomogeneous cochains. The results of the previous exercises show that the cohomology 
groups H" ( G, A) defined using either homogeneous or inhomogeneous cochains are the same 
and indicate the origin of the coboundary maps d, used in the text. Historically, H" (G, A) was 
originally defined using homogeneous cochains. 
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4. Suppose H is a normal subgroup of the group G and A is a G-module. For every g E G 
prove that the map f (a) = ga for a E A H defines an automorphism of the subgroup A H .  

5. Suppose the G-module A decomposes as a direct sum A = A t  EfJ A2 of G-submodules. 
Prove that for all n � 0, Hn (G, A) � Hn (G, At)  (fJ Hn (G, A2) .  

6.  Suppose 0 -+ A -+ Mt  -+ M2 -+ · · · -+ Mk -+ C -+ 0 i s  an  exact sequence of  G
modules where Mt , M2 • . . .  , Mk are cohomologically trivial. Prove that Hn+k (G, A) � 
Hn ( G, C) for all n � 1 .  [Decompose the exact sequence into a succession of short exact 

sequences and use Corollary 22. For example, if 0 -+ A � Mt ..! M2 � C -+ 0 is 
exact, show that 0 -+  A -+  Mt -+ B -+  0 and 0 -+  B -+  M2 -+ C -+  0 are both exact, 
where B = Mt / image a = Mt / ker � � image � = ker y .] 

7. (Adjoint Associativity) Let R, S and T be rings with 1 ,  let P be a left S-module, let N be 
a (T, S)-bimodule, and let A be a left T -module. Prove that 

cJ> :  Homs(P,  Homr (N, A)) � Homr (N 0s P, A) 

defined by ct> (.f) (n 0 p) = f(p)(n) is an isomorphism of abelian groups. (See also 
Theorem 43 in Section 10.5). 

8. Suppose G is cyclic of order m with generator a and let N = 1 +a +a2 + · +am-I E ZG . 
(a) Prove that the augmentation map aug(L�=(/ a; ai ) = L�(/ a; is a G-module homo

morphism from ZG to 7L. 
(b) Prove that multiplication by N and by a - I in ZG define a free G-module resolution 

of Z: . . .  � 7LG � 7LG � . . . � 7LG � 7LG � 7L � 0. 

9. Suppose G is an infinite cyclic group with generator a . 
(a) Prove that multiplication by a - I E '7/.,G defines a free G-module resolution of 

Z: 0 � 7LG � 7LG � 7L � 0. 
(b) Show that H0(G, A) � AG, that H1 (G, A) � Aj(a - I)A, and that Hn (G, A) = O for 

all n � 2. Deduce that H 1 (G, '7/.,G) � '7/., (so free modules need notbe cohomologically 
trivial). 

10. Suppose H is a subgroup of finite index m in the group G and A is an H-module. Let 
XI , . . .  , Xm be a set of left coset representatives for H in G: G = Xt H U · · · U Xm H. 
(a) Prove that ZG = Efj�=l x;'7LH = E9�1 7LHx;- l and '7/.,G 0zH A = E9�1 (x; 0 A) as 

abelian groups. 
(b) Let /;,a be the function from '7/.,G to A defined by 

. X _ { ha if X = hxi-l with h E H 
J,,a ( ) -

0 th · o erw1se. 

Prove that !i,a E M� (A) = HomzH (7LG, A), i.e., .fi.a (h'x) = h'.fi.a (X)  for h' E H. 
(c) Prove that the map cp(.f) = L�l x; 0 f(x;- 1 ) from M� (A) to 7LG 0w A is a G

module homomorphism. [Write X;- l  g = h;xj:1 for i = I ,  . . .  , m and observe that 
x; 0 f(x;-l g) = x; 0 h; J(xj:1 )  = x;h; 0 f(xj:1 ) = gx;' 0 f(x;-;-1 ) .] 

(d) Prove that cp gives a G-module isomorphism cp : M� (A) � 7LG 0zH A. [For the 
injectivity observe that an H-module homomorphism is 0 if and only if f(x;-1 ) = 0 
for i = I ,  . . .  , m. For the smjectivity prove that cp(fi ,a )  = x; 0 a.] 

11. Prove that the isomorphism M� (A) � 7LG 0zu A in (d) of the previous exercise need not 
hold if H is not of finite index in G. [If G is an infinite cyclic group show that Shapiro's 
Lemma implies H 1 (G, Mf (Z) ) = 0 while H1 (G, ZG) � 7L by Exercise 9.] 
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12. If H is a subgroup of G and A is an abelian group let Mc;H (A) denote the abelian group 
of all maps from the left cosets g H of H in G to A. 
(a) Prove that Mf (A) � Mf (Mc;H (A)) as H-modules. [If [g; } iei is a choice of left 

coset representatives of H in G define the correspondence between f E Mf (A) and 
F :  H --+  Mc;H (A) by F(h) (g; H) = f(g;h), and check that this is an isomorphism 
of H-modules.] 

(b) A G-module A such that Hn (H, A) = 0 for all n ::: I and all subgroups H of G is 
called cohomologically trivial. Prove that Mf (A) is a cohomologically trivial for any 
abelian group A. 

(c) If G is finite, prove that ZG 0z A is cohomologically trivial for all abelian groups A. 
13. Suppose A is a G-module and H is a subgroup of G. Prove that the group homomorphism 

from Hn (G, A) to Hn (G, M�(A)) for all n ::: 0 induced from the G-module homo
morphism from A to M�(A) in Example 3 following Corollary 22 composed with the 
isomorphism Hn (G, M�(A)) � Hn (H, A) of Shapiro's Lemma is the restriction homo
morphism from Hn (G, A) to Hn (H, A) . 

14. Suppose q; : H --+ G is the inclusion map of the subgroup H of G into G. If A is an H
module and M�(A) the associated induced G-module, define the group homomorphism 
1/1 : M�(A) --+ A by mapping f to its value at 1 :  1/1(/) = f(l) .  
(a) Prove that q; and 1/1 are compatible homomorphisms. 
(b) Prove that the induced group homomorphism from Hn (G, M�(A)) to Hn (H, A) for 

n ::: 0 is the isomorphism in Shapiro's Lemma. 

15. Suppose H is a normal subgroup of G and A is a G-module. For fixed g E G, let 1/1 (a) = ga 
and q;(h) = g-1 hg for h E  H. 
(a) Prove that q; and 1/1 are compatible homomorphisms. 
(b) For each n ::: 0, prove that the homomorphism Bg from Hn (H, A) to Hn (H, A) 

induced by the compatible homomorphisms q; and 1/1 is an automorphism of Hn (H, A) . 
[Observe that both q; and 1/1 have inverses.] 

(c) Show that Bg acting on H0(H, A) is the automorphism in Exercise 4. 

16. Let A be a G-module and for g E G let Bg denote the automorphism of Hn (G, A) defined 
in the previous exercise. 
(a) Prove that Bg acting on H0(G, A) = A G is the identity map. 
(b) Prove that Bg acting on Hn (G, A) is the identity map for n ::: l .  [By induction on n and 

dimension shifting. For n = 1, use the exact sequence in Corollary 22, together with 
(a) applied to Bg on cG. For n ::: 2 use the isomorphism Hn+l (G, A) � Hn (G, C) 
in Corollary 22.] 

17. Suppose that H is a normal subgroup of G and A is a G-module. For n ::: 0 prove 
that Hn (H, A) is a G/H-module where gH acts by the automorphism Bg induced by 
conjugation by g on H and the natural action of g on A as in Exercise 15.  [Use the 
previous exercise to show this action of a coset is well defined.] 

18. Suppose that G is cyclic of order m, that H is a subgroup of G of index d, and that Z is a 
trivial G-module. Use the projective G-module resolution in Exercise 8 to prove 
(a) that Cor : Hn (H, Z) --+ Hn (G, Z) is multiplication by d from Z to Z for n = O, from 

Zf(mfd)Z to ZjmZ if n is odd, and from 0 to 0 if n is even, n ::: 2, and 
(b) that Res : Hn (G, Z) --+ Hn (H, Z) is the identity map from Z to Z for n = 0, and 

is the natural projection map from ZjmZ to Zj(mfd)Z or from 0 to 0, depending on 
·the parity of n ::: 1 .  

19. Let p b e  a prime and let P b e  a Sylow p-subgroup of the finite group G. Show that for 
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any G-module A and all n ;:: 0 the map Res : Hn (G, A) � Hn (P, A) is injective on the 
p-primary component of H 1 (G, A) . Deduce that if IA I  = pa then the restriction map is 
injective on Hn (G, A). [Use Proposition 26.] 

20. Let p be a prime, let G = ( a ) be cyclic of order pm and let W be a vector space of 
dimension d > 0 over F P on which a acts as a linear transformation. Assume W has a 
basis such that the matrix of a is a d  x d elementary Jordan block with eigenvalue 1 .  
(a) Prove that d ::: pm . [Use facts about the minimal polynomial o f  an elementary Jordan 

block.] 
(b) Prove that dim JF WG = 1 .  p 
(c) Prove that dim JF/a - 1) W = d - 1 .  
(d) If  N = 1 + a + ·  · · + a Pm-l is the usual norm element, prove that N W  is of dimension 

1 if d = pm (respectively, of dimension 0 if d < pm) and that the dimension of 
NW is d - 1 (respectively, d). [Let R be the group ring ll"p G. and show that every 
nonzero R-submodule of R contains N. Note that W is a cyclic R-module and let 
rp : R � W be a surjective homomorphism. Conclude that if rp is not an isomorphism 
then N E ker rp.] 

(e) Deduce that if d = pm then Hn (G, W) = 0, and if d < pm then Hn (G, W) has order 
p, for all n ;:: 1 (i.e., these cohomology groups are zero if and only if W is a free 
F p G-module). 

21. Let p be a prime, let G = ( a  ) be cyclic of order pm and let V be a G-module of exponent 
p. Let V = Vt EB Vz EB · · • EB Vk be a decomposition of V giving the Jordan Canonical 
Form of a ,  where each \1j is a-invariant and a matrix of a on \1j is an d; x d; elementary 
Jordan block with eigenvalue 1 ,  d; ;:: 1 (cf. Section 12.3). Prove that I VG I = pk and 
iHn (G, V)l = ps where s is the number of V; of dimension less than pm over Fp. for all 
n ;:: 1 .  [Use the preceding exercise and Exercise 5.] 

22. Suppose G is a topological group, i.e., there is a topology on G such that the maps 
G x G � G defined by (gt , gz) 1-+ g1 gz and G � G defined by g r+ g -1 are continuous. 
(a) If H is an open subgroup of G and g E G, prove that the cosets gH and Hg and the 

subgroup g-1 Hg are also open. 
(b) Prove that any open subgroup is also closed. [The complement is the union of cosets 

as in (a).] 
(c) Prove that a closed subgroup of finite index is open. 
(d) If G is compact prove that every open subgroup H is of finite index. 

23. Suppose G is a compact topological group. Prove the following are equivalent: 
(i) G is profinite, i.e., G = ijm G; is the inverse limit of finite groups G; . 

(ii) There exists a family {N; }  (i E I) of open normal subgroups N; in G such that 
n; N; = 1 and in this case G � ijm(GI N; ) .  

(iii) There exists a family {Hj } (j E :1) of open subgroups Hj in G such that nj Hj = 1 .  

[To show (iii) implies (ii), let H be open in G and use (d) of the previous exercise to show 
that N = ngEGg-1 Hg is a finite intersection and conclude that N £ H £ G and N is 
open and normal in G.] 

24. Suppose N and N' are open normal subgroups of the profinite group G and N' £ N. Prove 
that the projection homomorphism rp : G 1 N' � G 1 N and the injection 1/1 : AN � AN' 

are compatible homomorphisms and deduce there is an induced homomorphism from 
Hn (GIN, AN) to Hn (GIN', AN'

). 

25. If G is an infinite profinite group show that G does not act continuously on A = ZG. 
[Show that the stabilizer of a E A is not always of finite index in G.] 
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1 7.3 CROSSED HOMOMORPHISMS AND H1 (G,A) 

In this section we consider in greater detail the cohomology group H1 (G, A) where 
G is a group and A is a G-module. From the definition of the coboundary map d1 in 
equation ( 1 8), if f E C1 (G, A) then 

d1 UH8t . 82) = 8t . /(82) - /(8182) + /(8d-
Thus any function f : G --+ A i s  a 1 -cocycle if  and only if  it satisfies the identity 

f(8h) = /(8) + 8/(h) for all 8, h E G. (17.20) 

Equivalently, a 1 -cocycle is determined by a collection {ag }geG of elements in A satis
fying agh = ag + 8ah for 8· h E G (and then the 1 -cocycle f is the function sending 8 
to ag) . Note that if 1 denotes the identity of G,  then /(1) = /(12) = f(l )  + 1 ·  f(l) = 

2/( 1 ) , so f(l) = 0 is the identity in A.  Thus 1 -cocycles are necessarily "normalized" 
at the identity. It then follows from the cocycle condition that /(8- 1 )  = -8-1 /(8) for 
all 8 E G. 

If A is a G-module on which G acts trivially, then the cocycle condition (20) is 
simply f(8h) = /(8)+ f(h) ,  i .e. , f is simply a homomorphism from the multiplicative 
group G to the additive group A. Because of this the functions from G to A satisfying 
(20) are called crossed homomorphisms. 

A 1-cochain f is a 1 -coboundary if there is some a E A such that 

/(8) = 8 · a - a  for all 8 E G, ( 17.21 )  

(equivalently, ag = 8a -a in the notation above). Note that since -a E A, the co bound
ary condition in (2 1 )  can also be phrased as f (8) = a - 8 · a for some fixed a E A and 
all 8 E G. The 1 -coboundaries are called principal crossed homomorphisms. With this 
terminology the cohomology group H1 ( G, A) is the group of crossed homomorphisms 
modulo the subgroup of principal crossed homomorphisms. 

Example: (Hilbert's Theorem 90) 

Suppose G = Gal(K I F) is the Galois group of a finite Galois extension KIF of fields. 
Then the multiplicative group K x is a G-module and H 1 ( G, K x )  = 0. To see this, let 
{aa } be the values f(a) of a 1-cocycle f, so that aa E K x  and aar = aaa (ar )  (the 
cocycle condition written multiplicatively for the group Kx ) . By the linear independence 
of automorphisms (Corollary 8 in Section 14.2), there is an element y E K such that 

f3 = ,E ar< (y) 
reG 

is nonzero, i.e., f3 E K x .  Then for any a E G we have 

a (f3) = L a (ar )  ar (y)  = a;;:- 1 L aa.- ar (y) = a;;:- 1 {3 
reG reG 

where the second equality comes from the cocycle condition. Hence aa = f31a (f3) ,  which 
is the multiplicative form of the coboundary condition (21 ) (for the element a = {3-1 ) . 
Since every 1-cocycle is a 1 -coboundary, we have H 1 ( G, K x )  = 0. The same result holds 
for infinite Galois extensions by equation ( 19) in the previous section since H1 (G, K x )  is 
the direct limit of trivial groups. 
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As a special case, suppose KIF is a Galois extension with cyclic Galois group G 
having generator a .  The cohomology groups for G were computed explicitly in the pre.. 
vious section, and in particular, H 1 (G, A) = N AI(a - 1)A for any G-module A (written 
additively). Since this group is trivial in the present context, we see that an element a in 
K is in the kernel of the norm map, i.e., NK;F(a) = 1 if and only if a =  a (f3)1f3 for some 
f3 E K. (For a direct proof of this result in the cyclic case, cf. Exercise 23 in Section 14.2.) 

This famous result for cyclic extensions was first proved by Hilbert and appears as 
"Theorem 90" in his book (known as the "Zahlbericht") on number theory in 1 897. As a 
result, the more general result H 1 (G, K x )  = 0 is referred to in the literature as "Hilbert's 
Theorem 90." In general, the higher dimensional cohomology groups H" (G, K x )  for 
n =:::: 2 can be nontrivial (cf. Exercise 1 3). 

Example 

Suppose G = Gal(K I F) is the Galois group of a finite Galois extension K 1 F of fields as 
in the previous example. Then the additive group K is also a G-module and H" ( G, K) = 0 
for all n =:::: 2. The proof of this in general uses the fact that there is a normal basis for K over 
F, i.e., there is an element a E K whose Galois conjugates give a basis for K as a vector 
space over F, or, equivalently, K � ZG ®z F as G-modules. The latter isommphism 
shows that K is induced as a G-module, and then H" (G, K) = 0 follows from Corollary 
24 in Section 2. For a direct proof in the case where G is cyclic, cf. Exercise 26 in Section 
1 4.2. 

If G acts trivially on A, then g · a - a = 0, so 0 is the only principal crossed 
homomorphism, i.e., B 1 ( G, A) = 0. This proves the following result: 

Proposition 30. If A is a G-module on which G acts trivially then H 1 (G, A) 
Hom(G, A), the group of all group homomorphisms from G to H. 

If G is a profinite group, then the same result holds for the continuous cohomology 
group H 1 (G, A) provided one takes the group of continuous homomorphisms from G 
into A.  

Examples 

(1) If G acts trivially on A then H 1 (G, A) = H 1 (GI[G, G], A) since any group homo
mmphism from G to the abelian group A factors through the commutator subgroup 
[G, G] (cf. Proposition 7(5) in Section 5.4), so computing H 1 for trivial G-action 
reduces to computing H 1 for some abelian group. 

(2) If G is a finite group acting trivially on Z, then H 1 (G, Z) = 0 because Z has no 
nonzero elements of finite order so there is no nonzero group homommphism from G 
to Z. 

(3) If A is cyclic of prime order p and G is a p-group then G must act trivially on A 
(since the autommphism group of A has order p - 1), so in this case one always has 
H 1 (G, A) = Hom(G, A).  

(4) IfG is a finitegroupthat acts trivially on <Q1Z then H 1 (G, <QIZ) = Hom(G, <QIZ) = G 
is the dual group of G ( cf. Exercise 14 in Section 5 .2. ). Since <QIZ is abelian, any homo
mmphism of G into <QIZ factors through the commutator quotient Gab = G I[ G, G] 
of G, so Hom(G, <QIZ) = Hom( Gab, <QIZ) . It follows that Hom(G, <QIZ) � dab 

(which by cf. Exercise 14 again is noncanonically isommphic to Gab). 
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If 0 � A � B � C � 0 is a short exact sequence of G-modules then the long 
exact sequence in group cohomology in Theorem 21 of the previous section begins with 
terms 

The connecting homomorphism 80 is given explicitly as follows: if c E cG then there is 
an element b E B mapping to c and then 80( c) is the class in H 1 ( G, A) of the 1-cocycle 
given by 

8o(c) : G � A  

g 1-----+ g . b - b. 

Note that g · b - b is (the image in B of) an element of A for all g E G since c E CC: 
To verify directly that f = 8o(c) satisfies the cocycle condition in (20), we compute 

f(gh) = gh . b - b = (g . b - b) + g . (h . b - b) = f(g) + gf(h) .  

From the explicit expression f = g · b - b it is also clear that 80(c) E H 1 {G, A )  
maps to 0 i n  the next term H 1 ( G, B)  of the long exact sequence above since f i s  the 
coboundary for the element b E B. 

Example: (Kummer Theory) 

Suppose that F is a field of characteristic 0 containing the group 1-Ln of all nth roots of 
unity for some n 2: 1 .  Let K be an algebraic closure of F and let G = Gal(KI F) . 
The group G acts trivially on 1-Ln since 1-Ln c F by assumption, i.e., 1-Ln ;;: 7L.In7L. as G
modules. Hence the Galois cohomology group H1 (G, J-Ln) is the group Holllc (G, 7L.In7L.) 
of continuous homomorphisms of G into 71..1 n7L.. If x is such a continuous homomorphism, 
then ker x � G is a closed normal subgroup of G, hence corresponds by Galois theory to 
a Galois extension L x I  F. Then Gal(L x I  F) ;;: image x ,  so L x is a cyclic extension of F 
of degree dividing n. Conversely, every such cyclic extension of F defines an element in 
Holllc (G, 7L.In7L.), so there is a bijection between the elements of the Galois cohomology 
group H 1 ( G, 1-Ln) and the cyclic extensions of F of degree dividing n.  

The homomorphism of  raising to the nth power i s  smjective on K x  (since we can 
always extract nth roots in K) and has kernel 1-Ln . Hence the sequence 

1 � 1-Ln � K x  � K x  � 1 

is an exact sequence of discrete G-modules. The associated long exact sequence in Galois 
cohomology gives 

1 � 1-L� � (K x )G � (K x ) G 
� Hl (G, J-Ln) � Hl (G, K x )  � . . . .  

We have J-L� = J-Ln and (K x )G = F x by Galois theory, and H1 (G, K x )  = 0 by Hilbert's 
Theorem 90, so this exact sequence becomes 

1 � 1-Ln � Fx ...!'__,. F x � H 1 (G, J-Ln) � 0, 

which in turn is equivalent to the isomorphism 
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where pxn denotes the group of nth powers of elements of px . This isomorphism is made 
explicit using the explicit form for the connecting homomorphism given above: for every 
a E px and a E G, the element :;fii in K x maps to a in the exact sequence and 

a (  :;fii ) 
x (a) = :;fii 

defines an element in H 1 (G, J-Ln) (cf. Exercise 1 1). The kernel of this homomorphism x 
is the field F( :;j(i ). By the results of the previous paragraph, when F contains the nth 

roots of unity an extension L f F is Galois with cyclic Galois group of order dividing n if 
and only if L = F( :;j(i )  for some a E F x . Furthermore, the class of a in px fFxn is 
unique, i.e., a is unique up to an nth power of an element in F. Such an extension is called 
a Kummer extension, cf. Section 14.7 and Exercise 12. 

If the characteristic of F is a prime p, the same argument applies when n is not 
divisible by p, replacing the algebraic closure of F with the separable closure of F (the 
largest separable algebraic extension of F). 

Example: (The Transfer Homomorphism) 

Suppose G is a finite group and H is a subgroup. The corestriction defines a homomorphism 
from H1 (H, Q/Z) to H1 (G, Q/Z), which by Example 4 above gives a homomorphism 
from Eiab to cfab. This gives a homomorphism 

Ver : Gab � Hab 

called the transfer (or Verlagerungen) homomorphism (cf. Exercise 14).  To make this 
homomorphism explicit, consider the exact sequence 

(17.22) 

defined by the homomorphism mapping a E Q/Z to fa E Mf (Q/Z) in Example 4 
preceding Proposition 23 in the previous section (so fa (g) = g · a  for g E G). This 
is a short exact sequence of G-modules and hence also of H -modules. The first portions 
of the associated long exact sequences for the cohomology with respect to H and then G 
give the rows in the commutative diagram 

lio 
· · · � cH � t Cor 

lio · · · � cG � 

H1 (H, Q/Z) � 0 t Cor 

H1 (G, Q/Z) � 0 

since H1 (H, Mf (Qf'll.)) = H1 (G, Mf (Qf'll.)) = 0 (cf. Exercise 12 in Section 2). Let 
x E H1 (H, Q/Z) and suppose that c E cH is an element mapping to x by the surjective 
connecting homomorphism 8o in the first row of the diagram above. By the commutativity, 
x '  = Cor (x) is the image under the connecting homomorphism 8o of c' = Cor (c) E cG 
in the second row of the diagram. By our explicit formula for the coboundary map 8o, if 
F E Mf (Q/Z) is any element mapping to c' in (22) then g · F - F = fa' for a unique 
a' E Q/Z, and we have x'(g) = 8o(c') (g) = a' for g E  G. Since fa' (x) = x · a' = a' for 
any x E G because G acts trivially on Qf'll., the function g · F - F in fact has the constant 
value a', and so can be evaluated at any x E G to determine the value of x' (g). 
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Since c' = L:7'=t g; · c E cG where g1 , . . .  , gm are representatives of the left cosets 
of H in G (cf. Example 4 preceding Proposition 26), such an element F is given by 

m 

i=l  

where I E Mf (Q/7!.) is any element mapping to c in (22). This I can be used to compute 
the explicit co boundary of c as before: h · I - f = Ia for a unique a E Q/7!. and x (h) = a 
for h E H. As before, the function h · f - f = Ia has the constant value a and so can be 
evaluated at any element x of G to determine the value of x (h) . 

Computing g · F - F on the element 1 E G it follows that 

For i = 1 ,  . . . , m, write 

m m 
x' <g) = I:  t<ggi ) - I: l<g; ) .  

i=l i=l 

gg; = g.; h (g ,  g; ) with h (g , g; ) E H, 

noting that the resulting set of g.; is some permutation of {gt , . . .  , gm } .  Then 
m m m m 

I: l<gg; ) - I: l<g; )  = .L:u<g.;h (g, g; )) - 1<.�;)] = I: x <h <g. g; )) 
i=l i=l i=l i=l 

since as noted above, x (h) = f(xh) - l(x) for any x E G. Hence 
m 

x' (g) = x <n h (g, g; )) 
i=l 

and so the transfer homomorphism is given by the formula 
m 

Ver(g) = n h(g, gi ) 
i=l 

(17.23) 

(1 7.24) 

with the elements h(g, g; ) E H defined by equation (23). Note that this proves in particular 
that the map defined in (24) is a homomorphism from Gab to H3b that is independent of the 
choice of representatives g; for H in G in (23). Proving that this map is a homomorphism 
directly is not completely trivial. The same formula also defines the transfer homomorphism 
when G is infinite and H is a subgroup of finite index in G. 

As an example ofthe transfer, suppose H = n'll and G = 7l and choose 0, 1 ,  2,  . . .  , n-1  
as  coset representatives for H in G.  If  g = 1 ,  then all the elements h (g , g; ) are 0 for 
i = 1 ,  2 ,  . . . , n - 1 and h ( l ,  n - 1 )  = n. Hence the transfer map from 7l to n'll maps 1 
to n, so is simply multiplication by the index. Sitnilarly, the transfer map from any cyclic 
group G to a subgroup H of index n is the n1h power map. See also Exercise 8. 

For the cyclic group IF; for an odd prime p and subgroup {±1 }, it follows that the 
transfer map is the homomorphism Ver : IF; --+ {±1}  given by 

Ver(a) = a = - = 
(p-I)/Z ( a ) { +1 if a is a square 

p - 1  i f  a is not a square 

(the symbol (�) is called the Legendre symbol or the quadratic residue symbol). If instead 
p 

we take the elements 1 ,  2, . . .  , (p - 1 )/2 as coset representatives for {±1 } in IF; we see 
that 
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where m(a) is the number of elements among a, 2a . . . .  , (p - 1 )a/2 whose least positive 
remainder modulo p is greater than (p - 1)  /2 (in which case the element differs by -1  from 
one of our chosen coset representatives and contributes one factor of - 1  to the product in 
(24)). This result is known as Gauss ' Lemma in elementary number theory and can be used 
to prove Gauss' celebrated Quadratic Reciprocity Law (cf. also Exercise 15). 

Next we give two important interpretations of H1 (G, A) in terms of semidirect 
products. If A is a G-module, let E be the semidirect product E = A )<! G, where A 
is normal in E and the action of G (viewed as a subgroup of E) on A by conjugation 
is the same as its G-module action: gag-1 = g · a . In the notation of Section 5.5, 
E = A )<!"' G, where rp is the homomorphism of G into Aut(A) given by the G-module 
action. In particular, E will be the direct product of A and G if and only if G acts 
trivially on A. As in Section 5 .5, we shall write the elements of E as (a , g) where 
a E A and g E G, with group operation 

(a. , g1) (a2 , g2) = (aJ + g1 · a2 , g1g2) .  
Note that A i s  written additively, while G and E are written multiplicatively. 

Definition. Let X be any group and let Y be a normal subgroup of X. The stability 
group of the series 1 ::::) Y ::::) X is the group of all automorphisms of X that map Y to 
itself and act as the identity on both of the factors Y and X f Y, i.e., 

Stab(l ::::) Y ::::) X) = {a E Aut(X) I a (y) = y for all y E Y, 

and a(x) = x mod Y for all x E X}. 

In the special case where Y is an abelian normal subgroup of X, conjugation by 
elements of Y induce (inner) automorphisms of X that stabilize the series 1 ::::) Y ::::) X, 
and in this case Y 1 C y (X) is isomorphic to a subgroup of Stab(l ::::) Y ::::) X) (where 
Cy (X) is the elements of Y in the center of X). 

Proposition 31. Let A be a G-module and let E be the semidirect product A )<! G. For 
each cocycle f E Z1 (G, A) define a1 : E -+  E by 

af ((a ,  g)) = (a + f(g) , g) . 
Then the map f -+  a1 is a group isomorphism from Z1 (G, A) onto Stab( l  ::::) A ::::) E).  
Under this isomorphism the subgroup B 1 (G , A) of coboundaries maps onto the sub
group A/ C A (E) of the stability group. 

Proof" It is an exercise to see that the cocycle condition implies a1 is an automor
phism of E that stabilizes the chain 1 :<:J A ::::) E.  Likewise one checks directly that 
a f• + fz = a J1 o a fz ,  so the map f r+ a f is a group homomorphism. By definition of a f 
this map is injective. Conversely, let a E Stab(l :<::] A ::::) E) . Since a acts trivially on 
E I A, each element (0, g) in this semidirect product maps under a to another element 
(a , g) in the same coset of A; define fa : G -+  A by letting fa (g) = a. If we identify 
A with the elements of the form (a , l) in E, then the group operation in E shows that 

Ja (g) = a((O, g))(O, g)-1 • 
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Because C1 is a stability automorphism of E, it is easy to check that fa satisfies the 
cocycle condition. It follows immediately from the definitions that fa1 = f, so the 
map f �----+ CTJ is an isomorphism. 

Now f is a co boundary if and only if there is some x E A such that f (g) = x - g · x 
for all g E G. Thus f is a coboundary if and only ifuf ((a , g)) = (a + x - g · x , g) . But 
conjugation in E by the element (x ,  1 )  maps (a , g) to the same element (a + x - g · x ,  g), 
so the automorphism CTJ is conjugation by (x , 1) .  This proves the remaining assertion 
of the proposition. 

Corollary 32. In the notation of Proposition 3 1  let <tJa denote the automorphism of E 
given by conjugation by a for any a E A. Then the cocycles ft and h are in the same 
cohomology class in H 1 (G, A) if and only if CTJ1 = <tJa o CTJ2 '  for some a E A. 

The proposition and corollary show that 1-cocycles may be computed by finding 
automorphisms of E that stabilize the series 1 :::) A :::) E, and vice versa. The first 
cohomology group is then given by taking these automorphisms modulo inner auto
morphisms, i.e. , is the group of "outer stability automorphisms" of this series. 

Example 

Let G = Z2 act by inversion on A = Z/4Z. The corresponding semidirect product 
E = A >:1 G is the dihedral group of order 8, which has automorphism group isomorphic 
to Dg ; viewing E as a normal (index 2) subgroup of D16. conjugation in the latter group 
restricted to E exhibits 8 distinct automorphisms of E (cf. Proposition 17 in Section 4.4). 
The subgroup A of E is characteristic in E, hence every automorphism of E sends A to 
itself, and therefore also acts on E/ A (necessarily trivially since I E/ AI = 2) . Half the 
automorphisms of E invert A and half centralize A; in fact, the cyclic subgroup of order 8 
in D16 (which contains A) maps to a cyclic group of order 4 of automorphisms centralizing 
A. Thus Stab(l :":) A :":)  E) � Z4 � z1 {G, A).  Since the center of E is a  subgroup of A of 
order 2, I A/Z{E) I = 2 = I B 1 (G, A) I .  This proves I H 1 (G, A) I =  2. 

In the semidirect product E the subgroup G is a complement to A, i.e., E = AG 
and A n  G = 1 ;  moreover, every £-conjugate of G is  also a complement to A. But A 

may have complements in E that are not conjugate to G in E. Our second interpretation 
of H1 (G, A) shows that this cohomology group characterizes the £-conjugacy classes 
of complements of A in E. 

Proposition 33. Let A be a G-module and let E be the semidirect product A )<J G. For 
each 1 -cocycle f let 

GJ = {(f(g),  g) I g E G}.  

Then G f is a subgroup complement to A in E. The map f �----+ G f is a bijection from 
Z1 (G, A) to the set of complements to A in E. Two complements are conjugate in 
E if and only if their corresponding 1-cocycles are in the same cohomology class in 
H 1 ( G, A), so there is a bijection between H 1 ( G, A) and the set of £-conjugacy classes 
of complements to A. 

Proof" By the cocycle condition, 

(f(g) ,  g)(f(h) ,  h) = (f(g) +gf(h)g-1 , gh) = (f(g) +g · f(h) ,  gh) = (f(gh) ,  gh) ,  
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and it follows that G 1 is closed under the group operation in E. As observed earlier, each 
cocycle necessarily has f(l) = 0, so G1 contains the identity (0, 1 ) of E. The inverse 
to (f(g) , g) in E is (f(g-1 ), g-1 ) , so G1 is closed under inverses. This proves G1 is a 
subgroup of E. Since the distinct elements of G f represent the distinct cosets of A in 
E, G 1 is a complement to A in E. Distinct cocycles give different coset representatives, 
hence they determine different complements. 

Conversely, if C is any complement to A in G, then C contains a unique coset 
representative ag g of Ag for each g E G. Since C is closed under the group operation 
the element (agg) (ahh) = (aggahg-1)gh represents the coset Agh , and so agh is 
aggahg-1 

= ag (g ·ah) (written additively in A this becomes agh = ag + (g ·ah)). This 
shows that the map f : G -+ A given by f (g) = ag is a cocycle, and so C = G f .  
Hence there i s  a bijection between 1 -cocycles and complements to A in  E.  

Since Stab(l � A � E) normalizes A it permutes the complements to A in  E.  
In  the notation of Proposition 3 1 ,  for 1-cocycles f1 and h it follows immediately 
from the definition that a 1, ( G h )  = G It +  h .  This shows that the permutation action of 
Stab(l � A � E) on the set of complements to A in E is the (left) regular representation 
of this group. Furthermore, if a E A and (/Ja is the stability automorphism conjugation 
by a, then 

( 17 .25) 

where f3a is the 1-coboundary f3a : g t--* a - g · a . Since Gt is a complement to A, any 
e E E may be written as ag for some a E A and g E Gt . Then eGte-1 = aGta-1 , 
i.e., the £-conjugates of G1 are the just the A-conjugates of Gt . Now the complements 
Gt, and Gh are conjugate in E if and only if Gh = aGJ,a-1 = Gt, +f3a for some 
a E A by (25). This shows two complements are conjugate in E if and only if their 
corresponding cocycles differ by a coboundary, i.e., represent the same cohomology 
class in H1 ( G, A), which completes the proof. 

Corollary 34. Under the notation of Proposition 33, all complements to A are conjugate 
in E if and only if H1 (G, A) = 0. 

Corollary 35. If A is a finite abelian group whose order is relatively prime to I G I  then 
all complements to A in any semidirect product E = A >l G are conjugate in E. 

Examples 

(1) Let A = ( a  ) and G = ( g ) both be cyclic of order 2. The group G must act trivially 
on A, hence A >l G = A x G is a Klein 4-group. Here A >l G is abelian, so every 
subgroup is conjugate only to itself, and since H 1 (G, A) = Hom(Zz,  Z/2Z) has order 
2, there are precisely two complements to A in E, namely ( g )  and ( ag ) . 

(2) H A = ( a  ) is cyclic of order 2 and G = ( x ) x ( y ) is a Klein 4-group, then as before 
G must act trivially on A, so H 1 (G , A) = Hom(Zz x Zz , Z/2Z) has order 4. The 
four complements to A in A x G are G, ( ax ,  y ) , ( x ,  ay ) and ( ax , ay ) . 

(3) Proposition 33 can also be used to compute H 1 ( G, A). Let A = ( r )  be cyclic of 
order 4 and let G = ( s )  be cyclic of order 2 acting on A by inversion: srs-1 = r-1 
as in the Example following Corollary 32. Then A >l G is the dihedral group Ds of 
order 8. The subgroup A has four complements in Dg, namely the groups generated 
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by each of the four elements of order 2 not in A: ( s  ), ( r2s ), ( rs )  and ( r3s ) . The 
former pair and the latter pair are conjugate in Ds (in both cases via r ), but ( s ) is 
not conjugate to ( r s ) . Thus A has 2 conjugacy classes of complements in A :><1 G 
and hence H1 (Z2 , Zj4Z) has order 2. This also follows from the computation of the 
cohomology of cyclic groups in Section 2. 

E X E R C I S E S 

1. Let G be the cyclic group of order 2 and let A be a G-module. Compute the isomorphism 
types of z1 (G, A), B 1 (G, A) and H1 (G , A) for each of the following: 
(a) A = Zj4Z (trivial action), 
(b) A =  Zj2Z x Zj2Z (trivial action), 
(c) A = Zj2Z x Zj2Z (any nontrivial action). 

2. Let p be a prime and let P be a p-group. 
(a) Show that H1 (P, lFp) ;::: P fc!J (P),  where c!J(P) is the Frattini subgroup of P (cf. the 

exercises in Section 6 . 1  ). 
(b) Deduce that the dimension of H 1 ( P, lF p)  as a vector space over lFp equals the minimum 

number of generators of P. [Use Exercise 26( c), Section 6. 1 .] 

3. If G is the cyclic group of order 2 acting by inversion on Z show that IH 1 (G, Z) l = 2. 
[Show that in E = Z :><1 G every element of E - Z has order 2, and there are two conjugacy 
classes in this coset.] 

4. Let A be the Klein 4-group and let G = Aut( A) ;::: S3 act on A in the natural fashion. Prove 
that H1 (G, A) = 0. [Show that in the sernidirect product E = A :><1 G, G is the normalizer 
of a Sylow 3-subgroup of E. Apply Sylow's Theorem to show all complements to A in E 
are conjugate.] 

5. Let G be the cyclic group of order 2 acting on an elementary abelian 2-group A of order 
2n . Show that H1 (G, A) = 0 if and only if n  = 2k and lAc I =  2k . [In E = A  :><1 G show 
that (a , x) is an element of order 2 if and only if a E A c ,  where G = ( x ) . Then compare 
the number of complements to A with the number of £-conjugates of x .] 

6. (Thompson Transfer Lemma) Let G be a finite group of even order, let T be a Sylow 
2-subgroup of G, let M :::: T with I T  : Ml = 2, and let x be an element of order 2 in 
G. Show that if G has no subgroup of index 2 then M contains some G-conjugate of x as 
follows: 
(a) Let Ver : Gj[G, G] � T f[T, T] be the transfer homomorphism. Show that 

Ver(x) = n g-1xg mod [T, T] 
g 

where the product is over representatives of the cosets gT that are fixed under left 
multiplication by x.  

(b) Show that under left multiplication x fixes an odd number of left co sets of T in G. 
(c) Show that if G has no subgroup of index 2 then Ver(x) E M j[T, T]. Deduce that for 

some g E G we must have g-1xg E M. [Consider the product Ver(x) in the group 
T/M of order 2.] 

7. Let H be a subgroup of G and let x E G. The transfer Ver : Gj[G, G] � Hj[H, H] 
may be computed as follows: let Ot . Oz, . . . , ok be the distinct orbits of X acting by 
left multiplication on the left cosets of H in G, let 0; have length n; and let g; H be any 
representative of 0; . 
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(a) Show that 0; = {g; H, xg; H, x2g; H, . . .  , xn, - I  g; H }  and that gjt xn, g; E H. 
(b) Show that Ver(x) = n}=I gjixn' g; mod [H, H].  

8. Assume the center, Z (G), of G is of index m.  Prove that Ver(x) = xm , for all x E G, 
where Ver is the transfer homomorphism from GI[G, G] to Z(G). [Use the preceding 
exercise.] 

9. Let p be a prime, let n :::: 3, and let V be an n-dimensional vector space over IF' P with 
basis Vt . vz , . . .  , Vn · Let V be a module for the symmetric group Sn , where each rr E Sn 
permutes the basis in the natural way: rr (v; ) = V:n:(i l · 
(a) Show that I H t (Sn . V) l = . . [Use Shapiro's Lemma.] 

{ 0, if p # 2 
2, If p = 2 

(b) Show that H I  (An . V) = 0 for all primes p. 

10. Let V be the natural permutation module for Sn over IF'z, n :::: 3, as described in the 
preceding exercise, and let W = {at VI + · · · + anvn 1 a t + · · · + an = 0} (the "trace 
zero" submodule of V). Show that if n is even then H I (An , W) # 0. [Show that in the 
sernidirect product V ><l An the element VI induces a nontrivial outer automorphism on 
E = W ><l An that stabilizes the series 1 � W � E.] 

11. Let F be a field of characteristic not dividing n and let a be any nonzero element in F. 
Let K be a Galois extension of F containing the splitting field of xn - a,  and let :yla be 
a fixed nth root of a in K. 
(a) Prove that a (  :y/a)l :yla is an nth root of unity. 
(b) Prove that the function f (a ) = a ( :yla )  I :yla is a 1-cocycle of G with values in the 

group 11-n of nth roots of unity in K (note 11-n is not assumed to be contained in F). 
(c) Prove that the 1 -cocycle obtained by a different choice of nth root of a in K differs 

from the 1 -cocycle in (b) by a 1 -coboundary. 

12. Let F be a field of characteristic not dividing n that contains the nth roots of unity, and 
suppose Ll F is a Galois extension with abelian Galois group of exponent dividing n.  
Prove that L is the composite of cyclic extensions of F whose degrees are divisors of n 
and use this to prove that there is a bijection between the subgroups of the multiplicative 
group px I px n 

and such extensions L. 
13. The Galois group of the extension CIIR is the cyclic group G = ( T )  of order 2 generated 

by complex conjugation T . Prove that H2 ( G, C x )  � IR x IIR+ � 7ll27l where JR+ denotes 
the positive real numbers. 

14. For any group G let G = Hom(G, Ql'll) denote its dual group. 
(a) If f/J : G I � G2 is a group homomorphism prove that composition with f/J induces a 

homomorphism cp : Gz � GI on their dual groups. 
(b) For any fixed g in G, show that evaluation at g gives a homomorphism f/Jg from G to 

Ql'll. 
(c) Prove that th�ap taking g E G to f/Jg in (b) defines a homomorphism from G to its 

double dual (G). 
(d) Prove that if G is a finite abelian group then the homomorphism in (c) is an iso

morphism of G with its double dual. (By Exercise 14 in Section 5.2 the group G is 
(noncanonically) isomorphic to its dual G. This shows that G is canonically isomor
phic to its double dual - the isomorphism is independent of any choice of generators 
for G.) 

(e) If 1/1 : G2 � GI is a homomorphism where G t  and Gz ar e  finite abelian groups, 
then by (a) and (d) there is an induced homomorphism f/J : GI � Gz.  Prove that 
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q.>(gt ) = gz if x (gz) = x'(gt ) for x' = 1/r(x) .  
15. Use Gauss' Lemma in  the computation of the transfer map for IF; to  {± 1 }  to  prove that 

2 is a square modulo the odd prime p if and only if p = ± 1  mod 8. [Count how many 
elements in 2, 4, . . . , p - 1 are greater than (p - 1)/2.] 

1 7.4 GROUP EXTENSIONS, FAUOR SETS AND H2(G,A) 

If A is a G-module then from the definition of the coboundary map dz in equation ( 1 8) 
a function f from G x G to A is a 2-cocycle if it satisfies the identity 

f(g ,  h) + f(gh . k) = g . f(h , k) + f (g , hk) for all g , h , k E G. ( 17.26) 

Equivalently, a 2-cocycle is determined by a collection of elements {ag,h }g,hEG of el
ements in A satisfying ag.h + agh.k = g · ah.k + ag,hk for g, h , k E G (and then the 
2-cocycle f is the function sending (g , h) to a8,h). 

A 2-cochain f is a coboundary if there is a function ft : G -+ A such that 

f(g , h) =  gft (h) - ft (gh) + ft (g) , for all g , h E G ( 17.27) 

i.e. , f is the image under d1 of the 1-cochain ft · 
One of the main results of this section is to make a connection between the 2-

cocycles Z2 (G, A) and the factor sets associated to a group extension of G by A, which 
arise when considering the effect of choosing different coset representatives in defining 
the multiplication in the extension. In particular, we shall show that there is a bijection 
between equivalence classes of group extensions of G by A (with the action of G on A 
fixed) and the elements of H2 (G, A). 

We first observe some basic facts about extensions. Let E be any group extension 
of G by A, 

1 -+ A � E � G -+ 1 . ( 17.28) 

The extension (28) determines an action of G on A, as follows .  For each g E G let e8 
be an element of E mapping onto g by rr (the choice of such a set of representatives 
for G in E is called a set-theoretic section of rr). The element e8 acts by conjugation 
on the normal subgroup t (A) of E, mapping t (a)  to e8t (a)e;1 • Any other element in 
E that maps to g is of the form e8t (a t )  for some a1 E A, and since t (A) is abelian, 
conjugation by this element on t (A) is the same as conjugation by e8 , so is independent 
of the choice of representative for g .  Hence G acts on L (A),  and so also on A since l 
is injective. Since conjugation is an automorphism, the extension (28) defines A as a 
G-module. 

Recall from Section 10.5 that two extensions 1 -+ A 4 £1 � G -+ 1 and 

1 -+ A -4 Ez � G -+ 1 are equivalent if there is a group isomorphism ,8 : £1 -+ Ez 
such that the following diagram commutes: 

1 ----+ A �  }ct 
l ----+ A �  
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In this case we simply say f3 is the equivalence between the two extensions. As noted 
in Section 10.5, equivalence of extensions is reflexive, symmetric and transitive. We 
also observe that 

equivalent extensions define the same G-module structure on A. 

To see this assume (29) is an equivalence, let g be any element of G and let eg be any 
element of Et mapping onto g by 7rt . The action of g on A given by conjugation in 
Et maps each a to t)t (egL t (a)e_;-t ) . Let e� = fJ(eg) . Since the diagram commutes, 
rr2(e�) = g, so the action of g on A in the second extension is given by conjugation 
by e� . This conjugation maps a to t2t (e�L2 (a)e� -t ) .  Since L t , t2 and f3 are injective, 
the two actions of g on a are equal if and only if they result in the same image in £2, 
i.e., f3 o L t (t)t (egL t (a)e_;-t )) = e�t2 (a)e� -t . This equality is now immediate from the 
definition of e� and the commutativity of the diagram. 

We next see how an extension as in (28) defines a 2-cocycle in Z2 (G, A). For 
simplicity we identify A as a subgroup of E via L and we identify G as E I A via rr. 

Definition. A map J1 : G -+ E with rr o JL(g) = g and JL(l) = 0, i.e., so that for 
each g E G, J1 (g) is a representative of the coset Ag of E and the identity of E (which 
is the zero of A)  represents the identity coset, is called a normalized section of rr .  

Fix a section J1 of rr in (28). Each element of E may be written uniquely in the 
form aJL(g) , where a E A and g E G .  For g,  h E  G the product JL(g)JL(h) in E lies in 
the coset Ag h, so there is a unique element f (g , h) in A such that 

JL(g)JL(h) = f(g, h)JL(gh) for all g,  h E  G. (17.30) 

If in addition J1 is normalized at the identity we also have 

f(g ,  1 )  = 0 = f(l ,  g) for all g E G. (17.3 1 )  

Definition. The function f defined by equation (30) i s  called the factor set for the 
extension E associated to the section Jl. If f also satisfies (3 1 )  then f is called a 
normalized factor set. 

We shall see in the examples following that it is possible for different sections J1 to 
give the same factor set f. 

We now verify that the factor set f is in fact a 2-cocycle. First note that the group 
operation in E may be written 

(at JL(g))(a2JL(h)) = (at + JL(g)a2Jl(g)-t )JL(g)JL(h) 
= (at + g · a2) (JL(g)JL(h)) (17.32) 

= (at + g · a2 + f(g ,  h))JL(gh) 
where g · a2 denotes the G-module action of g on a2 given by conjugation in E. Now 
use (32) and the associative law in E to compute the product JL(g)JL(h)JL(k) in two 
different ways: 

(JL(g)JL(h))JL(k) = (f(g ,  h) + f(gh, k))JL(ghk) 
JL(g) (JL(h)JL(k)) = (gf(h, k) + f(g, hk))JL(ghk) .  
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It follows that the factors in A of the two right hand sides in (33) are equal for every 
g, h ,  k E G, and this is precisely the 2-cocycle condition (26) for f. This shows that 
the factor set associated to the extension E and any choice of section f.L is an element 
in Z2(G, A).  

We next see how the factor set f depends on the choice of section f.L. Suppose f.L1 is 
another section for the same extension E in (28), and let f' be its associated factor set. 
Then for all g E G both f.L (g) and f.L1 (g) lie in the same coset Ag, so there is a function 
ft : G -+ A such that f.L1 (g) = ft (g)f.l,(g) for all g. Then 

f.L1 (g)f.l,1 (h) = j' (g, h)f.l,1 (gh) = (J' (g, h) + ft (gh))/L(gh) . 
We also have 

f.l,1(g)f.l,'(h) = (ft (g)f.l, (g) ) CJt (h)f.l,(h)) = (ft (g) + g . ft (h)) (f.l, (g)f.l,(h)) 
= Ut (g) + g · it (h) + J(g, h))f.L(gh) . 

Equating the factors in A in these two expressions for f.L'(g)f.l,'(h) shows that 

J'(g, h) = f(g, h) + (gft (h) - ft (gh) + ft (g)) for all g ,  h E G, 

in other words f and f' differ by the 2-coboundary of ft as in (27). 
We have shown that the factor sets associated to the extension E corresponding to 

different choices of sections give 2-cocycles in Z2(G, A) that differ by a coboundary 
in B2(G, A).  Hence associated to the extension E is a  well defined cohomology class 
in H2 ( G, A) determined by the factor set in (30) for any choice of section f.L. 

If the extension E of G by A !s a split extension (which is to say that E = A ><l G 
is the semidirect product of G by A with the given conjugation action of G on A), then 
there is a section f.L of G that is a homomorphism from G to E. In this case the factor 
set f in (30) is identically 0: f(g ,  h) = 0 for all g, h E G. Hence the cohomology 
class in H2(G, A) defined by a split extension is the trivial class. 

Suppose now that f3 is an equivalence between the extension in (28) and an extension 
E':  

I ---+ A �  E �  G ---+ I }d l/3 }d 
I ---+ 

t' 
A ---+ E' � G ---+ I .  

If f.l is a section of rr ,  then f.L1 = f3 o f.L is a section of rr ', so what we have just proved can 
be used to determine the cohomology class in H2 ( G, A) corresponding to E' . Applying 
the homomorphism f3 to equation (30) gives 

{3(f.l,(g))f3(f.L(h)) = {3(/(g , h) ){J (f.l,(gh)) for all g, h E G. 

Since f3 restricts to the identity map on A, this is 

f.l1(g)f.l,'(h) = J(g, h)f.1,1 (gh) for all g, h E G, 

which shows that the factor set for E' associated to f.L' is the same as the factor set for 
E associated to f.L. This proves that equivalent extensions define the same cohomology 
class in H2 (G, A).  

' 
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We next show how this procedure may be reversed: Given a class in H2 (G, A) 
we construct an extension E 1 whose corresponding factor set is in the given class in 
H2 (G, A). The process generalizes the semidirect product construction of Section 5.5 
(which is the special case when f is the zero cocycle representing the trivial class). 

Note first that any 2-cocycle arising from the factor set of an extension as above 
where the section Jl is normalized satisfies the condition in (3 1 ) . 
Definition. A 2-cocycle f such that f (g , 1 )  = 0 = f ( 1 ,  g) for all g E G is called a 
nonnalized 2-cocycle. 

The construction of E1 is a little simpler when f is a normalized cocycle and for 
simplicity we indicate the construction in this case (the minor modifications necessary 
when f is not normalized are indicated in Exercise 4). 

We first see that any 2-cocycle f lies in the same cohomology class as a normalized 
2-cocycle. Let d1 ft be the 2-coboundary of the constant function f1 on G whose value is 
f ( l ,  1) .  Then f{l ,  1) = dt f1 { 1 , l ) , and one easily checks from the 2-cocycle condition 
that f - d1 ft is normalized. 

We may therefore assume that our cohomology class in H2(G, A) is represented 
by the normalized 2-cocycle f. Let E 1 be the set A x G, and define a binary operation 
on E1 by 

(a1 , g) (a2, h) = (a1 + g · a2 + f(g, h) , gh) ( 17.34) 

where, as usual, g · a2 denotes the module action of G on A. It is straightforward to 
check that the group axioms hold: Since f is normalized, the identity element is (0, 1 )  
and inverses are given by 

( 17.35) 

The cocycle condition implies the associative law by calculations similar to (32) and 
(33) earlier - the details are left as exercises. 

Since f is a normalized 2-cocycle, A* = { (a ,  1) I a E A} is a subgroup of E1, and 
the map t* : a t-+ (a , 1) is an isomorphism from A to A*. Moreover, from (34) and 
(35) it follows that 

{0, g)(a ,  1 ) {0, g)- 1 = (g · a , 1) for all g E G and all a E A . ( 17.36) 

Since E 1 is generated by A* together with the set of elements (0, g) for g E G, (36) 
implies that A* is a normal subgroup of E1 . Furthermore, it is immediate from (34) 
that the map rr* : (a , g) t-+ g is a surjective homomorphism from E1 to G with kernel 
A* ,  i.e., E1jA* � G. Thus 

( 17 .37) 

is a specific extension of G by A, where (36) ensures also that the action of G on 
A by conjugation in this extension is the module action specified in determining the 
2-cocycle f in H2 (G , A). The extension sequence (37) shows that this extension has 
the normalized section Jl(g) = (0, g) whose corresponding normalized factor set is f.  
Note that this proves not only that every cohomology class in H2 (G , A) arises from 
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some extension E, but that every normalized 2-cocycle arises as the normalized factor 
set of some extension. 

Finally, suppose f' is another normalized 2-cocycle in the same cohomology class 
in H2(G, A) as f and let Er be the corresponding extension. If f and /' differ by the 
coboundary of ft :  G � A  then f(g, h) - f'(g, h) = gft (h) - /t (gh) + ft (g) for 
all g ,  h E  G. Setting g = h = 1 shows that ft ( 1 )  = 0. Define 

fJ :  E1 ----+ Er by {J((a , g)) = (a + ft (g), g). 
It is immediate that fJ is a bijection, and 

fJ((at .  g) (a2 , h)) = fJ((at + g · a2 + f(g, h), gh)) 
= (at + g · a2 + f(g ,  h) + ft (gh) ,  gh)) 
= (at + ft (g) + g · (a2 + /t (h)) + f'(g, h) , gh) 
= (at + ft (g) , g) (a2 + ft (h) ,  h) = fJ((at ,  g)){J ((a2 , h)) 

shows that fJ is an isomorphism from E f to E f' . 
The restriction of fJ to A is given by fJ((a ,  1))  = (a + ft (1) ,  1 )  = (a , 1) ,  so fJ is 

the identity map on A. Similarly fJ is the identity map on the second component of 
(a, g), so fJ induces the identity map on the quotient G. It follows that fJ defines an 
equivalence between the extensions E 1 and E f' . This shows that the equivalence class 
of the extension Et depends only on the cohomology class of f in H2(G, A). 

We summarize this discussion in the following theorem. 

Theorem 36. Let A be a G-mod;Jle. Then 
(1) A function f : G x G � A is a normalized factor set of some extension E of 

G by A (with conjugation given by the G-module action on A) if and only if f 
is a normalized 2-cocycle in Z2 (G, A). 

(2) There is a bijection between the equivalence classes of extensions E as in ( 1 )  
and the cohomology classes in  H2(G. A) .  The bijection takes an extension E 
into the class of a normalized factor set f for E associated to any normalized 
section f.l of G into E, and takes a cohomology class c in H2(G, A) to the 
extension E 1 defined by the extension (37) for any normalized cocycle f in the 
class c. 

(3) Under the bijection in (2), split extensions correspond to the trivial cohomology 
class. 

Corollary 37. Every extension of G by the abelian group A splits if and only if 
H2(G, A) = 0. 

Corollary 38. If A is a finite abelian group and ( I  A I ,  IG I )  = 1 then every extension of 
G by A splits. 

Proof: This follows immediately from Corollary 29 in Section 2. 

We can use Corollary 38 to prove the same result without the restriction that A be 
an abelian group. 
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Theorem 39. (Schur's Theorem) If E is any finite group containing a normal subgroup 
N whose order and index are relatively prime, then N has a complement in E.  

Remark: Recall that a subgroup whose order and index are relatively prime is  called 
a Hall subgroup, so Schur's Theorem says that every normal Hall subgroup has a 
complement that splits the group as a semidirect product. 

Proof" We use induction on the order of E. Since we may assume N ::j:. 1 ,  let p be 
a prime dividing I N I  and let P be a Sylow p-subgroup of N. Let Eo be the normalizer 
in E of P and let No = N n E0. By Frattini's Argument (Proposition 6 in Section 6. 1)  
E = E0N. It  follows from the Second Isomorphism Theorem that No is  a (normal) 
Hall subgroup of Eo and ! Eo : No I = I E  : Nl (cf. Exercise 10 of Section 3.3). 

If Eo < E, then by induction applied to No in Eo we obtain that Eo contains a 
complement K to No. Since I K I  = ! Eo : N0 1 ,  K is also a complement to N in E, as 
needed. Thus we may assume Eo = E, i.e., P is normal in E. 

Since the center of P,  Z(P), is characteristic in P ,  it is normal in E (cf. Section 
4.4 ). If Z (P) = N, then N is abelian and the theorem follows from Corollary 38. Thus 
we may assume Z(P) ::j:. N. Let bars denote passage to the quotient group E/Z(P).  
Then N is a normal Hall subgroup of E.  By induction it  has a complement K in E.  
Let Et be the complete preirnage of K in E.  Then ! Et l = I K I I Z(P) I = I E/N I I Z(P) ! .  
s o  Z(P) is a normal Hall subgroup of Et . B y  induction Z(P) has a complement in 
£1 which is seen by order considerations to also . be a complement to N in E. This 
completes the proof. 

Examples 

(1) If G = Z2 and A =  Z/2Z then G acts trivially on A and so H2 (G, A) = AG jN A =  

Z/2Z by the computation of the cohomology of cyclic groups in Section 2, so by 
Theorem 36 there are precisely two inequivalent extensions of G by A. These are 
the cyclic group of order 4 and the Klein 4-group, the latter being split and hence 
corresponding to the trivial class in H2 . 

(2) If G = { g )  � Z2 and A = { a ) � Zj47l. is a group of order 4 on which G acts 
trivially, then H2 (G, A) = Aj2A � Z/2Z by the computation of the cohomology 
of cyclic groups. As in the previous example there are two inequivalent extensions 
of G by A; evidently these are the groups Zs and Z4 x Z2 . the latter split extension 
corresponding to the trivial cohomology class. 

If E = ( r } x ( s ) denotes the split extension of G by A, where lr  I = 4 and 
Is I = 2, then J.Li (g) = ri s for i = 0, . . . , 3 give the four normalized sections of G in 
E.  The sections J.Lo , J.L2 both give the zero factor set f. The sections J.Lt , J.L3 both give 
the factor set f' with f'(g, g) = a2 E A. Both f and f' give normalized 2-cocycles 
lying in the trivial cohomology class of H2(G, A). The extension E.r corresponding 
to the zero 2-cocycle f is the group with the elements (a , 1) and ( 1 ,  g) as the usual 
generators (of orders 4 and 2, respectively) for Z4 x Z2 . In Ef' • however, (a, 1 )  has 
order 4 but so does ( 1 , g) since ( 1 , g)2 = (f'(g, g) , g2) = (a2� 1) . The 2-cocycles f 
and f' differ by the coboundary ft with ft ( 1 )  = 1 and ft (g) = r. The isomorphism 
{3 (a,  g) = (a + ft (g) , g) from Er to Er' maps the generators (a , 1) and ( 1 ,  g) of E.r 
to the generators (a , 1 )  and (a , g) of Er' and gives the explicit equivalence of these 
two extensions. 

The situation where G acts on A by inversion is handled in Exercise 3.  
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(3) Suppose G = Zz and A is the Klein 4-group. If G acts nontrivially on A then G 
interchanges two of the nonidentity elements, say a and b, of A and fixes the third 
nonidentity element c. Then AG = N A =  { 1 , c} and so H2(G, A) = 0, and so every 
extension E of G by A splits. This can be seen directly, as follows. Since the action 
is nontrivial, such a group must be nonabelian, hence must be Dg . From the lattice of 
Dg in Section 2.5 one sees that for each Klein 4-group there is a subgroup of order 2 
in Dg not contained in the 4-group and that subgroup splits the extension. 

If G acts trivially on A then H2 (G, A) = Aj2A � A, so there are 4 inequivalent 
extensions of G by A in this case. These are considered in Exercise 1 . 

Example: (Groups of Order 8 and H2(Z2 X z2. Z/2Z)) 
Let G = { 1 , a , b, c} be the Klein 4-group and let A = Z/2Z. The 2-group G must act 
trivially on A. The elements of H2 (G, A) classify extensions E of order 8 which has a 
quotient group by some Z2 subgroup that is isomorphic to the Klein 4-group. Although 
there are, up to group isomorphism, only four such groups, we shall see that there are eight 
inequivalent extensions. 

Since G x G has 16 elements, we have IC2 (G, A ) i  = 216 . The cocycle condition (26) 
here reduces to 

f(g, h) +  f(gh , k) = f(h, k) + f(g, hk) for all g, h , k E G. 

The following relations hold for the subgroup Z2 (G, A) of cocycles : 
(l) f(g,  1 ) = f(l , g) = f(l , 1) ,  for all g E G 
(2) f(g, 1) + f(g,  a) + f(g, b) + f(g , c) = 0, for all g E G 
(3) f(l , h) + f(a ,  h) + f(b, h) +  f(c, h) = 0, for all h E G. 

( 17.38) 

The first of these come from (38) by setting h = k = 1 and by setting g = h = 1 .  The other 
two relations come from (38) by setting g = h and h = k, respectively, using relations (1)  
and (2). I t  follows that every 2-cocycle f can be represented by a vector (a ,  {3, y,  o ,  E) in 
IFz where 

a =  f(l ,  g) =  f(g , 1 ) , for all g E G, 
f3 = f(a,  a) ,  y = f(a,  b) , o = f(b, a) ,  E = f(b, b) 

because the relations above then determine the remaining values of f:  

f(a,  c) = a  + f3 + y 
f(c, b) = a + y + E 

f(b, c) = a + o + E 

f(c, c) = a + f3 + y + E. 

f(c, a) =  a + f3 + o 

It follows that I Z2 (G, A) i  ::S 25 . Although one could eventually show that every function 
satisfying these relations is a 2-cocycle (hence the order is exactly 32), this will follow 
from other considerations below. 

A cocycle f is a coboundary if there is a function ft : G -+ A such that 

f(g, h) = ft (h) - ft (gh) + ft (g) , for all g, h E  G. 

This coboundary condition is easily seen to be equivalent to the conditions: 
(i) f(g , 1 ) = f(l , g) = f(g, g) for all g E G, and 
(ii) f (g, h) = f (g' , h') whenever g, h are distinct nonidentity elements and so are g' , h'.  

These relations are equivalent to a = f3 = E and y = o .  Thus B2 (G. A) consists of the 
vectors (a , a , y, y, a) , and so H2 (G, A) has dimension at most 3 (i.e., order atmost23 = 8). 
It is easy to see that { (0, f3, y, 0. E)}  with f3, y, and E in IF 2 gives a set of representatives 
for Z2(G, A)jB2(G, A), and each of these representative cocycles is normalized. We 
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now prove I H2(G, A) I = 8 (and also that I Z2(G, A) I = 25) by explicitly exhibiting eight 
inequivalent group extensions, 

Suppose E is an extension of G by A, where for simplicity we assume A :::=: E. If 
J.L : G � E is a section, the factor set for E associated to J.L satisfies 

J.L(g)J.L(h) = f(g, h)J.L(gh). 

The group E is generated by J.L(a ) ,  J.L(b) and A, and A is contained in the center of E since 
G acts trivially on A. Hence E is abelian if and only if J.L(a)J.L(b) = J.L(b)J.L(a), which by 
the relation above occurs if and only if f(a ,  b) = f(b, a) .  If g is a nonidentity element in 
G, we also see from the relation above that J.L(g) is an element of order 2 in E if and only if 
f(g, g) = 0. Because A is contained in the center of E, both elements in any nonidentity 
coset AJ.L(g) have the same order (either 2 or 4). 

There are four groups of order 8 containing a normal subgroup of order 2 with quotient 
group isomorphic to the Klein 4-group: Zz X Zz X Zz, z4 X Zz, Dg, and Qg. 

The group E � Zz x Zz x Zz is the split extension of G by A and has f = 0 as factor 
set. 

When E � Qg, in the usual notation for the quaternion group A = ( - 1  ) . In this (non
abelian) group every nonidentity coset consists of elements of order 4, and this property is 
unique to Qs, so the resulting factor set f satisfies f (g , g) i= 0 for all nonidentity elements 
in G. 

When E � Z4 x Zz = ( x ) x ( y ) we must have A = ( x2 ) • The cosets Ax and Axy 
both consist of elements of order 4, and the coset Ay consists of elements of order 2, so 
exactly one of 11(a), J.L(b) or 11(c) is an element of order 2 and the other two must be of 
order 4. This suggests three homomorphisms from E to G, defined on generators by 

.Tl'J (Y) = a  .Tl'J (X) = b 
.rrz (y) = b .rrz (x) = a  . 
.Tl'J (Y) = c .Tl'J (X) = a  

Each of these homomorphisms maps suijectively onto G, has A as kernel, and has J.L(a) 
(respectively, J.L(b), J.L(c)) an element oforder 2 in E. Any isomorphism of E with itself that 
is the identity on A must take the unique nonidentity coset Ay of A consisting of elements 
of order 2 to itself. Hence any extension equivalent to the extension Et defined by .Tl'J also 
maps y to a (since the equivalence is the identity on G). It follows that the three extensions 
defined by .Tl'J ,  .rrz and .Tl'J are inequivalent. 

The situation when E � Ds = ( r, s ) is similar. In this case A = ( r2 ) , the cosets As 
and Asr consist of elements of order 2, and the coset Ar consists of elements of order 4. 
In this case exactly one of J.L(a), J.L(b) or J.L(c) is an element of order 4 and the other two 
are of order 2, suggesting the three homomorphisms defined on generators by 

.rrt (r) = a  .Tl'J (S) = b 
.rrz (r) = b .rrz(s) = a  . 
.rr3 (r) = c .rr3 (s) = a  

As before, the corresponding extensions are inequivalent. 
The existence of 8 inequivalent extensions of G by A proves that I H2(G, A) l = 8, 

and hence that these are a complete list of all the inequivalent extensions. In particular, 
the extension E� � Z4 x Zz defined by the homomorphism .rr� mapping y to a and x to c 
must be equivalent to the extension Et above (and similarly for the other two extensions 
isomorphic to Z4 x Zz and the three extensions for Dg). This proves the existence of 
certain outer automorphisms for these groups, cf. Exercise 9. 
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Remark: For any prime p the cohomology groups of the elementary abelian group E pm with 
coefficients in the finite field lF P may be determined by relating them to the cohomology 
groups of the factors in the direct product as mentioned at the end of Section 2. In general, 
H2(Epm . lFp) is a vector space over lFp of dimension �m(m + 1 ) .  When p = 2 and m = 2 
this is the result H2 (Z2 x Z2, Z/2Z) � (Z/2Z)3 above. 

Crossed Product Algebras and the Brauer Group 

Suppose F is a field. Recall that an F -algebra B is a ring containing the field F in its 
center and the identity of B is the identity of F, cf. Section 10. 1 .  

Definition. An F -algebra A is said to be simple i f  A contains no nontrivial proper 
(two sided) ideals. A central simple F -algebra A is a simple F -algebra whose center 
is F.  

Among the easiest central simple F-algebras are the matrix algebras Mn (F) of 
n x n matrices with coefficients in F. 

If KIF is a finite Galois extension of fields with Galois group G = Gal(K I F), 
then we can use the normalized 2-cocycles in Z2(G, Kx ) to construct certain central 
simple K -algebras. The construction of these algebras from 2-cocycles and their clas
sification in terms of H2(G, Kx )  (cf. Theorem 42 below) are important applications 
of cohomological methods in number theory. Their construction in the case when G is 
cyclic was one of the precursors leading to the development of abstract cohomology. 

Suppose f = {aa, r  }a. rEG is a normalized 2-cocycle in Z2 (G, Kx ) .  Let Bt be the 
vector space over L having basis Ua for cr E G:  

Bt = { L aa U a  I aa E K } . 
aEG 

(17.39) 

Define a multiplication on Bt by 

Ua a =  cr (a) Ua (17.40) 

for a E L and cr, r E G. The second equation shows that the aa, r give a "factor 
set" for the elements Ua in Bt and is one reason this terminology is used. Using this 
multiplication we find 

and 

Since aa, r Gar,p = cr (ar,p) aa,rp is the multiplicative form of the cocycle condition (26), 
it follows that the multiplication defined in (40) is associative. 

Since the cocycle is normalized we have a1 .a = aa, i = 1 for all cr E G and it 
follows from (40) that the element u 1  is an identity in Bt · Identifying K with the 
elements au1 in Bt , we see that Bt is an F-algebra containing the field K and having 
dimension n2 over F if n = [K : F] = I G I . 
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Proposition 40. The F -algebra B f with K -vector space basis Ua in (39) and multipli
cation defined by (40) is a central simple F -algebra. 

Proof" It remains to show that the center of B 1 is F and that B 1 contains no 
nonzero proper ideals. Suppose x = LaEG aaua is an element in the center of B1. 
Then xf3 = f3x for {3 E K shows that a (f3) = f3 if aa =1= 0. Since there is an element 
f3 E K not fixed by a for any a =1= 1 ,  this shows that aa = 0 for all a =1= 1 ,  so x = a 1 u 1 . 
Then xur = UrX if and only if r (a r ) = a r , so if this is true for all r then we must have 
ar  = a  E K. Hence x = au r  and the center of Bt is F. 

To show that B1 is simple, suppose I is a nonzero ideal in B1 and let 

be a nonzero element of I with the minimal number m of nonzero terms. If m > 1 there 
is an element f3 E Kx with a, (f3) =1= a,_ 1  ({3) .  Then the elementx - a, (f3) x {3-1 would 
be an element of the ideal I with the nonzero element ( 1 - a, (f3 ) a, _ r  (f3r 1)  aam-l as 
coefficient of Uam-l , and would have fewer nonzero terms than x since the coefficient 
of Uam is 0. It follows that m = 1 and x = a Ua for some a E K and some a. This 
element is a unit, with inverse a - 1 (a- 1 ) ua 1 , so I =  Bt, completing the proof. 

Definition. The central simple F-algebra Bt defined by (39) and (40) is called the 
crossed product algebra for the factor set {aa, r } . 

If f' = a� r is a normalized cocycle in the same cohomology class in H2(G, Kx)  
a s  aa, r then there are elements ba E Kx  with 

a�. r = Oa, r (a (b-e )b;;� ba ) 

(the multiplicative form of the coboundary condition (27)). If Br is the F-algebra 
with K -basis Va defined from this cocycle as in (39) and ( 40), then the K -vector space 
homomorphism ffJ defined by mapping u� to ba Ua satisfies 

({J(U� u� ) = ({J(a�. r u�r ) = a�, rbar  Uar = ba a (b-c )  UaUr 

= (ba Ua ) (brUr) = (/J(U� )({J(U� ) .  

It follows that ffJ i s  an F -algebra isomorphism from B f' to B f .  
We have shown that every cohomology class c in H2(G, Kx) defines an isomor

phism class of central simple F -algebras, namely the isomorphism class of any crossed 
product algebra for a normalized cocycle {aa,r }  representing the class c. The next 
result shows that the trivial cohomology class corresponds to the isomorphism class 
containing Mn (F). 

Proposition 41. The crossed product algebra for the trivial cohomology class in 
H2(G, Kx )  is isomorphic to the matrix algebra Mn (F) where n = [K : F] . 

Proof" If a E K then multiplication by a defines a linear transformation Tc, of 
K viewed as an n-dimensional vector space over F. Similarly, every automorphism 
a E G defines an F -linear transformation Ta of K, and we may view both Ta and Ta as 
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elements of Mn (F) by choosing a basis for K over F. If B0 denotes the crossed product 
algebra for the trivial factor set (aa,r = 1 for all a, T E G), consider the additive map 
cp :  Bo --+ Mn (F) defined by cp(<:Wa) = TaTa . Since Taa = aTa for a E F, the map cp 
is an F -vector space homomorphism. If x E K, we have 

Ta Ta (x) = Ta (ax) = a (ax) = a (a) a (x) = Ta(a) Ta , 
so Ta Ta = Ta(a) Ta as linear transformations on K. It then follows from Ua Ur  = Uar 
that 

cp((aua)(fJur)) = cp(aa (fJ) Uar) = Taa<fi) Tar = Ta Ta(f3) Ta Tr 

= Ta Ta T13 Tr = cp(aua) cp(fJur )  

which shows that cp i s  an F-algebra homomorphism from Bo to Mn (F). Since ker cp 
is an ideal in Bo and cp =f. 0, it follows from Proposition 40 that ker cp = 0 and cp is 
an injection. Since both Bo and Mn (F) have dimension n2 as vector spaces over F, it 
follows that cp is an F -algebra isomorphism, proving the proposition. 

Example 

If K = <C and F = JR., then G = Gal(<C/IR) is of order 2 and generated by complex 
conjugation T .  We have 1 H2 ( G, <C x )  1 = 2. The central simple IR.-algebra Bo corresponding 
to the trivial class is <Cut E9 <Cur with ur (a + bi) = (a - bi)ur and u; = u 1 . This is 
isomorphic to the matrix algebra Mz(IR) under the map 

qJ((a + bi)u t + (c + di)ur ) = al + b7i + cTr + d1iTr = ( ::  � �
b 
�c

d ) . 

A normalized cocycle f representing the nontrivial cohomology class is defined by the 
values a1 , 1 = a1, r = ar, 1 = 1 and ar, r = - 1 .  The corresponding central simple IR.-algebra 
Bt is given by <Cvt E9 <Cvr . The element VI is the identity of Bt , and we have the relations 
Vr (a + bi) = (a - bi)vr and v; = -v1 . Letting VI = 1 and Vr = j we see that Bt is 
isomorphic as an IR.-algebra to the real Hamilton Quaternions JR. + IR.i + IR.j + IRk. 

There is a rich theory of simple algebras and we mention without proof the following 
results. Let A be a central simple F -algebra of finite dimension over F. 

I. If F 5; B 5; A where B is a simple F -algebra define the centralizer Be of B in A to 
be the elements of A that commute with all the elements of B. Define the opposite 
algebra Bopp to be the set B with opposite multiplication, i.e., the product btbz in 
B0PP is given by the product b2bt in B. Both Be and Bopp are simple F -algebras 
and we have 

a. (dim FB) (dim FBe) = dim FA 
b. A ®F Bopp � Mr (Be) as F-algebras, where r = dim FB 
c.  B ® F Be � A if B is a central simple F -algebra. 

II. If A' is an Artinian (satisfies D.C.C. on left ideals) simple F -algebra, then A ®F A' 
is an Artinian simple F -algebra with center (A'Y. 

III. We have A � Mr (!l) for some division ring tJ. whose center is F and some integer 
r ::=: 1 .  The division ring tJ. and r are uniquely determined by A. The same 
statement holds for any Artinian simple F -algebra. 

The last result is part of Wedderburn's Theorem described in greater detail in the 
following chapter. 
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Definition. If A is a central simple F -algebra then a field L containing F is said to 
split A if A ®F L � Mm (L) for some m :=:: 1 .  

It follows from (II) that every maximal commutative subalgebra of f'.. is a field E 
with E = £C = £OPP ; if [E : F] = m we obtain dim F f'.. = m

2 . Applying (II) to 
A =  f'.. and B = E we also see that f'.. ®F E � Mm (E) . It can also be shown that a 
maximal subfield E of the central simple F -algebra A also satisfies E = Ec = Eopp 
and so again by (II) it follows that A ® F E � Mr (E) (r2 = dim FA). 

If A = M7 (f"..) then the field L splits A if and only if L splits f".., as follows. If 
f'.. ®F L � Mn (L) then 

A ®F L � M7 (f'..) ®F L � Mr (l'l ®F L) � Mr (Mn (L)) � Mrn (L) . 

Conversely if A ®F L � Mn (L) then 

Mn (L) � M7 (f"..) ®F L � Mr (l'l ®F L) . 

By (Il) and (III), f'.. ®F L � Ms (f'..') for some division ring f"..' .  Together with the 
previous isomorphism, the uniqueness statement in (III) shows that f"..' � L and then 
the isomorphism f'.. ®F L � Ms (L) shows that L splits f".. . 

We see from the discussion above that a maximal commutative subfield of f'.. splits 
both f'.. and A � M7 (f"..) for any r ::: 1 .  It is not too difficult to show from this that 
every central simple F -algebra of finite dimension over F can be split by a finite Galois 
extension of F. 

Applying (I) by taking A to be the crossed product algebra B1 and taking B = K 
shows that K = Kc = Kopp and Bt ® F K � Mn (K). In particular, the crossed product 
algebras B1 are always split by K. 

Example 

In the example of the Hamilton Quatemions above we have B 1 ®R <C � M2 (<C). We have 
B1 ®JR <C = <C + <Ci + <Cj + <Ck and an explicit isomorphism rp to M2 (<C) is given by 

rp (i)  = ( � _J=y) rp(j) = (� �1 ) 
and extending <C-linearly. 

By (III) every central simple F -algebra A is isomorphic as an F-algebra to M7 (f"..) 
for some division ring f'.. uniquely determined up to F -isomorphism, called the division 
ring part of A. 

Definition. Two central simple £-algebras A and B are similar if A � M7 (f"..) and 
B � M., (f"..) for the same division ring f".., i.e., if A and B have the same division ring 
parts. 

Let [A] denote the similarity class of A.  By (II), if A and B are central simple 
F -algebras then A ® F B is again a central simple F -algebra, so we may define a 
multiplication on similarity classes by [A] [B] = [A ®F B]. The class [F] is an 
identity for this multiplication and associativity of the tensor product shows that the 
multiplication is associative. By (lb) applied with B = A (so then Be = F since A is 
central) we have [A] [A0PP] = [F] , so inverses exist with this multiplication. 
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Definition. The group of similarity classes of central simple F -algebras with multi
plication [A] [B] = [A &h B] is called the Brauer group of F and is denoted Br (F) . 

If L is any extension field of F then by (II) the algebra A 0 F L is a central 
simple L-algebra. It is easy to check that the map [A] � [A 0F L] is a well defined 
homomorphism from Br(F) to Br(L).  The kernel of this homomorphism consists of 
the classes of the algebras A with A 0F L � Mm (L) for some m ::=: 1 ,  i.e., the algebras 
A that are split by L. 

Definition. If Ll F is a field extension then the relative Brauer group Br (LI F) is the 
group of similarity classes of central simple F -algebras that are split by L. Equivalently, 
Br (LI F) is the kernel of the homomorphism [A] � [A 0F L] from Br(F) to Br (L). 

The following theorem summarizes some major results in this area and shows 
the fundamental connection between Brauer groups and the crossed product algebras 
constructed above. 

Theorem 42. Suppose KIF is a Galois extension of degree n with G = Gal(K I F). 
(1) The central simple F -algebra A with dim FA = n2 is split by K if and only if 

A 0 F K � M11 ( K) if and only if A is isomorphic to a crossed product algebra 
B f as in (39) and ( 40). 

(2) There is a bijection between the F -isomorphism classes of central simple F
algebras A with A 0F K � M11 (K) and the elements of H2(G, K x ) . Under 
this bijection the class c E H2 (G, K x )  containing the normalized cocycle f 
corresponds to the isomorphism class of the crossed product algebra B f defined 
in (39) and (40), and the trivial cohomology class corresponds to M11 (F) . 

(3) Every central simple F -algebra of finite dimension over F and split by K is 
similar to one of dimension n2 split by K. The bijection in (2) also establishes 
a bijection between B r (KIF) and H2 ( G, K x )  which is also an isomorphism 
of groups. 

(4) There is a bijection between the collection of F -isomorphism classes of central 
simple division algebras over F that are split by K and H2 (G, K x ) . 

As previously mentioned, every central simple F -algebra of finite dimension over 
F can be split by some finite Galois extension of F, and it follows that 

Br (F) = U Br (KIF) 

K 
where the union is over all finite Galois extensions of F. It follows that there is a 
bijection between Br (F) and H2(Gal(F' I F) , (F' ) x )  where F' denotes a separable 
algebraic closure of F. Here Gal( PI F) is considered as a profinite group and the 
cohomology group refers to continuous Galois cohomology. 

One consequence of this result and Theorem 42 is that a full set of representatives 
for the F -isomorphism classes of central simple division algebras !:1 over F can be 
obtained from the division algebra parts of the crossed product algebras for finite Galois 
extensions of F. Those division algebras that are split over K occur for the crossed 
product algebras for KIF. 
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Example 

Since H2 (Gal(Fqa /Fq) ,  F;a ) = 0 (cf. Exercise 1 0), we have Br(Fqa /Fq) = 0 and hence 

also Br (Fq )  = 0. As a consequence, every finite division algebra is a field (cf. Exercise 
13 in Section 1 3 .6 for a direct proof), and every finite central simple algebra F q-algebra is 
isomorphic to a full matrix ring Mr (Fq ) .  

E X E R C I S E S  

1. Let A = { 1 ,  a , b, c} be the Klein 4-group and let G = ( g )  be the cyclic group of order 2 
acting trivially on A. 
(a) Prove that IC2(G, A) l = 28 . 
(b) Show that coboundaries are constant functions, and deduce that I B2(G, A) l = 4. 
(c) Use the cocycle condition to show that I Z2(G. A) l ::; 24• 

(d) If E = z4 X Zz = ( x ) X ( y ) , prove that the extensions 1 � A �  E � G � 1 
defined by n(x) = g, n(y) = 1 and q (a) = x2, q (b) = y (respectively, tz (b) = x2, 
tz (a) = y, and t3 (c) = x2, t3 (a) = y), together with the split extension Zz x Zz x Zz 
give 4 inequivalent extensions of Zz by the Klein 4-group. Deduce that H2 (G, A) 
has order 4 by explicitly exhibiting the corresponding cocycles. 

2. Let A = 7lj47l and let G be the cyclic group of order 2 acting trivially on A. 
(a) Prove that IC2(G, A) l = 28 . 
(b) Use the coboundary condition to show that I B2 (G, A) I =  23 . 
(c) Use the cocycle condition to show that IZ2 (G, A) I ::; 24 . 
(d) Show that I H2 (G, A) I = 2 by exhibiting two inequivalent extensions of G by A and 

their corresponding cocycles. 

3. Let A = 7lj47l and let G be the cyclic group of order 2 acting by inversion on A.  
(a) Show that there are four co boundaries and that only the zero co boundary is  normalized. 
(b) Prove by a direct computation of cocycle and co boundary groups that I H2 ( G, A) I = 2. 
(c) Exhibit two distinct cohomology classes and their corresponding extension groups. 
(d) Show that for a given extension of G by A with extension group isomorphic to Ds 

there are four normalized sections, all of which have the zero 2-cocycle as their factor 
set. 

(e) Show that for a given extension of G by A with extension group isomorphic to Qs 
there are sixteen sections, four of which are normalized, and all of the latter have the 
same factor set. 

4. For a non-normalized 2-cocycle f one defines the extension group E 1 on the set A x G 
by the same binary operation in equation (34). Verify two of the group axioms in this case 
by showing that identity is now (-f ( 1 ,  1 ) ,  1) and inverses are given by 

(a, x)-1 = (-x-1 · a - f(x-1 , x) - f(l , l) , x- 1 ) .  

(Verification of the associative law i s  essentially the same as for normalized 2-cocycles.) 
Prove also that the set A** = {(a - f(l , 1 ) ,  1) 1 a E A} is a subgroup of E1 and the map 
t** : a �--+ (a - f ( 1 , 1 ) ,  1 )  is an isomorphism from A to A** . Show that this extension E 1, 
with the injection t** and the usual projection map rr* onto G, is equivalent to an extension 
derived from a normalized cocycle in the same class as f. 

5. Show that the set of equivalences of a given extension 1 � A � E � G � 1 with itself 
form a group under composition, and that this group is isomorphic to the stability group 

Sec. 1 7.4 Group  Extensions, Factor Sets and H2(G,A) 837 



Stab ( I  � t (A) � E). (Thus Proposition 3 1  implies Z 1 ( G, A) is the group of equivalences 
of the extension with itself). 

6. (Gaschiitz 's Theorem) Let p be a prime, let A be an abelian normal p-subgroup of a finite 
group G, and let P be a Sylow p-subgroup of G. Prove that G is a split extension of G I A 
by A if and only if P is a split extension of PI A by A. (Note that A � P by Exercise 
37 in Section 4.5). [Use Sylow's Theorem to show if G splits over A then so too does P.  
Conversely, show that a normalized 2-cocycle associated to the extension of  P 1 A by A via 
Theorem 36 is the image of a normalized 2-cocycle in H2(GI A ,  A) under the restriction 
homomorphism Res : H2(GIA, A) 4 H2(PIA , A). Then use Proposition 26 and the 
fact that multiplication by IG : P I  is an automorphism of A.j 

7. (a) Prove that H2(A4 , ZI2Z) i= 0 by exhibiting a nonsplit extension of A4 by a cyclic 
group of order 2. [See Exercise 1 1 , Section 4.5.] 

(b) Prove that H2(As , ZI2Z) i= 0 by showing that SL2(F5) is a nonsplit extension of As 
by a cyclic group of order 2. [Use Propositions 21 and 23 in Section 4.5.] 

8. The Schur multiplier of a finite group G is defined as the group H2(G, ex) ,  where the 
multiplicative group ex of complex numbers is a trivial G-module. Prove that the Schur 
multiplier is a finite group. [Show that every cohomology class contains a cocycle whose 
values lie in the nth roots of unity, where n = I G I ,  as follows: If f  is any cocycle then 
by Corollary 27, r E B2(G, e x ) .  Define k E C2(G, e x )  by k(g1 , g2) = j(g1 , g2) 1fn 

(take any nth roots). Show that k E B2(G, ex)  and fk-1 takes values in the group of nth 
roots of 1 .] 

9. Use the classification of the extensions of the Klein 4-group by Z2 in the example following 
Theorem 39 to prove the following (in the notation of that example): 
(a) There is an (outer) automorphism of Z4 x Z2 which interchanges the cosets Ax and 

Axy and fixes the coset Ay. 
(b) There is an outer automorphism of Ds which interchanges the cosets As and Asr and 

fixes the coset Ar. 

10. Suppose Fq is a finite field with G = Gal(Fqd iFq) = ( aq )  where aq is the Frobenius 
automorphism, and let N be the usual norm element for the cyclic group G.  

838 

(a) Use Hilbert's Theorem 90 to prove that I N(Fxd ) l  = (qd - l)l(q - 1),  and deduce that q 
the norm map from F qd to F q is surjective. 

(b) Prove that Hn (G , Fxd )  = 0 for all n > 1 .  
q -
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Pa rt V I  

I NTRO D U GI O N  TO 
TH E RE PRESENTATI O N  TH EO RY 

O F  F I N ITE G RO U PS 

The final two chapters are an introduction to the representation theory of finite 
groups together with some applications. We have already seen in Part I how actions of 
groups on sets, namely permutation representations, are a fundamental tool for unrav
elling the structure of groups. Cayley's Theorem and Sylow's Theorem as well as many 
of the results and applications in Sections 6. 1 and 6.2 are based on groups acting on sets. 
The chapter on Galois Theory developed one of the most beautiful correspondences in 
mathematics where the action of a group as automorphisms of a field gives rise to a 
correspondence between the lattice of subgroups of the Galois group and the lattice of 
subfields of a Galois extension of fields. In these final two chapters we study groups 
acting as linear transformations on vector spaces. We shall be primarily interested in 
utilizing these linear actions to provide information about the groups themselves. 

In Part III we saw that modules are the "representation objects" for rings in the 
sense that the axioms for an R-module specify a "ring action" of R on some abelian 
group M · which preserves the abelian group structure of M. In the case where M 
was an F[x]-module, x acted as a linear transformation from the vector space M to 
itself. In Chapter 12  the classification of finitely generated modules over Principal Ideal 
Domains gave us a great deal of information about these linear transformations of M 
(e.g., canonical forms). In Chapter 16 we used the ideal structure in Dedekind Domains 
to generalize the results of Chapter 12  to the classification of finitely generated modules 
over such domains. In this part we follow a process similar to the study of F[x ]-modules, 
replacing the polynomial ring with the group ring F G of G and classifying all finitely 
generated FG-modules for certain fields F (Wedderburn's Theorem). We then use this 
classification to derive some results about finite groups such as Burnside's Theorem on 
the solvability of groups of order paqb in Chapter 19. 



CHAPTER 1 8  

Re prese ntati o n  Th eory 
a nd Character Th eory 

1 8.1  LIN EAR ACTIONS AND MODULES OVER GROUP RINGS 

For the remainder of the book the groups we consider will be finite groups, unless 
explicitly mentioned otherwise. Throughout this section F is a field and G is a finite 
group. We first introduce the basic terminology. Recall that if V is a vector space 
over F, then G L(V) is the group of nonsingular linear transformations from V to itself 
(under composition), and if n e z+, then GLn (F) is the group of invertible n x n 
matrices with entries from F (under matrix multiplication). 

Definition. Let G be a finite group, let F be a field and let V be a vector space over F. 
(1) A linear representation of G is any homomorphism from G into GL (V) . The 

degree of the representation is the dimension of V. 
(2) Let n e z+ . A matrix representation of G is any homomorphism from G into 

GLn (F) . 
(3) A linear or matrix representation is faithful if it is injective. 
(4) The group ring of G over F is the set of all formal sums of the form 

with componentwise addition and multiplication (ag) ({3h) = (a{3)(g h) (where 
a and {3 are multiplied in F and gh is the product in G) extended to sums via 
the distributive law (cf. Section 7.2). 

Unless we are specifically discussing permutation representations the term "repre
sentation" will always mean "linear representation." When we wish to emphasize the 
field F we shall say F -representation, or representation of G on V over F. 

Recall that if V is  a finite dimensional vector space of dimension n, then by fixing 
a basis of V we obtain an isomorphism GL(V) � GLn (F). In this way any linear 
representation of G on a finite dimensional vector space gives a matrix representation 
and vice versa. For the most part our linear representations will be of finite degree and we 
shall pass freely between linear representations and matrix representations (specifying a 
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basis when we wish to give an explicit correspondence between the two). Furthermore, 
given a linear representation cp : G � G L(V) of finite degree, a corresponding matrix 
representation provides numerical invariants (such as the determinant of cp(g) for g E 

G) which are independent of the choice of basis giving the isomorphism between 
GL(V) and GLn (F). The exploitation of such invariants will be fundamental to our 
development. 

Before giving examples of representations we recall the group ring FG in greater 
detail (group rings were introduced in Section 7 .2, and some notation and examples 
were discussed in that section). Suppose the elements of G are g. , gz ,  . . .  , gn . Each 
element of F G is of the form 

n 
L a;g; , 
i=l  

a; E F. 

Two formal sums1 are equal if and only if all corresponding coefficients of group 
elements are equal. Addition and multiplication in F G are defined as follows: 

n n n 

i=l i=l  i=l  

(t a;g;) (t p,g,) = t /  t: a,pj)g, 
g, gj =gk 

where addition and multiplication of the coefficients a; and {31 is performed in F. Note 
that by definition of multiplication, 

FG is a commutative ring if and only if G is an abelian group. 
The group G appears in FG (identifying g; with lg; )  and the field F appears in 

FG (identifying f3 with {Jg, ,  where g1 is the identity of G). Under these identifications 

In this way 

{3 ( t a;g;) = t({Ja; )g; , 
i=l  i=l  

for all f3 E F. 

F G is a vector space over F with the elements of G as a basis. 
In particular, FG is a vector space over F of dimension equal to I G I .  The elements of 
F commute with all elements of FG, i.e., F is in the center of FG. When we wish to 
emphasize the latter two properties we shall say that F G is an F -algebra (in general, an 
F -algebra is a ring R which contains F in its center, so R is both a ring and an F -vector 
space). 

Note that the operations in FG are similar to those in the F -algebra F[x] (although 
F[x] is infinite dimensional over F). In some works FG is denoted by F[G], although 
the latter notation is currently less prevalent. 

1 The formal sum displayed above is a way of writing the function from G to F which takes the 
value a; on the group element g; . This same "formality" was used in the construction of free modules 
(see Theorem 6 in Section 10.3). 
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Examples 

(1) If G = ( g ) is cyclic of order n E z+, then the elements of F G are of the form 

n- 1  
L a;gi .  
i=O 

The map F[x] -+ F ( g )  which sends xk to gk for all k :=::: 0 extends by F -linearity to 
a smjective ring homomorphism with kernel equal to the ideal generated by xn - 1 .  
Thus 

F( g )  � F[x]f(xn - I) .  

This is  an isomorphism of F -algebras, i.e., i s  a ring isomorphism which i s  F -linear. 
(2) Under the notation of the preceding example let r = I + g + g2 + . . .  + gn - l

, so r 
is a nonzero element of F ( g ) . Note that rg = g + g2 + · · · + gn - t + 1 = r, hence 
r( l  - g) = 0. Thus the ring F ( g ) contains zero divisors (provided n > 1 ) . More 
generally, if G is any group of order > 1 ,  then for any nonidentity element g E G, 
F ( g ) is a subring of F G, so F G also contains zero divisors. 

(3) Let G = S3 and F = Q. The elements r = 5( 1 2) - 7(1 2 3) and s = -4(1 2 3) + 
12(1 3 2) are typical members of QS3 . Their sum and product are seen to be 

r + s = 5( 1  2) - 1 1 ( 1  2 3) + 12(1  3 2) 

rs = -20(2 3) + 28( 1  3 2) + 60(1 3) - 84 

(recall that products (compositions) of permutations are computed from right to left). 
An explicit example of a sum and product of two elements in the group ring QDg 
appears in Section 7.2. 

Before giving specific examples of representations we discuss the correspondence 
between representations of G and F G-modules (after which we can simultaneously give 
examples of both). This discussion closely parallels the treatment of F[x ]-modules in 
Section 10. 1 .  

Suppose first that cp : G -+ G L(V) is a representation of G on the vector space V 
over F. As above, write G = {gt • . . .  , gn }. so for each i E { 1 ,  . . . , n} , cp(g; ) is a linear 
transformation from V to itself. Make V into an FG-module by defining the action of 
a ring element on an element of V as follows: 

n 
for all L a; g; E FG, v E V. 

i=l  

We verify a special case of axiom 2(b) of a module (see Section 10. 1 )  which shows 
precisely where the fact that cp is a group homomorphism is needed: 

(g;gj ) · v = cp(g;gj ) (v) 

842 

= (cp(g; ) o cp(gj)) (v) 
= cp (g; ) (cp(gj)(v)) 

= g; .  (gj . v) 

(by definition of the action) 

(since cp is a group homomorphism) 

(by definition of a composition of linear 
transformations) 
(by definition of the action) . 
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This argument extends by linearity to arbitrary elements of F G to prove that axiom 2(b) 
of a module holds in general. It is an exercise to check that the remaining module axioms 
hold. 

Note that F is a subring of F G and the action of the field element a on a vector is 
the same as the action of the ring element a l  on a vector i.e., the FG-module action 
extends the F action on V .  

Suppose now that conversely we are given an FG-module V. We obtain an associ
ated vector space over F and representation of G as follows. Since V is an F G-module, 
it is an F -module, i.e. , it is a vector space over F. Also, for each g E G we obtain a 
map from V to V, denoted by qJ(g), defined by 

qJ(g) (v) = g · v for all v E V, 

where g · v is the given action of the ring element g on the element v of V.  Since the 
elements of F commute with each g E G it follows by the axioms for a module that for 
all v ,  w E  V and all a, {3 E F we have 

lp(g) (av + {3w) = g · (av + {3w) 
= g · (av) + g · ({3w) 
= a(g · v) + {3(g · w) 
= etlp(g)(v) + f3fP(g) (w) , 

that is, for each g E G, qJ(g) is a linear transformation. Furthermore, it follows by 
axiom 2(b) of a module that 

(this is essentially the calculation above with the steps reversed). This proves that fP is 
a group homomorphism (in particular, qJ(g -1 ) = lp(g) - 1 , so every element of G maps 
to a nonsingular linear transformation, i.e., fP : G -+ G L(V) ) . 

This discussion shows there is a bijection between FG-modules and pairs (V, qJ) : 

{ l { V a vector space over F l 
V an FG-module � and . 

fP : G -+ G L(V) a representation 

Giving a representation fP : G -+ G L(V) on a vector space V over F is therefore 
equivalent to giving an FG-module V. Under this correspondence we shall say that 
the module V affords the representation fP of G.  

Recall from Section 10. 1  that if  a vector space M is  made into an F[x]-module 
via the linear transformation T, then the F [x]-submodules of M are precisely the T
stable subspaces of M. In the current situation if V is an FG-module affording the 
representation fP, then a subspace U of V is called G-invariant or G-stable if g · u E U 
for all g E G and all u E U (i.e., if qJ(g)(u) E U for all g E G and all u E U). It 
follows easily that 

the FG-submodules of V are precisely the G-stable subspaces of V . 
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Examples 

(1) Let V be a } -dimensional vector space over F and make V into an FG-module by 
letting gv = v for all g E G and v E V. This module affords the representation 
q; : G � GL(V) defined by q;(g) = I = the identity linear transformation, for all 
g E G. The corresponding matrix representation (with respect to any basis of V) is 
the homomorphism of G into GL t (F) which sends every group element to the I x 1 
identity matrix. We shall henceforth refer to this as the trivial representation of G.  
The trivial representation has degree 1 and if  I G I > 1 ,  i t  is not faithful. 

(2) Let V = FG and consider this ring as a left module over itself. Then V affords a 
representation of G of degree equal to I G I .  If we take the elements of G as a basis of 
V, then each g E G permutes these basis elements under the left regular permutation 
representation: 

g .  g; = gg; . 

With respect to this basis of V the matrix of the group element g has a 1 in row i 
and column j if ggj = g; , and has O's in all other positions. This (linear or matrix) 
representation is called the regular representation of G. Note that each nonidentity 
element of G induces a nonidentity permutation on the basis of V so the regular 
representation is always faithful. 

(3) Let n E z+, let G = Sn and let V be an n-dimensional vector space over F with basis 
e1 , £!2, . . .  , en . Let Sn act on V by defining for each a E Sn 

i.e., a acts by permuting the subscripts of the basis elements. This provides an (injec
tive) homomorphism of Sn into G L(V) (i.e., a faithful representation of Sn of degree 
n), hence makes V into an FSn-module. As in the preceding example, the matrix of 
a with respect to the basis et ,  . . .  , en has a 1 in row i and column j if a · ei = e; (and 
has 0 in all other entries) .  Thus a has a I in row i and column j if a (j) = i .  

For an example of the ring action, consider the action of F S3 on the 3-dimensional 
vector space over F with basis e 1 ,  e2 , e3 . Let a be the transposition ( 1 2), let T be the 
3-cycle ( 1 2 3) and let r = 2a - 3T E F S3 . Then 

r · (c>:et + f3e2 + ye3) = 2(o:ea( l) + f3ea (2) + yea(3) ) - 3 (o:er ( l ) + f3er(2) + yer (3) ) 
= 2(o:e2 + f3e1 + ye3) - 3(o:e2 + f3e3 + yet ) 

= (2{3 � 3y)et - o:e2 + (2y - 3{3)eJ . 
(4) If 1/1 : H � GL(V) is any representation of H and q; : G � H is any group 

homomorphism, then the composition 1/1 o q; is a representation of G.  For example, 
let V be the F Sn-module of dimension n described in the preceding example. If · n : G � Sn is any permutation representation of G, the composition of n with the 
representation above gives a linear representation of G. In other words, V becomes 
an FG-module under the action 

g · e; = e:rr (g)(i ) . for all g E G. 

Note that the regular representation, (2), is just the special case of this where n = I G I  
and n i s  the left regular permutation representation of G. 

(5) Any homomorphism of G into the multiplicative group F x  = GL 1 (F) is a degree 
1 (matrix) representation. For example, suppose G = ( g } � Zn is the cyclic group 
of order n and s is a fixed nth root of 1 in F. Let gi r+ s i , for all i E Z. This 
representation of ( g }  is a faithful representation if and only if s is a primitive nth root 
of 1 .  
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(6) In many situations it is easier to specify an explicit matrix representation of a group 
G rather than to exhibit an FG-module. For example, recall that the dihedral group 
D2n has the presentation 

D2n = ( r, s I rn = s2 = 1 ,  rs = sr-1 ) . 
If R and S are any matrices satisfying the relations Rn = S2 = I and RS = SR-1 
then the map r r+ R and s r+ S extends uniquely to a homomorphism from D2n to the 
matrix group generated by R and S, hence gives a representation of D2n ·  An explicit 
example of matrices R, S E M2 (lR) may be obtained as follows. If a regular n-gon is 
drawn on the x ,  y plane centered at the origin with the line y = x as one of its lines 
of symmetry then the matrix R that rotates the plane through 2rr fn radians and the 
matrix S that reflects the plane about the line y = x both send this n-gon onto itself. 
It follows that these matrices act as symmetries of the n-gon and so satisfy the above 
relations. These matrices are readily computed (cf. Exercise 25, Section 1 .6) and so 
the maps 

r r+ R = (�s
2
2rr Jn - sin

2
2rr Jn ) and s r+ S = (0

1 0
1 ) 

sm njn cos njn 

extend uniquely to a (degree 2) representation of D2n into G L2 (lR) . Since the matrices 
R and S have orders n and 2 respectively, it follows that they generate a subgroup of 
G L2 (IR) of order 2n and hence this representation is faithfuL 

(7) By using the usual generators and relations for the quaternion group 

Qs = ( i , j l i4 = j4 = 1 , i2 = i . ;- 1 ji = T1 ) 
one may similarly obtain (cf. Exercise 26, Section 1 .6) a representation rp from Qs to 
GL2(C) defined by 

. (A o ) 
rp(l ) = o -A and 

. ( 0 - 1 ) 
rp(J)  = 

I 0 . 

This representation of Qs is faithfuL 
(8) A 4-dimensional representation of the quatemion group Qs may be obtained from 

the real Hamilton quatemions, Ill[ (cf. Section 7. 1). The group Qs is a subgroup of 
the multiplicative group of units of Ill[ and each of the elements of Qs acts by left 
multiplication on the 4-dimensional real vector space Ill[_ Since the real numbers are in 
the center ofJH[ (i.e., since Ill[ is an IR-algebra), left multiplication is IR-Iinear. This linear 
action thus gives a homomorphism from Qs into G L4(!R) . One can easily write out 
the explicit matrices of each of the elements of Qs with respect to the basis 1 ,  i, j, k of 
Ill[_ For example, left multiplication by i acts by 1 r+ i, i r+ -1 ,  j r+ k and k r+ -j 
and left multiplication by j acts by l r+ j, i r+ -k, j r+ -1 and k r+ i so 

i r+ (! -� � _ �) and j r+ ( � � -

� ! ) . 
0 0 1 0 0 - 1  0 0 

This representation of Qs is also faithful. 
(9) Suppose that H is a normal subgroup of the group G and suppose that H is an ele

mentary abelian p-group for some prime p. Then V = H is a vector space over lF P, 

where the scalar a acts on the vector v by av = va (see Section 10.1) . The action 
of each element of G by conjugation on V is lF p-linear because gva g-1 = (gvg-1 )a 
and this action of G on V makes V into an lF pG-module (the automorphisms of el
ementary abelian p-groups were discussed in Sections 4.4 and 10. 1 ). The kernel of 
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this representation is the set of elements of G that commute with every element of 
H, CG (H) (which always contains the abelian group H itself). Thus the action of a 
group on subsets of itself often affords linear representations over finite fields. Rep
resentations of groups over finite fields are called modular representations and these 
are fundamental to the study of the internal structure of groups. 

(10) For an example of an FG-submodule, let G = Sn and let V be the F Sn-module 
described in Example 3. Let N be the subspace of V consisting of vectors all of whose 
coordinates are equal, i.e., 

N = {ai el + a2e2 + · · · + an en I a, = a2 = · · · = an }  

(this i s  a ! -dimensional Sn-stable subspace). Each a E Sn fixes each vector in N so the 
submodule N affords the trivial representation of Sn . As an exercise, one may show 
that if n :=::: 3 then N is the unique ! -dimensional subspace of V which is Sn -stable, 
i.e., N is the unique !-dimensional FSn-submodule (N is called the trace submodule 
of FSn) .  

Another F Sn -submodule of V i s  the subspace I of all vectors whose coordinates 
sum to zero: 

I = {ai el + a2e2 + · · · + an en I a1 + a2 + · · · + an = 0} . 

Again I is an Sn-stable subspace (since each a E Sn permutes the coordinates of each 
vector in V, each a leaves the sum of the coefficients unchanged). Since I is the 
kernel of the linear transformation from V onto F which sends a vector to the sum 
of its coefficients (called the augmentation map - cf. Section 7.3), I has dimension 
n - 1 . 

(11) If V = FG is the regular representation of G described in Example 2 above, then V 
has FG-submodules of dimensions 1 and I G I - 1 as in the preceding example: 

N = {a1 g1 + a2g2 + · · · + an gn I a 1 = a2 = · · · = an }  

I = {a1 g1 + a2g2 + · · · + angn I a1 + a2 + · · · + an =  0}. 

In fact N and I are 2-sided ideals of F G (not just left ideals - note that N is in the 
center of FG). The ideal / is called the augmentation ideal of FG and N is called the 
trace ideal of F G .  

Recall that in  the study of a linear transformation T of a vector space V to itself we 
made V into an F[x ]-module (where x acted as T on V); our goal was to decompose V 
into a direct sum of cyclic submodules. In this way we were able to find a basis of V for 
which the matrix of T with respect to this basis was in some canonical form. Changing 
the basis of V did not change the module V but changed the matrix representation of 
T by similarity (i.e., changed the isomorphism between GL(V) and GLn (F)). We 
introduce the analogous terminology to describe when two FG-modules are the same 
up to a change of basis. 

Definition. Two representations of G are equivalent (or similar) if the FG-modules 
affording them are isomorphic modules. Representations which are not equivalent are 
called inequivalent. 

Suppose cp : G ---+ GL ( V) and 1/f : G ---+ GL(W) are equivalent representations 
(here V and W must be vector spaces over the same field F). Let T : V ---+ W be 
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an FG-module isomorphism between them. Since T is, in particular, an F -module 
isomorphism, T is a vector space isomorphism, so V and W must have the same 
dimension. Furthermore, for all g E G, v E V we have T(g · v) = g · (T(v)), since 
T is an isomorphism of FG-modules. By definition of the action of ring elements this 
means T(q;(g)v) = l/t (g)(T(v)) , that is 

T o q;(g) = l/t (g) o T for all g E G. 

In particular, if we identify V and W as vector spaces, then two representations q; and 
l/t of G on a vector space V are equivalent if and only if there is some T E GL(V) such 
that T o q;(g) o T-1 = lft (g) for all g E G. This T is a simultaneous change of basis 
for all q;(g), g E G. 

In matrix terminology, two representations q; and l/t are equivalent if there is a fixed 
invertible matrix P such that 

for all g E G. 

The linear transformation T or the matrix P above is said to intertwine the representa
tions q; and l/t (it gives the "rule" for changing q; into l/t ). 

In order to study the decomposition of an FG-module into (direct sums of) sub
modules we shall need some terminology. We state these definitions for arbitrary rings 
since we shall be discussing direct sum decompositions in greater generality in the next 
section. 

Definition. Let R be a ring and let M be a nonzero R-module. 
(1) The module M is said to be irreducible (or simple) if its only submodules are 0 

and M; otherwise M is called reducible. 
(2) The module M is said to be indecomposable if M cannot be written as M1 El1 M2 

for any nonzero submodules M1 and M2; otherwise M is called decomposable. 
(3) The module M is said to be completely reducible if it is a direct sum of irreducible 

submodules. 
(4) A representation is called irreducible, reducible, indecomposable, decompos

able or completely reducible according to whether the FG-module affording it 
has the corresponding property. 

(5) If M is a completely reducible R-module, any direct summand of M is called 
a constituent of M (i.e. ,  N is a constituent of M if there is a submodule N' of 
M such that M = N EB N'). 

An irreducible module is, by definition, both indecomposable and completely re
ducible. We shall shortly give examples of indecomposable modules that are not irre
ducible. 

If R = F G, an irreducible F G-module V is a nonzero F -vector space with no non
trivial, proper G-invariant subspaces. For example, if dimF V = 1 then V is necessarily 
irreducible (its only subspaces are 0 and V). 

Suppose V is a finite dimensional F G-module and V is reducible. Let U be a 
G-invariant subspace. Form a basis of V by taking a basis of U and enlarging it to a 
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basis of V.  Then for each g E G the matrix, rp(g), of g acting on V with respect to this 
basis is of the fonn 1/r(g) ) rpz(g) 
where (/Jt = rp lu (with respect to the chosen basis of U) and rp2 is the representation 
of G on VI U (and 1/r is not necessarily a homomorphism - 1/r(g) need not be a 
square matrix). So reducible representations are those with a corresponding matrix 
representation whose matrices are in block upper triangular fonn. 

Assume further that the FG-module V is decomposable, V = U ffi U'. Take for 
a basis of V the union of a basis of U and a basis of U'. With this choice of basis the 
matrix for each g E G is of the fonn 

rp(g) = (rpt0(g) o ) rpz (g) 
(i.e. , 1/r (g) = 0 for all g E G). Thus decomposable representations are those with a 
corresponding matrix representation whose matrices are in block diagonal fonn. 

Examples 

(1) As noted above, all degree 1 representations are irreducible, indecomposable and 
completely reducible. In particular, this applies to the trivial representation and to the 
representations described in Example 5 above. 

(2) If I G I  > 1 ,  the regular representation of G is reducible (the augmentation ideal and the 
trace ideal are proper nonzero submodules). We shall later determine the conditions 
under which this representation is completely reducible and how it decomposes into 
a direct sum. 

(3) For n > 1 the F Sn -module described in Example 10 above is reducible since N and 1 
are proper, nonzero submodules. The module N is irreducible (being !-dimensional) 
and if the characteristic of the field F does not divide n, then 1 is also irreducible. 

(4) The degree 2 representation of the dihedral group Dzn = G described in Example 
6 above is irreducible for n � 3. There are no G-invariant ! -dimensional subspaces 
since a rotation by 2rr j n radians sends no line in IR.2 to itself. Similarly, the degree 2 
complex representation of Qs described in Example 7 is irreducible since the given 
matrix rp(i) has exactly two !-dimensional eigenspaces (corresponding to its distinct 
eigenvalues ±.J=T) and these are not invariant under the matrix rp(j) .  The degree 4 
representation rp : Qs -+ GL4(IR.) described in Example 8 can also be shown to be 
irreducible (see the exercises). We shall see, however, that if we view rp as a complex 
representation rp : Qs -+ G L4 (\C) Gust by considering the real entries of the matrices 
to be complex entries) then there is a complex matrix P such that P -l rp (g) P is a direct 
sum of 2 x 2 block matrices for all g E Qs. Thus an irreducible representation over a 
field F may become reducible when the field is extended. 

(5) Let G = ( g } be cyclic of order n and assume F contains all the nth roots of 1 .  As 
noted in Example 1 in the set of examples of group algebras, F( g } � F[x]j(xn - 1) .  
Thus the FG-modules are precisely the F[x]-modules annihilated by xn - 1 .  The 
latter (finite dimensional) modules are described, up to equivalence, by the Jordan 
Canonical Form Theorem. 

848 

If the minimal polynomial of g acting on an F ( g } -module V has distinct roots in 
F, there is a basis of V such that g (hence all its powers) is represented by a diagonal 
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matrix (cf. Corollary 25, Section 12.3). In this case, V is a completely reducible F( g }
module (being a direct sum of ! -dimensional ( g }-invariant subspaces). In general, 
the minimal polynomial of g acting on V divides xn - 1 so if xn - 1 has distinct roots 
in F, then V is a completely reducible F ( g }-module. The polynomial xn - 1 has 
distinct roots in F if and only if the characteristic of F does not divide n. This gives 
a sufficient condition for every F ( g }-module to be completely reducible. 

If the minimal polynomial of g acting on V does not have distinct roots (so 
the characteristic of F does divide n), the Jordan canonical form of g must have an 
elementary Jordan block of size > 1 .  Since every linear transformation has a unique 
Jordan canonical form, g cannot be represented by a diagonal matrix, i.e., V is not 
completely reducible. It follows from results on cyclic modules in Section 12.3 that 
the ( ! -dimensional) eigenspace of g in any Jordan block of size > 1 admits no ( g }
invariant complement, i.e., V is reducible but not completely reducible. 

Specifically, let p be a prime, let F = IF P and let g be of order p. Let V be the 
2-dimensional space over IF P with basis v, w and define an action of g on V by 

g · V  = V and g · w =  v + w. 

This endomorphism of V does have order p (in GL(V)) and the matrix of g with 
respect to this basis is the elementary Jordan block 

� (g) = ( � � ) . 
Now V is reducible (span{v} is a ( g }-invariant subspace) but V is indecomposable 
(the above 2 x 2 elementary Jordan matrix is not similar to a diagonal matrix). 

The first fundamental result in the representation theory of finite groups shows how 
Example 5 generalizes to noncyclic groups. 

Theorem 1. (Maschke 's Theorem) Let G be a finite group and let F be a field whose 
characteristic does not divide J G J .  If V is any FG-module and U is any submodule of 
V,  then V has a submodule W such that V = U ffi W (i.e. , every submodule is a direct 
summand). 

Remark: The hypothesis of Maschke's Theorem applies to any finite group when F has 
characteristic 0. 

Proof" The idea of the proof of Maschke's Theorem is to produce an F G-module 
homomorphism 

rr : V -+ U  

which is a projection onto U, i .e. , which satisfies the following two properties: 
(i) rr (u) = u for all u E U 
(ii) rr (rr(v)) = rr (v) for all v E V (i.e., rr2 = rr) 

(in fact (ii) i s  implied by  (i) and the fact that rr(V) 5; U). 
Suppose first that . we can produce such an F G-module homomorphism and let 

W = ker rr .  Since rr is a module homomorphism, W is a submodule. We see that W is 
a direct sum complement to U as follows. If v E U n W then by (i), v = rr(v) whereas 
by definition of W, rr(v) = 0. This shows U n W = 0. To show V = U + W let v be 
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an arbitrary element of V and write v = rr (v) + (v - rr (v)) .  By definition, rr (v) E U. 
By property (ii) of rr,  

rr(v - rr (v)) = rr (v) - rr (rr (v)) = rr (v) - rr (v) = 0, 

i.e., v - rr (v) E W. This shows V = U + W and hence V = U EB W. To establish 
Maschke's Theorem it therefore suffices to find such an FG-module projection rr . 

Since U is a subspace it has a vector space direct sum complement Wo in V (take 
a basis Bt of U, build it up to a basis B of V and let Wo be the span of B - 81 ). Thus 
V = U EB W0 as vector spaces but Wo need not be G-stable (i.e. ,  need not be an FG
submodule). Let rr0 : V --+ U be the vector space projection of V onto U associated 
to this direct sum decomposition, i.e. , rr0 is defined by 

rro(u + w) = u for all u E U, w E Wo. 

The key idea of the proof is to "average" rr0 over G to form an F G-module projection 
rr .  For each g E G define 

by grr0g-1 (v) = g · rro(g-
1 · v) , for all v E V 

(here · denotes the action of elements of the ring F G). Since rro maps V into U and U is 
stable under the action of g we have that grr0g - 1 maps V into U. Both g and g -I act as 
F -linear transformations, so grr0g-1 is a linear transformation. Furthermore, if u is in 
the G-stable space U then so is g- 1 u ,  and by definition ofrro we have rr0(g-1 u) = g-1 u.  
From this we obtain that for all g E G, 

for all u E U 

(i.e. ,  grr0g-1 is also a vector space projection of V onto U). 
Let n = I G I  and view n as an element of F (n = 1 + · · · + 1, n times). By 

hypothesis n is not zero in F and so has an inverse in F. Define 

I '"' 1 rr = - � grrog -
n 

gEG 

Since rr is a scalar multiple of a sum of linear transformations from V to U, it is also 
a linear transformation from V to U. Furthermore, each term in the sum defining rr 
restricts to the identity map on the subspace U and so rr I u is 1 In times the sum of n 
copies of the identity. These observations prove the following: 

rr : V --+ U is a linear transformation 

rr (u) = u for all u E U 
rr2(v) = rr (v) for all v E V. 

It remains to show that rr is an FG-module homomorphism (i.e. , is FG-linear). It 
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suffices to prove that for all h E G, rr(hv) = hrr(v), for v E V. In this case 

1 rr(hv) = - L grro(g-1hv) n 
gEG 

(as g runs over all elements of G,  so does k = h -t g and the module element h may 
be brought outside the summation by the distributive law in modules). This establishes 
the existence of the FG-module projection rr and so completes the proof. 

The applications of Maschke's Theorem will be to finitely generated FG-modules. 
Unlike the situation of F[x]-modules, however, finitely generated FG-modules are 
automatically finite dimensional vector spaces (the difference being that FG itself is 
finite dimensional, whereas F[x] is not). Let V be an FG-module. If V is a finite 
dimensional vector space over F, then a fortiori V is finitely generated as an F G
module (any F basis gives a set of generators over FG). Conversely, if V is finitely 
generated as an FG-module, say by Vt . . . .  , vk. then one easily sees that V is spanned 
as a vector space by the finite set {g · v; I g E G, 1 � i � k}. Thus 

an F G-module is finitely generated if and only if it is finite dimensional. 

Corollary 2. If G is a finite group and F is a field whose characteristic does not divide 
I G I ,  then every finitely generated FG-module is completely reducible (equivalently, 
every F -representation of G of finite degree is completely reducible). 

Proof: Let V be a finitely generated F G-module. As noted above, V is finite 
dimensional over F, so we may proceed by induction on its dimension. If V is irre
ducible, it is completely reducible and the result holds. Suppose therefore that V has a 
proper, nonzero FG-submodule U.  By Maschke's Theorem U has an FG-submodule 
complement W, i.e., V = U EB W. By induction, each of U and W are direct sums of 
irreducible submodules, hence so is V .  This completes the induction. 

Corollary 3. Let G be a finite group, let F be a field whose characteristic does not 
divide I G I  and let <p : G -+ GL(V) be a representation of G of finite degree. Then 
there is a basis of V such that for each g E G the matrix of <p (g) with respect to this 
basis is block diagonal: 

c· (g) 
'1'2(g) 

. . . 
�m (gJ 

where <p; is an irreducible matrix representation of G, 1 � i � m. 
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Proof" By Corollary 2 we may write V = U1 EB U2 EB · • · EB Um , where U; is an 
irreducible F G-submodule of V.  Let 13; be a basis of U; and let 13 be the union of the 
13; 's. For each g E G, the matrix of q;(g) with respect to the basis 13 is of the form in 
the corollary, where q;; (g) is the matrix of q; (g) I u; with respect to the basis 13; . 

The converse of Maschke's Theorem is also true. Namely, if the characteristic 
of F does divide I G I ,  then G possesses (finitely generated) F G-modules which are 
not completely reducible. Specifically, the regular representation (i.e., the module FG 
itself) is not completely reducible. 

In Section 18.2 we shall discuss the question of uniqueness of the constituents in 
direct sum decompositions of FG-modules into irreducible submodules. 

E X E R C I S E S 

Let F be a field, let G be a finite group and let n E z:+. 
l. Prove that if cp :  G � GL(V) is any representation, then cp gives a faithful representation 

of Gj ker cp. 

2. Let cp : G � GLn (F} be a matrix representation. Prove that the map g r+ det(cp(g)) is a 
degree 1 representation. 

3. Prove that the degree I representations of G are in bijective correspondence with the degree 
1 representations of the abelian group G j G' (where G' is the commutator subgroup of G). 

4. Let V be a (possibly infinite dimensional) FG-module (G is a finite group). Prove that 
for each v E V there is an FG-submodule containing v of dimension ::::: I G I .  

5 .  Prove that i f  I G I  > 1 then every irreducible FG-module has dimension < I G I .  

6. Write out the matrices cp(g) for every g E G for each of the following representations that 
were described in the second set of examples: 
(a) the representation of S3 described in Example 3· (let n = 3 in that example) 
(b) the representation of Ds described in Example 6 (i.e., let n = 4 in that example and 

write out the values of all the sines and cosines, for all group elements) 
(c) the representation of Qs described in Example 7 
(d) the representation of Qs described in Example 8. 

7. Let V be the 4-dimensional permutation module for S4 described in Example 3 of the 
second set of examples. Let rr : Ds � S4 be the permutation representation of Ds 
obtained from the action of Ds by left multiplication on the set of left cosets of its subgroup 
( s ) . Make V into an F Ds-module via rr as described in Example 4 and write out the 4 x 4 
matrices for r and s given by this representation with respect to the basis e1 , . . .  , e4 .  

8. Let V be the FSn-module described in Examples 3 and 10 in the second set of examples. 
(a) Prove that if v is any element of V such that a · v = v for all a E Sn then v is an 

F-multiple of e1 + e2 + · · · + en .  
(b) Prove that i f  n � 3 ,  then V has a unique !-dimensional submodule, namely the 

sub module N consisting of all F -multiples of e1 + e2 + · · · + en . 

9. Prove that the 4-dimensional representation of Qs on llli described in Example 8 in the 
second set of examples is irreducible. [Show that any Qg-stable subspace is a left ideal.] 

10. Prove that GL2(lR) has no subgroup isomorphic to Qs. [This may be done by direct 
computation using generators and relations for Qg.  Simplify these calculations by putting 
one generator in rational canonical form.]  

852 Chap. 1 8  Representation Theory and Cha racter Theory 



11. Let rp : Sn � GLn (F) be the matrix representation given by the permutation module 
described in Example 3 in the second set of examples, where the matrices are computed 
with respect to the basis e1 . . . .  , en . Prove that det rp(O') = E (O') for all 0' E Sn , where E (O') 
is the sign of the permutation 0'. [Check this on transpositions.] 

12. Assume the characteristic of F is not 2. Let H be the set of T E Mn (F) such that T 
has exactly one nonzero entry in each row and each column and zeros elsewhere, and the 
nonzero entries are ± I .  Prove that H is a subgroup of GLn (F) and that H is isomorphic 
to E2" ><l Sn (semidirect product), where E2n is the elementary abelian group of order 2

n
. 

The next few exercises explore an important result known as Schur's Lemma and some of its 
consequences. 

13. Let R be a ring and let M and N be simple (i.e., irreducible) R-modules. 
(a) Prove that every nonzero R-module homomorphism from M to N is an isomorphism. 

[Consider its kernel and image.] 
(b) Prove Schur's Lemma: if M is a simple R-module then HomR (M, M) is a division 

ring (recall that HomR (M, M) is the ring of all R-module homomorphisms from M 
to M, where multiplication in this ring is composition). 

14. Let rp : G � GL(V) be a representation of G. The centralizer of rp is defined to be the set 
of all linear transformations, A, from V to itself such that Arp(g) = rp(g)A for all g E G 
(i.e., the linear transformations of V which commute with all rp (g)'s). 
(a) Prove that a linear transformation A from V to V is in the centralizer of rp if and only 

if it is an FG-module homomorphism from V to itself (so the centralizer of rp is the 
same as the ring Hompc ( V, V)). 

(b) Show that if z is in the center of G then rp(z) is in the centralizer of rp.  
(c) Assume rp is an irreducible representation (so V is a simple FG-module). Prove 

that if H is any finite abelian subgroup of GL(V) such that Arp(g) = rp (g)A for 
all A E H then H is cyclic (in other words, any finite abelian subgroup of the 
multiplicative group of units in the ring Hompc (V, V) is cyclic). [By the preceding 
exercise, Hompc ( V, V) is a division ring, so this reduces to proving that a finite 
abelian subgroup of the multiplicative group of nonzero elements in a division ring 
is cyclic. Show that the division subring generated by an abelian subgroup of any 
division ring is a field and use Proposition 18,  Section 9.5.] 

(d) Show that if rp is a faithful irreducible representation then the center of G is cyclic. 
(e) Deduce from (d) that if G is abelian and rp is any irreducible representation then 

G I ker rp is cyclic. 

15. Exhibit all ! -dimensional complex representations of a finite cyclic group; make sure to 
decide which are inequivalent. 

16. Exhibit all l -dimensional complex representations of a finite abelian group. Deduce that 
the number of inequivalent degree 1 complex representations of a finite abelian group 
equals the order of the group. [First decompose the abelian group into a direct product of 
cyclic groups, then use the preceding exercise.] 

17. Prove the following variant of Schur's Lemma for complex representations of abelian 
groups: if G is abelian, any irreducible complex representation, rp, of G is of degree 1 
and G 1 ker rp is cyclic. [This can be done without recourse to Exercise 14 by using the 
observation that for any g E G the eigenspaces of rp(g) are G-stable. Your proof that rp 
has degree 1 should also work for infinite abelian groups.] 

18. Prove the following general form of Schur's Lemma for complex representations: if 
rp : G � G Ln (<C) is an irreducible matrix representation and A is an n x n matrix com-
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muting with rp(g) for all g E G, then A is a scalar matrix. Deduce that if rp is a faithful, 
irreducible, complex representation then the center of G is cyclic and rp(z) is a scalar 
matrix for all elements z in the center of G. [As in the preceding exercise, the eigenspaces 
of A are G-stable.] 

19. Prove that if G is an abelian group then any finite dimensional complex representation of G 
is equivalent to a representation into diagonal matrices (i.e., any finite group of commuting 
matrices over C can be simultaneously diagonalized). [This can be done without recourse 
to Maschke's Theorem by looking at eigenspaces.] 

20. Prove that the number of degree 1 complex representations of any finite group G equals 
I G : G' l ,  where G' is the commutator subgroup of G. [Use Exercises 3 and 16.] 

21. Let G be a noncyclic abelian group acting by conjugation on an elementary abelian p-group 
V, where p is a prime not dividing the order of G.  
(a) Prove that if  W is an irreducible lF" pG-submodule of V then there is some nonidentity 

element g E G such that W � Cv (g) (here Cv (g) is the subgroup of elements of V 
that are fixed by g under conjugation). 

(b) Prove that V is generated by the subgroups Cv (g) as g runs over all nonidentity 
elements of G .  

22. Let p be a prime, let P be a p-group and let F be a field of characteristic p. Prove that 
the only irreducible representation of P over F is the trivial representation. [Do this for a 
group of order p first using the fact that F contains all pth roots of 1 (namely 1 itself). If 
P is not of order p, let z be an element of order p in the center of P, prove that z is in the 
kernel of the irreducible representation and apply induction to P j( z ) .] 

23. Let p be a prime, let P be a nontrivial p-group and let F be a field of characteristic p. Prove 
that the regular representation is not completely reducible. [Use the preceding exercise.] 

24. Let p be a prime, let P be a nontrivial p-group and let F be a field of characteristic p. 
Prove that the regular representation is indecomposable. 

1 8.2 WEDDERBURN'S THEOREM AND SOM E CONSEQUENCES 

In this section we give a famous classification theorem due to Wedderburn which de
scribes, in particular, the structure of the group algebra F G when the characteristic 
of F does not divide the order of G. From this classification theorem we shall derive 
various consequences, including the fact that for each finite group G there are only a 
finite number of nonisomorphic irreducible F G-modules. This result, together with 
Maschke's Theorem, in some sense completes the Holder Program for representation 
theory of finite groups over such fields. The remainder of the book is concerned with 
developing techniques for determining and working with the irreducible representations 
as well as applying this knowledge to obtain group-theoretic information. 

Theorem 4. (Wedderburn's Theorem) Let R be a nonzero ring with l (not necessarily 
commutative). Then the following are equivalent: 

(1) every R-module is projective 
(2) every R-module is injective 
(3) every R-module is completely reducible 
(4) the ring R considered as a left R-module is a direct sum: 
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where each L; is a simple module (i.e. ,  a simple left ideal) with L; = Re; , for 
some e; E R with 

(i) e; ej = 0 if i =!= j 
(ii) ef = e; for all i 

(iii) I:7=t e; = 1 
(5) as rings, R is isomorphic to a direct product of matrix rings over division rings, 

i.e., R = Rt x Rz x · · · x Rr where Rj is a two-sided ideal of R and Rj is 
isomorphic to the ring of all n j x n j matrices with entries in a division ring 6. j ,  
j = 1 ,  2 ,  . . . , r .  The integer r ,  the integers nj , and the division rings !:l.j (up to 
isomorphism) are uniquely determined by R .  

Proof: A proof of Wedderburn' s  Theorem i s  outlined in Exercises 1 to 10 

Definition. A ring R satisfying any of the (equivalent) properties in  Theorem 4 is 
called semisimple with minimwn condition. 

Rings R satisfying any of the equivalent conditions of Theorem 4 also satisfy the 
minimum condition or descending chain condition (D. C. C) on left ideals:  

if It 2 ]z 2 · · · is a descending chain of left ideals of R 

then there is an N E z+ such that h = IN for all k :::: N 

(which explains the use of this term in the definition above). The rings we deal with 
will all have this minimum condition. For example, group algebras always have this 
property since in any strictly descending chain of ideals the vector space dimensions of 
the ideals (which are F -subspaces of FG) are strictly decreasing, hence the length of a 
strictly descending chain is at most the dimension of F G ( = I G 1 ) .  We shall therefore use 
the term "semisimple" to mean "semisimple with minimum condition." The rings R; in 
conclusion (5) of Wedderburn's Theorem are called the Wedderburn components of R 
and the direct product decomposition of R is called its Wedderburn decomposition. Note 
that Wedderburn's Theorem for commutative rings is a consequence of the classification 
of Artinian rings in Section 16. 1 .  A commutative semisimple ring with minimum 
condition is an Artinian ring with Jacobson radical equal to zero and so is a direct 
product of fields (which are its Wedderburn components). 

One should note that condition (5) is a two-sided condition which describes the 
overall structure of R completely (the ring operations in this direct product of rings are 
componentwise addition and multiplication). In particular it implies that a sernisimple 
ring also has the minimum condition on right ideals: A useful way of thinking of the 
elements of the direct product R 1 x · · · x Rr in conclusion (5) is as n x n (block diagonal) 
matrices of the form 

J 
where A; is an arbitrary n; x n; matrix with entries from 6.; (here n = I:;=l n; ). 
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Recall from Section 10.5 that an R-module Q is injective if whenever Q is a 
submodule of any R -module M, then M has a submodule N such that M = Q EB N. 
Maschke's Theorem therefore implies: 

Corollary 5. If G is a finite group and F is a field whose characteristic does not divide 
I G I ,  then the group algebra F G is a semisimple ring. 

Before obtaining more precise information about how the invariants n, r, l'!..j , etc., 
relate to invariants in group rings F G for certain fields F, we first study the structure 
of matrix rings (i.e . , the rings described in conclusions (4) and (5) of Wedderburn ' s 
Theorem). We introduce some terminology which is used extensively in ring theory. 
Recall that the center of the ring R is the subring of elements commuting with all 
elements in R; it will be denoted by Z(R) (the center will contain I if the ring has a 1). 

Definition. 
(1) A nonzero element e in a ring R is called an idempotent if t? = e. 
(2) Idempotents e1 and ez are said to be orthogonal if e1e2 = eze1 = 0. 
(3) An idempotent e is said to be primitive if it cannot be written as a sum of two 

(commuting) orthogonal idempotents. 
(4) The idempotent e is called a primitive central idempotent if e E Z(R) and e 

cannot be written as a sum of two orthogonal idempotents in the ring Z (R). 

Proposition 6 describes the ideal structure of a matrix ring and Proposition 8 extends 
these results to direct products of matrix rings. 

Proposition 6. Let !"!.. be a division ring, let n E z+, let R be the ring of all n x n 
matrices with entries from !"!.. and let I be the identity matrix (= the 1 of R). 

(1) The only two-sided ideals of R are 0 and R. 
(2) The center of R consists of the scalar matrices a I, where a is in the center of !"!.. : 

Z(R) = {a/ I a E Z(l'!..} } , and this is a field isomorphic to Z(I'!..} .  In particular, 
if !"!.. is a field, the center of R is the subring of all scalar matrices. The only 
central idempotent in R is I (in particular, I is primitive). 

(3) Let e; be the matrix with a 1 in position i, i and zeros elsewhere. Then e1 , . . .  , en 
are orthogonal primitive idempotents and I:7=1 e; = I .  

(4) L; = Re; i s  the left ideal consisting of arbitrary entries in  column i and zeros 
in all other columns. L; is a simple left R-module. Every simple left R-module 
is isomorphic to L 1 (in particular, all L; are isomorphic R-modules) and as a 
left R-module we have R = L t EB · · · EB Ln . 

Before proving this proposition it will be useful to have the following result. 

Lemma 7. Let R be an arbitrary nonzero ring. 
(1) If M and N are simple R-modules and cp : M --1- N is a nonzero R-module 

homomorphism, then cp is an isomorphism. 
(2) (Schur 's Lemma) If M is a simple R-module, then HomR (M, M) is a division 

ring. 
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Proof of Lemma 7: To prove ( 1) note that since q; is nonzero, ker q; is a proper 
submodule of M. By simplicity of M we have ker q; = 0. Similarly, the image of q; 
is a nonzero submodule of the simple module N, hence q;(M) = N. This proves q; is 
bijective, so ( 1 )  holds. 

By part ( 1 ), every nonzero element of the ring HomR (M, M) is an isomorphism, 
hence has an inverse. This gives (2). 

Proof of Proposition 6 Let A be an arbitrary matrix in R whose i, j entry is Uij · 
Let Eij be the matrix with a 1 in position i, j and zeros elsewhere. The following 
straightforward computations are left as exercises: 

(i) Eij A is the matrix whose ;th row equals the jth row of A and all other rows are 
zero. 

(ii) AE;j is the matrix whose jth column equals the ;th column of A and all other 
columns are zero. 

(iii) EpqA Ers is the matrix whose p, s entry is Uqr and all other entries are zero. 

To prove (1 )  suppose J is any nonzero 2-sided ideal of R and let A be an element 
of J with a nonzero entry in position q ,  r . Given any p, s E { 1 , . . .  , n }  we obtain from 
(iii) that 

1 
Eps = - Epq AEr.< E J. 

Uqr 

Since the D.-linear combinations of {Eps I 1 � p � n ,  1 � s � n} give all of R, it 
follows that J = R. This proves (1) .  

To prove (2) assume A E Z(R). Thus for all i ,  j we have Eij A = AEij . From 
(i) and (ii) above it follows immediately that all off-diagonal entries of A are zero and 
all diagonal entries of A are equal. Thus A = al for some a E D.. Furthermore, A 
must also commute with the set of all scalar matrices {31, {3 E D., i.e., a must commute 
with all elements of D.. Finally, since Z(R) is a field, it is immediate that it contains a 
unique idempotent (namely J). This establishes all parts of (2). 

In part (3) it is clear that e1 • . . .  , en are orthogonal idempotents whose sum is J .  
We defer proving that they are primitive until we have established (4). 

Next we prove (4). From (ii) above it follows that Re; = RE;; is the set of matrices 
with arbitrary entries in the ;th column and zeros in all other columns. Furthermore, 
if A is any nonzero element of Re; , then certainly RA 5; Re; . The reverse inclusion 
holds because if Up; is a nonzero entry of A, then by (i) above 

1 
e; = E;; = - E;pA E RA.  

Up; 

This proves Re; = RA for any nonzero element A E Re; , and so Re; must be a simple 
R-module. 

Let M be any simple R-module. Since lm = m for all m E M and since I = 
I:7=1 e; . there exists some i and some m E M such that e;m =j:. 0. For this i and m the 
map re; 1-+ re;m is a nonzero R-module homomorphism from the simple R-module 
Re; to the simple module M. By Lemma 7(1) it is an isomorphism. By (ii), the map 
r 1-+ r E; 1 gives Re; � Re1 . Finally, every matrix is the direct sum of its columns so 
R = L1 EB · · · EB Ln . This completes the proof of (4). 
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It remains to prove that the idempotents in part (3) are primitive. If e; = a + b, for 
some orthogonal idempotents a and b, then we shall see that 

L; = Re; = Ra EB Rb. 
This will contradict the fact that L; is a simple R-module. To establish the above direct 
sum note first that since ab = ba = 0, we have ae; = a E Re; and be; = b E Re; .  For 
all r E R we have re; = ra + rb, hence Re; = Ra + Rb . Moreover, Ra n Rb = 0 
because if ra = sb for some r, s E R, then ra = raa = sba = 0 (recall a = a2 and 
ba = 0). This completes all parts of the proof. 

Proposition 8. Let R = Rt x R2 x · · · x R, where R; is the ring of n; x n; matrices 
over the division ring D..; ,  for i = 1 ,  2, . . . , r .  

(1) Identify R;  with the ;th component of  the direct product. Let z ;  be the r-tuple 
with the identity of R; in position i and zero in all other positions. Then 
R; = z; R and for any a E R; , z;a = a and Zja = 0 for all j 'I i .  The elements 
z 1 ,  . • •  , Zr are all of the primitive central idempotents of R .  They are pairwise 
orthogonal and I:;=I z; = 1 .  

(2) Let N be any left R-module and let z; N = {z;x I x E N} ,  1 ::::= i ::::= r.  Then 
z; N is a left R-submodule of N, each z;N is an R; -module on which Rj acts 
trivially for all j 'I i ,  and 

N = zt N EB z2N EB · · · EB ZrN. 

(3) The simple R-modules are the simple R;-modules on which Rj acts trivially 
for j 'I i in the following sense. Let M; be the unique simple R; -module (cf. 
Proposition 6). We may consider M; as an R-module by letting Rj act trivially 
for all j 'I i .  Then M 1 , • • .  , Mr are pairwise nonisomorphic simple R -modules 
and any simple R -module is isomorphic to one of M 1 , • • .  , Mr. Explicitly, the 
R -module M; is isomorphic to the simple left ideal (0, . . .  , 0, L (i) ,  0, . . .  , 0) of 
all elements of R whose ;th component, L (i) ,  consists of matrices with arbitrary 
entries in the first column and zeros elsewhere. 

( 4) For any R -module N the R -submodule z; N is a direct sum of simple R -modules, 
each of which is isomorphic to the module M; in (3). In particular, if M is a 
simple R -module, then there is a unique i such that Z; M = M and for this index 
i we have M � M; ; for all j 'I i ,  ZjM = 0. 

(5) If each D..; equals the field F, then R is a vector space over F of dimension 

L;=l nr and dimF Z(R) = r. 

Proof· In part ( 1 )  since multiplication in the direct product of rings is  componen
twise it is clear that z; times the element (a1 , • • .  , a7) of R is the r-tuple with a; in 
position i and zeros elsewhere. Thus R; = z; R, z; is the identity in R; and z;a = 0 if 
a E Rj for any j 'I i .  It is also clear that z 1 , . . . , Zr are pairwise orthogonal central 
idempotents whose sum is the identity of R .  The central idempotents of R are, by 
definition, the idempotents in Z (R) = F1 x F2 x · · · x F7 , where F; is the center of R; . 
By Proposition 6, F; is the field Z(D..; ) .  If w = (wt , . . .  , W7) is any central idempotent 
then w; E F; for all i ,  and since w2 = w we have w? = w; in the field F; . Since 0 and 1 
are the only solutions to x2 = x in a field, the only central idempotents in R are r-tuples 
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whose entries are O's and l 's. Thus Z I , . . .  , Zr are primitive central idempotents and 
since every central idempotent is a sum of these, they are the complete set of primitive 
central idempotents of R. This proves ( 1 ). 

To prove (2) let N be any left R-module. First note that for any z E Z(R) the 
set {zx I x E N} is an R-submodule of N. In particular, z; N is an R-submodule. 
Let z;x E z; N and let a E Rj for some j -1- i .  By ( 1 )  we have that a = azj and 
so az;x = (azj ) (z;x) = az;ZjX = 0 because Z; Zj = 0. Thus the R-submodule 
z; N is acted on trivially by Rj for all j -1- i .  For each x E N we have by ( 1 )  that 
x = lx = Z IX + · · · + ZrX, hence N = ZI N + · · · + ZrN. Finally, this sum is direct 
because if, for instance, X E z IN n (zzN + . . . + Zr N), then X = z I X whereas z I times 
any element of zzN + · · · + zrN is zero. This proves (2). 

In part (3) first note that an R; -module M becomes an R-module when Rj is defined 
to act trivially on M for all j -1- i .  For such a module M the R -submodules are the same 
as the R; -submodules. Thus M; is a simple R-module for each i since it is a simple 
R;-module. 

Next, let M be a simple R-module. By (2), M = Z I M EB · · · EB Zr M. Since M 
has no nontrivial proper R -submodules, there must be a unique i such that M = z; M 
and Zj M = 0 for all j -j. i .  Thus the simple R-module M is annihilated by Rj for all 
j -j. i .  This implies that the R -submodules of M are the same as the R; -submodules 
of M, so M is therefore a simple R; -module. By Proposition 6, M is isomorphic as an 
R; -module to M; . Since Rj acts trivially on both M and M; for all j -j. i ,  it follows 
that the R; -module isomorphism may be viewed as an R-module isomorphism as well. 

Suppose i -1- j and suppose q? : M; --+ Mj is an R-module isomorphism. Ifs; E M; 

then S; = Z;S; SO 
f,O(s; ) = f,O(Z;S; )  = Z;f,O(S; ) = 0, 

since f,O(s; ) E Mj and z; acts trivially on Mj . This contradicts the fact that f,O is an iso
morphism and proves that MI , . . .  , Mr are pairwise nonisomorphic simple R-modules. 

Finally, the left ideal of R described in (3) is acted on trivially by Rj for all j -1- i 
and, by Proposition 6, it is up to isomorphism the unique simple R; -module. This left 
ideal is therefore a simple R-module which is isomorphic to M; . This proves (3). 

For part (4) we have already proved that if M is any simple R-module then there is 
a unique i such that z; M = M and Zj M = 0 for all j -1- i. Furthermore, we have shown 
that for this index i the simple R-module M is isomorphic to M; . Now let N be any 
R -module. Then z; N is a module over R; which is acted on trivially by Rj for all j -1- i .  
By Wedderburn's Theorem z;N is a direct sum of simple R-modules. Since each of 
these simple summands is acted on trivially by Rj for all j -j. i, each is isomorphic to 
M; .  This proves ( 4 ).  

In part (5) if each t:J.; equals the field F, then as an F -vector space 

Each matrix ring M11; (F) has dimension nf over F, hence R has dimension r:;=I nf over 
F. Furthermore, the center of each M11; (F) is ! -dimensional (since by Proposition 6(2) 
it is isomorphic to F), hence Z(R) has dimension r over F. This completes the proof 
of the proposition. 
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We now apply Wedderburn's Theorem (and the above ring-theoretic calculations) 
to the group algebra FG.  First of all, in order to apply Wedderburn's Theorem we 
need the characteristic of F not to divide I G 1. In fact, since we shall be dealing with 
numerical data in the sections to come it will be convenient to have the characteristic of 
F equal to 0. Secondly, it will simplify matters if we force all the division rings which 
will appear in the Wedderburn decomposition of FG to equal the field F - we shall 
prove that imposing the condition that F be algebraically closed is sufficient to ensure 
this. To simplify notation we shall therefore take F = C for most of the remainder of 
the text. The reader can easily check that any algebraically closed field of characteristic 
0 (e.g., the field of all algebraic numbers) can be used throughout in place of C. 

By Corollary 5 the ring CG is semisimple so by Wedderburn's Theorem 

CG � Rt X R2 X · · ·  X Rr 

where R; is the ring of n; x n; matrices over some division ring !::l.; .  Thinking of the 
elements of this direct product as n x n block matrices (n = :E;=l n; )  where the ;th 
block has entries from !::l.; ,  the field C appears in  this direct product as  scalar matrices 
and is contained in the center of CG. Note that each !::l.; is a vector space over C of 
dimension .::: n. The next result shows that this implies each !::l.; = C. 

Proposition 9. If !::l. is a division ring that is a finite dimensional vector space over an 
algebraically closed field F and F � Z(!::l.), then !::l. = F. 

Proof· Since F � Z(!::l.) ,  for each a E !::l. the division ring generated by a and F 
is a field. Also, since !::l. is finite dimensional over F the field F(a) is a finite extension 
of F. Because F is algebraically closed it has no nontrivial finite extensions, hence 
F(a) = F for all a E !::l., i.e., !::l. = F. 

This proposition proves that each R; in the Wedderburn decomposition of CG is a 
matrix ring over C: 

Now Proposition 8(5) implies that 
r 

L n; = I G I .  
i=l 

The final application in this section is to prove that r ( = the number of Wedderburn 
components in CG) equals the number of conjugacy classes of G.  To see this, first 
note that Proposition 8(5) asserts that r = dimcZ(CG) .  We compute this dimension 
in another way. 

Let Kt , . . .  , Ks be the distinct conjugacy classes of G (recall that these partition 
G). For each conjugacy class K; of G let 

X; = L g E CG. 
gEIC, 

Note that X; and Xj have no common terms for i =j:. j, hence they are linearly indepen
dent elements of CG. Furthermore, since conjugation by a group element permutes the 
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elements of each class, h -t X; h = X; , i.e., X; commutes with all group elements. This 
proves that X; e Z(CG). 

We show the X; 's form a basis of Z(CG), which will prove s = dimc Z (CG) = r. 
Since the X; 's are linearly independent it remains to show they span Z(CG). Let 
X = LgeG a8g be an arbitrary element of Z(CG). Since h-1 Xh = X, 

'L a8h-1gh = 'L a8g. 
geG geG 

Since the elements of G form a basis of CG the coefficients of g in the above two sums 
are equal: 

Since h was arbitrary, every element in the same conjugacy class of a fixed group 
element g has the same coefficient in X, hence X can be written as a linear combination 
of the X; 's. 

We summarize these results in the following theorem. 

Theorem 10. Let G be a finite group. 
(1) CG � Mn1 (C) X Mn2 (C) X • • • X Mn, (C) .  
(2) CG has exactly r distinct isomorphism types of irreducible modules and these 

have complex dimensions n1 , n2, . . .  , nr (and so G has exactly r inequivalent 
irreducible complex representations of the corresponding degrees).  

(3) L�=I n� = I G I . 
(4) r equals the number of conjugacy classes in G .  

Corollary 11. 
(1) Let A be a finite abelian group. Every irreducible complex representation 

of A is 1 -dimensional (i.e., is a homomorphism from A into C x )  and A has 
l A I inequivalent irreducible complex representations. Furthermore, every finite 
dimensional complex matrix representation of A is equivalent to a representation 
into a group of diagonal matrices. 

(2) The number of inequivalent (irreducible) degree 1 complex representations of 
any finite group G equals I GI G' 1 . 

Proof: If A is abelian, CA is a commutative ring. Since a k x k matrix ring is not 
commutative whenever k > 1 we must have each n; = 1 .  Thus r = I A I  (= the number 
of conjugacy classes of A). Since every CA-module is a direct sum of irreducible 
submodules, there is a basis such that the matrices are diagonal with respect to this 
basis. This establishes the first part of the corollary. 

For a general group G, every degree 1 representation, qJ, is a homomorphism of G 
into e x .  Thus qJ factors through GI G'. Conversely, every degree 1 representation of 
G 1 G' gives, by composition with the natural projection G --+ GI G', a degree 1 repre
sentation of G .  The degree 1 representations of G are therefore precisely the irreducible 
representations of the abelian group GIG'.  Part (2) is now immediate from (1 ). 
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Examples 

(1) The irreducible complex representations of a finite abelian group A (i.e., the homo
morphisms from A into e x )  can be explicitly described as follows: decompose A into 
a direct product of cyclic groups 

A �  Ct X · · ·  X Cn 

where I C; I = I { x; ) I = d; . Map each x; to a (not necessarily primitive) d; lh root of 
1 and extend this to all powers of x; to give a homomorphism. Since there are d; 
choices for the image of each x; , the number of distinct homomorphisms of A into 
e x  = GL t (C) defined by this process equals I A I .  By Corollary 1 1 , these are all the 
irreducible representations of A. Note that it is necessary that the field contain the 
appropriate roots of 1 in order to realize these representations. An exercise below 
explores the irreducible representations of cyclic groups over Q. 

(2) Let G = S3. By Theorem 10 the number of irreducible complex representations of 
G is three (= the number of conjugacy classes of S3). Since the sum of the squares 
of the degrees is 6, the degrees must be I ,  1 and 2. The two degree 1 representations 
are immediately evident: the trivial representation and the representation of S3 into 
{ ± 1 } given by mapping a permutation to its sign (i.e., u 1-+ + 1 if u is an even permu
tation and u �-+ - 1  if u is an odd permutation). The degree 2 representation can be 
found by decomposing the permutation representation on 3 basis vectors (described 
in Section 1) into irreducibles as follows: let S3 act on the basis vectors et , f!'l, eJ of a 
vector space V by permuting their indices. The vector t = e1 + e2 + e3 is a nonzero 
fixed vector, so t spans a !-dimensional G-invariant subspace (which is a copy of the 
trivial representation). By Maschke's Theorem there is a 2-dimensional G-invariant 
complement, I .  Note that the permutation representation is not a sum of degree 1 
representations: otherwise it could be represented by diagonal matrices and the per
mutations would commute in their action - this is impossible since the representation 
is faithful and G is non-abelian. Thus I cannot be decomposed further, so I affords the 
irreducible 2-dimensional representation. Indeed, I is the "augmentation" submodule 
described in Section 1 :  

1 = {w E  V I w = a1 e1 + azf!'l + a3e3 with a t  + az + a3 = 0}. 

Clearly e1 -e2 and ez -e3 are independent vectors in I, hence they form a basis for this 
2-dimensional space. With respect to this basis of I we obtain a matrix representation 
of S3 and, for example, this matrix representation on two elements of S3 is ( - 1  1 ) ( 1  2) 1-+ 

0 1 and ( 0 - 1 ) (1 2 3) �-+ I - l . 
(3) We decompose the regular representation over e of an arbitrary finite group. Recall 

that this is the representation afforded by the left eG-module eG itself. By Theorem 
I 0, eG is first of all a direct product of two-sided ideals: 

eG � Mn1 (C) X Mn2 (C) X · · ·  X Mn, (e) .  

Now by Proposition 6(4) each Mn; (C) decomposes further as a direct sum of  n; 
isomorphic simple left ideals. These left ideals give a complete set of isomorphism 
classes of irreducible eG-modules. Thus the regular representation (over C) of G 
decomposes as the direct sum of all irreducible representations of G, each appearing 
with multiplicity equal to the degree of that irreducible representation. 

We record one additional property of <CG which we shall prove in Section 19.2. 
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Theorem 12. The degree of each complex irreducible representation of a finite group 
G divides the order of G, i.e., in the notation of Theorem 10, each n; divides I G I for 
i = 1 , 2, . . . , r .  

I n  the next section we shall describe the primitive central idempotents of CG in 
terms of the group elements. 

E X E R C I S E S 

Let G be a finite group and let R be a ring with 1 .  

1 .  Prove that conditions ( 1 )  and (2) of Wedderburn's Theorem are equivalent. 
2. Prove that (3) implies (2) in Wedderburn's Theorem. [Let Q be a submodule of an R

module N. Use Zorn's Lemma to show there is a submodule M maximal with respect to 
Q n M = 0. If Q + M = N, then (2) holds; otherwise let Mt be the complete preimage 
in N of some simple module in N I M not contained in ( Q + M) I M, and argue that M 1 
contradicts the maximality of M.] 

3. Prove that (4) implies (3) in Wedderburn's Theorem. [Let N be a nonzero R-module. First 
show N contains simple submodules by considering a cyclic submodule. Then use Zorn's 
Lemma applied to the set of direct sums of simple submodules (appropriately ordered) to 
show that N contains a maximal completely reducible submodule M. If M =ft N let Mt 
be the complete preimage in N of a simple module in N 1M and contradict the maximality 
of M.] 

4. Prove that (5) implies (4) in Wedderburn's Theorem. [Use the methods in the proofs of 
Propositions 6 and 8 to decompose each R; as a left R-module.] 

The next six exercises establish some general results about rings and modules that imply the 
remaining implication of Wedderburn's Theorem: (2) implies (5). In these exercises assume 
R satisfies (2) :  every R-module is injective. 

5. Show that R has the descending chain condition (D.C.C.) on left ideals. Deduce that R is 
a finite direct sum of left ideals. [If not, then show that as a left R-module R is a direct 
sum of an infinite number of nonzero submodules. Derive a contradiction by writing the 
element 1 in this direct sum.] 

6. Show that R = Rt x R2 x · · · x Rr where Rj is a 2-sided ideal and a simple ring (i .e., 
has no proper, nonzero 2-sided ideals). Show each Rj has an identity and satisfies D.C.C. 
on left ideals. [Use the preceding exercise to show R has a minimal 2-sided ideal Rt . As 
a left R-module R = Rt ffi R' for some left ideal R'. Show R' is a right ideal and proceed 
inductively using D.C.C.] 

7. Let S be a simple ring with 1 satisfying D.C.C. on left ideals and let L be a minimal 
left ideal in S. Show that S ;;: P as left S-modules, where P = L ffi · · · ffi L with n 

factors. [Argue by simplicity that LS = S so 1 = l1s1 + · · · + lnsn for some l; E L 
and s; E S with n minimal. Show that the map (XI ,  . . .  , Xn) 1--+ XI s1 + · · · + XnSn is a 
surjective homomorphism of left S-modules; use the minimality of L and n to show it is 
an injection.] 

8. Let A be any ring with 1 ,  let L be any left A-module and let P be the direct sum of n 

copies of L with itself. 
(a) Prove the ring isomorphism HomA (P , Ln

) ;;: Mn (D), where D = HomA (L , L) 
(multiplication in the ring HomA (X, X) is function composition, cf. Proposition 2(4) 
in Section I 0.2). 
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(b) Deduce that if L is a simple A-module, then Hom A (P , P) is isomorphic to a matrix 
ring over a division ring. [Use Schur's Lemma and (a).] 

(c) Prove the ring isomorphism Hom A (A,  A) ;:::: A opp, where A opp is the opposite ring to 
A (the elements and addition are the same as in A but the value of the product x · y 

in A0PP is yx, computed in A), cf. the end of Section 17.4. [Any homomorphism is 
determined by its value on 1 .] 

9. Prove that if S is a simple ring with I satisfying D.C.C. on left ideals then S ;:::: Mn (.ll) for 
some division ring 11. (This result together with Exercise 6 completes the existence part of 
the proof that (2) implies (5) in Wedderburn's Theorem). [Use Exercises 7 and 8 to show 
sopp ;:::: Homs(P , Ln) ;:::: Mn (D) for some division ring D. Then show S ;:::: Mn (/1), 
where 11 is the division ring vopp .] 

10. Prove that 11 and n in the isomorphism S ;:::: Mn (/1) of the previous exercise are uniquely 
determined by S (proving the uniqueness statement in Wedderburn's Theorem), as follows. 
Suppose S =  Mn (/1) ;:::: Mn' (/1') as rings, where 11 and 11' are division rings. 
(a) Prove that 11 ;:::: Homs(L , L) where L is a minimal left ideal in S. Deduce that 

11 ;:::: 11'. [Use Proposition 6(4).] 
(b) Prove that a finitely generated (left) module over a division ring 11 has a "basis" (a 

linearly independent generating set), and that any two bases have the same cardinality. 
Deduce that n = n

'
. [Mimic the proof of Corollary 4(2) of Section 1 1 . 1 .] 

11. Prove that if R is a ring with 1 such that every R-module is free then R is a division ring. 
12. Let F be a field, let f(x) E F[x] and let R = F[x]j(f(x)). Find necessary and sufficient 

conditions on the factorization of f(x) in F[x] so that R is a semisimple ring. When R is 
semisimple, describe its Wedderburn decomposition. [See Proposition 16 in Section 9.5.] 

13. Let G be the cyclic group of order n and let R = QG. Describe the Wedderburn decom
position of R and find the number and the degrees of the irreducible representations of 
G over Q. In particular, show that if n = p is a prime then G has exactly one nontrivial 
irreducible representation over Q and this representation has degree p - 1 .  [Recall from 
the first example in Section 1 that QG = Q[x]j(xn - 1 ) .  Use Proposition 16 in Section 
9.5 and results from Section 13 .6.] 

14. Let p be a prime and let F = F P be the field of order p. Let G be the cyclic group of order 
3 and let R = FG. For each of p = 2 and p = 7 describe the Wedderburn decomposition 
of R and find the number and the degrees of the irreducible representations of G over F. 

15. Prove that if P is a p-group for some prime p, then P has a faithful irreducible complex 
representation if and only if Z (P) is cyclic. [Use Exercise 1 8  in Section 1 ,  Theorem 6. 1 (2) 
and Example 3.] 

16. Prove that if V is an irreducible FG-module and F is an algebraically closed field then 
Hompc(V, V) is isomorphic to F (as a ring). 

17. Let F be a field, let R = Mn (F) and let M be the unique irreducible R-module. Prove 
that HomR (M, M) is isomorphic to F (as a ring). 

18. Find all 2-sided ideals of Mn (ll.) . 

1 8.3 CHARACTER THEORY AND THE ORTHOGONALITY RELATIONS 

In general, for groups of large order the representations are difficult to compute and 
unwieldy if not impossible to write down. For example, a matrix representation of 
degree 100 involves matrices with 10,000 entries, and a number of 100 x 100 matrices 
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may be required to describe the representation, even on a set of generators for the 
group. There are, however, some striking examples where large degree representations 
have been computed and used effectively. One instance of this is a construction of 
the simple group lt by Z. Janko in 1965 (the existence problem for simple groups 
was discussed at the end of Section 6.2). Janko was investigating certain properties 
of simple groups and he found that if any simple group possessed these properties, 
then it would necessarily have order 175,560 and would be generated by two elements. 
Furthermore, he proved that a hypothetical simple group with these properties must 
have a ?-dimensional representation over the field IF1 1  with two generators mapping to 
the two matrices 

0 1 0 0 0 0 0 
0 0 1 0 0 0 0 
0 0 0 1 0 0 0 
0 0 0 0 1 0 0 and 
0 0 0 0 0 1 0 
0 0 0 0 0 0 1 
1 0 0 0 0 0 0 

-3 
-2 
- 1  
- 1  
-3 

l 
3 

2 - 1  
1 1 

- 1  -3 
-3 - 1  
- 1  -3 

3 3 
3 -2 

- 1  
3 

- 1  
-3 
-3 
-2 

1 

-3 
1 

-3 
-3 

2 
1 
1 

- 1  
3 

-3 
2 

- 1  
l 
3 

-3 
3 
2 

- 1  
- 1  

3 
1 

(note that for any simple group S, every representation of S into G Ln (F) which does 
not map all group elements to the identity matrix is a faithful representation, so S is 
isomorphic to its image in GLn (F)). In particular, Janko's calculations showed that 
the simple group satisfying his properties was unique, if it existed. M. Ward was able 
to show that these two matrices do generate a subgroup of G L1 (IF 1 1 ) of order 175,560 
and it follows that there does exist a simple group satisfying Janko's properties. 

In a similar vein, S. Norton, R. Parker and J. Thackray constructed the simple group 
J4 of order 86,775,57 1 ,046,077,562,880 using a 1 12-dimensional representation over 
IF2• This group was shown to be generated by two elements, and explicit matrices in 
G L 1 12 (IF2) for these two generators were computed in the course of their analysis. 

In 198 1 ,  R. Griess constructed the largest of the sporadic groups, the so called 
Monster, of order 

246 . 320 . 59 . 76 . 1 12 • 133 •  17 . 19 . 23 . 29 . 3 1 . 41 . 47 . 59 . 7 1 . 

His proof involves calculations of automorphisms of an algebra over C of dimension 
196,884 and leads to a construction of the Monster by means of a representation of this 
degree. 

By analogy, in general it is difficult to write out the explicit permutations associated 
to a permutation representation ({J : G � Sn for large degrees n .  There are, however, 
numerical invariants such as the signs and the cycle types of the permutations n(g) and 
these numerical invariants might be easier to compute than the permutations themselves 
(i .e., it may be possible to determine the cycle types of elements without actually having 
to write out the permutations themselves, as in the computation of Galois groups over 
Q in Section 14.8). These invariants alone may provide enough information in a given 
situation to carry out some analysis, such as prove that a given group is not simple (as 
illustrated in Section 6.2). Furthermore, the invariants just mentioned do not depend on 
the labelling of the set { 1 ,  2, . . .  , n} (i.e., they are independent of a "change of basis" 
in Sn) and they are the same for elements that are conjugate in G. 
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In this section we show how to attach numerical invariants to linear representations. 
These invariants depend only on the equivalence class (isomorphism type) of the rep
resentation. In other words, for each representation ({! : G ---+ G Ln (F) we shall attach 
an element of F to each matrix q; (g) and we shall see that this number can, in many 
instances, be computed without knowing the matrix q;(g) .  Moreover, we shall see that 
these invariants are independent of the similarity class of q; (i.e., are the same for a fixed 
g E G if the representation q; is replaced by an equivalent representation) and that they, 
in some sense, characterize the similarity classes of representations of G. 

Throughout this section G is a finite group and, for the moment, F is an arbitrary 
field. All representations considered are assumed to be finite dimensional. 

Definition. 
(1) A class .function is any function from G into F which is constant on the con

jugacy classes of G, i.e., .f : G ---+ F such that .f(g-1xg) = .f(x) for all 
g, x E G .  

(2) If ({! is a representation of G afforded by the F G-module V ,  the character of ({! 
is the function 

x : G -+ F defined by x (g) = tr q; (g). 

where tr q;(g) is the trace of the matrix of q;(g) with respect to some basis of 
V (i.e., the sum of the diagonal entries of that matrix). The character is called 
irreducible or reducible according to whether the representation is irreducible 
or reducible, respectively. The degree of a character is the degree of any repre
sentation affording it. 

In the notation of the second part of this definition we shall also refer to x as the 
character afforded by the F G-module V.  In general, a character is not a homomorphism 
from a group into either the additive or multiplicative group of the field. 

Examples 

(1) The character of the trivial representation is the function x (g) = l for all g E G. This 
character is called the principal character of G. 

(2) For degree l representations, the character and the representation are usually identified 
(by identifying a 1 x l matrix with its entry). Thus for abelian groups, irreducible 
complex representations and their characters are the same (cf. Corollary l l ). 

(3) Let TI : G --+ Sn be a permutation representation and let q; be the resulting linear 
representation on the basis et . . . .  , en of the vector space V: 

866 

q;(g) (e; ) = en(g)(il 

(cf. Example 4 of Section l ). With respect to this basis the matrix of q;(g) has a l 
in the diagonal entry i, i if TI(g) fixes i ;  otherwise, the matrix of q;(g) has a zero in 
position i, i .  Thus if n is the character of q; then 

n(g) = the number of fixed points of g on { l ,  2, . . .  , n } .  

In particular, if  TI i s  the permutation representation obtained from left multiplication 
on the set of left cosets of some subgroup H of G then the resulting character is called 
the pennutation character of G on H. 
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(4) The special case of Example 3 when n is the regular permutation representation of 
G is worth recording: if rp is the regular representation of G (afforded by the module 
FG) and p is its character: { 0 if g # 1 

p (g) = 
IG I  ifg = 1 .  

The character of the regular representation of G is called the regular character of G. 
Note that this provides specific examples where a character takes on the value 0 and 
is not a group homomorphism from G into either F or px . 

(5) Let rp :  D2n � GL2(lR) be the explicit matrix representation described in Example 6 
in the second set of examples of Section 1 .  If x is the character of rp then, by taking 
traces of the given 2 x 2 matrices one sees that x (r) = 2 cos(2rr/n) and x (s) = 0. 
Since rp takes the identity of D2n to the 2 x 2 identity matrix, x (1)  = 2. 

(6) Let rp : Qs � GL2(C) be the explicit matrix representation described in Example 7 
in the second set of examples of Section 1 .  If x is the character of rp then, by taking 
traces of the given 2 x 2 matrices, x (i) = 0 and x (j) = 0. Since the element - 1  e Qs 
maps to minus the 2 x 2 identity matrix, x ( -1 )  = -2. Since rp takes the identity of 
Qs to the 2 x 2 identity matrix, x (1)  = 2. 

(7) Let rp : Qs � GL4(1R) be the matrix representation described in Example 8 in the 
second set of examples of Section 1 .  If x is the character of rp then, by inspection of 
the matrices exhibited, x (i) = x (j) = 0. Since rp takes the identity of Qs to the 4 x 4 
identity matrix, x (1)  = 4. 

For n x n matrices A and B, direct computation shows that tr A B  = tr BA.  If A is 
invertible, this implies that 

tr A-1 BA = tr B .  

Thus the character of a representation is independent of the choice of basis of the vector 
space affording it, i.e., 

equivalent representations have the same character. ( 1 8 . 1 )  

Let rp be a representation o f  G of degree n with character X · Since rp(g-1xg) is 
rp(g)-1 rp (x)rp(g) for all g, x E G, taking traces shows that 

the character of a representation is a class function. ( 1 8.2) 

Since the trace of the n x n identity matrix is n and rp takes the identity of G to the 
identity linear transformation (or matrix), 

x (1) is the degree ofrp. ( 18 .3) 

If V is an F G-module whose corresponding representation has character x .  then 
each element of the group ring F G acts as a linear transformation from V to V. Thus 
each LgeG agg E FG has a trace when it is considered as a linear transformation from 
V to V .  The trace of g E G acting on V is, by definition, x (g). Since the trace of 
any linear combination of matrices is the linear combination of the traces, the trace of 
Lgec agg acting on V is LgeG agx (g) . Note that this trace function on FG is the 
unique extension of the character x of G to an F -linear transformation from F G to F.  
In this way we shall consider characters of G as  also being defined on the group ring 
FG. 
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Notice in Example 3 above that if the field F has characteristic p > 0, the values of 
the character mod p might be zero even though the number of fixed points is nonzero. 
In order to circumvent such anomalies and to use the consequences of Wedderburn's 
Theorem obtained when F is algebraically closed we again specialize the field to be the 
complex numbers (or any algebraically closed field of characteristic 0). By the results 
of the previous section 

<CG � Mn1  (<C) X Mn2 (<C) X • · • X Mn, (<C) . ( 18.4) 

For the remainder of this section fix the following notation: 

M1 , Mz, . . .  , Mr are the inequivalent irreducible <CG-modules, 

Xi is the character afforded by Mi , I :::: i :::: r. 
(1 8.5) 

Thus r is the number of conjugacy classes of G and we may relabel M1 , . . . , Mr if 
necessary so that the degree of Xi is ni for all i (which is also the dimension of M; over 
<C). 

Now every (finite dimensional) <CG-module M is isomorphic (equivalent) to a direct 
sum of irreducible modules: 

(1 8.6) 

where a; is a nonnegative integer indicating the multiplicity of the irreducible module 
Mi in this direct sum decomposition, i.e., 

a; times 

ai Mi = Mi EEl · · · EB Mi . 

Note that if the representation q; is afforded by the module M and M = M1 $ M2 , then 
we may choose a basis of M consisting of a basis of M1 together with a basis of M2. 
The matrix representation with respect to this basis is of the form 

q;(g) = ( (/JJ6g) 
<pz�g) ) 

where q;; is the representation afforded by Mi , i = I ,  2. One sees immediately that if 
1/J is the character of q; and 1/Ji is the character of q;; , then 1/J(g) = 1/f1 (g) + 1/f2(g), i.e., 
1/1 = 1/11 + 1/12 . By induction we obtain: 

the character of a representation is the sum of the characters 
of the constituents appearing in a direct sum decomposition. 

If 1/J is the character afforded by the module M in (6) above, this gives 

1/J = a1 X1 + a2X2 + · · · + arXr · 

(1 8.7) 

(1 8.8) 

Thus every (complex) character is a nonnegative integral sum of irreducible (complex) 
characters. Conversely, by taking direct sums of modules one sees that every such sum 
of characters is the character of some complex representation of G. 

We next prove that the correspondence between characters and equivalence classes 
of complex representations is bijective. Let z1 , zz , . . .  , Zr be the primitive central idem
patents of <CG described in the preceding section. Since these are orthogonal (or equiv
alently, since they are the r-tuples in the decomposition of <CG into a direct product of r 
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subrings which have a 1 in one position and zeros elsewhere), ZI , . . .  , Zr are C-linearly 
independent elements of CG. As above, each irreducible character X; is a function on 
CG. By Proposition 8(3) we have 

(a) if j # i then ZjM; = 0, i.e., Zj acts as the zero matrix on Mi , hence Xi (Z; ) = 0, 
and 

(b) z; acts as the identity on M; , hence X; (Z;) = n; . 

Thus XI ,  . . .  , Xr are multiples of the dual basis to the independent set Z I , . . .  , Zr . hence 
are linearly independent functions. Now if the CG-module M described in (6) above 
can be decomposed in a different fashion into irreducibles, say, 

then we would obtain a relation 

a1 X1 + a2X2 + · · · + arXr = h1 X1 + h2X2 + · · · + hrXr · 

By linear independence of the irreducible characters, b; = a; for all i E { 1 ,  . . . , r} . 
Thus, in any decomposition of M into a direct sum of irreducibles, the multiplicity of 
the irreducible M; is the same, 1 � i � r .  In particular, 

two representations are equivalent if and only if they have the same character. 
( 1 8.9) 

This uniqueness can be seen in an alternate way. First, use Proposition 8(2) to 
decompose an arbitrary finite dimensional CG-module M uniquely as 

M = Z1 M EB Z2M EB · · · EB ZrM. 

By part ( 4) of the same proposition, Z; M is a direct sum of simple modules, each of 
which is isomorphic to M; . The multiplicity of M; in a direct sum decomposition of z; M 
. . 

d
" . I dim Z; M 

Thi h h I . I" . f M IS, by countmg ImensiOns, equa to . . s proves t at t e mu tip ICity o ; 
d1m M; 

in any direct sum decomposition of M into simple submodules is uniquely determined. 
Note that, as with decompositions of F[x ]-modules into cyclic submodules, a 

CG-module may have many direct sum decompositions into irreducibles - only 
the multiplicities are unique (see also the exercises). More precisely, comparing 
with the Jordan canonical form of a single linear transformation, the direct summand 
a; M; = M; EB · • • EB M; (a; times) which equals the submodule z; M is the analogue of 
the generalized eigenspace corresponding to a single eigenvalue. This submodule of 
M is unique (as is a generalized eigenspace) and is called the xP' isotypic component 
of M. Within the xr isotypic component, the summands M; are analogous to the ! 
dimensional eigenspaces and, just as with the eigenspace of an endomorphism there is 
no unique basis for the eigenspace. If G = ( g ) is a finite cyclic group, the isotypic 
components of G are the same as the generalized eigenspaces of g .  

Observe that the vector space of all (complex valued) class functions on G has a 
basis consisting of the functions which are 1 on a given class and zero on all other 
classes. There are r of these, where r is the number of conjugacy classes of G, so the 
dimension of the complex vector space of class functions is r .  Since the number of 
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(complex) irreducible characters of G equals the number of conjugacy classes and these 
are linearly independent class functions, we see that 

the irreducible characters are a basis for the space of all complex class functions. 
( 18. 1 0) 

The next step in the theory of characters is to put an Hermitian inner product 
structure on the space of class functions and prove that the irreducible characters form 
an orthonormal basis with respect to this inner product. For class functions () and 1/f 
define 

1 " -<o . t> = TGI � o (g)l/f(g) 
geG 

(where the bar denotes complex conjugation). One easily checks that ( , ) is Hermitian: 
for a, f3 e ((: 
(a) (a61 + /362 , 1/f) = a(Ot . 1/f) + /3(�. 1/f), 
(b) (0 , al/ft + fJ1/f2) = a(O, 1/Ft) + P(O, 1/f2), and 
(c) (0 , 1/f) = (1/f, 0). 

Our principal aim is to show that the irreducible characters form an orthonormal 
basis for the space of complex class functions with respect to this Hermitian form (we 
already know that they are a basis). This fact will follow from the orthogonality of 
the primitive central idempotents, once we have explicitly determined these in the next 
proposition. 

Proposition 13. Let zt • . . .  , Zr be the orthogonal primitive central idempotents in CG 
labelled in such a way that Zi acts as the identity on the irreducible CG-module Mi , and 
let Xi be the character afforded by Mi . Then 

Xi (1) " -1 Zi = IGf � Xi (g )g. 
geG 

Proof" Let z = Zi and write 

z = L:agg . 
geG 

Recall from Example 4 in this section that if p is the regular character of G then 

{ 0 if g #= 1  p(g) = 
I G I  if g = 1 

( 18. 1 1) 

and recall from the last example in Section 2 that 
r 

p = L Xi O)Xj ·  ( 18 . 12) 
j=l 

To find the coefficient a g . apply p to zg-1 and use linearity of p together with equation 
( 1 1 )  to obtain 
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Computing p (zg-1 )  using ( 12) then gives 

r 

L Xi O)Xj (Zg- 1 ) = a8 IG I . 
i=l 

( 18 . 13) 

Let CfJj be the irreducible representation afforded by Mi, 1 � j � r .  Since we may 
consider cpi as an algebra homomorphism from <CG into End(Mi) , we obtain cpj (zg - I ) = 
cpi (z)cpj (g-1 ) .  Also, we have already observed that cpi (z) is 0 if j =j:. i and cp; (z) is the 
identity endomorphism on M; . Thus 

-1 { 0 if j =j:. i 
(/)j (Zg ) = 

( -1 )  if . . cp; g 1 = l .  

This proves Xi (zg-1 ) = X; (g-1 )tSij , where tSij is zero if i =j:. j and is 1 if i = j (called 
1 

the Kronecker delta). Substituting this into equation (13) gives a8 = TGI X; ( l)X; (g-1 ) .  
This i s  the coefficient of g in  the statement of the proposition, completing the proof. 

The orthonormality of the irreducible characters will follow directly from the or
thogonality of the central primitive idempotents via the following calculation: 

Z;tS;j = Z;Zi 

= X; ( 1) Xi ( l) "' · ( -1 ) · (h-1 ) h 
I G I  IG I  L x, 

g x, g 
g,hEG 

= X; (1) Xi ( l) "' ["' · (x - 1 ) · (x- 1 )] I G I  IG I  L L x. y x, y 
yEG xEG 

(to get the latter sum from the former substitute y for gh and x for h). Since the 
elements of G are a basis of <CG we may equate coefficients with those of Z; found in 
Proposition 13 to get (the coefficient of g) 

,s . . X; (l ) · ( -I ) _ X; ( l)xj (l) "' · (x - I ) · (x- 1 ) 
IJ I G I x. 

g - IG 12 L x. g x, . 
XEG 

Simplifying (and replacing g by g-1) gives 

,s . .  X; (g) - -
1
- "' x· (xg)x · (x -1 ) for all g E G. 

I J  · ( 1 )  - IG I  L I J x, X EG 

Taking g = 1 in ( 14) gives 

( 1 8 . 14) 

( 18 . 15) 

The sum on the right side would be precisely the inner product (X; ,  Xi) if  Xi (x- I ) were 

equal to Xi (x) ;  this is the content of the next proposition. 
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Proposition 14. If 1/r is any character of G then 1/r (x) is a sum of roots of l in <C and 
'ifr(x-1 ) = 'ifr(x) for all x E G. 

Proof" Let rp be a representation whose character is 1/r,  fix an element x E G and 
let l x l  = k. Since the minimal polynomial of rp(x) divides Xk - 1 (hence has distinct 
roots), there is a basis of the underlying vector space such that the matrix of rp(x) with 
respect to this basis is a diagonal matrix with kth roots of 1 on the diagonal. Since 'ifr(x) 
is the sum of the diagonal entries (and does not depend on the choice of basis), 'ifr(x) 
is a sum of roots of 1 .  Moreover, if E is a root of 1 ,  E - 1 = E. Thus the inverse of a 
diagonal matrix with roots of 1 on the diagonal is the diagonal matrix with the complex 
conjugates of those roots of 1 on the diagonal. Since the complex conjugate of a sum 
is the sum of the complex conjugates, 1/r (x-1 ) = tr rp(x-1 ) = tr rp(x) = 'ifr(x). 

Keep in mind that in the proof of Proposition 14 we first fixed a group element x 
and then chose a basis of the representation space so that rp(x) was a diagonal matrix. 
It is always possible tQ diagonalize a single element but it is possible to simultaneously 
diagonalize all rp(x) 's if and only if rp is similar to a sum of degree 1 representations. 

Combining the above proposition with equation ( 1 5) proves: 

Theorem 15. (The First Orthogonality Relation for Group Characters) Let G be a 
finite group and let XI ,  . . . , Xr be the irreducible characters of G over <C. Then with 
respect to the inner product ( , ) above we have 

(X; ,  Xj)  = 8ij 

and the irreducible characters are an orthonormal basis for the space of class functions. 
In particular, if 8 is any class function then 

8 = L)8 , X; )x; . 
i = l  

Proof: We have just established that the irreducible characters form an orthonormal 
basis for the space of class functions. If 8 is any class function, write 8 = I::·= I a; X; ,  
for some a; E <C. It follows from linearity of the Hermitian product that a; = (8, X; ), 
as stated. 

We list without proof the Second Orthogonality Relation; we shall not require it 
for the applications in this book. 

Theorem 16. {The Second Orthogonality Relation for Group Characters) Under the 
notation above, for any x , y E G 

if x and y are conjugate in G 
otherwise. 

Definition. For 8 any class function on G the norm of 8 is ( 8 ,  8) 1 12 and will be denoted 
by 1 1 8 1 1 -
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When a class function is written in terms of the irreducible characters, 0 = L CXj Xi ' 
its norm is easily calculated as I I  0 I I  = (L af) 112 . It follows that 

a character has norm 1 if and only if it is irreducible. 
Finally, observe that computations of the inner product of characters 0 and 1/r may be 

simplified as follows. If IC1 , • • .  , ICr are the conjugacy classes of G with sizes d1 , • • • , d, 

and representatives g1 , . . .  , gr respectively, then the value 8 (g; )1/r(g; ) appears d; times 
in the sum for ( 0 , 1/r ) , once for each element of IC; .  Collecting these terms gives 

1 r --
(0 , 1/r) = TGT � d;O(g;)l/r(g; ) ,  

•=1 

a sum only over representatives of the conjugacy classes of G. In particular, the norm 
of 0 is given by 

1 r 
I I  o 1 12 = (O , O) = IGI � ddO(g; ) l2 . 

•=1 

Examples 

(1) Let G = S3 and let n be the permutation character of degree 3 described in the 
examples at the beginning of this section. Recall that rr (a) equals the number of 
elements in ( 1 ,  2, 3} fixed by a .  The conjugacy classes of S3 are represented by 1 ,  
(1 2)  and ( 1  2 3) of sizes 1 ,  3 and 2 respectively, and rr (l)  = 3, rr ((1 2)) = 1 ,  
rr((l  2 3)) = 0 .  Hence 

I I  n 1 12 = � [1 rr(l)2 + 3 rr((1  2))2 + 2 rr((l  2 3))2] 
1 = 6 (9 + 3 + 0) = 2 

This implies that n is a sum of two distinct irreducible characters, each appearing with 
multiplicity 1 .  Let X1 be the principal character of S3, so that X1 (a) = X1 (a) = 1 for 
all a E S3 . Then 

(rr, X1 )  = � [ I  rr(1)X1 ( 1 )  + 3 rr (( 1  2))X1 ((1  2)) + 2 rr(( l  2 3))X1 ((1 2 3)) ] 
1 = 
6

(3 + 3 + 0) = 1 

so the principal character appears as a constituent of n with multiplicity 1 .  This proves 
n = X1 + X2 for some irreducible character X2 of S3 of degree 2 (and agrees with our 
earlier decomposition of this representation). This also shows that the value of X2 on 
a E S3 is the number of fixed points of a minus 1 .  

(2) Let G = S4 and let n be the natural permutation character of degree 4 (so again rr(a) 
is the number of fixed points of a). The conjugacy classes of S4 are represented by 1 ,  
( 1 2), (1  2 3) ,  (1  2 3 4) and ( 1 2) (3 4) of sizes 1 ,  6, 8, 6 and 3 respectively. Again we 
compute: 

I I  n 1 12 = 
2
� [ 1 rr (1)2 + 6 rr ((l 2))2 + 8 rr ((l 2 3))2 + 6 rr((1  2 3 4))2 

+ 3 rr ((l 2) (3 4))2] 
1 = 

24 
(16 + 24 + 8 + 0 + 0) = 2 . 
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so ;r has two distinct irreducible constituents. If X1 is the principal character of S4 , 
then 

1 
(;r, X1 ) = 

24 ( 1  n ( l) + 6 ;r((l  2)) + 8 ;r (( l 2 3)) 

+ 6 Ir (( l 2 3 4)) + 3 ;r((l  2)(3 4))] 
1 = 

2/4 +  12 + 8 + 0 + 0) = 1 .  

This proves that the degree 4 permutation character is the sum of the principal character 
and an irreducible character of degree 3. 

(3) Let G = Ds, where 

Ds = { r, s  I s2 = r4 = 1 , rs = sr- 1 ) .  

The conjugacy classes of Ds are represented by 1 , s ,  r ,  r2 and s r  and have sizes 1 ,  2, 
2, 1 and 2, respectively. Let q; be the degree 2 matrix representation of Ds obtained 
as in Example 6 in Section l from embedding a square in JR2: 

( 0 1 ) ( 0 - 1 ) 2 ( - 1  0 ) ( 1 0 ) q;(s) = 1 0 ' q;(r) = 1 0 ' q;(r ) = 0 - 1 ' q;(sr) = 0 - 1 · 
Let 1/f be the character of this representation (where we consider the real matrices as 
a subset of the complex matrices). Again, since 1/f is real valued one computes 

1 
1 1 1/f 1 12 = 8 [ 11/f(1)2 + 21/f(s)2 + 21/f(r)2 + 11/f(r2)2 + 21/f(sr)2] 

1 = g- (4 + 0 + 0 + 4 + 0) = 1 .  

This proves the representation q; i s  irreducible (even if we allow similarity transfor
mations by complex matrices). 

We have seen that the sum of two characters is again a character. Specifically, if 
1/11 and 1/12 are characters of representations 9'1 and 9'2, then 1/11 + 1/12 is the character of 
9'1 + 9'2· 

Proposition 17. If 1/11 and 1/12 are characters, then so is their product 1/11 1/12 · 

Proof" Let V1 and V2 be CG-modules affording characters 1/11 and 1/12 and define 
w = v1 ®c v2. Since each g E G acts as a linear transformation on v1 and v2. the 
action of g on simple tensors by g(v1 ® v2) = (gv1 )  ® (gv2) extends by linearity to a 
well defined linear transformation on W by Proposition 17 in Section 1 1 .2. One easily 
checks that this action also makes W into a CG-module. By Exercise 38 in Section 
1 1 .2 the character afforded by W is Vt1 Vt2· 

The next chapter will contain further explicit character computations as well as 
some applications of group characters to proving theorems about certain classes of 
groups. 
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Some Remarks on Fourier Analysis and Group Characters 

This brief discussion is intended to indicate some connections of the results above with 
other areas of mathematics. 

The theory of group representations described to this point is a special branch of 
an area of mathematics called Harmonic Analysis. Readers may already be familiar 
with the basic theory of Fourier series which also falls into this realm. We make some 
observations which show how representation theory for finite groups corresponds to 
"Fourier series" for some infinite groups (in particular, to Fourier series on the circle). 
To be mathematically precise one needs the Lebesgue integral to ensure completeness of 
certain (Hilbert) spaces but readers may get the flavor of things by replacing "Lebesgue" 
by "Riemann." 

Let G be the multiplicative group of points on the unit circle in <C: 

G = {z E <C I l z l  = 1 } .  

We shall usually view G as the interval [0, 2rr] i n  ffi. with the two end points identified, 
i.e., as the additive group ffi.j2n/Z (the isomorphism is: the real number x corresponds 
to the complex number eix ). Note that G has a translation invariant measure, namely 
the Lebesgue measure, and the measure of the circle is 2rr. For finite groups, the 
counting measure is the translation invariant measure (so the measure of a subset H is 
the number of elements in that subset, I H I )  and integrals on a finite group with respect 
to this counting measure are just finite sums. 

The space 

L2 (G) = {f :  G ---+ <C I f  is measurable and 1 / 1 2  is integrable over G } 

plays the role of the group algebra of the infinite group G .  This space becomes a 
commutative ring with 1 under the convolution of functions: for f, g E L2(G) the 
product f * g : G ---+ <C is defined by 

(f * g) (x) = _1 {2rr f (x - y)g(y) dy 
2rr lo for all x E G . 

(Recall that for a finite group H, the group algebra is also formally the ring of <C-valued 
functions on H under a convolution multiplication and that these functions are written 
as formal sums - the element L agg E <CG denotes the function which sends g to 
ag E <C for all g E G.) 

The complete set of continuous homomorphisms of G into G L 1 (<C) is  given by 

en (X) = einx , X E [0, 2rr] ,  n E /Z. 

(Recall that for a finite abelian group, all irreducible representations are ] -dimensional 
and for 1 -dimensional representations, characters and representations may be identi
fied.) 

The ring L 2 (G) admits an Hermitian inner product: for f, g E L 2 (G) 

1 12rr _ 
(f, g) = - f (t)g(t) dt . 

2rr 0 
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Under this inner product, {en I n E Z} is an orthonormal basis (where the term "basis" is 
used in the analytic sense that these are independent and 0 is the only function orthogonal 
to all of them). Moreover, 

where En is the ! -dimensional subspace spanned by en , the hat over the direct sum 
denotes taking the closure of the direct sum in the L 2-topology, and equality indicates 
equality in the L 2 sense. (Recall that the group algebra of a finite abelian group is the 
direct sum of the irreducible ! -dimensional submodules, each occurring with multi
plicity one.) These facts imply the well known result from Fourier analysis that every 
square integrable function f (x) on [0, 2rr] has a Fourier series 

00 

where the Fourier coefficients, Cn ,  are given by 

1 12:n: Cn = (f, en) = -
j(t)e-int dt. 2rr 0 

This brief description indicates how the representation theory of finite groups ex
tends to certain infinite groups and the results we have proved may already be familiar in 
the latter context. In fact, there is a completely analogous theory for arbitrary (not nec
essarily abelian) compact Lie groups - here the irreducible (complex) representations 
need not be ! -dimensional but they are all finite dimensional and L2(G) decomposes 
as a direct sum of them, each appearing with multiplicity equal to its degree. The 
emphasis (at least at the introductory level) in this theory is often on the importance of 
being able to represent functions as (Fourier) series and then using these series to solve 
other problems (e.g., solve differential equations). The underlying group provides the 
"symmetry" on which to build this ''harmonic analysis," rather than being itself the 
principal object of study. 

E X E R C I S E S 

Let G be a finite group. Unless stated otherwise all representations and characters are over <C. 

1. Prove that tr AB = tr B A for n x n matrices A and B with entries from any commutative 
ring. 

2. In each of (a) to (c) let 1/f be the character afforded by the specified representation cp .  

(a) Let cp be the degree 2 representation of Dto described in Example 6 in  the second 
set of examples in Section 1 (here n = 5) and show that 1 1 1/f 1 1 2 = 1 (hence cp is 
irreducible). 

(b) Let cp be the degree 2 representation of Qs described in Example 7 in the second set 
of examples in Section 1 and show that 1 1 1/f 1 1 2 = 1 (hence cp is irreducible). 

(c) Let cp be the degree 4 representation of Qs described in Example 8 in the second set of 
examples in Section 1 and show that 1 1 1/f 1 12 = 4 (hence even though cp is irreducible 
over IR, cp decomposes over <C as twice an irreducible representation of degree 2). 

3. If x is an irreducible character of G, prove that the x-isotypic subspace of a <CG-module 
is unique. 
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4. Prove that if N is any irreducible CG-module and M = N ffi N, then M has infinitely 
many direct sum decompositions into two copies of N. 

S. Prove that a class function is a character if and only if it is a positive integral linear 
combination of irreducible characters. 

6. Let ({! : G � GL(V) be a representation with chaJacter 1/J.  Let W be the subspace 
{v E V I ({J(g)(v) = v for all g E G} of V fixed pointwise by all elements of G. Prove that 
dim W = (1/J, Xt) ,  where Xl is the principal character of G. 

7. Assume V is a CG-module on which G acts by permuting the basis 13 = {e1 , . . .  , en } .  
Write 13 as a disjoint union of the orbits 13t , . . .  , 13, of G on 13. 
(a) Prove that V decomposes as a CG-module as Vt ffi · · · ffi V1 , where V; is  the span of 

13; .  
(b) Prove that if v; is the sum of the vectors in 13; then the !-dimensional subspace of V; 

spanned by v; is the unique CG-submodule of V; affording the trivial representation 
(in other words, any vector in V; that is fixed under the action of G is a multiple of 
v; ) . [Use the fact that G is transitive on 13; . See also Exercise 8 in Section 1 .] 

(c) Let W = {v E V I ({J(g) (v) = v for all g E G} be the subspace of V fixed pointwise 
by all elements of G. Deduce that dim W = t = the number of orbits of G on 13. 

8. Prove the following result (sometimes called Burnside's Lemma although its origin is with 
Frobenius): let G be a subgroup of Sn and for each a E G let Fix(a) denote the number 
of fixed points of a on { 1 , . . . , n } .  Let t be the number of orbits of G on { 1 ,  . . .  , n ] .  Then 

t i G I  = L Fix(g). 
geG 

[Use the preceding two exercises.] 

9. Let G be a nontrivial, transitive group of permutations on the finite set !J and let 1/1 be the 
character afforded by the linear representation over C obtained from !J (cf. Example 4 in 
Section 1) so 1/f(a) is the number of fixed points of a on !J. Now let G act on the set 
!J x !J by g · (wt , W2.) = (g · w1 , g · W2.) and let rr be the character afforded by the linear 
representation obtained from this action. 
(a� Prove that rr = 1/12. 
(b) Prove that the number of orbits of G on !J x !J is given by the inner product (1/1, 1/f).  

[By the preceding exercises, the number of orbits on !J x !J is equal to (rr, Xt),  where 
Xl is the principal character.] 

(c) Recall that G is said to be doubly transitive on !J if it has precisely 2 orbits in its 
action on !J x !J (it always has at least 2 orbits since the diagonal, { (w, w) I w E  !J} , 
is one orbit) . Prove that if G is doubly transitive on !J then 1/1 = Xl + X2. where Xl 
is the principal character and X2 is a nonprincipal irreducible character of G. 

(d) Let !J = { 1 ,  2 . . . . , n}  and let G = Sn act on !J in the natural fashion. Show that the 
character of the associated linear representation decomposes as the principal character 
plus an irreducible character of degree n - 1 .  

10. Let 1/f be the character of any 2-dimensional representation of a group G and let x be an 
element of order 2 in G. Prove that 1/f(x) = 2, 0 or -2. Generalize this to n-dimensional 
representations. 

ll. Let x be an irreducible character of G. Prove that for every element z in the center of G 
we have x (z) = EX (l) ,  where E is some root of 1 in C. [Use Schur's Lemma.] 

12. Let 1/f be the character of some representation ({! of G. Prove that for g E G the following 
hold: 
(a) if 1/f(g) = 1/f(l)  then g E ker ({J, and 
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(b) if lt/r (g) l = tjr(l)  and q; is faithful then g E Z(G) (where l tJr (g) l is the complex 
absolute value of tjr (g)). [Use the method of proof of Proposition 14.] 

13. Let q; : G � G L(V) be a representation and let X : G � ex be a degree 1 representation. 
Prove that xq; : G � GL(V) defined by xq;(g) = x (g)q;(g) is a representation (note that 
multiplication of the linear transformation q;(g) by the complex number x (g) is well 
defined). Show that xq; is irreducible if and only if q; is irreducible. Show that if tJr is the 
character afforded by q; then x tJr is the character afforded by x q;. Deduce that the product 
of any irreducible character with a character of degree 1 is also an irreducible character. 

The next few exercises study the notion of algebraically conjugate characters. These exercises 
may be considered as extensions of Proposition 14 and some consequences of these extensions. 
In particular we obtain a group-theoretic characterization of the conditions under which all 
irreducible characters of a group take values in Q. 

Let F be the sub field of C of all elements that are algebraic over Q (the field of algebraic 
numbers). Thus F is the algebraic closure of Q contained in C and all the results established 
over C hold without change over F. 

14. Note that since F � C, every representation q; : G � GLm (F) may also be considered 
as a complex representation. Prove that if q; is a representation over F that is irreducible 
over F, then q; is also irreducible when considered over the larger field C (note that this is 
not true if F is not algebraically closed - cf. Exercise 2(c) above). Show that the set of 
irreducible characters of G over F is the same as the set of irreducible characters over C 
(i.e .. these are exactly the same set of class functions on G). Deduce that every complex 
representation is equivalent to a representation over F. [Since F is algebraically closed 
of characteristic 0, the irreducible characters over either F or C are characterized by the 
first orthogonality relation.] 

Let q; : G � G Lm (F) be any representation with character tJr. Let Q(q;) denote the subfield 
of F generated by all the entries of the matrices q;(g) for all g E G. 

15. Prove that Q(q;) is a finite extension of Q. 

Now let K be any Galois extension of Q containing Q(q;) and let a E Gal(K/Q) . In fact, 
since every automorphism of K extends to an automorphism of F, we may assume a is any 
automorphism of F. The map q;a : G � GLn (F) is defined by letting q;a (g) be the n x n 
matrix whose entries are obtained by applying the field automorphism a to the entries of the 
matrix q; (g) . 

16. Prove that q;a is a representation. Prove also that the character of q;a is tjra , where 
tJra (g) = a  (tJr(g)) .  

17. Prove that q; i s  irreducible if  and only if  q;a i s  irreducible. 

The representation q;a (or character tjra) is called the algebraic conjugate of q; by a (or of 
tjr, respectively); two representations ({JI and (/)2 (or characters t/r1 and t/r2) are said to be alge
braically conjugate if there is some automorphism a of F such that q;f = (/)2 (or tJrf = t/r2, 
respectively) .  Some care needs to be taken with this (standard) notation since the exponen
tial notation usually denotes a right action whereas automorphisms of F act on the left on 
representations : q;Car) = (q;r )a . 

Let Q(tJr) be the subfield of F generated by the numbers tJr(g) for all g E G.  Let I G I = n 
and let c: be a primitive n1h root of 1 in F. 

18. Prove that Q( tJr) � Q( c:). Deduce that Q( tJr) is a Galois extension of Q with abelian Galois 
group. [Sec Proposition 14.] 
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Recall from Section 14.5 that Gal(Q( E) /Q) � (7Lj n7L) x ,  where the Galois automorphisms are 
given on the generator E by a a : E r-+ Ea , where a is an integer relatively prime to n . 

19. Prove that if aa E Gal(Q(E)/Q) is the field automorphism defined above, then for all 
g E G we have 1/fa" (g) = 1/f(ga). [Use the method of Proposition 14.] 

20. Prove that if g is an element of G which is conjugate to ga for all integers a relatively 
prime to n, then 1/f (g) E Q, for every character 1/1 of G. [Use the preceding exercise and 
the fact that Q is the field fixed by all au 's.] 

21. Prove that an element g E G is conjugate to ga for all integers a relatively prime to IG I  if 
and only if g is conjugate to ga' 

for all integers a' relatively prime to lg l . 

22. Show for any positive integer n that every character of the symmetric group Sn is rational 
valued (i.e., 1/f(g) E Q for all g E Sn and all characters 1/1 of Sn). 

The next two exercises establish the converse to Exercise 20. 

23. Prove that elements x and y are conjugate in a group G if and only if x (x) = x (y) for all 
irreducible characters x of G. 

24. Let g E G and assume that every irreducible character of G is rational valued on g. Prove 
that g is conjugate to ga for every integer a relatively prime to IG  1 .  [If g is not conjugate to 
ga for some a relatively prime to IG I  then by the preceding exercise there is an irreducible 
character x such that x (g) i=- x (ga) .  Derive a contradiction from the hypothesis that 
x (g) e Q.] 

25. Describe which irreducible characters of the cyclic group of order n are algebraically 
conjugate. 

26. Prove that every irreducible character of both Qs and Ds is rational valued. Prove that 
Dto has an irreducible character that is not rational valued. 

27. Let G = H x K and let rp : H � GL(V) be an irreducible representation of H with 

character x .  Then G � H � GL(V) gives an irreducible representation of G, where 
TlH is the natural projection; the character, "j(, of this representation is "j(((h, k)) = x (h) . 
Likewise any irreducible character 1/1 of K gives an irreducible character ';f of G with 
';f ((h , k)) = 1/f (k) . 
(a) Prove that the product x_';f is an irreducible character of G. [Show it has norm 1 .] 
(b) Prove that every irreducible character of G is obtained from such products of irre-

ducible characters of the direct factors. [Use Theorem 10, either (3) or (4).] 

28. (Finite subgroups ojGL2(Q)) Let G be a finite subgroup of GL2(Q) . 
(a) Show that GL2(Q) does not contain an element of order n for n = 5, 7, or n :::: 9. 

Deduce that IG I  = 2a3b . [Use rational canonical forms.] 
(b) Show that the Klein 4-group is the only noncyclic abelian subgroup of GL2(Q) . 

Deduce from this and (a) that IG I  1 24. 
(c) Show that the only finite subgroups of GL2(Q) are the cyclic groups of order 1, 2, 3, 

4, and 6, the Klein 4-group, and the dihedral groups of order 6, 8, and 12. [Use the 
classifications of groups of small order in Section 4.5 and Exercise 10  of Section 1 
to restrict G to this list. Show conversely that each group listed has a 2-dimensional 
faithful rational representation.] 
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CHAPTER 1 9  

Exa m p l es a nd Ap p l icat i o n s  
of Cha racte r Th eo ry 

1 9.1  CHARACTERS OF GROUPS OF SMALL ORDER 

The character table of a finite group is the table of character values formatted as follows: 
list representatives of the r conjugacy classes along the top row and list the irreducible 
characters down the first column. The entry in the table in row X; and column gj is 

X; (gj) . The character table of a finite group is unique up to a permutation of its rows 
and columns. It is customary to make the principal character the first row and the 
identity the first column and to list the characters in increasing order by degrees. In 
our examples we shall list the size of the conjugacy classes under each class so the 
entire table will have r + 2 rows and r + 1 columns (although strictly speaking, the 
character table is the r x r matrix of character values). This will enable one to easily 
check the "orthogonality of rows" using the first orthogonality relation: if the classes 
are represented by g, , . . .  , gr of sizes d, , . . .  , dr then 

1 r --
(X; , Xj ) = TGI LdkX; (gdxj (gk) . 

k=l 
The second orthogonality relation says that the Hermitian product of any two distinct 
columns of a character table is zero (i.e., it gives an "orthogonality of columns"). 

A number of character tables are given in the Atlas of Finite Groups by Conway, 
Curtis, Norton, Parker and Wilson, Clarendon Press, 1985. These include the character 
table of the Monster simple group, M. The group M has 194 irreducible characters. 
The smallest degree of a nonprincipal irreducible character of M is 196883 and the 
largest degree is on the order of 2 x 1026 . Nonetheless, it is possible to compute the 
values of all these characters on all conjugacy classes of M. 

For the first example of a character table let G = ( x ) be the cyclic group of order 
2. Then G has 2 conjugacy classes and two irreducible characters: 

classes : 1 X 

sizes: 1 1 

XI 1 

X2 1 - 1  

Character Table of Z2 



The characters and representations of this abelian group are the same, and the irreducible 
representations of any abelian group are described in Example 1 at the end of Section 
1 8.2. 

Similarly, if G = ( x ) is cyclic of order 3, and t; is a fixed primitive cube root of I 
(so t;2 = �). then the character table of G is the following: 

classes: X x2 

sizes: 1 

Xl  1 I I 

X2 I t; t;2 

X3 I t;2 t; 

Character Table of Z3 

Next we construct the character table of S3 . Recall from Example 2 in Section 1 8.2 

that S3 has 3 irreducible characters whose values are described in that example and in 
Example 1 at the end of Section 1 8.3. 

classes: 1 ( 1 2) ( 1 2 3) 

sizes: 1 3 2 

Xl 1 

X2 I - 1  

X3 2 0 - 1  

Character Table of S3 

Next we consider D8, adopting the notation of Example 3 of Section 1 8.3. By 
Corollary 1 1 ,  D8 has four characters of degree I .  Also, in Example 3 we constructed 
an irreducible degree 2 representation. Since the sum of the squares of the degrees 
of these representations is 8, this accounts for all irreducible representations (or, since 
there are 5 conjugacy classes, there are 5 irreducible representations). If we let bars 
denote passage to the commutator quotient group (which is the Klein 4-group), then 

T = r2• The degree 1 representations (= their characters) are computed by sending 
generators s and r to ± 1 (and the product class is mapped to the product of the values). 
Matrices for the degree 2 irreducible representation were computed in Example 3 of 
Section 1 8.3 and the character of this representation can be read directly from these 
matrices. The character table of D8 is therefore the following: 

classes: r2 s r sr 
sizes: 1 2 2 2 

Xl 1 1 1 1 1 

X2 1 1 - 1  1 - 1  

X3 1 1 1 - 1  - 1  

X4 1 1 - 1  - 1  1 

Xs 2 -2 0 0 0 

Character Table of Ds 
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Now we compute the character table of the quaternion group of order 8. We use 
the usual presentation 

Qs = u. i I ;4 = 1 , ;2 = /. i - l ii = rl } 
and let k = ij and i2 = -1 .  The conjugacy classes of Q8 are represented by 1 ,  - 1 , i ,  
j and k of sizes 1 ,  1 ,  2 ,  2 and 2 ,  respectively. Since the commutator quotient of Q 8  is 
the Klein 4-group, there are four characters of degree 1 .  The one remaining irreducible 
character must have degree 2 in order that the sum of the squares of the degrees be 8. Let 
x5 be the degree 2 irreducible character of Q8• One may check that the representation 
cp : Q8 --+ G L2 (C) described explicitly in Example 7 in the second set of examples of 
Section 1 8. 1  affords xs . but we show how the orthogonality relations give the values 
of xs without knowing these explicit matrices. If cp is an irreducible representation of 
degree 2, by Schur's Lemma (cf. Exercise 1 8  in Section 18 . 1 ) cp(- 1) is a 2 x 2 scalar 
matrix and so is ± the identity matrix since - 1  has order 2 in Qg. Hence xs ( - 1) = ±2. 
Let xs (i) = a,  xs (j) = b and xs (k) = c. The orthogonality retations give 

1 = (xs . xs)  = � (22 + (±2)2 + 2aa + 2bb + 2cC). 

Since ali, bb and cc are nonnegative real numbers, they must all be zero. Also, since 
xs is orthogonal to the principal character we get 

1 0 = (XI , xs) = 8 (2 + (±2) + o + o + 0) , 

hence xs ( - 1) = -2. The complete character table of Q8 is the following: 

classes: 1 - 1  j k 
sizes: 1 1 2 2 2 

XI 1 1 1 1 1 
X2 1 1 - 1  1 - 1  
X3 1 1 1 - 1  - 1  
X4 1 1 - 1  - 1  1 
Xs 2 -2 0 0 0 

Character Table of Qs 

Observe that Ds and Qg have the same character table, hence 

nonisomorphic groups may have the same character table. 
Note that the values of the degree 2 representation of Qs could also have been easily 
calculated by applying the second orthogonality relation to each column of the character 
table. We leave this check as an exercise. Also note that although the degree 2 irreducible 
characters of Ds and Qg have the same (real number) values the degree 2 representation 
of D8 may be realized by real matrices whereas it may be shown that Q8 has no faithful 
2-dimensional representation over lR (cf. Exercise 10  in Section 18 . 1) . 

For the next example we construct the character table of S4. The conjugacy classes 
of S4 are represented by 1 ,  ( 1 2) , ( 1 2 3) , ( 1 2 3 4) and ( 1 2) (3 4) with sizes 1 ,  6, 8, 6, 

and 3 respectively. Since S� = A4, there are two characters of degree 1 :  the principal 
character and the character whose values are the sign of the permutation. 
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To obtain a degree 2 irreducible character let V be the normal subgroup of order 
4 generated by ( 1 2) (3 4) and ( 1 3) (2 4) . Any representation ({! of S4j V  � S3 gives, 
by composition with the natural projection S4 � S4j V, a representation of S4 ; if the 
former is irreducible, so is the latter. Let ({! be the composition of the projection with the 
irreducible 2-dimensional representation of S3 , and let X3 be its character. The classes 
of 1 and ( 1 2) (3 4) map to the identity in the S3 quotient, ( 1 2) and (1 2 3 4) map to 
transpositions and ( 1 2 3) maps to a 3-cycle. The values of X3 can thus be read directly 
from the values of the character of degree 2 in the table for s3 . 

Since S4 has 5 irreducible characters and the sum of the squares of the degrees is 
24, there must be two remaining irreducible characters, each of degree 3 .  In Example 2 
of Section 1 8 .3 one of these was calculated, call it X4 ·  Recall that 

X4(o-) = (the number of fixed points of o-) - 1 .  

The remaining irreducible character, xs , is X4X2 · One can either use Proposition 1 7  in 
Section 1 8 .3 or Exercise 1 3  in Section 1 8.3 to see that this product is indeed a character. 
The first orthogonality relation verifies that it is irreducible. 

classes: 1 ( 1 2) ( 1 2 3) ( 1 2 3 4) ( 1 2)(3 4) 
sizes: 1 6 8 6 3 

Xl 1 1 l 1 1 

X2 1 - 1  1 - 1  1 

X3 2 0 - 1  0 2 

X4 3 1 0 - 1  - 1  

Xs 3 - 1  0 l - 1  

Character Table of S4 

From the character table of S4 one can easily compute the character table of A4. 
Note that A4 has 4 conjugacy classes. Also I A4 : A� I = 3, so A4 has three characters 
of degree 1 with V = A� in the kernel of each degree 1 representation. The remaining 
irreducible character must have degree 3. One checks directly from the orthogonality 
relation applied in A4 that the character x4 of S4 restricted to A4 (= xs i A4 ) is irreducible. 
This irreducibility check is really necessary since an irreducible representation of a 
group need not restrict to an irreducible representation of a subgroup (for instance, the 
irreducible degree 2 representation of S3 must become reducible when restricted to any 
proper subgroup, since these are all abelian). The character table of A4 is the following 

classes: 1 ( 1 2) (3 4) ( 1 2 3) 
sizes: 1 3 4 

Xl 1 1 1 

X2 1 1 { 
X3 1 1 {2 

X4 3 - 1  0 

Character Table of Aa 
where { is a primitive cube root of 1 in C. 
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As a final example we construct the following character table of S5 : 

classes: 1 ( 1 2) ( 1 2 3) ( 1 2 3 4) ( 1 2 3 4 5) ( 1 2) (3 4) ( 1 2) (3 4 5) 
sizes: 1 1 0  20 30 24 1 5 20 

XI 1 1 1 l 1 1 
X2 1 - 1  1 - 1  l 1 - 1  
X3 4 2 1 0 - 1  0 - 1  
X4 4 -2 1 0 - 1  0 1 
Xs 5 - 1  - 1  1 0 1 - 1  

X6 5 1 - 1  - 1  0 1 1 

X7 6 0 0 0 1 -2 0 

Character Table of S5 

The conjugacy classes and their sizes were computed in Section 4.3. Since I Ss : S� I = 2, 

there are two degree 1 characters: the principal character and the "sign" character. 
The natural permutation of S5 on 5 points gives rise to a permutation character of 

degree 5 .  As with S4 and S3 the orthogonality relations show that the square of its norm 
is 2 and it contains the principal character. Thus x3 is the permutation character minus 
the principal character (and, as with the smaller symmetric groups, X3 ( u) is the number 
of fixed points of u minus 1 ). As argued with S4, it follows that X4 = X3 X2 is also an 
irreducible character. 

To obtain xs recall that Ss has six Sylow 5-subgroups. Its action by conjugation on 
these gives a faithful permutation representation of degree 6. If 1/1 is the character of 
the associated linear representation, then since u E S5 fixes a Sylow 5-subgroup if and 
only if it normalizes that subgroup, we have 

1/f(u) = the number of Sylow 5-subgroups normalized by u. 

The normalizer in S5 of the Sylow 5-subgroup ( (1 2 3 4 5) ) is ( ( 1 2 3 4 5) , (2 3 5 4) ) 
and all normalizers of Sylow 5-subgroups are conjugate in S5 to this group. This 
normalizer contains only the identity, 5-cycles, 4-cycles and products of two disjoint 
transpositions. No other cycle type normalizes any Sylow 5-subgroup so on any other 
class, 1/1 is zero. To compute 1/1 on the remaining three nonidentity classes note (by 
inspection in S6) that in any faithful action on 6 points the following hold: an element 
of order 5 must be a 5-cycle (hence fixes 1 point); any element of order 4 which fixes 
one point must be a 4-cycle (hence fixes 2 points); an element of order 2 which is the 
square of an element of order 4 fixes exactly 2 points also. This gives all the values of 
1/f.  Now direct computation shows that 

and (XI ,  1/1) = 1 . 
Thus xs = 1/1 - XI is irreducible of degree 5. By the same theory as for x4 one gets 
that X6 = X5 X2 is another irreducible character. 

Since there are 7 conjugacy classes, there is one remaining irreducible character 
and its degree is 6. Its values can be obtained immediately from the decomposition of 
the regular character, p (cf. Example 3 in Section 1 8.2 and Example 4 in Section 1 8.3): 
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P - XI - X2 - 4X3 - 4X4 - 5xs - 5X6 
X7 = ------�------�----------� 

6 
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A direct calculation by the orthogonality relations checks that x7 is irreducible. Note 
that the values of the character x7 were computed without explicitly exhibiting a rep
resentation with this character. 

E X E R C I S E S 

1. Calculate the character tables of z2 X Z2, Z2 X Z3 and Z2 X Z2 X Z2. Explain why the 
table of Z2 X Z3 contains primitiVe 6th roots of 1 .  

2. Compute the degrees of the irreducible characters of Dt6 · 
3. Compute the degrees of the irreducible characters of As.  Deduce that the degree 6 irre

ducible character of Ss is not irreducible when restricted to As. [The conjugacy classes of 
As are worked out in Section 4.3.] 

4. Using the character tables in this section, for each of parts (a) to (d) use the first orthogo
nality relation to write the specified permutation character (cf. Example 3, Section 1 8.3) 
as a sum of irreducible characters: 
(a) the permutation character of the subgroup A3 of S3 
(b) the permutation character of the subgroup ( (1  2 3 4) ) of s4 
(c) the permutation character of the subgroup v4 of s4 
(d) thepermutation character ofthe subgroup ( ( 1  2 3) , ( 1  2) , (4 5) ) of Ss (this subgroup 

is the normalizer of a Sylow 3-subgroup of Ss) . 

5. Assume that for any character 1/r of a group, 1/12 is also a character (where 1/12 (g) = ( 1/r (g ) )2
) 

- this is a special case of Proposition 17 in Section 1 8.3. Using the character tables in this 
section, for each of parts (a) to (e) write out the values of the square, x

2, of the specified 
character x and use the first orthogonality relation to write x2 as a sum of irreducible 
characters: 
(a) X = XJ, the degree 2 character in the table of S3 

(b) x = xs ,  the degree 2 character in the table of Qg 
(c) X = xs .  the last character in the table of S4 
(d) x = X4 , the second degree 4 character in the table of Ss 
(e) x = X7, the last character in the table of Ss . 

6. Calculate the character table of As. 

7. Show that S6 has an irreducible character of degree 5 .  

8. Calculate the character table of Dw. (This table contains nonreal entries.) 

9. Calculate the character table of Dt2· 
10. Calculate the character table of s3 X s] . 

11. Calculate the character table of Z3 X s] . 
12. Calculate the character table of Z2 X s4 . 

13. Calculate the character table of s3 X s4 0 
14. Let n be an integer with n � 3. Show that every irreducible character of D2n has degree 1 

or 2 and find the number of irreducible characters of each degree. [The conjugacy classes 
of D2n were found in Exercises 31  and 32 of Section 4.3 and its commutator subgroup 
was computed in Section 5.4.] 

15. Prove that the character table is an invertible matrix. [Use the orthogonality relations.] 

16. For each of As and Dw describe which irreducible characters are algebraically conjugate 
(cf. the exercises in Section 1 8.3). 
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17. Let p be any prime and let P be a non-abelian group of order p3 (up to isomorphism there 
are two choices for P; for odd p these were constructed when the groups of order p3 were 
classified in Section 5.5). This exercise determines the character table of P and shows that 
both isomorphism types have the same character table (the argument includes the p = 2 
case wmxed out in this section) .  
(a) Prove that P has p2 characters of degree 1 .  
(b) Prove that P has p - I irreducible characters of degree p and that these together with 

the p2 degree 1 characters are all the irreducible characters of P. [Use Theorem 1 0(3) 
and Theorem 12 in Section 18.2.] 

(c) Deduce that (regardless of the isomorphism type) the group P has p2 + p - 1  conjugacy 
classes, p of which are of size 1 (i.e., are central classes) and p2 - 1 of which each 
have size p. Deduce also that the classes of size p are precisely the nonidentity cosets 
of the center of P (i.e., if x E P - Z(P) then the conjugacy class of x is the set of p 
elements in the coset x Z ( P)). 

(d) Prove that if x is an irreducible character of degree p then the representation affording 
x is faithful. 

(e) Fix a generator, z, of the center of P and let E be a fixed primitive pth root of 1 in 
C. Prove that if x is an irreducible character of degree p then x (z) = pE; for some 
i E { 1 .  2, . . . , p - 1 } . Prove further that x (x) = 0 for all X E p - Z(P). (Note then 
that the degree p characters are all algebraically conjugate.) [Use the same reasoning 
as in the construction of the character table of Qg.]  

(f) Prove that for each i E { 1 ,  2, . . . , p - 1 }  there is a unique irreducible character 
Xi of degree p such that Xi (z) = pEi . Deduce that the character table of P is 
uniquely determined, and describe it. [Recall from Section 6. 1 that regardless of the 
isomorphism type, P' = Z(P) and PIP' � Zp x Zp . From this one can write out 
the degree 1 characters. Part (e) describes the degree p characters. ]  

1 9.2 THEOREMS OF BURNSIDE AND HALL 

In this section we give a "theoretical" application of character theory: Burnside's paqb 
Theorem. We also prove Philip Hall's characterization of finite solvable groups, which 
is a group-theoretic proof relying on Burnside's Theorem as the first step in its induction . 

Burnside's Theorem 

The following result was proved by Burnside in 1904. Although purely group-theoretic 
proofs of it were discovered recently (see Theorem 2.8 in Finite Groups Ill by B. 
Huppert and N. Blackburn, Springer-Verlag, 1982) the original proof by Burnside pre
sented here is very accessible, elegant, and quite brief (given our present knowledge of 
representation theory). 

Theorem 1. (Burnside) For p and q primes, every group of order paqb is solvable. 

Before undertaking the proof of Burnside's Theorem itself we establish some results 
of a general nature. An easy consequence of these preliminary propositions is that the 
degrees of the irreducible characters of any finite group divide its order. The particular 
results that lead directly to the proof of Burnside's Theorem appear in Lemmas 6 and 7. 
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It follows quite easily that a counterexample to Burnside's Theorem of minimal order 
is a non-abelian simple group, and it is these two character-theoretic lemmas that give 
the contradiction by proving the existence of a normal subgroup. 

We first recall from Section 1 5.3 the definition of algebraic integers. 

Definition. An element a E C is called an algebraic integer if it is a root of a monic 
polynomial with coefficients from /Z. 

The basic results needed for the proof of Burnside's Theorem are: 

Proposition 2. Let a E C. 
(1) The following are equivalent: 

(i) a is an algebraic integer, 
(ii) a is algebraic over Q and the minimal polynomial of a over Q has 

integer coefficients, and 
(iii) /Z[a] is a finitely generated /Z-module (where /Z[a] is the subring of C 

generated by /Z and a, i.e., is the ring of all /Z-linear combinations of 
nonnegative powers of a). 

(2) The algebraic integers in C form a ring and the algebraic integers in Q are the 
elements of /Z. 

Proof" These are established in Section 15.3. (The portion of Section 1 5.3 consist
ing of integral extensions and properties of algebraic integers may be read independently 
from the rest of Chapter 15 .) 

Corollary 3. For every character 1/1 of the finite group G, 1/1 (x) is an algebraic integer 
for all x E G. 

Proof: By Proposition 14 in Section 18.3, 1/J(x) is a sum of roots of 1 .  Each root 
of 1 is an algebraic integer, so the result follows immediately from Proposition 2(2). 

We shall also need some preliminary character-theoretic lemmas before beginning 
the main proof. Adoptthe following notation for the arbitrary finite group G: Xl , . . .  , Xr 
are the distinct irreducible (complex) characters of G, IC1 , . . .  , ICr are the conjugacy 
classes of G and ({J; is an irreducible matrix representation whose character is Xi for 
each i .  

Proposition 4. Define the complex valued function w; on { IC 1 , • • •  , ICr} for each i by 

w · (IC · ) = 
IICj i X; (g) 

I J 
X; ( l) 

where g is any element of ICj . Then w; (/Cj) is an algebraic integer for all i and j.  

Proof: We first prove that if I is  the identity matrix, then 

L ({J; (g) = w; (ICj ) / . 

gel(i 
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To see this let X be the left hand side of ( 1 ). As we saw in Section 1 8.2, each x E G 
acting by conjugation permutes the elements of Kj and so X commutes with f{J; (g) for 
all g. By Schur's Lemma (Exercise 1 8  in Section 1 8 . 1 ) X is a scalar matrix: 

X = al for some a E C. 

It remains to show that a =  w; (Kj ) . But 

Thus ax; ( l) = tr X =  !Ki ! X; (g) ,  as needed to establish (1) . 
Now let g be a fixed element of Ks and define aijs to be the number of ordered 

pairs g; , gj with g; E K; , gj E Kj and g; gj = g. Notice that aijs is an integer. It is 
independent ofthe choice of g in Ks because ifx-1 gx is a conjugate of g, every ordered 
pair g; , gj whose product is g gives rise to an ordered pair x-1g;x ,  x-1gix whose 
product is x-1 gx (and vice versa). 

Next we prove that for all i, j, t E { 1 ,  . . . , r }  
r 

Wr (K; )Wr (Kj) = I >ijsWr (Ks ) . ( 19.2) 
s=1 

To see this note that by ( 1 ), the left hand side of (2) is the diagonal entry of the scalar 
matrix on the left of the following equation: 

= L L aijsf{Jt (g) s=1 gEICs 

= Laijs L f{Jr (g) 
s=1 gE/C, 

= LaijsWr (Ks)I 
s=1 

(since a;js is independent 
of g E Ks) 

( by (1)  ) . 

Comparing entries of these scalar matrices gives (2). 
Now (2) implies that the subring of tC generated by Z and w1 (K1 ) ,  . . .  , w1 (Kr ) is a 

finitely generated Z-module for each t E { 1 , . . .  , r }  (it is generated as a Z-module by 
1 ,  w1 (K1 ) , . . .  , w1 (Kr )) .  Since Z is a Principal ldeal Domain the submodule Z[w1 (K; )] 
is also a finitely generated Z-module, hence Wr (K; ) is an algebraic integer by Proposition 
2. This completes the proof. 

Corollary 5. The degree of each complex irreducible representation of a finite group 
G divides the order of G, i.e., x; (l ) I I G I  for i = 1 ,  2, . . .  , r .  
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Proof" Under the notation of Proposition 4 and with gj E Kj we have 

I G I  IG I  
X; ( l ) 

= 
X; ( l) 

(X; , X; ) 

= t IKj iX; (gj)� 

j=l X; ( l ) 

= L w; (Kj )X; (gj ) · 
j=l 

The right hand side is an algebraic integer and the left hand side is rational, hence is an 
integer. This proves the corollary. 

The next two lemmas lead directly to Burnside's Theorem. 

Lemma 6. If G is any group that has a conjugacy class K and an irreducible matrix 
representation q; with character x such that ( IK I . x (l) ) = 1 ,  then for g E K either 
X (g) = 0 or q; (g) is a scalar matrix. 

Proof" By hypothesis there exist s , t E IZ such that s IK I + t x ( 1)  = 1 .  Thus 

s iKix (g) + tx ( 1 )x (g) = x (g) . 
Divide both sides of this by x ( 1 )  and note that by Corollary 3 and Proposition 4 both 

IK i x (g) . . . x (g) x (g) x (g) and are algebrruc mtegers, hence so 1s --. Let a1 = -- and 
x O) x O) x ( 1 ) 

let a1 , a2 , . . .  , an be all its algebraic conjugates over <Ql (i.e. , the roots of the minimal 
polynomial of a1 over Q). Since a1 is a sum of x (l )  roots of 1 divided by the integer 
x (l) ,  each a; is also a sum of x ( l ) roots of 1 divided by x (l ) .  Thus a; has complex 
absolute value :S: 1 for all i .  Now b = D7=t a; E <Ql and b is an algebraic integer (±b 
is the constant term of the irreducible polynomial of at ), hence b E /Z. But 

n 

i = l  

so b = 0, ±1.  Since all a1 's are conjugate, b = 0 <=> a1 = 0 <=> x (g) = 0. Also, 
b = ± 1 <=> lad = 1 for all i .  Thus either x (g) = 0 or l x (g) l = x (l) . In the former 
situation the lemma is established, so assume l x (g) l = x ( l ) . 

Let q;1 be a matrix representation equivalent to q; in which q;1 (g) is a diagonal 
matrix: 

(/)1 (g) = 

( Et J 
Thus x (g) = Et + . • .  + En · By the triangle inequality if E; =I Ej for any i, j,  then 
IE 1 + · · · + En I < n = X ( 1 ) . Since this is not the case we must have (/JI (g) = E I (where 
E = E; for all i ). Since scalar matrices are similar only to themselves, q;(g) = El as 
well. This completes the proof. 
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Lemma 7. If IIC I  is a power of a prime for some nonidentity conjugacy class IC of G, 
then G is  not a non-abelian simple group. 

Proof: Suppose to the contrary that G is a non-abelian simple group and let 
IIC I  = pc . Let g E IC. If c = 0 then g E Z(G), contrary to a non-abelian simple 
group having a trivial center. As above, let Xl , . . .  , Xr be all the irreducible charac
ters of G with Xl the principal character and let p be the regular character of G .  By 
decomposing p into irreducibles we obtain 

r 
o = p(g) = 1 + L x; ( l )x; (g) .  ( 19.3) 

i=2 

If p 1 xj ( l ) for every j > 1 with Xj (g) =I= 0, then write Xj (l) = pdj . In this case 
(3) becomes 

0 = 1 + p LdjXj (g) . 
j 

Thus L j dj Xj (g) = - 1 I p is an algebraic integer, a contradiction. This proves there is 
some j such that p does not divide Xj ( 1 ) and Xj (g) =I= 0. If rp is a representation whose 
character is Xj , then rp is faithful (because G is assumed to be simple) and, by Lemma 6, 
rp(g) is a scalar matrix. Since rp(g) commutes with all matrices, rp(g) E Z(rp(G)) .  This 
forces g E Z(G), contrary to G being a non-abelian simple group. The proof of the 
lemma is complete. 

We now prove Burnside's Theorem. Let G be a group of order pa qh for some primes 
p and q .  If p = q or if either exponent is 0 then G is nilpotent hence solvable. Thus we 
may assume this is not the case. Proceeding by induction let G be a counterexample 
of minimal order. If G has a proper, nontrivial normal subgroup N, then by induction 
both N and GIN are solvable, hence so is G ( cf. Section 3.4 or Proposition 6. 10). Thus 
we may assume G is a non-abelian simple group. Let P E Sylp (G) . By Theorem 8 
of Chapter 4 there exists g E Z(P) with g f= 1 .  Since P � CG (g), the order of the 
conjugacy class of g (which equals I G  : CG (g) l ) is prime to p, i.e., is a power of q .  

This violates Lemma 7 and so completes the proof of Burnside's Theorem. 

Phil ip Hall's Theorem 

Recall that a subgroup of a finite group is called a Hall subgroup if its order and index are 
relatively prime. For any subgroup H of a group G a subgroup K such that G = H K 
and H n K = 1 is called a complement to H in G.  

Theorem 8. (P. Hall) Let G be a group of order p�1 p�2 • • • p�' where p1 , • • • , p1 
are distinct primes. If for each i E { 1 ,  . . .  , t} there exists a subgroup H; of G with 
I G : H; I = p�' ,  then G is solvable. 

Hall's Theorem can also be phrased: iffor each i E { 1 , . . .  , t} a Sylow p;-subgroup 
of G has a complement, then G is solvable. The converse to Hall's Theorem is also true 
- this was Exercise 33 in Section 6. 1 .  

We shall first need some elementary lemmas. 
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Lemma 9. If G is solvable of order > 1 ,  then there exists P � G with P a nontrivial 
p-group for some prime p.  

Proof: This is a special case of the exercise on minimal normal subgroups of 
solvable groups at the end of Section 6. 1 .  One can see this easily by letting P be a 
nontrivial Sylow subgroup of the last nontrivial term, c<n-l) , in the derived series of G 
(where G has solvable length n). In this case c<n-l) is abelian so P is a characteristic 
subgroup of c<n-t) , hence is normal in G. 

Lemma 10. Let G be a group of order p� 1 p�2 
• • • p�' where p1 , . . .  , p1 are distinct 

primes. Suppose there are subgroups H and K of G such that for each i E { 1 ,  . . . , t} ,  
either p�1 divides I H I  or p�1 divides I K I .  Then G = H K and IH n K l = ( I H I ,  I K I ) .  

Proof' Fix some i E { 1 ,  . . . , t }  and suppose first that p�1 divides the order of H. 
Since H K is  a disjoint union of right cosets of H and each of these right cosets has 
order equal to I H I ,  it follows that p�1 divides I H K 1 .  Similarly, if p�1 divides I K l ,  since 
H K is a disjoint union of left cosets of K, again p�1 divides I H K 1 .  Thus I G I I I H K I 
and so G = H K .  Since 

I H  K l = 
I H I I K I 

I H n K I '  

it follows that I H n K l = ( I H I .  I K I ) .  

We now begin the proof of Hall's Theorem, proceeding by induction on I G I .  Note 
that if t = 1 the hypotheses are trivially satisfied for any group (H1 = 1) and if t = 2 
the hypotheses are again satisfied for any group by Sylow's Theorem (Ht is a Sylow 
P2-subgroup of G and H2 is a Sylow p1 -subgroup of G). If t = 1 ,  G is nilpotent, hence 
solvable and if t = 2, G is solvable by Burnside's Theorem. Assume therefore that 
t :::: 3. 

Fix i and note that by the preceding lemma, for all j E { 1, . . .  , t } - { i } , 

1 n = H; n Hj l = p r 

Thus every Sylow Prsubgroup of H; has a complement in H; :  H1 n H; . By induction 
H; is solvable. 

By Lemma 9 we may choose P � HI with I P I  = pf > 1 for some i > 1 .  Since 
t :::: 3 there exists an index j E { 1 ,  . . .  , t } - { 1 ,  i } .  By Lemma 10 

IH H I 
a2 aj-1 aj+l a, 

I n i = P2 · · · Pj-l Pj+l  · · · Pt · 

Thus H1 n H1 contains a Sylow p;-subgroup of H1 . Since P is a normal p; -subgroup 
of H1 , P is contained in every Sylow p; -subgroup of H1 and so P :::=: H1 n H1 . By 
Lemma 10, G = Ht H1 so each g E G may be written g = h t hj for some h t E Ht and 
h1 E H1 . Then 

and so 
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Now P � Hj and h t Ph}1 = P for all h t  E H1 . Thus 

1 =1= p � n h t Hjh}1 • 
h 1 Elh 

Thus N = n8EcgHjg-1 is a nontrivial, proper normal subgroup of G. It follows that 
both N and GIN satisfy the hypotheses of the theorem ( cf. the exercises in Section 
3 .3). Both N and GIN are solvable by induction, so G is solvable. This completes the 
proof of Hall's Theorem. 

E X E R C I S E S  

1. Show that every character of the symmetric group Sn is integer valued, for all n (i.e., 
1/f (g) E 12 for all g E Sn and all characters 1/1 of Sn ). [See Exercise 22 in Section 1 8.3.] 

2. Let G be a finite group with the property tha:t every maximal subgroup has either prime 
or prime squared index. Prove that G is solvable. (The simple group GL3 (IF'z) has the 
property that every maximal subgroup has index either 7 or 8, i.e., either prime or prime 
cubed index - cf. Section 6.2.). [Let p be the largest prime dividing I G I  and let P be 
a Sylow p-subgroup of G. If P ::::] G, apply induction to G I P.  Otherwise let M be a 
maximal subgroup containing Nc (P). Use Exercise 5 1  in Section 4.5 to show that p = 3 
and deduce that I G I = 2a3b .] 

3. Assume G is a finite group that possesses an abelian subgroup H whose index is a power 
of a prime. Prove that G is solvable. 

4. Repeat the preceding exercise with the word "abelian" replaced by "nilpotent." 

5. Use the ideas in the proof of Philip Hall's Theorem to prove Burnside's paqb Theorem in 
the special case when all Sylow subgroups are abelian (without use of character theory.) 

1 9.3 INTRODUCTION TO THE THEORY OF IN DUCED CHARACTERS 

Let G be a finite group, let H be a subgroup of G and let ({J be a representation of 
the subgroup H over an arbitrary field F. In this section we show how to obtain a 
representation of G, called the induced representation, from the representation ({J of its 
subgroup. We also determine a formula for the character of this induced representation, 
the induced character, in terms of the character of ({J and we illustrate this formula by 
computing some induced characters in specific groups. Finally, we apply the theory of 
induced characters to prove that there are no simple groups of order 33 • 7 · 1 3  · 409, 
a group order which was discussed at the end of Section 6.2 in the context of the 
existence problem for simple groups. The theory of induced representations and induced 
characters marks the beginning of more advanced representation theory. This section 
is intended as an introduction rather than as a comprehensive treatment, and the results 
we have included were chosen to serve this purpose. 

First observe that it may not be possible to extend a representation ({J of the subgroup 
H to a representation c/J of G in  such a way that c/J IH = ({J. For example, A3 � S3 
and A3 has a faithful representation of degree 1 ( cf. Section l ) . Since every degree 1 
representation of S3 contains A3 = S� in its kernel, this representation of A3 cannot 
be extended to a representation of S3 . For another example of a representation of a 

892 Chap. 1 9  Examples and Appl ications of Cha racter Theory 



subgroup which cannot be extended to the whole group take G to be any simple group 
and let fP be any representation of H with the property that ker fP is a proper, nontrivial 
normal subgroup of H . If fP extended to a representation tP of G then the kernel of tP 
would be a proper, nontrivial subgroup of G, contrary to G being a simple group. We 
shall see that the method of induced characters produces a representation tP of G from 
a given representation fP of its subgroup H but that tP I H  =/= fP in general (indeed, unless 
H = G the degree of tP will be greater than the degree of fP ). 

We saw in Example 5 following Corollary 9 in Section 10.4 that because F H is a 
subring of FG, the ring FG is an (FG, F H)-bimodule; and so for any left PH-module 
V,  the abelian group F G 0 F H V is a left F G-module (called the extension of scalars 
from F H to FG for V). In the representation theory of finite groups this extension is 
given a special name. 

Definition. Let H be a subgroup of the finite group G and let V be an F H -module 
affording the representation fP of H. The F G-module F G 0 F H V is called the induced 
module of V and the representation of G it affords is called the induced representation 
of fP. If 1/1 is the character of fP then the character of the induced representation is called 
the induced character and is denoted by Ind� (1/l). 

Theorem 11. Let H be a subgroup of the finite group G and let g, ,  . . .  , 8m be rep
resentatives for the distinct left cosets of H in G. Let V be an F H -module affording 
the matrix representation fP of H of degree n. The FG-module W = F G  0FH V 
has dimension nm over F and there is a basis of W such that W affords the matrix 
representation tP defined for each g E G by ( fP(gl_

' gg, ) 
tP (g) = : 

fP(g;;/ gg, ) 

. ; . fP (g} ;ggm) ) 
fP(g;;/ggm) 

where each fP(g/1  ggj)  is an n x n block appearing in the i , j block position of tP (g), 
and where fP (g/1 ggj) is defined to be the zero block whenever g/ 1  ggj ¢ H. 

Proof First note that FG is a free right F H -module: 

FG = g, FH EEl g2FH EEl · · · EEl gm FH. 
Since tensor products commute with direct sums (Theorem 17, Section 1 0.4), as abelian 
groups we have 

W = FG 0FH V � (g, 0 V) EEl (g2 0 V) EEl · · ·  EEl (gm 0 V) .  

Since F i s  in the center of FG it follows that this i s  an F -vector space isomorphism as 
well. Thus if v, , v2 , . . . , Vn is a basis of V affording the matrix representation fP, then 
{g; 0 Vj I 1 � i � m, 1 � j � n} is a basis of W. This shows the dimension of W is 
mn. Order the basis into m sets, each of size n as 
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We compute the matrix representation tJ> (g) of each g acting on W with respect to this 
basis. Fix j and g, and let gg1 = g;h for some index i and some h E H. Then for 
every k 

n 

= Latk(h) (g; ® v1 ) 
1=1 

where a1k is the t ,  k coefficient of the matrix of h acting on V with respect to the basis 
{ v1 , . . . , Vn } .  In other words, the action of g on W maps the /h block of n basis vectors 
of W to the ;th block of basis vectors, and then has the matrix q;(h) on that block. Since 
h = gj1 gg1 , this describes the block matrix tJ>(g) of the theorem, as needed. 

Corollary 12. In the notation of Theorem 1 1  
(1) if 1f! is the character afforded by V then the induced character is given by 

m 

Ind� (1fr)(g) = L 1fr(gj1gg; ) 
i=1 

where 1fr(g;-1gg; ) is defined to be O if g;- 1gg; fj. H, and 
(2) Ind� ( 1f!) (g) = 0 if g is not conjugate in G to some element of H. In particular, 

if H is a normal subgroup of G then Ind� ( 1f!) is zero on all elements of G - H. 

Remark: Since the character 1f! of H is constant on the conjugacy classes of H we have 
1f! (g) = 1f! (h - 1 g h) for all h E H. As h runs over all elements of H, x h runs over 
all elements of the coset x H. Thus the formula for the induced character may also be 
written 

where the elements x in each fixed coset give the same character value I H I  times (which 
accounts for the factor of 1/ IH I ), and again 1fr(x-1 gx) = 0 if x-1 gx fj. H. 

Proof: From the matrix of g computed above, the blocks q;(g;- 1 gg; ) down the 

diagonal of tJ>(g) are zero except when gj1gg; E H. Thus the trace of the block matrix 

tJ> (g) is the sum of the traces of the matrices q;(gj1gg; ) for which gj1gg; E H. Since 

the trace of q; (gj 1 gg; ) is 1fr(gj1 gg; ) , part ( 1 )  holds. 

If g;-1 gg; fj. H for all coset representatives g; then each term in the sum for 
Ind� (1fr)(g) is zero. In particular, if g is not in the normal subgroup H then neither is 
any conjugate of g, so Ind� ( 1f!) is zero on g. 

Examples 

(1) Let G = D12 = ( r, s I r6 = s2 = I . rs = sr- 1 ) be the dihedral group oforder 1 2 and 
let H = { 1 ,  s ,  r3 , s r3},  so that H is isomorphic to the Klein 4-group and I G : H I  = 3. 
Following the notation ofTheorem 1 1  we exhibit the matrices for r and s of the induced 
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representation of a specific representation fP of H. Let the representation of H on a 
2-dimensional vector space over 1Q! with respect to some basis v1 , v2 be given by ( - 1  0 ) 
fP (s) = 0 1 

= A , 
3 ( 1 0 ) 

fP(r ) =  0 - 1 
= B , 

3 ( - 1  0 ) 
fP(sr ) =  0 - 1  

= C , 

so n = 2, m = 3 and the induced representation 4> has degree nm = 6. Fix represen
tatives g1 = 1 ,  gz = r, and g3 = r2 for the left cosets of H in G, so that gk = rk- l . 

Then 

-1 . - - (i - l)+l+(j - 1) - j-i+1 d gi rg1 - r - r , an 

gi
-1 sgj = sr(i -1 )+(j-1 ) = sri+j-2 . 

Thus the 6 x 6 matrices for the induced representation are seen to be ( 0 0 B ) 
4> (r) = I 0 0 0 I 0 0 0 ) 0 c 

c 0 
where the 2 x 2 matrices A, B and C are given above, I is the 2 x 2 identity matrix 
and 0 denotes the 2 x 2 zero matrix. 

(2) If H is any subgroup of G and 1/f1 is the principal character of H, then Ind� (l/fl ) (g) 

counts 1 for each coset representative gi such that gi-l ggi E H. Since g;- 1 ggi E H 

if and only if g fixes the left coset gi H under left multiplication, Ind� (l/f1 ) (g) is the 
number of points fixed by g in the permutation representation of g on the left cosets 
of H. Thus by Example 3 of Section 1 8 .3 we see that: if 1/f1 is the principal character 
of H then Ind� ( 1/f1 ) is the permuflltion character on the left cosets of H in G. In the 
special case when H = 1 ,  this implies if Xl is the principal character of the trivial 
subgroup H = 1 then Indf (X 1 ) is the regular character of G. This also shows that an 
induced character is not, in general, irreducible even if the character from which it is 
induced is irreducible. 

(3) Let G = S3 and let l/f be a nonprincipal linear character ofA3 = ( x ) , so that l/f (x) = 1; ,  
for some primitive cube root of unity t; (the character tables of A 3  = Z3 and S3 appear 

in Section 1 ). Let 1Jf = Ind1 (1/f) . Thus 1Jf has degree 1 · I S3 : A3 l = 2 and, by the 3 
corollary, 1Jf is zero on all transpositions. If y is any transposition then 1 , y is a set of 
left coset representatives of A3 in S3 and y

- 1 
xy = x2 . Thus 1Jt (x) = 1/f(x) + 1/f (x2) 

equals t; + t;2 = - 1 .  This shows that if 1/f is either of the two nonprincipal irreducible 
characters of A3 then the induced character of 1/f is the (unique) irreducible character 
of S3 of degree 2. In particular, different characters of a subgroup may induce the 
same character of the whole group. 

(4) Let G = Ds have its usual generators and relations and let H = ( s  ) .  Let 1/f be the 
nonprincipal irreducible character of H and let 1Jf = Ind� ( 1/f).  Pick left coset represen

tatives l , r, r2 , r3 for H. By Theorem 1 1 , 1Jt ( l )  = 4. Since l/f (s) = - ! , one computes 
directly that W (s) = -2. By Corollary 1 2(2) we obtain 1Jt(r) = 1Jf(r2) = W(sr) = 0. 
In the notation of the character table of Ds in Section 1, by the orthogonality relations 
we obtain 1Jf = X2 + X4 + X5 (which may be checked by inspection). 

For the remainder of this section the field F is taken to be the complex numbers: 
F = C. 

Before concluding with an application of induced characters to simple groups we 
compute the characters of an important class of groups. 
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Definition. A finite group G is called a Frobenius group with Frobenius kernel Q if 
Q is a proper, nontrivial normal subgroup of G and CG (x) :::::: Q for all nonidentity 
elements x of Q. 

In view of the application to simple groups mentioned at the beginning of this 
section we shall restrict attention to Frobenius groups G of order qa p, where p and q 
are distinct primes, such that the Frobenius kernel Q is an elementary abelian q-group 
of order qa and the cyclic group G I Q acts irreducibly by conjugation on Q. In other 
words, we shall assume Q is a direct product of cyclic groups of order q and the only 
normal subgroups of G that are contained in Q are I and Q, i.e. , Q is a minimal normal 
subgroup of G. For example, A4 is a Frobenius group of this type with Frobenius kernel 
V4, its Sylow 2-subgroup. Also, if p and q are distinct primes with p < q and G is a 
non-abelian group of order pq (one always exists if p I q - 1) then G is a Frobenius 
group whose Frobenius kernel is its Sylow q-subgroup (which is normal by Sylow's 
Theorem). We essentially determine the character table of these Frobenius groups. 
Analogous results on more general Frobenius groups appear in the exercises. 

Proposition 13. Let G be a Frobenius group of order qa p, where p and q are distinct 
primes, such that the Frobenius kernel Q is an elementary abelian q-group of order qa 
and the cyclic group GI Q acts irreducibly by conjugation on Q. Then the following 
hold: 

(1) G = Q P where P is a Sylow p-subgroup of G. Every nonidentity element of 
G has order p or q. Every element of order p is conjugate to an element of 
P and every element of order q belongs to Q. The nonidentity elements of P 
represent the p - 1 distinct conjugacy classes of elements of order p and each 
of these classes has size qa . There are (qa - 1) I p distinct conjugacy classes of 
elements of order q and each of these classes has size p. 

(2) G' = Q so the number of degree 1 characters of G is p and every degree 1 
character contains Q in its kernel. 

(3) If 1/1 is any nonprincipal irreducible character of Q, then Indg ('l/l) is an irre
ducible character of G. Moreover, every irreducible character of G of degree 
> 1 is equal to Indg ( 1/1) for some nonprincipal irreducible character 1/1 of Q. 
Every irreducible character of G has degree either 1 or p and the number of 
irreducible characters of degree p is (qa - 1) 1 p. 

Proof: Note that Q P equals G by order consideration. By definition of a Frobenius 
group and because Q is abelian, CG (h) = Q for every nonidentity element h of Q. If 
x were an element of order pq, then xP would be an element of order q, hence would 
lie in the unique Sylow q-subgroup Q of G. But then x would commute with xP and so 
x would belong to CG (xP) = Q, a contradiction. Thus G has no elements of order pq. 
By Sylow's Theorem every element of order p is conjugate to an element of P and every 
element of order q lies in Q .  No two distinct elements of P are conjugate in G because 

if g-1xg = y for some x , y E P then g- 1xg = y in the abelian group G = GIQ 
and so :X = y. Then x = y because P � P. Thus there are exactly p - 1 conjugacy 
classes of elements of order p and these are represented by the nonidentity elements of 
P.  If x is a nonidentity element of P, then CG (x) = P and so the conjugacy class of 
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x consists of IG : P I = qa elements. Finally, if h is a nonidentity element of Q, then 
CG (h) = Q and the conjugacy class of h is {h, hx , . . . , hxp-l }, where P = ( x  ) .  This 
proves all parts of ( 1  ). 

Since G I Q is abelian, G' :::: Q. Since G is non-abelian and Q is, by hypothesis, 
a minimal normal subgroup of G we must have G' = Q. Part (2) now follows from 
Corollary 1 1  in Section 1 8 .2. 

Let 1/1 be a nonprincipal irreducible character of Q and let \II = Indg (1/l). We use 
the orthogonality relations to show that \II is irreducible. Let 1 ,  x ,  . . . , xP-1 be coset 
representatives for Q in G. By Corollary 1 2, \II is zero on G - Q so 

I I  \11 1 1 2 = -
1 

L \ll (h)\ll (h) 
I G I hEQ 

p- 1 
1 � �  . .  = - � �  1/f(x' hx-' )1/l(xihx-i )  

I G I hEQ i=O 

= '� ' 2: 1/l(h)1/f(h) 
hEQ 

= p i Q I = 1 
I G I 

' 

where the second line follows from the definition of the induced character \II , the third 
line follows because each element of Q appears exactly p times in the sum in the second 
line, and the last line follows from the first orthogonality relation in Q because 1/1 is an 
irreducible character of Q. This proves \II is an irreducible character of G. 

We prove that every irreducible character of  G of degree > 1 is the induced char
acter of some nonprincipal degree 1 character of Q by counting the number of distinct 
irreducible characters of G obtained this way. By parts (1) and (2) the number of irre
ducible characters of G (= the number of conjugacy classes) is p + (qa - 1)/ p and the 
number of degree 1 characters is p. Thus the number of irreducible characters of G of 
degree > 1 is (qa - l)jp.  The group P acts on the set C of nonprincipal irreducible 
characters of Q as follows: for each 1/1 E C and each x E P let 1/lx be defined by 

1/fx (h) = 1/f(xhx-1) for all h E  Q.  
Since 1/1 is a nontrivial homomorphism from Q into ex (recall that all irreducible 
characters of the abelian group Q have degree 1 )  it follows easily that 1/fx is also a 
homomorphism. Thus 1/fx E C and so P permutes the elements of C. Now let x be a 
generator for the cyclic group P.  Then 1 , x ,  . . .  , x P-1 are representatives for the left 
cosets of Q in G. By Corollary 1 2  applied with this set of coset representatives we see 
that if 1/1 E C then the value of Indg (1/l) on any element h of Q is given by the sum 

1/f(h) + 1/fx (h) + · · · +  1/fxp- l (h) . Thus when the induced character Indg (1/1) is restricted 
to Q it decomposes into irreducible characters of Q as 

lndg (1/I) I Q  = 1/1 + 1/lx + · · · + 1/lxp- l . 

If 1/11 and 1/12 are in different orbits of the action of P on C then the induced characters 
Indg (1/11) and Indg (1/12) restrict to distinct characters of Q (they have no irreducible 
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constituents in common). Thus characters induced from elements of distinct orbits 
of P on C are distinct irreducible characters of G. The abelian group Q has qa - 1 
nonprincipal irreducible characters (i.e., I C I  = qa - 1 )  and I P  I = p so there are at 
least (qa - 1 )  f p orbits of P on C and hence at least this number of distinct irreducible 
characters of G of degree p. Since G has exactly (qa - 1 ) /  p irreducible characters of 
degree > 1 ,  every irreducible character of G of degree > 1 must have degree p and 
must be an induced character from some element of C. The proof is complete. 

For the final example we shall require two properties of induced characters. These 
properties are listed in the next proposition and the proofs are straightforward exercises 
which follow easily from the formula for induced characters or from the definition of 
induced modules together with properties of tensor products. 

Proposition 14. Let G be a group, let H be a subgroup of G and let l/1 and l/1' be 
characters of H. 

(1) (Induction of characters is additive) Ind� (l/1 + l/1') =. Ind� (l/1) + Ind� (l/1') . 
(2) (Induction of characters is transitive) If H :::: K :::: G then 

Ind� (Ind� (l/1)) = Ind� (l/1) . 

It follows from part ( 1 )  of Proposition 14 that if :Lt=l n;l/1; is any integral linear 
combination of characters of H with n; :::-:: 0 for all i then 

Ind� ( :t n ; l/1;) = :t n; Ind� (l/1; ) .  
i=l i=l 

A class function of H of the form :Lt=t n;l/J; ,  where the coefficients are any integers 
(not necessarily nonnegative) is called a generalized character or virtual character of 
H. For a generalized character of H we define its induced generalized character of G 
by equation ( * ), allowing now negative coefficients n; as well. In this way the function 
Ind� becomes a group homomorphism from the additive group of generalized characters 
of H to the additive group of generalized characters of G (which maps characters to 
characters). This implies that the formula for induced characters in Corollary 12 holds 
also if l/1 is a generalized character of H. 

Application to Groups of Order 33 · 7 · 13 · 409 

We now conclude with a proof of the following result: 

there are no simple groups of order 33 · 7 · 13  · 409. 

As mentioned at the beginning of this section, simple groups of this order were discussed 
at the end of Section 6.2 in the context of the existence problem for simple groups. It is 
possible to prove that there are no simple groups of this order by arguments involving a 
permutation representation of degree 8 1 9  (cf. the exercises in Section 6.2). We include 
a character-theoretic proof of this since the methods illustrate some important ideas in 
the theory of finite groups. The approach is based on M. Suzuki's seminal paper The 
nonexistence of a certain type of simple group of odd order, Proc. Amer. Math. Soc., 
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8(1957), pp. 686-695, which treats much more general groups. Because we are dealing 
with a specific group order, our arguments are simpler and numerically more explicit, 
yet they retain some of the key ideas of Suzuki's work. Moreover, Suzuki's paper and its 
successor, Finite groups in which the centralizer of any non-identity element is nilpotent, 
by W. Feit, M. Hall and J. Thompson, Math. Zeit. ,  74(1960), pp. 1-17, are prototypes 
for the lengthy and difficult Feit-Thompson Theorem ( cf. Section 3.4 ). Our discussion 
also conveys some of the flavor of these fundamental papers. In particular, each of 
these papers follows the basic development in which the structure and embedding of 
the Sylow subgroups is first determined and then character theory (with heavy reliance 
on induced characters) is applied. 

For the remainder of this section we assume G is a simple group of order 33 · 7 · 1 3  · 
409. We list some properties of G which may be verified using the methods stemming 
from Sylow's Theorem discussed in Section 6.2. The details are left as exercises. 
(1) Let q1 = 3, let Q1 be a Sylow 3-subgroup of G and let N1 = No (Q1) .  Then Q1 

is an elementary abelian 3-group of order 33 and N 1 is a Frobenius group of order 
33 · 13 with Frobenius kernel Q1 and with Ntf Q 1 acting irreducibly by conjugation 
on Q1 . 

(2) Let q2 = 7, let Q2 be a Sylow ?-subgroup of G and let N2 = No (Q2) .  Then Q2 is 
cyclic of order 7 and N2 is the non-abelian group of order 7 · 3 (so N2 is a Frobenius 
group with Frobenius kernel Q2). 

(3) Let q3 = 13, let Q3 be a Sylow 1 1 -subgroup of G and let N3 = No (Q3).  Then 
Q3 is cyclic of order 1 3  and N3 is the non-abelian group of order 13 · 3 (so N3 is a 
Frobenius group with Frobenius kernel Q3). 

(4) Let q4 = 409, let Q4 be a Sylow 409-subgroup of G and let N4 = No (Q4). Then 
Q4 is cyclic of order 409 and N4 is the non-abelian group of order 409 · 3 (so N4 
is a Frobenius group with Frobenius kernel Q4). 

(5) Every nonidentity element of G has prime order and Qi n Qf = 1 for every 
g E G - Ni , for each i = 1 ,  2, 3, 4. The nonidentity conjugacy classes of G are: 
(a) 2 classes of elements of order 3 (each of these classes has size 7 · 1 3  · 409) 
(b) 2 classes of elements of order 7 (each of these classes has size 33 · 1 3  · 409) 
(c) 4 classes of elements of order 1 3  (each of these classes has size 33 · 7 · 409) 
(d) 136 classes of elements of order 409 (each of these classes has size 33 · 7 · 13), 
and so there are 145 conjugacy classes in G. 

Since each of the groups Ni is a Frobenius group satisfying the hypothesis of Proposition 
1 3, the number of characters of Ni of degree > 1 may be read off from that proposition: 

(i) N 1 has 2 irreducible characters of degree 1 3  
(ii) N2 has 2 irreducible characters of degree 3 

(iii) N3 has 4 irreducible characters of degree 3 
(iv) N4 has 136 irreducible characters of degree 3. 

From now on, to simplify notation, for any subgroup H of G and any generalized 
character J.L of H let 

J.L* = Ind� (J.L) 

so a star will always denote induction from a subgroup to the whole group G and the 
subgroup will be clear from the context. 
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The following lemma is a key point in the proof. It shows how the vanishing 
of induced characters described in Corollary 12  (together with the trivial intersection 
property of the Sylow subgroups Q; , namely the fact that Qi n Qf = 1 for all g E 
G - N G ( Qi)) may be used to relate inner products of certain generalized characters to 
the inner products of their induced generalized characters. For these computations it is 
important that the generalized characters are zero on the identity (which explains why 
we are considering differences of characters of the same degree). 

Lemma 15. For any i E { 1 ,  2, 3, 4} let q = q; , let Q = Qi , let N = Ni and let 
p = IN : Q l .  Let 1/11 • . . .  , Vt4 be any irreducible characters of N of degree p (not 
necessarily distinct) and let a = 1/11 - 1/tz and f3 = Vt3 - 1/14 . Then a and f3 are 
generalized characters of N which are zero on every element of N of order not equal 
to q .  Furthermore, a* and f3* are generalized characters of G which are zero on every 
element of G of order not equal to q and 

(a* , f3*)c = (a, f3)N 
(where ( , ) H denotes the usual Hermitian product of class functions computed in the 
group H). In other words, induction from N to G is an inner product preserving map 
on such generalized characters a, f3 of N. 

Proof" By Proposition 13, there are nonprincipal characters A I ,  . . .  , A4 of Q of 
degree 1 such that Vti = Ind� (Aj ) for j = 1 ,  . . . , 4. By Corollary 12 therefore, each Vti 
vanishes on N - Q, hence so do a and f3.  Note that since Vti ( 1 ) = p for all j we have 
a(l) = {3(1 ) = 0. By the transitivity of induction, 1/tl = Ind� (1/tj)  = Indg (Aj ) for all 
j . Again by Corollary 12 applied to the latter induced character we see that 1/ti* vanishes 
on all elements not conjugate in G to some element of Q, hence so do both a* and f3* . 
Since the induced characters 1/t/ all have degree I G : Q I ,  the generalized characters 
a* and {3* are zero on the identity. Thus a* and f3* vanish on all elements of G which 
are not of order q . Finally, if g1 , . . .  , gm are representatives for the left cosets of N in 
G with g1 = 1 ,  then because Q n Q8k = 1 for all k > 1 (by (5) above), it follows 
immediately from the formula for induced (generalized) characters that a* (x) = a(x) 
and f3*(x) = f3 (x) for all nonidentity elements x E Q (i.e., for all elements x E N of 
order q). Furthermore, by Sylow's Theorem every element of G of order q lies in a 
conjugate of Q, hence the collection of G-conjugates of the set Q - { 1 } partition the 
elements of order q in G into IG  : Nl disjoint subsets. Since a* and f3* are class 
functions on G, the sum of a*(x)f3* (x) as x runs over any of these subsets is the same. 
These facts imply 

900 

1 � -
(a* , f3*)c = - � a* (x)f3* (x) 

I G I  xE G 
1 � -

= TGf � a* (x)f3* (x) 
x EG 
lx l=q 

1 
- � I G  N la* (x)f3* (x) - TGI � 

XEN 
lx l=q 
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This completes the proof. 

1 '""" -= - � a(x)f3(x) = ( a, f3 )N . 
IN I xeN 

The next lemma sets up a correspondence between the irreducible characters of N; 
of degree > 1 and some nonprincipal irreducible characters of G. 

Lemma 16. For any i E { 1 ,  2, 3 ,  4} let q = q; , let Q = Q; ,  let N = N; and let 
p = I N  : Q 1 - Let 1/tt , . . . , Vtk be the distinct irreducible characters of N of degree 
p. Then there are distinct irreducible characters Xt ,  . . .  , Xk of G, all of which have 
the same degree, and a fixed sign E = ±1  such that 1/ti - 1/t/ = E (Xt - Xi)  for all 
j = 2, 3, . . . , k. 

Proof: Let ai = 1/tt - 1/tj for j = 2, 3, . . .  , k so ai satisfies the hypothesis of 
Lemma 15 .  Since 1/11 =f:. Vti •  by Lemma 15 

2 = I I ai 1 12 = (aj .  aj)N = (aj ,  aj)c = l l aj 1 1 2 
for all j .  Thus aj must have two distinct irreducible characters of G as its irreducible 
constituents. Since aj (l) = 0 it must be a difference of two distinct irreducible char
acters, both of which have the same degree. In particular, the lemma holds if k = 2 
(which is the case for q = 3 and q = 7). Assume therefore that k > 2 and write 

a; = 1/ti - 1/t� = E (X - X 1) 

a; = 1/ti - 1/t; = E1 (B - B1) 

for some irreducible characters X , X I, e ,  B1 of G and some signs E, E 1 •  As proved above, 
X =f:. X 1  and e =f:. B1• Interchanging e and B1 if necessary, we may assume E = E1 • Thus 

a; - a; = 1/t; - 1/t; = E (B - e1 - x + x') .  

B y  Lemma 15, 1/ti - 1/t; = (1/12 - 1/13)* also has exactly two distinct irreducible con
stituents, hence either e = X or el = x' .  Replacing E by -E if necessary we may 
assume that e = x so that now we have 

a; = 1/t� - 1/t� = E (x - x') 

a; = 1/ti - 1/t; = E(X - e 1) 
where x .  x 1 and e are distinct irreducible characters of G and the sign E is determined. 
Label x = X1 .  X 1  = X2 and e = X3 · Now one similarly checks that for each j :::: 3 
there is an irreducible character Xi of G such that 

aj = 1/t� - 1/tj* = E (Xt - Xi ) 
and Xt • . . .  , Xk are distinct. Since all x/s have the same degree as Xt . the proof is 
complete. 

We remark that it need not be the case that Xi = 1/ti* for any j,  but only that the 
differences of irreducible characters of N induce to differences of irreducible characters 
of G. 

The irreducible characters Xi of G obtained via Lemma 16 are called exceptional 
characters associated to Q.  
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Lemma 17. The exceptional characters associated to Q; are all distinct from the 
exceptional characters associated to Qj for i and j distinct elements of { 1 ,  2, 3 ,  4}. 

Proof" Let x be an exceptional character associated to Q; and let () be an exceptional 
character associated to Qj . By construction, there are distinct irreducible characters 1/1 
and 1/1' of Q; such that 1/1* - 1/1'* = x - x ' and there are distinct irreducible characters 
J.... and J....' of Qj such that J....* - J....' * = () - ()'. Let a = 1/1 - 1/1' and let f3 = J.... - J....' .  By 
Lemma 15, a* is zero on all elements of G whose order is not equal to q; (including 
the identity) and {3* is zero on all elements of G whose order is not equal to qj . Thus 
clearly (a* ,  {3*) = 0. It follows easily that the two irreducible constituents of a* are 
pairwise orthogonal to those of {3* as well. This establishes the lemma. 

It is now easy to show that such a simple group G does not exist. By Lemma 16 
and properties (i) to (iv) of G we can count the number of exceptional characters: 

(i) there are 2 exceptional characters associated to Q 1 
(ii) there are 2 exceptional characters associated to Q2 

(iii) there are 4 exceptional characters associated to Q3 
(iv) there are 136 exceptional characters associated to Q4 . 

Denote the common degree of the exceptional characters associated to Q; by d; for 
i = 1 ,  . . .  , 4. By Lemma 17, the exceptional characters account for 144 nonprincipal 
irreducible characters of G hence these, together with the principal character, are all the 
irreducible characters of G (the number of conjugacy classes of G is 145). The sum of 
the squares of the degrees of the irreducible characters is the order of G:  

1 + 2d� + 24 + 4dj + 136d} = 1004913. 

Simplifying this, we obtain 

d� + di_ + 2dj + 68d} = 502456. (19.4) 

Finally, since each nonprincipal irreducible representation of the simple group G is 
faithful and since the smallest degree of a faithful representation of N1 is 13, each 
d; :=:: 13. Since d4 < J502456f68 < 86 and d4 divides I G I ,  it follows that 

d4 E { 13, 2 1 ,  27, 39, 63}. 

Furthermore, each d; I I G I by Corollary 5 and so there are a small number of possibilities 
for each d; . One now checks that equation (4) has no solution (this is particularly easy 
to do by computer). This contradiction completes the proof. 

E X E R C I S E S  

Throughout the exercises all representations are over the complex numbers. 

1. Let G = S3, let H = A3 and let V be the 3-dimensional CH-module which affords the 
natural permutation representation of A3. More explicitly, let V have basis e1 , � .  e3 and 
let a E A3 act on V by ae; = ea (i) · Let 1 and ( 1  2) be coset representatives for the left 
cosets of A3 in S3 and write out the explicit matrices described in Theorem 1 1  for the 
action of S3 on the induced module W, for each of the elements of S3 . 

2. In each of pans (a) to (f) a character 1/1 of a subgroup H of a particular group G is specified. 
Compute the values of the induced character Ind� ( 1/f) on all the conjugacy classes of G and 
use the character tables in Section I to write Ind� ( 1/f) as a sum of irreducible characters: 
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(a) t/1 is the unique nonprincipal degree 1 character of the subgroup ( (1 2) } of S3 
(b) t/J is the degree 1 character of the subgroup ( r } of Ds defined by t/1 (r) = i, where 

i E C is a square root of - 1  
(c) t/1 i s  the degree 1 character of the subgroup ( r }  of Ds defined by t/J (r) = - 1  
(d) t/J i s  any of the nonprincipal degree 1 characters of the subgroup V4 = ( ( 1  2) ,  (3 4) } 

of s4 
(e) t/1 = X4 is the first of the two characters of degree 3 in the character table of H = S4 

in Section 1 and H is a subgroup of G = Ss 
(t) t/J is any of the nonprincipal degree 1 characters of the subgroup V4 = ( (1 2) , (3 4) } 

of Ss . 
3. Use Proposition 13 to explicitly write out the character table of each of the following 

groups: 
(a) the dihedral group of order 10 
(b) the non-abelian group of order 57 
(c) the non-abelian group of order 56 which has a normal, elementary abelian Sylow 

2-subgroup. 

4. Let H be a subgroup of G, let qJ be a representation of H and suppose that N is a normal 
subgroup of G with N :::; H and N contained in the kernel of qJ. Prove that N is also 
contained in the kernel of the induced representation of f{J. 

5. Let N be a normal subgroup of G and let t/11 be the principal character of N. Let IV be 
the induced character Ind� (t/lt ) so that by the preceding exercise we may consider IV as 
the character of a representation of GIN. Prove that IV is the character of the regular 
representation of GIN. 

6. Let Z be any subgroup of the center of G, let I G : Z l  = m and let t/1 be a character of Z. 
Prove that 

Ind9 (t/l)( ) = { m t/f (g) if g E Z 
z 

g 
0 if g � z. 

7. Let f{J be a matrix representation of the subgroup H of G and define matrices Cl> (g) for 
every g E G by the displayed formula in the statement of Theorem 1 1 . Prove directly that 
C1> is a representation by showing that Cl> (xy) = Cl> (x)CI> (y) for all x ,  y E G. 

8. Let G be a Frobenius group with Frobenius kernel Q. Assume that both Q and G 1 Q are 
abelian but G is not abelian (i.e., G f- Q). Let I Q I  = n and I G  : Ql  = m. 
(a) Prove that G 1 Q is  cyclic and show that G = QC for some cyclic subgroup C of G 

with C n Q = 1 (i.e., G is a sernidirect product of Q and C and I C I  = m). [Let q 
be a prime divisor of n and let G 1 Q act by conjugation on the elementary abelian 
q-group {h E Q I hq = 1 } .  Apply Exercise 14(e) of Section 18. 1  and the definition 
of a Frobenius group to an irreducible constituent of this lF q G 1 Q-module.] 

(b) Prove that n and m are relatively prime. [If a prime p divides both the order and 
index of Q, let P be a Sylow p-subgroup of G. Then P n Q ::::1 P and P n Q is a 
Sylow p-subgroup of Q. Consider the centralizer in G of the subgroup Z(P) n Q 
(this intersection is nontrivial by Theorem 1 of Section 6. 1 ).] 

(c) Show that G has no elements of order qp, where q is any nontrivial divisor of n and 
p is any nontrivial divisor of m .  [Argue as in Proposition 13 . ]  

(d) Prove that the number of nonidentity conjugacy classes of G contained in  Q i s  
(n - 1)1m and that each of these classes has size m .  [Argue as  in  Proposition 13 .] 

(e) Prove that no two distinct elements of C are conjugate in G. Deduce that the non
identity elements of C are representatives for m - 1 distinct conjugacy classes of G 
and that each of these classes has size n. Deduce then that every element of G - Q 
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is conjugate to some element of C and that G has m + (n - 1)/m conjugacy classes. 
(f) Prove that G' = Q and deduce that G has m distinct characters of degree 1 .  [To 

show Q :::; G' let C = ( x ) and argue that the map h H- [h , x] = x-1h-1xh is a 
homomorphism from Q to Q whose kernel is trivial, hence this map is sutjective.] 

(g) Show that if 1/f is any nonprincipal irreducible character of Q, then Indg ("l/f) is an 
irreducible character of G. Show that every irreducible character of G of degree > I 
is equal to Indg ("l/f) for some nonprincipal irreducible character 1/f of Q. Deduce 
that every irreducible character of G has degree either 1 or m and the number of 
irreducible characters of degree m is (n - 1)/m. [Check that the proof of Proposition 
13(3) establishes this more general result with the appropriate changes to the numbers 
involved.] 

9. Use the preceding exercise to explicitly write out the character table of 
( ( 1  2 3 4 5) , (2 3 5 4) ) .  which is the normalizer in Ss of a Sylow 5-subgroup (this group 
is a Frobenius group of order 20) . 

10. Let N be a normal subgroup of G, let 1/f be a character of N and let g E G. Define 1/fg by 
1fr8 (h) = 1/f (ghg-1 ) for all h E N. 
(a) Prove that 1/fg is a character of N (1/f and 1/fg are called G-conjugate characters of N). 

Prove that 1/fg is irreducible if and only if 1/f is irreducible. 
(b) Prove that the map 1/f H- 1/fg is a right group action of G on the set of characters of 

N and N is in the kernel of this action. 
(c) Prove that if 1/ft and 1/f2 are G-conjugate characters of N, then Ind� ("l/ft ) = lnd� (1/f2). 

Prove also that if 1/ft and 1/f2 are characters of N that are not G-conjugate then 
lnd� ("l/ft ) =f= Ind� (1/f2).  [Use the argument in the proof of Proposition 13(3).] 

11. Show that if G = A4 and N = V4 is its Sylow 2-subgroup then any two nonprincipal 
irreducible characters of N are G-conjugate (cf. the preceding exercise). 

12. Let G = D2n be presented by its usual generators and relations. Prove that if 1/f is any 
degree 1 character of H = ( r ) such that 1/f -=j:. 1/fs , then Ind� ( 1/f) is an irreducible character 
of D2n· Show that every irreducible character of D2n is the induced character of some 
degree I character of ( r ) . 

13. Prove both parts of Proposition 14. 

14. Prove the following result known as Frobenius Reciprocity: let H < G, let 1/f be any 
character of H and let x be any character of G. Then 

(1/f , x i H ) H = (lnd� ("l/f) , x) c .  

[Expand the right hand side using the formula for the induced character Ind� ( 1/f )  or follow 
the proof of Shapiro's Lemma in Section I7.2.] 

15. Assume G were a simple group of order 33 · 7 · 13 · 409 whose Sylow subgroups and their 
normalizers are described by properties ( 1 )  to (5) in this section. Prove that the permutation 
character of degree 8I9 obtained from the action of G on the left cosets of the subgroup 
N4 decomposes as xo + y + y', where xo is the principal character of G and y and y' 
are distinct irreducible characters of G of degree 409. [Use Exercise 9 in Section 18.3 to 
show that this permutation character rr has l l rr  1 1

2 = 3.] 
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APPEN DIX I 

Cartesian Prod u cts 
and Zo rn 's Le m ma 

Section 1 of this appendix contains the definition of the Cartesian product of an arbitrary 
collection of sets. In the text we shall primarily be interested in products of finitely 
many (or occasionally countably many) sets. We indicate how the general definition 
agrees with the familiar "ordered n-tuple" notion of a Cartesian product in these cases. 
Section 2 contains a discussion of Zorn's Lemma and related topics. 

1 .  CARTESIAN PRODUCTS 

A set I is called an indexing set or index set if the elements of I are used to index 
some collection of sets. In particular, if A and I are sets, we can form the collection 
{A; I i E I }  by specifying that A; = A for all i E I .  Thus any set can be an indexing 
set; we use this term to emphasize that the elements are used as indices. 

Definition. 
(1) Let I be an indexing set and let {A; I i E I }  be a collection of sets. A choice 

function is any function 

such that f (i )  E A; for all i E I .  
(2) Let I be an indexing set and for all i E I let A;  be a set. The Cartesian product 

of {A; I i E I }  is the set of all choice functions from I to U; e/ A; and is denoted 
by fle/ A; (where if either I or any of the sets A; are empty the Cartesian 
product is the empty set). The elements of this Cartesian product are written as 
nie/ a; , where this denotes the choice function f such that f(i )  = a; for each 
i E I .  

(3) For each j E I the set Aj is called the jth component of the Cartesian product 
ni E/ A; and a j is the jth coordinate of the element ni E/ a; . 

(4) For j E I the projection map of 0ie/ A; onto the jth coordinate, A_;,  is defined 
by nie/ a; I-+ aj . 

Each choice function f in the Cartesian product OieJ A; may be thought of as a 
way of "choosing" an element f(i) from each set A; . 

If I = { 1 .  2, . . .  , n} for some n E z+ and if f is a choice function from I to 
A1  U · · · U An, where each A; is nonempty, we can associate to f a  unique (ordered) 
n-tuple: 

f --+  ( /( 1 ) ,  /(2) , . . .  , f(n) ) . 
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Note that by definition of a choice function, f(i) E A; for all i ,  so the n-tuple above 
has an element of A; in the ith position for each i . 

Conversely, given an n-tuple (a1 , a1 , . . .  , an ) ,  where a; E A; for all i E I ,  there is 
a unique choice function, f, from I to U; EI A; associated to it, namely 

f(i) = a; ,  for all i E I. 

It is clear that this map from n-tuples to choice functions is the inverse to the map 
described in the preceding paragraph. Thus there is a bijection between ordered n
tuples and elements offiiEI A; . Henceforth when I = { 1 , 2, . . . , n }  we shall write 

n 

Il A; or A 1 x Az x · · · x An 
i=l 

for the Cartesian product and we shall describe the elements as ordered n-tuples. 
If I = tz+, we shall similarly write: fl:1 A; or A 1 x Az x · · · for the Cartesian 

product of the A; 's. We shall write the elements as ordered tuples: (a1 , az , . . .  ), i.e. , as 
infinite sequences whose ith terms are in A; . 

Note that when I = { 1 , 2, . . . , n }  or I = z+ we have used the natural ordering on 
I to arrange the elements of our Cartesian products into n-tuples. Any other ordering 
of I (or any ordering on a finite or countable index set) gives a different representation 
of the elements of the same Cartesian product. 

Examples 

(1) A x B = { (a ,  b) I a E A,  b E B} .  
(2) !Rn = lR x lR x · · · x lR (n  factors) i s  the usual set of  n-tuples with real number entries, 

Euclidean n-space. 
(3) Suppose I = z+ and A; is the same set A, for all i E I. The Cartesian product ni EZ+ A 

is the set of all (infinite) sequences a1 , az , a3 . . . of elements of A. In particular, if 
A = IR, then the Cartesian product niEZ+ lR is the set of all real sequences. 

(4) Suppose I is any indexing set and A; is the same set A, for all i E I. The Cartesian 
product DiE/ A is just the set of all functions from I to A, where the function f : 
I � A corresponds to the element DiE/ f(i) in the Cartesian product. This Cartesian 
product is often (particularly in topology books) denoted by A1 . Note that for each 
fixed j E I the projection map onto the jth coordinate sends the function f to f (j), 
i .e. ,  is evaluation at j .  

(5) Let R be a ring and let x b e  an indeterminate over R .  The definition of the ring R[x] of 
polynomials in x with coefficients from R may be given in terms of Cartesian products 
rather than in the more intuitive and familiar terms of "formal sums" (in Chapters 7 
and 9 we introduced them in the latter form since this is the way we envision and 
work with them). Let I be the indexing set z+ U {0} and let R[x] be the subset 
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of the Cartesian product D�o R consisting of elements (ao, a1 , az , . . .  ) such that 
only finitely many of the a; 's are nonzero. If (ao, a1 , az , . . .  , an , 0, 0, . . . ) is such a 
sequence we represent it by the more familiar "formal sum" L:7 =O a; xi . Addition and 
multiplication of these sequences is defined so that the usual rules for addition and 
multiplication of polynomials hold. 
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Proposition 1. Let I be a nonempty countable set and for each i E I let A; be a set. 
The cardinality of the Cartesian product is the product of the cardinalities of the sets 

l O Ad =  D IAd , 
iel iel 

(where if some A; is an infinite set or if I is infinite and an infinite number of A; 's have 
cardinality � 2, both sides of this equality are infinity). In particular, 

IA 1  X A2 X · • · X An i = lAd X IA2 I  X · · · X IAn l ·  

Proof" In order to count the number of choice functions note that each i E I may be 
mapped to any of the 1 A; I elements of A; and for i =f. j the values of choice functions at 
i and j may be chosen completely independently. Thus the number of choice functions 
is the product of the cardinalities of the A; 's, as claimed. 

For Cartesian products of finitely many sets, A1 x A2 x · · · x An , one can see this 
easily from the n-tuple representation: the elements of A 1  x A2 x · · · x An are n-tuples 
(a1 , a2 , • • •  , an) and each a; may be chosen as any of the l A; I elements of A; . Since 
these choices are made independently for i =f. j, there are IA 1 I · I A2 I  · · · I An I elements 
in the Cartesian product. 

E X E R C I S E  

1. Let I and J be any two indexing sets and let A be an arbitrary set. For any function 
({! : J --+ I define 

(/!* : n A -+ n A 
iel jeJ 

by ({!* (f) = f o ({! for all choice functions f E n  A. 
iel  

(a) Let I =  { 1 ,  2}, let J = { 1 ,  2, 3 }  and let ({! : J --+  I be defined by f{J(l)  = 2,  ({!(2) = 2 
and ({!(3) = 1 .  Describe explicitly how a 3-tuple in A x A x A maps to an ordered 
pair in A x A under this ({!* . 

(b) Let I = J = { 1 ,  2, . . .  , n }  and assume ({! is a permutation of I. Describe in terms of 
n-tuples in A x A x · · · x A the function ({!*. 

2. PARTIALLY ORDERED SETS AND ZORN'S LEMMA 

We shall have occasion to use Zorn's Lemma as a form of "infinite induction" in a 
few places in the text where it is desirable to know the existence of some set which is 
maximal with respect to certain specified properties. For example, Zorn's Lemma is 
used to show that every vector space has a basis. In this situation a basis of a vector space 
V is a subset of V which is maximal as a set consisting of linearly independent vectors 
(the maximality ensures that these vectors span V). For finite dimensional spaces this 
can be proved by induction; however, for spaces of arbitrary dimension Zorn's Lemma 
is needed to establish this. By having results which hold in full generality the theory 
often becomes a little neater in places, although the main results of the text do not 
require its use. 
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A specific instance in the text where a maximal object which helps to simplify 
matters is constructed by Zorn's Lemma is the algebraic closure of a field. An algebraic 
closure of a field F is an extension of F which is maximal among any collection of 
algebraic extensions. Such a field contains (up to isomorphism) all elements which 
are algebraic over F, hence all manipulations involving such algebraic elements can 
be effected in this one larger field. In any particular situation the use of an algebraic 
closure can be avoided by adjoining the algebraic elements involved to the base field 
F, however this becomes tedious (and often obscures matters) in complicated proofs. 
For the specific fields appearing as examples in this text the use of Zorn's Lemma 
to construct an algebraic closure can be avoided (for example, the construction of an 
algebraic closure of any subfield of the complex numbers or of any finite field does not 
require it). 

The first example of the use of Zorn's Lemma appears in the proof of Proposition 
1 1  in Section 7 .4. 

In order to state Zorn's Lemma we need some terminology. 

Definition. A partial order on a nonempty set A is a relation ::; on A satisfying 
(1) x ::; x for all x E A (reflexive), 
(2) if x ::; y and y ::; x then x = y for all x ,  y E A ( antisymmetric ), 
(3) if x ::; y and y ::; z then x ::; z for all x,  y. z E A (transitive). 

We shall usually say that A is a partially ordered set under the ordering :S or that 
A is partially ordered by ::;. 

Definition. Let the nonempty set A be partially ordered by ::;. 
(1) A subset B of A is called a chain if for all x,  y E B, either x ::; y or y ::; x. 
(2) An upper bound for a subset B of A is an element u E A such that b ::; u ,  for 

all b E B. 
(3) A maximal element of A is  an element m E A such that if  m ::; x for any x E A, 

then m = x.  

In the literature a chain is  also called a tower or called a totally ordered or linearly 
ordered or simply ordered subset. 

Some examples below highlight the distinction between upper bounds and maximal 
elements. Also note that if m is a maximal element of A, it is not necessarily the case 
that x ::; m for all x E A (i.e., m is not necessarily a maximum element). 

Examples 

(1) Let A be the power set (i.e., set of all subsets) of some set X and � be set containment: 
�- Notice that this is only a partial ordering since some subsets of X may not be 
comparable, e.g. singletons: if x #- y then {x } £ {y} and {y} £ {x }. In this situation 
an example of a chain is a collection of subsets of X such as 
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X1 � X2 � X3 � · · · .  
Any subset B of A has an upper bound, b,  namely, 

b =  u x. 
xEB 
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This partially ordered set A has a (unique) maximal element, X. 
In many instances the set A consists of some (but not necessarily all) subsets of 

a set X (i.e., A is a subset of the power set of X) and with the ordering on A again 
being inclusion. The existence of upper bounds and maximal elements depends on 
the nature of A. 

(2) Let A be the collection of all proper subsets of z+ ordered under �.  In this situation, 
chains need not have maximal elements, e.g. the chain 

{ 1 }  � { 1 ,  2} � { 1 ,  2, 3} � . . . 

does not have an upper bound. The set A does have maximal elements: for example 
z+ - {n} is a maximal element of A for any n E z+ . 

(3) Let A = lR under the usual :OS relation. In this example every subset of A is a chain 
(including A itself) . The notion of a subset of A having an upper bound is the same as 
the usual notion of a subset of lR being bounded above by some real number (so some 
sets, such as intervals of finite length, have upper bounds and others, such as the set 
of positive reals, do not). The set A does not have a maximal element. 

Zorn's Lemma If A is a nonempty partially ordered set in which every chain has 
an upper bound then A has a maximal element. 

It is a nontrivial result that Zorn 's Lemma is independent of the usual (Zermel£r 
Fraenkel) axioms of set theory1 in the sense that if the axioms of set theory are con
sistent,2 then so are these axioms together with Zorn's Lemma; and if the axioms of 
set theory are consistent, then so are these axioms together with the negation of Zorn's 
Lemma. The use of the term "lemma" in Zorn's Lemma is historical. 

For the sake of completeness (and to relate Zorn's Lemma to formulations found 
in other courses) we include two other equivalent formulations of Zorn's Lemma. 

The Axiom of Choice The Cartesian product of any nonempty collection of non empty 
sets is nonempty. In other words, if I is any nonempty (indexing) set and A; is a 
non empty set for all i E I, then there exists a choice function from I to U; EI A; . 

Definition. Let A be a nonempty set. A well ordering on A is a total ordering on A 
such that every nonempty subset of A has a minimum (or smallest) element, i.e., for 
each nonempty B � A there is some s E B such that s :::: b, for all b E B. 

The Well Ordering Principle Every nonempty set A has a well ordering. 

Theorem 2. Assuming the usual (Zermelo-Fraenkel) axioms of set theory, the following 
are equivalent: 

(1) Zorn's Lemma 
(2) the Axiom of Choice 
(3) the Well Ordering Principle. 

Proof This follows from elementary set theory. We refer the reader to Real and 
Abstract Analysis by Hewitt and Stromberg, Springer-Verlag, 1965, Section 3 for these 
equivalences and some others. 

1 See P.J. Cohen's papers in: Proc. Nat. Acad. Sci., 50(1963), and 51(1964). 
2Thls is not known to be the case! 
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E X E R C I S E S  

1. Let A be the collection of all finite subsets of JR. ordered by inclusion. Discuss the exis
tence (or nonexistence) of upper bounds, minimal and maximal elements (where minimal 
elements are defined analogously to maximal elements). Explain why this is not a well 
ordering. 

2. Let A be the collection of all infinite subsets of JR. ordered by inclusion. Discuss the 
existence (or nonexistence) of upper bounds, minimal and maximal elements. Explain 
why this is not a well ordering. 

3. Show that the following partial orderings on the given sets are not well orderings: 
(a) JR. under the usual relation ::::= . 
(b) JR.+ under the usual relation ::::= . 
(c) JR.+ U {0} under the usual relation ::::= . 
(d) Z under the usual relation ::::= . 

4. Show that z+ is well ordered under the usual relation ::::= . 
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APPEN D IX I I  

Catego ry Th eo ry  

Category theory provides the language and the mathematical foundations for discussing 
properties of large classes of mathematical objects such as the class of "all sets" or "all 
groups" while circumventing problems such as Russell's Paradox. In this framework 
one may explore the commonality across classes of concepts and methods used in 
the study of each class: homomorphisms, isomorphisms, etc., and one may introduce 
tools for studying relations between classes: functors, equivalence of categories, etc. 
One may then formulate precise notions of a "natural" transformation and "natural" 
isomorphism, both within a given class or between two classes. (In the text we described 
"natural'' as being "coordinate free.") A prototypical example of natural isomorphisms 
within a class is the isomorphism of an arbitrary finite dimensional vector space with its 
double dual in Section 1 1 .3 . In fact one of the primary motivations for the introduction 
of categories and functors by S .  Eilenberg and S. MacLane in 1945 was to give a precise 
meaning to the notions of"natural" in cases such as this. Category theory has also played 
a foundational role for formalizing new concepts such as schemes ( cf. Section 15.5) that 
are fundamental to major areas of contemporary research (e.g., algebraic geometry). 
Pioneering work of this nature was done by A. Grothendieck, K. Morita and others. 

Our treatment of category theory should be viewed more as an introduction to some 
of the basic language. Since we have not discussed the Zermelo-Fraenkel axioms of set 
theory or the Godel-Bernays axioms of classes we make no mention of the foundations 
of category theory. To remain consistent with the set theory axioms, however, we 
implicitly assume that there is a universe set U which contains all the sets, groups, 
rings, etc. that one would encounter in "ordinary" mathematics (so that the category 
of "all sets" implicitly means "all sets in U"). The reader is referred to books on set 
theory, logic, or category theory such as Categories for the Working Mathematician by 
S .  MacLane, Springer-Verlag, 197 1  for further study. 

We have organized this appendix so that wherever possible the examples of each 
new concept use terminology and structures in the order that these appear in the body 
of the text. For instance, the first example of a functor involves sets and groups, the 
second example uses rings, etc. In this way the appendix may be read early on in one's 
study, and a greater appreciation may be gained through rereading the examples as one 
becomes conversant with a wider variety of mathematical structures. 

1 .  CATEGORIES AND FU NCTORS 

We begin with the basic concept of this appendix. 

Definition. A category C consists of a class of objects and sets of morphisms between 
those objects. For every ordered pair A ,  B of objects there is a set Homc(A, B) of 
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morphisms from A to B, and for every ordered triple A ,  B, C of objects there is a law 
of composition of morphisms, i.e., a map 

Homc(A , B) x Homc(B, C) � Homc(A, C) 

where (f, g) � gf, and gf is called the composition of g with f. The objects and 
morphism satisfy the following axioms: for objects A, B, C and D 

(i) if A =f. B or C =f. D, then Homc(A , B) and Home( C. D) are disjoint sets, 
(ii) composition of morphisms is associative, i.e., h(gf) = (hg)f for every f in 

Homc(A , B), g in Homc(B, C) and h in Home( C. D), 
(iii) each object has an identity morphism, i.e., for every object A there is a mor

phism l A  E Homc(A , A) such that flA  = f for every f E Homc(A , B) and 
l Ag =  g for every g E Homc(B, A) .  

Morphisms are also called arrows. I t  i s  an exercise to see that the identity morphism 
for each object is unique (by the same argument that the identity of a group is unique). 
We shall write Hom(A , B) for Homc(A , B) when the category is clear from the context. 

The terminology we use throughout the text is common to all categories: a mor-

phism from A to B will be denoted by f : A --+ B or A .!.,. B. The object A is the 
domain of f and B is the codomain of f. A morphism from A to A is an endomorphism 
of A. A morphism f : A -+ B is an isomorphism if there is a morphism g : B --+ A 
such that gf = l A  and fg = l n .  

There is a natural notion of a subcategory category C of D, i.e., when every ob
ject of C is also an object in D, and for objects A ,  B in C we have the containment 
Homc(A ,  B) s; Homn (A , B). 

Examples 

In each of the following examples we leave the details of the verification of the axioms for 
a category as exercises. 
(1) Set is the category of all sets. For any two sets A and B, Hom(A , B) is the set of 

all functions from A to B.  Composition of morphisms is the familiar composition of 
functions: gf = g o  f. The identity in Hom(A , A) is the map 1 A (a) = a, for all 
a E A. This category contains the category of all finite sets as a subcategory. 

(2) Grp is the category of all groups, where morphisms are group homomorphisms. Note 
that the composition of group homomorphisms is again a group homomorphism. A 
subcategory of Grp is Ab, the category of all abelian groups. Similarly, Ring is the 
category of all nonzero rings with 1 ,  where morphisms are ring homomorphisms that 
send 1 to 1 .  The category CRing of all commutative rings with I is a subcategory of 
Ring. 

(3) For a fixed ring R, the category R-mod consists of all left R-modules with morphisms 
being R-module homomorphisms. 

( 4) Top is the category whose objects are topological spaces and morphisms are continuous 
maps between topological spaces (cf. Section 1 5.2). Note that the identity (set) map 
from a space to itself is continuous in every topology, so Hom(A , A) always has an 
identity. 

(5) Let 0 be the empty category, with no objects and no morphisms. Let I denote 
the category with one object, A, and one morphism: Hom(A, A) = { lA }. Let 2 
be the category with two objects, A1 and A2, and only one nonidentity morphism: 

91 2  Appendix I I  Category Theory 



Hom(A I ,  Az) = {f}  and Hom(Az , A 1 ) = 0. Note that the objects AI and Az and the 
morphism f are "primitives" in the sense that A I  and Az arc not defined to be sets 
and f is simply an arrow (literally) from AI  to Az ; it is not defined as a set map on the 
elements of some set. One can continue this way and define N to be the category with 
N objects AI ,  Az , . . .  , AN with the only nonidentity morphisms being a unique arrow 
from A; to A j for every j > i (so that composition of arrows is uniquely determined). 

(6) lfG is a group, formthe category G as follows. The only object is G and Hom(G, G) = 
G; the composition of two functions f and g is the product gf in the group G. Note 
that Hom( G, G) has an identity morphism: the identity of the group G.  

Definition. Let C and D be categories. 
(1) We say :F is a covariant functor from C to D if 

(a) for every object A in C, :FA is an object in D, and 
(b) for every f E Homc(A , B) we have F(/) E Homn(F A ,  :FB), 

such that the following axioms are satisfied: 
(i) if gf is a composition of morphisms in C, then :F(gf) = :F(g):F(f) 

in D, and 
(ii) F(lA)  = l :FA .  

(2) We say :F is a contravariant functor from C to D if the conditions in (1 ) hold 
but property (b) and axiom (i) are replaced by: 

(b') for every f E Holllc(A , B), :F(f) E Homn(F B, :FA), 
(i') if gf is a composition of morphisrns in C, then :F(gf) = :F(f):F(g) 

in D 
(i .e. , contravariant functors reverse the arrows). 

Examples 

In each of these examples the verification of the axioms for a functor are left as exercises. 
Additional examples of functors appear in the exercises at the end of this section. 
(1) The identity functor Ic maps any category C to itself by sending objects and mor

phisms to themselves. More generally, if C is a subcategory ofD, the inclusion functor 
maps C into D by sending objects and morphisms to themselves. 

(2) Let :F be the functor from Grp to Set that maps any group G to the same set G and 
any group homomorphism cp to the same set map cp. This functor is called the forgeiful 
functor since it "removes" or "forgets" the structure of the groups and the homomor
phisms between them. Likewise there are forgetful functors from the categories Ab, 
R-mod, Top, etc., to Set. 

(3) The abelianizing functor maps Grp to Ab by sending each group G to the abelian 
group Gab = GfG', where G' is the commutator subgroup of G (cf. Section 5.4). 
Each group homomorphism cp : G � H is mapped to the induced homomorphism on 
quotient groups: 

q; :  Gab � Hab by qi(xG') = cp(x)H'.  

The definition of the commutator subgroup ensures that q; is well defined and the 
axioms for a functor are satisfied. 

(4) Let R be a ring and let D be a left R-module. For each left R-module N the 
set HomR (D, N) is an abelian group, and is an R-module if R is commutative 
(cf. Proposition 2 in Section 10.2). If cp : NI � Nz is an R-module homomor
phism, then for every f E HomR (D, NI ) we have cp o f E HomR(D, Nz). Thus 
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q/ : HomR (D, N1) --+  HomR (D , N2) by q/(f) = ({! o f. This shows the map 

1-lom(D, _) : N ---+ HomR (D, N) 

1-lom(D, _) : ({! ---+ ({11 

is a covariant functor from R-Mod to Grp. If R is commutative, it maps R-Mod to 
itself. 

(5) In the notation of the preceding example, we observe that if ({! : N1 --+ N2, then for 
every g E HomR(N2 , D) we have g o ({l E HomR (Nl , D). Thus ({!' : HomR (N2 .  D) --+ 
HomR (Nt , D) by ({11(g) = g o ({!. In this case the map 

1-lom(_, D) : N ---+ HomR(N, D) 

1-lom(_, D) : ({! ---+ ({11 

defines a contravariant functor. 
(6) When D is a right R-module the map D ®R _ : N --+ D ®R N defines a covariant 

functor from R-Mod to Ab (or to R-Mod when R is commutative). Here the mor
phism ({! : N1 --+ N2 maps to the morphism 1 ® ({!.  

Likewise when D is a left R-module _ ®R D : N --+ N ®R D defines a co
variant functor from the category of right R -modules to Ab (or to R-Mod when R is 
commutative), where the morphism ({! maps to the morphism ({! ® 1 .  

(7) Let K be a field and let K -fdVec be the category of all finite dimensional vector spaces 
over K, where morphisms in this category are K-linear transformations. We define 
the double dual functor V2 from K -fdVec to itself. Recall from Section 1 1 .3 that 
the dual space, V*, of V is defined as V* = HomK (V, K);  the double dual of V is 
V** = HomK (V* , K).  Then V2 is defined on objects by mapping a vector space V 
to its double dual V** .  If ({! : V --+ W is a linear transformation of finite dimensional 
spaces, then 

by 

where Ev denotes "evaluation at v" for each v E V. By Theorem 19 in Section 1 1 .3, 
Ev E V** , and each element of V** is of the form Ev for a unique v E V. Since 
({J(V) E W we have E'P(v) E W**, so V2(({1) is well defined. 

The functor :F from C to D is called faithful (or is called full) if for every pair 
of objects A and B in C the map :F :  Hom( A ,  B) --* Hom(:F A,  :FB) is injective (or 
surjective, respectively). Thus, for example, the forgetful functor is faithful but not full. 

E X E R C I S E S  

1. Let N be a group and let Nor-N be the collection of all groups that contain N as a  normal 
subgroup. A morphism between objects A and B is any group homomorphism that maps 
N into N. 
(a) Prove that Nor-N is a category. 
(b) Show how the projection homomorphism G f-+ GIN may be used to define a functor 

from Nor-N to Grp. 

2. Let H be a group. Define a map 1-l x from Grp to itself on objects and morphisms as 
follows: 
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1-l x  : G --+  H x G, and 

if ({! :  G1 --+ G2 then 1-l x (({l) : H x G1 --+ H x G2 by (h , g) f-+ (h , ({!(g)) . 
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Prove that 1-£ x is a functor. 
3. Show that the map Ring to Grp by mapping a ring to its group of units (i.e., R �---* R x )  

defines a functor. Show by explicit examples that thi s  functor i s  neither faithful nor fulL 

4. Show that for each n ::::: 1 the map Q Cn : R � G Ln (R) defines a functor from CRing to 
Grp. [Define QCn on morphisms by applying each ring homomorphism to the entries of 
a matrix.] 

5. Supply the details that show the double dual map described in Example 7 satisfies the 
axioms of a functor. 

2. NATURAL TRANSFORMATIONS AND UNIVERSALS 

As mentioned in the introduction to this appendix, one of the motivations for the in
ception of category theory was to give a precise definition of the notion of "natural" 
isomorphism. We now do so, and see how some natural maps mentioned in the text 
are instances of the categorical concept. We likewise give the categorical definition of 
"universal arrows" and view some occurrences of universal properties in the text in this 
light. 

Definition. Let C and D be categories and let F, g be covariant functors from C to 
D. A natural transfonnation or morphism of functors from F to g is a map rJ that 
assigns to each object A in C a morphism 'fJA in HomD(FA , QA) with the following 
property: for every pair of objects A and B in C and every f E Homc(A , B) we have 
Q(J)rJA = rJBF(j), i.e., the following diagram commutes: 

FA 

:F(f) 1 
:FB 

QA 

lQ(f) 
QB 

If each rJ A is an isomorphism, rJ is called a natural isomorphism of functors. 

Consider the special case where C = D and C is a subcategory of Set, and where 
F is the identity functor. There is a natural transformation rJ from the identity functor 
to g if whenever g maps the object A to the object QA there is a morphism 'fJA from 
A to QA, and whenever there is a morphism f from A to B the morphism Q(J) is 
compatible with f as a map from g A to Q B. In fact g (f) is uniquely determined by 
f as a map from the subset rJA (A) in QA to the subset rJ8 (B) of QB. If rJ is a natural 
isomorphism, then the value of g on every morphism is completely determined by rJ, 
namely g (f) = rJ 8 f rJ A 1 •  In this case the functor g is entirely specified by rJ. We shall 
see that some of the examples of functors in the preceding section arise this way. 

Examples 

(1) For any categories C and D and any functor F from C to D the identity is a natural 
isomorphism from F to itself: TJ A = 1 :FA for every object A in C. 
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(2) Let R be a ring and let :F be any functor from R-Mod to itself. The zero map is a 
natural transformation from :F to itself: I'} A = OA for every R-module A, where OA is 
the zero map from A to itself. This is not a natural isomorphism. 

(3) Let :F be the identity functor from Grp to itself, and let Q be the abelianizing functor 
(Example 3) considered here as a map from Grp to itself. For each group G let 
1'JG : G -+ GIG' be the usual projection map onto the quotient group. Then 1'J is a 
natural transformation (but not an isomorphism) with respect to these two functors. 
(We call the maps 1'JG the natural projection maps.) 

( 4) Let g = V2 be the double dual functor from the category of finite dimensional vector 
spaces over a field K to itself (Example 7). Then there is a natural isomorphism 1'J 
from the identity functor to Q given by 

1'Jv : v -+  v** by I'}V (V) = Ev 

where Ev is "evaluation at v" for every v E V.  
(5) Let Q£n be the functor from CRing to Grp defined as follows. Each object (com

mutative ring) R is mapped by Q £n to the group G Ln (R) of n x n invertible matrices 
with entries from R.  For each ring homomorphism f : R -+ S let Q£n (f) be the 
map of matrices that applies f to each matrix entry. Since f sends 1 to 1 it follows 
that Q £n (f) sends invertible matrices to invertible matrices ( cf. Exercise 4 in Section 
1 ). Let Q be the functor from CRing to Grp that maps each ring R to its group of 
units R x ,  and each ring homomorphism f to its restriction to the groups of units (also 
denoted by f). The detenninant is a natural transformation from Q £n to Q because 
the determinant is defined by the same polynomial for all rings so that the following 
diagram commutes: 

GLn (S) � sx 

Let C, D and E be categories, let :F be a functor from C to D, and let g be a 
functor from D to E. There is an obvious notion of the composition of functors Q:F 
from C to E. When E = C the composition Q:F maps C to itself and :FQ maps D 
to itself. We say C and D are isomorphic if for some :F and g we have Q:F is the 
identity functor Ic, and :FQ = Iv. By the discussion in Section 10. 1 the categories Z
Mod and Ab are isomorphic. It also follows from observations in Section 10. 1 that the 
categories of elementary abelian p-groups and vector spaces over lF P are isomorphic. In 
practice we tend to identify such isomorphic categories. The following generalization 
of isomorphism between categories gives a broader and more useful notion of when 
two categories are "similar." 

Definition. Categories C and D are said to be equivalent if there are functors :F from 
C to D and g from D to C such that the functor Q:F is naturally isomorphic to Ic (the 
identity functor of C) and :FQ is naturally isomorphic to the identity functor Iv.  

It i s  an exercise that equivalence of categories i s  reflexive, symmetric and transi
tive. The example of Affine k-algebras in Section 15 .5 is an equivalence of categories 
(where one needs to modify the direction of the arrows in the definition of a natural 
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transformation to accommodate the contravariant functors in this example). Another 
example (which requires some proving) is that for R a commutative ring with 1 the 
categories of left modules R-Mod and Mn xn (R)-Mod are equivalent. 

Finally, we introduce the concepts of universal arrows and universal objects. 

Definition. 
(1) Let C and D be categories, let F be a functor from C to D, and let X be an 

object in D. A universal arrow from X to F is a pair (U (X) ,  t), where U (X) is 
an object in C and t : X ---+ FU (X) is a morphism in D satisfying the following 
property: for any object A in C if cp is any morphism from X to FA in D, then 
there exists a unique morphism tP : U(X) ---+ A in C such that F(tP)t = cp, 
i.e., the following diagram commutes: 

X FU(X) 

� ! F(tP) 

FA 
(2) Let C be a category and let F be a functor from C to the category Set of all 

sets. A universal element of the functor F is a pair (U, t ) , where U is an object 
in C and t is an element of the set FU satisfying the following property: for 
any object A in C and any element g in the set FA there is a unique morphism 
cp :  U ---+ A in C such that F(cp)(t) = g. 

Examples 

(1) (Universal Arrow: Free Objects) Let R be a ring with 1 .  We translate into the language 
of universal arrows the statement that if U (X) is the free R-module on a set X then any 
set map from X to an R-module A extends uniquely by R-linearity to an R-module 
homomorphism from U(X) to A (cf. Theorem 6, Section 10.3): Let F be the forgetful 
functor from R-Mod to Set, so that F maps an R-module A to the set A, i.e., A = FA 
as sets. Let X be any set (i.e., an object in Set), let U(X) be the free R-module with 
basis X, and let t : X --""* FU (X) be the set map which sends each b E X to the basis 
element b in U(X). Then the universal property of free R-modules is precisely the 
result that (U(X), t) is a universal arrow from X to the forgetful functor F. 

Similarly, free groups, vector spaces (which are free modules over a field), poly
nomial algebras (which are free R-algebras) and the like are all instances of universal 
arrows. 

(2) ( UniversalArrow: Fields of Fractions) Let Fbe the forgetful functor from the category 
of fields to the category of integral domains, where the morphisms in both categories 
are injective ring homomorphisms. For any integral domain X let U(X) be its field 
of fractions and let t be the inclusion of X into U(X) . Then (U(X) , t) is a universal 
arrow from X to the functor F (cf. Theorem 15(2) in Section 7.5). 

(3) (Universal Object: Tensor Products) This example refers to the construction of the 
tensor product of two modules in Section 1 0.4. Let C = R-Mod be the category of 
R-modules over the commutative ring R, and let M and N be R-modules. For each 
R-module A let Bilin(M, N; A) denote the set of all R-bilinear functions from M x N 
to A. Define a functor from R-Mod to Set on objects by 

F :  A ---+ Bilin(M, N;  A) , 
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and if rp : A --+- B is an R-module homomorphism then 

:F(rp) (h) = rp o h for every h E Bilin(M, N; A). 

Let U = M ® R N and let t be the bilinear function 

t :  M x N --+- M ®R M by t (m , n) = m ® n, 

so t is an element of the set Bilin(M, N; M ®R N) = FU. Then (M ®R N, t} 
is a universal element of F because for any R-module A and for any bilinear map 
g :  M x N --+- A (i.e., any element of:FA) there is a unique R-module homomorphism 
rp :  M ®R N --+- A such that g = rp o t = :F(rp} (t) . 

E X E R C I S E S  

1. Let Nor-N be the category described in Exercise 1 of Section l ,  and let F be the inclusion 
functor from Nor-N into Grp. Describe a functor g from Nor-N into Grp such that the 
transformation 1J defined by 1/G : G --+- GIN is a natural transformation from F to g. 

2. Let H and K be groups and let 'H.x and /C x  be functors from Grp to itself described in 
Exercise 2 of Section 1 .  Let rp : H --+- K be a group homomorphism. 
(a) Show that the maps TJA : H x A --+- K x A by TJA (h. a) = (rp(h} , a) determine a 

natural transformation 1J from 'H. x  to /C x .  
(b) Show that the transformation 1J is a natural isomorphism if and only i f  rp is a group 

isomorphism. 

3. Express the universal property of the commutator quotient group - described in Propo
sition 7(5) of Section 5.4 - as a universal arrow for some functor F. 
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I n d ex 

A 
!-parameter subgroup, 505 
2-stage Euclidean Domain, 294 
A.C.C. - see ascending chain condition 
abelian, 17 
abelian categories, 79 1 
abelian extensions of Q, 599ff. 
abelian group, 17, 84, 158ff. ,  196, 339, 468 

representation of, 861 
Abel's Theorem (insolvability of quintic), 625 
absolutely flat, 797 
action, faithful, 43, 1 12ff. 

group ring, 842 
group, 4 1ff. ,  1 1 2ff., 45 1 
left VS. right, 1 28, 156 

Adjoint Associativity, 401 ,  804, 8 1 1 
affine algebraic sets, 658ff. 
affine curve, 726 
affine k-algebra, 734 
affine n-space, 338, 658 
affine scheme, 742 
affords a representation, 1 14, 843 
algebra, 342ff. ,  657 
algebraic, element, 520ff., 527 

extension, 520ff. , 527 
integer, 695ff., 887 
number, 527 

algebraic closure, 543 
of a finite field, 588 

algebraic conjugate - see conjugate 
algebraic geometry, 330, 655ff. , 658, 742, 745, 

760, 762, 91 1 
algebraically closed, 543 
algebraically conjugate characters, 878 
algebraically independent, 645, 699 
algebraically indistinguishable, 5 1 8  
algorithm, for Jordan Canonical Form, 496 

for rational canonical form, 481 
alternating form, 437 
alternating group, 107ff. ,  6 1 1 

A4, 1 10, 1 1 1  
As simplicity of, 127, 145 
characters of, 883 
simplicity of, 1 10, 149ff. 

alternating, function, 436, 446 
tensor, 45 1 

angle trisecting, 535, 535 
annihilated by, 338 
annihilator, 249 

of a submodule, 344, 460 
of a subspace, 434, 435 

arrow, 9 1 2  
Artin-Schreier extensions, 589, 636 
Artin-Schreier map, 623 
Artinian, 657, 750ff. ,  855 
ascending chain condition (A.C.C.), 458, 656ff. 
assassin, 670 
associate, 284ff. 
associated primes, of a module, 670, 730, 748 

of a prime ideal, 685 
of an ideal, 682 

associative, 1 6  
asymptotic behavior, 508 
augmentation, ideal, 245, 253, 255, 258, 846 

map, 245, 255, 799, 8 1 1  
augmented matrix. 424 
Aut(IR/Q), 567 
auromorphism, 41 ,  133ff. 

group. 4 1 ,  133ff. 
of Dg, 1 36, 220 
of Qg, 1 36, 220ff. 
of s6 . 221 
of Sn , 1 36ff. 
of a cyclic group, 6 1 ,  1 35, 136, 3 1 4  
o f  a field extension, 558ff. 
of a field, 558ff. 
of an elementary abelian group, 1 36 

autonomous system, 507 

B 
Bn (G; A) - see coboundaries 
Baer's Criterion, 396 
balanced map, 365ff. 
bar resolution, 799 
base field, 5 1 1  
basic open set, 738 
basis, 354 
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free, 218, 354 
of a field extension, 5 1 3  
of a vector space, 408 

Bass' Characterization of Noetherian Rings, 793 
belongs to an ideal, 682 
Berlekamp's Factorization Algorithm, 3 1 1 ,  589.ff. 
Betti number, 1 59, 464 
Bezout Domain, 274. 283, 294. 302, 307, 775 
bijection, 2 
bilinear, 368.ff. , 372, 436 
bimodule, 366, 404 
binary, operation, 16 

relation, 3 
Binomial Theorem, 60, 249, 548 
biquadratic, extension, 530, 582, 589 

polynomial, 617 
block, 1 17 

diagonal, 423, 475 
upper triangular, 423 

Boolean ring, 23 1 , 232, 249, 250, 258, 267 
Brauer group, 836 
Buchberger's Algorithm, 324.ff. 
Buchberger's Criterion, 324.ff., 332 
building, 212 
Building-Up Lemma. 41 1 
Burnside's Basis Theorem, 199 
Burnside's Lemma, 877 
Burnside's N /C-Theorem, 2 1 3  
Burnside's Jl'qb Theorem, 196, 886.ff. 

c 
C" (G; A) - see cochains 
cancellation laws, 20 
canonical forms, 457, 472 
canonical model, 734 
Cardano's Formulas, 630.ff. , 638.ff. 
cardinality, l 
Cartesian product, l ,  905ff. 
Castelnuovo's Theorem. 646 
Casus irreducibilis, 633, 637 
category, 391 , 91 1 ff. 
Cauchy's Theorem, 93, 96, 102, 146 
Cayley-Hamilton Theorem, 478 
Cayley's Theorem, l l 8.ff. 
center, of a group, 50, 84, 89, 124, 1 34, 198 

of a group ring, 239 
of a matrix ring, 239, 834, 856 
of a p-group, 1 25, 1 88 
of a ring, 23 1 ,  23 1 ,  344, 832.ff. , 856 

central idempotent, 357, 856 
central product, 1 57, 169 
central simple algebra, 832.ff. 
centralize, 94 
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centralizer, 49.ff. , 123.ff., l33.ff. 
of a cycle, 173 
of a representation, 853 

chain complex, 777 
homotopy, 782 

change of basis, 40, 419 
changing the base - see extension of scalars 
character, of a group. 568, 866 

of a representation, 866 
character table, 880.ff. 

of A4, 883 
of Dg, 881 
of Q8, 882 
of S3, 881 
of s4, 883 
of s5, 884 
of 7Lj27L, 880 
of 7Lj37L, 881 

characteristic, of a field, 510  
of a ring, 250 

characteristic function, 249 
characteristic p fields, 510  
characteristic polynomial, 473 
characteristic subgroup, 135.ff. , 174 
Chinese Remainder Theorem, 246. 265ff., 3 1 3, 357, 

768 
choice function, 905 
class equation, l 22.ff. , 5 56 
class field theory, 600 
class function, 866, 870 
class group, 761 ,  774 
class number, 761 
Classical Greek Problems, 53 l.ff. 
classification theorems, 38, l42.ff. , l 8 l.ff. 
closed, topologically, 676 

under an operation, 16, 242, 528 
closed points, 733 
coboundaries, 800 
cochain. 777, 799, 808 
cochain complex, 777 
cochain homotopy, 792 
cocycle, 800 
codomain, l 
coefficient matrix, 424 
cofactor, 439 

Expansion Formula, 439 
Formula for the Inverse of a Matrix, 440 

coherent module sheaf, 748 
cohomologically trivial, 802, 804, 8 1 2  
cohomology group, 777, 798.ff. 
coinduced module, 803, 8 1 1 ,  8 12  
cokernel, 792 
coloring graphs, 335 
column rank, 4 1 8, 427, 434 
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comaximal ideals, 265 
commutative, 16, 223 

diagram, 100 
commutator, 89, 169 
commutator series - see derived series 
commutator subgroup, 89, 169, l95.ff. 
commute, diagram, 100 
compact, 688 

support, 225 
companion matrix, 475 
compatible homomorphisms, 805 
complement, 1 80, 453, 454, 820, 829, 890 
complete, 759.ff. 
complete preimage, 83 
completely reducible, 847 
completion, 759.ff. 
complex conjugation, 345, 567, 603, 61 8, 654, 872 
complex numbers, 1, 5 1 2, 5 1 5, 654 
component of a direct product, 155, 338 
composite extensions, 529, 59l.ff. 

of fields, 528 
composition factors. 103 
composition series, 103.ff. 
computing k-algebra homomorphisms, 664.ff. 
computing Galois groups, 640.ff. 
congruence class, 8.ff. 
congruent, 8 
conjugacy class, 123.ff. , 489, 860 
conjugate, algebraic, 573 

field, 573 
of a field element, 573 
of a group element, 82, l23.ff. 
of a set, 1 23.ff. 
of a subgroup, 134, 139.ff. 

conjugation, 45, 52, 1 22.ff. , 133 
in An , 127, 1 3 1  
i n  Sn , 125.ff. 

connected, 687 
connecting homomorphisms, 778, 79 1 
constituent of a module, 847 

constructible, 532.ff. 
constructibility of a regular n-gon, 534ff., 60l.ff. 
construction of cube roots, 535 
construction of the regular 17 -gon, 602.ff. 
continuous cohomology groups, 809 
continuous group action, 808.ff. 
contracting homomorphisms, 809 
contraction of ideals, 693, 708.ff. 

contravariant, 659 
converge. 503 
coordinate ring, 661 
coprime - see relatively prime 
corestriction homomorphism, 806, 807 
corresponding group actions, 129 
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coset, 17ff., 89.ff. 
representatives, 77 

Cramer's Rule, 438 
Criterion for the Solvability of a Quintic, 639 
crossed homomorphisms, 814ff. 
crossed product algebra, 833.ff. 
cubic equations, formulas for roots, 630.ff. 
curve, 726 
cycle, 29, 30, 33, l06.ff. , 1 73 

cycle decomposition. 29, 30, 1 15.ff. , 641 
algorithm, 30.ff. 

cycle type, 1 26.ff. 
of automorphisms, 640 

cyclic extensions, 625. 636 
cyclic group, 22, 54ff., 90, 149, 192, 198, 539 

characters of, 880, 881 
cohomology of, 801, 8 1 1  

cyclic module, 351 , 462 
cyclotomic extensions, 552.ff. , 596ff. 
cyclotomic field, 540.ff., 698 
cyclotomic polynomial, 3 10, 489, 552.ff. 
cyclotomy, 598 

D 
D.C.C. - see descending chain condition 
decomposable module, 847 
Dedekind Domain, 764.ff. 

modules over, 769.ff. 
Dedekind-Hasse Criterion, 281 
Dedekind-Hasse norm, 28 1 , 289, 294 
degree, of a character, 866 

of a field element, 520 
of a field extension, 5 12 
of a monomial, 621 
of a polynomial, 234, 295, 297 
of a representation. 840 
of a symmetric group, 29 

degree ordering, 331 
dense, 677, 687 
density of primes, 642 
derivative, of a polynomial, 3 12, 546 

of a power series, 505 
derived functors, 785 
derived series, 195.ff. 
descending chain condition (D.C.C.), 33 1 , 657, 751,  

855 
determinant, 248, 435.ff. , 450, 488 

computing, 441 
determinant ideal, 67 1 
diagonal subgroup, 49, 89 
diagonalizable matrices criterion, 493, 494 
Dickson's Lemma, 334 
differential, 723 
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of a morphism, 728 
dihedral group, 23/f. 

as Galois group, 617/f. 
characters of, 88 1 ,  885 
commutator subgroup of, 171  
conjugacy classes in, 132 

dimension, of a ring, 750, 754/f. 
of a tensor product, 421 
of a variety, 68 1 , 729 
of a vector space, 408, 41 1 
of Sk (V), 446 
of Tk (V),  443 
of /\k (V), 449 

dimension shifting, 802 
Diophantine Equations, 14. 245. 276, 278 
direct factor, 455 
direct limit, 268, 358, 741 
direct product, characters of, 879 

infinite, 157, 357, 414 
of free modules, 358 
of groups, 1 8, 15�, 385, 593 
of injective modules, 793 
of injective resolutions. 793 
of modules, 353, 357, 358, 385 
of rings, 23 1 , 233, 265/f. 

direct sum, infinite, 158, 357, 414 
of injective modules, 403 
of modules, 35 1/f., 357, 385 
of projective modules. 392, 403, 793 
of projective resolutions, 793 
of rings, 232 

direct summand, 373, 385, 451 
directed set, 268 
Dirichlet's Theorem on Primes in Arithmetic 

Progressions, 557 
discrete G-module, 808 
discrete cohomology groups, 808/f. 
discrete valuation, 232, 238, 272, 755 
Discrete Valuation Ring, 232, 272, 755/f.,  762 
discriminant, 610 

as resultant, 621 
of a cubic, 612 
of a polynomial, 610 
of a quadratic, 6 1 1 
of a quartic, 614 
of pllJ cyclotomic polynomial. 621 

distributive laws, 34, 223 
divides, 4, 252, 274 
divisibility of ideals, 767 
divisible, group, 66, 86, 167 

module, 397 
Division Algorithm, 4, 270, 299 
division ring, 224, 225, 834 
divisor, 274 
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domain, 1 
double coset, 1 17 
double dual, 432, 823, 914 
Doubling the Cube impossibility of, 53 1/f. 
doubly transitive, 1 17, 877 
dual basis, 432 
dual group, 167, 8 15, 823 
dual module, 404, 404 
dual numbers, 729 
dual vector space, 43 1 

E 
echelon, 425 
eigenspace, 473 
eigenvalue, 414, 423, 472 
eigenvector, 414, 423, 472 
Eisenstein's Criterion, 309ft., 3 1 2  
elementary abelian group, 1 36, 155, 339, 654 
elementary divisor, 161/f.,  465/f. 

decomposition, 161/f.,  464 
decomposition algorithm, 495 

elementary Jordan matrix, 492 
elementary row and column operations, 424, 470/f., 

479/f. 
elementary symmetric functions, 607 
elimination ideal, 328/f. 
elimination theory, 327/f. 
elliptic, curve, 14 

function, 600 
function field, 653 
integral, 14 

embedded prime ideal, 685 
ernbedding, 83, 359, 569 
endomorphism, 347 

ring, 347 
equivalence class, 3, 45, 1 14 
equivalence of categories, 734, 916 
equivalence of short exact sequences, 381  
equivalence relation, 3 ,  45, 1 14 
equivalent extensions, 3 8 1 , 787, 824 
equivalent representations, 846, 869 
Euclidean Algorithm, 5, 271 
Euclidean Domain, 270/f., 299 

modules over, 470, 490 
Euler cp-function, 7, 8, 1 1 , 267, 3 15, 539/f., 589 
Euler's Theorem, 13, 96 
evaluation homomorphism, 244, 255, 43� 
exact, functor, 391, 396 

sequence, 378 
exactness, of Hom, 389ft., 393/f. 

of tensor products, 399 
exceptional characters, 901 
exponent of a group, 165/f., 626 
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exponential map, 86 
exponential notation, 20, 22 
exponential of a matrix, 503ff. 
Ext� (A , B), 779ff. 
extension, of a map, 3, 386, 393 

of ideals, 693, 708ff. 
of modules, 378 
of scalars, 359ff. ,  363ff. , 369, 373 

extension field, 5 1 1ff. 
extension problem. 104, 378, 776 
Extension Theorem, for Isomorphisms of Fields, 

5 1 9, 541 
exterior algebra, 446 
exterior power, 446 
exterior product - see wedge product 
external, direct product, 172 

direct sum, 353 

F 
F -algebra - see algebra 
factor group - see quotient group 
factor set, 824ff. 
factor through, homomorphism, 1 00, 365 
factorial variety, 726 
factorization, 283ff. 
faithful, action, 43, 1 12ff. 

functor, 914 
representation, 840 

Fano Plane, 210 
Feit-Thompson Theorem, 104, 106, 149, 1 96, 21 2, 

899 
Fermat primes, 601 
Fermat's Little Theorem, 96 
Fermat's Theorem on sums of squares, 291 
fibe� 2. 73ff. , 24<U(. 
fiber product of homomorphisms, 407 
fiber sum of homomorphisms, 407 
field, 34, 224, 226, 51 Off 

of fractions, 260ff. 
of p-adic numbers, 759 
of rational functions, 264, 5 1 6, 530, 567, 585, 

647ff. ,  68 1 ,  721 
field extension, 5 1 1ff. 
field generated by, 51 1 ,  5 1 6  
field norm, 229 
finite covering, 704 
finite dimensional, 408, 41 1 
finite extensions, 5 1 2ff., 521 ,  526 
finite fields, 34, 301 , 529 

algebraic closure of, 588 
existence and uniqueness of, 549ff. 
Galois groups of, 566, 586 
of four elements, 5 1 6, 653 
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subfields of, 588 
finite group, 17 
finitely generated, field extension, 524ff., 646 

group, 65, 1 58, 218ff. 
ideal, 25 1 ,  3 1 7  
k-algebra, 657 
module, 351ff. ,  458 

finitely presented, group, 218ff. 
module, 795ff. 

First Order Diophantine Equation, 276, 278 
First Orthogonality Relation, 872 
Fitting ideal, 67 1 
Fitting's Lemma, 668 
fixed, element, 558 

field, 560 
set, 1 3 1 , 798 

fixed point free, 4 1 ,  1 32 
fiat module, 400ff., 405ff., 790, 795 
form, 297 
formal Laurent series, 238, 265, 756, 759 
formal power series, 238, 258, 265, 668 
formally real fields, 530 
Fourier Analysis, 875ff. 
fractional ideal, 760ff. 
fractional linear transformations, 567, 647 
Frattini subgroup, 198ff. 
Frattini's Argument, 1 93 
free, abelian group, 158, 355 

group, 215ff. 
module, 338, 352, 354ff., 358, 400 
nilpotent group, 221 

free generators, 2 1 8  
o f  a module, 354 

free rank, 159, 21 8, 355, 460, 464 
Frobenius automorphism, 549, 556, 566, 586, 589, 

604 
Frobenius group, 1 68, 638, 643ff., 896 

as Galois group, 638 
characters of, 896 

Frobenius kernel, 896 
Frobenius Reciprocity, 904 
full functor, 914 
function, 1 
function field, 646, 653 
functor, 391 ,  396, 398, 9 1 3  

contravariant, 395, 913  
covariant, 39 1 ,  398, 913  

fundamental matrix, 506 
Fundamental Theorem, of Algebra, 545, 6 1 5ff. 

of Arithmetic, 6, 289 
of Finitely Generated Abelian Groups, 1 58ff. , 

1 96, 468 
of Finitely Generated Modules over a 

Dedekind Domain, 769ff. 
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of Finitely Generated Modules over a P.I.D., 462, 
464, 466 

of Galois Theory, 574ff. 
on Symmetric Functions, 608 

G 
G-invariant, 843 
G-module, 798 
G-stable, 843 
Galois closure, 594 
Galois cohomology groups, 809ff. 
Galois conjugates, 573 
Galois extension, 562, 512ff. 
Galois group, 562ff., 514ff. 

of !Fp" •  566, 586 

of IQI(2118 , i) or x8 - 2, 577ff. 
of IQI(2118 , i) over quadratic subfields, 581 

of 1Qi(J(2 + .J2 ) (3 + ,J3)), 584 

of IQI( Jz + .J2 ), 582 
of IQI( .J2 ), 563 
of iQI(.J2 , ,J3), 563ff., 567, 576 
of iQI(.JDI , .JD2), 582 
of IQI(st3 ) , 598ff. 
of 1Qi(s5) ,  597 
of IQI(sn + sn- l ), 601 , 603 
of iQI(sn) .  596ff. 
of IQI(sp). 597 

of x3 - 2, 564ff. ,  568, 576 
of x4 + 1, 579ff. 
of x4 - 2x2 - 2, 582 
of x6 - 2x3 - 2, 623, 644 
of xn - a, 636 
of xP - x - a, 589 
of a biquadratic, 582 
of a composite extension, 592 
of a cubic, 612 
of a cyclotomic field, 599 
of a general polynomial, 609 
of a quadratic, 563 
of a quartic, 615, 618 

Galois groups, of polynomials, 606ff. 
infinite, 65 1ff. 
over IQI, 640ff. 

Galois Theory, 14, 105, 558ff. 
Gaschiitz's Theorem, 838 
Gauss' Lerruna, 303, 530, 819, 824 
Gauss-Jordan elimination, 327, 424ff. 
Gauss sum, 637 
Gaussian integers, 229ff. ,  271 ,  278, 289ff. , 377 
general linear group, 35, 89, 236, 413, 4 1 8  
general polynomial, 607, 609, 629, 646 
general polynomial division, 320ff. ,  331 
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generalized associative law, 1 8  
generalized character, 898 
generalized eigenspace, 501 
generalized quaternion group, 178 
generating set, 61ff. 
generator, 25ff. ,  54, 218ff. 

of Sn , 64, 107ff. ,  219 
of Sp. 1 1 1  
of a cyclic group, 57 
of a free module, 354 
of a subgroup, 61ff. 
of a submodule, 35 1 
of an ideal, 25 1 

generic point, 733 
germs of continuous functions, 269 
GL3 (IF2), 2 1 lff., 489, 644 
global sections, 740 
globally asymptotically stable, 508 
Going-down Theorem, 694, 728 
Going-up Theorem, 694, 720 
graded, ordering, 331  

ring, 443 
graded ideal, 443 
graded lexicographic ordering (grlex), 331  
graph, 210, 669, 687 

coloring, 335ff. 
greatest corrunon divisor (g.c.d.), 4, 252, 274ff., 287 

of ideals, 767 
grevlex monomial ordering, 331  
Grobner basis, 3 1 5ff. ,  3 1 9ff. ,  664ff. ,  702, 712 

in field extensions, 672 
group, 1 3, 16ff. 

of nth roots of unity - see root of unity 
of units in a ring, 226 

group extensions, 824ff. 
group ring, 236ff., 798, 840 
group table, 21 
groups, of order 12, 144, 182 

of order 30, 143, 1 82 
of order 56, 1 85 
of order 60, 145ff., 1 86 
of order 75, 1 85 
of order 147, 1 85 
of order 168, 207ff. 
of order 33 . 7 .  1 3 . 409, 212ff., 898ff. 
of order p2, 1 25, 1 37 
of order p3 , 179, 1 83, 198, 1 99ff., 886 
of order 2p2, 1 86 
of order 4p, 1 86 
of order pq, 143, 179, 1 8 1  
of order p2q, 1 44  

groups, table of small order, 167ff. 
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H 
H" (G; A) - see cohomology group 
Flall subgroup, 101 , 200, 829, 890 
Flall's Theorem, 1 05, 1 96, 890 
Hamilton Quatemions, 224ff., 23 1 , 237, 249, 299 
Flannonic Analysis, 875 
Fleisenberg group, 35, 53, 174, 179, 187 
Hilbert's Basis Theorem, 3 1 6, 334, 657 
Flilbert's Nullstellensatz, 675, 700ff. 
Flilbert's Specialization Theorem, 648 
Flilbert',s Theorem 90, 583, 8 14 

additive fonn, 584, 815 
Flilbert's Zahlbericht, 815 
Flotder Program, 103ff. 

holomorph, 179, 186 
Flom, of direct products, 404 

of direct sums, 388, 388, 404 
FlomF (V, W), 416  
FlomR (M, N), 345ff., 385ff. 
homeomorphism, 738 
homogeneous cochains, 810 
homogeneous component, of a polynomial, 297 

of a graded ring, 443 
homogeneous ideal, 299 
homogeneous of degree m, 621 
homogeneous polynomial, 297 
homological algebra, 391 , 655, 716ff. 

homology groups, 777 
homomorphism, of algebras, 343, 657 

of complexes, 777 
of fields, 253, 512  
of graded rings, 443 
of groups, 36, 73ff., 215 
of modules, 345ff. 
of rings, 239ff. 
of short exact sequences, 38lff. 
of tensor algebras, 450 

homotopic, 792 
hypemilpotent group, 191  
hypersurface, 659 

I 
icosahedron - see Platonic solids 
ideal quotient, 333, 69 1 

ideal, 242ff. 
generated by set, 251 

idempotent, 267, 856 
idempotent linear transfonnation, 423 
identity, of a group, 17 

matrix, 236 

of a ring, 223 
image, of a map, 2 

I ndex 

of ak-algebra homomorphism, computing, 665ff. 
of a linear transfonnation, computing, 429 

implicitization, 678 
incidence relation, 210 
indecomposable module, 847 
independence of characters, 569, 872 
independent transcendentals, 645 
index, of a subgroup, 90ff. 

of a field extension, 512  
induced, character, 892ff., 898 

module, 363, 803, 8 1 1 ,  8 12. 893 
representation, 893 

inductive limit - see direct limit 
inequivalent extensions, 379ff. 
inert prime, 749, 775 
infinite cyclic group, 57, 8 1 1  
infinite Galois groups, 65 lff. 
inflation homomorphism, 806 
inhomogeneous cochains, 810 
injective envelope - see injective hull 
injective hull, 398, 405, 405 
injective map, 2 
injective module, 395ff., 403ff., 784 
injective resolution, 786 
injectively equivalent, 407 
inner automorphism, 1 34 
inner product of characters, 870ff. 
inseparable degree, of a polynomial, 550 

of a field extension, 650 
inseparable extension, 551 ,  566 
inseparable polynomial, 546 
insolvability of the quintic;, 625, 629 
integer, 1. 695ff. 
integers mod n - see '!L./ n'!L. 
integral basis, 698, 775 
integral closure, 229, 691ff. 
integral domain, 228, 235 
integral element, 691 
integral extension, 691ff. 
integral group ring ('!L.G), 237, 798 
integral ideal, 760 
integral Quaternions, 229 
integrally closed, 69 1ff. 

internal, direct product, 172 
direct sum, 354 

intersection of ideals, computing, 330ff. 
intertwine, 847 
invariant factor, 159ff., 464, 774 

decomposition, 159ff., 462ff. 
of a matrix, 475, 477 

Invariant Factor Decomposition Algorithm, 480 
invariant subspace, 341 ,  843 
inverse, of a map, 2 

of an element in a group, 1 7  
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inverse image, 2 
inverse limit, 268, 358, 652ff. 
inverse of a fractional ideal, 760 
inverse of matrices, 427, 440 
invertible fractional ideal, 760 
irreducibility, criteria, 307ff. 

of a cyclotomic polynomial, 3 10  
irreducible algebraic set, 679 
irreducible character, 866, 870, 873 
irreducible element, 284 

in Z[i ], 289ff. 
irreducible ideal, 683 
irreducible module, 356, 847 
irreducible polynomial, 287, 5 12ff.,  572 

of degree n over IF P • 301 , 586 
irreducible topological space, 733 
isolated prime ideal, 685 
isomorphism, classes, 37 

of algebras, 343 
of cyclic groups, 56 
of groups, 37 
of modules, 345 
of rings, 239 
of short exact sequences, 381  
of vector spaces, 408 

Isomorphism Theorems, for groups, 97ff. 
for modules, 349 
for rings, 243, 246 • 

isomorphism type, 37 
isotypic component, 869 

J 
Jacobson radical, 259, 750 
join, 67, 88 
Jordan block, 492 
Jordan canonical form, 457, 472, 492ff. 
Jordan-Holder Theorem, 103ff. 

K 
k-stage Euclidean Domains, 294 
k-tensors, 442 
kernel, of a group action, 43, 5 1 ,  1 1 2ff. 

of a homomorphism, 40, 75, 239, 345 
of ak-algebrahomomorphism, computing, 665ff. 
of a k-algebra homomorphism, 678 
of a linear transformation, computing, 429 

Klein 4-group (Viergruppe), 68, 1 36, 1 55 
Kronecker product, 42lff. ,  43 1 
Kronecker-Weber Theorem, 600 
Krull dimension, 704, 750ff., 754 
Krull topology, 652 
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Krull's Theorem, 652 
Kummer extensions, 627, 8 17  
Kummer generators for cyclic extensions, 636 
Kummer theory, 626, 8 1 6, 823 

L 
Lagrange resolvent, 626 
Lagrange's Theorem, 13 ,  45, 89ff. ,  460 
lattice of subfields, 57 4 

of Q( Vi .  p), 568 
of Q(�13 ) ,  598 
of Q(2118 , i ) ,  581 

lattice of subgroups, 66ff. 
of A4, 1 1 1  
of Ds , 69, 99 
of DJ6, 70 
of Qs, 69, 99 
of Q D!6· 72, 580 
of s3 . 69 
of Z/2Z, 67 
of Z/4Z, 67 
of Z/6Z, 68 
of Z/8Z, 67 
of Z/ 12Z, 68 
of Z/nZ, 67 
of Z/p" Z, 68 
of Z/2Z x Z/2Z (Klein 4-group), 68 
of Z/2Z x Z/4Z, 7lff. 
of Z/2Z x Z/8Z, 72 
of the modular group of order 16, 72 

lattice of subgroups for quotient group, 98ff. 
Laurent series - see formal Laurent series 
leading coefficient, 234, 295 
leading term, 234, 295, 3 1 8  

ideal of, 3 18ff. 
least common multiple (l.c.m.), 4, 279, 293 
least residue, 9 
left derived functor, 788 
left exact, 391 ,  395, 402 
left group action, 43 
left ideal, 242, 25 1 , 256 
left inverse, in a ring, 233 

of a map, 2 
left module, 337 
left multiplication, 44, 1 1 8ff., 53 1 
left Principal Ideal Domain, 302 
left regular representation, 44, 1 20 
left translation, 44 
left zero divisor, 233 
Legendre symbol, 8 1 8  
length o f  a cycle, 30 
lexicographic monomial ordering, 3 1 7ff., 622 
Lie groups, 505, 876 
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lifts, 386 
linear algebraic sets, 659 
linear character, 569 
linear combination, 5, 275, 280, 408 
linear equations, solving, 425ff. 
linear functional, 43 1 
linear representation, 840 
linear transformation, 340ff. ,  346, 408 
linearly independent, characters, 569, 872 

vectors, 409 
local homomorphism, 723, 744 
local ring, 259, 717, 752ff., 755 

of an affine variety, 72lff. 
localization, 706ff., 795, 796 

at a point in a variety, 722 
at a prime, 708ff., 7 1 8 
of a module, 7 14ff. 

locally ringed spaces, 745 
locus. 659 
Long Exact Sequence, 778, 789 

in Group Cohomology, 802 
lower central series, 193 
Liiroth's Theorem, 647 

M 
map, 1 , 215 
Maschke's Theorem, 453, 849 
matrix, 34, 235, 415ff. 

of a composition, 418  
of  a linear transformation, 415ff. 

matrix representation, 840 
matrix ring, 235ff., 418  

ideals of, 249 
maximal ideal, 253ff., 280, 5 12  
maximal order. 232 
maximal real subfield of a cyclotomic field, 603 
maximal spectrum, 73 1 

of k[x], 735 
of k[x, y], 735 
of Z[i], 735 
of /L[x], 736 

maximal subgroup, 65, 1 17, 1 3 1 , 188, 198 
of solvable groups, 200 

middle linear map - see balanced map 

minimal element, 4 
minimal Grobner basis, 325ff. 
minimal normal subgroup, 200 
minimal polynomial, 474 

of a field element. 520 
of a field element, computing, 667 

minimal prime ideal, 298, 688 
minimal primary decomposition, 683 
minimum condition, 855 
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Minkowski's Criterion, 441 
minor, 439 
Mobius inversion formula, 555, 588 
modular arithmetic, 9, 224 
modular group of order 1 6, 72, 186 
modular representations, 846 
module, 337ff. 

over Z, 339, 456ff. 
over F[x], 340ff.,  456ff. 
over a Dedekind Domain, 769ff. 
over a group ring, 798ff., 843ff. 
over a P.I.D., 456ff. 
sheaf of, 7 48 

module of fractions, 714  
monic, 234 
monomial, 297 
monomial ideal, 3 1 8, 332, 334 
monomial ordering, 3 17  
monomial part, 297 
monomial term, 297 
Monster simple group, 865 
morphism, 9 1 1  

of affine algebraic sets, 662 
of affine schemes, 743 

multidegree, 297, 3 1 8  
multilinear form, 435 
multilinear map, 372, 435 
multiple, 252, 274 
multiple root of a polynomial, 3 1 2, 545, 547 
multiplicative field norm, 230, 582 
multiplicative function, 7, 267 
multiplicative subgroup of a field, 3 14  
multiplicativity of  extension degrees, 523, 529 
multiplicity of a root, 3 1 3, 545 

N 
Nakayama's Lemma, 75 1 
natural, 83, 1 67, 432, 9 1 1ff. 

projection, 83, 243, 348, 916  
Newton's Formulas, 618  
nilpotence class, 190 
nilpotent, element, 23 1 , 250, 596, 689 

group, 190ff., 198 
ideal, 25 1 , 258, 674 
matrix, 502 

nilradical, 250, 258, 673, 674 
Noetherian, module, 458, 469 

ring, 3 1 6, 458, 656ff., 793 
Noether's Normalization Lemma, 699ff. 
noncommutative polynomial algebra, 302, 443 
nonfinitely generated ideal, 298, 657 
nongenerator, 199 
nonpivotal, 425 
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nonprincipal ideal, 252, 273, 298 
nonsimple field extension, 595 
nonsingular, point, 725, 742, 763 

variety, 725 
nonsingular, linear transformation, 413 

matrix, 417 
nonsingular curve, 775 
nonsingular model, 726 
norm, 232, 270, 299 

of a character, 872 
of an element in a field, 582, 585 

normal basis, 815 
normal complement, 385 
normal extension, 537, 650 
normal ring, 691 
normal subgroup, 82ff. 
normal variety, 726 
normalization, 69 1, 726 
normalize, 82, 94 
normalized, cocycle, 827 

factor set, 825 
section, 825 

normalizer, 50ff., 123ff., 134, 147, 206ff. 
null space, 413 
nullity, 413 
number fields, 696 

0 
object, 91 1 
opposite algebra, 834 
orbit, 45, 1 15ff., 877 
order, of a permutation, 32 

of a set, 1 
of an element in a group, 20, 55. 57, 90 

order of conductor f, 232 
order of zero or pole, 756, 763 
ordered basis, 409 
orthogonal characters, 872 
orthogonal idempotents, 377, 856, 870 
orthogonality relations, 872 
outer automorphism group, 137 

p 
p-adic integers, 269, 652, 758ff. 
p-adic Laurent series, 759 
p-adic valuation, 759 
p-extensions, 596, 638 
p-group, 139, 1 88 

characters of, 886 
representations of, 854, 864 

p-primary component, 142, 358, 465 

pth-power map, l66, 174 
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P.I.D. - see Principal Ideal Domain 
parabolic subgroup, 212 
partition, of a set, 3 

of n, 126, 162 
Pell's equation, 230 
perfect field, 549 
perfect group, 174 
periods in cyclotomic fields, 598, 602, 604 
permutation, 3, '19, 42 

even, 108ff. 
odd, 108ff. 
sign of, 108ff., 436ff. 

permutation character, 866, 877, 895 
permutation group, 1 16, 120 
permutation matrix, 157 
permutation module, 803 
permutation representation, 43, 1 1 2ff., 203ff., 840, 

844, 852, 877 
pivotal element, 425 
Platonic solids, symmetries of, 28, 45, 92, 1 1 1 , 148 
pole, 756 
polynomial, 234 

map, 299, 662 
ring. 234ff., 295ff. 

polynomials with Sn as Galois group, 642ft. 
Pontriagin dual group, 787 
positive nonn, 270 
Postage Stamp Problem, 278 
power of an ideal, 247 
power series of matrices, 502ft. 
power set, 232 
preimage, 2 
presentation, 26ff., 39, 218ff., 380 
primary component - see p-primary component 
Primary Decomposition Theorem. for abelian 

groups, 161 
for ideals, 68 lff., 716ff. 
for modules, 357, 465, 772 

primary ideal, 260, 298, 748 
prime, 6 
prime element in a ring, 284 
prime factorization, 6 

for ideals, 765ff. 
prime ideal, 255ff., 280, 674 

algorithm for determining, 71 Off. 
prime spectrum, 731ff. 
prime subfield, 264, 5 1 1 , 558 
primes associated, to a module, 670 

to an ideal, 670 
primitive central idempotent, 856, 870 
primitive element, 517, 594 
Primitive Element Theorem, 595 
primitive idempotent, 856 
primitive permutation group, 1 17 
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primitive roots of unity, 539ff. 
principal character, 866 
principal crossed homomorphisms, 8 1 4  
principal fractional ideal, 760 
principal ideal, 25 1 
Principal Ideal Domain (P.I.D.), 279ff., 284, 459 

characterization of, 28 1 ,  289, 294 
that is not Euclidean, 282 

principal open set, 687, 738 
product, of ideals, 247, 250 

of subgroups, 93ff. 
profinite, 809, 8 1 3  
projection, 83, 423, 453 

homomorphism, 153ff. 
projections of algebraic sets, 679 
projective limit - see inverse limit 
projective module, 390ff., 400, 403ff. ,  761 , 773, 786 
projective plane, 210 
projective resolution, 779 
projectively equivalent, 407 
Public Key Code, 279 
pullback of a homomorphism, 407 
purely inseparable, 649 
purely transcendental, 646 
pushout of a homomorphism, 407 
Pythagoras' equation rational solutions, 584 

Q 
Q, subgroups of, 65, 198 
Q/71.., 86 
quadratic, equation, 522, 533 

extensions, 522, 533 
field, 227, 698 
subfield of cyclic quartic fields, criterion, 638 
subfield of Q(�p),  62 1 ,  637 

quadratic integer rings, 229ff. ,  248, 27 1 ,  278, 286, 
293ff. .  698, 749 

that are Euclidean, 278 
that are P.I.D.s, 278 

Quadratic Reciprocity Law, 8 1 9  
quadratic residue symbol, 8 1 8  
quartic equations, formulas for roots, 634ff. 
quasicornpact, 688, 738, 746 
quasidihedral group, 7 lff. ,  1 86 

as Galois group, 579 
quaternion group, 36 

as Galois group, 584 
characters of, 882 
generalized, 178 
representations of, 845, 852 

Quaternion ring, 224, 229, 258 
(see also Hamilton Quatemions) 

quintic, insolvability, 625, 629 
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quotient, computations in k-algebras, 672 
group, 15, 73ff. ,  76, 574 
module, 348 
ring, 24 lff. 
vector space, 408, 412 

quotient field, 260ff. 

R 
radical extension, 625ff. 
radical ideal, 258, 673, 689 
radical of an ideal, 258, 673ff., 701 

computing, 70 1 
radical of a zero-dimensional ideal, 706ff. 
radicals, 625 
ramified prime, 749, 775 
range, 2 
rank, of a free module, 338, 354, 356, 358, 459 

of a group, 1 65, 21 8, 355 
of a linear transformation, 4 1 3  
o f  a module, 460, 468, 469, 47 1 ,  7 1 9, 773 

rational canonical form, 457, 472ff. 
computing, 48 lff. 

rational functions - see field of rational functions 
rational group ring, 237 
rational numbers, 1, 260 
rational valued characters, 879 
real numbers, 1 

modulo 1, 21 ,  86 
reciprocity, 229, 62 1 
recognition theorem, 1 7 1 ,  180 
reduced Grabner basis, 326ff. 
reduced row echelon form, 425 
reduced word, 216ff. 
reducible character, 866 
reducible element, 284 
reducible module, 847 
reduction homomorphism, 245, 296, 300, 586 
reduction mod n, 10, 243, 296, 640 
reduction of polynomials mod p, 586, 589 
reflexive, 3 
regular at a point, 721 
regular local ring, 725, 755 
regular map, 662, 722 
regular representation, 844, 862ff. 
relations, 25ff. ,  21 8ff. .  380 
relations matrix, 470 
relative Brauer group, 836 
relative degree of a field extension, 5 1 2  
relative integral basis, 7 7  5 
relatively prime, 4, 282 
remainder, 5, 270, 320ff. 
Replacement Theorem, 410, 645 
representation, 840ff. 
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permutation, 43, 1 12ff., 203ff., 840. 844. 852, 
877 

representative, 3, 9, 77 
residue class, 8 
resolvent cubic, 614, 623 
resolvent polynomials, 642 
restricted direct product, 158 
restriction homomorphism, 269, 805, 807 
restriction maps, 269, 740 
restriction of scalars, 359 
resultant, 619ff. 
reverse of a polynomial, 3 12  
right derived functor, 785 
right Euclidean Domain, 302 
right exact, 400, 402 
right group action, 43, 128, 844, 852 
right ideal, 242, 25 1 
right inverse, in a ring, 233 

of a map, 2 
right module, 337 
right regular representation, 132 
right zero divisor, 233 
ring, 223 

of algebraic integers, 695ff. 
of continuous functions, 225, 227, 259 
of dual numbers, 729 
of fractions, 260ff. ,  708 
of integers, 229 
of sets, 232 

root, 3 10, 521 
root extension, 627 
root of a polynomial, 307ff. ,  512 
root of unity, 22, 66, 86, 539ff., 552 
row equivalent, 425 
row rank, 418, 427, 434 
row reduced, 424 
ruler and compass constructions, 534 

s 
saturated, 710 
saturation of an ideal, 710ff. 
scalar, 408 
scalar matrix, 236 
scalar transformations, 348 
Schanuel's Lemma, 407 
scheme, 745 
Schur multiplier, 838 
Schur's Lemma, 356, 853, 856 
Schur's Theorem, 829 
second dual - see double dual 
Second Orthogonality Relation, 872 
section, 384, 740 
semidihedral group - see quasidihedral group 

930 

semidirect product, 175ff., 383, 385, 821 , 829 
semisimple, 855 
separable, 551 

extension, 551, 572, 594ff. 
polynomial, 546, 562, 572 

separable degree, of a field extension, 650 
of a polynomial, 550 

separating transcendence base, 650 
Shapiro's Lemma, 804 
short exact sequence, 379 

of complexes, 778 
Short Five Lemma, 383 
similar, linear transformations, 419, 476 

matrices, 419, 476, 493ff. 
similar central simple algebras, 835 
similar representations, 846 
similarity, 40 
simple algebra, 832 
simple extensions, 517, 586, 594 
simple group, 91 ,  102ff.,  149ff., 20lff., 212 

classification of, 103, 212 
of order 168, 207ff. 
sporadic, 104, 865 

simple module - see irreducible module 
simple radical extension, 625 
simple ring, 253, 863 
simple tensor, 360 
Simultaneous Resolution, 783 
singular point, 725 
skew field - see division ring 
skew-symmetrization, 452 
Smith Normal Form, 479 
smooth, 725, 742 
Snake Lemma, 792 
solution, of cubic equations, 630 

of quartic equations, 634ff. 
solvability of a quintic, criterion, 630, 639 
solvability of groups of odd order - see 

Feit-Thompson Theorem 
solvable by radicals, 627ff. 
solvable extensions, 625ff. 
solvable group, 105, 149, 19(ff., 628, 886, 890 
solvable length, l95ff. 
solving algebraic equations, 327ff. 
solving linear equations, 425ff. 
span, 62, 351, 408, 427 
special linear group, 48, 89, 101, 669 
specialization, 648 
spectral sequences, 808 
spectrum - see also prime spectrum and maximal 

spectrum 
of k[x], 735 
of k[x , y], 735 
of Z[Z/2Z], 747 
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of Z[i], 735 
of Z[x], 736 

split algebra, 835 
split exact sequence, 384, 388Jr. 
split extension, 384 
split prime, 749, 775 
splits completely, 536 
splitting field, 5 1 3, 536Jr., 562, 572 

of (x2 - 2)(x2 - 3), 537 
of x2 - 2. 537 
of x2 - t over k(t), 5 1 6  
of x2 + 1 ,  5 1 5  
o f  x2 + x + 1 over IFz, 5 1 6  
of x3 - 2 ,  537 
of x4 - px + q, 618 
of x4 - px2 + q. 618 
of x4 + 4, 538 
of x4 + 8, 581 
of x4 - 2x2 - 2, 582 
of x6 - 2x3 - 2, 623 
of x8 - 2, 577jf. 
of x" - 1 ,  539jf. 
of xP - 2, 541 
of xP - x - a over IFP, 589 

splitting homomorphism, 384 
splitting of polynomials in Galois extensions, 572, 

584. 595 
sporadic simple group-see simple group, sporadic 
square root of a matrix, 502 
squarefree part, 227 
Squaring the Circle, impossibility of, 531jf. 
stability group, 8 1 9  
stabilizer, 44 ,  51jf. ,  l 1 2jf., 1 23jf. 
stable subspace, 341 ,  843 
stalk, 741 
standard bimodule structure, 367 
standard resolution, 799 
steady states, 507 
Steinitz class, 773 
Stone-Cech compaetification, 259 
straightedge and compass constructions, 531Jr. , 602 
structure sheaf, 7 40jf. 
Sturm's Theorem, 624 
subfield, 5 1 1 ,  5 1 6  
subgroup, 22, 46jf. 

criterion, 47 
of cyclic groups, 58Jr. 
of index 2, 91 ,  1 20, 122 

sublattice, 70 
submodulc, 337 

criterion, 342 
subring, 228 
subspace topolog� 677 
sum, of ideals, 247, 250 

Index 

of submodules, 349, 35 1 
support, 729Jr. 
smjective, 2 
Sylow p-subgroup, 101,  1 39Jr. , 161 
Sylow's Theorem, 93,  1 05, 1 39jf., 617 
symmetric algebra, 444 
symmetric function, 436, 608 
symmetric group, 29jf. 

as Galois group, 642Jr., 6491f. 
characters of, 879, 881,  883, 884 
conjugation in - see conjugation 
isomorphisms between, 37, 40 
Sylow p-subgroups of, 1 68, 1 87 

symmetric polynomials, 608, 621jf. 
symmetric relation, 3 
symmetric tensor, 45 1 
symmetrization, 452 

T 
table, group, 21 
tangent space, 724ff. , 741jf. 
Tchebotarov Density Theorem, 642 
tensor algebra, 443 
tensor product, 359Jr., 788Jr. 

associativity of, 37 1 
of algebras, 374 
of direct products, 376 
of direct sums, 373, 376 
of fields, 377, 53 1 , 596 
of free modules, 404 
of homomorphisms, 370 
of ideals, 377 
of matrices. 421 
of projective modules, 402, 404 
of vector spaces, 420 

tensors, 360, 364 
tetrahedron - see Platonic solids 
Thompson subgroup, 1 39 
Thompson Transfer Lemma, 822 
Thompson's Theorem, 1 96 
topological space, 676jf. 
Tor� (A,  B), 788Jr. 
torsion, element, 344 

module, 356, 460, 463 
subgroup, 48 
submodule, 344 

torsion free, 406, 460 
trace, of a field element, 583, 585 

of a matrix, 248, 43 1 , 43 1 , 488, 866 
trace ideal of a group ring, 846 
transcendence base, 645 
transcendence degree, 645 
transcendental, element, 520, 527, 534 
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extension, 645ff. 
transfer homomorphism, 817 , 822 
transgression homomorphism, 807 
transition matrix, 419 
transitive, action, 1 15, 606, 640 

subgroups of Ss , 643 
subgroups of Sn , 640 

transitive relation, 3 
transpose, 434, 501 
transposition, 107ff. 
trilinear, 372, 436 
Trisecting an Angle impossibility of, 53 1ff. 
trivial, action, 43 

homomorphism, 79 

ideal, 243 
representation, 844 
ring, 224 
subgroup, 47 
submodule, 338 

twisted polynomial ring, 302 
two-sided ideal, 242, 251 
two-sided inverse, 2 

u 
U.F.D. - see Unique Factorization Domain 

ultrametric, 759 
uniformizing parameter, 756 
unipotent radical, 212 
Unique Factorization Domain (U.F.D.), 283ff. , 303ff.,  

690, 698, 769 
unique factorization of ideals, 767 
uniqueness of splitting fields, 542 
unital module, 337 
units, 226 

in Z/nZ, 10, 17, 61 ,  135, 267, 3 14, 596 
universal property, of direct limits, 268 

of free groups, 215ff. 
of free modules, 354 

of inverse limits, 269 
of multilinear maps, 372, 442, 445, 447 
of tensor products, 361,  365 

universal side divisor, 277 
universe, 91 1 
upper central series, 1 90 
upper triangular matrices, 49, 174, 1 87, 236, 502 
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v 
valuation ring, 232, 755ff. 
value of f in Spec R, 732 
Vandermonde determinant. 619  
variety, 679ff. 
vector space, 338, 408ff.,  5 1 2  
Verlagerungen - see transfer homomorphism 
virtual character, 898 

w 
Wedderburn components, 855 
Wedderburn decomposition, 855 
Wedderburn's Theorem on Finite Division Rings, 

556ff. 
Wedderburn's Theorem on Semisimple rings, 854.ff. 
wedge product, 447 

of ideals, 449, 455 
of a monomial, 621 

well defined, 1, 77, 100 
Well Ordering o f  Z, 4,  8, 273, 909 
Wilson's Theorem, 55 1 
word, 215  
wreath product. 1 87 

z 
zn (G; A) - see cocycles 

Z[i] - see Gaussian integers 

Z[.J2 ], 278, 3 1 1  
Z[.J=S" ], 273, 279. 283ff. 
Z[( 1 + ..J=f9)/2], 277, 280, 282 
Zfn'Jl, 8jf., 17, 56, 15ff., 226, 267 
(Z/n/Z)x ,  1 0, 1 8, 6 1 ,  1 35, 267, 3 1 4, 596 
Zariski closed set, 676 
Zariski closure, 677Jf., 691 
Zariski dense, 677, 687 
Zariski topology, 676ff. ,  733 
zero divisor, 226, 689 
zero ring, 224 
zero set, 659 
zero-dimensional ideal, 705ff. 
Zorn's Lemma, 65, 254, 414, 645, 907ff. 
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