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toric log Del Pezzo surfaces
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Abstract. In this paper we give an upper bound for the Picard number of
the rational surfaces which resolve minimally the singularities of toric log Del
Pezzo surfaces of given index �. This upper bound turns out to be a quadratic
polynomial in the variable �.
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1. Introduction. A normal complex surface X with at worst log terminal singular-
ities, i.e., quotient singularities, is called log Del Pezzo surface if its anticanonical
divisor −KX is a Q-Cartier ample divisor. The index of such a surface is defined
to be the smallest positive integer � for which −�KX is a Cartier divisor. Every
log Del Pezzo surface is isomorphic to the anticanonical model (in the sense of
Sakai [13]) of the rational surface obtained by its minimal desingularization. The
following Theorem is due to Nikulin [8] (for related results cf. [1, 9]):

Theorem 1.1. Let X be a log Del Pezzo surface of index � and X̃ −→ X be its
minimal desingularization. Then the Picard number ρ(X̃) of X̃ (i.e., the rank of
its Picard group) is bounded by

ρ(X̃) < c · �
7
2 ,(1.1)

where c is an absolute constant.

The toric log Del Pezzo surfaces, i.e., those which are equipped with an algebraic
action of a 2-dimensional algebraic torus T, and contain an open dense T-orbit,
constitute a special subclass within the entire class of all log Del Pezzo surfaces.
(For instance, in the toric case, only cyclic quotient singularities can occur.) To
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indicate how these two classes differ in practice, it would be enough to recall some
known results for log Del Pezzo surfaces with Picard number = 1 and index � ≤ 2:

(i) Excluding the “exceptional” 2D4-case, there exist, up to isomorphism, exactly
30 surfaces of this kind having index � = 1 (see [2, Theorem 4.3] or [14, Theorem
1.2]). Among them there are 16 having at worst cyclic quotient singularities. By
[4, Theorem 6.10] we see that only 5 out of these 16 surfaces are toric (associated
to the 5 reflexive triangles).

(ii) Up to isomorphism, there exist exactly 18 surfaces of this kind having index
� = 2 (see [2, Theorem 4.2] or [5, Theorem 1.1 (1)]). Among them there are 14
having only cyclic quotient singularities. By [4, Theorem 6.12] we see that only 7
out of these 14 surfaces are toric.

The purpose of this paper is to prove an analogue of (1.1) for toric log Del
Pezzo surfaces of given index.

Theorem 1.2. Let XQ be a toric log Del Pezzo surface of index � (associated to the
lattice polygon Q) and X̃Q −→ XQ be its minimal desingularization. Then ρ(X̃Q)
is bounded as follows:

ρ(X̃Q) ≤
{

7, if � = 1,
8�2 − 6� + 3, if � ≥ 2.

(1.2)

Our proof uses tools from toric and discrete geometry.

2. Toric log Del Pezzo surfaces. Let Q ⊂ R2 be a (convex) polygon. Denote by
V(Q) and F(Q) the set of its vertices and the set of its facets (edges), respectively.
Q will be called an LDP-polygon if it contains the origin in its interior, and its
vertices belong to Z2 and are primitive. If Q is an LDP-polygon, we shall denote
by XQ the compact toric surface constructed by means of the fan

∆Q := { the cones σF together with their faces | F ∈ F(Q)} ,

where σF := {λx | x ∈ F and λ ∈ R≥0} for all F ∈ F(Q). It is known (cf. [4,
Remark 6.7]) that every toric log Del Pezzo surface is isomorphic to an XQ, for a
suitable LDP-polygon Q. Moreover, every cone σF is lattice-equivalent to the cone
R≥0

(1
0

)
+R≥0

(
pF

qF

)
, for suitable relatively prime integers pF , qF , with 0 ≤ pF < qF .

(These are uniquely determined, up to replacement of pF by its socius p̂F , i.e., by
the integer p̂F , 0 ≤ p̂F < qF , satisfying gcd(p̂F , qF ) = 1 and pF p̂F ≡ 1(mod qF ).)
The affine toric variety UF := Spec

(
C[σ∨

F ∩ (Z2)∨]
)

(where σ∨
F denotes the dual

cone of σF and (Z2)∨ the dual lattice of Z2) is ∼= C2 only if qF = 1. Otherwise, the
orbit orb(σF ) ∈ UF of σF , i.e., the single point remaining fixed under the canonical
action of the algebraic torus T := HomZ((Z2)∨, C�) on UF , is a cyclic quotient
singularity. In particular, UF

∼= C2/GF = Spec(C[z1, z2]GF ), with GF ⊂ GL(2, C)
denoting the cyclic group of order qF which is generated by diag(ζ−pF

qF
, ζqF

) (for
ζqF

a qF -th root of unity). Hence, the singular locus of XQ equals

Sing(XQ) = {orb(σF )| F ∈ IQ} ,
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where IQ := {F ∈ F(Q)| qF > 1} . Its subset {orb(σF )| F ∈ ĬQ}, with ĬQ defined
to be ĬQ := {F ∈ IQ | pF = 1} , is the set of the Gorenstein singularities of XQ.

The minimal desingularization of the surface XQ can be described as follows:
Equip the minimal generators of ∆Q with an order (e.g., anticlockwise), and as-
sume that for every F ∈ F(Q) the cone σF has n(F ),n′(F ) ∈ Z2 as minimal
generators (σF = R≥0 n(F ) + R≥0 n′(F )), with n(F ) coming first w.r.t. this order.
Next, for all F ∈ IQ, consider the negative-regular continued fraction expansion
of

qF

qF − pF
=
[[
b
(F )
1 , b

(F )
2 , . . . , b(F )

sF

]]
:= b

(F )
1 − 1

b
(F )
2 − 1

. . .

− 1

b
(F )
sF

,(2.1)

and define u(F )
0 := n(F ), u(F )

1 := 1
qF

((qF − pF )n(F ) + n′(F )), and lattice points

{u(F )
j | 2 ≤ j ≤ sF + 1} by the formulae

u(F )
j+1 := b

(F )
j u(F )

j − u(F )
j−1, ∀j ∈ {1, . . . , sF }.

It is easy to see that u(F )
sF +1 = n′(F ), and that the integers b

(F )
j are ≥ 2, for all

j ∈ {1, . . . , sF }. The singularity orb(σF ) ∈ UF is resolved minimally by the proper
birational map induced by the refinement {R≥0 u(F )

j + R≥0 u(F )
j+1 | 0 ≤ j ≤ sF } of

the fan which is composed of the cone σF and its faces. The exceptional divisor is
E(F ) :=

∑sF

j=1E
(F )
j , having

E
(F )
j := orb(R≥0 u(F )

j ) (∼= P1
C), ∀j ∈ {1, . . . , sF },

(i.e., the closures of the T-orbits of the “new” rays) as its components, with
self-intersection number (E(F )

j )2 = −b
(F )
j (see [12, Corollary 1.18 and Proposition

1.19, pp. 23–25]).

Note 2.1. (i) If F ∈ F(Q), and ηF ∈ (Z2)∨ is its unique primitive outer normal
vector, we define its local index to be the positive integer lF := 〈ηF , F 〉 , where

〈·, ·〉 : HomR(R2, R) × R2 −→ R

is the usual inner product. For F ∈ F(Q)�IQ we have obviously lF = 1. For
F ∈ IQ, let K(E(F )) be the local canonical divisor of the minimal resolution of
orb(σF ) ∈ UF (in the sense of [4, p. 75]). K(E(F )) is a Q-Cartier divisor (a rational
linear combination of E

(F )
j ’s), and

lF = min
{

ξ ∈ N | ξK(E(F )) is a Cartier divisor
}

= qF

gcd(qF ,pF −1) .(2.2)
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(ii) If F ∈ IQ, denoting by mXQ,orb(σF ) the maximal ideal of the local ring
OXQ,orb(σF ) of the singularity orb(σF ), and by

mF := dimC((mXQ,orb(σF ))/(m2
XQ,orb(σF ))) − 1

its multiplicity, it is known (cf. [3, Satz 2.11]) that

mF = 2 +
sF∑
j=1

(b(F )
j − 2).(2.3)

Lemma 2.2. For all F ∈ IQ we have

mF ≤ 2lF .

Proof. See [7, Lemma 1.1 (iii)]. �

Lemma 2.3. For all F ∈ IQ the self-intersection number of K(E(F )) equals

K(E(F ))2 = −
(

2 − (pF + p̂F )
qF

+ (mF − 2)
)

.

Proof. Follows from [4, Corollary 4.6] and formula (2.3). �

The minimal desingularization ϕ : X̃Q −→ XQ of XQ is constructed by means of
the smooth compact toric surface X̃Q which is defined by the fan

∆̃Q :=


the cones {σF | F ∈ F(Q)�IQ} and{

R≥0 u(F )
j + R≥0 u(F )

j+1

∣∣∣ F ∈ IQ, j ∈ {0, 1, . . . , sF }
}

,

together with their faces


(refining each of the cones {σF | F ∈ IQ} of ∆Q as mentioned above). Further-
more, the corresponding discrepancy divisor equals

KX̃Q
− ϕ�KXQ

=
∑

F∈IQ

K(E(F )).(2.4)

(By KXQ
, KX̃Q

we denote the canonical divisors of XQ and X̃Q, respectively.)

Note 2.4. By virtue of (2.2) and (2.4) the index � of XQ (as defined in §1) equals

� = lcm { lF | F ∈ F(Q)} .(2.5)

(For simplicity, sometimes � is referred as index of Q.) In fact, if we denote by

Q∗ :=
{
y ∈ HomR(R2, R)

∣∣ 〈y,x〉 ≤ 1, ∀x ∈ Q
}

the polar of the polygon Q, the index � is nothing but min
{

k ∈ N | V(kQ∗) ⊂ Z2
}

,
where kQ∗ := {ky|y ∈ Q∗} . In other words, � equals the least common multiple
of the (smallest) denominators of the (rational) coordinates of the vertices of Q∗.
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3. Proof of main theorem. The proof follows from suitable combination of the two
upper bounds given in Lemmas 3.1 and 3.2. (Henceforth we use freely the notation
introduced in §2.)

Lemma 3.1. Let XQ be a toric log Del Pezzo surface of index � ≥ 1. Then

�(V(Q)) ≤ 4 max { lH | H ∈ F(Q)} + 2 ≤ 4� + 2.(3.1)

Moreover, �(V(Q)) = 4 max { lH | H ∈ F(Q)} + 2, if and only if � = 1, and Q is
the unique hexagon (up to lattice-equivalence) with one interior lattice point. This
means, in particular, that for indices � ≥ 2 we have

�(V(Q)) ≤ 4� + 1.(3.2)

Proof. Obviously, there exists a facet F ∈ F(Q) such that
∑

v∈V(Q) v ∈ σF (this
is a special facet, in the sense of [11, Section 3]). In addition, since Q is two-
dimensional, we have for all integers j:

� {v ∈ V(Q)| 〈ηF ,v〉 = j} ≤ 2.

Writing V(Q) as disjoint union V(Q) = V(F )
≥0 (Q)

⊔V(F )
<0 (Q), where

V(F )
≥0 (Q) := {v ∈ V(Q)| 〈ηF ,v〉 ≥ 0} and V(F )

<0 (Q) := {v ∈ V(Q)| 〈ηF ,v〉 < 0} ,

we observe that

�(V(F )
≥0 (Q)) ≤ 2 (lF + 1) ,

because 〈ηF ,v〉 ∈ {0, 1, . . . , lF } for all v ∈ V(F )
≥0 (Q). On the other hand,

0 ≤
〈

ηF ,
∑

v∈V(Q)

v

〉
=

∑
v∈V(F )

≥0 (Q)

〈ηF ,v〉 +
∑

v∈V(F )
<0 (Q)

〈ηF ,v〉

=
lF∑

j=0

∑
{v∈V(F )

≥0 (Q)
∣∣∣ 〈ηF ,v〉=j}

〈ηF ,v〉 +
∑

v∈V(F )
<0 (Q)

〈ηF ,v〉

≤
lF∑

j=0

2j +
∑

v∈V(F )
<0 (Q)

〈ηF ,v〉 .

This implies

a := −
∑

v∈V(F )
<0 (Q)

〈ηF ,v〉 ≤ 2
(

lF + 1
2

)
.

Setting µ := �(V(F )
<0 (Q)) we examine two cases: (i) If µ = 2λ, for a λ ∈ N, then

λ∑
j=0

2j ≤ a =⇒ 2
(

λ + 1
2

)
≤ 2

(
lF + 1

2

)
=⇒ λ ≤ lF and µ ≤ 2lF .
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(ii) If µ = 2λ + 1, for a λ ∈ Z≥0, then
∑λ

j=0 2j + (λ + 1) ≤ a, i.e.,

2
(

λ + 1
2

)
+ (λ + 1) ≤ 2

(
lF + 1

2

)
=⇒ λ ≤ lF − 1 and µ ≤ 2lF − 1.

Hence,

�(V(Q)) = �(V(F )
≥0 (Q)) + �(V(F )

<0 (Q)) ≤ 2 (lF + 1) + µ

≤ 2 (lF + 1) + 2lF = 4lF + 2 ≤ 4 max { lH | H ∈ F(Q)} + 2,(3.3)

with the latter upper bound ≤ 4�+2 (by (2.5)), giving the inequality (3.1). Finally,
we deal with the case of equality: Suppose that �(V(Q)) = 4�′ + 2, where

�′ := max { lH | H ∈ F(Q)} .

From (3.3) we see that µ = 2lF , and λ = lF = �′. Therefore, by the equalities in
(i) we have for the integers j = −�′, . . . , 0, . . . , �′:

� {v ∈ V(Q)| 〈ηF ,v〉 = j} = 2.(3.4)

In particular, 0 = 〈ηF ,
∑

v∈V(Q) v〉, i.e.,
∑

v∈V(Q) v = 0. Hence, the previous
argument holds for any facet. Now let F ′ be another facet of Q having a common
vertex, say v, with F. If V(F ) = {u,v} and V(F ′) = {v,w}, then applying (3.4)
for both F and F ′ we get 〈ηF ,w〉 = �′ − 1 and 〈ηF ′ ,u〉 = �′ − 1. This implies
�′ = 1 = �, since otherwise the primitive vertex v equals (�′/(�′ − 1))(w + u − v),
a contradiction. Consequently, Q has to be the unique hexagon (up to lattice-
equivalence) with just one interior lattice point (see [10, Proposition 2.1]). �

Lemma 3.2. If XQ is a toric log Del Pezzo surface of index � ≥ 2 and X̃Q
ϕ−→ XQ

its minimal desingularization, then

ρ(X̃Q) < 2 �(IQ�ĬQ)(� − 1) − 1
�

�(V(Q)) + 10.(3.5)

Proof. By Noether’s formula and (2.4) we deduce

ρ(X̃Q) = 10 − K2
X̃Q

= 10 − K2
XQ

−
∑

F∈IQ

K(E(F ))2.

Since −�KXQ
is an ample Cartier divisor on XQ, we can compute by

[12, Proposition 2.10, p. 79] its self-intersection number:

(−�KXQ
)2 = 2 area(�Q∗) =⇒ K2

XQ
=

2
�2

area(�Q∗) = 2 area(Q∗).

For any facet H of �Q∗ the primitive outer normal vector is given by some vertex
of Q, i.e., the lattice distance of H from 0 equals �. This implies

area(�Q∗) ≥ 1
2
� �(F(�Q∗)) =

1
2
� �(V(Q)).

Hence,

−K2
XQ

= − 2
�2

area(�Q∗) ≤ −1
�

�(V(Q)).
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On the other hand, by Lemma 2.3 we infer that

−
∑

F∈IQ

K(E(F ))2 =
∑

F∈IQ

(
2 − (pF + p̂F )

qF
+ (mF − 2)

)
.

Taking into account that mF = 2 for all F ∈ ĬQ, and that pF + p̂F ≥ 2 for all
F ∈ IQ, which is valid as equality only for pF = p̂F = 1, i.e., whenever F ∈ ĬQ,
we obtain

−
∑

F∈IQ

K(E(F ))2 = −
∑

F∈IQ�ĬQ

K(E(F ))2 <
∑

F∈IQ�ĬQ

(mF − 2)

≤ �(IQ�ĬQ) max
{

mF − 2 | F ∈ IQ�ĬQ

}
≤ �(IQ�ĬQ) max

{
2(lF − 1) | F ∈ IQ�ĬQ

}
≤ 2 �(IQ�ĬQ)(� − 1),

where the last but one inequality follows from Lemma 2.2. Thus, ρ(X̃Q) is strictly
smaller than the sum 10 − �(V(Q))/� + 2 �(IQ�ĬQ)(� − 1). �

Proof of Theorem 1.2. If � = 1, then ρ(X̃Q) ≤ 7 by the known classification
of the reflexive polygons (see [6] or [10, Proposition 2.1]). If � ≥ 2, applying (3.2)
and (3.5), and the inequality �(IQ�ĬQ) ≤ �(V(Q)), we get

ρ(X̃Q) < 2 �(IQ�ĬQ)(� − 1) − 1
�

�(V(Q)) + 10

≤ �(V(Q))
(

2(� − 1) − 1
�

)
+ 10 ≤ (4� + 1)

(
2(� − 1) − 1

�

)
+ 10,

i.e., ρ(X̃Q) < 8�2 − 6� + 4 − 1
� , which yields the bound for � ≥ 2. �

4. Discussion, improvements and examples. First, let us note that from the proof
of Theorem 1.2 we derive a linear upper bound on ρ(X̃Q), if the number of vertices
of Q is fixed. It is therefore natural to ask for an example of an infinite family {Qi}
of LDP-polygons with increasing number of vertices, for which ρ(X̃Qi

) exhibits a
non-linear growth with respect to the indices of its members. To the best knowledge
of the authors, this seems to be an open question.

Now, in some specific cases we can further improve the bound (1.2). If Q is an
LDP-polygon and F ∈ IQ, then, according to (2.2), there is a positive integer βF

such that

pF − 1 = βF · qF

lF
=⇒ lF (pF − 1) = βF qF .

Since lF (pF − 1) < lF (qF − 1) < lF qF , we have βF ∈ {1, . . . , lF − 1}. In Proposi-
tion 4.1 we construct a better upper bound for ρ(X̃Q) provided that βF takes one
of the extreme values 1, lF − 1, and l2F | qF for all F ∈ IQ�ĬQ.
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Proposition 4.1. Let Q be an LDP-polygon such that XQ has index � ≥ 2. Suppose
that for all F ∈ IQ�ĬQ the following conditions are satisfied :

(i) βF ∈ {1, lF − 1}, and
(ii) l2F | qF . Then

ρ(X̃Q) ≤ 4�2 − 3� + 4.(4.1)

Proof. For F ∈ IQ�ĬQ define ξF := qF

�2 . If βF = 1, then qF

qF −pF
equals

1 + 1
(lF −2)+ 1

lF +1
= [[ 2, ..., 2︸ ︷︷ ︸

(lF −2)-times

, lF + 2]], if ξF = 1,

1 + 1
lF −2+ 1

1+ 1
ξF −1+ 1

lF

= [[ 2, .., 2︸ ︷︷ ︸
(lF −2)-times

, 3, 2, .., 2︸ ︷︷ ︸
(ξF −2)-times

, � + 1]], if ξF ≥ 2,

(cf. [4, Proposition 3.1]), p̂F = qF − lF ξF + 1, and

mF − 2 =
sF∑
j=1

(b(F )
j − 2) = lF , ∀F ∈ IQ�ĬQ.

Correspondingly, if βF = lF − 1, then qF

qF −pF
equals

(lF + 1) + 1
lF −1 = [[lF + 2, 2, ..., 2︸ ︷︷ ︸

(lF −2)-times

]], if ξF = 1,

lF + 1
(ξF −1)+ 1

1+ 1
lF −1

= [[� + 1, 2, ..., 2︸ ︷︷ ︸
(ξF −2)-times

, 3, 2, ..., 2︸ ︷︷ ︸
(lF −2)-times

]], if ξF ≥ 2,

p̂F = lF ξF + 1, and mF − 2 =
sF∑
j=1

(b(F )
j − 2) = lF , ∀F ∈ IQ�ĬQ. Thus,

−
∑

F∈IQ�ĬQ

K(E(F ))2 =
∑

F∈IQ�ĬQ

(
2−(pF +p̂F )

qF
+ (mF − 2)

)
=

∑
F∈IQ�ĬQ

(lF − 1) ≤ �(IQ�ĬQ)(� − 1).

Since �(IQ�ĬQ) ≤ �(V(Q)), applying Lemma 3.1 and the reasoning used in the
proof of Lemma 3.2, we get

ρ(X̃Q) < �(IQ�ĬQ)(� − 1) − 1
�

�(V(Q)) + 10

≤ �(V(Q))
(

� − 1 − 1
�

)
+ 10 ≤ (4� + 1)

(
� − 1 − 1

l

)
+ 10.

The upper bound (4.1) follows from this inequality. �
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By [4, Lemma 6.9] we see that the conditions (i), (ii) in Proposition 4.1 are
automatically satisfied for all toric log Del Pezzo surfaces of index � = 2. Hence, the
upper bound 14 improves noticeably (1.2) (which equals 23 in this case). In fact, for
� = 2, it can be shown (though, at the cost of passing through ad hoc classification
results for the corresponding LDP-polygons) that the sharp upper bound equals 10.

Finally, in Proposition 4.3 we classify those LDP-triangles of arbitrary index,
whose toric log Del Pezzo surfaces have exactly one singularity. Somehow surpris-
ingly, the Picard number of their minimal desingularizations is bounded; moreover,
it takes always the smallest possible value, namely 2. Note that from Lemma 3.2
one only derives that the Picard numbers behave at most linearly with respect to
the index, once the number of non-Gorenstein singularities �(IQ�ĬQ) is fixed.

Lemma 4.2. If XQ is a toric log Del Pezzo surface with Picard number ρ(XQ) = 1
(i.e, if Q is an LDP-triangle) and �(IQ) = 1, then Q is lattice-equivalent to the
triangle Qp having

(1
0

)
,
(

p
p+1

)
and

(−1
−1

)
as its vertices, for some positive integer p.

Proof. If IQ = {F}, setting p := pF and q := qF , there is a unimodular
transformation mapping n(F ) onto n1 :=

(1
0

)
, n′(F ) onto n2 :=

(
p
q

)
, and the

third vertex of Q onto an n3 =
(
x1
x2

)
which belongs necessarily to the set{(

x1
x2

) ∈ Z2
∣∣∣ q

px1 < x2 < 0
}

. Since |det(n2,n3)| = |det(n3,n1)| = 1, we have

x2 = −1 and x1 = −p+1
q . Hence, q | p + 1, which implies q = p + 1 (because

p < q). �
Proposition 4.3. Let XQ be a toric log Del Pezzo surface which has Picard number
ρ(XQ) = 1, arbitrary index � ≥ 1, and �(IQ) = 1. For � odd ≥ 3 we have either
XQ

∼= XQ�−1 or XQ
∼= XQ2�−1 , whereas for � ∈ {1} ∪ 2Z we have XQ

∼= XQ2�−1 .

Furthermore, for all � ≥ 1, the Picard number of the rational surface X̃Q obtained
by the minimal resolution of the singularity of XQ equals

ρ(X̃Q) = 2.

Proof. By Lemma 4.2, the LDP-triangle Q is lattice-equivalent to Qp, for some
positive integer p. Since q = p + 1 and gcd(p + 1, p − 1) ∈ {1, 2}, the index � of
XQ

∼= XQp equals p+1
2 whenever p is odd and p+1 whenever p is even (see (2.5)).

This bears out our first assertion. On the other hand, since ∆̃Qp
is obtained from

∆Qp
by adding just one new ray (namely R≥0

(1
1

)
), we have

ρ(X̃Q) = ρ(X̃Qp) = �{rays of ∆̃Qp} − 2 = 4 − 2 = 2,

(cf. [12, Corollary 2.5, p. 74]). Thus, the second assertion is also true. �

It would be interesting to generalize this result by regarding LDP-polygons of
arbitrary index, whose toric log Del Pezzo surfaces have exactly one singularity.

Acknowledgement. The second author is a member of the Research Group Lattice
Polytopes, led by Christian Haase and supported by Emmy Noether fellowship HA
4383/1 of the German Research Foundation (DFG).



Vol. 91 (2008) Boundedness for toric log Del Pezzo surfaces 535

References

[1] V. A. Alekseev, Fractional indices of log Del Pezzo surfaces, Math. USSR-Izv. 33
(1989), 613–629; translation from Izv. Akad. Nauk SSSR, Ser. Mat. 52, 1288–1304
(1988).

[2] V. A. Alekseev and V.V Nikulin, Del Pezzo and K3 surfaces, M.S.J. Memoirs,
Vol. 15, Mathematical Society of Japan, 2006.
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