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Abstract. This paper focuses on the classification of all toric log Del Pezzo

surfaces with exactly one singularity up to isomorphism, and on the descrip-
tion of how they are embedded as intersections of finitely many quadrics into

suitable projective spaces.

1. Introduction

A smooth compact complex surface X is called del Pezzo surface if its anticanonical
divisor −KX is ample, i.e., if the rational map Φ|−mKX | : X 99K P(|−mKX |)
associated to the linear system |−mKX | becomes a closed embedding with

OX(−mKX) ∼= Φ∗|−mKX |
(
OP(|−mKX |) (1)

)
,

for a suitable positive integer m. (Pasquale del Pezzo [16] initiated the study of
these surfaces in 1887.) The degree deg(X) of a del Pezzo surface X is defined to
be the self-intersection number (−KX)2. The main classification result about these
surfaces can be stated as follows (see [32, Theorem 24.4, pp. 119-121]):

Theorem 1.1. Let X be a del Pezzo surface of degree d := deg(X). We have
necessarily 1 ≤ d ≤ 9, and X is classified by d:

(i) If d = 9, then X is isomorphic to the projective plane P2
C.

(ii) If d = 8, then X is isomorphic either to P1
C × P1

C or to the blow-up of the
projective plane P2

C at one point.

(iii) If 1 ≤ d ≤ 7, then X is isomorphic to the blow-up of the projective plane P2
C

at 9− d points.

For 6 ≤ d ≤ 9, such an X is toric, i.e., it contains a 2-dimensional algebraic torus T
as a dense open subset, and is equipped with an algebraic action of T on X which
extends the natural action of T on itself. Taking into account the description of
smooth compact toric surfaces by the (Z-weighted) circular graphs (introduced in
[37, Chapter I, §8], [38, pp. 42-46]), as well as [3, Proposition 6] and [41, Proposition
2.7], Oda expresses in [38, Proposition 2.21, pp. 88-89] this fact in the language of
toric geometry as follows:

Theorem 1.2. There exist five distinct toric del Pezzo surfaces up to isomorphism.
They correspond to the circular graphs (with weights −1, 0, 1) shown in Figure 1.
They are (i) P2

C, (ii) P1
C × P1

C (∼= F0), (iii) the Hirzebruch surface F1, (iv) the
equivariant blow-up of P2

C at two of the T-fixed points, and (v) the equivariant
blow-up of P2

C at the three T-fixed points.
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Figure 1.

Note 1.3. The so-called Hirzebruch surfaces (introduced in [26, §2])

Fκ :=
{

([z0 : z1 : z2] , [t1 : t2]) ∈ P2
C × P1

C
∣∣ z1t

κ
1 = z2t

κ
2

}
, κ ∈ Z≥0,

are toric. Fκ is usually identified with the total space P(OP1
C
⊕ OP1

C
(κ)) of the

P1
C-bundle of degree κ over P1

C. Furthermore, every smooth compact toric surface
which has Picard number 2 is necessarily isomorphic to a Hirzebruch surface (cf.
[38, Corollary 1.29, p. 45]).

I The singular analogues. A normal compact complex surface X with at worst
log terminal singularities, i.e., quotient singularities, is called log del Pezzo surface
if its anticanonical Weil divisor −KX is a Q-Cartier ample divisor. The index of
such an X is defined to be the smallest positive integer ` for which −`KX is a
Cartier divisor. The family of log del Pezzo surfaces of fixed index ` is known to
be bounded. (See Nikulin [34], [35], [36], and Borisov [6, Theorem 2.1, p. 332].)
Consequently, it seems to be rather interesting to classify log del Pezzo surfaces of
given index `. This has been done for index ` = 1 by Hidaka & Watanabe [25] (by
a direct generalization of Theorem 1.1) and Ye [42], and for index ` = 2 by Alexeev
& Nikulin [1], [2] (in terms of diagrams of exceptional curves w.r.t. a suitable
resolution of singularities). Related results are due to Kojima [31] (whenever the
Picard number equals 1) and Nakayama [33] (whose techniques apply even if one
replaces C with an algebraically closed field of arbitrary characteristic). Based on
Nakayama’s arguments, Fujita & Yasutake [22] succeeded recently to extend the
classification even for ` = 3. But for indices ` ≥ 4 the situation turns out to be
much more complicated, and (apart from some partial results as those in [20], [21])
it is hard to expect a complete characterization of these surfaces in this degree of
generality.

On the other hand, if we restrict our study to the subclass of toric log del
Pezzo surfaces, the classification problem becomes considerably simpler: a) The
only singularities which can occur are cyclic quotient singularities. b) To classify
(not necessarily smooth) compact toric surfaces up to isomorphism it is enough to
use the graph-theoretic method proposed in [12, §5] (which generalizes Oda’s graphs
mentioned above): Two compact toric surfaces are isomorphic to each other if and
only if their vertex singly- and edge doubly-weighted circular graphs (wve2c-graphs,
for short) are isomorphic (see below Theorem 3.3). A detailed examination of the
number-theoretic properties of the weights of these graphs led to the classification
of all toric log del Pezzo surfaces having Picard number 1 and index ` ≤ 3 in [12,
§6] and [13]. In fact, the purely combinatorial part of the classification problem can
be further simplified because it can be reduced to the classification of the so-called
LDP-polygons (introduced in [15]) up to unimodular transformation. For ` = 1
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these are the sixteen reflexive polygons (which were discovered by Batyrev in the
1980’s). More recently, Kasprzyk, Kreuzer & Nill [28, §6] developed a particular
algorithm by means of which one creates an LDP-polygon (for given ` ≥ 2) by
fixing a “special” edge and following a prescribed successive addition of vertices,
and produced in this way the long lists of all LDP-polygons for ` ≤ 17. (An explicit
study for each of these 15346 LDP-polygons is available on the webpage [8].)

I Restrictions on the singularities. At this point let us mention some remarkable
results concerning the singularities of log del Pezzo surfaces having Picard number 1:
Belousov proved in [4], [5] that each of these surfaces admits at most 4 singularities,
Kojima [30] described the nature of the exceptional divisors w.r.t. the minimal
resolution of those possessing exactly one singularity, and Elagin [17] constructed
certain (non-toric) surfaces of this kind (realized as hypersurfaces of degree 4n−2 in
P3
C(1, 2, 2n−1, 4n−3)), and proved the existence of full exceptional sets of coherent

sheaves over them.
Obviously, the maximal number of the singularities of a toric log del Pezzo

surface equals the number of the edges of the corresponding LDP-polygon. (For an
upper bound of this number see [15, Lemma 3.1].) In the present paper we classify
all toric log del Pezzo surfaces with exactly one singularity (without laying a priori
any restrictions on the Picard number or on the index) up to isomorphism.

Theorem 1.4. Let XQ be a toric log del Pezzo surface (associated to an LDP-
polygon Q) with exactly one singularity. Then the following hold true:

(i) The Picard number ρ (XQ) of XQ can take only the values 1, 2 and 3.

(ii) If we define for every positive integer p the LDP-polygons
Q

[1]
p := conv

({(
1
−1

)
,
(
p
1

)
,
(−1

0

)})
,

Q
[2]
p := conv

({(
1
−1

)
,
(
p
1

)
,
(
p−1

1

)
,
(−1

0

)})
,

Q
[3]
p := conv

({(
1
−1

)
,
(
p
1

)
,
(
p−1

1

)
,
(−1

0

)
,
(

0
−1

)})
 , (1.1)

then for k ∈ {1, 2, 3} we have

ρ (XQ) = k ⇐⇒ ∃p ∈ Z>0 : XQ
∼= X

Q
[k]
p
,

and the wve2c-graphs G∆
Q

[k]
p

are those depicted in Figure 2.

(iii) X
Q

[1]
p

is isomorphic to the weighted projective plane P2
C(1, 1, p + 1) and is ob-

tained by contracting the ∞-section P(OP1
C
(p + 1)) of Fp+1. The surface X

Q
[2]
p

is

obtained by blowing up a Hirzebruch surface Fp at one T-fixed point, and contracting
afterwards its ∞-section. X

Q
[3]
p

is obtained by blowing up X
Q

[2]
p

at one non-singular

T-fixed point.

(iv) If XQ has index ` ≥ 1 and Picard number ρ (XQ) = k ∈ {1, 2, 3}, then for `
odd ≥ 3 either XQ

∼= X
Q

[k]
`−1

or XQ
∼= X

Q
[k]
2`−1

, whereas for ` ∈ {1} ∪ 2Z we have

XQ
∼= X

Q
[k]
2`−1

.

I Equations defining closed embeddings. For every del Pezzo surface X of degree d
with 3 ≤ d ≤ 9 the anticanonical divisor −KX is already very ample, and Φ|−KX |
gives rise to a realization of X as a subvariety of projective degree d in PdC. (For d = 1
and d = 2, one has to work with −3KX and −2KX instead to obtain realizations of
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Figure 2.

X as a subvariety of degree 9, and of degree 8 in P6
C, respectively.) Generalizations

of these (or similar but more “economic”) embeddings of log del Pezzo surfaces of
index 1 and 2 (in appropriate projective or weighted projective spaces) appear in
[25] and [27]. Since every ample divisor on a compact toric surface is very ample
(cf. [19] or [11, Corollary 2.2.19 (b), p. 71, and Proposition 6.1.10, pp. 269-270 ]),
the map Φ|−`KXQ | associated to the linear system

∣∣−`KXQ

∣∣ on a toric log del Pezzo

surface XQ of index ` becomes a closed embedding. Koelman’s Theorem [29] and
standard lattice point enumeration techniques enable us to describe Φ|−`KXQ |(XQ)

for those XQ’s classified in Theorem 1.4 as follows:

Theorem 1.5. Let XQ be a toric log del Pezzo surface of index ` ≥ 1 with exactly
one singularity. Then the image of XQ

∼= X
Q

[k]
p

under the closed embedding

Φ|−`KXQ | : XQ ↪→ P(
∣∣−`KXQ

∣∣)
is isomorphic to a subvariety of P

δ
Q

[k]
p

C of projective degree d
Q

[k]
p

which can be ex-

pressed as intersection of finitely many quadrics; δ
Q

[k]
p

and d
Q

[k]
p

are given in the

table:

No. p k d
Q

[k]
p

δ
Q

[k]
p

(i) odd 1 1
4

(p+ 1) (p+ 3)2 1
8

(p+ 3)3

(ii) even 1 (p+ 1) (p+ 3)2 1
2

(p+ 2) (p+ 3)2

(iii) odd 2 1
4

(p+ 1)
(
p2 + 5p+ 8

)
1
8

(p+ 3)
(
p2 + 5p+ 8

)
(iv) even 2 (p+ 1)

(
p2 + 5p+ 8

)
1
2

(p+ 2)
(
p2 + 5p+ 8

)
(v) odd 3 1

4
(p+ 1)

(
p2 + 4p+ 7

)
1
8

(p+ 3)
(
p2 + 4p+ 7

)
(vi) even 3 (p+ 1)

(
p2 + 4p+ 7

)
1
2

(p+ 2)
(
p2 + 4p+ 7

)

(1.2)
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On the other hand, the cardinality β
Q

[k]
p

of any minimal system of quadrics (gen-

erating the ideal which determines this subvariety) equals

No. p k β
Q

[k]
p

(i) odd 1 1
128

(p+ 1) (p+ 3)2
(
p3 + 11p2 + 43p+ 25

)
(ii) even 1 1

8
(p+ 3)2

(
p4 + 10p3 + 37p2 + 50p+ 24

)
(iii) odd 2 1

128
(p+ 1)

(
p2 + 5p+ 8

) (
p3 + 10p2 + 37p+ 16

)
(iv) even 2 1

8

(
p2 + 5p+ 8

) (
p4 + 9p3 + 32p2 + 42p+ 20

)
(v) odd 3 1

128
(p+ 1)

(
p2 + 4p+ 7

) (
p3 + 9p2 + 31p+ 7

)
(vi) even 3 1

8

(
p2 + 4p+ 7

) (
p4 + 8p3 + 27p2 + 34p+ 16

)

(1.3)

and the sectional genus g
Q

[k]
p

of X
Q

[k]
p

equals

No. p k g
Q

[k]
p

(i) odd 1 1
8

(p+ 1)
(
p2 + 4p− 1

)
(ii) even 1 1

2
(p+ 2)

(
p2 + 4p− 1

)
(iii) odd 2 1

8
p (p+ 1) (p+ 3)

(iv) even 2 1
2

(
p3 + 5p2 + 8p+ 2

)
(v) odd 3 1

8
(p+ 1)3

(vi) even 3 1
2

(
p3 + 4p2 + 7p+ 2

)

(1.4)

The paper is organized as follows: In §2 we focus on the two non-negative, rel-
atively prime integers p = pσ and q = qσ parametrizing the 2-dimensional, ra-
tional, strongly convex polyhedral cones σ, and explain how they characterize the
2-dimensional toric singularities. In §3-§4 we recall some auxiliary geometric prop-
erties of compact toric surfaces and of those which are log del Pezzo. The proofs
of Theorems 1.4 and 1.5 are given in sections 5 and 6, respectively. We use tools
only from discrete and classical toric geometry, adopting the standard terminology
from [11], [18], [23], and [38] (and mostly the notation introduced in [12]).

2. Two-dimensional toric singularities

Let σ = R≥0n + R≥0n
′ ⊂ R2 be a 2-dimensional, rational, strongly convex polyhe-

dral cone. Without loss of generality we may assume that n =
(
a
b

)
, n′ =

(
c
d

)
∈ Z2,

and that both n and n′ are primitive elements of Z2, i.e., gcd(a, b) = 1 and
gcd(c, d) = 1.

Lemma 2.1. Consider κ, λ ∈ Z, such that κa− λb = 1. If q := |ad− bc| , and p is
the unique integer with

0 ≤ p < q and κc− λd ≡ p (mod q) ,
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then gcd(p, q) = 1, and there exists a primitive element n′′ ∈ Z2 such that

n′ = pn + qn′′ and {n,n′′} is a Z-basis of Z2.

Moreover, there is a unimodular transformation Ψ : R2 → R2, Ψ (x) := Ξ x, with
Ξ ∈ GL2(Z), such that

Ψ (σ) = R≥0

(
1
0

)
+ R≥0

(
p
q

)
.

Proof. See [13, Lemma 2.1 and Lemma 2.2]. �

Henceforth, we call σ a (p, q)-cone. By Uσ := Spec(C[σ∨∩Z2]) we denote the affine
toric variety associated to σ (by means of the monoid σ∨ ∩ Z2, where σ∨ is the
dual of σ) and by orb(σ) the single point being fixed under the usual action of the
algebraic torus T := HomZ(Z2,C∗) on Uσ.

Proposition 2.2. The following conditions are equivalent:

(i) {n,n′} is a Z-basis of Z2.

(ii) q = 1 (and consequently, p = 0).

(iii) conv({0,n,n′}) ∩ Z2 = {0,n,n′}. (“conv” is abbreviation for convex hull.)

(iv) Uσ ∼= C2.

Proof. Let T be the triangle conv({0,n,n′}). The implication (i)⇒(ii) is obvious
because

q = |det(n,n′)| = 2 area(T ).

By Pick’s formula (cf. [23, p. 113]) we obtain

q

2
= area(T ) = ](int(T ) ∩ Z2) +

1

2
](∂(T ) ∩ Z2)− 1,

where “int” and ∂ are abbreviations for interior and boundary, respectively. If
q = 1, then

](∂(T ) ∩ Z2) ≥ 3⇒ ](int(T ) ∩ Z2) = 0 and necessarily ](∂(T ) ∩ Z2) = 3.

Hence, (ii)⇒(iii) is also true. (iii)⇒(i) follows from [24, Theorem 4, p. 20]. For the
proof of the equivalence of conditions (i) and (iv) see [38, Theorem 1.10, p. 15]. �

If the conditions of Proposition 2.2 are satisfied, then σ is said to be a basic cone.
On the other hand, whenever q > 1 we have the following:

Proposition 2.3. orb(σ) ∈ Uσ is a cyclic quotient singularity. In particular,

Uσ ∼= C2/G = Spec(C[z1, z2]G),

with G ⊂ GL(2,C) denoting the cyclic group G of order q which is generated by
diag(ζ−pq , ζq) (ζq := exp(2π

√
−1/q)) and acts on C2 = Spec(C[z1, z2]) linearly and

effectively.

Proof. See [11, Proposition 10.1.2, pp. 460-461], [23, § 2.2, pp. 32-34] and [38,
Proposition 1.24, p.30]. �

By Proposition 2.4 these two numbers p = pσ and q = qσ parametrize uniquely the
isomorphism class of the germ (Uσ, orb(σ)), up to replacement of p by its socius p̂
(which corresponds just to the interchange of the coordinates). [The socius p̂ of p
is defined to be the uniquely determined integer, so that 0 ≤ p̂ < q, gcd(p̂, q) = 1,
and p p̂ ≡ 1(mod q).]
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Proposition 2.4. Let σ, τ ⊂ R2 be two 2-dimensional, rational, stronly convex
polyhedral cones. Then the following conditions are equivalent :

(i) There is a T-equivariant isomorphism Uσ ∼= Uτ mapping orb(σ) onto orb(τ).

(ii) There is a unimodular transformation Ψ : R2 → R2, Ψ (x) := Ξ x, Ξ ∈ GL2(Z),
such that Ψ (σ) = τ.

(iii) For the numbers pσ, pτ , qσ, qτ associated to σ, τ (by Lemma 2.1) we have
qτ = qσ and either pτ = pσ or pτ = p̂σ.

Proof. See [13, Proposition 2.4]. �

3. Compact toric surfaces

Every compact toric surface is a 2-dimensional toric variety X∆ associated to a
complete fan ∆ in R2, i.e., a fan having 2-dimensional cones as maximal cones and
whose support |∆| is the entire R2 (see [38, Theorem 1.11, p. 16]). Consider a
complete fan ∆ in R2 and suppose that

σi = R≥0ni + R≥0ni+1, i ∈ {1, . . . , ν}, (3.1)

are its 2-dimensional cones (with ν ≥ 3 and ni ∈ Z2 primitive for all i ∈ {1, . . . , ν}),
enumerated in such a way that n1, . . . ,nν go anticlockwise around the origin exactly
once in this order (under the usual convention: nν+1 := n1, n0 := nν). X∆ is
obtained by gluing the affine charts Uσi along the open subsets which are defined
by the rays σi ∩ σi+1, for all i ∈ {1, . . . , ν} (cf. [38, Theorem 1.4, p. 7]). Since ∆
is simplicial, the Picard number ρ(X∆) of X∆ (i.e., the rank of its Picard group
Pic(X∆)) equals

ρ(X∆) = ν − 2, (3.2)

(see [23, p. 65]). Now suppose that σi is a (pi, qi)-cone for all i ∈ {1, . . . , ν} and
introduce the notation

I∆ := { i ∈ {1, . . . , ν} | qi > 1} , J∆ := { i ∈ {1, . . . , ν} | qi = 1} , (3.3)

to separate the indices corresponding to non-basic from those corresponding to
basic cones. By Propositions 2.2 and 2.3 the singular locus of X∆ equals

Sing(X∆) = {orb(σi) | i ∈ I∆} .
For all i ∈ I∆ consider the negative-regular continued fraction expansion of

qi
qi − pi

= b
(i)
1 −

1

b
(i)
2 −

1

. . .

b
(i)
si−1 −

1

b
(i)
si

,

and define u
(i)
1 := ni, u

(i)
1 := 1

qi
((qi − pi)ni + ni+1), and

u
(i)
j+1 = b

(i)
j u

(i)
j − u

(i)
j−1, ∀j ∈ {1, . . . , si}.

It is easy to see that u
(i)
si+1 = ni+1, and that b

(i)
j are integers ≥ 2, for all indices

j ∈ {1, . . . , si}. According to [12, Proposition 4.9, p. 99], the self-intersection
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number of the canonical divisor KX∆
of X∆ equals

K2
X∆

= 12− ν +
∑
i∈I∆

 qi−pi+1
qi

+ qi−p̂i+1
qi

− 2 +

si∑
j=1

(
b
(i)
j − 3

) . (3.4)

By construction, the birational morphism f : X∆̃ −→ X∆ induced by the refinement

∆̃ :=


the cones {σi | i ∈ J∆} and{

R≥0 u
(i)
j + R≥0 u

(i)
j+1

∣∣∣ i ∈ I∆, j ∈ {0, 1, . . . , si}} ,
together with their faces


.

of the fan ∆ is the minimal desingularization of X∆. The exceptional divisor

E(i) :=

si∑
j=1

E
(i)
j , i ∈ I∆,

replacing orb(σi) via f has

E
(i)
j := orb∆̃(R≥0 u

(i)
j ) (∼= P1

C), ∀j ∈ {1, 2, . . . , si},

(i.e., the closures of the orbits of the new rays w.r.t. ∆̃) as its components, and

self-intersection number (E
(i)
j )2 = −b(i)j . Moreover, Ci := orb∆̃(R≥0 ni) is the strict

transform of Ci := orb∆(R≥0 ni) w.r.t. f for all i ∈ {1, 2, . . . , ν}.
Definition 3.1. For every i ∈ {1, . . . , ν} we introduce integers ri uniquely deter-
mined by the conditions:

rini =



u
(i−1)
si−1 + u

(i)
1 , if i ∈ I ′∆,

ni−1 + u
(i)
1 , if i ∈ I ′′∆,

u
(i−1)
si−1 + ni+1, if i ∈ J ′∆,

ni−1 + ni+1, if i ∈ J ′′∆,

(3.5)

where

I ′∆ := { i ∈ I∆ | qi−1 > 1} , I ′′∆ := { i ∈ I∆ | qi−1 = 1} ,
and

J ′∆ := { i ∈ J∆ | qi−1 > 1} , J ′′∆ := { i ∈ J∆ | qi−1 = 1} ,
with I∆, J∆ as in (3.3).

By [12, Lemma 4.3], for i ∈ {1, . . . , ν}, −ri is nothing but the self-intersection

number C
2

i of Ci. The triples (pi, qi, ri), i ∈ {1, 2, . . . , ν}, are used to define the
wve2c-graph G∆.

Definition 3.2. A circular graph is a plane graph whose vertices are points on
a circle and whose edges are the corresponding arcs (on this circle, each of which
connects two consecutive vertices). We say that a circular graph G is Z-weighted at
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its vertices and double Z-weighted at its edges (and call it wve2c-graph, for short)
if it is accompanied by two maps

{Vertices of G} 7−→ Z, {Edges of G} 7−→ Z2,

assigning to each vertex an integer and to each edge a pair of integers, respectively.
To every complete fan ∆ in R2 (as described above) we associate an anticlockwise
directed wve2c-graph G∆ with

{Vertices of G∆} = {v1, . . . ,vν} and {Edges of G∆} = {v1v2, . . . ,vνv1},

(vν+1 := v1), by defining its “weights” as follows:

vi 7−→ −ri, vivi+1 7−→ (pi, qi) , ∀i ∈ {1, . . . , ν}.

The reverse graph Grev
∆ of G∆ is the directed wve2c-graph which is obtained by

changing the double weight (pi, qi) of the edge vivi+1 into (p̂i, qi) and reversing the
initial anticlockwise direction of G∆ into clockwise direction (see Figure 3).

Figure 3.

Theorem 3.3. Let ∆, ∆′ be two complete fans in R2. Then the following conditions
are equivalent :

(i) The compact toric surfaces X∆ and X∆′ are isomorphic.

(ii) Either G∆′
gr.∼= G∆ or G∆′

gr.∼= Grev
∆ .

Here “
gr.∼= ” indicates graph-theoretic isomorphism (i.e., a bijection between the sets

of vertices which preserves the corresponding weights). For further details and
for the proof of Theorem 3.3 (which can be viewed as an appropriate generaliza-
tion of Proposition 2.4 for complete fans in R2) the reader is referred to [12, §5].
[Convention: To be absolutely compatible with Oda’s circular graphs we omit the
weights of the edges which are equal to (0, 1), i.e., those corresponding to basic
cones, whenever we draw a wve2c-graph.]
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4. Toric log del Pezzo surfaces and LDP-polygons

Definition 4.1. Let Q ⊂ R2 be a convex polygon. Denote by V(Q) and F(Q)
the set of its vertices and the set of its facets (edges), respectively. Q is called an
LDP-polygon if it contains the origin in its interior, and its vertices belong to Z2

and are primitive. (Obviously, the image of an LDP-polygon under a unimodular
transformation is again an LDP-polygon.)

If Q is an LDP-polygon, we shall denote by XQ the compact toric surface X∆Q

constructed by means of the fan

∆Q := { the cones σF together with their faces | F ∈ F(Q)} ,
where σF := {λx | x ∈ F and λ ∈ R≥0} for all F ∈ F(Q).

Proposition 4.2. (i) A compact toric surface is log del Pezzo if and only if it is
isomorphic to XQ for some LDP-polygon Q.

(ii) There is a one-to-one correspondence
lattice-equivalence

classes

of LDP-polytopes


3 [Q] 7−→ [XQ] ∈


isomorphism classes

of toric log del Pezzo

surfaces


.

Proof. (i) This follows from [12, Remark 6.7, p. 107].

(ii) If Q is an LDP-polygon, Ψ : R2 → R2, Ψ (x) := Ξ x, Ξ ∈ GL2(Z), a unimodular
transformation, and Q′ := Ψ(Q), then

G∆Q′

gr.∼= G∆Q
, whenever det(Ξ) = 1, and G∆Q′

gr.∼= Grev
∆Q
, whenever det(Ξ) = −1.

By Theorem 3.3, XQ and XQ′ are isomorphic. And conversely, if XQ and XQ′ are
isomorphic for some LDP-polygons Q,Q′, then

either G∆Q′

gr.∼= G∆Q
or G∆Q′

gr.∼= Grev
∆Q
. (4.1)

Thus, by (4.1) there exists an automorphism $ of the lattice Z2 = Z
(

1
0

)
⊕Z
(

0
1

)
with

det($) =


1, in the first case,

−1, in the second case,

such that $R(∆Q) = ∆Q′ (preserving/reversing the ordering of the cones), where

$R := $ ⊗Z idR : R2 −→ R2

denotes its scalar extension. Obviously, $R(Q) = Q′. �

Note 4.3. Let Q be an arbitrary LDP-polygon. For each F ∈ F(Q) assume that
σF is a (pF , qF )-cone. Then from [12, Lemma 6.8] one concludes that the index `
of XQ equals

` = lcm { lF |F ∈ F(Q)} with lF :=
qF

gcd(qF , pF − 1)
. (4.2)

If we consider the polar polygon

Q̊ :=
{

y ∈ HomR(R2,R)
∣∣ 〈y,x〉 ≥ −1, ∀x ∈ Q

}
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of Q, where 〈·, ·〉 : HomR(R2,R) × R2 → R denotes the usual inner product, then

Q̊ contains the origin in its interior, and the index ` of XQ equals

` = min
{
κ ∈ Z>0| V(κQ̊) ⊂ Z2

}
( with κQ̊ :=

{
κy
∣∣∣y ∈ Q̊}).

Moreover, if F ∈ F(Q), denoting by ηF the unique primitive ηF ∈ Z2 for which
〈ηF ,x〉 = lF , ∀x ∈ F, we have

V(Q̊) =

{ −1

lF
ηF

∣∣∣∣F ∈ F(Q)

}
. (4.3)

5. Proof of the classification theorem 1.4

Let Q be an LDP-polygon with vertex set V(Q) = {n1, . . . ,nν} , ν ≥ 3. Assume
that σi, i ∈ {1, . . . , ν}, are the 2-dimensional cones of ∆Q, defined and ordered
(anticlockwise) as in (3.1), and that only one of these cones, say σ1, is a non-basic
(p, q)-cone (i.e., q > 1). By Lemma 2.1, there is a unimodular transformation
Ψ1 : R2 −→ R2, Ψ1 (x) := Ξ x, Ξ ∈ GL2(Z), such that

Ψ1 (σ1) = R≥0

(
1
0

)
+ R≥0

(
p
q

)
.

Without loss of generality we may assume that det(Ξ) = 1 (because otherwise the
proof of Theorem 1.4 which follows can be performed similarly if one works with
the vertices ordered clockwise). This means that Ψ1(n1) =

(
1
0

)
and Ψ1(n2) =

(
p
q

)
.

Lemma 5.1. There exists a unimodular transformation Ψ2 : R2 → R2 such that

Ψ2(Ψ1 (σ1)) = R≥0

(
1
−1

)
+ R≥0

(
p
q−p
)
,

with Ψ2

(
1
0

)
=
(

1
−1

)
and Ψ2

(
p
q

)
=
(
p
q−p
)
.

Proof. It is enough to define Ψ2(x) :=

(
1
−1

0
1

)
x, ∀x ∈ R2. �

Next, we set Υ := Ψ2 ◦ Ψ1, vi := Υ(ni), for all i ∈ {1, . . . , ν} (and vν+1 := v1).
Starting with the minimal generators v1 =

(
1
−1

)
, v2 =

(
p
q−p
)

of the unique non-

basic cone Υ (σ1) of ∆Υ(Q) we shall study the restrictions on the location of the
remaining vertices of Υ (Q) in detail.

Since all cones of ∆Υ(Q) are strongly convex and
∣∣∆Υ(Q)

∣∣ = R2,

∃µ ∈ {3, . . . , ν} : vµ =
(
a
b

)
∈
{(

x
y

)
∈ R2

∣∣∣ q−pp x < y < −x
}
∩ Z2. (5.1)

Obviously, V(Υ (Q))r{v1,v2,vµ} is either empty or a subset of (U1 ∪ U2) ∩ Z2,
where

U1 :=

(xy) ∈ R2

∣∣∣∣∣∣∣
y < −x, ay > bx,

(p− 1)y > (q − p+ 1)x− q

 ,

and

U2 :=

(xy) ∈ R2

∣∣∣∣∣∣∣
(q − p)x < py, ay < bx,

(p− 1)y > (q − p+ 1)x− q

 .

(
{(

x
y

)
∈ R2

∣∣∣ (p− 1)y = (q − p+ 1)x− q
}

is nothing but the supporting line of the

edge conv({v1,v2}) of Υ (Q) .)
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Lemma 5.2. (i) The cones R≥0vµ + R≥0v1 and R≥0v2 + R≥0vµ are basic.

(ii) q = p+ 1 (and consequently, p̂ = p and vµ =
(−1

0

)
).

Proof. (i) Using Proposition 2.2 it suffices to prove that

conv({0,vµ,v1}) ∩ Z2 = {0,vµ,v1}, conv({0,v2,vµ}) ∩ Z2 = {0,v2,vµ}. (5.2)

If conv({0,vµ,v1}) ∈ F(Υ (Q)), i.e., if µ = ν, the first equality in (5.2) is obvi-
ous (because Υ (σν) is basic by definition). If conv({0,vµ,v1}) /∈ F(Υ (Q)), then
V(Υ (Q)) ∩ U1 6= ∅, and if we would assume that

∃m ∈ (conv({0,vµ,v1}) ∩ Z2)r{0,vµ,v1},
then there would be a

ξ ∈ {µ+ 1, µ+ 2, . . . , ν, ν + 1} : m ∈ (conv({0,vξ−1,vξ}) ∩ Z2)r{0,vξ−1,vξ},
leading to contradiction (because Υ (σξ−1) is basic by definition). Similar arguments
(using U2 instead of U1) show that the second equality in (5.2) is also true.

(ii) By (i), |det(vµ,v1)| = |det(v2,vµ)| = 1. This, combined with (5.1), gives on
the one hand |a+ b| = 1 = −(a+ b) (because a+ b < 0), and on the other hand

q−p
p a < −a⇒ aq ≤ −q < −p⇒ |(a+ b)p− aq| = |p+ aq| = 1 = − (p+ aq) .

Therefore, a = −p+1
q . Now since q | p+ 1 and p < q, we have

q = p+ 1⇒ a = −1, b = 0,

and p+ 1 |
(
p2 − 1

)
⇒ p̂ = p. �

Lemma 5.3. There is no convex polygon having three collinear vertices.

Proof. This is due to the fact that the vertices of a convex polygon are its extreme
points. (See, e.g., [7, p. 30 and p. 45].) �

Lemma 5.4. The LDP-polygon Υ (Q) (with V(Υ (Q)) = {v1, . . . ,vν}) has the
following properties:

(i) Setting k := ν− 2, we have necessarily k ∈ {1, 2, 3}. Moreover, Υ (Q) = Q
[k]
p for

k ∈ {1, 3}, and either Υ (Q) = Q
[2]
p or Υ (Q) = Q̌

[2]
p for k = 2, where Q

[1]
p , Q

[2]
p , Q

[3]
p

are the polygons defined in (1.1), and

Q̌[2]
p := conv

({(
1
−1

)
,
(
p
1

)
,
(−1

0

)
,
(

0
−1

)})
.

(ii) Q
[2]
p and Q̌

[2]
p are lattice-equivalent.

Proof. (i) If U ′1 :=
{(

x
y

)
∈ U1 |y ≤ −2

}
, we claim that U ′1 ∩ V(Υ (Q)) = ∅. If

vµ+1 ∈ U ′1 ∩ V(Υ (Q)), then we would have |det(vµ,vµ+1)| ≥ 2, contradicting to
the basicness of the cone Υ (σµ) . If

vµ+1 ∈
{(

x
y

)
∈ Z2 |x ≤ 0, y = −1

}
and vµ+2 ∈ U ′1 ∩ V(Υ (Q)),

then we would again have |det(vµ+1,vµ+2)| ≥ 2, contradicting to the basicness of
the cone Υ (σµ+1) . Repeating successively this procedure (until we arrive at vν)
we bear out our assertion, as well as the implication

µ ≤ ν − 1⇒ {vξ |µ+ 1 ≤ ξ ≤ ν } ⊂
{(

x
y

)
∈ Z2 |x ≤ 0, y = −1

}
.
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Correspondingly, for U ′2 :=
{(

x
y

)
∈ U2 |y ≥ 2

}
we show that U ′2 ∩ V(Υ (Q)) = ∅,

and

µ ≥ 4⇒ {vξ |3 ≤ ξ ≤ µ− 1} ⊂
{(

x
y

)
∈ Z2 |x ≤ p− 1, y = 1

}
.

Hence, V(Υ (Q))r{v1,v2,vµ} is either empty or a subset of(xy) ∈ Z2

∣∣∣∣∣∣∣
x ≤ 0

y = −1

 ∪
(xy) ∈ Z2

∣∣∣∣∣∣∣
x ≤ p− 1

y = 1

 .

Taking into account Lemma 5.3 we conclude that

{v1,v2,vµ} ⊆ V(Υ (Q)) ⊆
{

v1,v2,
(
p−1

1

)
,vµ,

(
0
−1

)}
.

Therefore, k ∈ {1, 2, 3} and there are only four possibilities:

• Case (a): If k = 1, then ν = µ = 3 and

Υ (Q) = conv({v1,v2,v3}) =


(
x
y

)
∈ R2

∣∣∣∣∣∣∣∣
− 1

2 (x+ 1) ≤ y ≤ 1
p+1 (x+ 1),

(p− 1)y ≥ 2x− (p+ 1)

 = Q[1]
p .

• Case (b): If k = 2, then ν = 4 and either Υ (Q) = Q
[2]
p , µ = 4, or Υ (Q) = Q̌

[2]
p ,

µ = 3.

• Case (c): If k = 3, then ν = 5, µ = 4 and Υ (Q) = Q
[3]
p .

(ii) Q
[2]
p is mapped onto Q̌

[2]
p under the unimodular transformation

Y : R2 −→ R2, Y(x) :=

 1 1− p

0 −1

x, ∀x ∈ R2,

and Y(v1) = v2, Y(v2) = v1, Y
(−1

0

)
=
(−1

0

)
, Y
(
p−1

1

)
=
(

0
−1

)
. �

Note 5.5. The set conv({v1,v2})∩Z2 is empty for p even and consists of the single

lattice point
( 1

2 (p+1)
0

)
for p odd. Thus, the number of the lattice points belonging

to the boundary of Q
[k]
p , k ∈ {1, 2, 3}, equals k + 2 whenever p is even and k + 3

whenever p is odd. Since area(Q
[k]
p ) = p+k

2 + 1, Pick’s formula gives

](int(Q[k]
p ) ∩ Z2) =


p
2 + 1, if p is even,

p−1
2 + 1, if p is odd.

(Obviously, int(Q
[k]
p ) ∩ Z2 =

{(
x
y

)
∈ Z2

∣∣∣ 0 ≤ x < p+1
2 , y = 0

}
.)

Proof of Theorem 1.4. (i)-(ii) Up to isomorphism, every toric log del Pezzo surface
with exactly one singularity is of the form XQ with Q as above. By (3.2), Lemma
5.4 and Proposition 4.2 we infer that the Picard number ρ (XQ) of XQ can take
only the values 1, 2 and 3, and that for k ∈ {1, 2, 3},

ρ (XQ) = k ⇐⇒ ∃p ∈ Z>0 : XQ
∼= X

Q
[k]
p
.
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(Note that for k = 2, Y induces a graph-theoretic isomorphism G∆
Q̌

[2]
p

gr.∼= Grev
∆

Q
[2]
p

,

meaning that X
Q

[2]
p

∼= X
Q̌

[2]
p
.) The fan ∆̃

Q
[k]
p

which is used to construct the minimal

desingularization of X
Q

[k]
p

(as explained in §3) contains just one additional ray

(compared with ∆
Q

[k]
p

), namely R≥0

(
1
0

)
. The closure of its orbit constitutes the

single exceptional divisor, say E, w.r.t. this desingularization, with E2 = −(p+ 1).
Setting uE :=

(
1
0

)
we compute the integers ri, i ∈ {1, . . . , k+ 2}, (defined in (3.5))

in the three different cases:

• Case (a): If k = 1, then v1 =
(

1
−1

)
, v2 =

(
p
1

)
,v3 =

(−1
0

)
, and

[v3 + uE = 0, v2 + v1 = −(p+ 1)v3]⇒ r1 = r2 = 0, r3 = −(p+ 1).

• Case (b): If k = 2, then v1 =
(

1
−1

)
, v2 =

(
p
1

)
, v3 =

(
p−1

1

)
, v4 =

(−1
0

)
, and

v4 + uE = 0,uE + v3 = v2

v2 + v4 = v3,v3 + v1 = −pv4

⇒ r1 = 0, r2 = r3 = 1, r4 = −p.

• Case (c): If k = 3, then v1 =
(

1
−1

)
, v2 =

(
p
1

)
, v3 =

(
p−1

1

)
, v4 =

(−1
0

)
, v5 =

(
0
−1

)
,

and

v5 + uE = v1,uE + v3 = v2,

v2 + v4 = v3,v3 + v5 = −(p+ 1)v4,

v4 + v1 = v5


⇒ r1 = r2 = r3 = r5 = 1, r4 = −(p−1).

Hence, the wve2c-graphs G∆
Q

[k]
p

are indeed those depicted in Figure 2.

(iii) Defining for every positive integer p the complete fan

Dp :=



the cones R≥0

(
1
−1

)
+ R≥0

(
1
0

)
, R≥0

(
1
0

)
+ R≥0

(
p
1

)
,

R≥0

(
p
1

)
+ R≥0

(−1
0

)
, and R≥0

(−1
0

)
+ R≥0

(
1
−1

)
,

together with their faces


,

we see that XDp
∼= Fp+1, having orbDp(R≥0

(
1
0

)
) as its ∞-section. The surfaces

X
Q

[k]
p

are characterized as follows:

• Case (a): If k = 1, then X
Q

[1]
p

∼= P2
C(1, 1, p + 1) (see [13, Lemma 6.1]), and it

is obtained by contracting the ∞-section of XDp
. In fact, since XDp

= X∆̃
Q

[1]
p

is the minimal desingularization of X
Q

[1]
p
, the surface X

Q
[1]
p

is nothing but the

anticanonical model of XDp
(in the sense of Sakai [39]).

• Case (b): If k = 2, the star subdivision of Dp−1 w.r.t the cone R≥0

(
1
0

)
+R≥0

(
p−1

1

)
induces the equivariant blow-up X∆̃

Q
[2]
p

−→ XDp−1 with the orbit of this cone as

centre (cf. [11, Proposition 3.3.15, p. 130], [37, Corollary 7.5, p. 45] or [18, Theorem
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VI.7.2, pp. 249-250]). Thus, the surface X
Q

[2]
p

is obtained by contracting the strict

transform of the ∞-section of XDp−1
on X∆̃

Q
[2]
p

.

• Case (c): If k = 3, we construct the surface X
Q

[3]
p

from X
Q

[2]
p

by using the

equivariant birational morphism induced by the star subdivision of Dp−1 w.r.t the

cone R≥0

(−1
0

)
+ R≥0

(
1
−1

)
, i.e., by blowing up its orbit (which is a non-singular

T-fixed point of X
Q

[2]
p

).

Taking into account that we pass from XDp−1
to XDp

(and vice versa) by an ele-
mentary transformation (cf. [12, Remark 6.3, pp. 105-106]), we illustrate in Figure
4 how the equivariant birational morphisms connecting all the above mentioned
compact toric surfaces affect their wve2c-graphs.

(ρ,ρ+ 1)

Figure 4.

(iv) Since q = p + 1 and gcd(p + 1, p − 1) = gcd(p + 1, 2) ∈ {1, 2}, formula (4.2)
shows that the index ` of XQ

∼= X
Q

[k]
p

equals p+1
2 whenever p is odd and p + 1

whenever p is even. This bears out our assertion about `. �

Remark 5.6. Among the LDP-polygons Q
[k]
p , only Q

[1]
1 , Q

[2]
1 , Q

[3]
1 are reflexive

(with index ` = 1 and a unique Gorenstein singularity).
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6. Defining equations

Let Q be an arbitrary LDP-polygon. Since the Cartier divisor −`KXQ
on XQ is

very ample, setting

δQ := ]((`Q̊) ∩ Z2)− 1,

the complete linear system
∣∣−`KXQ

∣∣ induces the closed embedding Φ|−`KXQ |,

T �
� ι //

66XQ
� �

Φ∣∣∣∣−`KXQ

∣∣∣∣
// PδQC

with

T 3 t 7−→ (Φ|−`KXQ | ◦ ι)(t) := [... : z(i,j) : ...](i,j)∈(`Q̊)∩Z2 ∈ PδQC , z(i,j) := χ(i,j)(t),

where χ(i,j) : T→ C∗ is the character associated to the lattice point (i, j) (with T
denoting the algebraic torus HomZ(Z2,C∗)), for all (i, j) ∈ (`Q̊) ∩ Z2. The image
Φ|−`KXQ |(XQ) of XQ under Φ|−`KXQ | is the Zariski closure of Im(Φ|−`KXQ | ◦ ι) in

PδQC and can be viewed as the projective variety Proj(S`Q̊), where

S`Q̊ := C[C(`Q̊) ∩ Z3] =

∞⊕
κ=0

 ⊕
(i,j)∈(κ(`Q̊))∩Z2

C·χ(i,j)sκ


(with C(`Q̊) := {(λy1, λy2, λ)

∣∣∣λ ∈ R≥0 and (y1, y2) ∈ `Q̊}) is the semigroup alge-

bra which is naturally graded by setting deg(χ(i,j)sκ) := κ. (For a detailed exposi-
tion see [11, Theorem 2.3.1, p. 75; Proposition 5.4.7, pp. 237-238; Theorem 5.4.8,
pp. 239-240, and Theorem 7.1.13, pp. 325-326].) Equivalently, it can be viewed as

the zero set V(IAQ
) ⊂ PδQC of the homogeneous ideal IAQ

:= Ker(πQ), where

AQ :=
{

(i, j, 1)
∣∣∣(i, j) ∈ (`Q̊) ∩ Z2

}
⊂ Z2 × {1} ⊂ Z3,

and πQ is the C-algebra homomorphism

C[... : z(i,j) : ....](i,j)∈(`Q̊)∩Z2

πQ−→ C[..., χ(i,j,1), ....](i,j,1)∈AQ
, z(i,j) 7−→ χ(i,j,1).

Furthermore, the projective degree dQ := deg(V(IAQ
)) of V(IAQ

) (i.e., the double
of the leading coefficient of the Hilbert polynomial of the homogeneous coordinate
ring C[... : z(i,j) : ....](i,j)∈(`Q̊)∩Z2/IAQ

) equals

dQ = 2 area(`Q̊). (6.1)

(See Sturmfels [40, Theorem 4.16, pp. 36-37, and p. 131] and [11, Proposition
9.4.3, pp. 432-433].)

Theorem 6.1 (Koelman [29]). If ](∂(`Q̊) ∩ Z2) ≥ 4, then IAQ
is generated by all

possible quadratic binomials, i.e.,

IAQ =

〈z(i1,j1)z(i2,j2) − z(i′1,j′1)z(i′2,j′2)
∣∣∣∣∣∣∣∣

(i1, j1), (i2, j2), (i′1, j
′
1), (i′2, j

′
2) ∈ (`Q̊) ∩ Z2,

with (i1, j1) + (i2, j2) = (i′1, j
′
1) + (i′2, j

′
2)


〉
.
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Corollary 6.2 (Castryck & Cools [9, §2]). If ](∂(`Q̊) ∩ Z2) ≥ 4, and if we denote
by βQ the cardinality of any minimal system of quadrics generating the ideal IAQ

,
then

βQ =
(
δQ+2

2

)
− ](2(`Q̊) ∩ Z2). (6.2)

Proof. If HP2(PδQC ) := {homogeneous polynomials (in δQ + 1 variables) of degree 2} ,
then the C-vector space homomorphism

f : HP2(PδQC ) −→ C
[
x±1, y±1

]
, mapping z(i1,j1)z(i2,j2) onto xi1+i2yj1+j2 ,

has as kernel Ker(f) the C-vector space of homogeneous polynomials of degree 2

which belong to IAQ
and as image Im(f) the linear span of {xiyj

∣∣ (i, j) ∈ 2(`Q̊)∩Z2}
(because every lattice point in 2(`Q̊) is the sum of two lattice points of `Q̊, cf. [11,
Theorem 2.2.12, pp. 68-69]). Taking into account Koelman’s Theorem 6.1, [40,
Lemma 4.1, p. 31], and the fact that V(IAQ

) is not contained in any hyperplane of

PδQC , the equality

dimC(Ker(f)) = dimC(HP2(PδQC ))− dimC(Im(f))

gives (6.2). �

I Back to toric log del Pezzos with one singularity. Now let Q be an LDP-polygon
such that XQ has exactly one singularity. According to Theorem 1.4, there exist

p ∈ Z>0 and k ∈ {1, 2, 3}, such that XQ
∼= X

Q
[k]
p

with index ` = p+1
2 for p odd

and ` = p + 1 for p even. For this reason, to apply Corollary 6.2 and to prove

Theorem 1.5 we shall take a closer look at the dilated polars `Q̊
[k]
p of the polygons

Q
[k]
p defined in (1.1).

Lemma 6.3. The vertex sets of the polygons `Q̊
[k]
p , k ∈ {1, 2, 3}, are the following :

V(`Q̊
[1]
p ) =



{( −1
p−1

2

)
,
( p+1

2

− (p+1)2

2

)
,
( p+1

2
p+1

)}
, if p is odd,

{( −2
p−1

)
,
(

p+1
−(p+1)2

)
,
(
p+1

2(p+1)

)}
, if p is even,

V(`Q̊
[2]
p ) =



{( −1
p−1

2

)
,
(

0
− p+1

2

)
,
( p+1

2

− p(p+1)
2

)
,
( p+1

2
p+1

)}
, if p is odd,

{( −2
p−1

)
,
(

0
−(p+1)

)
,
(

p+1
−p(p+1)

)
,
(
p+1

2(p+1)

)}
, if p is even,

V(`Q̊
[3]
p ) =



{( −1
p−1

2

)
,
(

0
− p+1

2

)
,
( p+1

2

− p(p+1)
2

)
,
( p+1

2
p+1

2

)
,
(

0
p+1

2

)}
, if p is odd,

{( −2
p−1

)
,
(

0
−(p+1)

)
,
(

p+1
−p(p+1)

)
,
(
p+1
p+1

)
,
(

0
p+1

)}
, if p is even.
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Proof. Since Q
[1]
p = conv({v1,v2,v3}) with v1 =

(
1
−1

)
, v2 =

(
p
1

)
,v3 =

(−1
0

)
, and

ηconv({v1,v2}) =
( 2`

p+1

− (p−1)`
p+1

)
, ηconv({v2,v3}) =

( −1
p+1

)
, ηconv({v3,v1}) =

(−1
−2

)
,

with lconv({v1,v2}) = `, lconv({v2,v3}) = lconv({v3,v1}) = 1, (4.3) gives

V(Q̊[1]
p ) =

{(− 2
p+1
p−1
p+1

)
,
(

1
−(p+1)

)
,
(

1
2

)}
.

Analogously, we conclude that

V(Q̊[2]
p ) =

{(− 2
p+1
p−1
p+1

)
,
(

0
−1

)
,
(

1
−p
)
,
(

1
2

)}
, V(Q̊[3]

p ) =

{(− 2
p+1
p−1
p+1

)
,
(

0
−1

)
,
(

1
−p
)
,
(

1
1

)
,
(

0
1

)}
.

After multiplication with the index ` we get V(`Q̊
[k]
p ), k ∈ {1, 2, 3}. �

Lemma 6.4. The number of lattice points on ∂(`Q̊
[k]
p ) is given in the table:

No. p k ](∂(`Q̊
[k]
p ) ∩ Z2) No. p k ](∂(`Q̊

[k]
p ) ∩ Z2)

(i) odd 1 1
2 (p+ 3)

2
(iv) even 2 p2 + 5p+ 8

(ii) even 1 (p+ 3)2 (v) odd 3 1
2

(
p2 + 4p+ 7

)
(iii) odd 2 1

2

(
p2 + 5p+ 8

)
(vi) even 3 p2 + 4p+ 7

Proof. Since the number of lattice points lying on the boundary of a lattice-polygon
(w.r.t. Z2) is computed by the sum of the greatest common divisors of the differ-
ences of the vertex-coordinates of its edges, the above table is produced directly by
using Lemma 6.3. �

Remark 6.5. Since ](∂(`Q̊
[k]
p ) ∩ Z2) ≥ 6 for all p ∈ Z>0 and all k ∈ {1, 2, 3},

Theorem 6.1 and Corollary 6.2 can be applied for the LDP-polygons Q
[k]
p .

Lemma 6.6. The projective degree d
Q

[k]
p

of V(IA
Q

[k]
p

) is given in the table:

No. p k d
Q

[k]
p

No. p k d
Q

[k]
p

(i) odd 1 1
4

(p+ 1) (p+ 3)2 (iv) even 2 (p+ 1)
(
p2 + 5p+ 8

)
(ii) even 1 (p+ 1) (p+ 3)2 (v) odd 3 1

4
(p+ 1)

(
p2 + 4p+ 7

)
(iii) odd 2 1

4
(p+ 1)

(
p2 + 5p+ 8

)
(vi) even 3 (p+ 1)

(
p2 + 4p+ 7

)
Proof. To determine the area of `Q̊

[k]
p one may work with its vertex set given in

Lemma 6.3. Alternatively, using [38, Proposition 2.10, p. 79] and formula (3.4) for
X
Q

[k]
p

we deduce that

2 area(Q̊[k]
p ) = K2

X
Q

[k]
p

= 6− k + p+
4

p+ 1
,

and we read off d
Q

[k]
p

easier via (6.1) which gives d
Q

[k]
p

= `2K2
X

Q
[k]
p

. �
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Lemma 6.7. The dimension δ
Q

[k]
p

of the projective space in which V(IA
Q

[k]
p

) is

embedded equals

δ
Q

[k]
p

=
1

2
(d
Q

[k]
p

+ ](∂(`Q̊[k]
p ) ∩ Z2)). (6.3)

Proof. (6.3) is immediate consequence of Pick’s formula. �

Lemma 6.8. The number β
Q

[k]
p

(of the elements of any minimal generating system

of IA
Q

[k]
p

) is given by the formula:

β
Q

[k]
p

= 1
2 (δ

Q
[k]
p

+ 1)(δ
Q

[k]
p

+ 2)− (2d
Q

[k]
p

+ ](∂(`Q̊[k]
p ) ∩ Z2) + 1). (6.4)

Proof. By the main properties of Ehrhart polynomial of the lattice polygon `Q̊
[k]
p

(cf. [11, Example 9.4.4, p. 433]) we obtain

](2(`Q̊[k]
p ) ∩ Z2) = 4 area(`Q̊) + ](∂(`Q̊[k]

p ) ∩ Z2) + 1.

Hence, (6.4) follows from (6.2) and (6.1). �

Hyperplanes H ⊂ P
δ
Q

[k]
p

C give curves V(IA
Q

[k]
p

) ∩H which are linearly equivalent to

−`KX
Q

[k]
p

. For generic H’s the intersection C
Q

[k]
p

:= V(IA
Q

[k]
p

) ∩ H is (by Bertini’s

Theorem) a smooth connected curve in the smooth locus of V(IA
Q

[k]
p

) ∼= X
Q

[k]
p
. The

genus of C
Q

[k]
p

is called the sectional genus g
Q

[k]
p

of X
Q

[k]
p
.

Lemma 6.9. The sectional genus of X
Q

[k]
p

is

g
Q

[k]
p

= δ
Q

[k]
p
− ](∂(`Q̊[k]

p ) ∩ Z2) + 1. (6.5)

Proof. (6.5) follows from the fact that g
Q

[k]
p

= ](int(`Q̊
[k]
p )∩Z2). (See [11, Proposi-

tion 10.5.8, p. 509].) �

Proof of Theorem 1.5: The number ](∂(`Q̊
[k]
p )∩Z2) and the projective degree d

Q
[k]
p

are known from Lemmas 6.4 and 6.6, respectively, while δ
Q

[k]
p

is computed via (6.3),

leading to Table (1.2), and consequently to Table (1.3) by making use of formula
(6.4). Finally, one obtains Table (1.4) by means of the equality (6.5). �

Note 6.10. For a Magma code for the computation of a minimal generating system
of the ideal defining the projective toric surface associated to an arbitrary lattice
polygon, see [10]. In our particular case (in which we deal only with quadrics) it is
enough to collect all vectorial relations (i1, j1) + (i2, j2) = (i′1, j

′
1) + (i′2, j

′
2), and to

determine a C-linearly independent subset of the set of the corresponding quadratic
binomials z(i1,j1)z(i2,j2) − z(i′1,j

′
1)z(i′2,j

′
2) by simply applying Gaussian elimination.

For a short routine (written in Python) see [14].
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Examples 6.11. (i) The ideal IA
Q

[2]
1

(with V(IA
Q

[2]
1

) ⊂ P7
C) is minimally generated

by the following 14 quadrics:

z(−1,0)z(1,−1) − z(0,−1)z(0,0), z(−1,0)z(1,0) − z(0,−1)z(0,1), z
2
(1,0) − z(1,1)z(1,−1),

z(−1,0)z(1,1) − z(0,0)z(0,1), z(1,1)z(1,0) − z(1,2)z(1,−1), z
2
(1,1) − z(1,2)z(1,0),

z2(0,1) − z(−1,0)z(1,2), z(0,1)z(1,−1) − z(0,−1)z(1,1), z(0,1)z(1,0) − z(0,−1)z(1,2),

z(0,1)z(1,1) − z(0,0)z(1,2), z(0,0)z(1,−1) − z(0,−1)z(1,0), z(0,0)z(1,0) − z(0,−1)z(1,1),

z(0,0)z(1,1) − z(0,−1)z(1,2), z
2
(0,0) − z(0,−1)z(0,1).

(ii) Correspondingly, the 9 quadrics

z(−1,0)z(1,0) − z(0,1)z(0,−1), z
2
(1,0) − z(1,1)z(1,−1), z(−1,0)z(1,−1) − z(0,0)z(0,−1),

z(−1,0)z(1,1) − z(0,1)z(0,0), z(0,−1)z(1,0) − z(0,0)z(1,−1), z(0,−1)z(1,1) − z(0,1)z(1,−1),

z(0,0)z(1,0) − z(0,1)z(1,−1), z(0,0)z(1,1) − z(0,1)z(1,0), z2(0,0) − z(0,1)z(0,−1)

build a minimal set of generators of the ideal IA
Q

[3]
1

, and V(IA
Q

[3]
1

) ⊂ P6
C. (X

Q
[3]
1

is

obtained by blowing up X
Q

[2]
1

at one non-singular point, cf. Figure 5.)

Figure 5.

(iii) The next coming example, namely that one created by the LDP-polygon Q
[3]
3

(cf. Figure 6), in which 2Q̊
[3]
3 ∩Z2 consists of 22 lattice points and V(IA

Q
[3]
3

) ⊂ P21
C ,

is much more complicated. Using [14] we see that IA
Q

[3]
3

is minimally generated by

the following 182 quadrics:
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z(0,−2)z(2,−2) − z(1,−4)z(1,0), z(1,−4)z(2,−4) − z(1,−2)z(2,−6), z(−1,1)z(1,−1) − z(0,−2)z(0,2),

z(0,−2)z(2,0) − z(1,−1)z(1,−1), z(−1,1)z(1,−4) − z(0,−2)z(0,−1), z(1,−4)z(2,−1) − z(1,−1)z(2,−4),

z(0,−2)z(2,−4) − z(1,−4)z(1,−2), z(2,−6)z(2,−1) − z(2,−5)z(2,−2), z(0,−2)z(2,−3) − z(0,0)z(2,−5),

z(−1,1)z(2,0) − z(0,2)z(1,−1), z(0,−1)z(2,2) − z(0,0)z(2,1), z(−1,1)z(2,−6) − z(0,−1)z(1,−4),

z(0,−2)z(2,−5) − z(0,−1)z(2,−6), z(1,−4)z(2,2) − z(1,−1)z(2,−1), z(1,−4)z(2,1) − z(1,0)z(2,−3),

z(−1,1)z(2,−5) − z(0,−2)z(1,−2), z(−1,1)z(2,1) − z(0,2)z(1,0), z(−1,1)z(2,−3) − z(0,1)z(1,−3),

z(−1,1)z(2,−5) − z(0,−1)z(1,−3), z(1,−4)z(2,0) − z(1,−2)z(2,−2), z(1,−4)z(2,1) − z(1,−1)z(2,−2),

z(1,−4)z(2,−3) − z(1,−1)z(2,−6), z(1,−4)z(2,2) − z(1,−3)z(2,1), z(−1,1)z(2,−1) − z(0,1)z(1,−1),

z(0,0)z(2,2) − z(0,2)z(2,0), z(−1,1)z(2,−4) − z(0,1)z(1,−4), z(1,−3)z(2,2) − z(1,0)z(2,−1),

z(0,−2)z(2,−2) − z2
(1,−2), z(1,−4)z(2,0) − z(1,1)z(2,−5), z(1,−4)z(2,−2) − z(1,0)z(2,−6),

z(2,−6)z(2,−1) − z(2,−4)z(2,−3), z(2,−6)z(2,2) − z(2,−4)z(2,0), z(2,−2)z(2,2) − z2
(2,0),

z(1,−3)z(2,2) − z(1,−2)z(2,1), z(0,0)z(2,2) − z(0,1)z(2,1), z(1,−1)z(2,2) − z(1,2)z(2,−1),

z(−1,1)z(2,−2) − z(0,−2)z(1,1), z(2,−6)z(2,−2) − z(2,−4)z(2,−4), z(1,−1)z(2,2) − z(1,1)z(2,0),

z(−1,1)z(2,−4) − z(0,−1)z(1,−2), z(1,−4)z(2,0) − z(1,−3)z(2,−1), z(0,−2)z(2,−3) − z(1,−3)z(1,−2),

z(0,−2)z(2,2) − z(0,1)z(2,−1), z(1,−4)z(2,2) − z(1,1)z(2,−3), z(1,1)z(2,2) − z(1,2)z(2,1),

z(2,−4)z(2,2) − z(2,−3)z(2,1), z(2,−6)z(2,2) − z(2,−3)z(2,−1), z(2,−4)z(2,2) − z(2,−2)z(2,0),

z(−1,1)z(2,−1) − z(0,0)z(1,0), z(−1,1)z(2,0) − z(0,−1)z(1,2), z(1,−4)z(2,0) − z(1,0)z(2,−4),

z(−1,1)z(2,−4) − z(0,0)z(1,−3), z(0,−2)z(2,−4) − z(0,−1)z(2,−5), z(0,−2)z(2,1) − z(1,−2)z(1,1),

z(−1,1)z(2,0) − z(0,0)z(1,1), z(2,−6)z(2,1) − z(2,−5)z(2,0), z(−1,1)z(2,−2) − z(0,2)z(1,−3),

z(0,−2)z(2,−1) − z(1,−3)z(1,0), z(−1,1)z(1,−2) − z(0,−1)z(0,0), z(1,−2)z(2,2) − z(1,0)z(2,0),

z(0,1)z(2,2) − z(0,2)z(2,1), z(1,−4)z(2,2) − z(1,2)z(2,−4), z(2,−2)z(2,2) − z(2,−1)z(2,1),

z(1,−4)z(2,2) − z(1,0)z(2,−2), z(0,−2)z(2,0) − z(0,1)z(2,−3), z(0,−2)z(2,−4) − z2
(1,−3),

z(1,−4)z(2,−1) − z(1,1)z(2,−6), z(1,−4)z(2,−3) − z(1,−3)z(2,−4), z(0,−2)z(2,0) − z(1,−4)z(1,2),

z(0,−2)z(2,0) − z(1,−2)z(1,0), z(0,−2)z(2,1) − z(0,−1)z(2,0), z(1,−4)z(2,−2) − z(1,−1)z(2,−5),

z(0,−2)z(2,1) − z(1,−1)z(1,0), z(−1,1)z(2,−3) − z(0,0)z(1,−2), z(−1,1)z(2,−2) − z(0,0)z(1,−1),

z(0,−2)z(2,−1) − z(1,−2)z(1,−1), z(2,−6)z(2,−4) − z2
(2,−5), z(−1,1)z(2,−4) − z(0,−2)z(1,−1),

z(0,−2)z(2,−1) − z(1,−4)z(1,1), z(−1,1)z(2,−3) − z(0,−1)z(1,−1), z(0,−2)z(2,2) − z(0,−1)z(2,1),

z(1,−4)z(2,−1) − z(1,−3)z(2,−2), z(−1,1)z(1,0) − z(0,−1)z(0,2), z(0,−2)z(2,−2) − z(1,−3)z(1,−1),

z(−1,1)z(1,1) − z2
(0,1), z(2,−6)z(2,0) − z2

(2,−3), z(−1,1)z(2,−1) − z(0,−1)z(1,1),

z(1,−2)z(2,2) − z(1,1)z(2,−1), z(0,−2)z(2,1) − z(1,−3)z(1,2), z(2,−5)z(2,2) − z(2,−2)z(2,−1),

z(1,−4)z(2,−4) − z(1,−3)z(2,−5), z(1,−4)z(2,−1) − z(1,0)z(2,−5), z(1,−4)z(2,1) − z(1,1)z(2,−4),

z(1,−4)z(2,1) − z(1,−2)z(2,−1), z(0,−2)z(2,−1) − z(0,0)z(2,−3), z(0,−2)z(2,2) − z(1,−2)z(1,2),

z(1,−3)z(2,2) − z(1,−1)z(2,0), z(1,−4)z(2,−2) − z(1,−3)z(2,−3), z(0,−1)z(2,2) − z(1,0)z(1,1),

z(2,−1)z(2,2) − z(2,0)z(2,1), z(0,−1)z(2,2) − z(0,1)z(2,0), z(0,−2)z(2,−1) − z(0,2)z(2,−5),

z(1,−4)z(2,−5) − z(1,−3)z(2,−6), z(0,−2)z(2,2) − z(0,0)z(2,0), z(−1,1)z(1,1) − z(0,0)z(0,2),

z(2,−6)z(2,−2) − z(2,−5)z(2,−3), z(2,−6)z(2,1) − z(2,−3)z(2,−2), z(−1,1)z(2,−3) − z(0,2)z(1,−4),

z(1,−3)z(2,2) − z(1,2)z(2,−3), z(−1,1)z(2,−2) − z(0,−1)z(1,0), z(2,−5)z(2,2) − z(2,−4)z(2,1),

z(−1,1)z(1,2) − z(0,1)z(0,2), z(0,−2)z(2,−3) − z(0,−1)z(2,−4), z(0,−2)z(2,2) − z2
(1,0),

z(−1,1)z(1,−1) − z2
(0,0), z(1,−4)z(2,0) − z(1,−1)z(2,−3), z(−1,1)z(2,2) − z(0,2)z(1,1),

z(1,−3)z(2,2) − z(1,1)z(2,−2), z(0,−2)z(2,2) − z(1,−1)z(1,1), z(0,−2)z(2,−2) − z(0,0)z(2,−4),

z(−1,1)z(1,−2) − z(0,−2)z(0,1), z(0,−2)z(2,0) − z(0,0)z(2,−2), z(0,−2)z(2,−2) − z(0,2)z(2,−6),
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z(0,1)z(2,2) − z(1,1)z(1,2), z(−1,1)z(1,−3) − z(0,−2)z(0,0), z(0,−2)z(2,−1) − z(0,−1)z(2,−2),

z(0,−1)z(2,2) − z(1,−1)z(1,2), z(1,−4)z(2,1) − z(1,−3)z(2,0), z(−1,1)z(1,−3) − z2
(0,−1),

z(0,−2)z(2,0) − z(0,−1)z(2,−1), z(1,−4)z(2,2) − z(1,−2)z(2,0), z(−1,1)z(2,−1) − z(0,−2)z(1,2),

z(0,−1)z(2,2) − z(0,2)z(2,−1), z(2,−6)z(2,0) − z(2,−4)z(2,−2), z(0,−2)z(2,−2) − z(0,1)z(2,−5),

z(2,−3)z(2,2) − z(2,−1)z(2,0), z(0,0)z(2,2) − z(1,0)z(1,2), z(−1,1)z(2,−5) − z(0,0)z(1,−4),

z(−1,1)z(2,−6) − z(0,−2)z(1,−3), z(−1,1)z(2,−2) − z(0,1)z(1,−2), z(0,−2)z(2,−2) − z(0,−1)z(2,−3),

z(−1,1)z(2,1) − z(0,0)z(1,2), z(2,−3)z(2,2) − z(2,−2)z(2,1), z(−1,1)z(2,1) − z(0,1)z(1,1),

z(1,0)z(2,2) − z(1,2)z(2,0), z(0,−2)z(2,−1) − z(0,1)z(2,−4), z(0,−2)z(2,−5) − z(1,−4)z(1,−3),

z(−1,1)z(2,−3) − z(0,−2)z(1,0), z(1,−2)z(2,2) − z(1,2)z(2,−2), z(2,−5)z(2,2) − z(2,−3)z(2,0),

z(−1,1)z(2,0) − z2
(0,1), z(0,−2)z(2,−6) − z2

(1,−4), z(0,−2)z(2,2) − z(0,2)z(2,−2),

z(1,−4)z(2,−2) − z(1,−2)z(2,−4), z(−1,1)z(2,2) − z(0,1)z(1,2), z(1,−4)z(2,1) − z(1,2)z(2,−5),

z(1,−4)z(2,−3) − z(1,−2)z(2,−5), z(−1,1)z(1,0) − z(0,0)z(0,1), z(1,0)z(2,2) − z(1,1)z(2,1),

z(2,−4)z(2,2) − z2
(2,−1), z(2,−6)z(2,−3) − z(2,−5)z(2,−4), z(2,−6)z(2,2) − z(2,−5)z(2,1),

z(0,−2)z(2,−3) − z(1,−4)z(1,−1), z(2,0)z(2,2) − z2
(2,1), z(2,−6)z(2,1) − z(2,−4)z(2,−1),

z(0,2)z(2,2) − z2
(1,2), z(0,−2)z(2,1) − z(0,2)z(2,−3), z(0,−2)z(2,1) − z(0,1)z(2,−2),

z(−1,1)z(1,−1) − z(0,−1)z(0,1), z(0,−2)z(2,−4) − z(0,0)z(2,−6), z(1,−4)z(2,−1) − z(1,−2)z(2,−3),

z(2,−6)z(2,2) − z2
(2,−2), z(0,−2)z(2,−3) − z(0,1)z(2,−6), z(0,−2)z(2,1) − z(0,0)z(2,−1),

z(0,−2)z(2,0) − z(1,−3)z(1,1), z(−1,1)z(2,−1) − z(0,2)z(1,−2), z(2,−6)z(2,0) − z(2,−5)z(2,−1),

z(0,−2)z(2,0) − z(0,2)z(2,−4), z(0,0)z(2,2) − z(1,1)z(1,1), z(1,−4)z(2,0) − z(1,2)z(2,−6),

z(1,−1)z(2,2) − z(1,0)z(2,1), z(1,−2)z(2,2) − z(1,−1)z(2,1).

Figure 6.
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