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1. Introduction

Smooth compact toric surfaces belong to the basics in the framework of toric
geometry. They are rational surfaces (i.e., of Kodaira dimension −∞) defined by
2-dimensional complete fans which are composed of basic cones, and can therefore
be studied by means of handy combinatorics (see [20, Theorem 1.28, pp. 42–43]).
Of course, unlike the smooth compact complex surfaces having Kodaira dimension
≥ 0, they do not possess uniquely determined minimal models. Nevertheless, the
set of their minimal models consists of the projective plane P

2
C

together with the
Hirzebruch surfaces

Fκ :=
{(

[z0 : z1 : z2], [t1 : t2]
)
∈ P

2
C × P

1
C

∣∣ z1t
κ
1 = z2t

κ
2

}
, κ ∈ Z≥0 ,

for κ �= 1 (cf. [12], [10, §2.5], [20, §1.7]), and it is known how one can pass from one
minimal model to another by a finite succession of elementary transformations.

In contrast to this classical point of view, taking into account the fact that
the anti-Kodaira dimension of smooth compact toric surfaces is 2, and switching
to the so-called antiminimal and anticanonical models (in the sense of Sakai [22,
§7], [23, Appendix]), one obtains surfaces which are uniquely determined up to
isomorphism. However, since these models are mostly singular, in order to follow
this choice we need a more systematic study of singular compact toric surfaces.
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A graph-theoretic method of classifying (not necessarily smooth) compact
toric surfaces up to isomorphism (generalizing Oda’s graphs [20, pp. 44–46]) has
been proposed in [7, §5]: Two compact toric surfaces are isomorphic to each other if
and only if their vertex singly- and edge doubly-weighted circular graphs (wve

2
c-

graphs, for short) are isomorphic (see below Theorem 4.4). In addition, by [21, The-
orem 4.3, pp. 398–399] the anticanonical models of smooth compact toric surfaces
have to be “log Del Pezzo surfaces”.

A compact complex surface X with at worst log terminal singularities, i.e.,
quotient singularities, is called log Del Pezzo surface if its anticanonical divisor
−KX is a Q-Cartier ample divisor. The index of such a surface is defined to be the
smallest positive integer � for which −�KX is a Cartier divisor. The family of log
Del Pezzo surfaces of fixed index � is known to be bounded (see Nikulin [17–19],
and Borisov [4, Theorem 2.1, p. 332])). The classification problem of log Del Pezzo
surfaces of index � ≤ 2 has been solved by Alexeev and Nikulin in [2] and [3]. (Other
related results for the case of index 2 are due to Kojima [14] and Nakayama [16].)
It is hard to expect a complete classification for higher indices in such generality.
On the other hand, as it is explained in [7, §6], there is a realistic hope to classify
the toric log Del Pezzo surfaces of given index � ≥ 3 up to isomorphism (based on
their special structure and on the possibility to work with the wve

2
c-graphs or,

equivalently, with the associated LDP-polygons).
A first attempt to understand the combinatorial complexity of this prob-

lem includes naturally the investigation of the case in which the Picard number
ρ(XΔ) := rank(Pic(XΔ)) of surfaces XΔ of this kind (associated to complete fans
Δ in R

2) equals 1. In this case, XΔ’s turn out to be weighted projective planes or
quotients thereof by a finite abelian group. Let us first recall what is known for
indices � ≤ 2:

Theorem 1.1. Up to isomorphism, there are exactly 5 toric log del Pezzo surfaces
with Picard number 1 and index � = 1, namely

No. (i) (ii) (iii) (iv) (v)
XΔ P

2
C

P
2
C
/(Z/3Z) P

2
C
(1, 1, 2) P

2
C
(1, 1, 2)/(Z/2Z) P

2
C
(1, 2, 3)

whose wve
2
c-graphs are illustrated in [7, Figure 8, p. 108].

Theorem 1.2. Up to isomorphism, there are exactly 7 toric log del Pezzo surfaces
with Picard number 1 and index � = 2, namely

No. XΔ No. XΔ

(i) P
2
C
(1, 1, 4) (iv) P

2
C
(1, 2, 3)/(Z/2Z)

(ii) P
2
C
(1, 4, 5) (v) P

2
C
(1, 1, 2)/(Z/4Z)

(iii) P
2
C
(1, 3, 8) (vi) P

2
C
(1, 2, 1)/(Z/4Z)

(vii) P
2
C
(1, 1, 4)/(Z/3Z)

whose wve
2
c-graphs are illustrated in [7, Figure 11, p. 111].
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In the present paper we extend these results also for index 3 by the following:

Theorem 1.3. Up to isomorphism, there are exactly 18 toric log del Pezzo surfaces
with Picard number 1 and index � = 3, namely

No. XΔ No. XΔ

(i) P
2
C
(1, 1, 3) (x) P

2
C
(1, 5, 9)

(ii) P
2
C
(1, 3, 4) (xi) P

2
C
(1, 2, 9)

(iii) P
2
C
(2, 3, 5) (xii) P

2
C
(1, 2, 3)/(Z/3Z)

(iv) P
2
C
(1, 1, 2)/(Z/3Z) (xiii) P

2
C
(1, 1, 2)/(Z/2Z) × (Z/3Z)

(v) P
2
C
(1, 1, 6) (xiv) P

2
C
(1, 1, 6)/(Z/2Z)

(vi) P
2
C
(1, 6, 7) (xv) P

2
C
(1, 4, 15)

(vii) P
2
C
(1, 3, 4)/(Z/2Z) (xvi) P

2
C
(1, 1, 3)/(Z/5Z)

(viii) P
2
C
(1, 2, 3)/(Z/3Z) (xvii) P

2
C
(1, 2, 9)/(Z/2Z)

(ix) P
2
C
/(Z/9Z) (xviii) P

2
C
(1, 1, 6)/(Z/4Z)

whose wve
2
c-graphs are illustrated below in Figure 3.

The paper is organized as follows: In Section 2 we focus on the properties
of the two non-negative, relatively prime integers p = pσ and q = qσ which pa-
rametrize the 2-dimensional, rational, strongly convex polyhedral cones σ, and
recall how they are involved in Hirzebruch’s minimal desingularization [13] of the
2-dimensional cyclic quotient singularities orb(σ) ∈ Spec(C[σ∨ ∩ Z

2]) for q > 1.
In Section 3 we give necessary and sufficient arithmetical conditions for the local
indices l = lσ to be 1 or 3. Sections 4 and 5 are devoted to a detailed descrip-
tion of compact toric surfaces and of those which are log Del Pezzo surfaces. Some
key-lemmas of combinatorial nature concerning compact toric surfaces with Picard
number 1 are presented in Section 6. Based on the results of Section 3–Section 6
we explain how the classification method works in Section 7. The proof of Theo-
rem 1.3 (which is somewhat longer than that of 1.1 and 1.2) follows in four steps
(in Section 8–Section 11). The first three include the case by case determination
of all “amissible” of triples of pairs (pi, qi), 1 ≤ i ≤ 3, so that the induced toric
log Del Pezzo surfaces XΔ with Picard number ρ(XΔ) = 1 have index � = 3. A
minimal set of pairwise non-isomorphic surfaces of this kind is sorted out in the
fourth step.

We use tools only from the classical toric geometry, adopting the standard
terminology from [9,10], and [20] (and mostly the notation introduced in [7]).

2. Two-dimensional toric singularities

Let σ = R≥0n+R≥0n′ ⊂ R
2 be a 2-dimensional, rational, strongly convex polyhe-

dral cone. Without loss of generality we may assume that n =
(
a
b

)
, n′ =

(
c
d

)
∈ Z

2,

and that both n and n′ are primitive elements of Z
2, i.e., gcd(a, b) = 1 and

gcd(c, d) = 1.
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Lemma 2.1. Consider κ, λ ∈ Z, such that κa − λb = 1. If q := |ad − bc|, and p is
the unique integer with

0 ≤ p < q and κc − λd ≡ p(mod q) ,

then gcd(p, q) = 1, and there exists a primitive element n′′ =
(

e
g

)
∈ Z

2, such that
n′ = pn + qn′′ and {n,n′′} is a Z-basis of Z

2.

Proof. We define ε := sign(ad − bc) and write κc − λd = γq + p, γ ∈ Z. Setting
g := εκ + γb and e := ελ + γa, we get

gc − ed = ε (κc − λd) + γ (bc − ad) = ε (γq + p) + γ (−εq) = εp ,

i.e., p = ε (gc − ed). On the other hand,

det
(

a e
b g

)
= ag − eb = ε (κa − λb) = ε ,

which means that n′′ is primitive, {n,n′′} a Z-basis of Z
2, and ( a c

b d ) = ( a e
b g )( 1 p

0 q ),
i.e., n′ = pn + qn′′, because

pa + qe = ε (gca − eda) + ε (ad − bc) e = cε (ga − be) = c

and
pb + qg = ε (gcb − edb) + ε (ad − bc) g = εd (ag − be) = d .

Since gcd(p, q) divides both c and d, and gcd(c, d) = 1, we obtain gcd(p, q) = 1. �

Lemma 2.2. There is a linear map Φ : R
2 −→ R

2, Φ(x) := Ξx, with Ξ ∈ GL2(Z),
such that

Φ(σ) = R≥0

(
1
0

)
+ R≥0

(
p

q

)
.

Proof. It it enough to define as Ξ :=
( ε(d−bp)

q
ε(ap−c)

q

−εb εa

)
. �

Henceforth, we call σ a (p, q)-cone. Denoting by Uσ := Spec(C[σ∨ ∩ Z
2]) the

affine toric variety associated to σ (by means of the monoid σ∨ ∩ Z
2, where σ∨ is

the dual of σ) and by orb(σ) the single point being fixed under the usual action of
the algebraic torus T := HomZ(Z2, C∗) on Uσ, it is easy to see that Uσ

∼= C
2 only

if q = 1. (In this case, σ is said to be a basic cone.) On the other hand, whenever
q > 1 we have the following:

Proposition 2.3. orb(σ) ∈ Uσ is a cyclic quotient singularity. In particular,

Uσ
∼= C

2/G = Spec
(
C[z1, z2]G

)
,

with G ⊂ GL(2, C) denoting the cyclic group G of order q which is generated by
diag(ζ−p

q , ζq) (ζq := exp(2π
√
−1/q)) and acts on C

2 = Spec(C[z1, z2]) linearly and
effectively.

Proof. See [10, § 2.2, pp. 32–34] or [20, Proposition 1.24, p. 30]. �
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In fact, Uσ is the toric variety XΔσ
defined by the fan

Δσ := {σ together with its faces} ,

and by Proposition 2.4 these two numbers p = pσ and q = qσ parametrize uniquely
the isomorphism class of the germ (Uσ, orb (σ)), up to replacement of p by its
socius p̂ (which corresponds just to the interchange of the coordinates). [The socius
p̂ of p is defined to be the uniquely determined integer, so that 0 ≤ p̂ < q,
gcd(p̂, q) = 1, and p p̂ ≡ 1(mod q).]

Proposition 2.4. Let σ, τ ⊂ R
2 be two 2-dimensional, rational, stronly convex poly-

hedral cones. Then the following conditions are equivalent:

(i) There is a T-equivariant isomorphism Uσ
∼= Uτ mapping orb(σ) onto orb(τ).

(ii) There exists a linear map Φ : R
2 −→ R

2, Φ(x) := Ξx, with Ξ ∈ GL2(Z),
such that Φ(σ) = τ.

(iii) For the numbers pσ, pτ , qσ, qτ associated to σ, τ (by Lemma 2.1) we have
qτ = qσ and either pτ = pσ or pτ = p̂σ.

Proof. For the equivalence (i)⇔(ii) see Ewald [9, Ch. VI, Thm. 2.11, pp. 222–223].
For proving (ii)⇔(iii) we may w.l.o.g. consider (by virtue of Lemma 2.2) the cones

σ := R≥0

(
1
0

)
+ R≥0

(
pσ

qσ

)
and τ := R≥0

(
1
0

)
+ R≥0

(
pτ

qτ

)

instead of σ, τ.
(ii)⇒(iii): If there is a linear map Φ : R

2 −→ R
2, Φ(x) := Ξx, with Ξ ∈

GL2(Z), such that Φ (σ) = τ , then either

Φ
((

1
0

))
=
(

1
0

)
and Φ

((
pσ

qσ

))
=
(

pτ

qτ

)

or

Φ
((

1
0

))
=
(

pτ

qτ

)
and Φ

((
pσ

qσ

))
=
(

1
0

)
.

Thus, either

Ξ =

(
1 pτ−pσ

qσ

0 qτ

qσ

)
or Ξ =

(
pτ

1−pσ pτ

qσ

qτ −pσ qτ

qσ

)
.

In the first case det(Ξ) has to be equal to 1, which means that qσ = qτ and
pτ − pσ ≡ 0 (mod qσ), i.e., pτ = pσ (because 0 ≤ pσ, pτ ≤ qσ = qτ ). In the second
case, det(Ξ) = −1; hence, qσ = qτ and 1 − pσ pτ ≡ 0 (mod qσ), i.e., pτ = p̂σ.

(iii)⇒(ii): If qσ = qτ and pσ = pτ , we define Φ := idR2 . Otherwise, qσ = qτ

and pτ = p̂σ, and

Φ (x) :=
(

pτ
1−pσ pτ

qσ

qσ −pσ

)(
x1

x2

)
, ∀

(
x1

x2

)
∈ R

2 ,

is an R-vector space isomorphism with the desired property. �
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To construct the minimal desingularization of Uσ for a (p, q)-cone

σ = R≥0n + R≥0n′ ⊂ R
2 (with q > 1)

we consider the negative-regular continued fraction expansion of

q

q − p
= [[b1, b2, . . . , bs]] := b1 −

1
b2 − 1

. . .
bs−1 − 1

bs

,

and define u0 := n, u1 := 1
q ((q − p)n+n′), and lattice points {uj | 2 ≤ j ≤ s + 1}

by the formulae
uj+1 := bjuj − uj−1 , ∀j ∈ {1, . . . , s} .

It is easy to see that us+1 = n′, and that the integers bj are ≥ 2, for all indices
j ∈ {1, . . . , s}. Next, we subdivide σ into s + 1 smaller basic cones by introducing
new rays passing through the points u1, . . . ,us.

Theorem 2.5 (Toric version of Hirzebruch’s desingularization). The refinement

Δ̃σ :=
{
{R≥0 uj + R≥0 uj+1 | 0 ≤ j ≤ s} together with their faces

}

of Δσ := {σtogether with its faces} consists of basic cones, is the coarsest refine-
ment of Δσ with this property, and induces the minimal T-equivariant resolution
XΔ̃σ

−→ XΔσ
= Uσ of the singular point orb(σ). Moreover, the exceptional divisor

is E :=
∑s

j=1Ej , having

Ej := orbΔ̃σ
(R≥0 uj) (∼= P

1
C) , ∀j ∈ {1, . . . , s} ,

(i.e., the closures of the T-orbits of the new rays w.r.t. Δ̃σ) as its components,
with self-intersection number (Ej)2 = −bj .

Proof. See Hirzebruch [13, pp. 15–20] who constructs XΔ̃σ
by resolving the unique

singularity lying over 0 ∈ C
3 in the normalization of the hypersurface

{
(z1, z2, z3) ∈ C

3
∣∣ zq

1 − z2z
q−p
3 = 0

}
,

and Oda [20, pp. 24–30] for a proof which uses only the tools of toric geometry. �

3. Local indices

Let σ ⊂ R
2 be a (p, q)-cone. We define the local index l = lσ of σ to be the positive

integer

l :=
{

1 , if q = 1 ,
min
{

k ∈ N | k K(E) is a Cartier divisor
}

, if q > 1 ,
(3.1)
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where K(E) denotes the local canonical divisor of XΔ̃σ
at orb(σ) (in the sense

of [7, p. 75]) w.r.t. the minimal resolution XΔ̃σ
−→ XΔσ

of orb(σ) constructed in
Theorem 2.5. It can be shown that

l =
q

gcd(q, p − 1)
, (3.2)

cf. [7, Note 3.19, p. 89, and Prop. 4.4, pp. 94–95], and that the self-intersection
number of K(E) equals

K(E)2 = −

⎛
⎝2 − (p + p̂)

q
+

s∑
j=1

(bj − 2)

⎞
⎠ , (3.3)

cf. [7, Corollary 4.6, p. 96]. For the proof of Theorem 1.3 we need to know under
which restrictions on p and q we have l ∈ {1, 3}.

Lemma 3.1. If σ ⊂ R
2 is a (p, q)-cone, then

l = 1 ⇐⇒
{

either p = 0 and q = 1 ,
or p = 1 and q ≥ 2 ,

(3.4)

Proof. By (3.2), l = 1 ⇐⇒ q = gcd(q, q − p + 1), and therefore q | p − 1. Since
p − 1 < p < q, p and q satisfy conditions (3.4). �

Lemma 3.2. If σ ⊂ R
2 is a (p, q)-cone, then

l = 3 ⇐⇒
{

either (p, q) ∈ A ,
or (p, q) ∈ B ,

(3.5)

where
A :=

{
(p, q) ∈ N × N | q = 3(p − 1), p ≥ 2, 3 � p

}
,

and

B :=
{

(p, q) ∈ N × N | q =
3
2
(p − 1), p odd ≥ 5, 3 � p

}
.

Moreover, if (p, q) ∈ A and (p′, q) ∈ B, then

p′ = p̂ (= the socius of p) ⇐⇒ pp′ ≡ 1(mod q) ⇐⇒ q ≡ 0(mod 9) .

Proof. l = 3 means that q = 3m, where m := gcd(q, p−1). Write p−1 = am. Since
1 ≤ p < q, we have a ∈ {1, 2}. Since gcd(p, q) = 1, in the case in which a = 1, we
get gcd(3m,m + 1) = 1 ⇐⇒ gcd(3, p) = 1 ⇐⇒ 3 � p, i.e. (p, q) ∈ A, whereas in the
case in which a = 2, we get gcd(3m, 2m + 1) = 1 ⇐⇒ gcd(3, p) = 1 ⇐⇒ 3 � p, and
p odd ≥ 5, i.e. (p, q) ∈ B. Hence, (3.5) is true. The last assertion can be verified
easily. �

Note 3.3. It is worthwhile to take a closer look at the sets A and B, and to the
corresponding negative-regular continued fraction expansions.
Set A :

p 2 4 5 7 8 10 11 13 14 16 17 · · ·
q 3 9 12 18 21 27 30 36 39 45 48 · · ·
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• First case: Whenever 9 � q we have p̂ = p and

q

q − p
=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3, if p = 2 , q = 3 ,

[[2, 4, 2]] , if p = 5 , q = 12 ,

[[2, 3, 2, . . . , 2︸ ︷︷ ︸
( q−3

9 −2)-times

, 3, 2]], if p ≥ 8 , q ≥ 21 .

• Second case: Whenever 9 | q we have p̂ = 2p − 1 and

q

q − p
=

⎧
⎪⎪⎨
⎪⎪⎩

[[2, 5]] , if p = 4 , q = 9 ,

[[2, 3, 2, . . . , 2︸ ︷︷ ︸
( q

9−2)-times

, 4]] , if p ≥ 7 , q ≥ 18 .

Set B :

p 5 7 11 13 17 19 23 25 29 31 35 · · ·
q 6 9 15 18 24 27 33 36 42 45 51 · · ·

• First case: Whenever 9 � q we have p̂ = p and

q

q − p
=

⎧
⎪⎪⎨
⎪⎪⎩

6, if p = 5 , q = 6 ,

[[4, 2, . . . , 2︸ ︷︷ ︸
( q−6

9 −1)-times

, 4]], if p ≥ 11 , q ≥ 15 .

• Second case: Whenever 9 | q we have p̂ = 1
2 (p + 1) and

q

q − p
=

⎧
⎪⎪⎨
⎪⎪⎩

[[5, 2]] , if p = 7 , q = 9 ,

[[4, 2, . . . , 2︸ ︷︷ ︸
( q

9−2)-times

, 3, 2]] , if p ≥ 13 , q ≥ 18 .

These continued fraction expansions will be useful in what follows in Section 7.

4. Compact toric surfaces

Every compact toric surface is a 2-dimensional toric variety XΔ associated to a
complete fan Δ in R

2, i.e., a fan having 2-dimensional cones as maximal cones
and whose support |Δ| is the entire R

2 (see [20, Theorem 1.11, p. 16]). Consider
a complete fan Δ in R

2 and suppose that

σi = R≥0ni + R≥0ni+1 , i ∈ {1, . . . , ν} , (4.1)

are its 2-dimensional cones (with ν ≥ 3 and ni primitive for all i ∈ {1, . . . , ν}),
enumerated in such a way that n1, . . . ,nν go anticlockwise around the origin ex-
actly once in this order (under the usual convention: nν+1 := n1, n0 := nν). Since
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Δ is simplicial, the Picard number ρ(XΔ) of XΔ (i.e., the rank of its Picard group
Pic(XΔ)) equals

ρ(XΔ) = ν − 2 , (4.2)
(see [10, p. 65]). Now suppose that σi is a (pi, qi)-cone for all i ∈ {1, . . . , ν} and
introduce the notation

IΔ :=
{
i ∈ {1, . . . , ν} | qi > 1} , JΔ := {i ∈ {1, . . . , ν} | qi = 1

}
, (4.3)

to separate the indices corresponding to non-basic from those corresponding to
basic cones. By [20, Theorem 1.10, p. 15] the singular locus of XΔ equals

Sing(XΔ) =
{
orb(σi)| i ∈ IΔ

}
,

and its subset {
orb(σi)| i ∈ ĬΔ

}
, with ĬΔ :=

{
i ∈ IΔ| pi = 1

}
, (4.4)

constitutes the set of the Gorenstein singularities of XΔ. For all i ∈ IΔ write
qi

qi − pi
= [[b(i)

1 , b
(i)
2 , . . . , b(i)

si
]] (4.5)

and, in accordance with what is already mentioned for a single 2-dimensional non-
basic cone in Section 2, define

u(i)
1 := ni , u(i)

1 :=
1
qi

(
(qi − pi)ni + ni+1

)
,

and

u(i)
j+1 = b

(i)
j u(i)

j − u(i)
j−1 , ∀j ∈ {1, . . . , si} (with u(i)

si+1 = ni+1) .

By construction, the proper birational map f : XΔ̃ −→ XΔ induced by the refine-
ment

Δ̃ :=

⎧
⎪⎨
⎪⎩

the cones {σi | i ∈ JΔ} and{
R≥0 u(i)

j + R≥0 u(i)
j+1

∣∣∣ i ∈ IΔ, j ∈ {0, 1, . . . , si}
}

,

together with their faces

⎫
⎪⎬
⎪⎭

,

of the fan Δ is the minimal desingularization of XΔ. Defining⎧
⎨
⎩

E
(i)
j := orbΔ̃(R≥0 u(i)

j ) , ∀i ∈ IΔ and ∀j ∈ {1, 2, . . . , si} ,

Ci := orbΔ̃(R≥0 ni) , ∀i ∈ {1, 2, . . . , ν} ,

one observes that Ci is the strict transform of Ci := orbΔ(R≥0 ni) w.r.t. f,

E(i) :=
si∑

j=1

E
(i)
j

the exceptional divisor replacing orb(σi) via f (with (E(i)
j )2 = −b

(i)
j , ∀i ∈ IΔ and

∀j ∈ {1, 2, . . . , si}), and

KXΔ̃
− f∗KXΔ =

∑

i∈IΔ�ĬΔ

K(E(i)) (4.6)
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the discrepancy divisor w.r.t. f. (By KXΔ ,KXΔ̃
we denote the canonical divisors

of XΔ and XΔ̃, respectively.)

Proposition 4.1. The Picard number of XΔ̃ equals

ρ(XΔ̃) =
∑
i∈IΔ

si + (ν − 2) = 10 − K2
XΔ

−
∑

i∈IΔ�ĬΔ

K(E(i))2 . (4.7)

Proof. The first equality follows from (4.2) and from the fact that

ρ(XΔ̃) = ρ(XΔ) + 
{exceptional prime divisors w.r.t. f} .

(4.6) implies

K2
XΔ̃

= K2
XΔ

+
∑

i∈IΔ�ĬΔ

K(E(i))2 .

Substituting this expression for K2
XΔ̃

into Noether’s formula

K2
XΔ̃

= 10 − ρ(XΔ̃) ,

we obtain the second equality of (4.7). �

Definition 4.2 (The additional characteristic numbers ri). For every i ∈ {1, . . . , ν}
we introduce integers ri uniquely determined by the conditions:

rini =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

u(i−1)
si−1 + u(i)

1 , if i ∈ I ′Δ ,

ni−1 + u(i)
1 , if i ∈ I ′′Δ ,

u(i−1)
si−1 + ni+1 , if i ∈ J ′

Δ ,
ni−1 + ni+1 , if i ∈ J ′′

Δ ,

(4.8)

where
I ′Δ := { i ∈ IΔ | qi−1 > 1} , I ′′Δ := { i ∈ IΔ | qi−1 = 1} ,

and
J ′

Δ := { i ∈ JΔ | qi−1 > 1} , J ′′
Δ := { i ∈ JΔ | qi−1 = 1} ,

with IΔ, JΔ as in (4.3).

By [7, Lemma 4.3], for i ∈ {1, . . . , ν}, −ri is nothing but the self-intersection
number C

2

i of the strict transform Ci of Ci w.r.t. f. The triples (pi, qi, ri), i ∈
{1, 2, . . . , ν}, are used to define the wve

2
c-graph GΔ.

Definition 4.3. A circular graph is a plane graph whose vertices are points on a
circle and whose edges are the corresponding arcs (on this circle, each of which
connects two consecutive vertices). We say that a circular graph G is Z-weighted
at its vertices and double Z-weighted at its edges (and call it wve

2
c-graph, for

short) if it is accompanied by two maps

{Vertices of G} �−→ Z , {Edges of G} �−→ Z
2 ,
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assigning to each vertex an integer and to each edge a pair of integers, respectively.
To every complete fan Δ in R

2 (as described above) we associate an anticlockwise
directed wve

2
c-graph GΔ with

{Vertices of GΔ} = {v1, . . . ,vν} and {Edges of GΔ} = {v1v2, . . . ,vνv1} ,

(vν+1 := v1), by defining its “weights” as follows:

vi �−→ −ri , vivi+1 �−→ (pi, qi) , ∀i ∈ {1, . . . , ν} .

The reverse graph Grev
Δ of GΔ is the directed wve

2
c-graph which is obtained by

changing the double weight (pi, qi) of the edge vivi+1 into (p̂i, qi) and reversing
the initial anticlockwise direction of GΔ into clockwise direction (see Figure 1).

Figure 1.

Theorem 4.4 (Classification up to isomorphism). Let Δ, Δ′ be two complete fans
in R

2. Then the following conditions are equivalent:
(i) The compact toric surfaces XΔ and XΔ′ are isomorphic.

(ii) Either GΔ′
gr.∼= GΔ or GΔ′

gr.∼= Grev
Δ .

Here “
gr.∼= ” indicates graph-theoretic isomorphism (i.e., a bijection between

the sets of vertices which preserves the corresponding weights). For further details
and for the proof of Theorem 4.4 the reader is referred to [7, §5].

5. Toric log Del Pezzo surfaces

Let XΔ be a compact toric surface defined by a complete fan Δ in R
2 having (4.1)

as its 2-dimensional cones. (Throughout this section we maintain the notation
introduced in Section 4.) It is known that XΔ is a log Del Pezzo surface if and
only if the minimal generators n1, . . . ,nν of the rays of Δ are vertices of a lattice
polygon QΔ (cf. [7, Remark 6.7, p. 107]).
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Definition 5.1. A polygon Q ⊂ R
2 is called LDP-polygon if it contains the origin

in its interior, and its vertices are primitive elements of Z
2.

In fact, there is a one-to-one correspondence⎧
⎨
⎩

isomorphism classes
of toric log Del Pezzo

surfaces

⎫
⎬
⎭ � [XΔ] �−→ [QΔ] ∈

⎧
⎨
⎩

lattice-equivalence
classes

of LDP-polygons

⎫
⎬
⎭ .

Indeed, if XΔ
∼= XΔ′ , then by Theorem 4.4 there exists a unimodular trasformation

Φ : R
2 −→ R

2 with Φ(QΔ) = QΔ′ . The inverse of the above correspondence is
given by mapping the lattice-equivalence class [Q] of any LDP-polygon Q onto[
XΔQ

]
, where

ΔQ :=
{

the cones R≥0F together with their faces | F ∈ F(Q)
}

,

and F(Q) := {facets (edges) of Q} . (If Q is an LDP-polygon,

Φ : R
2 −→ R

2 , Φ(x) := Ξx , ∀x ∈ R
2 , with Ξ ∈ GL2(Z) ,

and Q′ := Φ(Q), then GΔQ′

gr.∼= GΔQ
whenever det(Ξ) = 1, and GΔQ′

gr.∼= Grev
ΔQ

whenever det(Ξ) = −1.)
Therefore, the classification of toric log Del Pezzo surfaces (up to isomor-

phism) is equivalent to the classification of LDP-polygons (up to unimodular trans-
formations). Since the number of lattice-equivalence classes of LDP-polygons QΔ

for all those XΔ’s having fixed index � (with � as defined in Section 1) is finite,
as it follows from results appearing in [1, 5, 11] and [15], it is reasonable (for any
systematic approach to the classification problem) to focus on �. By (3.1), (3.2),
(4.4) and (4.6) we obtain:

Lemma 5.2. The index � of a toric log Del Pezzo surface XΔ equals

� =
{

lcm { li | i ∈ IΔ}
(

= lcm{ li | i ∈ IΔ�ĬΔ}
)
, if IΔ �= ∅ ,

1 , if IΔ = ∅ ,
(5.1)

where li = lσi
is the local index of σi (cf. (3.2)).

Remark 5.3. In geometric terms, � = min{k ∈ N|kQ∗
Δ is a lattice polygon}, where

Q∗
Δ denotes the polar of the polygon QΔ. In other words, � equals the least common

multiple of the (smallest) denominators of the (rational) coordinates of the vertices
of Q∗

Δ. Moreover, for � ≥ 2, ν = 
{vertices of QΔ} ≤ 4� + 1 (see [8, Lemma 3.1]).

Proposition 5.4. For any toric log Del Pezzo surface XΔ of index � ≥ 1 the fol-
lowing inequality holds:

∑
i∈IΔ

si ≤ 12 −
∑

i∈IΔ�ĬΔ

K(E(i))2 −
(

1 +
1
�

)
ν . (5.2)

Proof. (5.2) follows from (4.7) and K2
XΔ

≥ ν
� (see [8, proof of Lemma 3.2]). �

An additional necessary condition for a compact toric surface XΔ to be log
Del Pezzo is dictated by the convexity of the necessarily existing LDP-polygon QΔ:
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Proposition 5.5. For any toric log Del Pezzo surface XΔ of index � ≥ 2 we have

∑

i∈ĬΔ

qi ≤

⎛
⎝ ∑

i∈IΔ�ĬΔ

(
1 − 2

li

)
qi

⎞
⎠−

(
ν − 
(IΔ)

)
+ 8 . (5.3)

Proof. Since



(
int
(
conv({ni,ni+1}) ∩ Z

2
))

= gcd(qi, pi − 1) − 1 , ∀i ∈ {1, . . . , ν} ,

we obtain


(∂QΔ ∩Z
2) = ν +

ν∑
i=1



(
int
(
conv({ni,ni+1})∩Z

2
))

=
ν∑

i=1

gcd(qi, pi − 1) . (5.4)

(∂, int, and conv are used as abbreviations for boundary, interior, and convex hull,
respectively.) Furthermore, since

area(QΔ) =
ν∑

i=1

area
(
conv({0,ni,ni+1})

)
=

1
2

(
ν∑

i=1

qi

)
,

using Pick’s formula (cf. [10, p. 113], [20, p. 101]):


(QΔ ∩ Z
2) = area(QΔ) +

1
2

(∂QΔ ∩ Z

2) + 1 ,

we get



(
int(QΔ) ∩ Z

2
)

=
1
2

(
ν∑

i=1

(
qi − gcd(qi, pi − 1)

)
)

+ 1 . (5.5)

Finally, since � ≥ 2, Scott’s inequality [24] can be written as


(∂QΔ ∩ Z
2) < 2 


(
int(QΔ) ∩ Z

2
)

+ 7 . (5.6)

By (5.4), (5.5), (5.6) and (3.2) we infer that
ν∑

i=1

(
2
li
− 1
)

qi ≤ 8 ,

which can be rewritten (by keeping the involved qi’s with non-negative coefficients)
in the form (5.3). �

6. Compact toric surfaces with Picard number 1

By virtue of (4.2) the compact toric surfaces with Picard number 1 are defined
by complete fans Δ in R

2 with exactly three 2-dimensional cones. Let Δ be a
complete fan of this kind and

σ1 = R≥0n1 + R≥0n2 , σ2 = R≥0n2 + R≥0n3 , σ3 = R≥0n3 + R≥0n1 , (6.1)

be its 2-dimensional cones, with ni primitive and σi a (pi, qi)-cone for i ∈ {1, 2, 3}.
Lemma 6.1. XΔ is isomorphic to the quotient space P

2
C
(q1, q2, q3)/HΔ, where HΔ

is a finite abelian group of order gcd(q1, q2, q3).
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Proof. Since qi = |det(ni,ni+1)| for i ∈ {1, 2, 3}, using Cramer’s rule we obtain

q1n3 + q2n1 + q3n2 = 0 .

By [6, Proposition 4.7, p. 224] we have XΔ
∼= P

2
C
(q1, q2, q3)/HΔ, where HΔ is a

group isomorphic to Z
2/(⊕3

i=1Zni). By

|HΔ| = 

(
{fundamental perallelepiped of ⊕3

i=1 Zni} ∩ Z
2
)

= det(⊕3
i=1Zni) ,

and the fact that det(⊕3
i=1Zni) = gcd(q1, q2, q3), the assertion is true. �

Since we are interested in describing XΔ up to isomorphism (cf. Lemma 2.2
and Theorem 4.4) we may henceforth assume, without loss of generality, that
n1 =

(
1
0

)
and n2 =

(
p1
q1

)
. As all cones of Δ are strongly convex, n3 belongs (as

shown in Figure 2) necessarily to the set

M :=
{(

x

y

)
∈ Z

2

∣∣∣∣
q1

p1
x < y < 0

}
.

Figure 2.

Lemma 6.2. We have

n3 =
(
−(q2 + p1q3)/q1

−q3

)
, (6.2)

and therefore q1 | q2 + p1q3 and gcd((q2 + p1q3)/q1, q3) = 1. Moreover,

q1q2 | p̂1q2 + p2q1 + q3 , (6.3)

and
q1q3 | p1q3 + p̂3q1 + q2 . (6.4)

Proof. We use Lemma 2.2. Since σ2 is a (p2, q2)-cone and σ3 is a (p3, q3)-cone,
setting n3 =

(
x
y

)
, we have

|det ( x p1
y q1 )| = q2 ,
(
x
y

)
∈ M

}
=⇒ q1x − p1y = −q2 . (6.5)
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on the one hand, and ∣∣det
(

x 1
y 0

)∣∣ = q3 ,
(
x
y

)
∈ M

}
=⇒ y = −q3 ,

on the other. Hence, (6.5) gives x = − 1
q1

(q2 + p1q3). Moreover, by the definition
of p̂1 there exists an integer λ such that

p̂1p1 − λq1 = 1 .

This means that

p̂1

(
− 1

q1
(q2 + p1q3)

)
− λ(−q3) ≡ p2(mod q2) ,

i.e., there is a μ ∈ Z with μq2 = p2 + 1
q1

(p̂1(q2 + p1q3) − λq3q1). Consequently,

μq1q2 = p̂1q2 + q3(p̂1p1 − λq1) + p2q1 = p̂1q2 + p2q1 + q3 ,

μ ∈ N, and the divisibility condition (6.3) is true. Next, by Lemma 2.2 there is a
smallmatrix ( a b

c d
) ∈ GL2(Z) such that ( a b

c d
)
(
x
y

)
=
(
1
0

)
and ( a b

c d
)
(
1
0

)
=
(
p3
q3

)
, i.e.,

a = p3, c = q3, and⎧
⎨
⎩

q3x + dy = q3x − dq3 = 0 =⇒ d = x ,
p3x + by = p3x − bq3 = 1

x < 0

}
=⇒ x = p̂3 − κq3 , for some κ ∈ N .

By (6.5),

q1x − p1y = q1 (p̂3 − κq3) + p1q3 = −q2 =⇒ κq1q3 = p1q3 + p̂3q1 + q2 ,

leading to the divisibility condition (6.4). �

The converse is also true.

Lemma 6.3. Given a triple of pairs { (pi, qi)| 1 ≤ i ≤ 3} of non-negative integers
with pi < qi and gcd(pi, qi) = 1 for i ∈ {1, 2, 3}, and such that

q1q2 | p̂1q2 + p2q1 + q3 and q1q3 | p1q3 + p̂3q1 + q2 ,

the 2-dimensional cones

σ1 = R≥0

(
1
0

)
+ R≥0

(
p1

q1

)
, σ2 = R≥0

(
p1

q1

)
+ R≥0

(
−(q2 + p1q3)/q1

−q3

)
,

and σ3 = R≥0

(
−(q2 + p1q3)/q1

−q3

)
+ R≥0

(
1
0

)
,

(written by means of their minimal generators) compose, together with their faces,
a complete fan in R

2 and σi is a (pi, qi)-cone, for i ∈ {1, 2, 3}.

Proof. Obviously, σ1 is a (p1, q1)-cone and

det
(

p1 −(q2 + p1q3)/q1

q1 −q3

)
= q2 , det

(
−(q2 + p1q3)/q1 1

−q3 0

)
= q3 .
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Furthermore,

q1q3 | p1q3 + p̂3q1 + q2 =⇒ q1 | q2 + p1q3 =⇒
(
−(q2 + p1q3)/q1

−q3

)
∈ Z

2 ,

and setting δ := gcd(q2 + p1q3, q1q3) we obtain

δ | p1q3 + p̂3q1 + q2 =⇒ δ | p̂3q1 =⇒ δ | p̂3p3q1 .

Since there exists an integer γ with p̂3p3 − γq3 = 1, we have

δ | (γq3 + 1) q1

δ | q3q1 =⇒ δ | γq3q1

}
=⇒ δ | q1 .

This divisibility condition is equivalent to: gcd ( 1
q1

(q2+p1q3), q3) = 1, and therefore(−(q2+p1q3)/q1
−q3

)
is primitive. On the other hand,

q1q2 | p̂1q2 + p2q1 + q3 =⇒ ∃μ ∈ N : μq1q2 = p̂1q2 + p2q1 + q3 .

Since there exists an integer λ with p̂1p1 − λq1 = 1, and

μq1q2 = p̂1q2 + q3(p̂1p1 − λq1) + p2q1

=⇒ p̂1

(
− 1

q1
(q2 + p1q3)

)
− λ(−q3) ≡ p2(mod q2) ,

σ2 is a (p2, q2)-cone. Finally,

q1q3 | p1q3 + p̂3q1 + q2 =⇒ ∃κ ∈ N : κq1q3 = p1q3 + p̂3q1 + q2 , i.e. ,

q1 (p̂3 − κq3) + p1q3 = −q2 = q1

(
− 1

q1
(q2 + p1q3)

)
+ p1q3

=⇒ − 1
q1

(q2 + p1q3) = p̂3 − κq3 ,

giving (
p3

1
q3

(p3p̂3 − 1) − κp3

q3 p̂3 − κq3

)(
− 1

q1
(q2 + p1q3)
−q3

)
=
(

1
0

)
,

and (
p3

1
q3

(p3p̂3 − 1) − κp3

q3 p̂3 − κq3

)(
1
0

)
=
(

p3

q3

)
.

Hence, as it is explained in the proof of Proposition 2.4, the cone σ3 has to be a
(p3, q3)-cone. �

Lemma 6.4. Every compact toric surface XΔ having Picard number ρ(XΔ) = 1 is
a log Del Pezzo surface.

Proof. If XΔ is a compact toric surface with ρ(XΔ) = 1, then the minimal gen-
erators n1,n2,n3 of the tree cones (6.1) of Δ have to be in general position be-
cause the cones are strongly convex. Hence, conv({n1,n2,n3}) has to be an LDP-
triangle. �
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Note 6.5. Compact toric surfaces XΔ having Picard number ρ(XΔ) ≥ 2 are not
always log Del Pezzo surfaces. For instance, the smooth compact surfaces XΔ with
ρ(XΔ) = 2 are the Hirzebruch surfaces Fκ, κ ≥ 0 (cf. [20, Corollary 1.29, p. 45]);
among them, only F0

∼= P
1
C
× P

1
C

and F1 (i.e., a P
2
C

blown up at one point) are
Del Pezzo surfaces (see [20, Proposition 2.21, p. 88] or [9, Theorem V.8.2, p. 192]).
The geometric reason for that is actually very simple: Since Fκ can be viewed as
the toric surface associated to the fan having

(
0
1

)
,
(
1
0

)
,
(

0
−1

)
and

(−1
κ

)
as minimal

generators of its rays, setting T := conv({
(
1
0

)
,
(

0
−1

)
,
(−1

κ

)
}) we see that

(
0
1

)
∈ ∂ T

for κ = 2, and
(
0
1

)
∈ int(T) for κ ≥ 3.

7. Classification strategy for ρ(XΔ) = 1 and � = 3

Definition 7.1. We call a triple of pairs
{
(pi, qi) ∈ Z

2
∣∣ 1 ≤ i ≤ 3

}
, 0 ≤ pi < qi ,

with gcd(pi, qi) = 1 , ∀i ∈ {1, 2, 3} , (7.1)

admissible whenever it satisfies both divisibility conditions

q1q2 | p̂1q2 + p2q1 + q3 (7.2)

and
q1q3 | p1q3 + p̂3q1 + q2 (7.3)

To classify all toric log Del Pezzo surfaces XΔ having Picard number 1 and
index � = 3 up to isomorphism it suffices (by Lemmas 6.2, 6.3, and 6.4, and
Theorem 4.4) to determine all admissible triples of pairs, and consequently the
fans Δ having

σ1 = R≥0n1 + R≥0n2 , σ2 = R≥0n2 + R≥0n3 , σ3 = R≥0n3 + R≥0n1 ,

as 2-dimensional cones, with n1 =
(
1
0

)
,n2 =

(
p1
q1

)
, n3 =

(−(q2+p1q3)/q1
−q3

)
as minimal

generators, and QΔ = conv({n1,n2,n3}) as their LDP-polygons, so that

li = lσi
∈ {1, 3} , ∀i ∈ {1, 2, 3} ,

and lk = 3 for at least one k ∈ {1, 2, 3} , (7.4)

(see (5.1)). From now on we may assume w.l.o.g that l1 = 3. We also keep in mind
the two auxiliary conditions

s1 + s2 + s3 ≤ −
∑

i∈IΔ�ĬΔ
K(E(i))2 + 8 (7.5)

(where, for our convenience, we set si := 0 for i ∈ JΔ, cf. (4.3)), and

∑
i∈ĬΔ

qi ≤ 1
3

∑
i∈IΔ�ĬΔ

qi + 
(IΔ) + 5 (7.6)
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(following from (5.2) and (5.3), respectively, for ν = � = 3) which have to be
satisfied because of Lemma 6.4. By assumption, each pair (pi, qi) (belonging to
a triple (7.1) which will be considered as “candidate” for being admissible) is
necessarily of a specific type. All possible types are determined by conditions (7.4),
(3.4) and (3.5), and are listed in Table 1. (Since l1 = 3, (p1, q1) can be of type
1,2,3,4 or 5.)

Table 1.

Types pi p̂i qi si −K(E(i))2

1 2 2 3 1 1
3

2 3ξi + 2 pi 9ξi + 3 ξi + 2 4
3

3 3ξi + 1 2pi − 1 (= 6ξi + 1) 9ξi ξi + 1 2

4 6ξi + 5 pi 9ξi + 6 ξi + 1 8
3

5 6ξi + 1 1
2
(pi + 1) (= 3ξi + 1) 9ξi ξi + 1 2

6 1 1 ≥ 2 qi − 1 0

7 0 0 1 0 —–

Here, ξi denotes an integer which is positive for types 2, 3 and 5, and non-
negative for type 4. (In particular, the entries of the last two columns are com-
puted by the continued fraction expansions mentioned in Note 3.3 and by the
formula (3.3).) Although the pairs (pi, qi) of type 2 (resp., of type 3,4,5 or 6) are
infinitely many, conditions (7.2), (7.3), (7.5) and (7.6) force the testable triples of
pairs (7.1) to be admissible only in finitely many cases.

Note 7.2. If orb(σ2) is a non-Gorenstein singularity, then (7.2) implies

[p̂1q2 + p2q1 + q3]9 = 0 (7.7)

(where [t]9 denotes the remainder in the division of a t ∈ Z by 9) because 3 | q1 and
3 | q2. Analogously, if orb(σ3) is a non-Gorenstein singularity, then (7.3) implies

[p1q3 + p̂3q1 + q2]9 = 0 . (7.8)

These weaker, necessary conditions (7.7) and (7.8) turn out to be very useful in
proving that several triples of pairs (7.1) are not admissible.

The proof of Theorem 1.3 will follow in four steps:
� Step 1: We determine which of the triples of pairs (7.1) corresponding to the 125
(= 53) possible type combinations (α1, α2, α3), with α1, α2, α3 ∈ {1,2,3,4,5}, are
admissible, i.e., those XΔ’s with exactly three non-Gorenstein singularities.
� Step 2: We determine which of the triples of pairs (7.1) corresponding to the
100 (= 2 · (52 · 2)) type combinations (α1, α2, α3), with α1 ∈ {1,2,3,4,5} and

(α2, α3) ∈
(
{1,2,3,4,5} × {6,7}

)
∪
(
{6,7} × {1,2,3,4,5}

)
,

are admissible, i.e., those XΔ’s with exactly two non-Gorenstein singularities.
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� Step 3: We do the same for the triples of pairs (7.1) corresponding to the 20
type combinations (α1, α2, α3), with α1 ∈ {1,2,3,4,5} and α2, α3 ∈ {6,7}, i.e.,
for those XΔ’s with exactly one non-Gorenstein singularity.
� Step 4: We find out the wve

2
c-graphs GΔ for those XΔ’s determined in steps

1–3, and then, using Theorem 4.4, we pick out a suitable, minimal set of repre-
sentatives of XΔ’s all of whose members are pairwise non-isomorphic. Finally, we
identify the chosen XΔ’s with weighted projective planes or quotients thereof by
applying Lemma 6.1.

8. Proof of Theorem 1.3: Step 1

Lemma 8.1. Among the 125 possible combinations (α1, α2, α3) of types of triples
of pairs (7.1), with α1, α2, α3 ∈ {1,2,3,4,5}, there are only 32 satisfying simul-
taneously conditions (7.7) and (7.8); namely,

(1,3,4) , (1,4,5) , (2,3,4) , (2,4,5) ,

(3,3,3) , (3,3,5) , (3,5,5) , (5,5,5) ,

together with their permutations.

Proof. By Table 2 there are 38 combinations (α1, α2, α3) of types of triples (7.1),
with α1, α2, α3 ∈ {1,2,3,4,5}, satisfying condition (7.7).

Table 2.

Case [p̂1]9 [q1]9 [p2]9 [q2]9 [p̂1q2 + p2q1]9
(7.7) is true

only if

(1, 1, α3) 2 3 2 3 3 α3 = 4
(1, 2, α3) 2 3 ∈ {2, 5, 8} 3 3 α3 = 4
(1, 3, α3) 2 3 ∈ {1, 4, 7} 0 3 α3 = 4
(1, 4, α3) 2 3 ∈ {2, 5, 8} 6 0 α3 ∈ {3, 5}
(1, 5, α3) 2 3 ∈ {1, 4, 7} 0 3 α3 = 4
(2, 1, α3) ∈ {2, 5, 8} 3 2 3 3 α3 = 4
(2, 2, α3) ∈ {2, 5, 8} 3 ∈ {2, 5, 8} 3 3 α3 = 4
(2, 3, α3) ∈ {2, 5, 8} 3 ∈ {1, 4, 7} 0 3 α3 = 4
(2, 4, α3) ∈ {2, 5, 8} 3 ∈ {2, 5, 8} 6 0 α3 ∈ {3, 5}
(2, 5, α3) ∈ {2, 5, 8} 3 ∈ {1, 4, 7} 0 3 α3 = 4
(3, 1, α3) ∈ {1, 4, 7} 0 2 3 3 α3 = 4
(3, 2, α3) ∈ {1, 4, 7} 0 ∈ {2, 5, 8} 3 3 α3 = 4
(3, 3, α3) ∈ {1, 4, 7} 0 ∈ {1, 4, 7} 0 0 α3 ∈ {3, 5}
(3, 4, α3) ∈ {1, 4, 7} 0 ∈ {2, 5, 8} 6 6 α3 ∈ {1, 2}
(3, 5, α3) ∈ {1, 4, 7} 0 ∈ {1, 4, 7} 0 0 α3 ∈ {3, 5}
(4, 1, α3) ∈ {2, 5, 8} 6 2 3 0 α3 ∈ {3, 5}
(4, 2, α3) ∈ {2, 5, 8} 6 ∈ {2, 5, 8} 3 0 α3 ∈ {3, 5}
(4, 3, α3) ∈ {2, 5, 8} 6 ∈ {1, 4, 7} 0 6 α3 ∈ {1, 2}
(4, 4, α3) ∈ {2, 5, 8} 6 ∈ {2, 5, 8} 6 6 α3 ∈ {1, 2}
(4, 5, α3) ∈ {2, 5, 8} 6 ∈ {1, 4, 7} 0 6 α3 ∈ {1, 2}
(5, 1, α3) ∈ {1, 4, 7} 0 2 3 3 α3 = 4
(5, 2, α3) ∈ {1, 4, 7} 0 ∈ {2, 5, 8} 3 3 α3 = 4
(5, 3, α3) ∈ {1, 4, 7} 0 ∈ {1, 4, 7} 0 0 α3 ∈ {3, 5}
(5, 4, α3) ∈ {1, 4, 7} 0 ∈ {2, 5, 8} 6 6 α3 ∈ {1, 2}
(5, 5, α3) ∈ {1, 4, 7} 0 ∈ {1, 4, 7} 0 0 α3 ∈ {3, 5}
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Table 3.

Case [p1]9 [q1]9 [p̂3]9 [q3]9 [p1q3 + p̂3q1]9
(7.8) is true

only if

(1,α2, 1) 2 3 2 3 3 α2 = 4
(1,α2, 2) 2 3 ∈ {2, 5, 8} 3 3 α2 = 4
(1,α2, 3) 2 3 ∈ {1, 4, 7} 0 3 α2 = 4
(1,α2, 4) 2 3 ∈ {2, 5, 8} 6 0 α2 ∈ {3, 5}
(1,α2, 5) 2 3 ∈ {1, 4, 7} 0 3 α2 = 4
(2,α2, 1) ∈ {2, 5, 8} 3 2 3 3 α2 = 4
(2,α2, 2) ∈ {2, 5, 8} 3 ∈ {2, 5, 8} 3 3 α2 = 4
(2,α2, 3) ∈ {2, 5, 8} 3 ∈ {1, 4, 7} 0 3 α2 = 4
(2,α2, 4) ∈ {2, 5, 8} 3 ∈ {2, 5, 8} 6 0 α2 ∈ {3, 5}
(2,α2, 5) ∈ {2, 5, 8} 3 ∈ {1, 4, 7} 0 3 α2 = 4
(3,α2, 1) ∈ {1, 4, 7} 0 2 3 3 α2 = 4
(3,α2, 2) ∈ {1, 4, 7} 0 ∈ {2, 5, 8} 3 3 α2 = 4
(3,α2, 3) ∈ {1, 4, 7} 0 ∈ {1, 4, 7} 0 0 α2 ∈ {3, 5}
(3,α2, 4) ∈ {1, 4, 7} 0 ∈ {2, 5, 8} 6 6 α2 ∈ {1, 2}
(3,α2, 5) ∈ {1, 4, 7} 0 ∈ {1, 4, 7} 0 0 α2 ∈ {3, 5}
(4,α2, 1) ∈ {2, 5, 8} 6 2 3 0 α2 ∈ {3, 5}
(4,α2, 2) ∈ {2, 5, 8} 6 ∈ {2, 5, 8} 3 0 α2 ∈ {3, 5}
(4,α2, 3) ∈ {2, 5, 8} 6 ∈ {1, 4, 7} 0 6 α2 ∈ {1, 2}
(4,α2, 4) ∈ {2, 5, 8} 6 ∈ {2, 5, 8} 6 6 α2 ∈ {1, 2}
(4,α2, 5) ∈ {2, 5, 8} 6 ∈ {1, 4, 7} 0 6 α2 ∈ {1, 2}
(5,α2, 1) ∈ {1, 4, 7} 0 2 3 3 α2 = 4
(5,α2, 2) ∈ {1, 4, 7} 0 ∈ {2, 5, 8} 3 3 α2 = 4
(5,α2, 3) ∈ {1, 4, 7} 0 ∈ {1, 4, 7} 0 0 α2 ∈ {3, 5}
(5,α2, 4) ∈ {1, 4, 7} 0 ∈ {2, 5, 8} 6 6 α2 ∈ {1, 2}
(5,α2, 5) ∈ {1, 4, 7} 0 ∈ {1, 4, 7} 0 0 α2 ∈ {3, 5}

Correspondingly, Table 3 shows that there are 38 combinations (α1, α2, α3)
of types of triples (7.1), with α1, α2, α3 ∈ {1,2,3,4,5}, satisfying condition (7.8).

Obviously, the combinations (α1, α2, α3) of types of triples of pairs (7.1), with
α1, α2, α3 ∈ {1,2,3,4,5}, satisfying both (7.7) and (7.8), are the 32 combinations
given in the statement of lemma. �

Lemma 8.2. There are no admissible triples of pairs (7.1) among those correspond-
ing to the 125 type combinations (α1, α2, α3) with α1, α2, α3 ∈ {1,2,3,4,5}.

Sketch of proof. First, we express the triples of pairs { (pi, qi) ∈ Z
2
∣∣ 1 ≤ i ≤ 3}

corresponding to the 32 type combinations (α1, α2, α3) found in Lemma 8.1 in
terms of ξi for i ∈ {1, 2, 3} as in Table 1. Setting

Aj :=
{

(ξ1, ξ2, ξ3) ∈ Z
3

∣∣∣∣
ξ1 + ξ2 + ξ3 ≤ 10, ξj ≥ 0,

and ξk ≥ 1 , ∀k ∈ {1, 2, 3}�{j}

}
,

for j ∈ {1, 2, 3},

Aj,k :=
{

(ξ1, ξ2, ξ3) ∈ Z
3

∣∣∣∣
ξ1 + ξ2 + ξ3 ≤ 10, ξj = 0, ξk ≥ 0,

and ξμ ≥ 1 , ∀μ ∈ {1, 2, 3}�{j, k}

}
,

for j, k ∈ {1, 2, 3}, j �= k, and

B :=
{

(ξ1, ξ2, ξ3) ∈ Z
3
∣∣ ξ1 + ξ2 + ξ3 ≤ 11, ξ1, ξ2, ξ3 ≥ 1

}
,

we explain what condition (7.5) means for each of these 32 cases in Table 4.
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Table 4.

Case Condition (7.5) Case Condition (7.5)

(1,3,4) (ξ1, ξ2, ξ3) ∈ A1,3 (4,1,3) (ξ1, ξ2, ξ3) ∈ A2,1

(1,4,3) (ξ1, ξ2, ξ3) ∈ A1,2 (4,1,5) (ξ1, ξ2, ξ3) ∈ A2,1

(1,4,5) (ξ1, ξ2, ξ3) ∈ A1,2 (4,2,3) (ξ1, ξ2, ξ3) ∈ A1

(1,5,4) (ξ1, ξ2, ξ3) ∈ A1,3 (4,2,5) (ξ1, ξ2, ξ3) ∈ A1

(2,3,4) (ξ1, ξ2, ξ3) ∈ A3 (4,3,1) (ξ1, ξ2, ξ3) ∈ A3,1

(2,4,3) (ξ1, ξ2, ξ3) ∈ A2 (4,3,2) (ξ1, ξ2, ξ3) ∈ A1

(2,4,5) (ξ1, ξ2, ξ3) ∈ A2 (4,5,1) (ξ1, ξ2, ξ3) ∈ A3,1

(2,5,4) (ξ1, ξ2, ξ3) ∈ A3 (4,5,2) (ξ1, ξ2, ξ3) ∈ A1

(3,1,4) (ξ1, ξ2, ξ3) ∈ A2,3 (5,1,4) (ξ1, ξ2, ξ3) ∈ A2,3

(3,2,4) (ξ1, ξ2, ξ3) ∈ A3 (5,2,4) (ξ1, ξ2, ξ3) ∈ A3

(3,3,3) (ξ1, ξ2, ξ3) ∈ B (5,3,3) (ξ1, ξ2, ξ3) ∈ B

(3,3,5) (ξ1, ξ2, ξ3) ∈ B (5,3,5) (ξ1, ξ2, ξ3) ∈ B

(3,4,1) (ξ1, ξ2, ξ3) ∈ A3,2 (5,4,1) (ξ1, ξ2, ξ3) ∈ A3,2

(3,4,2) (ξ1, ξ2, ξ3) ∈ A2 (5,4,2) (ξ1, ξ2, ξ3) ∈ A2

(3,5,3) (ξ1, ξ2, ξ3) ∈ B (5,5,3) (ξ1, ξ2, ξ3) ∈ B

(3,5,5) (ξ1, ξ2, ξ3) ∈ B (5,5,5) (ξ1, ξ2, ξ3) ∈ B

Note that


(Aj) =
10∑

κ=2

(
κ − 1

1

)
+

10∑
κ=3

(
κ − 1

2

)
= 165 , 
(Aj,k) = 55, 
(B) =

(
11
3

)
= 165 .

One can, of course, test directly the validity of (7.2) and (7.3) for all these possi-
bilities. Nevertheless, there is a more economic way to proceed by using reductio
ad absurdum. Let us discuss it exemplarily in the case (2,3,4) in which

p1 p̂1 q1 p2 p̂2 q2 p3 p̂3 q3

3ξ1 + 2 3ξ1 + 2 9ξ1 + 3 3ξ2 + 1 6ξ2 + 1 9ξ2 6ξ3 + 5 6ξ3 + 5 9ξ3 + 6

for a 3-tuple (ξ1, ξ2, ξ3) ∈ A3. If
{

(pi, qi) ∈ Z
2
∣∣ 1 ≤ i ≤ 3

}
were an admissible triple

of pairs, then (7.2) would give

(9ξ1 + 3) (9ξ2) = 27ξ2 + 81ξ1ξ2 | 9ξ1 + 27ξ2 + 9ξ3 + 54ξ1ξ2 + 9 , i.e. ,

3 (3ξ1 + 1) ξ2 | ξ1 +3ξ2 +ξ3 +6ξ1ξ2 +1 = 3 (3ξ1 + 1) ξ2−3ξ1ξ2 +ξ1 +ξ3 +1 , (8.1)

meaning that

3(3ξ1 + 1)ξ2 | 3ξ1ξ2 − ξ1 − ξ3 − 1 .

Therefore,

3ξ1ξ2 − ξ1 − ξ3 − 1 ≤ 0



240 D. I. Dais Result.Math.

(because otherwise we would deduce that 3ξ2 + 9ξ1ξ2 ≤ 3ξ1ξ2 − ξ1 − ξ3 − 1, i.e.,
that 10 ≤ ξ1 + 3ξ2 + ξ3 + 6ξ1ξ2 ≤ −1, a contradiction). Consequently,

3ξ1ξ2 − 1 ≤ ξ1 + ξ3 ≤ 10 − ξ2 =⇒ 4 ≤ (3ξ1 + 1)ξ2 ≤ 11

=⇒ (ξ1, ξ2) ∈
{
(1, 1), (1, 2), (2, 1), (3, 1)

}
. (8.2)

Since 0 ≤ ξ3 ≤ 8, (8.1) and (8.2) would determine the values of ξ3 as follows:

(ξ1, ξ2, ξ3) p1 q1 q2 p̂3 q3 q1q3 p1q3 + p̂3q1 + q2

(1, 1, 1) 5 12 9 11 15 180 216

(1, 2, 4) 5 12 18 29 42 504 576

(2, 1, 3) 8 21 9 23 33 693 756

(3, 1, 5) 11 30 9 35 51 1530 1620

Hence, these four 3-tuples (ξ1, ξ2, ξ3) ∈ A3 would provide numbers p1, q1, q2, p̂3,
q3 which do not satisfy (7.3)! Using analogous arguments one shows that none of
the remaining 31 cases leads to admissible triples of pairs. �

9. Proof of Theorem 1.3: Step 2

Lemma 9.1. There are no admissible triples of pairs (7.1) among those correspond-
ing to the type combinations (α1, α2, α3) with α1 ∈ {1,2,3,4,5} and

(α2, α3) ∈
(
{1,2,3,4,5} × {7}

)
∪
(
{7} × {1,2,3,4,5}

)
.

Proof. If α1, α2 ∈ {1,2,3,4,5} and α3 = 7, then

[p̂1q2 + p2q1]9 ∈ {0, 3, 6}
(cf. the sixth column of Table 2) and q3 = 1, i.e.,

[p̂1q2 + p2q1 + q3]9 ∈ {1, 4, 7} .

Thus, condition (7.7) is not satisfied. Analogously, one shows that condition (7.8)
is not satisfied whenever α1, α3 ∈ {1,2,3,4,5} and α2 = 7. �

Lemma 9.2. There exist exactly 10 admissible triples of pairs (7.1) among those
corresponding to the type combinations (α1, α2, α3) with α1 ∈ {1,2,3,4,5} and

(α2, α3) ∈
(
{1,2,3,4,5} × {6}

)
∪
(
{6} × {1,2,3,4,5}

)
.

Sketch of proof. For α1, α2 ∈ {1,2,3,4,5} and α3 = 6 we build Table 5. In its
second column we tabulate [p̂1q2 + p2q1]9 (cf. the sixth column of Table 2). After
having expressed q1, q2 in terms of ξ1, ξ2 (as in Table 1) we write the restrictions
(inequalities) coming from (7.5) in its third column. The fourth column contains
the values of q3 so that both (7.5) and (7.7) are true. (In particular, in the case
(2,2,6) the expected value q3 = 6 is impossible because ξ1, ξ2 ≥ 1.) Finally, the
last column informs us whether (7.8) is true for these q3’s.
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Table 5.

Case [p̂1q2 + p2q1]9
(7.5) is true
whenever

(7.5) & (7.7) true
only if q3 equals

Is (7.8) true
for these q3’s?

(1, 1, 6) 3 2 ≤ q3 ≤ 7 6 YES
(1, 2, 6) 3 3 ≤ ξ2 + q3 ≤ 7 6 YES
(1, 3, 6) 3 3 ≤ ξ2 + q3 ≤ 9 6 NO
(1, 4, 6) 0 2 ≤ ξ2 + q3 ≤ 10 9 YES
(1, 5, 6) 3 3 ≤ ξ2 + q3 ≤ 9 6 NO
(2, 1, 6) 3 3 ≤ ξ1 + q3 ≤ 7 6 YES
(2, 2, 6) 3 4 ≤ ξ1 + ξ2 + q3 ≤ 7 6 (impossible) —–
(2, 3, 6) 3 4 ≤ ξ1 + ξ2 + q3 ≤ 9 6 NO
(2, 4, 6) 0 3 ≤ ξ1 + ξ2 + q3 ≤ 10 9 YES
(2, 5, 6) 3 4 ≤ ξ1 + ξ2 + q3 ≤ 9 6 NO
(3, 1, 6) 3 3 ≤ ξ1 + q3 ≤ 9 6 NO
(3, 2, 6) 3 4 ≤ ξ1 + ξ2 + q3 ≤ 9 6 NO
(3, 3, 6) 0 4 ≤ ξ1 + ξ2 + q3 ≤ 11 9 YES
(3, 4, 6) 6 3 ≤ ξ1 + ξ2 + q3 ≤ 11 3 YES
(3, 5, 6) 0 4 ≤ ξ1 + ξ2 + q3 ≤ 11 9 YES
(4, 1, 6) 0 2 ≤ ξ1 + q3 ≤ 10 9 YES
(4, 2, 6) 0 3 ≤ ξ1 + ξ2 + q3 ≤ 10 9 YES
(4, 3, 6) 6 3 ≤ ξ1 + ξ2 + q3 ≤ 11 3 NO
(4, 4, 6) 6 2 ≤ ξ1 + ξ2 + q3 ≤ 12 3 or 12 YES
(4, 5, 6) 6 3 ≤ ξ1 + ξ2 + q3 ≤ 11 3 NO
(5, 1, 6) 3 3 ≤ ξ1 + q3 ≤ 9 6 NO
(5, 2, 6) 3 4 ≤ ξ1 + ξ2 + q3 ≤ 9 6 NO
(5, 3, 6) 0 4 ≤ ξ1 + ξ2 + q3 ≤ 11 9 YES
(5, 4, 6) 6 3 ≤ ξ1 + ξ2 + q3 ≤ 11 3 YES
(5, 5, 6) 0 4 ≤ ξ1 + ξ2 + q3 ≤ 11 9 YES

Next, we analyze in detail the 14 cases for which the answer is “yes”.
• In the case (1,1,6) we have q3 = 6 and we obtain just one admissible triple of
pairs:

p1 q1 p2 q2 p3 q3

2 3 2 3 1 6
(9.1)

• In cases (1,2,6) and (2,1,6) we have ξ2 = 1, q3 = 6, and ξ1 = 1, q3 = 6,
respectively, and (7.2) cannot be satisfied (because 36 � 45). Hence, there are no
admissible triples of pairs.
• In cases (1,4,6) and (4,1,6) we have ξ2 ∈ {0, 1}, q3 = 9, and ξ1 ∈ {0, 1}, q3 = 9,
respectively, and (7.2) cannot be satisfied for ξ2 = 1, resp. for ξ1 = 1 (because
45 � 72). For this reason, the only triples of pairs which are admissible (i.e., for
which both (7.2) and (7.3) are satified) are

p1 q1 p2 q2 p3 q3

2 3 5 6 1 9
(9.2)

and
p1 q1 p2 q2 p3 q3

5 6 2 3 1 9
(9.3)

• In cases (2,4,6) and (4,2,6) we have necessarily ξ1 = 1, ξ2 = 0, q3 = 9, and
ξ1 = 0, ξ2 = 1, q3 = 9, respectively, and (7.2) cannot be satisfied (because 72 � 99).
Hence, there are no admissible triples of pairs.
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• In cases (3,3,6) and (5,5,6) we have necessarily ξ1 = ξ2 = 1, q3 = 9, and (7.2)
cannot be satisfied (because 81 � 108). Therefore, there are no admissible triples
of pairs.
• In cases (3,4,6) and (5,4,6) we have q3 = 3 and ξ1 +ξ2 ∈ {1, . . . , 8} with ξ1 ≥ 1
and ξ2 ≥ 0. If (7.2) were true, then in particular q1 | p̂1q2 + q3, i.e.,

ξ1 | ξ2+1=⇒(ξ1, ξ2)∈
{

(1, j)| 0 ≤ j ≤ 7
}
∪
{
(2, 1), (2, 3), (2, 5), (3, 2), (3, 5), (4, 3)

}
.

As for everyone of the 14 possible values of (ξ1, ξ2) at least one of the divisibility
conditions (7.2) and (7.3) is violated, there are no admissible triples of pairs.
• Case (3,5,6): ξ1 = ξ2 = 1, q3 = 9, and (7.2) cannot be satisfied (because
81 � 135); no admissible triples of pairs occur.
• Case (4,4,6): Here, either ξ1 = ξ2 = 0, q3 = 12, giving the admissible triple of
pairs:

p1 q1 p2 q2 p3 q3

5 6 5 6 1 12
(9.4)

or q3 = 3 and ξ1 + ξ2 ∈ {0, 1, . . . , 9} with ξ1, ξ2 ≥ 0. If in the latter case (7.2) were
true, then, in particular, q1 | p̂1q2 + q3, i.e.,

9ξ1 + 6 | (6ξ1 + 5)(9ξ2 + 6) + 3 =⇒ 3ξ1 + 2 | (3ξ1 + 2)(6ξ2 + 4) + 3ξ2 + 3

=⇒ 3ξ1 + 2 | 3ξ2 + 3 =⇒ 3ξ1 + 2 | ξ2 + 1 , i.e. ,

(ξ1, ξ2) ∈
{
(0, 1), (0, 3), (0, 5), (0, 7), (0, 9), (1, 4), (2, 7)

}
.

As for everyone of the 7 possible values of (ξ1, ξ2) at least one of the divisibility
conditions (7.2) and (7.3) is violated, there are no further admissible triples of
pairs.
• Case (5,3,6): ξ1 = ξ2 = 1, q3 = 9, and we obtain just one admissible triple of
pairs:

p1 q1 p2 q2 p3 q3

7 9 4 9 1 9
(9.5)

Working symmetrically with type combinations (α1, α2, α3), where

α1, α3 ∈ {1,2,3,4,5} and α2 = 6 ,

we determine the admissible triples of pairs:

p1 q1 p2 q2 p3 q3

2 3 1 6 2 3
(9.6)

in the case (1,6,1),
p1 q1 p2 q2 p3 q3

2 3 1 9 5 6
(9.7)

in the case (1,6,4),
p1 q1 p2 q2 p3 q3

4 9 1 9 7 9
(9.8)
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in the case (3,6,5)
p1 q1 p2 q2 p3 q3

5 6 1 9 2 3
(9.9)

in the case (4,6,1), and

p1 q1 p2 q2 p3 q3

5 6 1 12 5 6
(9.10)

in the case (4,6,4). �

10. Proof of Theorem 1.3: Step 3

Lemma 10.1. There exist exactly 23 admissible triples of pairs (7.1) among those
corresponding to the type combinations (α1, α2, α3) with α1 ∈ {1,2,3,4,5} and
α2, α3 ∈ {6,7}.

Proof. For every α1 ∈ {1,2,3,4,5} we consider the combinations

Case p2 q2 p3 = p̂3 q3

(α1,6,6) 1 ≥ 2 1 ≥ 2
(α1,6,7) 1 ≥ 2 0 1
(α1,7,6) 0 1 1 ≥ 2
(α1,7,7) 0 1 0 1

and examine what happens in each of the twenty cases separately.
• Case (1,6,6): Here, and for the next three cases, p1 = p̂1 = 2, q1 = 3 and s1 = 1.
By (7.5) and (7.6) the pair (q2, q3) has to be chosen from the 21 elements of the
set {

(q2, q3) ∈ Z
2
∣∣ q2 ≥ 2, q3 ≥ 2, and q2 + q3 ≤ 9

}
.

Taking into account the divisibility conditions (7.2), (7.3), i.e., 3q2 | 2q2 + q3 + 3
and 3q3 | 2q3 + q2 + 3, we obtain (q2, q3) ∈ {(2, 5), (5, 2)}. Hence, there are two
admissible triples of pairs, namely

p1 q1 p2 q2 p3 q3

2 3 1 2 1 5
(10.1)

and
p1 q1 p2 q2 p3 q3

2 3 1 5 1 2
(10.2)

• Case (1,6,7): By (7.5) (or (7.6)) we have q2 ≤ 8. By (7.3), 3 | q2 − 1, i.e.,
q2 ∈ {4, 7}. The value q2 = 7 does not satisfy (7.2): 3q2 | 2q2 + 4. Hence, there is
only one admissible triple of pairs:

p1 q1 p2 q2 p3 q3

2 3 1 4 0 1
(10.3)
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• Case (1,7,6): Analogously, we find just one admissible triple of pairs:

p1 q1 p2 q2 p3 q3

2 3 0 1 1 4
(10.4)

• Case (1,7,7): In this case both divisibility conditions (7.2) and (7.3) are satisfied
automatically and lead to the admissible triple of pairs:

p1 q1 p2 q2 p3 q3

2 3 0 1 0 1

• Case (2,6,6): Here, and for the next three cases, p1 = p̂1 = 3ξ1 +2, q1 = 9ξ1 +3
and s1 = ξ1 +2 for an integer ξ1 ≥ 1. By (7.5) we have ξ1 + q2 + q3 ≤ 9. Condition
(7.2) reads as

3(3ξ1 +1)q2 | (3ξ1 +2)q2 +(9ξ1 +3)+q3 = 3(3ξ1 +1)q2−6ξ1q2−q2 +(9ξ1 +3)+q3 ,

i.e.,

3(3ξ1 + 1)q2 | 6ξ1q2 + q2 − (9ξ1 + 3) − q3 with 6ξ1q2 + q2 − (9ξ1 + 3) − q3 ≤ 0 .

Since 1 ≤ ξ1 ≤ 5,

(6ξ1 +1)q2 ≤ 9ξ1 +3+q3 ≤ 9ξ1 +3+(9 − ξ1 − q2) =⇒ (6ξ1 +2)q2 ≤ 8ξ1 +12 ≤ 52 ,

implying
8 ≤ (3ξ1 + 1)q2 ≤ 26 .

These inequalities are satisfied if and only if

(ξ1, q2) ∈
{
(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 2), (2, 3), (2, 4), (3, 2)

}
.

Since 2 ≤ q3 ≤ 9− (ξ1 + q2), the divisibility condition (7.2) is true only for ξ1 = 1,
q2 = 3 and q3 = 2. (For these values (7.3) is also true.) Hence, the only admissible
triple of pairs is the following:

p1 q1 p2 q2 p3 q3

5 12 1 2 1 2

• Case (2,6,7): By (7.5) we have ξ1 + q2 ≤ 8. Condition (7.3) gives

3(3ξ1 + 1) | 3ξ1 + 2 + q2 =⇒ 3 | q2 − 1 and 3ξ1 + 1 | q2 + 1 .

But this means that (ξ1, q2) ∈ {(1, 7), (2, 6)}. (2, 6) is not permitted because 21 � 14
and (1, 7) violates (7.2), so there are no admissible triples of pairs.
• Case (2,7,6): As in the case (2,6,7) one shows that there are no admissible
triples of pairs.
• Case (2,7,7): Conditions (7.2) and (7.3) give q1 = 3(p1−1) | p1 +1, i.e., p1 = 2,
but in this case p1 ≥ 5. Hence, there are no admissible triples of pairs.
• Case (3,6,6): Here, and for the next three cases, p1 = 3ξ1 + 1, p̂1 = 6ξ1 + 1,
q1 = 9ξ1 and s1 = ξ1 + 1 for an integer ξ1 ≥ 1. By (7.5) we have ξ1 + q2 + q3 ≤ 11.
Condition (7.2) reads as

9ξ1q2 | (6ξ1 + 1)q2 + 9ξ1 + q3 = 9ξ1q2 − 3ξ1q2 + q2 + 9ξ1 + q3 ,
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i.e.,
9ξ1q2 | 3ξ1q2 − q2 − 9ξ1 − q3 with 3ξ1q2 − q2 − 9ξ1 − q3 ≤ 0 .

Since 1 ≤ ξ1 ≤ 7,

3ξ1q2 ≤ q2 + q3 + 9ξ1 ≤ 11 + 8ξ1 ≤ 67 =⇒ 2 ≤ ξ1q2 ≤ 22 .

Since 2 ≤ q3 ≤ 11 − (ξ1 + q2), the divisibility conditions (7.2) and (7.3) are true
only for ξ1 = 1, q2 = 6, q3 = 3, or ξ1 = 2, q2 = 4, q3 = 2, leading to two admissible
triple of pairs, namely

p1 q1 p2 q2 p3 q3

4 9 1 6 1 3
(10.5)

and
p1 q1 p2 q2 p3 q3

7 18 1 4 1 2
(10.6)

• Case (3,6,7): By (7.5) we have ξ1 + q2 ≤ 10. Condition (7.3) gives

9ξ1 | 3ξ1 + 1 + q2 =⇒ 9ξ1 | 6ξ1 − q2 − 1 , with 6ξ1 − q2 − 1 ≤ 0 .

Thus,

6ξ1 ≤ q2 + 1 ≤ 11 − ξ1 =⇒ ξ1 ≤ 11
7

=⇒ ξ1 = 1 .

Since 2 ≤ q2 ≤ 9, condition (7.2) (i.e., 9q2 | 7q2 + 10) implies q2 = 5. The
corresponding admissible triple of pairs is the following:

p1 q1 p2 q2 p3 q3

4 9 1 5 0 1
(10.7)

• Case (3,7,6): By (7.5) we have ξ1 + q3 ≤ 10. Condition (7.2) gives

ξ1 | 6ξ1 + 1 + q3 =⇒ 9ξ1 | 3ξ1 − q3 − 1 , with 3ξ1 − q3 − 1 ≤ 0 .

Thus,

3ξ1 ≤ q3 + 1 ≤ 11 − ξ1 =⇒ ξ1 ≤ 11
4

=⇒ ξ1 ∈ {1, 2} .

Since 2 ≤ q3 ≤ 9, condition (7.2) implies (ξ1, q3) ∈ {(1, 2) , (2, 5)} . (2, 5) is not
permitted because it violates (7.3). For this reason, the only admissible triple of
pairs is the following:

p1 q1 p2 q2 p3 q3

4 9 0 1 1 2
(10.8)

• Case (3,7,7): Condition (7.3) gives q1 = 3(p1 − 1) | p1 + 1, i.e., p1 = 2, but in
this case p1 ≥ 4. Hence, there are no admissible triples of pairs.
• Case (4,6,6): Here, and for the next three cases, p1 = p̂1 = 6ξ1 +5, q1 = 9ξ1 +6
and s1 = ξ1 +1 for an integer ξ1 ≥ 0. By (7.5) we have ξ1 +q2 +q3 ≤ 11. Condition
(7.2) reads as

(9ξ1 + 6)q2 | (6ξ1 + 5)q2 + 9ξ1 + 6 + q3 = (9ξ1 + 6)q2 − (3ξ1 + 1)q2 + 9ξ1 + 6 + q3 ,

i.e.,

(9ξ1 + 6)q2 | (3ξ1 + 1)q2 − 9ξ1 − 6 − q3 with (3ξ1 + 1)q2 − 9ξ1 − 6 − q3 ≤ 0 .
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Since 1 ≤ ξ1 ≤ 7, we obtain

(3ξ1 + 1)q2 ≤ 9ξ1 + 6 + (11 − q2 − ξ1) =⇒ (3ξ1 + 2)q2 ≤ 17 + 8ξ1 ≤ 73 ,

i.e., 4 ≤ (3ξ1 + 2)q2 ≤ 73. Since 2 ≤ q3 ≤ 11− (ξ1 + q2), the divisibility conditions
(7.2) and (7.3) are satisfied only for ξ1 ∈ {0, 1, 2}. In particular, for ξ1 = 0 we
obtain (q2, q3) ∈ {(8, 2) , (2, 8)} and the admissible triples of pairs

p1 q1 p2 q2 p3 q3

5 6 1 8 1 2
(10.9)

and
p1 q1 p2 q2 p3 q3

5 6 1 2 1 8
(10.10)

For ξ1 = 1 we have necessarily q2 = q3 = 5 and the admissible triple of pairs:

p1 q1 p2 q2 p3 q3

11 15 1 5 1 5

Finally, for ξ1 = 2 we have necessarily q2 = q3 = 4 and the admissible triple of
pairs:

p1 q1 p2 q2 p3 q3

17 24 1 4 1 4

• Case (4,6,7): By (7.5) we have ξ1 + q2 ≤ 10. Condition (7.3) gives

9ξ1 + 6 | 6ξ1 + 5 + q2 =⇒ 9ξ1 + 6 | 3ξ1 + 1 − q2 , with 3ξ1 + 1 − q2 ≤ 0 .

Thus, 3ξ1 ≤ q2 − 1 ≤ 9 − ξ1 =⇒ ξ1 ≤ 9
4 =⇒ ξ1 ∈ {0, 1, 2}. Since 2 ≤ q2 ≤ 10,

condition (7.3) implies

(ξ1, q2) ∈
{
(0, 7), (1, 4), (2, 7)

}
.

(2, 7) is not permitted because it violates (7.2); therefore, the admissible triples of
pairs are

p1 q1 p2 q2 p3 q3

5 6 1 7 0 1
(10.11)

and
p1 q1 p2 q2 p3 q3

11 15 1 4 0 1
(10.12)

• Case (4,7,6): As in the case (4,6,7) one proves that there are two admissible
triples of pairs, namely

p1 q1 p2 q2 p3 q3

5 6 0 1 1 7
(10.13)

and
p1 q1 p2 q2 p3 q3

11 15 0 1 1 4
(10.14)
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• Case (4,7,7): Conditions (7.2) and (7.3) give q1 = 3
2 (p1−1) | p1 +1, i.e., p1 = 5.

Thus, we find just one admissible triple of pairs:

p1 q1 p2 q2 p3 q3

5 6 0 1 0 1

• Case (5,6,6): Here, and for the next three cases, p1 = 6ξ1 + 1, p̂1 = 3ξ1 + 1,
q1 = 9ξ1 and s1 = ξ1 + 1 for an integer ξ1 ≥ 1. By (7.5) we have ξ1 + q2 + q3 ≤ 11.
Condition (7.2) reads as

9ξ1q2 | (3ξ1 + 1)q2 + 9ξ1 + q3 = 9ξ1q2 − 6ξ1q2 + q2 + 9ξ1 + q3 ,

i.e.,

9ξ1q2 | 6ξ1q2 − q2 − 9ξ1 − q3 with 6ξ1q2 − q2 − 9ξ1 − q3 ≤ 0 .

Since 1 ≤ ξ1 ≤ 7,

6ξ1q2 ≤ q2 + q3 + 9ξ1 ≤ 11 + 8ξ1 ≤ 67 =⇒ 2 ≤ ξ1q2 ≤ 11 .

Since 2 ≤ q3 ≤ 11−(ξ1 +q2), the divisibility conditions (7.2) and (7.3) are satisfied
only for ξ1 = 1, q2 = 3, q3 = 6, or ξ1 = 2, q2 = 2, q3 = 4, leading to two admissible
triple of pairs, namely

p1 q1 p2 q2 p3 q3

7 9 1 3 1 6
(10.15)

and
p1 q1 p2 q2 p3 q3

13 18 1 2 1 4
(10.16)

• Case (5,6,7): By (7.5) we have ξ1 + q2 ≤ 10. Condition (7.3) gives

9ξ1 | 6ξ1 + 1 + q2 =⇒ 9ξ1 | 3ξ1 − q2 − 1 , with 3ξ1 − q2 − 1 ≤ 0 .

Thus,

3ξ1 ≤ q2 + 1 ≤ 11 − ξ1 =⇒ ξ1 ≤ 11
4

=⇒ ξ1 ∈ {1, 2} .

Since 2 ≤ q2 ≤ 9, condition (7.3) implies ξ1 = 1 and q2 = 2. The result is the
following admissible triple of pairs:

p1 q1 p2 q2 p3 q3

7 9 1 2 0 1
(10.17)

• Case (5,7,6): By (7.5), ξ1 + q3 ≤ 10. Now (7.2) reads as

9ξ1 | 3ξ1 + 1 + q3 =⇒ 9ξ1 | 6ξ1 − q3 − 1 , with 6ξ1 − q3 − 1 ≤ 0 .

Thus,

6ξ1 ≤ q3 + 1 ≤ 11 − ξ1 =⇒ ξ1 ≤ 11
7

=⇒ ξ1 = 1 .
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Since 2 ≤ q3 ≤ 9, condition (7.2) implies q3 = 5. The corresponding admissible
triple of pairs is the following:

p1 q1 p2 q2 p3 q3

7 9 0 1 1 5
(10.18)

• Case (5,7,7): Condition (7.3) gives q1 = 3
2 (p1 − 1) | p1 + 1, i.e., p1 ≤ 5, but in

this case p1 ≥ 7. Hence, there are no admissible triples of pairs. �

Remark 10.2. The majority of the admissible triples of pairs induce toric log
Del Pezzo surfaces admitting at least one Gorenstein singularity. This is due to
the fact that the qi’s corresponding to Gorenstein singularities can be viewed as
parameters moving freely between 2 and an upper bound dictated by conditions
(7.5) and (7.6), without any further restrictions.

11. Proof of Theorem 1.3: Step 4

Lemma 11.1. The toric log Del Pezzo surfaces induced by the following admissible
triples of pairs (a) and (b):

(a) (9.1) (9.4) (9.5) (10.1) (10.3) (10.5)
(b) (9.6) (9.10) (9.8) (10.2) (10.4) (10.15)
(a) (10.6) (10.8) (10.7) (10.9) (10.11) (10.12)
(b) (10.16) (10.17) (10.18) (10.10) (10.13) (10.14)

are isomorphic to each other. The same is true for the four surfaces induced by
the following admissible triples of pairs:

(a) (b) (c) (d)
(9.2) (9.3) (9.7) (9.9)

(The admissible triples of pairs are given by their reference numbers.)

Proof. If XΔ(a) (resp., XΔ(b)) is the toric Del Pezzo surface induced by the ad-

missible triple of pairs (a) (resp., (b)) in the first list, then GΔ(a)

gr.∼= Grev
Δ(b)

. Cor-
respondingly, if XΔ(a) , XΔ(b) , XΔ(c) , XΔ(d) are the four surfaces induced by the
admissible triples of pairs in the second list, then we obtain

GΔ(a)

gr.∼= Grev
Δ(b)

gr.∼= Grev
Δ(c)

gr.∼= GΔ(d) .

It is therefore enough to apply Theorem 4.4. �

Note 11.2. By Lemmas 8.2, 9.1, 9.2 and 10.1 we proved that among all possible
triples of pairs there exist exactly 33 which are admissible. Lemma 11.1 informs
us that, in fact, for the classification of toric Del Pezzo surfaces XΔ having Picard
number ρ (XΔ) = 1 and index � = 3 up to isomorphism, we need only 18 out of
them. (The XΔ’s induced by such a choice of 18 admissible triples of pairs are
obviously pairwise non-isomorphic.)
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End of the proof of Theorem 1.3. We consider 18 representatives of admissible
triple of pairs inducing pairwise non-isomorphic toric Del Pezzo surfaces XΔ with
ρ (XΔ) = 1 and index � = 3, and we enumerate them, e.g., as in the Table 6. The
coordinates of the third minimal generator n3 is computed by (6.2). The integers
ri = −C

2

i , i ∈ {1, 2, 3}, are computed directly via (4.8).

Table 6.

No. Case p1 q1 p2 q2 p3 q3 n3 r1 r2 r3

(i) (1,7,7) 2 3 0 1 0 1 (−1,−1) 0 0 −3

(ii) (1,7,6) 2 3 0 1 1 4 (−3,−4) 1 −1 0

(iii) (1,6,6) 2 3 1 2 1 5 (−4,−5) 1 0 1

(iv) (1,1,6) 2 3 2 3 1 6 (−5,−6) 1 0 1

(v) (4,7,7) 5 6 0 1 0 1 (−1,−1) 0 0 −6

(vi) (4,7,6) 5 6 0 1 1 7 (−6,−7) 1 −1 0

(vii) (4,6,6) 5 6 1 8 1 2 (−3,−2) 0 1 1

(viii) (1,4,6) 2 3 5 6 1 9 (−8,−9) 1 0 1

(ix) (5,3,6) 7 9 4 9 1 9 (−8,−9) 1 1 1

(x) (5,7,6) 7 9 0 1 1 5 (−4,−5) 1 0 −1

(xi) (3,7,6) 4 9 0 1 1 2 (−1,−2) 1 0 −4

(xii) (3,6,6) 4 9 1 6 1 3 (−2,−3) 1 1 1

(xiii) (4,4,6) 5 6 5 6 1 12 (−11,−12) 1 0 1

(xiv) (2,6,6) 5 12 1 2 1 2 (−1,−2) 1 1 −2

(xv) (4,7,6) 11 15 0 1 1 4 (−3,−4) 1 0 −3

(xvi) (4,6,6) 11 15 1 5 1 5 (−4,−5) 1 1 1

(xvii) (3,6,6) 7 18 1 4 1 2 (−1,−2) 1 1 −1

(xviii) (4,6,6) 17 24 1 4 1 4 (−3,−4) 1 1 0

The wve
2
c-graphs GΔ (associated to the 18 Δ’s) are depicted in Figure 3 in

this order. (The reference to the double weight (0, 1) at an edge of GΔ is always
omitted.) Finally, we may identify the corresponding XΔ’s with weighted projec-
tive planes or quotients thereof by a finite abelian group HΔ via Lemma 6.1. (In
the statement of the Theorem we have w.l.o.g. rearranged the weights in ascend-
ing order. Computing the Smith normal form, HΔ turns out to be cyclic for the
surfaces (ix) and (xviii)). �
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Figure 3.
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