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Abstract. The compact toric surfaces can be classified up to isomorphism by
means of suitable weighted directed graphs, and their invariants (both “con-
ventional” and “stringy”) are to be expressed by closed formulae depending
on their combinatorial data. Moreover, the nonsingular ones possess uniquely
determined anticanonical models which are toric log Del Pezzo surfaces.

Introduction

By the well-known Enriques-Kodaira classification one subdivides the class of the
minimal models of nonsingular compact complex surfaces into several subclasses
according to the values taken from their Kodaira dimension (−∞, 0, 1, or 2) and
from their other invariants (first Betti number, topological Euler characteristic,
self-intersection of the canonical divisor etc.); see, e.g., [2, Ch. 8-9], [3, Ch. VI],
[9, Ch. VII-X], [21, Ch. 4], [36, Ch. 1, §7], or [37, Ch. 1]. Nonsingular projective
minimal surfaces having Kodaira dimension −∞ (that is, either rational or ruled
over a nonsingular compact curve of genus ≥ 1) occupy a distinguished position
in the classification table because they correspond, in the MMP-terminology (by
the hard dichotomy, cf. [36, Thm. 1.5.5]), to the so-called Mori’s fiber spaces in
dimension 2. In the mid 1980’s Sakai [51], [52], provided a classification (analogous
to the “Enriques’ part” of the above mentioned) for normal projective (or, more
generally, Moishezon) surfaces, and generalized the notion of minimal models for
normal pairs. Even in this framework, projective normal surfaces with Kodaira
dimension −∞ play apparently a pivotal role in answering various questions which
arise in two-dimensional birational geometry (cf. [49], [52], and [33]).

Compact toric surfaces are rational surfaces X∆ equipped with an algebraic
action of a two-dimensional (algebraic) torus T, containing an open dense T-orbit,
and admitting at worst normal, log-terminal singularities. Since they are defined
by means of complete fans ∆ consisting of two-dimensional rational strongly convex
polyhedral cones, lots of their main algebro-geometric properties are to be described
by suitable combinatorial properties of these cones. The aim of the present paper is
to stress the particular importance of a systematic use of geometric combinatorics
in the study of X∆’s as, for instance, in the computation of their invariants, in their
classification (up to biregular isomorphism), in the examination of their minimal,
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antiminimal and anticanonical models (in the sense of Sakai) etc. More precisely,
the paper is organized as follows:

B After having established in this section the general algebro-geometric terminology
which will be used in the sequel, we survey briefly in §1 those parts of the theory
of normal surfaces being involved in the treatment of compact toric surfaces.

B In §2 we recall some fundamental notions from toric geometry and fix our no-
tation. A detailed study of the 2-dimensional s.c.p. cones (including their lattice-
geometric properties and number-theoretic parametrization), as well as of the 2-
dimensional toric singularities (including their quotient space structure, their defi-
ning equations, and their minimal resolutions) is presented in §3.

B In §4 we introduce the concept of the combinatorial data of a compact toric
surface X∆. These data, together with the intersection numbers of pairs of T-
invariant Weil divisors and appropriate generalizations of Noether’s formula are
used to determine the classical invariants of X∆, with the self-intersection K2

X∆
of

its canonical divisor considered as the prominent one (see formulae (4.15), (4.16),
and (4.17)).

B Section 5 is devoted to the classification (up to biregular isomorphism) of compact
toric surfaces by means of wve2c-graphs (see Theorems 5.8 and 5.10).

B In Section 6 we apply the general theory of §1 to obtain minimal models of normal
pairs (X∆, D), and then we focus on the antiminimal and anticanonical models of
nonsingular X∆’s. The latter ones are necessarily toric log Del Pezzo surfaces.
Though the complete classification of these surfaces (up to biregular isomorphism)
remains an open combinatorial problem, some first partial results are accomplished
by Theorems 6.10 and 6.12, in which it is shown that there are only 16 surfaces of
this kind having index 1, and only 7 surfaces having index 2 and Picard number 1,
respectively.

B In §7 we explain how one can compute the Euler-Poincaré characteristic of the
coherent sheaf OX∆(D) associated to a Weil divisor D on X∆ via a generalized
Riemann-Roch formula whose correction terms depend on the combinatorial data
of X∆.

B Finally, in §8 we compute the stringy E-function of any compact toric surface.

• General terminology. (i) If X is a complex variety, i.e., an integral separated
scheme of finite type over C, then its punctual algebraic behaviour is determined
by the stalks OX,x of its structure sheaf OX , and X itself is said to have a given
algebraic property (e.g., to be normal, Gorenstein, Cohen-Macaulay etc) whenever
all OX,x’s have the analogous property for all x ∈ X. Furthermore, via the gaga-
correspondence (cf. [23, App. B]) we may work in the analytic category by means
of the usual contravariant functor between the category of isomorphy classes of
germs (X,x) and the corresponding category of isomorphy classes of analytic local
rings at the marked points x.

(ii) Let X be a normal complex variety. We denote by DivP(X), DivW(X), and
DivC(X), the additive groups of principal, Weil and Cartier divisors on X, re-
spectively (see [23, Ch. II, §6]), and by DivW(X)⊗Z Q (resp., DivC(X)⊗Z Q) the
group of Q-Weil (resp., Q-Cartier) divisors. Two Weil divisors D and D′ are said
to be linearly equivalent, written D ∼ D′, if D−D′ ∈ DivP(X). (In many formulae
involving Weil divisors we prefer to write “=” instead of “∼”, but it will be always
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clear what is meant.) For the corresponding divisor class groups on X we introduce
the notation

ClDivW(X) := DivW(X)/DivP(X) ⊇ DivC(X)/DivP(X) =: Cl DivC(X).

Denoting by RatX the constant sheaf of rational functions of X, there is a bijection

ClDivW(X) 3 {D} Υ7−→ {OX (D)} ∈
{

reflexive subsheaves
of RatX having rank 1

}
/ H0 (X,O∗X) .

(A coherent sheaf of OX -modules is called reflexive if it is isomorphic to its bidual,
cf. [24].) OX (D) is defined by sending every non-empty open set U of X onto

U 7−→ OX (D) (U) :=
{
φ ∈ C (X)∗ | (div (φ) + D) |U ≥ 0

} ∪ {0}.
The restriction Υ|ClDivC(X) gives the group isomorphism Cl DivC(X) ∼= Pic(X),
where Pic(X) is the Picard group of X (i.e., the group of isomorphism classes of
invertible sheaves on X, cf. [23, Proposition II.6.15, p. 145]). A Q-Cartier divisor
D on X is said to be ample if some multiple of it is an integral very ample Cartier
divisor (that is, a hyperplane section for some immersion of X into a projective
space). If X is compact, a necessary and sufficient condition for D to be ample is
given by the so-called Nakai’s criterion (see [22, Thm. 5.1, pp. 30-32]).

(iii) For a complex variety X, we denote by

Sing (X) := {x ∈ X | OX,x is a non-regular local ring}
its singular locus. Let now ΩReg(X)/C be the sheaf of Kähler differentials on the
regular locus Reg(X) := XrSing(X)

ι
↪→ X. If X is normal, the unique (up to “∼”)

Weil divisor KX , which maps under Υ to the canonical divisorial sheaf

ωX := ι∗
(∧dimC(X) ΩReg(X)/C

)
,

is called the canonical divisor of X. Such an X is said to be Q-Gorenstein if KX is
a Q-Cartier divisor.

(iv) For a Q-Weil divisor D on a normal compact complex variety X, we define

kod(X, D) :=
{

trans.degC(R(X, D))− 1, if R(X, D) 6= C,
−∞, otherwise,

as the D-dimension of X, where R(X, D) :=
⊕

m≥0
H0(X,OX(mD)). In particu-

lar, kod(X, KX) (resp., kod(X,−KX)) is called the Kodaira dimension (resp., the
anti-Kodaira dimension) of X.

(v) For a birational morphism f : X −→ Y between complex varieties we denote
by

Exc(f) :=
{
x ∈ X | f−1 is not a morphism at f(x)

}

the exceptional locus of f (equipped with the reduced subscheme structure). By a
desingularization (or resolution of singularities) of a singular X we mean a proper,
surjective birational morphism f : X̂ −→ X with f | bXrExc(f) an isomorphism and

Sing(X̂) = ∅. (Throughout this paper all birational morphisms will be assumed to
be proper.)
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(vi) A Q-Gorenstein complex variety X is said to have at worst log-terminal (re-
spectively, canonical / terminal) singularities if there exists a desingularization
f : X̂ −→ X of X such that all coefficients ηj ∈ Q in the discrepancy divisor

K bX − f∗ (KX) =
∑

j

ηj Dj ∈ DivC(X)⊗Z Q,

w.r.t. f are > −1 ( ≥ 0 / > 0). (This property is independent of the choice of f,
with f∗ denoting the pull-back of Q-Cartier divisors by f.) In particular, f is called
crepant whenever ηj = 0 for all j.

1. Preliminaries from the theory of normal surfaces

In this preliminary section we recall some basic notions from the intersection theory
and the singularity theory of compact normal surfaces, and we give the definition
of minimal (resp., canonical) model of a normal pair in the sense of Sakai [50].
(Convention: We use the word surface to mean a two-dimensional complex variety.
A curve on a surface will be an 1-dimensional reduced, complete subscheme of it.)

• Intersection theory on nonsingular surfaces. Let X be a nonsingular sur-
face. The intersection number D1 · D2 of two Cartier divisors D1, D2 on X can
be always defined provided that the intersection of their supports is compact (see
Fulton [19, 2.4.9, p. 40]). For instance, if x is an isolated intersection of two curves
C1, C2 on X, with f, g ∈ OX,x specifying their local equations, then

ix(C1, C2) := dimC(OX,x/(fx, gx))

is the intersection multiplicity of C1 and C2 at x, and

C1 · C2 =
∑

x∈C1∩C2

ix(C1, C2),

whenever C1, C2 have no common irreducible component. On the other hand, to
extend this definition in the general case, the self-intersection number C2 of a curve
C

ι
↪→ X is introduced as follows: Let IC := Ker(OX → ι∗OC) be the ideal sheaf of

C in X. We consider the sheaf of OC-modules IC/I2
C
∼= OX(−C)⊗OC , we pass to

its dual

NX/C := Hom(IC/I2
C ,OC) ∼= OX(C)⊗OC

(the so-called normal sheaf of C in X), and then we define

C2 := C · C := degC

(NX/C

)
. (1.1)

• Intersection theory on compact normal surfaces. We recall the definition
of intersection numbers of Q-Weil divisors on compact normal surfaces, due to
Mumford [38, pp. 17-18]. Let f : Z −→ Y be a desingularization a compact
normal surface Y with Exc(f) =

⋃s
j=1 Ej . The inverse image f∗D of a Q-Weil

divisor D is defined to be

f∗D = D +
s∑

j=1

ajEj ∈ DivC(Z)⊗Z Q,
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where D is the strict transform of D via f, and the rational numbers a1, . . . , as are
uniquely determined by the equations:

D · Ej′ +




s∑

j=1

ajEj


 · Ej′ = 0, ∀j′ ∈ {1, . . . , s}.

In this manner, one constructs a group homomorphism

f∗ : DivW(Y )⊗Z Q −→ DivC(Z)⊗Z Q.

(Note that, even if D is integral on Y , f∗D is in general a Q-Cartier divisor on
Z, and that f∗OZ (f∗D) ∼= OY (D) , where f∗ is the direct image under f .) The
(fractional) intersection number D ·D′ of two Q-Weil divisors D,D′ on Y is defined
to be the image of the pair (D,D′) under the symmetric, Q-bilinear map

(DivW(Y )⊗Z Q)× (DivW(Y )⊗Z Q) 3 (D, D′) 7−→ D ·D′ := f∗D · f∗D′ ∈ Q,

and is to be computed by utilizing the usual intersection pairings on Z with coef-
ficients taken from Q. In addition, D ·D′ is well-defined, in the sense, that it does
not depend on the particular choice of f (see Fulton [19, 7.1.16, p. 125]).

• Contractibility criterion. Let Y be a normal surface. The singularities of
Y are isolated, because codim(Sing(Y )) ≥ 2. Let y ∈ Y be a singularity and
f : Z −→ Y a desingularization of Y. The set-theoretic inverse image f−1(y) of y
consists of finitely many irreducible curves E1, . . . , Es. By Zariski’s Main Theorem
(see [23, Corollary III.11.4, p. 280]) E :=

∑s
j=1 Ej is connected (as topological

space). On the other hand, we say that a connected curve C on Y is contracted to
x if there is a birational morphism ϕ : Y −→ X, with X normal, x = ϕ(C) ∈ X,
such that YrC ∼= Xr{x}.

Theorem 1.1. A connected curve C on a compact normal surface Y having
C1, . . . , Cs as its irreducible components can be contracted to a normal point if and
only if the intersection matrix (Ci · Cj)1≤i,j≤s is negative definite.

Proof. It suffices to pass to an arbitrary desingularization of Y and to apply the
classical Grauert’s criterion [20, p. 367]; compare [50, Thm. 2.1., p. 878]. ¤
• Minimal desingularization. A desingularization f : X ′ −→ X of a normal
surface X is minimal if Exc(f) does not contain any curve with self-intersection
number −1 or, equivalently, if for an arbitrary desingularization g : X ′′ −→ X of X,
there exists a unique morphism h : X ′′ −→ X ′ with g = f ◦ h. A desingularization
of a normal surface is good if (i) the irreducible components of the exceptional
locus are smooth curves, and (ii) the preimage of each singular point is a divisor
with simple normal crossings. For the proof of the uniqueness, up to (biregular)
isomorphism, of both minimal and good minimal desingularizations, see Brieskorn
[13, Lemma 1.6, p. 81] and Laufer [35, Thm. 5.12, pp. 91-92].

• Local canonical divisors. Let Y be a projective normal surface and f : Ỹ −→ Y

its minimal desingularization. Let Ey :=
∑sy

j=1 E
(y)
j denote the fibre over a point

y ∈ Sing(Y ). We define the local canonical divisor

K(Ey) =
sy∑

j=1

c
(y)
j E

(y)
j ∈ DivC(Ỹ )⊗Z Q
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of Ỹ at y by the equations:

K(Ey) · E(y)
j = KeY · E

(y)
j , ∀j ∈ {1, . . . , sy}.

Hence, we get
∑

y∈ Sing(Y )

K(Ey) = KeY − f∗KY ∈ DivC(Ỹ )⊗Z Q,

where all coefficients
{

c
(y)
j

∣∣∣ y ∈ Sing(Y ), j ∈ {1, . . . , sy}
}

are nonpositive rationals

(because K(Ey) · E(y)
j ≥ 0 for all j ∈ {1, . . . , sy} and all y ∈ Sing(Y )). If all c

(y)
j ’s

belong to the interval (−1, 0], then Y has at worst log-terminal singularities which
turn out to be quotient singularities (see, e.g., [36, Thm. 4.6.18, pp. 215-218]
or [37, Lemma 4.1.1, pp. 117-118]). If all c

(y)
j ’s are = 0, then Y has at worst

canonical singularities, i.e., rational A-D-E-singularities (also called Kleinian or
Du Val singularities), cf. [36, Thm. 4.6.7, pp. 197-212]. (Terminal singularities
are not present in dimension 2).

• Minimal models. From now on we consider normal pairs (Y, D), i.e., pairs
consisting of a projective normal surface Y and a Q-Weil divisor D on Y. A bi-
rational morphism f : (Y,D) −→ (Y ′, D′) between two normal pairs is a bira-
tional morphism f : Y −→ Y ′ (in the common sense) with Exc(f) =

⋃s
j=1 Ej and

f∗OY (D) = OY ′(D′) or, equivalently,

D − f∗D′ =
s∑

j=1

djEj ∈ DivW(Y )⊗Z Q. (1.2)

Definition 1.2. An irreducible curve C on Y is called exceptional curve of first
kind for (Y, D) if C2 < 0 and D·C < 0. We say that Y is minimal with respect to D
if it does not contain any exceptional curve of the first kind for (Y, D). We say that
a normal pair (Y ′, D′) is a minimal model of (Y, D) if (i) Y ′ is minimal w.r.t. D′

(in the above sense) and (ii) there is a birational morphism f : (Y,D) −→ (Y ′, D′)
which is either an isomorphism or totally discrepant, that is, Exc(f) 6= ∅ and
all dj ’s in (1.2) are strictly positive. (Such an f can be always factorized into a
sequence of successive contractions of exceptional curves of the first kind w.r.t. D,
cf. [50, Proposition 7.3., pp. 884-885.].)

Definition 1.3. Let D be a Q-Weil divisor D on a projective normal surface
Y. We say that D is nef (numerically effective) if D ·C ≥ 0 for all irreducible curves
C on Y, and that D is pseudoeffective if D · E ≥ 0 for all nef divisors E on Y.

Theorem 1.4. ([50, Thm. 7.4]) Every normal pair (Y, D) has a minimal
model. Furthermore, if D is pseudoeffective, then (Y, D) admits a unique minimal
model (Y ′, D′). In this case, D′ is nef.

Remark 1.5. (a) In particular, we say that Y ′ is a minimal model of Y when-
ever (Y ′,KY ′) is a minimal model of (Y,KY ). Analogously, we say that Y ′ is an
antiminimal model of Y whenever (Y ′,−KY ′) is a minimal model of (Y,−KY ).

(b) If C is an exceptional curve of the first kind for (Y,KY ), then C
2

= −1, where
C denotes the strict transform of C by the minimal desingularization f : Ỹ −→ Y
of Y (cf. [51, Lemma 1.1, p. 629]). If Y happens to be nonsingular, an exceptional
curve of the first kind for (Y,KY ) is, as usual, a (−1)-curve.
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• Canonical models. A normal pair (Y, D) is canonical if Y contains no irre-
ducible curves C with C2 < 0 and D · C ≤ 0. We say that a normal pair (Y ′′, D′′)
is a canonical model of a normal pair (Y, D) if (i) (Y ′′, D′′) is canonical and (ii)
there is a birational morphism g : (Y, D) −→ (Y ′′, D′′) of normal pairs such that
all coefficients of D − g∗D′′ are nonnegative. Every normal pair has a canoni-
cal model. Furthermore, every canonical model (Y ′′, D′′) of a normal pair (Y,D)
factors through a minimal model (Y ′, D′):

(Y,D)

f

{{xxxxxxxxxxxxxxxxxx

g

##GGGGGGGGGGGGGGGGGG

	

(Y ′, D′)
h

// (Y ′′, D′′)

where D′ = h∗D′′ and f is either an isomorphism or a totally discrepant birational
morphism (cf. [50, p. 886]).

Note 1.6. In analogy to 1.5 (a), we simply say that Y ′′ is a canonical model
of Y whenever (Y ′′, KY ′′) is a canonical model of (Y, KY ), and that Y ′′ is an
anticanonical model of Y whenever (Y ′′,−KY ′′) is a canonical model of (Y,−KY ).

Theorem 1.7. ([50, § 7]) If (Y,D) is a normal pair with D pseudoeffective and
kod(Y, D) = 2, then (Y,D) admits a unique canonical model (Y ′′, D′′). Furthermore,
if the ring R(Y,D) is finitely generated, then D′′ is an ample Q-Cartier divisor on
Y ′′, and Y ′′ ∼= Proj(R(Y, D)).

• Rational surfaces. These are surfaces birationally equivalent to the projective
plane P2

C, having Kodaira dimension −∞. A characterization of the class of non-
singular rational surfaces with anti-Kodaira dimension 2 is given in the following
result of Sakai:

Theorem 1.8. ([49, Thm. 4.3]) Let X be a nonsingular rational surface with
kod(X,−KX) = 2. Then the anticanonical ring R(X,−KX) is finitely generated
and the anticanonical model Xantican

∼= Proj(R(X,−KX)) of X has the following
properties:
(i) Xantican has at worst isolated rational singularities.
(ii) −KXantican is an ample Q-Cartier divisor.
Moreover, if Y is a normal projective surface satisfying (i) and (ii), and if we
denote by f : X −→ Y its minimal desingularization, then X is a rational surface
with kod(X,−KX) = 2 and Y ∼= Xantican.

2. Preliminaries from toric geometry

Before we are going to deal exclusively with toric surfaces, we recall those funda-
mental notions and auxiliary results from the general theory of toric varieties which
will be used substantially in the sequel. For further details the reader is referred to
the books of Oda [41], [42], and Fulton [18].

• Fundamental notions. The linear hull, the affine hull, the positive hull and
the convex hull of a set B of vectors of Rd, d ≥ 1, will be denoted by lin(B), aff(B),
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pos(B) (or R≥0 B) and conv(B), respectively. The dimension dim(B) of a B ⊂ Rd

is defined to be the dimension of aff(B).
Let N be a free Z-module of rank d ≥ 1. N can be regarded as a lattice

within NR := N ⊗Z R ∼= Rd. The lattice determinant det(N) of N is the d-volume
of the parallelepiped spanned by a Z-basis of it. An n ∈ N is called primitive if
conv({0,n}) ∩N contains no other points except 0 and n.

Let N be as above, M := HomZ (N,Z) its dual, NR, MR their real scalar
extensions, and 〈., .〉 : MR × NR → R the natural R-bilinear pairing. A subset σ
of NR is called a convex polyhedral cone (c.p.c., for short) if there exist vectors
n1, . . . ,nk ∈ NR such that σ = pos({n1, . . . ,nk}). Its relative interior int(σ) is the
usual topological interior of it and considered as a subset of lin(σ) = σ+(−σ). The
dual cone σ∨ of a c.p.c. σ is a c.p. cone defined by

σ∨ := {y ∈ MR | 〈y,x〉 ≥ 0, ∀x, x ∈ σ } .

Note that (σ∨)∨ = σ and

dim (σ ∩ (−σ)) + dim (σ∨) = dim (σ∨ ∩ (−σ∨)) + dim (σ) = d.

A subset τ of a c.p.c. σ is called a face of σ (notation: τ ≺ σ), if for some m0 ∈ σ∨

we have τ = {x ∈ σ | 〈m0,x〉 = 0}. 1-dimensional faces are called rays.
A c.p.c. σ = pos({n1, . . . ,nk}) is called simplicial (resp., rational) if n1, . . . ,nk

are R-linearly independent (resp., if n1, . . . ,nk ∈ NQ, where NQ := N ⊗Z Q). If %
is a ray of a rational c.p.c. σ, we denote by n (%) ∈ N ∩ % the unique primitive
vector with % = R≥0 n (%) , and we define

Gen (σ) := {n (%) | % rays of σ } (the set of minimal generators of σ).

A strongly convex polyhedral cone (s.c.p.c., for short) is a convex polyhedral cone
σ for which σ ∩ (−σ) = {0}, i.e., for which dim(σ∨) = d.

• Hilbert basis. If σ ⊂ NR is a rational s.c.p.c., then the subsemigroup σ ∩ N
of N is a monoid. σ ∩ N is finitely generated as an additive semigroup for every
rational c.p.c. σ ⊂ NR. Moreover, if σ is strongly convex, then among all the
systems of generators of σ ∩N , there is a system HilbN (σ) of minimal cardinality,
which is uniquely determined (up to the ordering of its elements) by the following
characterization:

HilbN (σ) =



n ∈ σ ∩ (N r {0})

∣∣∣∣∣∣

n cannot be expressed
as sum of two other vectors
belonging to σ ∩ (N r {0})



 . (2.1)

HilbN (σ) is called the Hilbert basis of σ w.r.t. N.

•Affine toric varieties. For a free Z-module N of rank d having M as its dual, we
define an d-dimensional algebraic torus T ∼= (C∗)d by setting T :=HomZ (M,C∗) .
Every m ∈ M assigns a character e (m) : T → C∗. Moreover, each n ∈ N
determines a 1-parameter subgroup

ϑn : C∗ → T with ϑn (λ) (m) := λ〈m,n〉, for λ ∈ C∗, m ∈ M .

We can therefore identify M with the character group of T and N with the group
of 1-parameter subgroups of T. On the other hand, for a rational s.c.p. cone σ with
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M ∩ σ∨ = Z≥0 m1 + · · ·+Z≥0 mν , we associate to the finitely generated monoidal
subalgebra

C [M ∩ σ∨] =
⊕

m∈M∩σ∨
C e (m)

of the C-algebra C [M ] =
⊕

m∈M

C e (m) an affine toric variety

Uσ := Spec (C [M ∩ σ∨]) .

Uσ admits a canonical T-action which extends the group multiplication of the al-
gebraic torus T = U{0}:

T× Uσ 3 (t, u) 7−→ t · u ∈ Uσ (2.2)

where, for u ∈ Uσ, (t · u) (m) := t (m) ·u (m) , ∀m, m ∈ M ∩σ∨ . The orbits w.r.t.
the action (2.2) are parametrized by the set of all the faces of σ. For a τ ≺ σ, we
denote by orb(τ) the orbit which is associated to τ .

Proposition 2.1 (Embedding by binomials). In the algebraic category, Uσ,
identified with its image under the injective map

(e (m1) , . . . , e (mν)) : Uσ ↪→ Cν ,

can be regarded as an affine variety determined by a finite number of equations
of the form (monomial) = (monomial). Uσ is independent of the semigroup gen-
erators {m1, . . . ,mν} and each map e (m) on Uσ is a morphism. In particular,
for τ ≺ σ, Uτ is an open algebraic subset of Uσ. Moreover, if dim(σ) = d and
#(HilbM (σ∨)) = k (≤ ν) , then k is nothing but the embedding dimension of Uσ,
i.e., the minimal number of generators of the maximal ideal of the local C-algebra
OUσ,0.

Proof. See Oda [42, Propositions 1.2 and 1.3., pp. 4–7]. ¤
• Algebraic properties. The well-known hierarchy of Noetherian rings

(regular) =⇒ (Gorenstein) =⇒ (Cohen-Macaulay)

is used to describe the punctual algebraic behaviour of affine toric varieties.

Definition 2.2 (Multiplicities and basic cones). Let N be a free Z-module of
rank d and σ ⊂ NR a simplicial, rational s.c.p.c. of dimension d′ ≤ d. The cone σ
can be obviously written as σ = %1 + · · · + %d′ , for distinct rays %1, . . . , %d′ . The
multiplicity mult(σ;N) of σ with respect to N is defined as

mult (σ; N) :=
det (Zn (%1)⊕ · · · ⊕ Zn (%d′))

det (Nσ)
,

where Nσ is the sublattice of N generated (as a subgroup) by the set N∩ lin(σ) .
If mult(σ;N) = 1, then σ is called a basic cone w.r.t. N .

Theorem 2.3 (Smoothness criterion). The affine toric variety Uσ is nonsin-
gular (i.e., the corresponding local rings OUσ, u are regular at all points u of Uσ)
iff σ is simplicial and basic w.r.t. N .

Proof. See Oda [42, Thm. 1.10, p. 15]. ¤
Next theorem describes a necessary and sufficient condition for Uσ to be Gorenstein
(see Ishida [30, §7]).
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Theorem 2.4 (Gorenstein property). Let N be a free Z-module of rank d and
σ a rational s.c.p. cone in NR with dim(σ) = d. Then the following conditions are
equivalent :
(i) Uσ is Gorenstein.
(ii) ∃! primitive mσ ∈ M ∩ (int (σ∨)) such that M ∩ (int (σ∨)) = mσ + (M ∩ σ∨).

Finally, let us recall the most fundamental property of Uσ’s:

Theorem 2.5 (Normality and CM-property). The affine toric varieties Uσ are
always normal and Cohen-Macaulay, and have at worst rational singularities.

Proof. See Fulton [18, pages 29-31 and 76] and Oda [42, pp. 125-126]. ¤
• Fans and general toric varieties. A fan w.r.t. N ∼= Zd is a finite collection ∆
of rational s.c.p. cones in NR such that
(i) any face τ of σ ∈ ∆ belongs to ∆, and
(ii) for σ1, σ2 ∈ ∆, the intersection σ1 ∩ σ2 is a face of both σ1 and σ2.

The union |∆| := ∪{σ | σ ∈ ∆} is called the support of ∆. We say that ∆ is d-
dimensional if all of its maximal cones are d-dimensional. Furthermore, we define

∆ (i) := {σ ∈ ∆ | dim (σ) = i} , for 0 ≤ i ≤ d , and Gen (∆) :=
⋃

σ∈∆

Gen (σ) .

The toric variety X∆ associated to a fan ∆ (w.r.t. N) is by definition the identifi-
cation space

X∆ :=

(( ⋃

σ∈∆

Uσ

)
/ '

)
(2.3)

with Uσ1 3 u1 ' u2 ∈ Uσ2 iff there is a τ ∈ ∆, such that τ ≺ σ1 ∩ σ2 and u1 = u2

within Uτ . A canonical T-action on X∆ is established via (2.2) on each Uσ, σ ∈ ∆.

Note 2.6. (a) By Theorem 2.5, X∆ is normal, Cohen-Macaulay, and has at
worst rational singularities. Moreover, algebraic properties like those described in
Theorems 2.3 and 2.4 are also local, and they are transferred to X∆, provided that
they are valid for all of its affine “building blocks”.
(b) If the toric variety X∆ is Q-Gorenstein, then it has at worst log-terminal sin-
gularities (see [6, Corollary 4.2, p. 10]).
(c) As complex variety, X∆ is compact iff ∆ is a complete fan, i.e., iff |∆| = NR
(see [42, Thm. 1.11, p. 16]).
(d) The topological Euler characteristic e(X∆) of a d-dimensional toric variety X∆

equals e(X∆) = ](∆(d)) (see [18, p. 59]).

•Maps of fans. A map of fans $ : (N ′, ∆′) → (N, ∆) is a Z-linear homomorphism
$ : N ′ → N whose scalar extension $R : N ′

R → NR satisfies the property:

∀σ′, σ′ ∈ ∆′ ∃ σ, σ ∈ ∆ with $R (σ′) ⊂ σ .

$⊗ZidC∗ : N ′ ⊗Z C∗ → N ⊗Z C∗ is a homomorphism between the two algebraic
tori and the scalar extension $∨⊗ZidR : MR → M ′

R of the dual map $∨ : M → M ′

of $ induces canonically an equivariant morphism $∗ : X∆′ −→ X∆. This map is
proper iff $−1 (|∆|) = |∆′| . In particular, if N = N ′ and ∆′ is a refinement of ∆,
then id∗ : X∆′ −→ X∆ is proper and birational (cf. [42, Thm. 1.15, pp. 20-21,
and Cor. 1.18, p. 23]).
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• Desingularization. By Carathéodory’s Theorem concerning convex polyhedral
cones one can choose a refinement ∆′ of any given fan ∆, so that ∆′ becomes
simplicial. Since further subdivisions of ∆′ reduce the multiplicities of its cones, we
may arrive (after finitely many subdivisions) at a fan ∆′′ having only basic cones.
Thus, for every toric variety X∆ there exists a refinement ∆′′ of ∆ consisting of
exclusively basic cones w.r.t. N , i.e., such that f = id∗ : X∆′′ −→ X∆ is an
equivariant desingularization of X∆ (by Theorem 2.3).

• Divisors and support functions. Let X∆ be a toric variety associated to a
fan ∆, and let DivTW(X∆) (resp., DivTC(X∆)) denote the group of T-invariant Weil
(resp., Cartier) divisors on it, i.e., the subgroup of divisors remaining invariant
under the canonical T-action on DivW(X∆) (resp., on DivC(X∆)). Then

DivTW(X∆) =
⊕

%∈∆(1)

ZV∆ (%) , where V∆ (%) := the closure of orb (%) ,

and a D =
∑

%∈∆(1) λ%V∆ (%) ∈ DivTW(X∆) is a Cartier divisor iff for all σ ∈ ∆
there exists m(σ) ∈ M such that 〈m(σ),n (%)〉 = −λ%, ∀n (%) ∈ σ.

Example 2.7 ([18, pp. 85-89]). The canonical divisor KX∆ of any toric variety
X∆ equals

KX∆ = −
∑

%∈∆(1)

V∆ (%) .

Theorem 2.8 ([41, p. 27], [18, p. 63]). For every d-dimensional compact toric
variety X∆ there are exact sequences

0 // M
div(e(.)) // DivTW(X∆) // Cl DivW(X∆) // 0

0 // M
div(e(.)) // DivTC(X∆) //

?�

OO

Pic(X∆) //
?�

OO

0

where the first arrows send m ∈ M to be mapped onto

div(e(m)) =
∑

%∈∆(1)

〈m,n (%)〉 V∆ (%) .

In particular,

ClDivTC(X∆) = Cl DivC(X∆) ∼= Pic(X∆) ⊆ ClDivTW(X∆) = Cl DivW(X∆),

and rank(ClDivW(X∆)) = ](∆(1))− d.

Corollary 2.9 ([18, p. 65]). Let ∆ be a d-dimensional complete fan. Then
the following conditions are equivalent :
(i) ∆ is simplicial.
(ii) Every Weil divisor on X∆ is a Q-Cartier divisor.
(iii) Pic(X∆)⊗Z Q ∼= ClDivW(X∆)⊗Z Q.

(iv) The Picard number of X∆ is rank(Pic(X∆)) = ](∆(1))− d.

Definition 2.10 (∆-support functions). Let N be a free Z-module of rank d,
M its dual, and ∆ a fan w.r.t. N. A function ψ : |∆| −→ R is called ∆-support
function if ψ(N ∩ |∆|) ⊂ Z and ψ is linear on each σ ∈ ∆, i.e., there exists a
lσ ∈ M for each σ ∈ ∆ such that ψ(n) = 〈lσ,n〉 , and 〈lσ,n〉 = 〈lτ ,n〉 whenever
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n ∈ τ ≺ σ. Note that every ∆-support function ψ is determined by its values
ψ(n (%)), % ∈ ∆(1) , and lσ is a solution in M of the system of equations

{〈lσ,n (%)〉 = ψ(n (%)) | % ∈ ∆(1) , % ≺ σ} .

Remark 2.11. (a) Each ∆-support function ψ assigns a T-invariant Cartier
divisor

ψ 7−→ Dψ := −
∑

%∈∆(1)

ψ(n (%))V∆ (%) ∈ DivTC(X∆).

(b) To work with T-invariant Q-Cartier divisors one considers rational ∆-support
functions by replacing the condition of Definition 2.10 with ψ(NQ ∩ |∆|) ⊂ Q (and
M with MQ).

Definition 2.12. A ∆-support function ψ is called upper convex if

ψ(n + n′) ≥ ψ(n) + ψ(n′), ∀n,n′ ∈ N.

We say that an upper convex ∆-support function ψ is strictly upper convex when-
ever the set { lσ | σ ∈ ∆} (as defined in 2.10) is uniquely determined by ψ.

Theorem 2.13 ([42, Thm. 2.7, pp. 76-77]). Let X∆ be a d-dimensional com-
pact toric variety. For every ∆-support function ψ,

Pψ := {m ∈ MR | 〈m,n〉 ≥ ψ(n), ∀n ∈ NR}

is a convex polytope, and the set H0(X∆,OX∆(Dψ)) of global sections of the sheaf
OX∆(Dψ) is a finite dimensional C-vector space having {e(m) | m ∈ M ∩ Pψ} as
a basis. Moreover, OX∆(Dψ) is generated by its global sections if and only if ψ is
upper convex (or, equivalently, Pψ = conv({ lσ | σ ∈ ∆}).)

Theorem 2.14 ([42, Thm. 2.13, pp. 82-83]). If OX∆(Dψ), as in Thm. 2.13,
is generated by its global sections, M ∩ Pψ = {m0, . . . ,mk} , and fψ : X∆ −→ Pk

C
is defined by

fψ (x) := [e(m0)(x) : e(m1)(x) : . . . : e(mk)(x)] , ∀x ∈ X∆,

then Dψ is very ample (i.e., fψ is a closed embedding) if and only if the following
conditions are satisfied :

(i) ψ is strictly upper convex, and

(ii) for each σ ∈ ∆(d) , the set M ∩ Pψ − lσ generates the semigroup M ∩ σ∨.

Moreover, condition (i) is equivalent to the following :

(i)′ Pψ is d-dimensional and has exactly { lσ | σ ∈ ∆} as the set of its vertices.

Remark 2.15. (a) As it follows from the proof of Theorem 2.14, Dψ is ample
if and only if condition (i) (or, equivalently, condition (i)′) is satisfied.

(b) In dimension d = 2, Dψ is very ample if and only if it is ample because condition
(ii) is satisfied automatically (see [32, Lemma 1.6.3, p. 32]). This fails in higher
dimensions for singular X∆’s.
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3. Two-dimensional toric singularities

Examining two-dimensional toric singularities “under the microscope” (which turn
out to be cyclic quotient singularities) one discovers a peculiar algebro-geometric
world endowed with a rich combinatorial structure. Viewed historically, everything
begins with Hirzebruch-Jung continued fractions (i.e., negative-regular continued
fraction expansions of specific rational numbers; see [28], [3, Ch. III, §5]).

• General notation. For n ∈ N, m ∈ Z, we denote by [m]n the (uniquely
determined) integer for which 0 ≤ [m]n < n, m ≡ [m]n (mod n). If x ∈ Q, we
define dxe (resp., bxc) to be the least integer number ≥ x (resp., the greatest
integer number ≤ x), 〈x〉 := x−bxc the fractional part of x, and ((x)) the sawtooth
function:

((x)) :=
{ 〈x〉 − 1

2 , if x /∈ Z,
0, if x ∈ Z.

(3.1)

“gcd” and “lcm” will be abbreviations for greatest common divisor and least com-
mon multiple. Furthermore, for an integer n ≥ 2, we denote by ζn := exp( 2π

√−1
n )

the “first” n-th primitive root of unity.

• Finite continued fractions. The use of finite continued fractions enables conve-
nient rational approximations to the minimal generators of two-dimensional rational
s.c.p. cones. For this reason it becomes the most important tool in the theory of
two-dimensional toric singularities.
Let κ and λ be two given relatively prime positive integers. Suppose κ

λ can be
written as

κ

λ
= a1 +

ε1

a2 +
ε2

a3 +
ε3

. . .

aν−1 +
εν−1

aν

(3.2)

The right-hand side of (3.2) is called semi-regular continued fraction for κ
λ (and ν

its length) if it has the following properties:

(i) aj is an integer for all j, 1 ≤ j ≤ ν,
(ii) εj ∈ {−1, 1} for all j, 1 ≤ j ≤ ν − 1,
(iii) aj ≥ 1 for j ≥ 2 and aν ≥ 2 (!), and
(iv) if aj = 1 for some j, 1 < j < ν, then εj = 1.

In particular, if εj = 1 (resp., εj = −1) for all j, 1 ≤ j < ν, then we write
κ

λ
= [a1, a2, . . . , aν ] (resp.,

κ

λ
= [[a1, a2, . . . , aν ]]).

This is the regular (resp., the negative-regular) continued fraction expansion of κ
λ .

These two expansions always exist, are unique (in this form), and can be obtained
by the usual and the modified euclidean algorithm, respectively, depending on the
choice of the kind of the associated remainders (see [14, 3.1 and 3.5]).

Proposition 3.1. If λ, κ ∈ Z with 1 < λ < κ, gcd(λ, κ) = 1, and
κ

λ
= [a1, a2, . . . , at] = [[b1, b2, . . . , bs]]
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are the regular and negative-regular continued fraction expansions of κ
λ , respectively,

then for t ≥ 2 the ordered s-tuple (b1, b2, . . . , bs) equals




(a1 + 1, 2, ..., 2︸ ︷︷ ︸
(a2−1)-times

, a3 + 2, 2, ..., 2︸ ︷︷ ︸
(a4−1)-times

, . . . , at−1 + 2, 2, ..., 2︸ ︷︷ ︸
(at−1)-times

), if t even

(a1 + 1, 2, ..., 2︸ ︷︷ ︸
(a2−1)-times

, a3 + 2, 2, ..., 2︸ ︷︷ ︸
(a4−1)-times

, . . . , 2, ..., 2︸ ︷︷ ︸
(at−1−1)-times

, at + 1), if t odd

Proof. See [14, Proposition 3.6, pp. 219-220]. ¤

Corollary 3.2. The length s of the negative-regular continued fraction expan-
sion of κ

λ equals

s =





t/2∑
i=1

a2i, if t is even,

(
(t+1)/2∑

i=1

a2i) + 1, if t is odd.
(3.3)

• Dedekind sums. Let p, q be two integers with q > 0 and gcd(p, q) = 1. The
(classical) Dedekind sum DS(p, q) of p and q is defined to be

DS (p, q) :=
q−1∑

j=1

((
j

q

)) ((
pj

q

))
(3.4)

It satisfies DS(−p, q) = −DS(p, q) , and the reciprocity law:

DS (p, q) + DS (q, p) = − 1
4 + 1

12

(
p
q + q

p + 1
pq

)
.

The sums DS(p, q) arose for the first time in Dedekind’s investigations on the loga-
rithm of the eta-function (see [16]). The book [46] contains further references and
details on the history of Dedekind sums. A well-known formula for DS(p, q) (cf.
[46, p. 18] or [29, p. 100]) is that one given by the trigonometrical expression

DS (p, q) = 1
4q

q−1∑

j=1

[
cot

(
jpπ
q

)
· cot

(
jπ
q

)]
. (3.5)

If 0 ≤ p < q, another elegant identity, showing the relationship between DS(p, q)
and the negative-regular continued fraction expansion q

q−p = [[b1, . . . , bs]] , can be
derived by Myerson’s results (see [39, p. 421], [44, p. 12]):

DS (p, q) =
1
12




s∑

j=1

(3− bj) +
1
q

(p + p̂ )− 2


 . (3.6)

Here p̂ denotes the uniquely determined integer, so that 0 ≤ p̂ < q, and

p p̂ ≡ 1(mod q), (i.e., [ p p̂ ]q = 1) .

p̂ is often called the socius of p. If p 6= 0 (which means that q 6= 1), then using a
formula due to Voronoi (cf. [53, p. 183]), p̂ can be written as

p̂ =

[
3− 2p + 6

(
p−1∑
j=1

(⌊
jq
p

⌋)2
)]

q

.
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• Two-dimensional cones. Up to lattice automorphisms, the “lattice geometry”
of two-dimensional rational s.c.p. cones is completely describable by means of just
two integers (“parameters”).

Lemma 3.3. Let N be a free Z-module of rank 2 and σ ⊂ NR a two-dimensional
rational s.c.p. cone with Gen(σ) = {n1,n2}. Then there is a Z-basis {y1, y2} of N
and two integers p = pσ, q = qσ ∈ Z≥0 with 0 ≤ p < q, and gcd(p, q) = 1 for p 6= 0,
such that

n1 = y1, n2 = p y1 + q y2, q = mult (σ;N) =
det (Z n1 ⊕ Z n2)

det (N)
.

Proof. See [14, Lemma 3.9, p. 221]. ¤
Definition 3.4. If N is a free Z-module of rank 2 and σ ⊂ NR a two-

dimensional rational s.c.p. cone with Gen(σ) = {n1,n2}, then we call σ a (p, q)-
cone w.r.t. the basis {y1, y2}, if p = pσ, q = qσ as in Lemma 3.3. (To avoid
confusion, we should stress at this point that saying “w.r.t. the basis {y1, y2}” we
just indicate the choice of one suitable Z-basis of N among all its Z-bases in order
to apply Lemma 3.3 for σ; but, of course, if {y1, y

′
2} were a Z-basis of N having the

same property, i.e., n2 = p′ y1 + q′ y′2, 0 ≤ p′ < q′, gcd(p′, q′) = 1, then obviously
p′ = p and q′ = q, i.e., y′2 = y2!)

Proposition 3.5. Let N be a free Z-module of rank 2 and σ, τ ⊂ NR two 2-
dimensional rational s.c.p. cones. Then the following conditions are equivalent
(i) There exists a torus-equivariant isomorphism Uσ

∼= Uτ mapping orb(σ) onto
orb(τ).
(ii) There exists a Z-module automorphism $ : N −→ N of N whose scalar
extension $R : NR −→ NR has the property : $ (σ) = τ.

(iii) For the numbers pσ, pτ , qσ, qτ associated to σ, τ w.r.t. a basis {y1, y2} (as in
Lemma 3.3) we have

qτ = qσ and
{

either pτ = pσ

or pτ 6= 0, pσ 6= 0 and pτ = p̂σ

Proof. See [14, Proposition 3.12, pp. 222-223]. ¤
Remark 3.6. Up to replacement of p by its socius p̂ (which corresponds just

to the interchange of the coordinates), these two numbers p = pσ and q = qσ

parametrize uniquely the isomorphism class of the germ (Uσ, orb (σ)).

Lemma 3.7. Let N be a free Z-module of rank 2, M = HomZ (N,Z) its dual
and σ ⊂ NR a two-dimensional (p, q)-cone w.r.t. a Z-basis {y1, y2} of N . Denoting
by {m1, m2} the dual basis of {y1, y2} in M , the cone σ∨ ⊂ MR is a (q − p, q)-cone
w.r.t. {m2, m1 −m2}.
Proof. See [14, Lemma 3.14, p. 223]. ¤
B From now on, and for the rest of the present section, we fix a free Z-module N
of rank 2, its dual M , a nonbasic two-dimensional (p, q)-cone σ ⊂ NR ∼= R2 w.r.t.
a Z-basis {y1, y2} of N , Gen(σ) = {n1,n2} , the dual basis {m1, m2} of {y1, y2} in
M , and the dual cone σ∨ ⊂ MR of σ. Moreover, we consider the negative-regular
continued fraction expansion of both rationals q

q−p and q
p :

q

q − p
= [[b1, b2, . . . , bs]] ,

q

p
=

q

q − (q − p)
= [[b∨1 , b∨2 , . . . , b∨t ]] . (3.7)
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Note 3.8. (a) As it is known (cf. [42, p. 29]),

(b1 + b2 + · · ·+ bs)− s = (b∨1 + b∨2 + · · ·+ b∨t )− t = s + t− 1 .

(b) Replacing p by its socius p̂ in the rationals (3.7), and passing to their negative-
regular continued fraction expansions (cf. [28, p.20]), we get

q

q − p̂
= [[bs, bs−1, . . . , b2, b1]] ,

q

p̂
=

[[
b∨t , b∨t−1, . . . , b

∨
2 , b∨1

]]
. (3.8)

Definition 3.9. For any integer s ≥ 1 and any s-tuple (x1, x2, . . . , xs) ∈ Rs

we define the symmetric (s× s)-matrix Ls (x1, x2, . . . , xs) as follows:

Ls (x1, x2, . . . , xs) :=




x1 −1 0 · · · · · · 0
−1 x2 −1 · · · · · · 0
0 −1 x3 −1 · · · 0
...

...
...

. . .
...

...
. . .

0 · · · · · · 0 −1 xs




.

The matrix Ls(b1, . . . , bs), for (b1, . . . , bs) ∈ Zs the s-tuple in (3.7), has determinant

det (Ls(b1, . . . , bs)) = q =
s∏

j=1

[[bj , b2, . . . , bs]] (3.9)

=




s∏

j=1

bi





1−

∑

1≤k≤s−1

1
bkbk+1

+
∑

1≤k<l≤s−2

1
bkbk+1

1
blbl+1

− · · ·

 ,

which is the “highest” continuant of the fraction q
q−p (cf. Perron [43, Ch. I, §2-§4]).

Definition 3.10 (Gammas and Deltas). Having this continuant as our starting
point we define two sequences of integers (γj)0≤j≤s+1 and (δj)0≤j≤s+1 (“minor
continuants” of q

q−p ) by setting

γj := det (Ls−j(bj+1, . . . , bs)) , ∀j ∈ {0, 1, . . . , s− 1},
with γs := 1, γs+1 := 0 (as its final values), and

δj := det (Lj−1(b1, . . . , bj−1)) , ∀j ∈ {2, 3, . . . , s + 1},
with δ0 := 0, δ1 := 1 (as its initial values). It is an exercise of linear algebra to
show that

γj−1 + γj+1 = bjγj , δj−1 + δj+1 = bjδj , ∀j ∈ {1, . . . , s}, (3.10)

and
γj−1δj − γjδj−1 = q, ∀j ∈ {1, 2, . . . , s + 1}. (3.11)

Remark 3.11. By (3.9) and the definition given above, γ0 = q, and

q
q−p = b1 − 1

[[b2, b3, . . . , bs]]
=⇒ γ1 = det (Ls−1(b2, . . . , bs)) = q − p.

Moreover, comparing the negative-regular continued fraction expansions (3.7) and
(3.8) of q

q−p and q
q−bp , respectively, we see that the gammas for the one become the

deltas for the other (and vice versa). For this reason, δs = q − p̂ and δs+1 = q.
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Next Lemmas will be useful for several technical computations in sections 4-7.

Lemma 3.12. If b1, . . . , bs are the integers defined in (3.7), then the symmetric
(s× s)-matrix Ls (b1, . . . , bs) is positive definite.

Proof. For every x = (x1, . . . , xs) ∈ Rs we define the set

Λx := {(j, k) ∈ {1, . . . , s} × {1, . . . , s} | j < k and xj = xk } .

For all (x1, . . . , xs) ∈ Rsr{(0, . . . , 0)} we have

(x1, . . . , xs) Ls (b1, . . . , bs) (x1, . . . , xs)
T =

s∑

j=1

bjx
2
j − 2

∑

1≤j<k≤s

xjxk

=
s∑

j=1

(bj − 2) x2
j +


x2

1 +
∑

1≤j<k≤s

(j,k)/∈Λx

(xj − xk)2 + x2
s




which is > 0 because bj ≥ 2 for all j ∈ {1, . . . , s} (by Proposition 3.1). ¤
Lemma 3.13. Suppose that (y1, . . . , ys) ∈ Rs, s ≥ 1, and that the integers

b1, . . . , bs are those defined in (3.7). Then the linear system

Ls (b1, . . . , bs) (ξ1, . . . , ξs)
T = (y1, . . . , ys)

T

has a unique solution (ξ1, . . . , ξs) ∈ Rs with coordinates given by the formulae

ξj =
1
q


 ∑

1≤k<j

γjδkyk + γjδjyj +
∑

1≤j<k≤s

γkδjyk


 , ∀j ∈ {1, . . . , s}.

Proof. Since det (Ls (b1, . . . , bs)) = γ0 = q 6= 0, the uniqueness is obvious. On
the other hand, it is easy to prove (by (3.10) and (3.11)) that (−1)k+j times the
determinant of the (k, j)-minor of Ls (b1, .., bs) equals



the j-th coordinate of the vector
(Ls (b1, .., bs))

−1 (0, . . . , 0, 1︸︷︷︸
k−th pos.

, 0, . . . , 0)T


 =





γjδk, if 1 ≤ k < j,
γjδj , if k = j,
γkδj , if 1 ≤ j < k ≤ s.

Hence, to determine ξj , it sufficies to apply Cramer’s rule. ¤
Definition 3.14. (i) In NR we define s + 2 vectors (uj)0≤j≤s+1 as follows:

uj :=
γj

q
n1 +

δj

q
n2 = βjy1 + δjy2, ∀j ∈ {0, 1, . . . , s + 1},

where βj := 1
q (γj + pδj) . Since β0 = 1, β1 = 1, and βj = bjβj−1 − βj−2, for all

j ∈ {2, . . . , s + 1}, the βj ’s are integers and therefore the uj ’s belong to N. Note
that u0 = n1 = y1, u1 = y1 + y2,

(u1,u2, . . . ,us−1,us)
T = Ls (b1, . . . , bs)

−1 (n1, 0, 0, . . . , 0, 0,n2)
T

,

(as vectorial matrix multiplication) and us+1 = n2.

(ii) Analogously, we define t + 2 vectors (u∨j )0≤j≤t+1 belonging to M by setting
u∨0 := m2,

(u∨1 ,u∨2 , . . . ,u∨t )T := Lt (b∨1 , . . . , b∨t )−1 (m1, 0, . . . , 0, (q − p)m2 + q (m1 −m2))
T

,

and u∨t+1 := (q − p)m2 + q (m1 −m2) .
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Proposition 3.15. If we define

Θσ := conv (σ ∩ (Nr {0})) ⊂ NR, resp., Θσ∨ := conv (σ∨ ∩ (Mr {0})) ⊂ MR,

and denote by ∂Θcp
σ (resp., by ∂Θcp

σ∨) the part of the boundary ∂Θσ (resp., ∂Θσ∨)
containing only its compact edges, then the Hilbert bases (2.1) of the cones σ (w.r.t.
N) and σ∨ (w.r.t. M) are equal to

HilbN (σ) = ∂Θcp
σ ∩N = {uj | 0 ≤ j ≤ s + 1} ,

HilbM (σ∨) = ∂Θcp
σ∨ ∩M =

{
u∨j | 0 ≤ j ≤ t + 1

}
.

(See Figure 1.)

Proof. It follows from [42, pp. 26-29] and [14, Thm. 3.16, pp. 226-228]. ¤
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u∨0
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Figure 1.

• Quotient structure and defining equations. Uσ = Spec(C[σ∨∩M ]) has only
one singular point, namely orb(σ), which is a quotient singularity. More precisely,
we have the following:

Proposition 3.16. orb(σ) ∈ Uσ is a cyclic quotient singularity. In particular,
Uσ

∼= C2/G = Spec(C[z1, z2]G), with G ⊂ GL(2,C) denoting the cyclic group G
of order q which is generated by diag(ζ−p

q , ζq) and acts on C2 = Spec(C[z1, z2])
linearly and effectively.

Proof. See Fulton [18, § 2.2, pp. 32-34]. ¤
In fact, since we know the Hilbert basis HilbM (σ∨) by Proposition 3.15 explicitly,
it is also possible to find the polynomial equations whose zero locus contains the
singularity orb(σ) ∈ Uσ at the origin after having embedded Uσ into Ct+2 (see
Proposition 2.1).

Theorem 3.17 (Defining equations). Uσ
∼= Spec(C[z0, z1, . . . , zt+1]/I), where

I is the ideal generated by the set of the 1
2 t (t + 1) polynomials

{zj−1zk+1 − Fjk(z1, z2, . . . , zt) | 1 ≤ j ≤ k ≤ t} ,
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with

Fjk(z1, z2, . . . , zt) :=





z
b∨j
j , if j = k,

z
b∨j −1

j z
b∨j+1−2

j+1 · · · z
b∨k−1−2

k−1 z
b∨k−1
k , if j < k.

Proof. I is the kernel of the C-algebra epimorphism

C[z0, z1, . . . , zt+1] −→ C[σ∨ ∩M ],

sending the variable zj to e(u∨j ), for all j ∈ {0, 1, . . . , t, t+1}. The reader is referred
to Riemenschneider [48, §2, pp. 217-220] for details of the computation. ¤

Remark 3.18. orb(σ) ∈ Uσ is a hypersurface singularity if and only if

t = 1 ⇐⇒ (p = 1 and q ≥ 2) ⇐⇒ Uσ
∼= Spec(C[z0, z1, z2]/ (z0z2 − zq

1)).

In this case, orb(σ) is analytically isomorphic to the Kleinian singularity or Du Val
singularity of type Aq−1. Moreover, using Theorem 2.4, it is easy to see that all
two-dimensional Gorenstein toric singularities (or, equivalently, all two-dimensional
canonical toric singularities) are necessarily of this sort.

Note 3.19. For a methodical study of the behaviour of local differentials
around the singular point orb(σ) ∈ Uσ under its minimal resolution one introduces
the so-called local index

lind (Uσ, orb(σ)) := min
{

k ∈ N
∣∣∣ k

(
1− γj+δj

q

)
∈ Z , ∀j ∈ {1, . . . , s}

}

of Uσ at orb(σ). (See below formula (4.13) and Note 4.5 (b).) By (3.10) and (3.11)
it is easy to express this auxiliary positive integer in terms of the parameters p = pσ

and q = qσ of σ as follows:

lind (Uσ, orb(σ)) =
q

gcd (q, q − p + 1)
=

q

gcd (q, p− 1)
. (3.12)

Geometrically, setting Fσ := conv({u0,us+1}), Lσ := aff({u0,us+1}) = the line
determined by Fσ, and L′σ := the line passing through 0 and being parallel to Lσ,
lind(Uσ, orb(σ)) equals

]

{
lines passing through at least one lattice point, belonging to the interior

of the strip bounded by Lσ and L′σ and being parallel to them

}
+1.

(Convention: We may extend the notion of local index even if orb(σ) is assumed
to be a nonsingular point, by defining lind(Uσ, orb(σ)) := 1. In this case, equality
(3.12) remains true for p = 0 and q = 1.)

• Minimal desingularization. To construct the minimal desingularization of
Uσ = Spec(C[σ∨ ∩ M ]) one has to subdivide σ into s + 1 smaller basic cones by
using all the elements of HilbN (σ) as minimal generators of the new rays.

Theorem 3.20 (Toric version of Hirzebruch’s desingularization). The refine-
ment ∆̃σ := {{R≥0 uj + R≥0 uj+1 | 1 ≤ j ≤ s + 1} together with their faces} of
∆σ := {σ together with its faces} consists of basic cones, is the coarsest refinement
of ∆σ with this property, and gives rise to the construction of the (good, in the sense
of §1) minimal equivariant resolution f =id∗ : Xe∆σ

−→ X∆σ = Uσ of the singular
point orb(σ) ∈ Uσ. Moreover, for j ∈ {1, . . . , s} , each exceptional prime divisor
Ve∆σ

(R≥0 uj) w.r.t. f is isomorphic to the projective line P1
C. (Figure 2 illustrates

∆̃σ for a singularity of this kind with p = 4 and q = 11. )
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Proof. See Hirzebruch [28, pp. 15-20] who constructs Xe∆σ
by resolving the

unique singularity lying over 0 ∈ C3 in the normalization of the hypersurface
{

(z1, z2, z3) ∈ C3
∣∣ zq

1 − z2z
q−p
3 = 0

}
,

and Oda [42, pp. 24-30] for a proof which uses only the tools of toric geometry. ¤
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Figure 2.

4. Combinatorial data and invariants of compact toric surfaces

The geometric properties and the invariants of compact toric surfaces depend on
the parametrization of each of the cones of their defining complete fans (in the sense
of 3.6) and can be studied systematically by means of their combinatorial data (see
below Definition 4.2).

• Two-dimensional complete fans. Let N be a free Z-module of rank 2 and ∆
an arbitrary complete fan of two-dimensional s.c.p. cones in NR with

∆ (1) = {τ1, τ2, . . . , τν} , ∆(2) = {σ1, σ2, . . . , σν} , ν ≥ 3,

and
Gen (∆) = {n1,n2, . . . ,nν} , τi = R≥0 ni, ∀i ∈ {1, 2, . . . , ν},

with σi := τi + τi+1. We assume that the minimal generators n1, . . . ,nν of ∆ go
anticlockwise around the origin exactly once in this order (see Figure 3). Moreover,
we set nν+1 := n1 and n0 := nν . (In definitions and formulae involving enumerated
sets of numbers or vectors in which the index set {1, . . . , ν} is meant as a cycle, we
shall read the indices i “mod ν”, even if it is not mentioned explicitly.)
Now we set M := HomZ(N,Z) and denote by X∆ the toric surface obtained by
gluing together the affine varieties

Uσi := Spec (C[σ∨i ∩M ]) , i ∈ {1, 2, . . . , ν},
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Figure 3.

as in (2.3). X∆ is necessarily projective (cf. [41, Proposition 8.1, pp. 51-52]), the
group of its T-invariant Weil divisors is

DivTW(X∆) =
ν⊕

i=1

ZCi, where Ci := V∆ (R≥0 ni) ,

and its topological Euler characteristic equals e(X∆) = ν (see Note 2.6 (d)). More-
over, since ∆ is necessarily simplicial, every Weil divisor on X∆ is a Q-Cartier
divisor (by Corollary 2.9). Next, we assume that σi is a (pi, qi)-cone (in the sense
of 3.4, w.r.t. a suitable Z-basis of N) and introduce the notation

I∆ := { i ∈ {1, . . . , ν} | qi > 1} , J∆ := { i ∈ {1, . . . , ν} | qi = 1} , (4.1)

to separate the indices corresponding to nonbasic from those corresponding to basic
cones. By Theorem 2.3 and Note 2.6 (a) we have obviously

Sing(X∆) = {orb(σi) | i ∈ I∆} .

For all i ∈ I∆ we write
qi

qi − pi
=

[[
b
(i)
1 , b

(i)
2 , . . . , b(i)

si

]]
(4.2)

and, in accordance with what is already mentioned for a single nonbasic 2-dimensional
rational s.c.p. cone in §3, we define for each j ∈ {0, 1, . . . , si + 1} integers γ

(i)
j , δ

(i)
j

as follows:



γ
(i)
j := det

(
Lsi−j(b

(i)
j+1, . . . , b

(i)
si )

)
, ∀j ∈ {0, 1, . . . , si − 1},

γ
(i)
si := 1, γ

(i)
si+1 := 0,

δ
(i)
0 := 0, δ

(i)
1 := 1,

δ
(i)
j := det

(
Lj−1(b

(i)
1 , . . . , b

(i)
j−1)

)
, ∀j ∈ {2, 3, . . . , si + 1}.

(4.3)
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Notice that
γ

(i)
0 = qi, γ

(i)
1 = qi − pi, (4.4)

and 



γ
(i)
j−1 + γ

(i)
j+1 = b

(i)
j γ

(i)
j , ∀j ∈ {0, 1, . . . , si},

δ
(i)
j−1 + δ

(i)
j+1 = b

(i)
j δ

(i)
j , ∀j ∈ {0, 1, . . . , si},

γ
(i)
j−1δ

(i)
j − γ

(i)
j δ

(i)
j−1 = qi, ∀j ∈ {1, 2, . . . , si + 1},

(4.5)

and finally,
δ(i)
si

= qi − p̂i, δ
(i)
si+1 = qi. (4.6)

• The minimal desingularization of X∆. Maintaining the above notation and
setting

u(i)
j :=

γ
(i)
j

qi
ni +

δ
(i)
j

qi
ni+1, ∀j ∈ {0, 1, . . . , si + 1},

we get
u(i)

j−1 + u(i)
j+1 = b

(i)
j u(i)

j , ∀j ∈ {1, . . . , si}, (4.7)
and we can define the two-dimensional complete fan

∆̃ :=





the cones {σi | i ∈ J∆} and{
π

(i)
j := R≥0 u(i)

j + R≥0 u(i)
j+1

∣∣∣ i ∈ I∆, j ∈ {0, 1, . . . , si}
}

,

together with their faces





.

By construction,
f = id∗ : Xe∆ −→ X∆ (4.8)

is the (good) minimal desingularization of X∆ (as we just patch together the (good)
minimal desingularizations of Uσi ’s established by Theorem 3.20). Defining





E
(i)
j := Ve∆(R≥0 u(i)

j ), ∀i ∈ I∆ and ∀j ∈ {1, 2, . . . , si},

Ci := Ve∆(R≥0 ni), ∀i ∈ {1, 2, . . . , ν},
we observe that Ci is the strict transform of Ci w.r.t. f,

E(i) :=
si∑

j=1

E
(i)
j

the exceptional divisor replacing the singular point orb(σi) via f, and

DivTW(Xe∆)⊗Z Q = DivTC(Xe∆)⊗Z Q =
(

ν⊕
i=1

QCi

)
⊕

(
⊕

i∈I∆

si⊕
j=1

QE
(i)
j

)
.

Moreover, the topological Euler characteristic of Xe∆ equals e(X∆) = ν +
∑

i∈I∆
si,

and the discrepancy divisor w.r.t. f is

KX e∆ − f∗KX∆ =
∑

i∈I∆

K(E(i)) (4.9)

with each of the K(E(i))’s a Q-Cartier divisor supported in
si⋃

j=1

E
(i)
j and having

coefficients which will be described precisely in Proposition 4.4.
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Definition 4.1 (The additional characteristic numbers ri). For every index
i ∈ {1, 2, . . . , ν} we introduce integers ri uniquely determined by the conditions:

rini =





u(i−1)
si−1 + u(i)

1 , if i ∈ I ′∆,

ni−1 + u(i)
1 , if i ∈ I ′′∆,

u(i−1)
si−1 + ni+1, if i ∈ J ′∆,

ni−1 + ni+1, if i ∈ J ′′∆,

(4.10)

where
I ′∆ := { i ∈ I∆ | qi−1 > 1} , I ′′∆ := { i ∈ I∆ | qi−1 = 1} ,

and
J ′∆ := { i ∈ J∆ | qi−1 > 1} , J ′′∆ := { i ∈ J∆ | qi−1 = 1} ,

with I∆, J∆ as in (4.1). As we shall see below in Lemma 4.3, the integer −ri is
nothing but the self-intersection number of Ci on Xe∆.

Definition 4.2. The integers ν,

pi, p̂i, qi, ri, (4.11)

for all i ∈ {1, 2, . . . , ν}, together with the sets of integers

si,
{

b
(i)
j

∣∣∣ 1 ≤ j ≤ si

}
,
{

γ
(i)
j

∣∣∣ 0 ≤ j ≤ si + 1
}

,
{

δ
(i)
j

∣∣∣ 0 ≤ j ≤ si + 1
}

, (4.12)

for all i ∈ I∆, which were introduced above, will be called the combinatorial data of
the surface X∆. These data describe completely its algebro-geometric and topo-
logical properties. In particular, if X∆ is nonsingular, (4.12) are not present,
pi = p̂i = 0, qi = 1, ∀i ∈ {1, . . . , ν}, and therefore the only nontrivial data are
the integers ri, i ∈ {1, . . . , ν}.

Lemma 4.3. The intersection numbers of any pair of generators of the group
DivTC(Xe∆)⊗Z Q are the following :

E
(k)
j · E(i)

j′ =





1, if k = i and j − j′ = ±1,

−b
(i)
j , if k = i and j = j′,

0, otherwise,
for all k, i ∈ I∆ and all j ∈ {1, . . . , sk}, j′ ∈ {1, . . . , si}.

E
(k)
j · Ci =





1, if j = 1 and k = i,
1, if j = si−1 and k = i− 1,
0, otherwise,

for all k ∈ I∆ and all j ∈ {1, . . . , sk}, i ∈ {1, . . . , ν}.

Ci · Ci′ =





−ri, if i = i′,

1, if
{

either i′ = i + 1 and i ∈ J∆,
or i′ = i− 1 and i− 1 ∈ J∆,

0, otherwise,
for all i, i′ ∈ {1, . . . , ν}.
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Proof. It is easy to show that the two prime divisors defined by the closures
of the orbits of the rays of π

(i)
j = R≥0 u(i)

j + R≥0 u(i)
j+1 (resp., of σi = τi + τi+1,

i ∈ J∆) intersect transversely at one point, namely at orb(π(i)
j ) (resp., at orb(σi))

with multiplicity 1, and therefore their intersection number equals 1. The remaining
pairs of distinct generators of DivTC(Xe∆)⊗Z Q have intersection number 0 because
they arise from rays of ∆̃ which are not adjacent. Next, let us determine (E(i)

j )2.

Setting z
(i)
j := e(u(i)

j ), we get




U
π

(i)
j−1

= Spec
(
C[z(i)

j−1, z
(i)
j ]

)
,

U
π

(i)
j

= Spec
(
C[z(i)

j , z
(i)
j+1]

)
= Spec

(
C[(z(i)

j−1)
−1, (z(i)

j−1)
b
(i)
j z

(i)
j ]

)
,

U
π

(i)
j−1∩π

(i)
j

= Spec
(
C[(z(i)

j−1)
±1, (z(i)

j−1)
b
(i)
j z

(i)
j ]

)
,

(by (4.7)), with




E
(i)
j ∩ U

π
(i)
j−1

= Spec
(
C[z(i)

j−1]
)

,

E
(i)
j ∩ U

π
(i)
j

= Spec
(
C[(z(i)

j−1)
−1]

)
,

E
(i)
j ∩ U

π
(i)
j−1∩π

(i)
j

= Spec
(
C[(z(i)

j−1)
±1]

)
,

and the conormal sheaf I
E

(i)
j

/I2

E
(i)
j

= OX e∆(−E
(i)
j ) on Xe∆, viewed as a sheaf of

O
E

(i)
j

-modules, is invertible on E
(i)
j (where I

E
(i)
j

denotes the ideal sheaf of E
(i)
j in

Xe∆). The line bundle on E
(i)
j corresponding to I

E
(i)
j

/I2

E
(i)
j

is constructed by the

identification

(E
(i)
j ∩ U

π
(i)
j−1

)× C (E
(i)
j ∩ U

π
(i)
j

)× C
∪ ∪

(E
(i)
j ∩ U

π
(i)
j−1∩π

(i)
j

)× C 3 (z
(i)
j−1, λ)! (z

(i)
j , (z

(i)
j−1)

b
(i)
j λ) ∈ (E

(i)
j ∩ U

π
(i)
j−1∩π

(i)
j

)× C,

and has z
(i)
j 7−→ (z(i)

j−1)
b
(i)
j as its transition function. But the same line bundle

corresponds also to the Cartier divisor b
(i)
j {0} on E

(i)
j , where 0 ∈ E

(i)
j ∩ U

π
(i)
j−1

∼= C
denotes the origin. Hence, O

E
(i)
j

(b(i)
j {0}) ∼= OP1C(b

(i)
j ), and

N
X e∆/E

(i)
j

∼= OP1C(−b
(i)
j ) =⇒ (E(i)

j )2 = deg
E

(i)
j

(N
X e∆/E

(i)
j

) = −b
(i)
j (by (1.1)).

The proof of the equality C
2

i = −ri is similar (and uses (4.10) instead of (4.7)). ¤

Proposition 4.4. The Q-Cartier divisor K(E(i)), for an i ∈ I∆, is expressed
as rational linear combination of the exceptional rational curves E

(i)
j , j = 1, . . . , si,

as follows:

K(E(i)) =
si∑

j=1

(
γ
(i)
j +δ

(i)
j

qi
− 1

)
E

(i)
j (4.13)
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Proof. For i ∈ I∆, let the local canonical divisor at orb(σi) be

K(E(i)) =
si∑

j=1

ξ
(i)
j E

(i)
j .

In order to find the rational coefficients ξ
(i)
j we have to solve the linear system

K(E(i)) · E(i)
j′ = KX e∆ · E

(i)
j′ , j′ ∈ {1, . . . , si},

i.e., the system



si∑

j=1

ξ
(i)
j E

(i)
j


 · E(i)

j′ =


−

ν∑

i=1

Ci −
∑

k∈I∆

sk∑

j=1

E
(k)
j


 · E(i)

j′

=


−Ci − Ci+1 −

si∑

j=1

E
(i)
j


 · E(i)

j′ , j′ ∈ {1, . . . , si}.

By Lemma 4.3, this is equivalent to the following:
(
Lsi(b

(i)
1 , . . . , b(i)

si
)
)

(ξ(i)
1 , . . . , ξ(i)

si
)T = (2− b

(i)
1 , . . . , 2− b(i)

si
)T .

Using Lemma 3.13 and formulae (4.3), (4.5), we compute

ξ
(i)
j = 1

qi

(
∑

1≤k<j

γ
(i)
j δ

(i)
k (2− b

(i)
k ) + γ

(i)
j δ

(i)
j (2− b

(i)
j ) +

∑
1≤j<k≤si

γ
(i)
k δ

(i)
j (2− b

(i)
k )

)

= 1
qi

(
γ

(i)
j

∑
1≤k<j

(2δ
(i)
k − b

(i)
k δ

(i)
k ) + γ

(i)
j δ

(i)
j (2− b

(i)
j ) + δ

(i)
j

∑
1≤j<k≤si

(2γ
(i)
k − b

(i)
k γ

(i)
k )

)

=
1
qi




γ
(i)
j

∑
1≤k<j

(
2δ

(i)
k − δ

(i)
k−1 − δ

(i)
k+1

)
+ γ

(i)
j δ

(i)
j

(
2− b

(i)
j

)

+δ
(i)
j

∑
1≤j<k≤si

(
2γ

(i)
k − γ

(i)
k−1 − γ

(i)
k+1

)



=
1
qi


 γ

(i)
j

(
δ
(i)
1 − δ

(i)
0 + δ

(i)
j−1 − δ

(i)
j

)
+ γ

(i)
j δ

(i)
j

(
2− b

(i)
j

)

+δ
(i)
j

(
γ

(i)
j+1 − γ

(i)
j + γ

(i)
si − γ

(i)
si+1

)



=
1
qi

(
γ

(i)
j + δ

(i)
j − qi

)
.

Thus, (4.13) is true. ¤

Note 4.5. (a) In the literature related to cyclic quotient singularities, a formula
equivalent to

qiK(E(i)) =
si∑

j=1

(γ(i)
j + δ

(i)
j − qi)E

(i)
j ,

was first mentioned in Knöller’s article [31, §3.1, p. 211]. This alternative proof
is based on the existence of a unique effective Cartier divisor Zi ∈ DivC(f−1(Ui))
supported in

⋃si

j=1E
(i)
j , such that Zi · E(i)

j = κ
(i)
j qi, for all j ∈ {1, . . . , si}, where

κ
(i)
1 , . . . , κ

(i)
si are given non-positive integers (see [31, Lemma of p. 207]).



26 D.I. DAIS

(b) Obviously, for i ∈ I∆, the local index l = lind(X∆, orb (σi)) introduced in 3.19
is the smallest positive integer for which −l K(E(i)) is a Cartier divisor on Xe∆.

Corollary 4.6. The self-intersection number of K(E(i)) equals

K(E(i))2 = −
(

qi−pi+1
qi

+ qi−bpi+1
qi

)
+ 2 +

si∑

j=1

(2− b
(i)
j ) (4.14)

Proof. By (4.13) we have

K(E(i))2 = K(E(i)) ·K(E(i))

= K(E(i)) ·



si∑

j=1

(
γ
(i)
j +δ

(i)
j

qi
− 1

)
E

(i)
j




=
si∑

j=1

(
γ
(i)
j +δ

(i)
j

qi
− 1

)
K(E(i)) · E(i)

j .

Since each of E
(i)
j ’s is isomorphic to P1

C, adjunction formula (cf. [3, p. 85] or [23,
Ch. V, Proposition 1.5, p. 361]) and Lemma 4.3 give

K(E(i)) · E(i)
j = −2− (E(i)

j )2 = b
(i)
j − 2.

Hence,

K(E(i))2 =
si∑

j=1

(
γ
(i)
j +δ

(i)
j

qi
− 1

)
(b(i)

j − 2)

=
si∑

j=1

(
γ
(i)
j +δ

(i)
j

qi

)
(b(i)

j − 2) +
si∑

j=1

(2− b
(i)
j )

=
si∑

j=1

(
γ
(i)
j +δ

(i)
j

qi

)
b
(i)
j − 2

si∑

j=1

(
γ
(i)
j +δ

(i)
j

qi

)
+

si∑

j=1

(2− b
(i)
j ).

Now taking into account (4.5), we have

(γ(i)
j + δ

(i)
j )b(i)

j = γ
(i)
j−1 + γ

(i)
j+1 + δ

(i)
j−1 + δ

(i)
j+1,

which means that

K(E(i))2 = 1
qi

((γ(i)
0 +γ

(i)
si+1 + δ

(i)
0 + δ

(i)
si+1)− (γ(i)

1 +γ(i)
si

+ δ
(i)
1 + δ(i)

si
))+

si∑
j=1

(2− b
(i)
j ).

After simple evaluation of the “extreme” gammas and deltas by (4.3), (4.4), and
(4.6), we obtain formula (4.14). ¤



COMPACT TORIC SURFACES 27

Lemma 4.7. The (fractional) intersection numbers of any pair Ci, Ci′ of gen-
erators of DivTW(X∆) (with i, i′ ∈ {1, . . . , ν}) are the following :

Ci · Ci′ =





1
qi

, if i′ = i + 1,
1

qi−1
, if i′ = i− 1,

−ri + qi−1−bpi−1
qi−1

+ qi−pi

qi
, if i′ = i and i ∈ I ′∆,

−ri + qi−pi

qi
, if i′ = i and i ∈ I ′′∆,

−ri + qi−1−bpi−1
qi−1

, if i′ = i and i ∈ J ′∆,

−ri, if i′ = i and i ∈ J ′′∆,
0, otherwise.

Proof. If i − i′ /∈ {0,±1}, then the intersection of the supports of Ci and Ci′ is
empty, and therefore Ci · Ci′ = 0. On the other hand, for every i ∈ {1, . . . , ν}, it is
easy (by appropriate use of Lemma 3.13) to verify that

f∗Ci =





Ci + 1
qi−1

si−1∑
j=1

δ
(i−1)
j E

(i−1)
j + 1

qi

si∑
j=1

γ
(i)
j E

(i)
j , if i ∈ I ′∆,

Ci + 1
qi

si∑
j=1

γ
(i)
j E

(i)
j , if i ∈ I ′′∆,

Ci + 1
qi−1

si−1∑
j=1

δ
(i−1)
j E

(i−1)
j if i ∈ J ′∆,

Ci, if i ∈ J ′′∆.

For every i ∈ I ′∆, we compute C2
i as follows:

C2
i = C

2

i + 2Ci ·
(

1
qi−1

δ(i−1)
si−1

E(i−1)
si−1

+
1
qi

γ
(i)
1 E

(i)
1

)

+
1

q2
i−1

(
si−1∑
j=1

δ
(i−1)
j E

(i−1)
j

)2

+
1
q2
i

(
si∑

j=1

γ
(i)
j E

(i)
j

)2

,

where C
2

i = −ri, and

2Ci ·
(

1
qi−1

δ(i−1)
si−1

E(i−1)
si−1

+ 1
qi

γ
(i)
1 E

(i)
1

)
= 2

(
qi−1−bpi−1

qi−1
+ qi−pi

qi

)
,

by Lemma 4.3 and (4.4), (4.6). Moreover, by (4.4) and (4.5), we have
(

si∑
j=1

γ
(i)
j E

(i)
j

)2

= −
si∑

j=1

b
(i)
j

(
γ

(i)
j

)2

+ 2(γ(i)
1 γ

(i)
2 + · · ·+ γ(i)

si
γ

(i)
1 )

= −
si∑

j=1

(
γ

(i)
j−1 + γ

(i)
j+1

)
γ

(i)
j + 2(γ(i)

1 γ
(i)
2 + · · ·+ γ(i)

si
γ

(i)
1 )

= −γ
(i)
0 γ

(i)
1 + γ(i)

si
γ

(i)
si+1 = −qi (qi − pi) ,

and analogously,
(

si−1∑
j=1

δ
(i−1)
j E

(i−1)
j

)2

= −qi−1 (qi−1 − p̂i−1) .

Consequently,

C2
i = −ri +

qi−1 − p̂i−1

qi−1
+

qi − pi

qi
.
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The computation of the self-intersection number C2
i in the other cases is similar.

Next, let us determine Ci · Ci+1. By Lemma 4.3, Ci · Ci+1 = 1, whenever i ∈ J∆,
and

Ci · Ci+1 =

(
Ci +

1
qi

si∑
j=1

γ
(i)
j E

(i)
j

) (
Ci+1 +

1
qi

si∑
j=1

δ
(i)
j E

(i)
j

)

= Ci ·
(

1
qi

δ
(i)
1 E

(i)
1

)
+ Ci+1 ·

(
1
qi

γ(i)
s E(i)

s

)
+

1
q2
i

(
si∑

j=1

γ
(i)
j E

(i)
j

)
·
(

si∑
j=1

δ
(i)
j E

(i)
j

)

=
1
qi

+
1
qi

+
1
q2
i

(
γ

(i)
1 (δ(i)

2 − b
(i)
1 δ

(i)
1 ) +

si−1∑
j=2

γ
(i)
j (δ(i)

j−1 − b
(i)
j δ

(i)
j + δ

(i)
j+1) + γ(i)

s (δ(i)
s−1 − b(i)

s δ(i)
s )

)

whenever i ∈ I∆. In the second case, since δ
(i)
j−1 − b

(i)
j δ

(i)
j + δ

(i)
j+1 = 0 for all indices

j ∈ {2, . . . , si − 1} (by (4.5)), and

δ
(i)
2 − b

(i)
1 δ

(i)
1 = δ

(i)
2 − δ

(i)
0 − δ

(i)
2 = 0, γ(i)

s (δ(i)
s−1 − b(i)

s δ(i)
s ) = −γ(i)

s δ
(i)
s+1 = −qi,

we get Ci · Ci+1 = 1
qi

. ¤

Proposition 4.8 (Direct computation of K2
X∆

). The self-intersection number
of the canonical divisor of X∆ equals

K2
X∆

=
ν∑

i=1

(
2
qi
− ri

)
+

∑

i∈I∆

(
qi−pi

qi
+ qi−bpi

qi

)
(4.15)

Proof. Since

K2
X∆

= (−
ν∑

i=1

Ci)2 =
ν∑

i=1

C2
i + 2

∑
1≤i<j≤ν

Ci · Cj ,

using Lemma 4.7 we get

K2
X∆

=
ν∑

i=1

( 2
qi
− ri) +


∑

i∈I′∆

( qi−1−bpi−1
qi−1

+ qi−pi

qi
) +

∑

i∈I
′′
∆

qi−pi

qi
+

∑

i∈J′∆

qi−1−bpi−1
qi−1


 .

Note that the second summand (in the big parenthesis) equals the sum of the two
rational numbers qi−pi

qi
and qi−bpi

qi
over all i ∈ I∆, because each of them is counted

once for every singular point of X∆, and therefore K2
X∆

can be written in the form
(4.15). ¤

• Computing K2
X∆

via Noether’s formula. On Xe∆ the usual Noether’s formula
for rational nonsingular compact complex surfaces gives

1
12 (K2

X e∆
+ e(Xe∆)) = χ(OX e∆) = 1,

i.e.,
K2

X e∆
= 12− e(Xe∆) = 12− ν −

∑

i∈I∆

si.

This equality, combined with (4.9) and (4.14), leads to generalized Noether’s for-
mulae which are valid for the (not necessarily nonsingular) toric surface X∆.
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Proposition 4.9 (First version of Noether’s formula). The self-intersection
number of the canonical divisor of X∆ equals

K2
X∆

= 12− ν +
∑

i∈I∆


 qi−pi+1

qi
+ qi−bpi+1

qi
− 2 +

si∑

j=1

(b(i)
j − 3)


 (4.16)

Proof. We have

K2
X∆

= K2
X e∆

−
(∑

i∈I∆

K(E(i)) ·
∑

i∈I∆

K(E(i))

)

= 12− ν −
∑

i∈I∆

si −
(∑

i∈I∆

K(E(i)) ·
∑

i∈I∆

K(E(i))

)

= 12− ν −
∑

i∈I∆

si −
∑

i∈I∆

(
K(E(i)) ·K(E(i))

)
,

where the latter equality follows from the fact that the intersection of the supports
of the divisors K(E(i1)) and K(E(i2)), for every pair i1, i2 ∈ I∆ with i1 6= i2, is
empty. By (4.14),

K2
X∆

= 12− ν −
∑

i∈I∆

si −
∑

i∈I∆

K(E(i))2

= 12− ν −
∑

i∈I∆

si +
∑

i∈I∆


 qi−pi+1

qi
+ qi−bpi+1

qi
− 2 +

si∑

j=1

(b(i)
j − 2)




which can be written in the form (4.16). ¤

Corollary 4.10 (Second version of Noether’s formula). The self-intersection
number of the canonical divisor of X∆ equals

K2
X∆

= 12− ν + 2
∑

i∈I∆

(
1
qi
− 6 DS (pi, qi)− 1

)
(4.17)

(and therefore can be calculated by means of sawtooth functions or, alternatively,
by cotangent functions, cf. (3.1), (3.4) and (3.5)).

Proof. For every i ∈ I∆ it sufficies to express
∑si

j=1(b
(i)
j − 3) within (4.16) in

terms of the Dedekind sum DS(pi, qi) by utilizing formula (3.6). ¤

Remark 4.11. (a) Since

ν∑

i=1

(
2
qi
− ri

)
= −

ν∑

i=1

ri +
∑

i∈I∆

2
qi

+ 2 (ν − ](I∆))
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the equalities (4.15), (4.16) and (4.17) give

ν∑

i=1

ri = 3ν − 12−
∑

i∈I∆




si∑

j=1

(b(i)
j − 3)


 (4.18)

= 3ν − 12−
∑

i∈I∆

(
pi+bpi

qi
− 12 DS (pi, qi)− 2

)

Formula (4.18) generalizes the well-known formula for nonsingular X∆’s (see Oda
[42, formula (1), p. 45] or Fulton [18, equation (∗∗), p. 44]).

(b) If X∆ is Gorenstein (see Remark 3.18), then

K2
X∆

= 12− ν −
∑

i∈I∆

si and
ν∑

i=1

ri = 3ν − 12 +
∑

i∈I∆

si.

5. Classification of compact toric surfaces

Compact toric surfaces are to be classified up to isomorphism by means of specially
designed “weighted” plane graphs which have the combinatorial data (4.11) as their
weights. Our presentation uses a generalization of the Z-weighted circular graphs
introduced by Oda in [41, Ch. I, § 8, pp. 50-58], [42, pp. 42-46], for the study of
nonsingular compact toric surfaces, and related results of Koelman [32, § 1.2].

Lemma 5.1. Let N be a free Z-module of rank 2, and ∆, ∆′ two 2-dimensional
fans with |∆| = |∆′| = NR. Assume that

{
∆(1) = {τ1, . . . , τν} , ∆(2) = {σ1, . . . , σν} , ν ≥ 3,
∆′ (1) = {τ ′1, . . . , τ ′ν′} , ∆′ (2) = {σ′1, . . . , σ′ν′} , ν′ ≥ 3,

with σi := τi +τi+1, σ′i := τ ′i +τ ′i+1, and τi’s (resp., τ ′i ’s) going anticlockwise around
the origin once (w.r.t. the given enumeration of the indices), and that

pi, p̂i, qi, ri; p′i, p̂ ′i , q′i, r′i,

are the combinatorial data (4.11) of X∆ and X∆′ , respectively. If we denote by
GL(N,Z) the automorphism group of N, and if we define

GL+(N,Z) := {$ ∈ GL(N,Z) | det($) = 1} ,

GL−(N,Z) := {$ ∈ GL(N,Z) | det($) = −1} ,

then the following conditions are equivalent :

(i) There exists a $ ∈ GL+(N,Z) (resp., a $ ∈ GL−(N,Z)) such that $R (∆) = ∆′.

(ii) We have ν = ν′, and there exist ordering preserving permutations ϑ, ϑ′ ∈ Sν

(i.e., i1 < i2 ⇒ ϑ(i1) < ϑ(i2) and ϑ′(i1) < ϑ′(i2), w.r.t. the usual cyclic ordering
“ < ”), such that for all i ∈ {1, . . . , ν} the following equalities hold true:

pϑ(i) = p′ϑ′(i), qϑ(i) = q′ϑ′(i), rϑ(i) = r′ϑ′(i)
(resp., pϑ(i) = p̂ ′[ν−ϑ′(i)+1]ν

, qϑ(i) = q′[ν−ϑ′(i)+1]ν
, rϑ(i) = r′[ν−ϑ′(i)+2]ν

, (r′0 := r′ν)).

Proof. See Proposition 3.5 and Koelman [32, Lemma 1.2.27, pp. 16-17]. ¤
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Definition 5.2. Let G be a plane graph (i.e., a drawing of a planar graph in
the plane with no crossings) and Vert(G), Edg(G), the set of its vertices and the
set of its edges, respectively. G is called circular graph if its vertices are points
on a circle and its edges are the corresponding arcs (on this circle, each of which
connects two consecutive vertices). We say that a circular graph G is Z-weighted at
its vertices and double Z-weighted at its edges (and call it wve2c-graph, for short)

if it is accompanied by two maps Vert(G) w7−→ Z, Edg(G) w′7−→ Z2, assigning to each
vertex an integer and to each edge a pair of integers, respectively.

Definition 5.3. We say that two wve2c-graphs G1 and G2 having

Vert(Gk) wk7−→ Z, Edg(Gk)
w′k7−→ Z2, k = 1, 2,

as weighting maps are isomorphic (and we use the notation G1
∼=
gr.

G2) if there

exists a bijection θ : Vert(G1) −→ Vert(G2), such that
(i) for each edge vw of G1 with vertices v and w, θ(v)θ(w) is an edge of G2,

(ii) w1 (v) = w2 (θ (v)) , ∀v ∈ Vert(G1), and
(iii) w′1 (vw) = w′2(θ(v)θ(w)).

Definition 5.4. A wve2c-graph G is said to be anticlockwise (resp., clockwise)
directed if its reference circle (on which the vertices are located) is viewed as a cycle
equipped with the anticlockwise (resp., clockwise) direction.

Definition 5.5. Let N be a free Z-module of rank 2 and ∆ a two-dimensional
fan with |∆| = NR. Using the combinatorial data (4.11) of X∆ we associate to ∆
an anticlockwise directed wve2c-graph G∆ with

Vert(G∆) = {v1, . . . ,vν} and Edg(G∆) = {v1v2, . . . ,vνv1},
by defining its “weights” as follows:

Vert(G∆) 3 vi 7−→ −ri, Edg(G∆) 3 vivi+1 7−→ (pi, qi) , ∀i ∈ {1, . . . , ν}.
The reverse graph Grev

∆ of G∆ is defined to be the directed wve2c-graph which is
obtained by changing the double weight (pi, qi) of the edge vivi+1 into (p̂i, qi) and
reversing the initial anticlockwise direction of G∆ into clockwise direction.

Note 5.6 (Conventions for the drawings). (a) In the drawing of directed
wve2c-graphs G∆ in the plane we shall attach only the weight −ri at the ver-
tex vi (without mentioning vi itself), for i ∈ {1, . . . , ν}, and the double weight
(pi, qi) at the edge vivi+1, for i ∈ I∆, and leave edges vivi+1, for i ∈ J∆, without
any decoration (or, in other words, with the blank space around an edge meaning
always the double weight (0, 1)), in order to switch to the notation introduced in
[41, pp. 50-58], [42, pp. 42-46] (for the study of nonsingular X∆’s). Let us fur-
thermore note that the choice of −ri, instead of ri, as the weight of the vertex vi, is
more natural because it indicates the self-intersection number of the corresponding
irreducible rational curve which occurs in the minimal desingularization of X∆, and
is again adopted from [41], [42].
(b) In practice, having definition 5.3 in hand, to decide if two given directed wve2c-
graphs G1 and G2 (which possess the same mumber of vertices) are isomorphic (or
not), we may travel on their reference circles (following the prescribed directions)
and find out if there exists a suitable bijection sending the weights of G1 to equal
weights of G2 (or not), without insisting on the use of enumerations of the vertices.
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Example 5.7. Let N = Z2 be the standard rectangular lattice within R2

and ∆ the fan with Gen(∆) = {n1,n2,n3} given in Figure 4 (a). Computing the
combinatorial data (4.11) of X∆, we get the wve2c-graph G∆ which is depicted in
Figure 4 (b). X∆ is isomorphic to the weighted projective plane P2

C(5, 2, 1).

Figure 4.

Theorem 5.8 (Classification Theorem I). Let N be a free Z-module of rank
2, and ∆, ∆′ two 2-dimensional fans with |∆| = |∆′| = NR. Then the following
conditions are equivalent :

(i) The compact toric surfaces X∆ and X∆′ are isomorphic.

(ii) Either G∆′ ∼=
gr.

G∆ or G∆′ ∼=
gr.

Grev
∆ .

Proof. Obviously, X∆ and X∆′ are isomorphic if and only if there exists an
automorphism $ ∈ GL(N,Z) such that $R(∆) = ∆′. By Lemma 5.1, G∆′ ∼=

gr.
G∆

whenever $ ∈ GL+(N,Z), and G∆′ ∼=
gr.

Grev
∆ whenever $ ∈ GL−(N,Z). ¤

Example 5.9. If ∆′ is the fan with Gen(∆′) = {n′1,n′2,n′3} given in Figure
5 (a), then we see that the wve2c-graph G∆′ of X∆′ (depicted in Figure 5 (b))
is isomorphic to the reverse graph Grev

∆ of G∆, where ∆ denotes the fan defined
in Example 5.7. Obviously, p′i = p̂4−i, r′i = r[5−i]3 , for i = 1, 2, 3, and X∆′ is
isomorphic to X∆.

Figure 5.
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Theorem 5.10 (Classification Theorem II). Let G be a wve2c-graph and as-
sume that Vert(G) = {vi| 1 ≤ i ≤ ν} , ν ≥ 3, having for each i ∈ {1, . . . , ν} an
integer number −ri as the weight of its vertex vi, and (pi, qi) ∈ Z2 with 0 ≤ pi ≤ qi,
gcd(pi, qi) = 1, as the double weight of the edge vivi+1. Suppose (without loss of
generality) that G is anticlockwise directed. Then the following are equivalent :
(i) There exists a free Z-module N of rank 2 and a two-dimensional fan ∆, such
that |∆| = NR, with X∆ having combinatorial data (4.11), (4.12), and G∆

∼=
gr.

G.

(ii) Both conditions (4.18) and

ν∏

i=1

(S (ri) Bi) =
(

1 0
0 1

)
(5.1)

are satisfied, where

S(k) :=
(

k 1
−1 0

)
, ∀k ∈ Z, Bi :=





si∏

k=1

S(b(i)
k ), if i ∈ I∆,

(
1 0
0 1

)
, if i ∈ J∆,

I∆, J∆ as defined by (4.1), and
{

b
(i)
j

∣∣∣ 1 ≤ j ≤ si

}
, i ∈ I∆, determined by (4.2).

Proof. The implication (i)⇒(ii) follows from 4.11 (a), and the equations (4.7)
and (4.10). To verify the inverse implication (ii)⇒(i) we may w.l.o.g. work with
the standard rectangular lattice N = Z2 within R2. Besides that, it is convenient
to extend the definition of si for all i ∈ {1, . . . , ν} by setting si = 0, ∀i ∈ J∆. Let
{e1, e2} be the basis of Z2 consisting of the unit vectors. If we define





x(1)
0 := e1, x(1)

1 := e1 + e2, and

x(1)
j := b

(1)
j x(1)

j−1 − x(1)
j−2,

∀j ∈ {2, . . . , s1 + 1}
(i.e., if 1 ∈ I∆),

and 



x(2)
0 := x(1)

s1+1, x(2)
1 := r2x

(2)
0 − x(1)

s1 , and

x(2)
j := b

(2)
j x(2)

j−1 − x(2)
j−2,

∀j ∈ {2, . . . , s2 + 1}
(i.e., if 2 ∈ I∆),

and continue this procedure (with x(i)
j ’s going anticklockwise around the origin)

until we arrive to x(ν)
sν+1, then we construct ν +

∑
i∈I∆

si distinct vectors

{
x(i)

j

∣∣∣ 1 ≤ i ≤ ν, 0 ≤ j ≤ si + 1
}

(because x(i)
0 = x(i−1)

si−1+1),

with {x(i)
j ,x(i)

j+1} a Z-basis of Z2. Condition (5.1) guarantees that x(ν)
sν+1 = x(1)

0 and

x(1)
1 = r1x

(1)
0 − x(ν)

sν = e1 + e2. Furthermore, (4.18) can be written as

ν∑
i=1

ri +
∑

i∈I∆

(
si∑

j=1

b
(i)
j ) = 3(ν +

∑
i∈I∆

si)− 12,



34 D.I. DAIS

and is exactly the condition which ensures that the above vectors x(i)
j go around

the origin only once. Thus, we can define a complete fan

∆basic :=

{
the cones

{
R≥0x

(i)
j + R≥0x

(i)
j+1

∣∣∣ 1 ≤ i ≤ ν, 0 ≤ j ≤ si

}

together with their faces

}

consisting of basic cones. Since for i ∈ I∆ the matrix −Lsi(b
(i)
1 , . . . , b

(i)
si ) is negative

definite (see Lemma 3.12), the irreducible curves {V∆basic(R≥0 x(i)
j )

∣∣∣ 1 ≤ j ≤ si}
can be contracted to a normal point (by Theorem 1.1). Consider the birational
morphism X∆basic −→ X∆ contracting all these curves for all i ∈ I∆. By construc-
tion, X∆ has (4.11) and (4.12) as its combinatorial data, X∆basic is isomorphic to
Xe∆, and G∆

∼=
gr.

G. ¤

Remark 5.11. The graph-theoretic interpretation of what happens by passing
from a singular compact toric surface X∆ (with combinatorial data (4.11) and
(4.12)) to its minimal desingularization f : Xe∆ −→ X∆ is illustrated in Figure 6
(in which we assume, for simplification’s sake, that I∆ = {1, . . . , ν}).

Figure 6.

6. Minimal, antiminimal and anticanonical models

In the present section we explain how one can make use of the general theory of §1
to obtain minimal models of normal pairs (X∆, D), and then we turn our attention
to the antiminimal and anticanonical models of nonsingular X∆’s.

• Exceptional curves and minimal models. Maintaining the notation intro-
duced in §4, let D be a Q-Weil divisor on a compact toric surface X∆ with

D ∼
ν∑

i=1

λiCi ∈ DivTW(X∆)⊗Z Q, (for suitable λ1, . . . , λν ∈ Q, cf. Thm. 2.8).

Lemma 6.1. The irreducible curve Cj (with j ∈ {1, . . . , ν}) is an exceptional
curve of the first kind for the normal pair (X∆, D) (in the sense of §1) if and only
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if the following conditions are satisfied :







qj−1−bpj−1
qj−1

+ qj−pj

qj
< rj , and

λj−1
qj−1

+ λj

(
qj−1−bpj−1

qj−1
+ qj−pj

qj
− rj

)
+ λj+1

qj+1
< 0



 , ∀j ∈ I ′∆,

{ qj−pj

qj
< rj , and

λj−1 + λj

(
qj−pj

qj
− rj

)
+ λj+1

qj+1
< 0

}
, ∀j ∈ I

′′
∆,





qj−1−bpj−1
qj−1

< rj , and
λj−1
qj−1

+ λj

(
qj−1−bpj−1

qj−1
− rj

)
+ λj+1 < 0



 , ∀j ∈ J ′∆,

rj > 0 and λj−1 − λjrj + λj+1 < 0, ∀j ∈ J
′′
∆.





(6.1)

Proof. Cj is an exceptional curve of the first kind for the normal pair (X∆, D) iff

both C2
j and D · Cj = (

ν∑
i=1

λiCi) · Cj = λj−1(Cj−1 · Cj) + λjC
2
j + λj+1(Cj · Cj+1)

are negative. Applying Lemma 4.7, we get the above inequalities. ¤
Theorem 6.2. Suppose that Cj is an exceptional curve of the first kind for

(X∆, D) (i.e., that conditions (6.1) are satisfied). Let (X∆, D)
ϕ1−→ (X∆1 , D1)

be the contraction of the curve Cj (with |∆| = |∆1| , ∆1(1) = ∆(1)r{τj}, and
D1 = (ϕ1)∗(D)). Then ϕ1 is totally discrepant. Moreover, there exists a finite
sequence of birational morphisms

(X∆, D)
ϕ1−→ (X∆1 , D1)

ϕ2−→ (X∆2 , D2)
ϕ3−→ · · · ϕµ−→ (X∆µ , Dµ) (6.2)

of normal pairs such that (X∆µ , Dµ) is a minimal model of (X∆, D).

Proof. By (1.2) we get D = ϕ∗1(D1) +
(

D·Cj

C2
j

)
C, with

(
D·Cj

C2
j

)
> 0. If (X∆1 , D1)

is a minimal model of (X∆, D), then we stop; otherwise, we consider the contraction
ϕ2 of an exceptional curve of the first kind for the normal pair (X∆1 , D1) (which
is again totally discrepant) and repeat the same procedure until we arrive at a
minimal model of (X∆, D). For this, we need only a finite sequence (6.2) of bira-
tional morphisms because in each step the number of the (finitely many) irreducible
components of the exceptional set is reduced by one. ¤

Remark 6.3. (a) Setting λ1 = · · · = λν = −1 (resp., λ1 = · · · = λν = 1) we
obtain by Theorem 6.2 a minimal model (resp., an antiminimal model) of X∆ in
the usual sense (see 1.5 (a)). In particular, minimal models with non-nef canonical
divisor either admit a P1

C-fibration and have Picard number ≥ 2 or have numerically
ample anticanonical divisor and Picard number 1 (see [51, Thm. 4.9, p. 639]).
(b) If D is not pseudoeffective, there may be different choices to construct minimal
models. For instance, even if X∆ is nonsingular, it does not admit a uniquely
determined minimal model (i.e., for D = KX∆), cf. [2, Remark 10.23, p. 156]. In
fact, in this case, the set of all possible minimal models consists of the projective
plane P2

C together with the Hirzebruch surfaces

Fκ :=
{

([z0 : z1 : z2] , [t1 : t2]) ∈ P2
C × P1

C
∣∣ z1t

κ
1 = z2t

κ
2

}
,

where κ is an integer with 0 ≤ κ 6= 1 (see [27], [2, Ch. 12], [41, Thm 8.2, pp.
52-56]). Fκ can be viewed as the rational scroll $ : P(OP1C ⊕OP1C(κ)) −→ P1

C with
twisting number κ, on the one hand, and as the toric surface having −κ, 0, κ, 0 as
weights at the four vertices of its circular graph, on the other. Obviously, Fκ is
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isomorphic to Fκ′ only if κ = κ′. Nevertheless, one can pass from the Hirzebruch
surface Fκ to Fκ+1 (and vice versa) by blowing up a T-fixed point p of Fκ, and then
contracting the strict transform of the fiber $−1($ (p)) (which is a (−1)-curve) to
another T-fixed point p′, i.e., by an elementary transformation, as it is shown via
the weighted circular graphs of Figure 7.

Figure 7.

• Antiminimal and anticanonical models of nonsingular X∆’s. Every non-
singular compact toric surface X∆ admits a unique antiminimal model X∆antim

and a unique anticanonical model X∆antican because kod(X∆,−KX∆) = 2 (cf. [49,
§7.6]), which means, in particular, that −KX∆ is pseudoeffective (by [49, Lemma
3.1, p. 396]) and therefore one can apply Theorems 1.4 and 1.7.

Definition 6.4. A nonsingular projective surface X is called Del Pezzo surface
if its anticanonical divisor −KX is ample. Correspondingly, a normal projective
surface X with at worst log-terminal singularities is called log Del Pezzo surface if
−KX is a Q-Cartier ample divisor. The index ind(X) of a log Del Pezzo surface X
is defined to be the smallest positive integer ` for which `KX is a Cartier divisor.

Theorem 6.5. The anticanonical model X∆antican
∼= Proj(R(X∆,−KX∆)) of

any nonsingular compact toric surface X∆ is a toric log Del Pezzo surface. More-
over, every toric log Del Pezzo surface is the anticanonical model of the surface
obtained by its minimal desingularization.

Proof. Since kod(X∆,−KX∆) = 2, R(X∆,−KX∆) is finitely generated and the
assertion is true by Theorem 1.8. ¤

Note 6.6. (a) The anticanonical model X∆antican of a nonsingular compact toric
surface X∆ is constructed by considering the so-called Zariski decomposition of
−KX∆ = (−KX∆)(+) + (−KX∆)(−) and contracting the (finitely many) irreducible
curves C on X∆ for which (−KX∆)(+) · C = 0 (see [2, Ch. 14] and [50, p. 886]).
(b) To extract the antiminimal model X∆antim of a nonsingular compact toric surface
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X∆ from X∆antican it suffices to resolve (minimally) all Gorenstein singular points
of X∆antican by a single birational crepant morphism.

I Open problem. The classification of all toric log Del Pezzo surfaces up to
isomorphism remains an open combinatorial problem. Though there exist finitely
many isomorphy classes of toric log Del Pezzo surfaces of given index1 ` ≥ 1,
the examination of those having high indices or (even worse) high Picard numbers
seems to demand rather tricky techniques, at least from the computational point
of view. In fact, for given index `, there are two main problems: the local one, i.e.,
to classify all possible types of the available cones, and the global one, i.e., to check
which combinations of admissible cones fit together to give the required fans.

Remark 6.7 (A geometric reformulation of the classification problem). If X∆ is
a compact toric surface, then the Q-Cartier divisor −KX∆ is defined by a rational
∆-support function taking the value 1 at every n ∈ Gen(∆) (see 2.7 and 2.11).
By Theorem 2.14 and Remark 2.15 −KX∆ is ample if and only if this function
is strictly upper convex, which means that all elements of Gen(∆) are vertices
of a lattice polygon. Thus, in geometric terms, the classification of toric log Del
Pezzo surfaces X∆ of a given index ` ≥ 1 (up to isomorphism) is equivalent to the
classification (up to unimodular transformation) of lattice polygons Q ⊂ NR with
0 ∈ int(Q) and {Fσ| σ ∈ ∆ (2)} as edge-set (in the notation of 3.19), such that `
equals the lcm of { lind (Uσ, orb (σ))|σ ∈ ∆(2)}. (See below Lemma 6.8.) For such
Q’s, we have necessarily2

int( 1
`Q) ∩N = {0}. (6.3)

In particular, the finiteness of the classes of lattice polygons fulfilling the equality
(6.3) follows from results of Hensley [25] and Lagarias & Ziegler [34].

Lemma 6.8. Using the notation of §4, the index ` = ind(X∆) of a toric log Del
Pezzo surface X∆ equals

ind (X∆) =
{

lcm { lind (Uσi , orb (σi)) | i ∈ I∆} , if I∆ 6= ∅,
1, if I∆ = ∅,

where lind denotes the local index introduced in 3.19.

Proof. If X∆ is nonsingular, then obviously ind(X∆) = 1. Otherwise, we have
I∆ 6= ∅, and ` = ind(X∆) is the smallest positive integer for which

f∗`KX∆ = `KX e∆ −
∑

i∈I∆

`K(E(i)) = `KX e∆ +
∑

i∈I∆

si∑
j=1

`

(
1− γ

(i)
j +δ

(i)
j

qi

)
E

(i)
j

is a Cartier divisor on the surface Xe∆ obtained by the minimal desingularization
(4.8) of X∆. By 4.5 (b) we have ` = lcm { lind (Uσi , orb (σi)) | i ∈ I∆} . ¤

We shall henceforth deal only with toric Del Pezzo surfaces X∆ with ind(X∆) ≤ 2.

Lemma 6.9. Let σ ⊂ NR be a two dimensional (p, q)-cone (w.r.t. a suitable
Z-basis of N, in the sense of 3.4). Then

lind (Uσ, orb (σ)) = 1 ⇐⇒
{

either p = 0 and q = 1,
or p = 1 and q ≥ 2,

(6.4)

1This follows, e.g., by more general results of A. and L. Borisov [11].
2Condition (6.3) is also sufficient (for X∆ to be log-Del Pezzo) only for ` = 1.
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and
lind (Uσ, orb (σ)) = 2 ⇐⇒ (q = 2(p− 1) and p is odd ≥ 3) . (6.5)

Proof. By (3.12) lind(Uσ, orb (σ)) = 1 means that q = gcd(q, q − p + 1), and
therefore q | p− 1. Since p− 1 < p < q, p, q satisfy (6.4). The converse is obvious.
If lind(Uσ, orb (σ)) = 2, then q = 2 gcd(q, q − p + 1). Thus, q is even, q - p− 1, and

q
2 | p− 1 =⇒ ∃λ ∈ N : 2(p− 1) = λq

p− 1 < p < q =⇒ 1 ≤ 2(p−1)
q ≤ 2,

}
=⇒ λ = 1 =⇒ q = 2(p− 1).

p is odd (because otherwise gcd(p, q) ≥ 2). The converse is obvious. ¤
Theorem 6.10. Up to isomorphism, there exist exactly 16 toric log Del Pezzo

surfaces of index ` = 1. Their wve2c-graphs are illustrated in Figures 8-10.

Figure 8.

Figure 9.
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Figure 10.

Sketch of a first proof. Let X∆ be a toric log Del Pezzo surface of this
kind (with combinatorial data (4.11) and (4.12)). Since −KX∆ is ample, Nakai’s
criterion [42, Thm. 2.18, pp. 86-87] and Lemma 4.7 give

−KX∆ · Ci = Ci−1 · Ci + C2
i + Ci · Ci+1 = −ri + 2 > 0 =⇒ ri ≤ 1, (6.6)

for all i ∈ {1, . . . , ν}. On the other hand, using (6.4), (4.18) can be written as
ν∑

i=1

ri = 3ν − 12 +
∑

i∈I∆

si = 3ν − 12 +
∑

i∈I∆

(qi − 1). (6.7)

From (6.6) and (6.7) we conclude that

3 ≤ ν ≤ 6− 1
2

∑

i∈I∆

si ≤ 6. (6.8)

The “classical” toric Del Pezzo surfaces (with I∆ = ∅) are 5, namely those corre-
sponding to the wve2c-graphs (i), (vi), (viii), (xiii) and (xvi) of Figures 8, 9, and
10, and have been classified in [4, Proposition 6, p. 22], [42, Proposition 2.21, pp.
88-89], and [55, Proposition 2.7, pp. 40-41]. For the singular toric log Del Pezzos
we have obviously ν ∈ {3, 4, 5}. If ν = 5, then there are either one or two singular
points (coming necessarily from cones of type (p, q) = (1, 2); cf. (6.4) and (6.8)).
By (6.7) and the fact that Xe∆ must be contractible either to P2

C or to an Fκ after
blowing down (at most 4) (−1)-curves (see 6.3 (b)), we infer that either one of the
ri’s equals 0 and the others = 1 or all ri’s are equal to 1. Now having the main
constituents of all possible wve2c-graphs in hand (i.e., the weights (pi, qi), −ri,

and b
(i)
k ’s which are = 2), it is enough to test via (5.1) which of these graphs can be

realized as wve2c-graphs of a complete fan (specifying automatically the ordering
of the 5 available two-dimensional cones). As it turns out, only the circular graphs
(xiv) and (xv) of Figure 10 “survive” (up to “∼=

gr.
”) after having performed this test.

The admissible wve2c-graphs for ν ∈ {3, 4} can be found similarly.

Sketch of a second proof. In [5] Batyrev proved that there exist exactly 16
lattice lattice polygons satisfying condition (6.3) for ` = 1. (These are actually
the so-called reflexive polygons.) Several alternative proofs of this fact are given
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in [32, Thm. 4.2.3, p. 86], [45], and [40, Prop. 3.4.1, pp. 55-57]. Drawing the
rays which begin from the origin and pass through the vertices of each of these
lattice polygons one constructs the corresponding fans and recognizes the type of
the two-dimensional rational s.c.p. cones, and where the singular points are located;
afterwards, calculating the ri’s, it is easy to build up the required wve2c-graphs.¤

Remark 6.11. (a) Table 1 contains a more precise description of the 16 toric
log Del Pezzo surfaces of index 1 as projective varieties. In cases (viii), (xi), (xiii),
(xv) and (xvi) the centers of blow-ups are smooth T-fixed points. In cases (ii), (iii),
(iv), (v), (vii), (ix), (x), (xii) and (xiv) we indicate the embedding of the surface

X∆ into P
(K2

X∆
)

C induced by the global sections of the sheaf OX∆(−KX∆).

(b) The surface obtained by the minimal desingularization of X∆ in cases (ii), (iv),
(v), (vii) and (ix)-(xvi) is isomorphic to P2

C blown up at 9−K2
X∆

points which are
in almost general position (see Hidaka & Watanabe [26, Thm. 3.4, p. 325]).

(c) All possible types of singularities which can occur in the (not necessarily toric)
log Del Pezzos of index ` = 1 are to be found in the “long lists” contained in [1, 56].

Nr. X∆ Nr. X∆

(i) P2
C (ix)

(realized as a surface

of degree 4 in P4
C)

(ii)

P2
C/(Z/3Z)

(this can be realized

as the cubic surface

{ [z0 : .. : z3] ∈ P3
C
�� z3

0 = z1z2z3} )

(x)
(realized as a surface

of degree 7 in P7
C)

(iii)

P2
C(1, 1, 2)

(realized as the cone

over a quadric in P2
C

obtained by contracting

the minimal section of an F2)

(xi)
P2
C(1, 2, 3) blown up

at one point

(iv)

P2
C(1, 1, 2)/(Z/2Z)

(realized as a surface

of degree 4 in P4
C)

(xii)
(realized as a surface

of degree 7 in P7
C)

(v)

P2
C(1, 2, 3)

(realized as a surface

of degree 6 in P6
C)

(xiii)
P2
C blown up

at two points

(vi) P1
C × P1

C (xiv)
(realized as a surface

of degree 5 in P5
C)

(vii)
(realized as a surface

of degree 4 in P4
C)

(xv)
P2
C(1, 1, 2) blown up

at two points

(viii)
P2
C blown up

at one point ( ∼= F1)
(xvi)

P2
C blown up

at three points

Table 1.
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Theorem 6.12. Up to isomorphism, there are only 7 toric log Del Pezzo sur-
faces of index ` = 2 with Picard number 1, namely those whose wve2c-graphs
are illustrated in Figure 11, and whose structure (as weighted projective planes or
quotients thereof) is described in the last column of Table 4.

Figure 11.

Proof. Let X∆ be a toric log Del Pezzo surface of this kind. By Lemma 6.8 ∆
contains necessarily at least one cone σ with lind(Uσ, orb (σ)) = 2. Without loss of
generality, we may work with the standard rectangular lattice Z2 within R2 and
assume that ∆(2) consists of the cones

σi = R≥0 ni + R≥0 ni+1, ∀i ∈ {1, 2, 3}, with n1 = (1, 0) ,n2 = (p1, 2(p1 − 1)) ,

(p1 odd ≥ 3, cf. (6.5)), and with pi, qi, ri denoting the combinatorial data (4.11) of
X∆. The third minimal generator n3 of ∆ belongs necessarily to the set

M :=
{

(x, y) ∈ R2
∣∣∣ 2(p1−1)

p1
x < y < 0

}
∩ Z2.

Let us now define

Lσ2 := {(x, y) ∈M | 2(p1 − 1)x− p1y = −1 } ,

L′σ2
:=

{
(x, y) ∈M

∣∣∣∣
x = p1 − λq2, y = 2(p1 − 1)− µq2,

for some λ, µ ∈ Z with µx− λy = ±1

}
,

L′′σ2
:=

{
(x, y) ∈M

∣∣∣∣
x = p1p2 + λq2, y = 2(p1 − 1)p2 + µq2,

for some λ, µ ∈ Z with µp1 − 2λ(p1 − 1) = ±1

}
,
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and

Lσ3 := { (x, y) ∈M| y = −1} ,

L′σ3
:= { (x, y) ∈M| y = −q3, x = κq3 + 1, for some κ ∈ Z} ,

L′′σ3
:=

{
(x, y) ∈M

∣∣∣∣
p3x + 2λ(p3 − 1) = 1, p3y + 2µ(p3 − 1) = 0,

for some λ, µ ∈ Z with µx− λy = ±1

}
.

To determine all possible values of the coordinates of n3 one has to examine (for
symmetry reasons) only the six cases indicated in Table 2.

Case p2 q2 p3 q3 Condition for n3 r1 + r2 + r3 (by (4.18))

(a) 0 1 0 1 n3 ∈ Lσ2 ∩ Lσ3
p1−1

2
− 5

(b) 0 1 1 ≥ 2 n3 ∈ Lσ2 ∩ L′σ3
p1−1

2
+ q3 − 6

(c) 1 ≥ 2 1 ≥ 2 n3 ∈ L′σ2 ∩ L′σ3
p1−1

2
+ q2 + q3 − 7

(d) 0 1 ≥ 3 2(p3 − 1) n3 ∈ Lσ2 ∩ L′′σ3
p1−1

2
+ p3−1

2
− 7

(e) 1 ≥ 2 ≥ 3 2(p3 − 1) n3 ∈ L′σ2 ∩ L′′σ3
p1−1

2
+ p3−1

2
+ q2 − 8

(f) ≥ 3 2(p2 − 1) ≥ 3 2(p3 − 1) n3 ∈ L′′σ2 ∩ L′′σ3

3P
i=1

( pi−1
2

)− 9

Table 2.

Since −2KX∆ is an ample Cartier divisor, Nakai’s criterion informs us that

−2KX∆ · Ci > 0 =⇒ (C1 + C2 + C3) · Ci > 0, ∀i ∈ {1, 2, 3}, (6.9)

(where Ci := V∆(R≥0ni)). Hence, using (6.9) and Lemma 4.7, we find concrete
upper bounds for r1, r2 and r3, leading to further restrictions on pi, qi, which are
summarized in Table 3.

Case r1 r2 r3 Restrictions on pi, qi

(a) ≤ 1 ≤ 1 ≤ 1 3 ≤ p1 ≤ 17 (p1 odd ≥ 3)
(b) ≤ 1 ≤ 1 ≤ 1 7≤ p1 + 2q3 ≤ 19 (p1 odd ≥ 3)
(c) ≤ 1 ≤ 1 ≤ 1 11 ≤ p1 + 2(q2 + q3) ≤ 21, (p1 odd ≥ 3)
(d) ≤ 0 ≤ 1 ≤ 1 6 ≤ p1 + p3 ≤ 20 (p1, p3 odd ≥ 3)
(e) ≤ 0 ≤ 1 ≤ 1 10 ≤ p1 + 2q2 + p3 ≤ 22 (p1, p3 odd ≥ 3)
(f) ≤ 0 ≤ 0 ≤ 0 9 ≤ p1 + p2 + p3 ≤ 21 (p1, p2, p3 odd ≥ 3)

Table 3.

Taking into account the conditions for n3, these inequalities have only one solution
in case (a) (see below (i) in Table 4), two solutions in case (b) (namely (ii) and
(iii)), three solutions in case (c) (namely (iv), (v), and (vii)), one solution in case
(e) (namely (vi)), whereas they have no solution in cases (d) and (f)!
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Nr. p1 q1 p2 q2 p3 q3 n3 r1 r2 r3 X∆

(i) 3 4 0 1 0 1 (−1,−1) 0 0 −4 P2
C(1, 1, 4)

(ii) 3 4 0 1 1 5 (−4,−5) 1 −1 0 P2
C(1, 4, 5)

(iii) 5 8 0 1 1 3 (−2,−3) 0 1 −2 P2
C(1, 3, 8)

(iv) 3 4 1 6 1 2 (−3,−2) 0 1 1 P2
C(1, 2, 3)/(Z/2Z)

(v) 5 8 1 4 1 4 (−3,−4) 1 1 1 P2
C(1, 1, 2)/(Z/4Z)

(vi) 3 4 1 8 3 4 (−5,−4) 0 1 1 P2
C(1, 2, 1)/(Z/4Z)

(vii) 7 12 1 3 1 3 (−2,−3) 1 1 0 P2
C(1, 1, 4)/(Z/3Z)

Table 4.

Having found n3’s (and consequently ri’s), we determine both the precise structure
of X∆’s (see last column) and the wve2c-graphs of Figure 11. ¤

Remark 6.13. Alexeev and Nikulin proved in [1, Thm. 4.2, pp. 105-106] that,
up to isomorphism, there exist exactly 18 (not necessarily toric) log Del Pezzo
surfaces of index 2 with Picard number = 1. Among them there are 14 having only
cyclic quotient singularities. By Theorem 6.12 we see that only 7 out of these 14
surfaces are toric.

7. Riemann-Roch formula

The Euler-Poincaré characteristic

χ (OX (D)) := dimCH0(X,OX (D))− dimCH1(X,OX (D)) + dimCH2(X,OX (D))

of the coherent sheaf OX (D) associated to a divisor D on a nonsingular projective
surface X is given by the well-known Riemann-Roch formula

χ (OX (D)) = χ (OX) +
1
2
D · (D −KX) , (7.1)

(see [3, formula (6), p. 26], [21, p. 472], or [23, Ch. V, Thm. 1.6, p. 362]). To
generalize (7.1) in the category of normal projective surfaces (say, with mild singu-
larities) in the case in which D is a Weil non-Cartier divisor one has to add to the
right-hand side certain “correction terms” due to the contribution of singularities.
For compact toric surfaces we recall briefly the purely combinatorial method for
the computation of χ (OX∆ (D)) whenever D is a T-invariant Cartier divisor with
OX∆ (D) generated by the global sections, and then we pass to Blache’s RR-formula
(7.3) to deal with the general case.

•Traditional computation of χ(OX∆ (D)) by toric tools. Let X∆ be a compact
toric surface as in §4. Consider the T-invariant Cartier divisor Dψ on X∆ associated
to an upper convex ∆-support function ψ. Since Hj(X∆,OX∆ (Dψ)) vanishes for
j ≥ 1 (see [42, pp. 76-77]), we have

χ (OX∆ (Dψ)) = dimCH0(X∆,OX∆ (Dψ)) = ] (Pψ ∩M) (7.2)

by Theorem 2.13, and we can calculate χ (OX∆ (Dψ)) by Pick’s formula giving the
number of lattice points of the integral convex polygon Pψ in terms of its area and
its lattice points on the boundary.
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Example 7.1. If ∆ is the complete fan in R2 (w.r.t. the lattice N = Z2) with
Gen(∆) = {n1,n2,n3}, where n1 = (2,−1), n2 = (−1,−1), n3 = (−1, 3), and ψ
takes the values ψ(n1) = 1, ψ(n2) = −14, ψ(n3) = 2, then

Pψ = conv ({(1, 1), (5, 9), (10, 4)})
is the lattice triangle of Figure 12, and (7.2) gives

χ (OX∆ (Dψ)) = area(Pψ) +
1
2
(] (∂Pψ ∩M)) + 1

=
1
2

∣∣∣∣∣det

( 1 5 10
1 9 4
1 1 1

)∣∣∣∣∣ +
1
2
(12) + 1 = 37.

Figure 12.

• Generalized Riemann-Roch formula. Now let X be a projective surface
having at worst quotient singularities. It is possible to compute χ (OX (D)) for an
arbitrary Weil divisor D on X by the generalized Riemann-Roch formula:

χ (OX (D)) = χ (OX) +
1
2
D · (D −KX) + YX(D) (7.3)

(see Blache [10, Thm. 1.2, pp. 312-313]), where the contribution

YX(D) =
∑

x∈Sing(X)

YX,x(D) (7.4)

of the singular set of X to (7.3) is given by uniquely determined maps

YX,x : DivW(X, x)/DivC(X, x) −→ Q
for each analytic germ (X, x) with x ∈ Sing(X). In fact, it can be shown that if one
considers a desingularization f : X̃ −→ X of X, then

YX,x(D) = −1
2

(〈
f∗D −D

〉 · (bf∗Dc −K eX
))

, (7.5)
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where D is the strict transform of D. (Here, by “b c” and “〈 〉” is meant the integer
part and the fractional part, respectively, of a Q-Weil divisor). YX,x(D) = 0 if and
only if D is a Cartier divisor, and the right-hand side of (7.5) is well-defined over
x ∈ Sing(X) at which D is not Cartier. Moreover, the rational number YX,x(D)
does not depend on the particular choice of f. (Formula (7.3) generalizes results
from [12, Prop. 2, pp. 302-304], [19, 18.3.4, pp. 360-361] and [47, Thm. 9.1, pp.
409-411].) Let us apply (7.3) for a compact toric surface X = X∆ and see how
χ (OX∆ (D)) is described by means of its combinatorial data (4.11) and (4.12).

Theorem 7.2 (Riemann-Roch formula for compact toric surfaces). If D is a
Weil divisor on X∆ with

D ∼
ν∑

i=1

λiCi ∈ DivTW(X∆), (λ1, . . . , λν ∈ Z),

then

χ (OX∆ (D)) = − 1
2

ν∑
i=1

λi (λi + 1) ri +
∑

i∈I′∆

λi (λi + 1)
(

qi−1−bpi−1
2qi−1

+ qi−pi

2qi

)

+
∑

i∈I
′′
∆

λi (λi + 1)
(

qi−pi

2qi

)
+

∑
i∈J ′∆

λi (λi + 1)
(

qi−1−bpi−1
2qi−1

)

+
ν∑

i=1

(λi + λi+1 + 2λiλi+1) 1
2qi

+ YX∆(D) + 1,

where
YX∆(D) =

∑

i∈I∆

YX∆, orb(σi)(D),

and

YX∆, orb(σi)(D) = − 1
2 (λi + 1)

〈
(qi−pi)λi+λi+1

qi

〉
+ (λi+1 + 1)

〈
λi+(qi−bpi)λi+1

qi

〉

+
si∑

j=1

〈
γ
(i)
j λi+δ

(i)
j λi+1

qi

〉(⌊
γ
(i)
j λi+δ

(i)
j λi+1

qi

⌋
+ 1

)
(b

(i)
j )2

2

− ∑
1≤j<k≤si

1
2

(〈
γ
(i)
j λi+δ

(i)
j λi+1

qi

〉(⌊
γ
(i)
k λi+δ

(i)
k λi+1

qi

⌋
+ 1

))

− ∑
1≤j<k≤si

1
2

(〈
γ
(i)
k λi+δ

(i)
k λi+1

qi

〉(⌊
γ
(i)
j λi+δ

(i)
j λi+1

qi

⌋
+ 1

))

for all i ∈ I∆.

Proof. Since χ (OX∆) = 1, and

D · (D −KX∆) =

(
ν∑

i=1

λiCi

)
·
(

ν∑

i=1

(λi + 1) Ci

)

=
ν∑

i=1

λi (λi + 1) C2
i +

∑

1≤i<j≤ν

(λi + λj + 2λiλj) (Ci · Cj)

=
ν∑

i=1

λi (λi + 1) C2
i +

ν∑

i=1

(λi + λi+1 + 2λiλi+1) (Ci · Ci+1)
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= −
ν∑

i=1

λi (λi + 1) ri +
∑

i∈I′∆

λi (λi + 1)
(

qi−1−bpi−1
qi−1

+ qi−pi

qi

)

+
∑

i∈I
′′
∆

λi (λi + 1)
(

qi−pi

qi

)
+

∑

i∈J′∆

λi (λi + 1)
(

qi−1−bpi−1
qi−1

)

+
ν∑

i=1

(λi + λi+1 + 2λiλi+1) 1
qi

,

(by Lemma 4.7), it suffices to consider the minimal desingularization (4.8) of X∆,
and to determine YX∆(D) by (7.4) and (7.5). Let D be the strict transform of D
by this f, and

f∗D −D =
∑

i∈I∆

si∑
j=1

µ
(i)
j E

(i)
j

the Q-Cartier divisor on Xe∆ supported in
⋃

i∈I∆

si⋃
j=1

E
(i)
j with coefficients satisfying

the linear system

D · E(i)
j′ = −

(
∑

i∈I∆

si∑
j=1

µ
(i)
j E

(i)
j

)
· E(i)

j′ ,

for all i ∈ I∆ and all j′ ∈ {1, . . . , si}. For every fixed i ∈ I∆, this system is equivalent
to the following:(

Lsi(b
(i)
1 , . . . , b(i)

si
)
)

(µ(i)
1 , . . . , µ(i)

si
)T = (λi, 0, 0, . . . , 0, 0, λi+1)T .

By Lemma 3.13,

µ
(i)
j = 1

qi

(
γ

(i)
j δ

(i)
1 λi + γ(i)

si
δ
(i)
j λi+1

)
= 1

qi

(
γ

(i)
j λi + δ

(i)
j λi+1

)
. (7.6)

Now we write
−2 YX∆, orb(σi)(D) =

=
si∑

j=1

〈
µ

(i)
j

〉
E

(i)
j ·

(
(λiCi + λi+1Ci+1 +

si∑
j=1

⌊
µ

(i)
j

⌋
E

(i)
j ) + (Ci + Ci+1 +

si∑
j=1

E
(i)
j )

)

=
si∑

j=1

〈
µ

(i)
j

〉
E

(i)
j ·

(
(λi + 1) Ci + (λi+1 + 1) Ci+1 +

si∑
j=1

(⌊
µ

(i)
j

⌋
+ 1

)
E

(i)
j

)

= (λi + 1)
〈
µ

(i)
1

〉
+ (λi+1 + 1)

〈
µ(i)

si

〉
−

si∑
j=1

〈
µ

(i)
j

〉(⌊
µ

(i)
j

⌋
+ 1

)
(b(i)

j )2

+
∑

1≤j<k≤si

(〈
µ

(i)
j

〉(⌊
µ

(i)
k

⌋
+ 1

)
+

〈
µ

(i)
k

〉(⌊
µ

(i)
j

⌋
+ 1

))
,

and use formulae (7.6) for µ
(i)
j ’s. This completes the proof. ¤

8. Stringy invariants of compact toric surfaces

Stringy Hodge numbers hp,q
str (X) of normal, projective complex varieties X with

at worst Gorenstein quotient or toroidal singularities were introduced in [8] in an
attempt to determine a suitable mathematical formulation (and generalization)
for the numbers which are encoded into the Poincaré polynomial of the chiral and
antichiral rings of the physical “integer charge orbifold theory”. Batyrev generalized
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further this definition in [6] and made it work also for the case in which one allows X
to have at worst log-terminal singularities. In this framework, ones has to introduce
appropriate Estr-functions Estr (X; u, v) instead which may be not even rational. As
we shall see below, it is possible to express the stringy invariants of any compact
toric surface X∆ in terms of its combinatorial data (4.11) and (4.12), and to verify
that the so-called stringy Euler number estr (X∆) := limu,v→1 Estr (X∆;u, v) is an
integer ≥ 3.

• E-polynomials. As it was shown by Deligne in [17, §8], the cohomology groups
Hi(X,Q) of any complex variety X are equipped with a functorial mixed Hodge
stucture. The same remains true if one works with cohomologies Hi

c(X,Q) with
compact supports. There exist namely an increasing weight-filtration

W• : 0 = W−1 ⊂ W0 ⊂ W1 ⊂ · · · ⊂ W2i−1 ⊂ W2i = Hi
c (X,Q)

and a decreasing Hodge-filtration

F • : Hi
c (X,C) = F 0 ⊃ F 1 ⊃ · · · ⊃ F i ⊃ F i+1 = 0,

such that F • induces a natural filtration

Fα
(
GrW•

k (Hi
c (X,C))

)
=

(Wk

(
Hi

c (X,C)
) ∩ Fα

(
Hi

c (X,C)
)

+ Wk−1

(
Hi

c (X,C)
)
) / Wk−1

(
Hi

c (X,C)
)

(denoted again F •) on the complexification of the graded pieces

GrW•
k (Hi

c (X,Q)) = Wk/Wk−1.

Let now
hα,β

(
Hi

c (X,C)
)

:= dimCGrα
F•GrW•

α+β

(
Hi

c (X,C)
)

denote the corresponding Hodge-Deligne numbers. The so-called E-polynomial of
X is defined as follows:

E (X; u, v) :=
∑

α,β


∑

i≥0

(−1)i
hα,β

(
Hi

c (X,C)
)

uαvβ ∈ Z [u, v] .

In fact, the E-polynomial is to be viewed as “generating function” of these numbers.
In particular, if X happens to be projective, equipped with a pure Hodge structure,
then

E (X;u, v) =
∑

α,β

(−1)α+β
hα,β (X) uαvβ , (8.1)

where hα,β (X) denote the usual Hodge numbers w.r.t. this structure.

• Estr-functions. Allowing the existence of log-terminal singularities to pass to
stringy invariants, one takes essentially into account the discrepancy coefficients.

Definition 8.1. Let ϕ : X̃ −→ X denote an snc-desingularization of a Q-
Gorenstein normal complex variety X, that is, a desingularization of X whose
exceptional locus Exc(ϕ) = ∪l

i=1Di consists of smooth prime divisors D1, . . . , Dl

with only normal crossings. Setting L := {1, 2, . . . , l} , assume that X has at worst
log-terminal singularities, i.e., discrepancy divisor

K eX − ϕ∗ (KX) =
l∑

j=1

ηj Dj ,



48 D.I. DAIS

with ηj > −1 for all j ∈ L. For every subset J ⊆ L we introduce the following
notation:

DJ :=





X̃, if J = ∅
⋂

j∈J

Dj , if J 6= ∅ and D◦
J := DJ r

⋃

j∈LrJ

Dj .

The algebraic function

Estr (X; u, v) :=
∑

J⊆L

E (D◦
J ; u, v)

∏

j∈J

uv−1
(uv)ηj+1−1 (8.2)

(under the convention for
∏

j∈J to be 1, if J = ∅, and E (∅; u, v) := 0) is called the
stringy E-function of X.

The main result of Batyrev in [6] says that:

Theorem 8.2. The stringy E-function Estr (X; u, v) is independent of the choice
of the snc-desingularization ϕ : X̃ −→ X.

Remark 8.3. (a) To define (8.2) it is sufficient for ϕ : X̃ −→ X to fulfil the
snc-condition only for those Dj ’s for which ηj 6= 0.

(b) If X admits a crepant desingularization ϕ : X̃ −→ X, i.e., K eX = ϕ∗KX with
X̃ nonsingular, then Estr (X; u, v) = E(X̃;u, v).
(c) In general, Estr (X; u, v) may be not a rational function in the two variables u, v.
Nevertheless, if X has at worst Gorenstein singularities, then

Estr (X; u, v) ∈ Z[[u, v]] ∩Q(u, v).

(Of course, for X projective, stringy Hodge numbers hα,β
str (X) can be defined only

if Estr (X; u, v) ∈ Z [u, v]).

(d) Since all Q-Gorenstein toric varieties have at worst log-terminal singularities
(see Note 2.6 (b)), their stringy E-function is defined by (8.2).

Definition 8.4. One defines the rational number

estr (X) := limu,v→1 Estr (X; u, v) =
∑

J⊆L

e (D◦
J )

∏

j∈J

1
ηj + 1

(8.3)

as the stringy Euler number of X.

• Back to compact toric surfaces. Let X∆ be a compact toric surface con-
structed by a two-dimensional complete fan ∆ (as in § 4). We intend to compute
the stringy invariants of X∆ in terms of its combinatorial data. At first, it should
be mentioned that X∆, as an orbifold, is endowed with a canonical pure Hodge
structure, with Hodge numbers

hα,β (X∆) = dimCHβ(X∆, Ω̂α
X∆

), α, β ∈ {0, 1, 2},
where Ω̂α

X∆
:= ι∗Ωα

X∆rSing(X∆) denotes the Zariski sheaf of germs of α-forms (see
[42, Thm. 3.6, pp. 121-122]), and ι : X∆rSing(X∆) ↪→ X∆ is the open embedding
of the regular locus of X∆ into itself. This is due to the fact that the so-called
Danilov’s spectral sequence

Eα,β
1 = Hβ(X∆, Ω̂α

X∆
) =⇒ Hα+β(X∆,C),
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(cf. [15, § 12] and [42, p. 133]), degenerates at the E1-term, consituting a direct
analogue of the (usual) Hodge spectral sequence for the case in which one works
with projective complex manifolds. Moreover, by [42, Thm. 3.11], we have

hα,β (X∆) =





0, if α 6= β,

2∑

j=0

(−1)α (
2−j
α−j

)
](∆(j)), if α = β.

(8.4)

Theorem 8.5 (Stringy invariants of X∆). The stringy E-function of X∆ equals

Estr (X∆;u, v) = 1 + (ν − 2) uv + (uv)2

+
∑

i∈I∆


(uv)2

qi−1∑

j=0

(uv)
−
 

[j(qi−pi+1)]qi
qi

!

− 1


 (8.5)

In particular, the stringy Euler number of X∆ is always a positive integer ≥ 3,
because

estr (X∆) = ν +
∑

i∈I∆

(qi − 1) (8.6)

Proof. Since ](∆(0)) = 1, ](∆(1)) = ](∆(2)) = ν, by formulae (8.4) we get

hα,α (X∆) =
{

1, if α ∈ {0, 2},
ν − 2, if α = 1.

Hence, by (8.2) and (8.1),

Estr (X∆; u, v) = E (X∆; u, v) +
∑

i∈I∆

(Estr ((X∆, orb (σi)) ; u, v)− 1)

=
∑

0≤α,β≤2

(−1)α+β
hα,β (X∆)uαvβ +

∑

i∈I∆

(Estr (Ui; u, v)− 1)

= 1 + (ν − 2)uv + (uv)2 +
∑

i∈I∆


(uv)2

qi−1∑

j=0

(uv)
−
 

[j(qi−pi+1)]qi
qi

!

− 1




where for the last equality one applies [7, Lemma 7.4, pp. 28-29], i.e., that the
stringy function of each Ui

∼= C2/Gi, i ∈ I∆, is nothing but the so-called orbifold
E-function of the quotient space C2/Gi, under the consideration of the element
gi := diag(ζ(qi−pi)

qi , ζqi) as the distinguished generator of the cyclic subgroup Gi of
GL(2,C) which acts on Thol

X∆,orb(σi)
∼= C2 as follows:

G× C2 3
(
gj

i , (z1, z2)
)
7−→

(
ζj(qi−pi)
qi

z1, ζ
j
qi

z2

)
∈ C2,
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∀j ∈ {0, 1, . . . , qi−1}. To compute estr (X∆) one can take the limit of Estr (X∆; u, v)
whenever u, v → 1, or, alternatively, make use of [7, Corollary 7.6, p. 30]:

estr (X∆) = e(X∆rSing(X∆)) +
∑

i∈I∆

|Gi|

= e(X∆)− ](I∆) +
∑

i∈I∆

qi

= ν +
∑

i∈I∆

(qi − 1) .

Thus, estr (X∆) is always a positive integer ≥ ν ≥ 3. ¤
Remark 8.6. (a) Since

estr (X∆) = e(X∆) +
∑

i∈I∆

(estr ((X∆, orb (σi)))− 1) ,

working directly with the initial definition (8.3) and with the (good) minimal desin-
gularization (4.8) of X∆, we obtain

estr ((X∆, orb (σi))) = estr (Ui)

= e (Ui) +
si∑

j=1

e((E(i)
j )◦) qi

γ
(i)
j +δ

(i)
j

+
si−1∑
j=1

e(E(i)
j ∩ E

(i)
j+1)

q2
i

(γ
(i)
j +δ

(i)
j )(γ

(i)
j+1+δ

(i)
j+1)

− 1,

by (4.9) and (4.13). Since

e (Ui) = 1, e(E(i)
j ) = e(P1

C) = 2, e(E(i)
j ∩ E

(i)
j+1) = 1,

and

e((E(i)
j )◦) =





1, if j = 1 and si > 1,
0, if j ∈ {2, . . . , si − 1} and si > 2,
1, if j = si and si > 1,
2, if j = si = 1,

we deduce finally that

estr (Ui) =





qi, if si = 1,

qi

(
1

qi−pi+1 + 1
qi−bpi+1 +

si−1∑
j=1

qi

(γ
(i)
j +δ

(i)
j )(γ

(i)
j+1+δ

(i)
j+1)

)
, if si > 1,

and
estr (X∆) = ν +

∑
i∈I∆ with si=1

(qi − 1)

+
∑

i∈I∆ with si>1

(qi( 1
qi−pi+1 + 1

qi−bpi+1 +
si−1∑
j=1

qi

(γ
(i)
j +δ

(i)
j )(γ

(i)
j+1+δ

(i)
j+1)

)− 1).
(8.7)

Comparing formulae (8.6) and (8.7), and taking into account that the two computa-
tional methods are of local nature (i.e., focused on each of the involved singularities
severally) we get the (nontrivial) identity

1
qi−pi+1 + 1

qi−bpi+1 +
si−1∑
j=1

qi

(γ
(i)
j +δ

(i)
j )(γ

(i)
j+1+δ

(i)
j+1)

= 1,

for all i ∈ I∆ with si > 1. This identity is exactly what one needs for the under-
standing of the “intrinsic” role played by the orders of the inertia subgroups of Gi’s
(corresponding to the irreducible components of codimension 1 in the ramification
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locus of the covering C2 −→ C2/Gi) during the direct computation which has been
performed in Theorem 8.5 (cf. [7, Proof of Lemma 7.4, pp. 28-29]).

(b) The reader should not confuse the stringy Euler number estr (X∆) with c2(Ω̂1
X∆

),
which has been named orbifold Euler number by some authors (see, e.g., [10, Thm.
7.3, p. 332] and [54, Remark 0.6, p. 117]). In our case,

c2(Ω̂1
X∆

) = e(X∆)−
∑

i∈I∆

(
1− 1

|Gi|
)

= ν −
∑

i∈I∆

(
1− 1

qi

)
.

It is worthwhile mentioning that the stringy Euler number of any projective surface
with quotient singularities is a topological invariant, whereas the orbifold Euler
number is not (in general).

Corollary 8.7. If X∆ is Gorenstein, then Estr (X∆; u, v) is a polynomial, and
the stringy Hodge numbers of X∆ are the following non-negative integers:

hα,β
str (X∆) =





0, if α 6= β,
1, if α = β = 0,
ν − 2, if α = β = 1,
1 +

∑
i∈I∆

si, if α = β = 2.
(8.8)

Proof. If X∆ is Gorenstein, then pi = 1 and si = qi − 1 for all i ∈ I∆, and the
function (8.5) is a polynomial whose coefficients are those given in (8.8). ¤

Note 8.8. (a) For the study of local contibution to the stringy E-function of
surface singularities which are log-terminal but not cyclic quotient singularities, as
well as for a natural generalization of the definition (8.2) of stringy E-function for
wider classes of surface singularities, the reader is referred to Veys’ article [54].
(b) For every toric variety X∆ (of arbitrary dimension) with at worst Gorenstein
singularities, Estr (X∆; u, v) is always a polynomial, as it was shown in [6, Proposi-
tion 4.4, pp. 12-13].
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