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1 Introduction
A smooth compact complex surface X is called a del Pezzo surface if its anticanonical divisor −KX is ample,
i.e. if the rational map Φ|−mKX | : X ℙ(| − mKX |) associated to a base point free linear system | − mKX | be-
comes a closed embedding with OX(−mKX) ≅ Φ∗|−mKX |

(Oℙ(|−mKX |)(1)), for a suitable positive integer m, where
OX(−mKX) is the corresponding invertible sheaf and Oℙ(|−mKX |)(1) the standard twisting sheaf. (Pasquale del
Pezzo [16] initiated the study of these surfaces in 1887.) The degree deg(X) of a del Pezzo surface X is defined
to be the self-intersection number (−KX)2. The main classification result about these surfaces can be stated
as follows, see [32, Theorem 24.4, pp. 119–121]:

Theorem 1.1. Let X be a del Pezzo surface of degree d := deg(X). Then 1 ≤ d ≤ 9, and X is classified by d:

(i) If d = 9, then X is isomorphic to the projective plane ℙ2ℂ.
(ii) If d = 8, then X is isomorphic either toℙ1ℂ ×ℙ1ℂ or to the blow-up of the projective planeℙ2ℂ at one point.
(iii) If 1 ≤ d ≤ 7, then X is isomorphic to the blow-up of the projective plane ℙ2ℂ at 9 − d points.

For 6 ≤ d ≤ 9, such an X is toric, i.e. it contains a 2-dimensional algebraic torus𝕋 as a dense open subset,
and is equippedwith an algebraic action of𝕋 on Xwhich extends the natural action of𝕋 on itself. Taking into
account the description of smooth compact toric surfaces by the (ℤ-weighted) circular graphs (introduced in
[37, Chapter I, §8], [38, pp. 42–46] as well as [3, Proposition 6] and [41, Proposition 2.7]), Oda expresses in [38,
Proposition 2.21, pp. 88–89] this fact in the language of toric geometry as follows:

Theorem 1.2. There exist five distinct toric del Pezzo surfaces up to isomorphism. They correspond to the circu-
lar graphs (with weights −1, 0, 1) shown in Figure 1. They are (i) ℙ2ℂ, (ii) ℙ1ℂ × ℙ1ℂ (≅ 𝔽0), (iii) the Hirzebruch
surface 𝔽1, (iv) the equivariant blow-up of ℙ2ℂ at two of the 𝕋-fixed points, and (v) the equivariant blow-up of
ℙ2ℂ at the three 𝕋-fixed points.

Note 1.3. The Hirzebruch surfaces

𝔽κ := {([z0 : z1 : z2], [t1 : t2]) ∈ ℙ2ℂ × ℙ1ℂ | z1tκ1 = z2tκ2} with κ ∈ ℤ≥0
introduced in [26, §2] are toric. Usually𝔽κ is identifiedwith the total spaceℙ(Oℙ1ℂ⊕Oℙ1ℂ (κ))of theℙ1ℂ-bundle of
degree κ overℙ1ℂ. Furthermore, every smooth compact toric surface which has Picard number 2 is necessarily
isomorphic to a Hirzebruch surface; cf. [38, Corollary 1.29, p. 45].
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Figure 1

The singular analogues. A normal compact complex surface X with at worst log terminal singularities, i.e.
quotient singularities, is called a log del Pezzo surface if its anticanonical Weil divisor −KX is a ℚ-Cartier
ample divisor. The index of such an X is defined to be the smallest positive integer ℓ for which −ℓKX is a
Cartier divisor. The family of log del Pezzo surfaces of fixed index ℓ is known to be bounded; see Nikulin [34],
[35], [36], and Borisov [6, Theorem 2.1, p. 332]. Consequently, it seems to be rather interesting to classify log
del Pezzo surfaces of given index ℓ. This has been done for ℓ = 1 by Hidaka & Watanabe [25] (by a direct
generalization of Theorem 1.1) and Ye [42], and for ℓ = 2 by Alexeev & Nikulin [1], [2] (in terms of diagrams
of exceptional curves with respect to a suitable resolution of singularities). Related results are due to Kojima
[31] (whenever the Picard number equals 1) and Nakayama [33] (whose techniques apply even if one replaces
ℂ with an algebraically closed field of arbitrary characteristic). Based on Nakayama’s arguments, Fujita &
Yasutake [22] succeeded recently to extend the classification to ℓ = 3. But for ℓ ≥ 4 the situation turns out to
be much more complicated, and (apart from some partial results as those in [21], [20]) it is hard to expect a
complete characterization of these surfaces in this degree of generality.

On the other hand, if we restrict our study to the subclass of toric log del Pezzo surfaces, the classification
problembecomes considerably simpler: a) The only singularitieswhich can occur are cyclicquotient singular-
ities. b) To classify (not necessarily smooth) compact toric surfaces up to isomorphism it is enough to use the
graph-theoretic method proposed in [12, §5] (which generalizes Oda’s graphs mentioned above): Two com-
pact toric surfaces are isomorphic to each other if and only if their vertex singly- and edge doubly-weighted
circular graphs (wve2c-graphs, for short) are isomorphic; see Theorem 3.3 below. A detailed examination of
the number-theoretic properties of theweights of these graphs led to the classification of all toric log del Pezzo
surfaces having Picard number 1 and index ℓ ≤ 3 in [12, §6] and [13]. In fact, the purely combinatorial part
of the classification problem can be further simplified because it can be reduced to the classification of the
so-called LDP-polygons (introduced in [15]) up to unimodular transformation. For ℓ = 1 these are the sixteen
reflexive polygons (which were discovered by Batyrev in the 1980’s). More recently, Kasprzyk, Kreuzer & Nill
[28, §6] developed a particular algorithm by means of which one creates an LDP-polygon (for given ℓ ≥ 2) by
fixing a “special” edge and following a prescribed successive addition of vertices; they produced in this way
the long lists of all LDP-polygons for ℓ ≤ 17. (Details for each of these 15346 LDP-polygons are available on
the webpage [8].)

Restrictions on the singularities. At this point we mention some remarkable results concerning the singular-
ities of log del Pezzo surfaces having Picard number 1: Belousov proved in [4], [5] that each of these surfaces
admits at most 4 singularities, Kojima [30] described the nature of the exceptional divisors with respect to the
minimal resolution of those possessing exactly one singularity, and Elagin [17] constructed certain (non-toric)
surfaces of this kind, realized as hypersurfaces of degree 4n − 2 in ℙ3ℂ(1, 2, 2n − 1, 4n − 3), and proved the
existence of full exceptional sets of coherent sheaves over them.

Obviously, the maximal number of the singularities of a toric log del Pezzo surface equals the number
of the edges of the corresponding LDP-polygon; for an upper bound of this number see [15, Lemma 3.1]. In
the present paper we classify all toric log del Pezzo surfaces with exactly one singularity (without imposing a
priori any restrictions on the Picard number or on the index) up to isomorphism.
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Theorem 1.4. Let XQ be a toric log del Pezzo surface (associated to an LDP-polygon Q) with exactly one singu-
larity. Then the following hold true:

(i) The Picard number ρ(XQ) of XQ can take only the values 1, 2 and 3.
(ii) Define for every integer p > 0 the LDP-polygons

Q[1]p := conv({( 1−1), (
p
1), (
−1
0 )}),

Q[2]p := conv({( 1−1), (
p
1), (

p−1
1 ), (
−1
0 )}),

Q[3]p := conv({( 1−1), (
p
1), (

p−1
1 ), (
−1
0 ), (

0
−1)}),

where “conv” denotes the convex hull. Then for k ∈ {1, 2, 3} we have ρ(XQ) = k if, and only if, there
exists an integer p > 0 such that XQ ≅ XQ[k]

p
, and thewve2c-graphsG∆

Q[k]p
are those depicted in Figure 2.

(iii) XQ[1]
p
is isomorphic to the weighted projective plane ℙ2ℂ(1, 1, p + 1) and is obtained by contracting the

∞-section ℙ(Oℙ1ℂ (p + 1)) of 𝔽p+1. The surface XQ[2]
p
is obtained by blowing up a Hirzebruch surface 𝔽p

at one 𝕋-fixed point, and contracting afterwards its∞-section. XQ[3]
p
is obtained by blowing up XQ[2]

p
at

one non-singular 𝕋-fixed point.
(iv) If XQ has index ℓ ≥ 1 and Picard number ρ(XQ) = k ∈ {1, 2, 3}, then for odd ℓ ≥ 3 either XQ ≅ XQ[k]ℓ−1 or

XQ ≅ XQ[k]
2ℓ−1 , whereas for ℓ ∈ {1} ∪ 2ℤ we have XQ ≅ XQ[k]

2ℓ−1 .
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Figure 2

Equations defining closed embeddings. For every del Pezzo surface X of degree d with 3 ≤ d ≤ 9 the an-
ticanonical divisor −KX is already very ample, and Φ|−KX | gives rise to a realization of X as a subvariety of
projective degree d in ℙdℂ. (For d = 1 and d = 2, one has to work with −3KX and −2KX instead to obtain
realizations of X as a subvariety of degree 9, and of degree 8 in ℙ6ℂ, respectively.) Generalizations of these
(or similar but more “economic”) embeddings of log del Pezzo surfaces of index 1 and 2 (in appropriate pro-
jective or weighted projective spaces) appear in [25] and [27]. Since every ample divisor on a compact toric
surface is very ample (cf. [19] or [11, Corollary 2.2.19 (b), p. 71, and Proposition 6.1.10, pp. 269–270 ]), the map
Φ|−ℓKXQ | associated to the linear system | − ℓKXQ | on a toric log del Pezzo surface XQ of index ℓ becomes a
closed embedding. Koelman’s Theorem [29] and standard lattice point enumeration techniques enable us to
describe Φ|−ℓKXQ |(XQ) for the surfaces XQ classified in Theorem 1.4 as follows:

Theorem 1.5. Let XQ be a toric log del Pezzo surface of index ℓ ≥ 1with exactly one singularity. Then the image
of XQ ≅ XQ[k]

p
under the closed embedding

Φ|−ℓKXQ | : XQ → ℙ(| − ℓKXQ |)

is isomorphic to a subvariety of ℙ
δ
Q[k]p
ℂ of projective degree dQ[k]

p
which can be expressed as an intersection of

finitely many quadrics, where δQ[k]
p
and dQ[k]

p
are given in the following table:
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No. p k dQ[k]p δQ[k]p
(i) odd 1 1

4 (p + 1)(p + 3)
2 1

8 (p + 3)
3

(ii) even 1 (p + 1)(p + 3)2 1
2 (p + 2)(p + 3)

2

(iii) odd 2 1
4 (p + 1)(p

2 + 5p + 8) 1
8 (p + 3)(p

2 + 5p + 8)
(iv) even 2 (p + 1)(p2 + 5p + 8) 1

2 (p + 2)(p
2 + 5p + 8)

(v) odd 3 1
4 (p + 1)(p

2 + 4p + 7) 1
8 (p + 3)(p

2 + 4p + 7)
(vi) even 3 (p + 1)(p2 + 4p + 7) 1

2 (p + 2)(p
2 + 4p + 7)

(1.1)

The cardinality βQ[k]
p
of any minimal system of quadrics (generating the ideal which determines this subvariety)

is given by
No. p k βQ[k]p
(i) odd 1 1

128 (p + 1)(p + 3)
2(p3 + 11p2 + 43p + 25)

(ii) even 1 1
8 (p + 3)

2(p4 + 10p3 + 37p2 + 50p + 24)
(iii) odd 2 1

128 (p + 1)(p
2 + 5p + 8)(p3 + 10p2 + 37p + 16)

(iv) even 2 1
8 (p

2 + 5p + 8)(p4 + 9p3 + 32p2 + 42p + 20)
(v) odd 3 1

128 (p + 1)(p
2 + 4p + 7)(p3 + 9p2 + 31p + 7)

(vi) even 3 1
8 (p

2 + 4p + 7)(p4 + 8p3 + 27p2 + 34p + 16)

(1.2)

and the sectional genus gQ[k]
p
of XQ[k]

p
is given by the following table:

No. p k gQ[k]p
(i) odd 1 1

8 (p + 1)(p
2 + 4p − 1)

(ii) even 1 1
2 (p + 2)(p

2 + 4p − 1)
(iii) odd 2 1

8 p(p + 1)(p + 3)
(iv) even 2 1

2 (p
3 + 5p2 + 8p + 2)

(v) odd 3 1
8 (p + 1)

3

(vi) even 3 1
2 (p

3 + 4p2 + 7p + 2)

(1.3)

The paper is organized as follows: In Section 2we focus on the twonon-negative, relatively prime integers
p = pσ and q = qσ parametrizing the 2-dimensional, rational, strongly convex polyhedral cones σ, and
we explain how they characterize the 2-dimensional toric singularities. In Sections 3 and 4 we recall some
auxiliary geometric properties of compact toric surfaces and of those which are log del Pezzo. The proofs of
Theorems 1.4 and 1.5 are given in Sections 5 and 6, respectively. We use only tools from discrete and classical
toric geometry, adopting the standard terminology from [11], [18], [23], and [38] (and mostly the notation
introduced in [12]).

2 Two-dimensional toric singularities
Let σ = ℝ≥0n + ℝ≥0n ⊂ ℝ2 be a 2-dimensional, rational, strongly convex polyhedral cone. Without loss of
generality we may assume that

n = (ab), n = (cd) ∈ ℤ
2

and that both n and n are primitive elements ofℤ2, i.e. gcd(a, b) = 1 and gcd(c, d) = 1.

Lemma 2.1. Consider κ, λ ∈ ℤ such that κa − λb = 1. If q := |ad − bc| and p is the unique integer with
0 ≤ p < q and κc − λd ≡ p (mod q), then gcd(p, q) = 1 and there exists a primitive element n ∈ ℤ2 such that
n = pn + qn and {n, n} is a ℤ-basis of ℤ2. Moreover, there is a unimodular transformation Ψ : ℝ2 → ℝ2,
Ψ(x) := Ξx with Ξ ∈ GL2(ℤ), such that

Ψ(σ) = ℝ≥0(10) +ℝ≥0(
p
q).
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Proof. See [13, Lemma 2.1 and Lemma 2.2]. 2

Henceforth,we call σ a (p, q)-cone. ByUσ := Spec(ℂ[σ∨∩ℤ2])wedenote the affine toric variety associated
to σ (by means of the monoid σ∨ ∩ ℤ2, where σ∨ is the dual of σ) and by orb(σ) the single point being fixed
under the usual action of the algebraic torus 𝕋 := Homℤ(ℤ2,ℂ∗) on Uσ.

Proposition 2.2. The following conditions are equivalent:

(i) {n, n} is aℤ-basis of ℤ2.
(ii) q = 1 (and consequently, p = 0).
(iii) conv({0, n, n}) ∩ ℤ2 = {0, n, n}.
(iv) Uσ ≅ ℂ2.

Proof. Let T be the triangle conv({0, n, n}). The implication (i)⇒(ii) is obvious because q = |det(n, n)| =
2area(T). By Pick’s formula, cf. [23, p. 113], we obtain

q
2
= area(T) = ♯(int(T) ∩ ℤ2) + 1

2
♯(∂(T) ∩ ℤ2) − 1,

where “int” and ∂ are abbreviations for interior and boundary, respectively. If q = 1, then ♯(∂(T) ∩ ℤ2) ≥ 3,
hence ♯(int(T)∩ℤ2) = 0 andnecessarily ♯(∂(T)∩ℤ2) = 3. Hence (ii)⇒(iii) is also true. The implication (iii)⇒(i)
follows from [24, Theorem 4, p. 20]. For the equivalence of (i) and (iv) see [38, Theorem 1.10, p. 15]. 2

If the conditions of Proposition 2.2 are satisfied, then σ is said to be a basic cone. On the other hand,
whenever q > 1 we have the following:

Proposition 2.3. The point orb(σ) ∈ Uσ is a cyclic quotient singularity. In particular,

Uσ ≅ ℂ2/G = Spec(ℂ[z1, z2]G),

where G ⊂ GL(2,ℂ) denotes the cyclic group of order q that is generated by the diagonal matrix diag(ζ−pq , ζq),
with ζq := exp(2π√−1/q), and acts on ℂ2 = Spec(ℂ[z1, z2]) linearly and effectively.

Proof. See [11, Proposition 10.1.2, pp. 460–461], [23, §2.2, pp. 32–34] and [38, Proposition 1.24, p.30]. 2

By Proposition 2.4 these two numbers p = pσ and q = qσ parametrize uniquely the isomorphism class
of the germ(Uσ , orb(σ)), up to replacement of p by its socius p̂ (which corresponds just to the interchange
of the coordinates); the socius p̂ of p is defined to be the uniquely determined integer such that 0 ≤ p̂ < q,
gcd(p̂, q) = 1 and pp̂ ≡ 1 (mod q).

Proposition 2.4. Let σ, τ ⊂ ℝ2 be two 2-dimensional, rational, strongly convex polyhedral cones. Then the
following conditions are equivalent:

(i) There is a 𝕋-equivariant isomorphism Uσ ≅ Uτ mapping orb(σ) onto orb(τ).
(ii) There is a unimodular transformation Ψ : ℝ2 → ℝ2, Ψ(x) := Ξx with Ξ ∈ GL2(ℤ), such that Ψ(σ) = τ.
(iii) The numbers pσ, pτ, qσ, qτ associated to σ, τ (by Lemma 2.1) satisfy qτ = qσ and either pτ = pσ or

pτ = p̂σ.

Proof. See [13, Proposition 2.4]. 2

3 Compact toric surfaces
Every compact toric surface is a 2-dimensional toric variety X∆ associated to a complete fan ∆ inℝ2, i.e. a fan
having 2-dimensional cones as maximal cones and whose support |∆| is the entireℝ2; see [38, Theorem 1.11,
p. 16]. Consider a complete fan ∆ inℝ2 and suppose that

σi = ℝ≥0ni +ℝ≥0ni+1, i ∈ {1, . . . , ν}, (3.1)
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are its 2-dimensional cones (with ν ≥ 3 and ni ∈ ℤ2 primitive for all i ∈ {1, . . . , ν}), enumerated in such a
way thatn1, . . . , nν goanticlockwise around the origin exactly once in this order (under theusual convention:
nν+1 := n1,n0 := nν). The variety X∆ is obtainedby gluing the affine chartsUσi along the open subsets defined
by the rays σi ∩ σi+1 with i ∈ {1, . . . , ν}; cf. [38, Theorem 1.4, p. 7]. Since ∆ is simplicial, the Picard number
ρ(X∆) of X∆, i.e. the rank of its Picard group Pic(X∆) equals

ρ(X∆) = ν − 2, (3.2)

see [23, p. 65]. Now suppose that σi is a (pi , qi)-cone for all i ∈ {1, . . . , ν} and introduce the notation

I∆ := {i ∈ {1, . . . , ν} | qi > 1}, J∆ := {i ∈ {1, . . . , ν} | qi = 1}, (3.3)

to separate the indices corresponding to non-basic cones from those corresponding to basic cones. By Propo-
sitions 2.2 and 2.3 the singular locus of X∆ equals

Sing(X∆) = {orb(σi) | i ∈ I∆}.

For all i ∈ I∆ consider the negative-regular continued fraction expansion of
qi

qi − pi
= b(i)1 −

1

b(i)2 −
1

. . .

b(i)si−1 −
1
b(i)si

and define u(i)0 := ni, u(i)1 := 1
qi ((qi − pi)ni + ni+1), and

u(i)j+1 := b
(i)
j u(i)j − u

(i)
j−1, for all j ∈ {1, . . . , si}.

It is easy to see that u(i)si+1 = ni+1 and that the b
(i)
j are integers ≥ 2, for all indices j ∈ {1, . . . , si}. According to

[12, Proposition 4.9, p. 99], the self-intersection number of the canonical divisor KX∆ of X∆ equals

K2
X∆
= 12 − ν + ∑

i∈I∆
( qi−pi+1qi +

qi−p̂i+1
qi − 2 +

si
∑
j=1
(b(i)j − 3)). (3.4)

By construction, the birational morphism f : X∆̃ → X∆ induced by the refinement ∆̃ of ∆ consisting of the
cones {σi | i ∈ J∆} and {ℝ≥0u(i)j + ℝ≥0u

(i)
j+1 | i ∈ I∆ , j ∈ {0, 1, . . . , si}} together with their faces is the minimal

desingularization of X∆. The exceptional divisor

E(i) :=
si
∑
j=1

E(i)j , i ∈ I∆ ,

replacing orb(σi) via f has the closures

E(i)j := orb∆̃(ℝ≥0u
(i)
j ) (≅ ℙ

1
ℂ) with j ∈ {1, 2, . . . , si}

(i.e. the closures of the orbits of the new rays with respect to ∆̃) as its components, and the self-intersection
number (E(i)j )2 = −b

(i)
j . Moreover,

Ci := orb∆̃(ℝ≥0ni)

is the strict transform of Ci := orb∆(ℝ≥0ni) with respect to f for every i ∈ {1, 2, . . . , ν}.

Definition 3.1. For i ∈ {1, . . . , ν} we introduce integers ri uniquely determined by the conditions:

rini =

{{{{{{
{{{{{{
{

u(i−1)si−1 + u(i)1 , if i ∈ I∆ ,
ni−1 + u(i)1 , if i ∈ I∆ ,
u(i−1)si−1 + ni+1, if i ∈ J∆ ,
ni−1 + ni+1, if i ∈ J∆ ,

(3.5)
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where
I∆ := {i ∈ I∆ | qi−1 > 1}, I∆ := {i ∈ I∆ | qi−1 = 1},

and
J∆ := {i ∈ J∆ | qi−1 > 1}, J∆ := {i ∈ J∆ | qi−1 = 1},

with I∆ , J∆ as in (3.3). By [12, Lemma 4.3], −ri is the self-intersection number C2i of Ci for i ∈ {1, . . . , ν}. The
triples (pi , qi , ri) with i ∈ {1, 2, . . . , ν} are used to define thewve2 c-graphG∆.

Definition 3.2. A circular graph is a plane graphwhose vertices are points on a circle andwhose edges are the
corresponding arcs (on this circle, each of which connects two consecutive vertices). We say that a circular
graphG isℤ-weighted at its vertices and doubleℤ-weighted at its edges (and call itwve2c-graph, for short) if
it is accompanied by two maps

{Vertices ofG} → ℤ, {Edges ofG} → ℤ2,

assigning to each vertex an integer and to each edge a pair of integers, respectively. To every complete fan ∆
inℝ2 (as described above) we associate an anticlockwise directedwve2c-graphG∆ with

{Vertices ofG∆} = {v1, . . . , vν} and {Edges ofG∆} = {v1v2, . . . , vνv1},

(vν+1 := v1), by defining its “weights” as follows:

vi → −ri , vivi+1 → (pi , qi), for i ∈ {1, . . . , ν}.

The reverse graph Grev
∆ of G∆ is the directed wve2c-graph which is obtained by changing the double weight

(pi , qi) of the edge vivi+1 into (p̂i , qi) and reversing the initial anticlockwise direction of G∆ into clockwise
direction; see Figure 3.

Figure 3

Theorem 3.3. Let ∆ and ∆ be two complete fans inℝ2. Then the following conditions are equivalent:

(i) The compact toric surfaces X∆ and X∆ are isomorphic.
(ii) EitherG∆ gr

≅ G∆ orG∆ gr
≅ Grev

∆ .

Here
gr
≅ indicates graph-theoretic isomorphism (i.e. a bijection between the sets of vertices which preserves

the corresponding weights). For further details and for the proof of Theorem 3.3 (which can be viewed as
an appropriate generalization of Proposition 2.4 for complete fans in ℝ2) the reader is referred to [12, §5].
[Convention: To be absolutely compatible with Oda’s circular graphs we omit the weights of the edges which
are equal to (0, 1), i.e. those corresponding to basic cones, whenever we draw awve2c-graph.]
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4 Toric log del Pezzo surfaces and LDP-polygons
Definition 4.1. Let Q ⊂ ℝ2 be a convex polygon. Denote by V(Q) and F(Q) the set of its vertices and the set of
its facets (edges), respectively.Q is called an LDP-polygon if it contains the origin in its interior, and its vertices
belong toℤ2 and are primitive. (Obviously, the image of an LDP-polygon under a unimodular transformation
is again an LDP-polygon.)

If Q is an LDP-polygon, we denote by XQ the compact toric surface X∆Q constructed by means of the fan

∆Q := {the cones σF together with their faces | F ∈ F(Q)},

where σF := {λx | x ∈ F and λ ∈ ℝ≥0} for all F ∈ F(Q).

Proposition 4.2. (i) A compact toric surface is a log del Pezzo surface if and only if it is isomorphic to XQ
for some LDP-polygon Q.

(ii) There is a one-to-one correspondence [Q] → [XQ] between the lattice-equivalence classes of LDP-
polytopes Q and the isomorphism classes [XQ] of toric log del Pezzo surfaces.

Proof. (i) This follows from [12, Remark 6.7, p. 107].
(ii) If Q is an LDP-polygon, if Ψ : ℝ2 → ℝ2, Ψ(x) := Ξxwith Ξ ∈ GL2(ℤ), is a unimodular transformation,

and if Q := Ψ(Q), then

G∆Q gr
≅ G∆Q whenever det(Ξ) = 1, andG∆Q gr

≅ Grev
∆Q whenever det(Ξ) = −1.

By Theorem 3.3, XQ and XQ are isomorphic. And conversely, if XQ and XQ are isomorphic for some LDP-
polygons Q, Q, then

eitherG∆Q gr
≅ G∆Q or G∆Q gr

≅ Grev
∆Q . (4.1)

Thus by (4.1) there exists an automorphism ϖ of the latticeℤ2 = ℤ(10) ⊕ℤ(
0
1) with

det(ϖ) =
{
{
{

1, in the first case,
−1, in the second case,

such that ϖℝ(∆Q) = ∆Q (preserving/reversing the ordering of the cones), where
ϖℝ := ϖ ⊗ℤ idℝ : ℝ2 → ℝ2

denotes its scalar extension. Obviously, ϖℝ(Q) = Q. 2

Note 4.3. Let Q be an arbitrary LDP-polygon. For each F ∈ F(Q) assume that σF is a (pF , qF)-cone. Then from
[12, Lemma 6.8] one concludes that the index ℓ of XQ equals

ℓ = lcm{lF | F ∈ F(Q)} with lF :=
qF

gcd(qF , pF − 1)
. (4.2)

We denote by Q̊ := {y ∈ Homℝ(ℝ2,ℝ) | ⟨y, x⟩ ≥ −1 for all x ∈ Q} the polar polygon of Q, where ⟨⋅, ⋅⟩:
Homℝ(ℝ2,ℝ) × ℝ2 → ℝ is the usual inner product. Then Q̊ contains the origin in its interior, and the index
ℓ of XQ equals

ℓ = min{κ ∈ ℤ>0 | V(κQ̊) ⊂ ℤ2}, where κQ̊ := {κy | y ∈ Q̊}.

Moreover, if F ∈ F(Q), denoting by ηF the unique primitive ηF ∈ ℤ2 satisfying ⟨ηF , x⟩ = lF for every x ∈ F,
we have

V(Q̊) = {−1lF
ηF

F ∈ F(Q)}. (4.3)
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5 Proof of the Classification Theorem 1.4
Let Q be an LDP-polygon with vertex set V(Q) = {n1, . . . , nν}, ν ≥ 3. Assume that σi, i ∈ {1, . . . , ν}, are the 2-
dimensional cones of ∆Q, defined and ordered (anticlockwise) as in (3.1), and that only one of these cones, say
σ1, is a non-basic (p, q)-cone (i.e. q > 1). By Lemma 2.1 there is a unimodular transformationΨ1 : ℝ2 → ℝ2,
Ψ1(x) := Ξx with Ξ ∈ GL2(ℤ), such that

Ψ1(σ1) = ℝ≥0(10) +ℝ≥0(
p
q).

Without loss of generality we may assume that det(Ξ) = 1 (because otherwise the proof of Theorem 1.4
which follows can be performed similarly if one works with the vertices ordered clockwise). This means that
Ψ1(n1) = (10) and Ψ1(n2) = (pq). We setwi := Ψ1(ni) for all i ∈ {1, . . . , ν} (andwν+1 := w1). Since all cones of
∆Ψ1(Q) are strongly convex and |∆Ψ1(Q)| = ℝ

2, there exists an index μ ∈ {3, . . . , ν} such that

wμ = (ab) ∈ {(
x
y) ∈ ℝ

2 | x < 0} ∩ ℤ2. (5.1)

Lemma 5.1. (i) The conesℝ≥0wμ +ℝ≥0w1 andℝ≥0w2 +ℝ≥0wμ are basic.
(ii) q = p + 1 (and consequently, p̂ = p andwμ = (−1−1)).

Proof. (i) Using Proposition 2.2 it suffices to prove that

conv({0,wμ ,w1}) ∩ ℤ2 = {0,wμ ,w1} and conv({0,w2,wμ}) ∩ ℤ2 = {0,w2,wμ}. (5.2)

Obviously, V(Ψ1(Q)) \ {wμ ,w1,w2} is either empty or a subset of (U1 ∪ U2) ∩ ℤ2, where

U1 := {(xy) ∈ ℝ
2 | y < 0, y < x, and qx − (p − 1)y < q},

and
U2 := {(xy) ∈ ℝ

2 | qx < py, y > x, and qx − (p − 1)y < q}.

The set {(xy) ∈ ℝ
2 | qx − (p − 1)y = q} is the supporting line of the edge conv({w1,w2}) of Ψ1(Q). If

conv({wμ ,w1}) ∈ F(Ψ1(Q)), i.e. if μ = ν, the first equality in (5.2) is obvious (because Ψ1(σν) is basic by
definition). If conv({wμ ,w1}) ∉ F(Ψ1(Q)), then V(Ψ1(Q)) ∩ U1 ̸= ⌀, and the existence of an element

m ∈ (conv({0,wμ ,w1}) ∩ ℤ2) \ {0,wμ ,w1}

would imply that

m ∈ (conv({0,wξ−1,wξ }) ∩ ℤ2) \ {0,wξ−1,wξ } for some ξ ∈ {μ + 1, μ + 2, . . . , ν, ν + 1},

which leads to a contradiction (becauseΨ1(σξ−1) is basic by definition). Similar arguments (usingU2 instead
of U1) show that the second equality in (5.2) is also true.

(ii) By (i) we have |det(wμ ,w1)| = |det(w2,wμ)| = 1, i.e. b ∈ {±1}, and one of the following conditions is
satisfied:

b = 1 and aq − p = 1, (5.3)

b = 1 and aq − p = −1, (5.4)

b = −1 and aq + p = 1, (5.5)

b = −1 and aq + p = −1. (5.6)

Condition (5.3) gives a = 1+p
q > 0 which is not true, because a < 0 by (5.1). Similarly, (5.4) is not true, as we

would have a = p−1
q ≥ 0. In Case (5.5) we have a = −(p−1)q , hence q divides p − 1; this yields p < q ≤ p − 1,

which is absurd.
Therefore, (5.6) is necessarily true and a = − p+1q . Now since q | p + 1 and p < q, we have q = p + 1, hence

a = −1 and b = −1. This implies thatwμ = (−1−1). From p + 1 | (p2 − 1) we infer that p̂ = p. 2
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Lemma 5.2. There exists a unimodular transformation Ψ2 : ℝ2 → ℝ2 such that

Ψ2(Ψ1(σ1)) = ℝ≥0( 1−1) +ℝ≥0(
p
1),

with Ψ2(10) = (
1
−1), Ψ2( pp+1) = (

p
1) and Ψ2(−1−1) = (

−1
0 ).

Proof. It is enough to define Ψ2(x) := ( 1 0
−1 1 )x for all x ∈ ℝ2. 2

Next, we set 𝛶 := Ψ2 ∘ Ψ1, vi := 𝛶(ni) for every i ∈ {1, . . . , ν} (and vν+1 := v1). Starting with the minimal
generators v1 = ( 1−1), v2 = (

p
1) of the unique non-basic cone 𝛶(σ1) of ∆𝛶(Q), and with vμ = (

−1
0 ) ∈ V(𝛶(Q)), we

study in detail the restrictions on the location of the remaining vertices of 𝛶(Q).

Lemma 5.3. There is no convex polygon having three collinear vertices.

Proof. This is due to the fact that the vertices of a convex polygon are its extreme points; see e.g. [7, p. 30 and
p. 45]. 2

Lemma 5.4. The LDP-polygon 𝛶(Q), with V(𝛶(Q)) = {v1, . . . , vν}, has the following properties:

(i) Setting k := ν − 2, we have k ∈ {1, 2, 3}. Moreover, 𝛶(Q) = Q[k]p for k ∈ {1, 3}, and either 𝛶(Q) = Q[2]p or
𝛶(Q) = Q̌[2]p for k = 2, where Q[1]p , Q[2]p , Q[3]p are the polygons defined in Theorem 1.4(ii) and

Q̌[2]p := conv({( 1−1), (
p
1), (
−1
0 ), (

0
−1)}).

(ii) The polygons Q[2]p and Q̌[2]p are lattice-equivalent.

Proof. (i) If U1 := {(xy) ∈ Ψ2(U1 | y ≤ −2}, we claim that U1 ∩ V(𝛶(Q)) = ⌀. If vμ+1 ∈ U1 ∩ V(𝛶(Q)), then we
would have |det(vμ , vμ+1)| = 2, which is a contradiction to the basicness of the cone 𝛶(σμ). If

vμ+1 ∈ {(xy) ∈ ℤ
2 | x ≤ 0, y = −1} and vμ+2 ∈ U1 ∩ V(𝛶(Q)),

then we would have |det(vμ+1, vμ+2)| ≥ 2, which is a contradiction to the basicness of the cone 𝛶(σμ+1). Re-
peating successively this procedure (until we arrive at vν) we bear out our assertion, aswell as the implication

μ ≤ ν − 1⇒ {vξ | μ + 1 ≤ ξ ≤ ν} ⊂ {(xy) ∈ ℤ
2 | x ≤ 0, y = −1}.

For U2 := {(
x
y) ∈ Ψ2(U2) | y ≥ 2} we show, analogously, that U2 ∩ V(𝛶(Q)) = ⌀ and and that

μ ≥ 4⇒ {vξ | 3 ≤ ξ ≤ μ − 1} ⊂ {(xy) ∈ ℤ
2 | x ≤ p − 1, y = 1}.

Hence V(𝛶(Q)) \ {v1, v2, vμ} is either empty or a subset of

{(xy) ∈ ℤ
2 | x ≤ 0 and y = −1} ∪ {(xy) ∈ ℤ

2 | x ≤ p − 1 and y = 1}.

Taking into account Lemma 5.3 we conclude that

{v1, v2, vμ} ⊆ V(𝛶(Q)) ⊆ {v1, v2, (p−11 ), vμ , (
0
−1)}.

Therefore, k ∈ {1, 2, 3} and there are only the following possibilities:

∙ If k = 1, then ν = μ = 3 and 𝛶(Q) = conv({v1, v2, v3}) = Q[1]p .
∙ If k = 2, then ν = 4 and either 𝛶(Q) = Q[2]p , μ = 4, or 𝛶(Q) = Q̌[2]p , μ = 3.
∙ If k = 3, then ν = 5, μ = 4 and 𝛶(Q) = Q[3]p .

(ii) The polygon Q[2]p is mapped onto Q̌[2]p under the unimodular transformation

Y : ℝ2 → ℝ2, Y(x) := (1 1 − p
0 −1

)x for all x ∈ ℝ2,

andY(v1) = v2,Y(v2) = v1,Y(−10 ) = (
−1
0 ),Y(

p−1
1 ) = (

0
−1). 2
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Note 5.5. The set conv({v1, v2}) ∩ ℤ2 is empty if p is even, and it consists of the single lattice point (
1
2 (p+1)

0 ) if
p is odd. Thus, the number of the lattice points belonging to the boundary of Q[k]p , k ∈ {1, 2, 3}, equals k + 2
whenever p is even and k + 3 whenever p is odd. Since area(Q[k]p ) = p+k

2 + 1, Pick’s formula gives

♯(int(Q[k]p ) ∩ ℤ2) =
{
{
{

p
2 + 1, if p is even,
p−1
2 + 1, if p is odd.

Proof of Theorem 1.4. (i)–(ii) Up to isomorphism, every toric log del Pezzo surfacewith exactly one singularity
is of the form XQ with Q as above. By (3.2), Lemma 5.4 and Proposition 4.2 we infer that the Picard number
ρ(XQ) of XQ can take only the values 1, 2 and 3, and that for k ∈ {1, 2, 3} we have ρ(XQ) = k if and only if
XQ ≅ XQ[k]

p
for some p ∈ ℤ>0. Note that for k = 2,Y induces a graph-theoretic isomorphism G∆

Q̌[2]p

gr
≅ Grev

∆
Q[2]p

,

meaning that XQ[2]
p
≅ XQ̌[2]

p
.

The fan ∆̃Q[k]
p
which is used to construct theminimal desingularization of XQ[k]

p
(as explained in Section 3)

contains just one additional ray (compared with ∆Q[k]
p
), namelyℝ≥0(10). The closure of its orbit constitutes the

single exceptional divisor, say E, with respect to this desingularization, with E2 = −(p + 1). Setting uE := (10)
we compute the integers ri, i ∈ {1, . . . , k + 2}, defined in (3.5) in the three different cases:

∙ Case (a): If k = 1, then v1 = ( 1−1), v2 = (
p
1), v3 = (

−1
0 ), and

[v3 + uE = 0, v2 + v1 = −(p + 1)v3]⇒ r1 = r2 = 0, r3 = −(p + 1).

∙ Case (b): If k = 2, then v1 = ( 1−1), v2 = (
p
1), v3 = (

p−1
1 ), v4 = (

−1
0 ), and

v4 + uE = 0, uE + v3 = v2
v2 + v4 = v3, v3 + v1 = −pv4

}⇒ r1 = 0, r2 = r3 = 1, r4 = −p.

∙ Case (c): If k = 3, then v1 = ( 1−1), v2 = (
p
1), v3 = (

p−1
1 ), v4 = (

−1
0 ), v5 = (

0
−1), and

v5 + uE = v1, uE + v3 = v2,
v2 + v4 = v3, v3 + v5 = −(p + 1)v4, v4 + v1 = v5

}⇒ r1 = r2 = r3 = r5 = 1, r4 = −(p − 1).

Hence, thewve2c-graphsG∆
Q[k]p

are indeed those depicted in Figure 2.

(iii) For every integer p > 0, let Dp be the complete fan consisting of the four cones ℝ≥0( 1−1) + ℝ≥0(
1
0),

ℝ≥0(10) + ℝ≥0(
p
1), ℝ≥0(

p
1) + ℝ≥0(

−1
0 ) and ℝ≥0(

−1
0 ) + ℝ≥0(

1
−1) together with their faces. We see that XDp ≅ 𝔽p+1,

having orbDp (ℝ≥0(
1
0)) as its∞-section. The surfaces XQ[k]

p
are characterized as follows:

∙ Case (a): If k = 1, then XQ[1]
p
≅ ℙ2ℂ(1, 1, p + 1), see [13, Lemma 6.1], and it is obtained by contracting the

∞-section of XDp . In fact, since XDp = X∆̃
Q[1]p

is the minimal desingularization of XQ[1]
p
, the surface XQ[1]

p

is nothing but the anticanonical model of XDp in the sense of Sakai [39].
∙ Case (b): If k = 2, then the star subdivision of Dp−1 with respect to the cone ℝ≥0(10) + ℝ≥0(

p−1
1 ) induces

the equivariant blow-up X∆̃
Q[2]p
→ XDp−1 with the orbit of this cone as centre; cf. [11, Proposition 3.3.15,

p. 130], [37, Corollary 7.5, p. 45] or [18, Theorem VI.7.2, pp. 249–250]. Thus the surface XQ[2]
p
is obtained by

contracting the strict transform of the∞-section of XDp−1 on the surface X∆̃
Q[2]p

.

∙ Case (c): If k = 3, we construct the surface XQ[3]
p
from XQ[2]

p
by using the equivariant birational morphism

induced by the star subdivision ofDp−1 with respect to the coneℝ≥0(−10 )+ℝ≥0(
1
−1), i.e. by blowing up its

orbit (which is a non-singular 𝕋-fixed point of XQ[2]
p
).

Taking into account that we pass from XDp−1 to XDp (and vice versa) by an elementary transformation, cf.
[12, Remark 6.3, pp. 105–106], we illustrate in Figure 4 how the equivariant birational morphisms connecting
all the above mentioned compact toric surfaces affect theirwve2c-graphs.

(iv) Since q = p + 1 and gcd(p + 1, p − 1) = gcd(p + 1, 2) ∈ {1, 2}, Formula (4.2) shows that the index ℓ of
XQ ≅ XQ[k]

p
equals p+1

2 whenever p is odd and p+1whenever p is even. This bears out our assertion about ℓ. 2
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Figure 4

Remark 5.6. Among the LDP-polygons Q[k]p , only Q[1]1 , Q[2]1 , Q[3]1 are reflexive (with index ℓ = 1 and a unique
Gorenstein singularity).

6 Defining equations
Let Q be an arbitrary LDP-polygon. Since the Cartier divisor −ℓKXQ on XQ is very ample, setting

δQ := ♯((ℓQ̊) ∩ ℤ2) − 1,

the complete linear system | − ℓKXQ | induces the closed embedding Φ|−ℓKXQ |,

𝕋 �
� ι //

66XQ
� �

Φ|−ℓKXQ |
// ℙδQℂ

with
𝕋 ∋ t → (Φ|−ℓKXQ | ∘ ι)(t) := [. . . : z(i,j) : . . . ](i,j)∈(ℓQ̊)∩ℤ2 ∈ ℙ

δQ
ℂ , z(i,j) := χ(i,j)(t),

where 𝕋 denotes the algebraic torus Homℤ(ℤ2,ℂ∗) and χ(i,j) : 𝕋 → ℂ∗ is the character associated to the
lattice point (i, j) ∈ (ℓQ̊) ∩ ℤ2. The image Φ|−ℓKXQ |(XQ) of the surface XQ under Φ|−ℓKXQ | is the Zariski closure

of Im(Φ|−ℓKXQ | ∘ ι) in ℙ
δQ
ℂ and can be viewed as the projective variety Proj(SℓQ̊), where

SℓQ̊ := ℂ[C(ℓQ̊) ∩ ℤ3] =
∞

⨁
κ=0
( ⨁
(i,j)∈(κ(ℓQ̊))∩ℤ2

ℂ⋅χ(i,j)sκ),
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with C(ℓQ̊) := {(λy1, λy2, λ) | λ ∈ ℝ≥0 and (y1, y2) ∈ ℓQ̊}, is the semigroup algebra which is naturally graded
by setting deg(χ(i,j)sκ) := κ; for a detailed exposition see [11, Theorem 2.3.1, p. 75; Proposition 5.4.7, pp. 237–
238; Theorem 5.4.8, pp. 239–240, and Theorem 7.1.13, pp. 325–326]. Equivalently, it can be viewed as the zero
set𝕍(IAQ ) ⊂ ℙ

δQ
ℂ of the homogeneous ideal IAQ := Ker(πQ), where

AQ := {(i, j, 1) | (i, j) ∈ (ℓQ̊) ∩ ℤ2} ⊂ ℤ2 × {1} ⊂ ℤ3

and πQ is the ℂ-algebra homomorphism

ℂ[. . . : z(i,j) : . . . ](i,j)∈(ℓQ̊)∩ℤ2
πQ
→ ℂ[. . . , χ(i,j,1), . . . ](i,j,1)∈AQ , z(i,j) → χ(i,j,1).

Furthermore, the projective degree dQ := deg(𝕍(IAQ )) of 𝕍(IAQ ), i.e. the double of the leading coefficient of
the Hilbert polynomial of the homogeneous coordinate ring ℂ[. . . : z(i,j) : . . . ](i,j)∈(ℓQ̊)∩ℤ2/IAQ , is given by

dQ = 2area(ℓQ̊); (6.1)

see Sturmfels [40, Theorem 4.16, pp. 36–37, and p. 131] and [11, Proposition 9.4.3, pp. 432–433].

Theorem 6.1 (Koelman [29]). If ♯(∂(ℓQ̊) ∩ ℤ2) ≥ 4, then IAQ is generated by all possible quadratic binomials,
i.e. we have

IAQ = ⟨{z(i1 ,j1)z(i2 ,j2) − z(i1 ,j1)z(i2 ,j2) 
(i1, j1), (i2, j2), (i1, j1), (i2, j2) ∈ (ℓQ̊) ∩ ℤ2
with (i1, j1) + (i2, j2) = (i1, j1) + (i2, j2)

}⟩.

Corollary 6.2 (Castryck & Cools [9, Section 2]). If ♯(∂(ℓQ̊) ∩ ℤ2) ≥ 4 and if we denote by βQ the cardinality of
any minimal system of quadrics generating the ideal IAQ , then

βQ = (δQ+22 ) − ♯(2(ℓQ̊) ∩ ℤ
2). (6.2)

Proof. Let HP2(ℙ
δQ
ℂ ) be the set of all homogeneous polynomials in δQ + 1 variables of degree 2. Then the

ℂ-vector space homomorphism

f : HP2(ℙ
δQ
ℂ ) → ℂ[x

±1, y±1] mapping z(i1 ,j1)z(i2 ,j2) to xi1+i2yj1+j2

has the ℂ-vector space of homogeneous polynomials of degree 2 belonging to IAQ as kernel Ker(f), and the
linear span of {xiyj | (i, j) ∈ 2(ℓQ̊) ∩ ℤ2} is the image Im(f), because every lattice point in 2(ℓQ̊) is the sum of
two lattice points of ℓQ̊, cf. [11, Theorem 2.2.12, pp. 68–69]. Taking into account Koelman’s Theorem 6.1, [40,
Lemma 4.1, p. 31], and the fact that𝕍(IAQ ) is not contained in any hyperplane of ℙ

δQ
ℂ , the equality

dimℂ(Ker(f)) = dimℂ(HP2(ℙ
δQ
ℂ )) − dimℂ(Im(f))

gives (6.2). 2

Back to toric log del Pezzo surfaces with one singularity. Let Q be an LDP-polygon such that XQ has exactly
one singularity. By Theorem 1.4 there exist p ∈ ℤ>0 and k ∈ {1, 2, 3} such that XQ ≅ XQ[k]

p
with index ℓ = p+1

2
if p is odd and ℓ = p + 1 if p is even. For this reason, to apply Corollary 6.2 and to prove Theorem 1.5 we shall
take a closer look at the dilated polars ℓQ̊[k]p of the polygons Q[k]p defined in Theorem 1.4(ii).

Lemma 6.3. The vertex sets of the polygons ℓQ̊[k]p , k ∈ {1, 2, 3}, are the following:

V(ℓQ̊[1]p ) =
{{
{{
{

{( −1(p−1)/2), (
(p+1)/2
−(p+1)2/2), (

(p+1)/2
p+1 )} if p is odd,

{( −2p−1), (
p+1
−(p+1)2), (

p+1
2(p+1))} if p is even,

V(ℓQ̊[2]p ) =
{
{
{

{( −1(p−1)/2), (
0

−(p+1)/2), (
(p+1)/2
−p(p+1)/2), (

(p+1)/2
p+1 )} if p is odd,

{( −2p−1), (
0
−(p+1)), (

p+1
−p(p+1)), (

p+1
2(p+1))} if p is even,

V(ℓQ̊[3]p ) =
{
{
{

{( −1(p−1)/2), (
0

−(p+1)/2), (
(p+1)/2
−p(p+1)/2), (

(p+1)/2
(p+1)/2), (

0
(p+1)/2)} if p is odd,

{( −2p−1), (
0
−(p+1)), (

p+1
−p(p+1)), (

p+1
p+1), (

0
p+1)} if p is even.
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Proof. Since Q[1]p = conv({v1, v2, v3}) with v1 = ( 1−1), v2 = (
p
1), v3 = (

−1
0 ), we have

ηconv({v1 ,v2}) = (
x
y) with ⟨(

x
y), (

1
−1)⟩ = ℓ = ⟨(

x
y), (

p
1)⟩,

hence x = 2ℓ
p+1 and y = −

(p−1)ℓ
p+1 (and similarly with the others). Thus

ηconv({v1 ,v2}) = (
2ℓ
p+1

− (p−1)ℓp+1
), ηconv({v2 ,v3}) = (

−1
p + 1), ηconv({v3 ,v1}) = (

−1
−2
),

where lconv({v1 ,v2}) = ℓ, lconv({v2 ,v3}) = lconv({v3 ,v1}) = 1, and (4.3) gives

V(Q̊[1]p ) = {(
− 2
p+1
p−1
p+1
),(

1
−(p + 1)),(

1
2
)}.

Analogously, we conclude that

V(Q̊[2]p ) = {(
− 2
p+1
p−1
p+1
),(

0
−1
),(

1
−p),(

1
2
)}, V(Q̊[3]p ) = {(

− 2
p+1
p−1
p+1
),(

0
−1
),(

1
−p),(

1
1
),(

0
1
)}.

After multiplication with the index ℓ we get V(ℓQ̊[k]p ) for k ∈ {1, 2, 3}. 2

Lemma 6.4. The number of lattice points on ∂(ℓQ̊[k]p ) is given in the following table:

No. p k ♯(∂(ℓQ̊[k]p ) ∩ ℤ2) No. p k ♯(∂(ℓQ̊[k]p ) ∩ ℤ2)

(i) odd 1 1
2 (p + 3)

2 (iv) even 2 p2 + 5p + 8
(ii) even 1 (p + 3)2 (v) odd 3 1

2 (p
2 + 4p + 7)

(iii) odd 2 1
2 (p

2 + 5p + 8) (vi) even 3 p2 + 4p + 7

Proof. Since the number of lattice points lying on the boundary of a lattice-polygon (with respect to ℤ2) is
computed by the sumof the greatest common divisors of the differences of the vertex-coordinates of its edges,
the above table is produced directly by using Lemma 6.3. 2

Remark 6.5. Since ♯(∂(ℓQ̊[k]p )∩ ℤ2) ≥ 6 for all p ∈ ℤ>0 and all k ∈ {1, 2, 3}, Theorem 6.1 and Corollary 6.2 can
be applied for the LDP-polygons Q[k]p .

Lemma 6.6. The projective degree dQ[k]
p
of𝕍(IA

Q[k]p
) is given in the following table:

No. p k dQ[k]p No. p k dQ[k]p
(i) odd 1 1

4 (p + 1)(p + 3)
2 (iv) even 2 (p + 1)(p2 + 5p + 8)

(ii) even 1 (p + 1)(p + 3)2 (v) odd 3 1
4 (p + 1)(p

2 + 4p + 7)
(iii) odd 2 1

4 (p + 1)(p
2 + 5p + 8) (vi) even 3 (p + 1)(p2 + 4p + 7)

Proof. To determine the area of ℓQ̊[k]p onemayworkwith its vertex set given in Lemma6.3. Alternatively, using
[38, Proposition 2.10, p. 79] and Formula (3.4) for XQ[k]

p
we deduce that

2area(Q̊[k]p ) = K2
X
Q[k]p
= 6 − k + p + 4

p + 1 ,

and we read off dQ[k]
p
easier via Formula (6.1) which gives dQ[k]

p
= ℓ2K2

X
Q[k]p

. 2

Lemma 6.7. The dimension δQ[k]
p
of the projective space in which𝕍(IA

Q[k]p
) is embedded equals

δQ[k]
p
=
1
2
(dQ[k]

p
+ ♯(∂(ℓQ̊[k]p ) ∩ ℤ2)). (6.3)
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Proof. Equation (6.3) is an immediate consequence of Pick’s formula. 2

Lemma 6.8. The number βQ[k]
p
of the elements of any minimal generating system of IA

Q[k]p
is given by

βQ[k]
p
= 1

2 (δQ[k]
p
+ 1)(δQ[k]

p
+ 2) − (2dQ[k]

p
+ ♯(∂(ℓQ̊[k]p ) ∩ ℤ2) + 1). (6.4)

Proof. By the main properties of the Ehrhart polynomial of the lattice polygon ℓQ̊[k]p , cf. [11, Example 9.4.4,
p. 433], we obtain

♯(2(ℓQ̊[k]p ) ∩ ℤ2) = 4area(ℓQ̊) + ♯(∂(ℓQ̊[k]p ) ∩ ℤ2) + 1.

Hence, (6.4) follows from (6.2) and (6.1). 2

Hyperplanes H ⊂ ℙ
δ
Q[k]p
ℂ give curves 𝕍(IA

Q[k]p
) ∩ H which are linearly equivalent to −ℓKX

Q[k]p
. For generic

hyperplanesH the intersection CQ[k]
p
:= 𝕍(IA

Q[k]p
) ∩ H is (by Bertini’s Theorem) a smooth connected curve in

the smooth locus of𝕍(IA
Q[k]p
) ≅ XQ[k]

p
. The genus of CQ[k]

p
is called the sectional genus gQ[k]

p
of XQ[k]

p
.

Lemma 6.9. The sectional genus of XQ[k]
p
is

gQ[k]
p
= δQ[k]

p
− ♯(∂(ℓQ̊[k]p ) ∩ ℤ2) + 1. (6.5)

Proof. Equation (6.5) follows from the fact that gQ[k]
p
= ♯(int(ℓQ̊[k]p )∩ℤ2); see [11, Proposition 10.5.8, p. 509]. 2

Proof of Theorem 1.5. The number ♯(∂(ℓQ̊[k]p )∩ℤ2) and the projective degree dQ[k]
p
are known fromLemmas 6.4

and 6.6, respectively, while δQ[k]
p
is computed via Formula (6.3), leading to Table (1.1), and consequently to

Table (1.2) by making use of Formula (6.4). Finally, one obtains Table (1.3) by means of the Formula (6.5). 2

Note 6.10. See [10] for a Magma code to compute aminimal generating system of the ideal defining the projec-
tive toric surface associated to an arbitrary lattice polygon. In our particular case (we deal only with quadrics)
it is enough to collect all vectorial relations (i1, j1) + (i2, j2) = (i1, j1) + (i2, j2) and to determine a ℂ-linearly
independent subset of the set of the corresponding quadratic binomials z(i1 ,j1)z(i2 ,j2) − z(i1 ,j1)z(i2 ,j2) by simply
applying Gaussian elimination. For a short routine written in Python see [14].

Examples 6.11. (i) The ideal IA
Q[2]1

(with𝕍(IA
Q[2]1
) ⊂ ℙ7ℂ) is minimally generated by the following 14 quadrics:

z(−1,0)z(1,−1) − z(0,−1)z(0,0), z(−1,0)z(1,0) − z(0,−1)z(0,1), z2(1,0) − z(1,1)z(1,−1),

z(−1,0)z(1,1) − z(0,0)z(0,1), z(1,1)z(1,0) − z(1,2)z(1,−1), z2(1,1) − z(1,2)z(1,0),

z2(0,1) − z(−1,0)z(1,2), z(0,1)z(1,−1) − z(0,−1)z(1,1), z(0,1)z(1,0) − z(0,−1)z(1,2),

z(0,1)z(1,1) − z(0,0)z(1,2), z(0,0)z(1,−1) − z(0,−1)z(1,0), z(0,0)z(1,0) − z(0,−1)z(1,1),
z(0,0)z(1,1) − z(0,−1)z(1,2), z2(0,0) − z(0,−1)z(0,1).

(ii) Correspondingly, the 9 quadrics

z(−1,0)z(1,0) − z(0,1)z(0,−1), z2(1,0) − z(1,1)z(1,−1), z(−1,0)z(1,−1) − z(0,0)z(0,−1),

z(−1,0)z(1,1) − z(0,1)z(0,0), z(0,−1)z(1,0) − z(0,0)z(1,−1), z(0,−1)z(1,1) − z(0,1)z(1,−1),
z(0,0)z(1,0) − z(0,1)z(1,−1), z(0,0)z(1,1) − z(0,1)z(1,0), z2(0,0) − z(0,1)z(0,−1)

form a minimal set of generators of the ideal IA
Q[3]1

, and 𝕍(IA
Q[3]1
) ⊂ ℙ6ℂ. The surface XQ[3]

1
is obtained by

blowing up XQ[2]
1
at one non-singular point, cf. Figure 5.

(iii) The next example is muchmore complicated; it is created by the LDP-polygon Q[3]3 , cf. Figure 6, in which
2Q̊[3]3 ∩ ℤ2 consists of 22 lattice points, and𝕍(IAQ[3]3

) ⊂ ℙ21ℂ .
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Figure 5

Figure 6

Using [14] we see that IA
Q[3]3

is minimally generated by the following 182 quadrics:

z(0,−2)z(2,−2) − z(1,−4)z(1,0) , z(1,−4)z(2,−4) − z(1,−2)z(2,−6) , z(−1,1)z(1,−1) − z(0,−2)z(0,2) , z(0,−2)z(2,0) − z(1,−1)z(1,−1) ,
z(−1,1)z(1,−4) − z(0,−2)z(0,−1) , z(1,−4)z(2,−1) − z(1,−1)z(2,−4) , z(0,−2)z(2,−4) − z(1,−4)z(1,−2) , z(2,−6)z(2,−1) − z(2,−5)z(2,−2) ,
z(0,−2)z(2,−3) − z(0,0)z(2,−5) , z(−1,1)z(2,0) − z(0,2)z(1,−1) , z(0,−1)z(2,2) − z(0,0)z(2,1) , z(−1,1)z(2,−6) − z(0,−1)z(1,−4) ,
z(0,−2)z(2,−5) − z(0,−1)z(2,−6) , z(1,−4)z(2,2) − z(1,−1)z(2,−1) , z(1,−4)z(2,1) − z(1,0)z(2,−3) , z(−1,1)z(2,−5) − z(0,−2)z(1,−2) ,
z(−1,1)z(2,1) − z(0,2)z(1,0) , z(−1,1)z(2,−3) − z(0,1)z(1,−3) , z(−1,1)z(2,−5) − z(0,−1)z(1,−3) , z(1,−4)z(2,0) − z(1,−2)z(2,−2) ,
z(1,−4)z(2,1) − z(1,−1)z(2,−2) , z(1,−4)z(2,−3) − z(1,−1)z(2,−6) , z(1,−4)z(2,2) − z(1,−3)z(2,1) , z(−1,1)z(2,−1) − z(0,1)z(1,−1) ,
z(0,0)z(2,2) − z(0,2)z(2,0) , z(−1,1)z(2,−4) − z(0,1)z(1,−4) , z(1,−3)z(2,2) − z(1,0)z(2,−1) , z(0,−2)z(2,−2) − z2(1,−2) ,

z(1,−4)z(2,0) − z(1,1)z(2,−5) , z(1,−4)z(2,−2) − z(1,0)z(2,−6) , z(2,−6)z(2,−1) − z(2,−4)z(2,−3) , z(2,−6)z(2,2) − z(2,−4)z(2,0) ,
z(2,−2)z(2,2) − z2(2,0) , z(1,−3)z(2,2) − z(1,−2)z(2,1) , z(0,0)z(2,2) − z(0,1)z(2,1) , z(1,−1)z(2,2) − z(1,2)z(2,−1) ,

z(−1,1)z(2,−2) − z(0,−2)z(1,1) , z(2,−6)z(2,−2) − z(2,−4)z(2,−4) , z(1,−1)z(2,2) − z(1,1)z(2,0) , z(−1,1)z(2,−4) − z(0,−1)z(1,−2) ,
z(1,−4)z(2,0) − z(1,−3)z(2,−1) , z(0,−2)z(2,−3) − z(1,−3)z(1,−2) , z(0,−2)z(2,2) − z(0,1)z(2,−1) , z(1,−4)z(2,2) − z(1,1)z(2,−3) ,
z(1,1)z(2,2) − z(1,2)z(2,1) , z(2,−4)z(2,2) − z(2,−3)z(2,1) , z(2,−6)z(2,2) − z(2,−3)z(2,−1) , z(2,−4)z(2,2) − z(2,−2)z(2,0) ,
z(−1,1)z(2,−1) − z(0,0)z(1,0) , z(−1,1)z(2,0) − z(0,−1)z(1,2) , z(1,−4)z(2,0) − z(1,0)z(2,−4) , z(−1,1)z(2,−4) − z(0,0)z(1,−3) ,
z(0,−2)z(2,−4) − z(0,−1)z(2,−5) , z(0,−2)z(2,1) − z(1,−2)z(1,1) , z(−1,1)z(2,0) − z(0,0)z(1,1) , z(2,−6)z(2,1) − z(2,−5)z(2,0) ,
z(−1,1)z(2,−2) − z(0,2)z(1,−3) , z(0,−2)z(2,−1) − z(1,−3)z(1,0) , z(−1,1)z(1,−2) − z(0,−1)z(0,0) , z(1,−2)z(2,2) − z(1,0)z(2,0) ,
z(0,1)z(2,2) − z(0,2)z(2,1) , z(1,−4)z(2,2) − z(1,2)z(2,−4) , z(2,−2)z(2,2) − z(2,−1)z(2,1) , z(1,−4)z(2,2) − z(1,0)z(2,−2) ,
z(0,−2)z(2,0) − z(0,1)z(2,−3) , z(0,−2)z(2,−4) − z2(1,−3) , z(1,−4)z(2,−1) − z(1,1)z(2,−6) , z(1,−4)z(2,−3) − z(1,−3)z(2,−4) ,

z(0,−2)z(2,0) − z(1,−4)z(1,2) , z(0,−2)z(2,0) − z(1,−2)z(1,0) , z(0,−2)z(2,1) − z(0,−1)z(2,0) , z(1,−4)z(2,−2) − z(1,−1)z(2,−5) ,
z(0,−2)z(2,1) − z(1,−1)z(1,0) , z(−1,1)z(2,−3) − z(0,0)z(1,−2) , z(−1,1)z(2,−2) − z(0,0)z(1,−1) , z(0,−2)z(2,−1) − z(1,−2)z(1,−1) ,
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z(2,−6)z(2,−4) − z2(2,−5) , z(−1,1)z(2,−4) − z(0,−2)z(1,−1) , z(0,−2)z(2,−1) − z(1,−4)z(1,1) , z(−1,1)z(2,−3) − z(0,−1)z(1,−1) ,

z(0,−2)z(2,2) − z(0,−1)z(2,1) , z(1,−4)z(2,−1) − z(1,−3)z(2,−2) , z(−1,1)z(1,0) − z(0,−1)z(0,2) , z(0,−2)z(2,−2) − z(1,−3)z(1,−1) ,
z(−1,1)z(1,1) − z2(0,1) , z(2,−6)z(2,0) − z2(2,−3) , z(−1,1)z(2,−1) − z(0,−1)z(1,1) , z(1,−2)z(2,2) − z(1,1)z(2,−1) ,

z(0,−2)z(2,1) − z(1,−3)z(1,2) , z(2,−5)z(2,2) − z(2,−2)z(2,−1) , z(1,−4)z(2,−4) − z(1,−3)z(2,−5) , z(1,−4)z(2,−1) − z(1,0)z(2,−5) ,
z(1,−4)z(2,1) − z(1,1)z(2,−4) , z(1,−4)z(2,1) − z(1,−2)z(2,−1) , z(0,−2)z(2,−1) − z(0,0)z(2,−3) , z(0,−2)z(2,2) − z(1,−2)z(1,2) ,
z(1,−3)z(2,2) − z(1,−1)z(2,0) , z(1,−4)z(2,−2) − z(1,−3)z(2,−3) , z(0,−1)z(2,2) − z(1,0)z(1,1) , z(2,−1)z(2,2) − z(2,0)z(2,1) ,
z(0,−1)z(2,2) − z(0,1)z(2,0) , z(0,−2)z(2,−1) − z(0,2)z(2,−5) , z(1,−4)z(2,−5) − z(1,−3)z(2,−6) , z(0,−2)z(2,2) − z(0,0)z(2,0) ,
z(−1,1)z(1,1) − z(0,0)z(0,2) , z(2,−6)z(2,−2) − z(2,−5)z(2,−3) , z(2,−6)z(2,1) − z(2,−3)z(2,−2) , z(−1,1)z(2,−3) − z(0,2)z(1,−4) ,
z(1,−3)z(2,2) − z(1,2)z(2,−3) , z(−1,1)z(2,−2) − z(0,−1)z(1,0) , z(2,−5)z(2,2) − z(2,−4)z(2,1) , z(−1,1)z(1,2) − z(0,1)z(0,2) ,
z(0,−2)z(2,−3) − z(0,−1)z(2,−4) , z(0,−2)z(2,2) − z2(1,0) , z(−1,1)z(1,−1) − z2(0,0) , z(1,−4)z(2,0) − z(1,−1)z(2,−3) ,

z(−1,1)z(2,2) − z(0,2)z(1,1) , z(1,−3)z(2,2) − z(1,1)z(2,−2) , z(0,−2)z(2,2) − z(1,−1)z(1,1) , z(0,−2)z(2,−2) − z(0,0)z(2,−4) ,
z(−1,1)z(1,−2) − z(0,−2)z(0,1) , z(0,−2)z(2,0) − z(0,0)z(2,−2) , z(0,−2)z(2,−2) − z(0,2)z(2,−6) , z(0,1)z(2,2) − z(1,1)z(1,2) ,
z(−1,1)z(1,−3) − z(0,−2)z(0,0) , z(0,−2)z(2,−1) − z(0,−1)z(2,−2) , z(0,−1)z(2,2) − z(1,−1)z(1,2) , z(1,−4)z(2,1) − z(1,−3)z(2,0) ,
z(−1,1)z(1,−3) − z2(0,−1) , z(0,−2)z(2,0) − z(0,−1)z(2,−1) , z(1,−4)z(2,2) − z(1,−2)z(2,0) , z(−1,1)z(2,−1) − z(0,−2)z(1,2) ,

z(0,−1)z(2,2) − z(0,2)z(2,−1) , z(2,−6)z(2,0) − z(2,−4)z(2,−2) , z(0,−2)z(2,−2) − z(0,1)z(2,−5) , z(2,−3)z(2,2) − z(2,−1)z(2,0) ,
z(0,0)z(2,2) − z(1,0)z(1,2) , z(−1,1)z(2,−5) − z(0,0)z(1,−4) , z(−1,1)z(2,−6) − z(0,−2)z(1,−3) , z(−1,1)z(2,−2) − z(0,1)z(1,−2) ,
z(0,−2)z(2,−2) − z(0,−1)z(2,−3) , z(−1,1)z(2,1) − z(0,0)z(1,2) , z(2,−3)z(2,2) − z(2,−2)z(2,1) , z(−1,1)z(2,1) − z(0,1)z(1,1) ,
z(1,0)z(2,2) − z(1,2)z(2,0) , z(0,−2)z(2,−1) − z(0,1)z(2,−4) , z(0,−2)z(2,−5) − z(1,−4)z(1,−3) , z(−1,1)z(2,−3) − z(0,−2)z(1,0) ,
z(1,−2)z(2,2) − z(1,2)z(2,−2) , z(2,−5)z(2,2) − z(2,−3)z(2,0) , z(−1,1)z(2,0) − z2(0,1) , z(0,−2)z(2,−6) − z2(1,−4) ,

z(0,−2)z(2,2) − z(0,2)z(2,−2) , z(1,−4)z(2,−2) − z(1,−2)z(2,−4) , z(−1,1)z(2,2) − z(0,1)z(1,2) , z(1,−4)z(2,1) − z(1,2)z(2,−5) ,
z(1,−4)z(2,−3) − z(1,−2)z(2,−5) , z(−1,1)z(1,0) − z(0,0)z(0,1) , z(1,0)z(2,2) − z(1,1)z(2,1) , z(2,−4)z(2,2) − z2(2,−1) ,

z(2,−6)z(2,−3) − z(2,−5)z(2,−4) , z(2,−6)z(2,2) − z(2,−5)z(2,1) , z(0,−2)z(2,−3) − z(1,−4)z(1,−1) , z(2,0)z(2,2) − z2(2,1) ,

z(2,−6)z(2,1) − z(2,−4)z(2,−1) , z(0,2)z(2,2) − z2(1,2) , z(0,−2)z(2,1) − z(0,2)z(2,−3) , z(0,−2)z(2,1) − z(0,1)z(2,−2) ,

z(−1,1)z(1,−1) − z(0,−1)z(0,1) , z(0,−2)z(2,−4) − z(0,0)z(2,−6) , z(1,−4)z(2,−1) − z(1,−2)z(2,−3) , z(2,−6)z(2,2) − z2(2,−2) ,

z(0,−2)z(2,−3) − z(0,1)z(2,−6) , z(0,−2)z(2,1) − z(0,0)z(2,−1) , z(0,−2)z(2,0) − z(1,−3)z(1,1) , z(−1,1)z(2,−1) − z(0,2)z(1,−2) ,
z(2,−6)z(2,0) − z(2,−5)z(2,−1) , z(0,−2)z(2,0) − z(0,2)z(2,−4) , z(0,0)z(2,2) − z(1,1)z(1,1) , z(1,−4)z(2,0) − z(1,2)z(2,−6) ,
z(1,−1)z(2,2) − z(1,0)z(2,1) , z(1,−2)z(2,2) − z(1,−1)z(2,1) .
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