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Abstract. An explicit computation of the so-called string-theoretic E-functionEstr (X; u, v)
of a normal complex varietyX with at most log-terminal singularities can be achieved by
constructing one snc-desingularization ofX, accompanied with the intersection graph of
the exceptional prime divisors, and with the precise knowledge of their structure. In the
present paper, it is shown that this is feasible for the case in whichX is the underlying
space of a class of absolutely isolated singularities (including both usualAn-singularities
and Fermat singularities of arbitrary dimension). As byproduct of the exact evaluation of
estr (X) = limu,v→1Estr (X; u, v), for this class of singularities, one gets counterexamples
to a conjecture of Batyrev concerning the boundedness of the string-theoretic index. Finally,
the string-theoretic Euler number is also computed for global complete intersections inP

N
C

with prescribed singularities of the above type.

1. Introduction

The so-calledEstr-polynomials Estr (X; u, v) of normal complex varietiesX with
at most Gorenstein quotient or toroidal singularities were introduced in [5], and
were used as main tools in [5] and [3] for the proof of several mirror-symmetry
identities. More recently, Batyrev [1] generalized this notion also forX’s having at
most log-terminal singularities, by introducingEstr-functions instead which may
be not even rational. These new invariants have already found lots of applications
in the study of log-flips and of cohomological McKay correspondence. (See [2, 1.6,
4.11 and 8.4] and [9, Thm. 5.1].)

In the present paper we give explicit formulae for the evaluation of the function
Estr (X; u, v) for thoseX’s which are the underlying spaces of two special series
of A(r)

n,�-singularities (see below (d) for the precise definition) by constructing an

appropriate snc-resolutionϕ : X̃ −→ X, by examining the nature of the arising
exceptional prime divisors and, finally, by computing theirE -polynomials. (In [7]
this was carried out for all three-dimensionalA-D-E singularities).
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(a) Log-terminal singularities. LetX be a normal complex variety. Suppose that
X is Q-Gorenstein, i.e., that a positive integer multiple of its canonical Weil divisor
KX is a Cartier divisor.X is said to have at mostlog-terminal (respectively,canon-
ical / terminal) singularities if there exists ansnc-desingularizationϕ : X̃ −→ X,
i.e., a desingularization ofX whose exceptional locusEx (ϕ) = ∪m

i=1Di consists
of smooth prime divisorsD1,D2, . . . , Dm with only normalcrossings, such that

the “discrepancy” w.r.t.ϕ is of the formKX̃ − ϕ∗ (KX) =
m∑
i=1

ai Di, with all the

ai ’s > −1 (≥ 0 /> 0). These inequalities do not depend on the particular choice
of ϕ.

(b) E-polynomials. Deligne proved in [8, §8] that the cohomology groups
Hi (X,Q) of any complex varietyX are endowed with a naturalmixed Hodge
structure (MHS).The same remains true if one works with cohomologiesHi

c (X,Q)

with compact supports. There exist namely an increasing weight-filtrationW• and
a decreasing Hodge-filtration ofHi (X,Q) (resp.Hi

c (X,C)) which induces a
natural filtrationF• on the complexification of the corresponding graded pieces
Gr

W•
k (H i (X,Q)) (resp.Gr

W•
k (H i

c (X,Q))). Let

hp,q(H i (X,C)) := dimCGr
p

F•Gr
W•
p+q(H i (X,C))

( resp.hp,q(H i
c (X,C)) := dimCGr

p

F•Gr
W•
p+q(H i

c (X,C)) )

denote hereafter the correspondingHodge numbers. The so-calledE-polynomial
of X is defined to be

E (X; u, v) :=
∑
p,q

ep,q (X) upvq ∈ Z [u, v] ,

whereep,q (X) := ∑
i≥0 (−1)i hp,q(H i

c (X,C)). (If we setu = v = 1, then
E (X;1,1) equals the usualtopological Euler characteristice(X) of X.)

(c) Estr-functions. To pass to string-theoretic invariants, one takes essentially into
account the “discrepancy coefficients”.

Definition 1.1. Let X be a normal complex variety with at most log-terminal sin-
gularities, ϕ : X̃ −→ X an snc-desingularization of X as in (a), D1,D2, . . . , Dm

the prime divisors of the exceptional locus, and I := {1,2, . . . , m}. For any subset
J ⊆ I define

DJ :=


X̃, if J = ∅

⋂
j∈J Dj , if J �= ∅

and D◦J := DJ �
⋃

j∈I�J

Dj .

The algebraic function

Estr (X; u, v) :=
∑
J⊆I

E
(
D◦J ; u, v

) ∏
j∈J

uv − 1

(uv)aj+1− 1
(1.1)

(under the convention for
∏

j∈J to be 1, if J = ∅, and E (∅; u, v) := 0) is called
the string-theoretic E-function ( or simply Estr-function) of X.
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The major result of [1] says that:

Theorem 1.2. Estr (X; u, v) is independent of the choice of the snc- desingulariza-
tion ϕ : X̃ −→ X.

Remark 1.3. (i) Though the string-theoretic functionEstr (X; u, v) enjoys this par-
ticularly important invariance property, toevaluate it by (1.1) one needs not only
the existence of (at least one) snc-desingularization (which is guaranteed, e.g.,
by Hironaka’s main theorems [18]), but also the precise knowledge of what kind
of exceptional prime divisors are available on the corresponding smooth model,
and which are their intersections. In general, there are several ways to resolve
log-terminal singularities, involving different choices for the centers of the modi-
fications ofX and, sometimes, necessary extra normalizations, blow-ups of non-
reduced subschemes etc. For this reason, a first realistic attempt to understand the
behaviour of (1.1), from the computational point of view, cannot overlook the class
of absolutely isolated singularities, i.e., isolated singularities resolvable by a finite
sequence of (usual) blow-ups of closed points, for which one may keep the needed
details (strict transforms after each step of the resolution procedure, snc-condition
etc.) under control.

(ii) It is also worth mentioning that the “first summand” in (1.1), i.e., forJ = ∅,

equals

E(X̃�
⋃m

j=1 Dj ; u, v) = E(X� Sing(X); u, v)
(where Sing(X)denotes the singular locus ofX). This means that it can be described
exclusively by the study of topological properties ofX “around” the singularities
without involving any resolution data.

Definition 1.4. The rational number

estr (X) := lim
u,v→1

Estr (X; u, v) =
∑
J⊆I

e
(
D◦J

) ∏
j∈J

1

aj + 1
(1.2)

is called the string-theoretic Euler number of X. Moreover, the string-theoretic
index indstr (X) of X is defined to be the integer

indstr (X) := min

{
l ∈ Z≥1

∣∣∣∣ estr (X) ∈ 1

l
Z

}
.

Examples 1.5. (i) For Q-Gorenstein toric varietiesX, indstr (X) = 1, andestr (X)

is equal to the normalized volume of the defining fan. Moreover, for Gorenstein
toric varietiesX, Estr (X; u, v) is a polynomial (cf. [1, 4.4 and 4.10]).

(ii) Normal algebraic surfacesX with at most log-terminal singularities have string-
theoretic index indstr (X) = 1. There exist, however, normal complex varieties
X of dimensiond ≥ 3 with at most Gorenstein canonical singularities having
indstr (X) > 1.

Batyrev’s conjecture [1, 5.9], concerning the range of indstr (X), can be stated as
follows:
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Conjecture 1.6 (Boundedness of the string-theoretic index). LetX be anr-dimens-
ional normal complex variety having at most Gorenstein canonical singularities.
Then indstr (X) is bounded by a constantC (r) depending only onr.

As it turns out (see below Remark 1.9), and in contrast to initial expectations due
to some classes of examples (see, e.g., [1, 5.1, 5.10] for the case of cones over
certain smooth projective Fano varieties), conjecture 1.6 is not true in general.
Nevertheless, the characterization of those classes ofX’s, which admit bounded
string-theoretic indices, remains an unsolved problem.

(d) The A(r)
n,�’s. We define ther-dimensionalA(r)

n,�-singularities as those isolated
hypersurface singularities which have underlying spaces of the form

X
(r)
n,� := Spec

(
C
[
x1, . . . , xr+1

]
/ (f )

)
,

wherer, n, � are integers, such thatr ≥ � ≥ 2, n+ 1≥ �, and

f (x1, . . . , xr+1) := xn+1
1 + x�2 + x�3 + · · · + x�r+1 . (1.3)

These are obviously singularities ofBrieskorn-Pham type. In addition, by our as-
sumptions aboutr, �andn, they arecanonical (see Reid [25, Prop. 4.3, p. 297]). The
notation is chosen in this manner to remind that they include, in particular, both sub-
series of usualr-dimensionalAn-singularities (A(r)

n,2’s) and of Fermat singularities

(A(r)
�−1,�’s).

(e) Some auxiliary combinatorial functions. At first, for p, q ∈ Z≥0, let us
denote Kronecker’s symbol by

δp,q =
{

1, if p = q

0, if p �= q.

• Next, fixing r, � andn, as in(d), we setd := lcm(n+ 1, �). and define three
functionsa,b andc : Z≥0 −→ Z≥0 by

Z≥0 � i �−→ a (i) =
n−1∑
p=0

δ
i,

pd
n+1

, (1.4)

by the multinomial coefficients

Z≥0 � j �−→ b (j) =


∑
(ν1,ν2,... ,ν�−1)∈Bj

(
r

ν1,ν2,... ,ν�−1

)
, if Bj �= ∅

0, otherwise
(1.5)

(with
(

r
ν1,ν2,... ,ν�−1

) := r!
ν1! ν2! ... ν�−1! ), and by the convolutional formula

Z≥0 � k �−→ c (k) =
∑

(i,j)∈Ck

a (i) b (j) , (1.6)
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where for eachj ∈ Z≥0,

Bj :=

(ν1, ν2, . . . , ν�−1
) ∈ (

Z≥0
)�−1

∣∣∣∣∣∣∣
ν1+ ν2 + · · · + ν�−1 = r

and (whenever� ≥ 3)

d
(
ν2 + 2ν3+ · · · + (�− 2) ν�−1

) = j �

 ,

and for eachk ∈ Z≥0, Ck :=
{
(i, j) ∈ (

Z≥0
)2 | i + j = k

}
.

• Finally, for any four-tuple(κ, λ, ν, ξ) ∈ (
Z≥0

)4 with κ ≥ λ, let us recall the
definition of thenon-central Eulerian numbers S (κ, λ | ν, ξ ) of generalized fac-
torials (with translation summandξ ). These are the coefficients which occur in the
development of

(
ν·t+ξ
κ

) = κ∑
λ=0

S (κ, λ | ν, ξ ) (t+κ−λ
κ

)
and satisfy the recurrence relation

(κ + 1) S (κ + 1, λ | ν, ξ ) = (νλ− κ + ξ) S (κ, λ | ν, ξ )
+ (ν (κ − λ+ 1)+ κ − ξ) S (κ, λ− 1 | ν, ξ )

with initial conditionsS (0,0 | ν, ξ ) = 1 andS (κ,0 | ν, ξ ) = (
ξ
κ

)
. In fact, it can

be shown that

S (κ, λ | ν, ξ ) =
λ∑

j=0
(−1)j

(
κ+1
j

) (
ν(λ−j)+ξ

κ

)
.

(f) Main results. We can now state the main results.

Proposition 1.7. Let X = X
(r)
n,� be the underlying space of the A(r)

n,�- singularity.
Then the E -polynomial E (X�{0}; u, v) equals

(uv − 1)

1+ (uv)r−1+
r−2∑
p=1

(
(uv)p + (−1)r c

(
d

(
p + n

n+ 1
− r

�

))
up vr−p−1

)
(1.7)

(with the c-function as defined in (1.6)).

Formula (1.7) provides the “first summand” of theEstr-function ofX. On the other
hand, if � divides eithern or n + 1, A(r)

n,�’s are absolutely isolated (see below

Proposition 3.1), and theEstr-function ofX(r)
n,�’s is computed as follows:
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Theorem 1.8. If the integer � divides either n or n + 1, then the Estr-function of
X = X

(r)
n,� is given by the formula

Cases Estr (X; u, v)

� |n+ 1

E (X�{0}; u, v)

+ (uv − 1)

(
uv

(uv)r−�+1−1
+

m−1∑
i=2

uv−1
(uv)i(r−�)+1−1

− uv−1
(uv)m(r−�)+1−1

m−1∑
i=1

uv−1(
(uv)i(r−�)+1−1

)(
(uv)(i+1)(r−�)+1−1

))

×
[
r−2∑
p=0

up (vp + (−1)r−2 S (r − 1, p + 1 | �− 1, p ) vr−2−p)
]

+ (uv−1)
(uv)m(r−�)+1−1

[
r−1∑
p=0

up (vp + (−1)r−1 S (r, p + 1 | �− 1, p ) vr−1−p)
]

� |n

E (X�{0}; u, v)+ (uv)r−1
(uv)(m−1) � (r−�)+ r−1

+ (uv − 1)

(
uv

(uv)r−�+1−1
+

m−1∑
i=2

uv−1
(uv)i(r−�)+1−1

− uv−1
(uv)(m−1) � (r−�)+ r−1

+
m−2∑
i=1

uv−1(
(uv)i(r−�)+1−1

)(
(uv)(i+1)(r−�)+1−1

)

+ uv−1(
(uv)(m−1)(r−�)+1−1

)(
(uv)(m−1) � (r−�)+ r−1

)
)

×
[
r−2∑
p=0

up (vp + (−1)r−2 S (r − 1, p + 1 | �− 1, p ) vr−2−p)
]

In particular, for the string-theoretic Euler number we obtain:

Cases estr (X)

� |n+ 1

m−1
m(r−�)+1

[ 1
�

(
(1− �)r − 1

)+ r
]

+ 1
m(r−�)+1

[ 1
�
((1− �)r+1 − 1)+ r + 1

]

� |n r
(m−1) � (r−�)+ r

+ (m−1)�
(r−�)(m−1)�+r

[ 1
�

(
(1− �)r − 1

)+ r
]
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The above number m is defined to be

m :=
{

n+1
�
, if n+ 1≡ 0 (mod�)

n
�
+ 1, if n ≡ 0 (mod�)

(1.8)

Remark 1.9. Counterexamples to conjecture 1.6 occur already for� = 2, as we
have:

estr

(
X

(r)
n,2

)
=



m(r−1)+2
m(r−2)+1 = n(r−1)+r+3

n(r−2)+r , if both n andr are odd

mr
m(r−2)+1 = r(n+1)

(r−2)(n+1)+2, if n is odd andr even

2(m−1)(r−1)+r
2(m−1)(r−2)+r = (r−1)n+r

(r−2)n+r , if n is even andr odd

(2m−1)r
2(m−1)(r−2)+r = r(n+1)

(r−2)n+r , if both n andr are even

For instance, in dimensionr = 3, we obtain:

lim
n→∞, n even

indstr

(
X

(3)
n,2

)
= ∞.

On the other hand, forall oddn’s, estr(X
(3)
n,2) = 2 and indstr(X

(3)
n,2) = 1.

2. On the MHS of the cohomology groups of links

At first, we shall exploit the fact thatA(r)
n,�’s are quasihomogeneous singularities,

and show that Proposition 1.7 is a byproduct of a more general result concerning
isolated singularities of this sort. (See below Proposition 2.8).

(a) Links and Milnor fibers. Let (W, 0) ⊆ (
CN, 0

)
be the germ of a complex

analytic setW having pure dimensionr + 1 and the origin as isolated singularity.
Assume thatf : W → C is a holomorphic function, such thatf

∣∣
W�{0} is non-

singular. Obviously,X := f−1 (0) is a complex analytic subset ofCN of pure
dimensionr with the origin as isolated singularity. LetL := L(X, 0) := Sε ∩ X

denote itslink, whereSε :=
{
z ∈ CN | ‖z‖ = ε

}
, 0 < ε � 1.L is a differentiable,

compact, oriented manifold of dimension 2r − 1, and there are isomorphisms:

Hi+1 (X,X� {0} ,Q) ∼= Hi (X� {0} ,Q) ∼= Hi (L,Q) . (2.1)

If Bε′ is the open ball with0 as its center andε′ as its radius, whereε < ε′ � 1, it
is known that the map

f
∣∣
Bε′∩f−1(D∗α)

: Bε′ ∩ f−1(D∗α) −→ D∗α

determines a differentiable fibre bundle, whereD∗α := {t ∈ C | 0 < |t | < α } is
a small punctured disc inC with 0 < α < ε. Let F = Ft be the corresponding
fiber, the so-called (open) Milnor fiber. The study of the relation between the MH-
structures of the cohomology groups ofL andF relies on certain corollaries of a
theorem of Steenbrink [27, (2.3)] and Hamm [17, Thm. 1.6.1]. (The coefficients of
the cohomology groups are always taken fromC.)



150 D. I. Dais

Theorem 2.1 (Steenbrink–Hamm). For all i, there exists an exact MHS-sequence:

· · · −→ Hi−1 (L) −→ Hi
c (F ) −→ Hi (F ) −→ Hi (L) −→ · · ·

Corollary 2.2. We have the following exact sequence and isomorphisms of MHS:

(i) 0 → Hr−1 (F )→ Hr−1 (L)→ Hr
c (F )→ Hr (F )

→ Hr(L)→ Hr+1
c (F )→ 0,

(ii) Hi (L) ∼= Hi (F ) , for all i < r − 1,
(iii) Hi−1 (L) ∼= Hi

c (F ) , for all i > r − 1.

Proof. SinceBε′ is a complex Stein manifold,F is a complex Stein manifold too.
Hence,F has the homotopy type of a CW-complex of real dimensionr (see [16]),
which means thatHi(F ) ∼= H 2r−i

c (F ) = 0 for all i ≥ r + 1. The exactness
in (i) and the existence of MHS-isomorphisms (ii) and (iii) follow from the long
exact sequence of Theorem 2.1, combined with the vanishing of these cohomology
groups. ��
Corollary 2.3. For all p, q, the Hodge numbers of the two “middle” cohomology
groups of F satisfy the equalities:

hp,q(Hr(F )) = hp,q(Hr−1(F ))+ hp,q(Hr
c (F ))− hp,q(Hr+1

c (F ))

+ hp,q(Hr(L))− hp,q(Hr−1(L))

= hp,q(Hr−1(F ))+ hr−p,r−q(Hr(F ))− hr−p,r−q(Hr−1(F ))

+ hp,q(Hr(L))− hp,q(Hr−1(L))

Proof. The first equality is obvious by 2.2 (i), and the second one follows from
Poincaré duality. ��
Proposition 2.4. If N = r + 1,W = Cr+1 and (X, 0) is a purely r-dimensional
isolated hypersurface singularity, with r ≥ 2, then the only “non-trivial” Hodge
numbers of the cohomology groups of its link L = L(X, 0) are

hp,q(Hr−1(L)) = hr−p,r−q(Hr(L)), with p + q ≤ r − 1,

as we have:

(i) hp,q(H i(L)) = 0, for all p, q whenever i /∈ {0, r − 1, r,2r − 1}.
(ii) hp,q(H 0(L)) = 1, for p = q = 0, and = 0, otherwise.

(iii) hp,q(H 2r−1(L)) = 1, for p = q = r, and = 0, otherwise.
(iv) hp,q(Hr−1(L)) = hr−p,r−q(Hr(L)), for all p, q,

and equals 0 whenever p + q > r − 1.

Proof. L is(r − 2)-connected (cf. [24,Thm. 5.2]), and the local LefschetzTheorem
gives (i), (ii) and (iii) becauseHi(L) = 0 for all indicesi /∈ {0, r − 1, r,2r − 1}
andH 0(L) ∼= H 2r−1(L) ∼= C. For (iv) use Poincaré duality and the fact, that
the natural MHS onHi (L) has weightsGr

W•
j (H i (L)) = 0 for j > i (by the

Semipurity Theorem, cf. [27, Cor. (1.12), p. 518]).��
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(b) Quasihomogeneous isolated singularities. A polynomial

f ∈ C
[
x1, x2, . . . , xr+1

]
is quasihomogeneous of degreed with respect to theweights

w = (w1, . . . , wr+1) ∈
(
Z≥1

)r+1

if

f
(
λw1x1, . . . , λ

wr+1xr+1
) = λd f (x1, . . . , xr+1) , ∀ λ, λ ∈ C∗.

Hereafter we consider such anf, assume thatr ≥ 2 and that

Xf :=
{
(x1, . . . , xr+1) ∈ Cr+1 | f (x1, . . . , xr+1) = 0

}
has no other singularities than0 ∈ Cr+1. Note that the Milnor algebra

M (f ) := C
[
x1, x2, . . . , xr+1

]
/

(
∂f

∂x1
, . . . ,

∂f

∂xr+1

)
associated tof is a gradedC-algebra of finite type (with deg(xi) = wi , i =
1, . . . , r + 1) whose Poincaré seriesPM(f ) (t) equals

PM(f ) (t) =
∑
k≥0

dimC

(
M (f )k

)
tk

=
(
1− td−w1

) (
1− td−w2

) · · · (1− td−wr+1
)

(1− tw1) (1− tw2) · · · (1− twr+1)

(2.2)

(cf. [10, (7.27), p. 112]). Next, we define thequasismooth weighted projective
hypersurfaces

Z =
{[
x0 : x1 : . . . : xr+1

] ∈ Pr+1
C (1,w) | f (x0, . . . , xr+1) = 0

}
wheref (x0, . . . , xr+1) := xd0 − f (x1, . . . , xr+1), and

Z∞ = {[
x0 : x1 : . . . : xr+1

] ∈ Z | x0 = 0
}

∼= {[
x1 : . . . : xr+1

] ∈ Pr
C (w) | f (x1, . . . , xr+1) = 0

}
.

We have

M
(
f
) = M (f )⊗ C [x0] /

(
xd−1

0

)
(2.3)

and the map(x1, . . . , xr+1) �−→
[
1 : x1 : . . . : xr+1

]
induces a diffeomorphism

between

F = {
(x1, . . . , xr+1) ∈ Cr+1 | f (x1, . . . , xr+1) = 1

}
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and the complementZ�Z∞, where thisF is diffeomorphic to the (usual) Mil-
nor fiber of the singularity(Xf , 0) (see [11, (1.13), p. 72]). Moreover,F has the
homotopy type of a bouquet ofµ (f ) r-spheres, with

µ (f ) = lim
t→1

PM(f ) (t) =
r+1∏
i=1

(
d

wi

− 1

)
(2.4)

denoting the correspondingMilnor number. Theprimitive cohomology groups of
Z∞ are defined by the exact sequence

0−→ Hr−1(Pr
C (w) ,C) −→ Hr−1(Z∞,C) −→ Hr−1

prim (Z∞,C) −→ 0.

Since bothPr
C (w) andZ∞ are orbifolds, they are equipped with pure Hodge struc-

ture, and therefore bothHr−1(Z∞,C) andHr−1
prim (Z∞,C) decompose, say as

Hr−1 (Z∞,C) =
⊕

p+q=r−1

Hp,q (Z∞) ,H r−1
prim (Z∞,C) =

⊕
p+q=r−1

H
p,q
prim (Z∞) ,

(The same is also valid forHr[prim] (Z,C)).

Lemma 2.5. For the Milnor fiber F of (Xf , 0) we have

(i) hp,q(H 0(F,C)) = 1, for p = q = 0, and = 0, otherwise

(ii) Hi (F,C) = 0, for all i /∈ {0, r}.
(iii) hp,q (Hr (F,C)) = 0, for p + q /∈ {r, r + 1} .
(iv) hp,r−p (Hr (F,C)) = h

p,r−p
prim (Z) = hp,r−p (Z)− δp,r−p, for 0 ≤ p ≤ r .

(v) hp,r+1−p (Hr (F,C)) = h
p−1,r−p
prim (Z∞) = hp−1,r−p (Z∞)− δp−1,r−p,

for 1≤ p ≤ r .

Proof. (i) This follows from 2.2 (ii) and 2.4 (ii).

(ii)–(v). At first note thatHp,q(Pr
C (w)) (resp.,Hp,q(Pr+1

C (1,w))) is∼= C, when-
everp = q, and= 0, otherwise. As Steenbrink points out in [26, p. 216], there is
an exact MHS-sequence of Gysin-type:

· · ·→ Hi (Z,C)→ Hi (Z�Z∞,C)→ Hi−1 (Z∞,C) (−1)
θ−→ Hi+1 (Z,C)→· · ·

By the Weak Lefschetz Theorem [12, 4.2.2], the homomorphism

Hp,q (Z∞)−→ Hp,q+1 (Pr
C (w)

) [
resp.,Hp,q (Z) −→ Hp,q+1(Pr+1

C (1,w)
)]

is an isomorphism forp + q > r − 1 (resp.,p + q > r) and an epimorphism for
p + q = r − 1 (resp.,p + q = r). Thus,θ is an isomorphism for alli /∈ {0, r} ,
proving (ii). Moreover, since

Wj

(
Hr (F,C)

) = {
0, if j < r

Hr (F,C) , if j > r
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i.e.,Gr
W•
j (H r (F,C)) = 0, for j /∈ {r, r + 1}, (cf. [8, §8.2]), (iii) is obvious, and

the above exact MHS-sequence gives the isomorphisms

Wr

(
Hr (F,C)

) = Im
(
Hr (Z,C) −→ Hr (Z�Z∞,C)

)
∼= CoKer

(
Hr−2 (Z∞,C) (−1) −→ Hr (Z,C)

)
∼= CoKer

(
Hr(Pr+1

C (1,w)) −→ Hr (Z,C)
)
= Hr

prim (Z,C)

and

Gr
W•
r+1

(
Hr (F,C)

)
= Hr (Z�Z∞,C) / Ker

(
Hr (Z�Z∞,C) −→ Hr−1 (Z∞,C) (−1)

)
∼= Ker

(
Hr−1 (Z∞,C) (−1) −→ Hr+1 (Z,C)

)
∼= CoKer

(
Hr−1(Pr

C (w) ,C)(−1) −→ Hr−1 (Z∞,C) (−1)
)

= Hr−1
prim (Z∞,C) (−1) ,

respectively, proving (iv) and (v).��
Theorem 2.6 (Griffiths–Steenbrink). If (Xf , 0) is an r-dimensional isolated
quasihomogeneous hypersurface singularity of degree d w.r.t. the weights
w1, . . . , wr+1, then

H
p−1,r−p
prim (Z∞) ∼= M (f )pd−(w1+...+wr+1)

.

Hence,
hp,r−p

(
Hr (F,C)

) = d−1∑
i=1

dimC

(
M (f )pd−(w1+...+wr+1)+i

)
hp+1,r−p (Hr (F,C)

) = dimC

(
M (f )(p+1)d−(w1+...+wr+1)

)
.

(2.5)

Proof. Extending Griffiths’ results [14] to the case of weighted homogeneous hy-
persurfaces, the global sections of the sheaves

8
p

Pr
C
(w)

(Z∞) = 8
p

Pr
C
(w)
⊗OPr

C
(w)(Z∞),

as well as the graded pieces of middle cohomology ofPr
C (w)�Z∞, are described

by means of special auxiliary differential forms with poles alongZ∞. In particular,

H 0(Pr
C (w) ,8r

Pr
C
(w)(Z∞)) =

{
g ·80

f

∣∣∣∣ g ∈ C[x1, . . . , xr+1]d−(w1+...+wr+1)

}
,

where

80 :=
r+1∑
i=1

(−1)i wi xi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxr+1,
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and

Gr
p

F•(Hr(Pr
C (w)�Z∞,C)) ∼= Hr−p(Pr

C (w) ,8
p

Pr
C
(w)

(logZ∞))

∼=
H 0(Pr

C (w) ,8r
Pr

C
(w)

((r − p − 1)Z∞))

H 0(Pr
C (w) ,8r

Pr
C
(w)

((r−p)Z∞))+ ∂(H 0(Pr
C (w) ,8r−1

Pr
C
(w)

((r−p)Z∞)))

(∂ denotes the corresponding differential operator). Since the map

H0(Pr
C
(w) ,8r

Pr
C
(w)

((r − p − 1)Z∞))
:−→ C[x1, .., xr+1](r−p+1)d−(w1+···+wr+1)

g ·80

f r−p+1 �−→ g

defines an isomorphism, and

H 0(Pr
C (w) ,8r

Pr
C
(w)((r − p)Z∞))+ ∂(H 0(Pr

C (w) ,8r−1
Pr

C
(w)

((r − p)Z∞)))

has (
∂f

∂x1
, . . . ,

∂f

∂xr+1

)
(r−p+1)d−(w1+...+wr+1)

as its image under: (see [4, §11]), we get

Gr
p

F•(Hr(Pr
C (w)�Z∞,C)) ∼= M (f )(r−p+1)d−(w1+...+wr+1)

.

Using Hard Lefschetz Theorem one deduces the exact MHS-sequence:

0→ Hr−2(Pr
C (w) ,C)

∼=−→ Hr(Pr
C (w) ,C)

→ Hr(Pr
C (w)�Z∞,C)→ Hr−1

prim(Z∞,C)→ 0,

giving

H
p,r−1−p
prim (Z∞) ∼= M (f )(r−p)d−(w1+...+wr+1)

∼= M (f )(p+1)d−(w1+...+wr+1)
.

Formulae (2.5) follow from Lemma 2.5 (iv), (v), and (2.3).��
Lemma 2.7. If (Xf , 0) is an r-dimensional isolated quasihomogeneous hypersur-
face singularity with L as its link and F as its Milnor fiber, then

hp,q
(
Hr−1 (L,C)

)
= 0, whenever p + q �= r − 1,

and the “non-trivial” Hodge numbers of the cohomology groups of its link L are

hp,r−1−p (Hr−1 (L,C)
)
= hr−p,p+1 (Hr (L,C)

) = hp+1,r−p (Hr (F,C)
)

(2.6)

for p = 0,1, . . . , r − 1, and can be therefore read off from (2.5).
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Proof. If p + q /∈ {r − 1, r + 1}, then by 2.3, 2.4 (iv) and 2.5 (i), (iii), we obtain

hr−p,r−q
(
Hr−1 (L,C)

)
= hp,q

(
Hr (L,C)

) = hp,q
(
Hr−1 (L,C)

)
= 0,

because the corresponding Hodge numbers ofHr−1 (F,C) andHr (F,C) vanish,
andp + q < r − 1 (resp.,= r | > r + 1) iff (r − p) + (r − q) > r + 1 (resp.,
= r | < r − 1). On the other hand, ifp + q ∈ {r − 1, r + 1}, Cor. 2.3 gives:

hp,q(Hr−1(L,C))− hp,q(Hr(L,C))=hr−p,r−q(Hr(F,C))− hp,q(Hr(F,C)).

(2.7)

If p + q = r − 1, the Hodge numbershp,q(Hr(L,C)) = hr−p,r−q(Hr−1(L,C))

vanish by 2.4 (iv). Analogously,hp,q(Hr−1(L,C)) vanishes wheneverp + q =
r + 1. Finally, (2.6) follows from Lemma 2.5 (iii) and (2.7).��
Proposition 2.8. If (Xf , 0) is an r-dimensional isolated quasihomogeneous hyper-
surface singularity of degree d w.r.t. the weights w1, . . . , wr+1, and L its link, then
the E-polynomial E

(
Xf �{0}; u, v) equals

(uv − 1)

r−1∑
p=0

(
(uv)p + (−1)r−1 hp,r−1−p(Hr−1(L,C)) up vr−p−1

)
(2.8)

and its coefficients are therefore computable in terms of d and w1, . . . , wr+1 via
(2.6)and (2.5).

Proof. Using (2.1) and Poincaré duality, we obtain:

hp,q(H i (L,C)) = hp,q(H i
(
Xf �{0},C)) = hd−p,d−q(H 2d−i

c

(
Xf �{0},C)).

Hence,
E
(
Xf �{0}; u, v) = (uv)r E

(
L; u−1, v−1

)
. (2.9)

On the other hand, Proposition 2.4 gives

E (L; u, v) =
∑

0≤p,q≤r
ep,q(L) up vq

=
∑

0≤p,q≤r

[
hp,q(H 0(L))− hp,q(H 2r−1(L))

]
up vq

+ (−1)r−1
∑

0≤p,q≤r

[
hp,q(Hr−1(L))− hp,q(Hr(L))

]
up vq

=
∑

0≤p,q≤r

[
hp,q(H 0(L))− hp,q(H 2r−1(L))

]
up vq

+ (−1)r−1
∑

0≤p,q≤r

[
hp,q(Hr−1(L))− hr−p,r−q(Hr−1(L))

]
up vq
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= 1− (uv)r + (−1)r−1 [
∑

0≤p,q≤r
hp,q(Hr−1(L))upvq ]

+ (−1)r [
∑

0≤p,q≤r
hr−p,r−q(Hr−1(L))upvq ]

= 1− (uv)r + (−1)r−1

 ∑
0≤p,q≤r−1
0≤p+q≤r−1

hp,q(Hr−1(L))upvq



+ (−1)r

 ∑
1≤p,q≤r

r+1≤p+q≤2r−1

hr−p,r−q(Hr−1(L)) up vq

 .

(The terms containing coefficientshp,q(Hr−1(L)), with p + q = r, cancel out,
as they occur in both summands). Since(Xf , 0) is an isolated quasihomogeneous
hypersurface singularity, we may use Lemma 2.7 to write

E(L;u, v) = 1− (uv)r + (−1)r−1

 ∑
0≤p,q≤r−1
p+q=r−1

hp,q(Hr−1(L)) up vq



+ (−1)r

 ∑
1≤p,q≤r
p+q=r+1

hr−p,r−q(Hr−1(L)) up vq


= 1− (uv)r + (−1)r−1

r−1∑
p=0

hp,r−1−p(Hr−1(L)) up vr−1−p


+ (−1)r

r−1∑
p=0

hp,r−1−p(Hr−1(L)) up+1 vr−p


= 1− (uv)r + (−1)r−1

r−1∑
p=0

hp,r−1−p(Hr−1(L)) up vr−1−p
 (1− uv)

= (1− uv)

r−1∑
p=0

(uv)p + (−1)r−1 (1− uv)

×
r−1∑
p=0

hp,r−1−p(Hr−1(L)) up vr−1−p

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= (1− uv)

r−1∑
p=0

(
(uv)p + (−1)r−1 hp,r−1−p(Hr−1(L)) up vr−1−p)

Combining the last equality with (2.9), using

hp,r−1−p(Hr−1(L,C)) = (−1)r−1 ep,r−1−p (L)
= (−1)r−1 er−1−p,p (L) = hr−1−p,p(Hr−1(L,C))

and substitutingr − p − 1 for p, we deduce formula (2.8).��
Remark 2.9. (i) By (2.8), e(Xf � {0}) = E

(
Xf � {0} ;1,1

) = e(L) = 0, which
is also obvious from the fact, thatL is anodd-dimensional differentiable manifold.

(ii) If the singularity(Xf , 0) in 2.8 is, in addition, arational singularity, then

h0,r−1(Hr−1(L)) = hr−1,0(Hr−1(L)) = 0.

(See the proof of Proposition 4.1 of [7].)

(iii) The defining polynomial (1.3) of anA(r)
n,�-singularity is quasihomogeneous of

degreed = lcm(n+ 1, �) w.r.t. the weights
(

d
n+1,

d
�
, d
�
, . . . , d

�

)
, with Poincaré

polynomial

PM(f ) (t) =
(

1+
n−1∑
j=1

t
jd
n+1

) (
1+

�−2∑
κ=1

t
κd
�

)r

(2.10)

and Milnor numberµ (f ) = n (�− 1)r (see (2.2) and (2.4)). Moreover, sinceA(r)
n,�’s

are canonical, they are also rational singularities.

Proof of Proposition 1.7. To produce formula (1.7) for theE-polynomial of
X

(r)
n,��{0}, it suffices to evaluate (2.8) via (2.6), (2.5) and 2.9 (ii)–(iii) in terms

of n, � andd. Since the functiona, defined in (1.4), can be expressed as

a (i) =
{

1, if i ∈
{
0, d

n+1,
2d
n+1, . . . ,

(n−1)d
n+1

}
0, otherwise,

and sinceb (j), as defined in (1.5), gives the coefficient oftj in the multinomial
expansion of the second factor of (2.10), we need the convolutional function (1.6)
in order to write the required dimensions as

hp,r−1−p(Hr−1 (L,C)
) = hp+1,r−p (Hr (F,C)

) = dimC

(
M (f )

d
(
p+1− 1

n+1− r
�

) )
= c

(
d
(
p + 1− 1

n+1 −
r

�

))
,

and to end up to (1.7).��
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3. Desingularization and theorem’s proof

Next, using blow-ups of closed points, we shall construct snc-resolutions for all
A(r)
n,�-singularities for which either� | n or � | n + 1. LetX = X

(r)
n,� be their under-

lying spaces and denote by

Y
(r−1)
� :=

[z1 : z2 : . . . : zr+1
] ∈ Pr

C

∣∣∣∣∣∣
r+1∑
j=1

z�j = 0


the (r − 1)-dimensional Fermat hypersurface of degree� ≥ 2 in the projective
spacePr

C
.

Proposition 3.1.

(i) If n+ 1≡ 0 (mod�) , then there exists an snc-desingularization ϕ : X̃ −→ X

with discrepancy

KX̃ − ϕ∗ (KX) =
m∑
i=1

i (r − �) Di (3.1)

where

Di
∼= P(O

Y
(r−2)
�

⊕O
Y
(r−2)
�

(1)), ∀ i, 1≤ i ≤ m− 1, and Dm
∼= Y

(r−1)
� .

(ii) If n ≡ 0 (mod�) , then there is an snc-desingularization ϕ : X̃ −→ X with
discrepancy

KX̃ − ϕ∗ (KX) =
m−1∑
i=1

i (r − �) Di + [(m− 1) � (r − �)+ (r − 1)] Dm (3.2)

where

Di
∼= P(O

Y
(r−2)
�

⊕O
Y
(r−2)
�

(1)), ∀ i, 1≤ i ≤ m− 1, and Dm
∼= Pr−1

C
.

In both cases Di ∩Di+1 ∼= Y
(r−2)
� for all i,1≤ i ≤ m− 1, and Di ∩Dj = ∅ for

all i, j,1≤ i, j ≤ m, with |i − j | �= 1. (The number m is defined as in (1.8)).

Proof. Let f be the polynomial (1.3) andX (= Xf = X
(r)
n,�) the underlying space

of theA(r)
n,�-singularity.

Construction of the desingularization. Let π : Bl0(Cr+1) −→ Cr+1 be the
blow up ofCr+1 at the origin, with

Bl0(C
r+1) =

((x1, .., xr+1
)
,
[
t1 : · · · : tr+1

]) ∈ C
r+1× P

r
C

∣∣∣∣∣∣
xi tj = xj ti ,

∀ i, j,
1≤ i, j ≤ r + 1


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E := π−1 (0) = {0} × Pr
C

, and letUi denote the open set given by(ti �= 0). In
terms of analytic coordinates,

Ui =
{
(
(
x1, .., xr+1

)
, (ξ1, .., ξ̂i , .., ξr+1)) ∈ C

r+1× C
r

∣∣∣∣ xj = xi ξj , ∀ j,
j ∈ {1, .., r + 1}� {i}

}
,

where ξj = tj
ti

. Identifying Ui with a copy ofCr+1 w.r.t. the coordinatesxi ,

ξ1, . . . , ξ̂i , . . . ,ξr+1, the restrictionπ
∣∣
Ui

is given by mapping

Cr+1 � (xi, ξ1, .., ξ̂i , .., ξr+1)

↓ ∼=
((xi ξ1, .., xi ξi−1, xi, xi ξi+1, .., xi ξr+1) , [ξ1 : .. : 1︸︷︷︸

i-th pos.

: .. : ξr+1]) ∈ Ui

↓ π
∣∣
Ui

(xi ξ1, . . . , xi ξi−1, xi, xi ξi+1, . . . , xi ξr+1)

Further,Ei := E ∩ Ui is described as the coordinate hyperplane(xi = 0); i.e.,
the open cover{Ui}1≤i≤r+1 of Bl0(Cr+1) restricts toE to provide the standard
open cover ofPr

C
by affine spacesCr+1, with {ξj }j∈{1,... ,r+1}�{i} being the analytic

coordinates ofEi .
Notation. To work with a more convenient notation we define

Bl0(Cr+1) =
r+1⋃
i=1

Ui, Ui = Spec
(
C
[
yi,1, . . . , yi,r+1

])
,

by setting as coordinates forUi ’s:

yi,k :=
{
xk, for i = k

ξk, for i �= k

• The first blow-up. Blowing upX at the origin, we take the diagram

E ⊂ Bl0(Cr+1)
π−→ Cr+1

∪ ∪ ∪
EX := E ∩ Bl0(X) ⊂ Bl0(X)

π |restr.−→ X

and consider the strict transform

Bl0(X) = π−1(X ∩ (Cr+1� {0})) = π−1(X) ∩ (Bl0(Cr+1)�E))

of X in Cr+1 underπ , and the corresponding exceptional divisorEX.

• Local description of Bl0(X) and EX. Pulling backf , we get

π∗(f )
∣∣
Ui
= x�i f̃i = y�i,i f̃i
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with

f̃i
(
yi,1, . . . , yi,r+1

)
=
y

(n+1)−�
1,1 + y�1,2+ · · · + y�1,r+1, if i = 1

yn+1
i,1 y

(n+1)−�
i,i +y�i,2+· · ·+y�i,i−1+1+y�i,i+1+· · ·+y�i,r+1, otherwise

Locally,

Bl0(X)
∣∣
Ui
∼=
{(
yi,1, . . . , yi,r+1

) ∈ Cr+1
∣∣ f̃i

(
yi,1, . . . , yi,r+1

) = 0
}
,

and the equations forEX
∣∣
Ui

read as follows:

Bl0(X) ∩ Ei = EX
∣∣
Ui

∼=
{(
yi,1, . . . , yi,r+1

) ∈ Cr+1
∣∣ yi,i = f̃i

(
yi,1, . . . , yi,r+1

) = 0
}
.

Thus, the only singular affine patch isU1 = Spec
(
C
[
y1,1, . . . , y1,r+1

])
whenever

n > �.

• Global description of Bl0(X) and EX. Passing to global coordinates, we can
write

Bl0(X)

=
{(
(x1, .., xr+1) ,

[
t1 : · · · : tr+1

]) ∈ Bl0(Cr+1)

∣∣∣∣∣x(n+1)−�
1 t�1 +

r+1∑
j=2

t�j = 0

}

and

EX

=
{{(

0,
[
t1 : · · · : tr+1

]) ∈ {0} × Pr
C

∣∣ t�1 + t�2 + · · · + t�r+1 = 0
}
, if n = �−1{(

0,
[
t1 : · · · : tr+1

]) ∈ {0} × Pr
C

∣∣ t�2 + t�3 + · · · + t�r+1 = 0
}
, otherwise.

• The (Fermat) singularity A(r)
�−1,� (m = 1). Blowing up the origin once, we

achieve immediately the required desingularization, having exceptional divisor
EX ∼= Y

(r−1)
� .

• The singularity A(r)
�,� (m = 2). In this case,Bl0(X) is smooth, whereasEX on

Bl0(X) has a singular, ordinary�-fold point atQ = (0, [1 : 0 : · · · : 0]) ∈ EX|U1.
To obtain an snc-resolution of the original singularity, we blow up once more atQ,

and considerϕ = π1 ◦ π2,

X̃ = BlQ(Bl0(X))
π2−→ Bl0(X)

π1=π−→ X.

The new exceptional divisorD2 is a Pr−1
C

, and the strict transformD1 of EX is
nothing but the ((r−1)-dimensional) blow-up ofEX atQ. SinceEX can be viewed as
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the projective coneCpr
(
Y
(r−2)
�

)⊂ Pr
C

over the Fermat hypersurfaceY (r−2)
� ⊂ Pr−1

C

with [1 : 0 : · · · : 0] as its vertex, blowing up[1 : 0 : · · · : 0], the diagram

P(O
Pr−1

C

⊕O
Pr−1

C

(1)) ∼= Bl[1:0:···:0](Pr
C
) −→ Pr

C

∪ ∪
Bl[1:0:···:0]

(
Cpr

(
Y
(r−2)
�

)) −→ Cpr
(
Y
(r−2)
�

) ∼= EX

yields the isomorphism

Bl[1:0:···:0]
(
Cpr(Y (r−2)

�

)) ∼= P
(O

Y
(r−2)
�

⊕O
Y
(r−2)
�

(1)
)
.

Hence,D1 is aP1
C

-bundle of rank 2 overY (r−2)
� meetingD2 along

(D1 ·D2)
∣∣
D1 = P

(O
Y
(r−2)
�

(1)
) ∼= Y

(r−2)
�

(see Fig. 1).

Fig. 1.
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• Singularities A(r)
n,� with n > �, m ≥ 2, either � | n or � | n + 1. Locally, these

singularities can be reduced successively to one of the above types as follows:

A(r)
n,� � A(r)

n−�,� � A(r)
n−2�,� � · · ·� A(r)

2�−1,� � A(r)
�−1,� � A(r)

−1,�

(if n+ 1≡ 0 (mod�))

A(r)
n,� � A(r)

n−�,� � A(r)
n−2�,� � · · ·� A(r)

2�,� � A(r)
�,� � A(r)

0,� � A(r)
0,�

(if n ≡ 0 (mod�))

(Each “�” denotes the result of a local blow-up, andA(r)
−1,�, A(r)

0,� stand for “smooth

charts”). But also globally,ϕ : X̃ −→ X is decomposed into justm blow-ups

X̃ = Xm
πm−→ Xm−1

πm−1−→ · · · π3−→ X2
π2−→ X1

π1−→ X0 = X

Xi := BlQi
(BlQi−1( · · · (BlQ1(X)))), ∀i, 1≤ i ≤ m,

(3.3)

of m “separated” pointsQ1 = 0, Q2 = (0, [1 : 0 : 0 : · · · : 0]) , . . . ,Qm, in the
sense, that all the appearing exceptional divisors are prime (by construction) and,
in addition, ifE1 = EX,E2, . . . , Em are the exceptional loci ofπ1, π2, . . . , πm,

respectively, the singular pointQi is resolved byπi and the (possibly existing) new
singular pointQi+1 is not contained in the strict transforms ofE1, E2, . . . , Ei−1
underπi . Thus, defining the divisorDi on X̃ to be the strict transform ofEi under
πi+1 ◦ πi+2 ◦ · · · ◦ πm−1 ◦ πm, we obtain the intersection graph of Fig. 2 with
Di ∩Di+1 ∼= Y

(r−2)
� .

Fig. 2.

Computation of the discrepancy coefficients. Consider the Poincaré residue map

ResX : H 0(Cr+1, ωCr+1(X)) −→ H 0(X, ωX),

whereωX = OX(KX) = (8r
X)
∨∨ ⊂ 8r

C(X)/C
. The rational canonical differential

s : = ResX

(
dx1 ∧ dx2 ∧ dx3 ∧ · · · ∧ dxr+1

f

)
= dx2 ∧ dx3 ∧ · · · ∧ dxr+1

(∂f / ∂x1)

can be viewed as a (local) generator ofH 0(X, ωX). Assume thatn �= � and that
you have performed the first blow-up ofX at 0. Then the new singularity (if any)



String-theoretic Euler number of a class of absolutely isolated singularities 163

onBl0(X) will belong toEX
∣∣
U1 . For this reason, to find the discrepancy coefficient

w.r.t. π : Bl0(X) −→ X, it suffices to compares with the rational canonical
differential

s := dy1,2 ∧ dy1,3 ∧ · · · ∧ dy1,r+1

(∂f̃1 / ∂y1,1)
∈ 8r

C(U1)/C
.

(U1 is non-singular with local coordinatesy1,2, . . . , y1,r+1 at any pointP for which
∂f̃1(P ) / ∂y1,1 �= 0). InU1 we havex1 = y1,1 and

xj = x1 ξj = y1,1 y1,j , for all j ∈ {2,3, . . . , r + 1}.
Hence,

dx2 ∧ dx3 ∧ · · · ∧ dxr+1

= yr−1
1,1 (y1,1

(
dy1,2 ∧ dy1,3 ∧ · · · ∧ dy1,r+1

)
+

r+1∑
i=2

(−1)i y1,i dy1,2 ∧ · · · ∧ d̂y1,i ∧ · · · ∧ dy1,r+1)

(3.4)

and

∂f / ∂x1 = (n+ 1) xn1 = (n+ 1) yn1,1 =
(

n+ 1

n+ 1− �

)
y�1,1 (∂f̃1 / ∂y1,1) (3.5)

On the other hand,

df̃1 = (n+ 1− �) yn−�1,1 dy1,1+ �
(
y�−1

1,2 dy1,2+ · · · + y�−1
1,r+1 dy1,r+1

)
= 0

if and only if

dy1,1 = − �

n+ 1− �
y�−n1,1

(
y�−1

1,2 dy1,2+ · · · + y�−1
1,r+1 dy1,r+1

)
. (3.6)

Substituting the expression (3.6) fordy1,1 into the right-hand side of (3.4), we
obtain

dx2 ∧ dx3 ∧ · · · ∧ dxr+1

=
(
− �

n+ 1− �
yr−1+�−n

1,1 (y�1,2+ · · · + y�1,r+1)+ yr1,1

)
dy1,2∧· · ·∧dy1,r+1.

(3.7)

Combining now (3.7) withy�1,2+ · · · + y�1,r+1 = −y(n+1)−�
1,1 and (3.5), we get

s = yr1,1 dy1,2 ∧ dy1,3 ∧ · · · ∧ dy1,r+1

y�1,1 (∂f̃1 / ∂y1,1)
= yr−�1,1 s. (3.8)
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The equality (3.8) shows that the discrepancy coefficient ofEX with respect to
π : Bl0(X) −→ X equalsr − �. Using the notation introduced in (3.3), one proves
analogously that

KXi
− π∗i

(
KXi−1

) = (r − �) Ei, ∀i, 1≤ i ≤ m− 1. (3.9)

Moreover,

KXm − π∗m
(
KXm−1

) =
 (r − �)Dm, if � |n+ 1

(r − 1)Dm, if � |n
(3.10)

Note that if� |n , then we have to pass throughA(r)
�,�. The additional blow-up which

resolves the singularity of the exceptional locus (so thatϕ : X̃ −→ X fulfills the
snc-condition) has asmooth point on ther-fold as its centre. Consequently, the
discrepancy coefficient ofDm = Dn

�
+1 equalsr − 1 (see [15, p. 187]). Now (3.9)

gives:

KX̃ − ϕ∗ (KX)

=
m−1∑
i=1

(πi+1 ◦ πi+2 ◦ · · · ◦ πm)
∗ ((r − �)Ei)+

[
KXm − π∗m

(
KXm−1

)]
(3.11)

Since

(πi+1 ◦ πi+2 ◦ · · · ◦ πm)
∗ ( Ei) =


m∑
j=i

Dj , if � |n+ 1

m−1∑
j=i

Dj + �Dm, if � |n
(3.12)

for all i, 1 ≤ i ≤ m − 1, the formulae (3.1) and (3.2) follow from (3.10), (3.11)
and (3.12). ��
Remark 3.2. (i) If n+ 1≡ 0(mod�), thenϕ : X̃ −→ X is crepant.

(ii) Obviously,

E(Pr−1
C
; u, v) =

r−1∑
p=0

(uv)p . (3.13)

(iii) To complete the catalogue of theE-polynomials of our exceptional divisors,
it suffices to find out those ofY (r−2)

� (or, equivalently, ofY (r−1)
� ), as we have

E(P(O
Y
(r−2)
�

⊕O
Y
(r−2)
�

(1)); u, v) = E(Y
(r−2)
� ; u, v) · (1+ uv) . (3.14)

(iv) According to the classical Lefschetz Hyperplane Theorem, the Fermat hyper-
surfaceY (r−1)

� has “non-trivial” Hodge(p, q)-numbers only ifp+q = r−1. Next
lemma expresses them by means of the non-central Eulerian numbers of general-
ized factorials (as defined in §1 (e)), and can be easily proven, e.g., by determining
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theχy-characteristic ofY (r−1)
� via Riemann–Roch Theorem (see [19, §2]), or, al-

ternatively, by writing down the exact sequences involving the cohomology groups
of Pr

C
andY (r−1)

� with coefficients taken from the twisted sheaves8
p

Pr
C

(−�) and

8
p

Y
(r−1)
�

(−�), respectively. (Note that both proofs are valid forany smooth hyper-

surface of degree�. On the other hand, the formula for the Euler number is simpler
and can be derived directly by evaluating the highest Chern class ofY

(r−1)
� and

applying Gauss–Bonnet Theorem; see, e.g., [11, p. 152].)

Lemma 3.3. The Hodge numbers of the (r − 1)-dimensional Fermat hypersurface
Y
(r−1)
� of degree � ≥ 2 are given by the formula

hp,q(Y
(r−1)
� ) =

{
S (r, p + 1 | �− 1, p )+ δ2p,r−1, if p + q = r − 1

δp,q, if p + q �= r − 1

Hence, Y (r−1)
� has E-polynomial

E(Y
(r−1)
� ; u, v) = ∑

0≤p,q≤r−1
(−1)p+q hp,q(Y

(r−1)
� ) upvq (3.15)

=
r−1∑
p=0

up
[
vp + (−1)r−1 S (r, p + 1 | �− 1, p ) vr−1−p]

and Euler number

e(Y
(r−1)
� ) =

[
r−1∑
p=0

(−1)r−1 S (r, p + 1 | �− 1, p )

]
+ r

= 1

�

(
(1− �)r+1− 1

)
+ r + 1

(3.16)

Proof of Theorem 1.8. (i) If n + 1 ≡ 0 (mod�) , then Proposition 3.1 and (1.1)
give:

Estr(X; u, v)− E(X�{0}; u, v)

=
m∑
i=1

(uv − 1) E(D◦i ; u, v)
(uv)i(r−�)+1− 1

+
[

m−1∑
i=1

(uv − 1)2 E(D◦{i,i+1}; u, v)(
(uv)i(r−�)+1− 1

) (
(uv)(i+1)(r−�)+1− 1

)]

ButE(D◦1; u, v) = E(Y
(r−2)
� ; u, v) · uv,

E(D◦i ; u, v) = E(Y
(r−2)
� ; u, v) · (uv − 1) , ∀i, i ∈ {2, . . . , m− 1},

(by (3.14)), andE(D◦m; u, v) = E(Y
(r−1)
� ; u, v)− E(Y

(r−2)
� ; u, v),

E(D◦{i,i+1}; u, v) = E(Y
(r−2)
� ; u, v), ∀i, i ∈ {2, . . . , m− 1}.
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Consequently, the differenceEstr(X; u, v)− E(X�{0}; u, v) equals

(uv − 1)E(Y
(r−2)
� ; u, v)[
uv

(uv)r−�+1− 1
+

m−1∑
i=2

uv − 1

(uv)i(r−�)+1− 1
− uv − 1

(uv)m(r−�)+1− 1

]

+ (uv − 1) E(Y
(r−1)
� ; u, v)

(uv)m(r−�)+1− 1
+

m−1∑
i=1

(uv − 1)2 E(Y
(r−2)
� ; u, v)(

(uv)i(r−�)+1− 1
) (
(uv)(i+1)(r−�)+1− 1

) ,
leading to the desired formula via (3.15). Passing to the limit ofEstr(X; u, v), for
u, v → 1, and taking (1.2) and (3.16) into account, one obtains the corresponding
formula for the string-theoretic Euler numberestr(X).

(ii) If n ≡ 0 (mod�) , then 3.1 (ii) and (1.1) give analogously

Estr(X; u, v)− E(X�{0}; u, v)

=
m−1∑
i=1

(uv − 1) E(D◦i ; u, v)
(uv)i(r−�)+1− 1

+ uv − 1

(uv)(m−1) � (r−�)+ r − 1
E(D◦m; u, v)

+
[
m−2∑
i=1

(uv − 1)2 E(D◦{i,i+1}; u, v)(
(uv)i(r−�)+1− 1

) (
(uv)(i+1)(r−�)+1− 1

)]

+ (uv − 1)2 E(D◦{m−1,m}; u, v)(
(uv)(m−1)(r−�)+1− 1

) (
(uv)(m−1) � (r−�)+ r − 1

)
SinceD◦1,D◦2, . . . , D◦m−1 are as in (i), and

E(D◦m; u, v) = E(Pr−1
C
; u, v)− E(Y

(r−2)
� ; u, v),

E(D◦{i,i+1}; u, v) = E(Y
(r−2)
� ; u, v), for all i ∈ {1, . . . , m− 1},

we obtain by (3.13) (3.14):

Estr(X; u, v)− E(X�{0}; u, v) = (uv − 1)E(Y
(r−2)
� ; u, v)

×
[

uv

(uv)r−�+1− 1
+

m−1∑
i=2

uv − 1

(uv)i(r−�)+1− 1
− uv − 1

(uv)(m−1)�(r−�)+r − 1

]

+
(uv − 1)

(∑r−1
p=0 (uv)

p
)

(uv)(m−1) � (r−�)+ r − 1

+
[
m−2∑
i=1

(uv − 1)2 E(Y
(r−2)
� ; u, v)(

(uv)i(r−�)+1− 1
) (
(uv)(i+1)(r−�)+1− 1

)]

+ (uv − 1)2 E(Y
(r−2)
� ; u, v)(

(uv)(m−1)(r−�)+1− 1
) (
(uv)(m−1) � (r−�)+ r − 1

)
The string-theoretic Euler number is examined as in (i).��
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4. Some global geometric examples

TheEstr-function of a complexr-fold V with only k isolated log-terminal singu-
laritiesQ1,Q2, ..,Qk equals:

Estr (V ; u, v) = E (V ; u, v) +
k∑

i=1

(Estr ((V ,Qi) ; u, v)− 1) . (4.1)

In particular, a simple closed formula for the string-theoretic Euler numberestr can
be easily built wheneverV is a (global) complete intersection in a projective space,
equipped with prescribed singularities belonging to the class under consideration.

Proposition 4.1. Let V = V(d1,d2,... ,dN−r ) be an r -dimensional complete intersec-
tion of multidegree (d1, d2, . . . , dN−r ) in PN

C
having only k isolated singularities

Q1, . . . ,Qk of types A(r)
n1,�1

, . . . ,A(r)
nk,�k

with either �i |n i or �i |n i + 1, for all
i = 1, . . . , k. Then its string-theoretic Euler number equals

estr(V ) =
[(

N+1
r

)+ r∑
ν=1

(−1)ν
(
N+1
r−ν

) ( ∑
1≤j1≤···≤jν≤N−r

dj1 · · · djν
)](

N−r∏
j=1

dj

)

+
k∑

i=1

[
estr (V ,Qi)+ (−1)r+1 ni (�i − 1)r − 1

]
, (4.2)

where estr (Y,Qi) , i = 1, . . . , k, are computable via Theorem 1.8.

Proof. By a small deformation ofV one can always obtain a non-singular complete
intersectionV ′ in PN

C
having multidegree(d1, d2, . . . , dN−r ). Using a standard

technique which involves the Mayer–Vietoris sequence (cf. [11, Ch. 5, Cor. 4.4
(ii)]) one shows easily that

e (V ) = e
(
V ′
) + (−1)r+1

k∑
i=1

[Milnor number of (V ,Qi)] .

The Euler number ofV ′ can be computed again by evaluating the highest Chern class
of V ′ at its fundamental cycle (cf. Chen–Ogiue [6, Thm. 2.1]), and is expressible
by the closed formula:

e
(
V ′
) = [(

N+1
r

)+ r∑
ν=1

(−1)ν
(
N+1
r−ν

) ( ∑
1≤j1≤···≤jν≤N−r

dj1 · · · djν
)](

N−r∏
j=1

dj

)
.

(4.2) follows clearly from (4.1). ��
Examples 4.2. Let us now apply (4.2) for some well-known hypersurfaces and
complete intersections.
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(i) Generalizing Hirzebruch’s method of constructing a singular quintic with 126
nodes ([21, p. 762]), Werner defines in [28, pp. 216–217] a hypersurfaceV ⊂ P4

C
of

degree 5 by homogenizing a three-dimensional affine complex variety of the form{
(z1, z2, z3, z4) ∈ C4 | λ g1(z1, z2)− g2(z3, z4) = 0

}
, λ ∈ C∗,

where{gi = 0}, i = 1,2, are plane quintic curves having the three axes and a cir-
cumscribed conic (about the corresponding coordinate triangle) as their irreducible
components (see Fig. 3). Since each of these curves has 3D4-singularities,V (after
homogenization) will have 32 = 9 singularities of typeA(3)

2,3. This means that

estr(V ) = −200+ 9 ·
(
9+ 24− 1

)
= 16.

In fact,estr(V ) = e(Ṽ ) = 16, whereṼ → V is the crepant desingularization ofV

arising from a single simultaneous blow-up of the 9 singularities (cf. 3.2 (i)).Ṽ is
obviously a 3-dimensional Calabi–Yau manifold.

Fig. 3.

(ii) The(N − 1)-dimensional Goryunov’s quartics [13]:

Vκ :=
[z1 : .. : zN+1

] ∈ PN
C

∣∣∣∣∣∣2 (κ + 1)
∑

1≤i<j≤N+1
z2
i z

2
j + κ

( ∑
1≤j≤N+1

z2
j

)2

= 0


(N ≥ κ, N ≥ 3, κ ≥ 0) have 2κ

(
N+1
κ+1

)
A1-singularities (A(N−1)

1,2 -singularities, in
our notation), and string-theoretic Euler number

estr(Vκ) = 1

4

(
(−3)N+1− 1

)
+N + 1

+ 2κ
(
N+1
κ+1

) [( 1

N − 2

(
1

2

(
(−1)N − 1

)
+N

)
+ (−1)N − 1

)]
.

Note that, e.g., forN = 5, the string-theoretic index of the underlying space of
each of the singularities is 3> 1, whereas the string-theoretic index indstr(Vκ) of
Vκ can be equal to 1 (forκ ∈ {0,1,3,4}).
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Table 1.

n 4 5 6 7 8 9 10 11 12 13 14 15

estr(V ) 8 6
27

4

96

13

160

19

120

13

175

17

480

43

648

53

105

8

539

38

1344

89

(iii) The(n− 2)-dimensional Segre–Knörrer complete intersection of two quadrics

V := {
z = [

z1 : z2 : . . . : zn+1
] ∈ Pn

C

∣∣ tz M z = tz M ′ z = 0
}
, n ≥ 4,

whereM andM ′ are the(n+ 1)× (n+ 1)-matrices:

M =



0 0 · · · · · · 0 1
0 0 · · · · · · 1 0
...

... · · · · · · ...
...

0 0 · · · · · · 0 0
0 1 · · · · · · 0 0
1 0 · · · · · · 0 0


, M ′ =



0 0 0 · · · 0 0
0 0 0 · · · 0 1
...

... · · · · · · 1
...

0 0 0 · · · 0 0
0 0 1 · · · 0 0
0 1 0 · · · 0 0


,

hasQ = [1 : 0 : · · · : 0 : 0] as single isolated point which is of typeAn (i.e.,
A(n−2)
n,2 in our notation, see [23, p. 48]). According to (4.2), the string-theoretic

Euler number ofV equals

estr(V ) =
n−2∑
ν=0

(−1)ν 2ν+2(n+1
ν+3

)
(ν + 1)+ estr (V ,Q)+ (−1)n−1 n− 1

= n− 1+ estr (V ,Q) ,

with

estr (V ,Q) =


(n−1)2

n2−3n−2
, if n odd

(n−2)(n+1)
n(n−4)+(n−2) , if n even

Forn ≤ 15, estr(V ) takes the values shown in Table 1.

(iv) Werner’s 3-dimensional complete intersection of a cubic and two quadrics

V :=

[z1 : z2 : ... : z7] ∈ P6
C

∣∣∣∣∣∣∣∣∣∣

4∑
i=1

z3
i =

7∑
j=2

z2
j

=
3∑

i=1
i z2

i+1+
6∑

j=4
(j − 3) z2

j+1 = 0


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has 4 singularities of typeA(3)
2,3 at the points

[
0 : 0 : 0 : 0 : ±1 : ±√−2 : 1

]
and

18 singularities of typeA(3)
1,2 (i.e., nodes) at the points[−ζ j3 : 1 : 0 : 0 : ±√−1 : 0 : 0

]
,
[− ζ

j
3 : 0 : 1 : 0 : 0 : ±√−1 : 0

]
,[−ζ j3 : 0 : 0 : 1 : 0 : 0 : ±√−1

]
,

j = 1,2,3, whereζ3 is a primitive third root of unity (see [28, pp. 221–222]). Its
string-theoretic Euler number equals

estr(V ) = −144+ 4 ·
(
9+ 24− 1

)
+ 18 · 2= −12= e(Ṽ ),

whereṼ is a Calabi–Yau threefold which arises after a crepant desingularization
of V coming from the simultaneous (usual) blow-up of the 9A(3)

2,3-singularities and
an appropriatesmall, projective resolution of the 18 nodes.

(v) Let V = V1 ∩ V2 ∩ · · · ∩ VN−r ⊂ PN
C

be a complete intersection of Fermat
hypersurfaces

Vi =
{[

z1 : . . . : zN+1
] ∈ PN

C

∣∣∣∣∣ N+1∑
j=1

bij z
d
j = 0

}
, 1≤ i ≤ N − r,

of degreed, 2 ≤ d ≤ r, and assume thatV is r-dimensional, i.e.,

rank
(
(bij )1≤i≤N−r,1≤j≤N+1

) = N − r.

Further, consider the map

:d : PN
C −→ PN

C ,
[
z1 : . . . : zN+1

] �−→ [
zd1 : . . . : zdN+1

]
= [

ξ1 : . . . : ξN+1
]
.

:d displaysPN
C

as adN -sheeted ramified covering of itself, branched along the
coordinate axes{ξj = 0}. On the other hand,

:d (Vi) =
{[

ξ1 : .. : ξN+1
] ∈ PN

C

∣∣∣∣∣ N+1∑
j=1

bij ξj = 0

}
, 1≤ i ≤ N − r,

and:d (V ) ∼= Pr
C
⊂ PN

C
. Now if

Lj := {ξj = 0} ∩:d (V ) ⊂ Pr
C, 1≤ j ≤ N + 1,

denote byM (
PN

C

) = C (z2/z1, . . . , zN+1/z1) the rational function field ofPN
C
,

and let

M
(
PN

C

)(
d

√
ψ2

ψ1
, . . . , d

√
ψN+1

ψ1

)

be the Kummer extension ofM (
PN

C

)
determined by adjoining “d-th roots of ratios”,

whereψj is the linear form defining the hyperplaneLj . This is an abelian extension
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with Galois group(Z / dZ)N . The varietyV can be thought of as the normalization
of PN

C
w.r.t. this field, as being the total space of thedN -sheeted covering

:d |V : V −→ Pr
C

of Pr
C
, branched along theLj ’s. The hyperplane arrangement

L :=
N+1⋃
j=1

Lj =


N+1∏
j=1

ψj = 0

 ⊂ Pr
C

admits a natural stratification

L = L(1)⊃L(2) = ⋃
1≤j1<j2≤N+1

Lj1,j2 ⊃ · · · ⊃ L(r) = ⋃
1≤j1<j2<···<jr≤N+1

Lj1,j2,... ,jr

where

Lj1,j2,... ,jk := Lj1 ∩ Lj2 ∩ · · · ∩ Ljk
∼= Pr−k

C
⊂ Pr

C, 1≤ k ≤ r.

(L(r) consists of thepoints of L, L(r−1) consists of thelines of L, etc). Let us now
define

ti := ti (0) := #

{
elements ofL(r) (i.e., points ofL)

contained in exactlyi hyperplanes ofL

}
and, in general,

ti (κ) := #

{
elements ofL(r−κ) contained

in exactlyi hyperplanes ofL

}
, 0 ≤ κ ≤ r.

L is called apoint arrangement if

ti (κ) = 0, for all i > r − κ and for all κ ∈ {1, . . . , r − 2}.
TheV ’s defined by means of point arrangements have at most isolated singularities;
more precisely, by analogy with the two-dimensional case (cf. [20]),V inherits
exactlydN−i isolated singularities over each point ofL contained ini ≥ r + 1
hyperplanes. In particular, for point arrangementsL within Pr

C
, for which

ti = 0, ∀ i, i ≥ r + 2,

all singularities ofV have to beA(r)
d−1,d -singularities. In this case, formula (4.2)

reads as follows:

estr(V ) =
[

r∑
ν=0

(−1)ν
(
N+1
r−ν

) (
N−r+ν−1

ν

)
dν+N−r

]
+

+ tr+1 · dN−r−1 ·
(

1

r − d + 1

[
1

d
((1− d)r+1− 1)+ r + 1

]
+ (−1)r+1 (d − 1)r+1− 1

)
. (4.3)
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For r = 3, several combinatorial properties of hyperplane arrangements inP3
C
,

as well as properties of birational geometry of the resulting coverings, have been
studied by Hunt [22]. As far as point arrangements are concerned (witht4 ≥ 1,
t5 = t6 = 0) there are some interesting and aesthetically pleasing examples, given
by the facet planes of certain regular (platonic) and semiregular (archimedean)
solids (see Fig. 4). For these point arrangements, formula (4.3) gives the results in
Table 2.

a) b)

c) d)

e) f)

Fig. 4. a) Cube;b) Octahedron;
c) Trunctated Tetrahedron ((3,6,6)-solid); d) Trunctated Cube ((3,8,8)-solid);
e) Trunctated Octahedron ((4,6,6)-solid); f ) Trunctated Cuboctahedron ((3,3,4)-solid)

Examplesa) (with d = 3) andb) (with d = 2) were first mentioned by Hirze-
bruch [21, pp. 764–765], who used them to construct 3-dimensional Calabi-Yau
manifoldsṼ with Euler number 72 (resp., 64) by a “big” (resp. “small”, projective)
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Table 2.

Solids N t3 t4 = 1
4

[(N+1
3

)− t3
] estr(V )

(for d = 2)
estr(V )

(for d = 3)

a) 5 8 3 12 72

b) 7 8 12 64 −324

c) 7 32 6 −32 −4212

d), e) 13 256 27 −111 616 −68 496 840

f) 13 208 39 −99 328 −62 828 136

crepant resolution of the 9 (resp., 96) singularities ofV (cf. the remarks in [28,
p. 219]).

Acknowledgements. The author would like to express his gratitude to Nobuyuki Kakimi
(University of Tokyo) who informed him about some “missed” extra factors of the discre-
pancy coefficients (cf. (3.1), (3.2)) in a previous version of the paper. The particular form of
these coefficients led to the counterexamples which are mentioned in 1.9.
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