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Abstract. Anexplicitcomputation of the so-called string-theoretic E-functig (X; u, v)

of a normal complex variet¥ with at most log-terminal singularities can be achieved by
constructing one snc-desingularization Xf accompanied with the intersection graph of
the exceptional prime divisors, and with the precise knowledge of their structure. In the
present paper, it is shown that this is feasible for the case in wXich the underlying
space of a class of absolutely isolated singularities (including both ésuaingularities

and Fermat singularities of arbitrary dimension). As byproduct of the exact evaluation of
estr (X) =1limy, .1 Esir (X; u, v), for this class of singularities, one gets counterexamples
to a conjecture of Batyrev concerning the boundedness of the string-theoretic index. Finally,
the string-theoretic Euler number is also computed for global complete intersectﬂBﬁs in
with prescribed singularities of the above type.

1. Introduction

The so-calledEsy-polynomials Esy (X; u, v) of normal complex varietieX with

at most Gorenstein quotient or toroidal singularities were introduced in [5], and
were used as main tools in [5] and [3] for the proof of several mirror-symmetry
identities. More recently, Batyrev [1] generalized this notion alsdsfsrhaving at

most log-terminal singularities, by introduciriggy,-functions instead which may

be not even rational. These new invariants have already found lots of applications
in the study of log-flips and of conomological McKay correspondence. (See [2, 1.6,
4.11 and 8.4] and [9, Thm. 5.1].)

In the present paper we give explicit formulae for the evaluation of the function
Esir (X; u, v) for thoseX's which are the underlying spaces of two special series
of Afl’))e—si ngularities (see below (d) for the precise definition) by constructing an
appropriate snc-resolutiap : X — X, by examining the nature of the arising
exceptional prime divisors and, finally, by computing thgirpolynomials. (In [7]
this was carried out for all three-dimensioaD-E singularities).
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(a) Log-terminal singularities. Let X be a normal complex variety. Suppose that
X isQ-Gorenstein, i.e., that a positive integer multiple of its canonical Weil divisor
K x is a Cartier divisorX is said to have at mobg-terminal (respectivelycanon-

ical /terminal) singularities if there exists asmc-desingularizatiorp : X — X,

i.e., a desingularization of whose exceptional locu& (¢) = U/, D; consists

of smooth prime divisor®1, Do, ... , D, with only normalcrossings, such that

m
the “discrepancy” w.r.ty is of the formKg — ¢* (Kx) = ) a; D;, with all the

i=1
a;'s > —1 (= 0/> 0). These inequalities do not depend on the particular choice
of .
(b) E-polynomials. Deligne proved in [8, 88] that the cohomology groups
H' (X, Q) of any complex varietyX are endowed with a naturatixed Hodge
structure (MHS). The same remains true if one works with conomologigsX, Q)
with compact supports. There exist namely an increasing weight-filtratipand
a decreasing Hodge-filtration df’ (X, Q) (resp.HC" (X, ©)) which induces a
natural filtration7* on the complexification of the corresponding graded pieces
Gr)Y*(H' (X, Q) (resp.Gr)"* (H! (X, Q))). Let
WP (H' (X, ©)) = dimeGriGr)Y (H' (X, ©))
(resp.h?(H! (X, C)) := dimcGri Gr)¥e (H! (X, ©)))

denote hereafter the correspondiigdge numbers. The so-calledt-polynomial
of X is defined to be

EX;u,v):= Z eP1(X) uPv? € Z[u, v],
Pq

wheree?d (X) 1= Y ;.o (=)' hP4(H] (X, C)). (If we setu = v = 1, then
E (X; 1, 1) equals the usuabpological Euler characteristie(X) of X.)

(c) Eqr-functions. To pass to string-theoretic invariants, one takes essentially into
account the “discrepancy coefficients”.

Definition 1.1. Let X be a normal complex variety with at most log-terminal sin-

gularities, ¢ : X — X an snc-desingularization of X asin (a), D1, D2, ..., Dy
the prime divisors of the exceptional locus,and I := {1, 2, ... , m}. For any subset
J C I define
X, if J=0
D; = and D5:=D;~ | J D,
Njes Dj. 1T #02 jelsJ
The algebraic function
uv—1
ESU (X, u, U) = Z E (D;, u, U) 1_[ T_’L (11)
Jci ey (V) -

(under the convention for ]_[jej tobel,if J = @, and E (&; u, v) := 0) iscalled
the string-theoretic E-function ( or simply Esy-function) of X.
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The major result of [1] says that:

Theorerrl 1.2. Esy (X; u, v) isindependent of the choice of the snc- desingulariza-
tiong : X — X.

Remark 1.3. (i) Though the string-theoretic functidfsy (X; u, v) enjoys this par-
ticularly important invariance property, tvaluate it by (1.1) one needs not only

the existence of (at least one) snc-desingularization (which is guaranteed, e.g.,
by Hironaka’s main theorems [18]), but also the precise knowledge of what kind
of exceptional prime divisors are available on the corresponding smooth model,
and which are their intersections. In general, there are several ways to resolve
log-terminal singularities, involving different choices for the centers of the modi-
fications of X and, sometimes, necessary extra normalizations, blow-ups of non-
reduced subschemes etc. For this reason, a first realistic attempt to understand the
behaviour of (1.1), from the computational point of view, cannot overlook the class
of absolutely isolated singularities, i.e., isolated singularities resolvable by a finite
sequence of (usual) blow-ups of closed points, for which one may keep the needed
details (strict transforms after each step of the resolution procedure, snc-condition
etc.) under control.

(i) Itis also worth mentioning that the “first summand” in (1.1), i.e., o= @,
equals

E(X Uy Djiu,v) = E(X \ SIng(X); u, v)

(where SingX) denotes the singular locus X). This means that it can be described
exclusively by the study of topological propertiesXf‘around” the singularities
without involving any resolution data.

Definition 1.4. The rational number

esir (X) = u'LrﬂlEstr(X§ u,v) = Z E(Dj) l—[

JCI jeJ

1
- (1.2)
aj + 1

iscalled the string-theoretic Euler number of X. Moreover, the string-theoretic
index indsyy (X) of X isdefined to be the integer

indsgr (X) := min{ l€Zx=1

1
estr(X) (S] 7Z }

Examples 1.5. (i) For Q-Gorenstein toric varietieX, indsy (X) = 1, andesy (X)

is equal to the normalized volume of the defining fan. Moreover, for Gorenstein
toric varietiesX, Esy (X; u, v) is a polynomial (cf. [1, 4.4 and 4.10]).

(i) Normal algebraic surface® with at most log-terminal singularities have string-
theoretic index ingl (X) = 1. There exist, however, normal complex varieties
X of dimensiond > 3 with at most Gorenstein canonical singularities having
indstr (X) > 1.

Batyrev’s conjecture [1, 5.9], concerning the range ot ), can be stated as
follows:
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Conjecture 1.6 (Boundedness of the string-theoretic index). Let X be an--dimens-
ional normal complex variety having at most Gorenstein canonical singularities.
Then indy (X) is bounded by a constatt(r) depending only on.

As it turns out (see below Remark 1.9), and in contrast to initial expectations due
to some classes of examples (see, e.g., [1, 5.1, 5.10] for the case of cones over
certain smooth projective Fano varieties), conjecture 1.6 is not true in general.
Nevertheless, the characterization of those classégspfwhich admit bounded
string-theoretic indices, remains an unsolved problem.

(d) TheA(’ s. We define the- dlmen3|onalA(’)€ -singularities as those isolated
hypersurface singularities which have underlying spaces of the form

X", := SpedC[x1.... . x41] / (f)),

wherer, n, £ are integers, such that> ¢ > 2, n+1 > ¢, and

f(xl,...,xr+1):=x"+l+x2+x3+~--+xf+l . (1.3)

These are obviously singularities &rieskorn-Pham type. In addition, by our as-
sumptions about ¢ andn, they arecanonical (see Reid [25, Prop. 4.3, p. 297]). The
notation is chosen in this manner to remind that they include, in particular, both sub-
series of usuat-dimensionalA,-singularities Aflf)z’s) and of Fermat singularities

(A(f) 1e S)

(e) Some auxiliary combinatorial functions. At first, for p,q € Zso, let us
denote Kronecker’s symbol by

5 — 1, if p=g
P4 10, if p#£g.

e Next, fixingr, £ andn, as in(d), we setd := lcm(n + 1, £). and define three
functionsa, b andc : Z>o — Zso by

n—1
Zsozir—a()= ) 8 pa, (1.4)
p= =0 ’n n+i

by the multinomial coefficients

(vl,ug,.’j.,w_l)’ If %] # %)
Z>03 j > b(j) =1 Ly ,v-1)€B; (1.5)
o, otherwise
(with (Ul,vz,f_’wil) = W) and by the convolutional formula

Zeo3k—ck)= Y  a(@) b, (1.6)
(i, /)€
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where for eacly € Zxo,

vi+vat-e- v =r
and (whenevet > 3) ,
d(va+2v3+- -+ (U =2 vp_1)=j¢

B o= (v, v2, ... v1) € (Z20) 7t

and for eaclk € Z>q, € := [(i, j) e (Zzo)2 li+j= k}.
e Finally, for any four-tuple(x, A, v, £) € (Zzo)4 with « > A, let us recall the
definition of thenon-central Eulerian numbers & (x, A | v, &) of generalized fac-

torials (with translation summangl). These are the coefficients which occur in the
development of

(u~tK+,E) _ i S, A |v, &) (t+'f(<_k)

A=0

and satisfy the recurrence relation

K+ SK+LA|v,E)= WA—k+&E Sk, A |v,E)
+ Wk —A+D)4+x—-&ESK,A—-1]v,§)

with initial conditions® (0, 0 | v, &) = 1and® («, 0 | v, &) = (}). Infact, it can
be shown that

)( o
G(K,)» | l),%') = Z (_1)]’ (K}rl) (U(A,KJ)JFS)‘
j=0

(f) Main results. We can now state the main results.

Proposition 1.7. Let X = X,(,’ZZ be the underlying space of the Aff}z singularity.
Then the E -polynomial E (X~{0}; u, v) equals

r—2
(uv —1) {l—l— wv) "1+ Z ((uv)p + (=" C(d (p + # — %)) uP vr_p_1>:|

p=1
(1.7)
(with the c-function as defined in (1.6)).

Formula (1.7) provides the “first summand” of theg,-function of X. On the other
hand, if ¢ divides eithern or n 4 1, Afﬂjs are absolutely isolated (see below

Proposition 3.1), and thEgy-function of X ,(l’ i’s is computed as follows:
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Theorem 1.8. If the integer ¢ divides either n or n + 1, then the Eg-function of

X = X(’e is given by the formula

Cases Estr(X;u,v)

E (X~{0}; u,v)

+ v —1) ( uv + Z uv—1 uv—1

(uv)' ™~ N =L _q 1 (uu)'(’ D+1_q (uu)m(r—l)+1_1

mi:l uv—1
O e e [T

p=0

r—2
x [Z uP (WP + (=126 -1, p+1]t—1p)v 2P

r=1
+ et [Z uP (0P + (-1 LS (r p+11£—1,p) v’—l—ﬂ)}
p=0

|

. -1
E(X~{0}; u, v) + (uv)(mglﬁlz(r—l)Jrril
m—1 1
Uuv—
oy~ z+1 1 + Z (o) DI

+ (uv —1) (

_ uv—1 — uv—1
£in ()M DEC=0Fr 1 § ((L¢L)’(’ Jr]'71)((uL')("Jr]')("’l)*:lfl)

+ uv—1
((uv)(m—l)(r—iHl_l)((uv)(m—l)i, (r—8)+r_l)

r—2
X [Z ub WP+ (=" 26 -1 p+11L—-1p) v"zl’)}
p=0

In particular, for the string-theoretic Euler number we obtain:

Cases estr (X)

aer [ (A—07 =1) +r]

+arepr 1A= 0™ =D 4 r +1]

lin+1

(m—1)¢ 1 r
Lln (mfl)lr(rfé)Jrr + (rfk)r?mfl)éjrr [Y ((l -0 = 1) + r]
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The above number m is defined to be

_ {# if n+1=0(mode) L8)

7+ if n=0(mod¢)

Remark 1.9. Counterexamples to conjecture 1.6 occur already’fer 2, as we
have:

m@r—1)+2 _ n@r—1)+r+3
m(r—2)+1 — n(r-2)+r °

if both n andr are odd

mr _ r(n+1) ; ;
. (X(’)> _ | o271 = 02 if n is odd and- even
SU\n2) = ) 2n--D+r _ r—Dntr

if n is even and odd

2m—=1)(r—=2)+r — (r—2n+r’

(2m—Lr _ r(n+d
2m-1)(r—2)+r — (r—2n+r’

if both n andr are even

For instance, in dimensian= 3, we obtain:

lim _indsir (X1%) = oo,

n—00, n even

On the other hand, fall oddn’s, estr(X,(f)z) =2and inqtr(Xff)z) =1

2. On the MHS of the cohomology groups of links

At first, we shall exploit the fact tha%f:)z’s are quasihomogeneous singularities,
and show that Proposition 1.7 is a byproduct of a more general result concerning
isolated singularities of this sort. (See below Proposition 2.8).

(a) Links and Milnor fibers. Let (W,0) < (CV,0) be the germ of a complex
analytic setW having pure dimension+ 1 and the origin as isolated singularity.
Assume thatf : W — C is a holomorphic function, such that|w\{0} is non-

singular. ObviouslyX := f~1(0) is a complex analytic subset & of pure
dimensionr with the origin as isolated singularity. Lét := L(X,0) :=S, N X
denote itdink, whereS, := {ze CV | |z| = ¢ },0 < ¢ « 1. Lisadifferentiable,
compact, oriented manifold of dimension 2 1, and there are isomorphisms:

HTL (X, X {0},Q) = H (X~ {0},Q) = H' (L,Q). (2.1)

If B, is the open ball witld as its center ane as its radius, where < ¢’ « 1, it

is known that the map
f|B8/ﬁf*1(D,’;) :Be N fTHD;) — D

determines a differentiable fibre bundle, wh@&g := {r € C |0 < |t| <} is

a small punctured disc i€ with 0 < o < ¢. Let F = F; be the corresponding

fiber, the so-calledafpen) Milnor fiber. The study of the relation between the MH-

structures of the cohomology groupslofand F relies on certain corollaries of a

theorem of Steenbrink [27, (2.3)] and Hamm [17, Thm. 1.6.1]. (The coefficients of

the cohomology groups are always taken fr@m
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Theorem 2.1 (Steenbrink—Hamm). For all i, there existsan exact MHS-sequence:
o — H™Y(L) — H! (F) — H'(F) — H' (L) — -

Corollary 2.2. We have the following exact sequence and isomor phisms of MHS

() 0— H Y (F)— HY(L)— H! (F)— H'" (F)
— H'(L) — H/TY(F) - 0,

(iy H (L)= H'(F), forali<r—1,

@iy H'-Y(L)y = H! (F), for all i >r—1.

Proof. SinceB,: is a complex Stein manifold; is a complex Stein manifold too.
Hence,F has the homotopy type of a CW-complex of real dimensi¢see [16]),

which means thaH!(F) = HCZH'(F) = 0 for alli > r + 1. The exactness

in (i) and the existence of MHS-isomorphisms (ii) and (iii) follow from the long
exact sequence of Theorem 2.1, combined with the vanishing of these cohomology
groups. O

Coroallary 2.3. For all p, ¢, the Hodge numbers of the two “ middle” cohomology
groups of F satisfy the equalities:

hP4(H' (F)) = h?1(H"Y(F)) + h?4 (H. (F)) — P4 (HTH(F))
+hP4(H"(L)) — hP1(H"Y(L))
= hP 9 (H" Y (F)) +h"~P"1(H" (F)) — k"~ P 1(H"}(F))
+hP4(H" (L)) — hP1(H"Y(L))

Proof. The first equality is obvious by 2.2 (i), and the second one follows from
Poincaré duality. O

Proposition 24. I1f N = r + 1, W = C"*! and (X, 0) is a purely r-dimensional
isolated hypersurface singularity, with » > 2, then the only “ non-trivial” Hodge
numbers of the cohomology groups of itslink L = L(X, 0) are

WP 9(H Y (L)) = k" ~P""9(H" (L)), withp +¢ <r — 1,
as we have:

(i) hP9(H'(L)) =0, for all p, g whenever i ¢ {0,r —1,r, 2r —1}.
(i) hP2(HO(L)) =1, for p =¢q =0, and = 0, otherwise.
(i) AP 2(H¥~Y(L)) =1, for p =q =r, and = 0, otherwise.
(iv) kP4 (H""X(L)) = h"=P"=4(H" (L)), for all p.q,
and equals O whenever p + ¢ > r — 1.

Proof. Lis(r — 2)-connected (cf.[24, Thm.5.2]), and the local Lefschetz Theorem
gives (i), (i) and (iii) becausé&f’ (L) = 0 for all indicesi ¢ {0,r — 1,7, 2r — 1}

and HO(L) = H#~1(L) = C. For (iv) use Poincaré duality and the fact, that
the natural MHS orH’ (L) has Weightﬁr;/v‘(H" (L)) = 0forj > i (by the
Semipurity Theorem, cf. [27, Cor. (1.12), p. 518])x
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(b) Quasihomogeneousisolated singularities. A polynomial
feC [xl, X2, ... ,x,+1]
is quasihomogeneous of degreed with respect to theveights

W= (Wi,... ,Wrt1) € (Zzl)rJrl

f (A%, A gg) = A9 f(va, ..., x41), YA, A e CR
Hereafter we consider such ghassume that > 2 and that
Xpo={G1 ..., x40 €C | fxn, ..., x041) =0}
has no other singularities théne C"*+1. Note that the Milnor algebra

u L)

ax1’ " x4

M (f) :=<C[X1,X2,-~,xr+1] / (

associated tgf is a gradedC-algebra of finite type (with de@q;) = w;, i =
1,...,r 4+ 1) whose Poincareé serié% ) (t) equals

Pucp) (1) =Y _ dimg (M (f);) &*

k>0
. (1 — td*wl) (1 — td*w2) - (1 _ td*wrﬁ-l)
- (L—rw1) (1 —¢w2)... (1 — wred)

2.2)

(cf. [10, (7.27), p. 112]). Next, we define thygpiasismooth weighted projective
hypersurfaces

Z= {[xo X1 :x,+1] € ]Pg'l(l, W) | f(x0,...  Xrp1) = 0}

wheref (xq, ..., X, 41) 1= xg — f(x1,...,xr41),and
Zoo:{[xo:xl:...:x,+1] eZ | xo:0}
= {[x1: i xsa] €PEW) | f (k1. xr41) = O}
We have
M(F) =M eClxl /(572 (2.3)

and the map(x1, ..., x,41) —> [1:x1:...:x.41] induces a diffeomorphism
between

F={(1....,%40)eCT | fxn ... x40 =1}

151
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and the complemenf <. Z.,, where thisF is diffeomorphic to the (usual) Mil-
nor fiber of the singularityX ¢, 0) (see [11, (1.13), p. 72]). Moreovef, has the
homotopy type of a bouquet of (f) r-spheres, with

. r+1 /4
n(h = im0 =1 (£ 1) @4

Wi

i=

denoting the correspondirigilnor number. The primitive cohomology groups of
Z~ are defined by the exact sequence

0— H''PL W), C) — H Y (Zoo, C©) —> Hyit (Zoo, ©) —> 0.

Since bothP{, (w) andZ . are orbifolds, they are equipped with pure Hodge struc-

ture, and therefore botH"~1(Z,, C) anngri*n% (Zoo, C) decompose, say as

H ™ (Zoo.O)= @ H" (Zoo), Hyjin (Zoo. ©) = @D Hiitt (Zoo)
p+q=r—1 p+qg=r—1

(The same is also valid de[’prim] (Z,0)).

Lemma 2.5. For the Milnor fiber F of (X ¢, 0) we have
() hP2(HO(F,C)) =1, for p=¢ =0, and = 0, otherwise

(i) H (F,C)=0, foralli ¢ {0, r}.

(i) h?7 (H" (F,C)) =0, for p+q ¢ {r.r +1}.

(iv) hP"=P (H" (F,C)) = hgr’im P(Z)y=nPr=P(Z) =8y ,—p, fOr0O<p=<r.

(v) hPr =P (H" (F,C)) = h;’,}ﬁ”_” (Zoo) = hP™E 7P (Zoo) = 8p—1r—p,
forl<p<r.

Proof. (i) This follows from 2.2 (ii) and 2.4 (ii).

(i)—(v). Atfirst note thatH P-4 (P(. (w)) (resp.,H "4 (IP’Erl (14, w)))is= C, when-
everp = ¢, and= 0, otherwise. As Steenbrink points out in [26, p. 216], there is
an exact MHS-sequence of Gysin-type:

5 HU(Z,C) = H (Z~Zoo,C) > H™1(Zoo, ) (-1) -5 HFL(Z,C) > - --
By the Weak Lefschetz Theorem [12, 4.2.2], the homomorphism
HP (Zog) — HPTTL (P (w)) [resp.HPY (Z) — HPHPL (1, w))]

is an isomorphism fop + g > r — 1 (resp.,p + ¢ > r) and an epimorphism for
p+q=r—1(esp.p+q =r). Thus,d is an isomorphism for all ¢ {0, r},
proving (ii). Moreover, since

0, if j<r

Wi (H(F.©) = iH’ (F,C), ifj>r
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i.e.,Gr]W’ (H" (F,C)) =0, for j ¢ {r, r + 1}, (cf. [8, 88.2]), (iii) is obvious, and
the above exact MHS-sequence gives the isomorphisms

W, (H" (F,C)) =Im(H" (Z,C) — H" (Z~Zx,C))
~ CoKer(H’*Z (Zoo, ©) (=1) —> H' (Z, C))
~ c:oKer(H’(Pgl (Lw) — H' (Z, C)) = Hlyn (Z.©)
and
GrYYs (H' (F,©)
— H" (Z~Zeo, C) /Ker(H’ (Z~Zoo, C) —> H""1(Zo, C) (—1))
~ Ker (H”l (Zoo, ©) (1) —> H™*1(Z, C))
= COKer(Hr—l(P{C W), C)(=1) — H ™ (Zs, C) (—1))
= H}iim (Zoo, ©) (1),
respectively, proving (iv) and (v).O
Theorem 2.6 (Griffiths-Steenbrink). If (X, 0) is an r-dimensional isolated
guasihomogeneous hypersurface singularity of degree 4 wr.t. the weights
wi, ..., Wrt1, then
—1,r— ~
Hyim " (Zoo) = M () pa—(uwit..w,41) -
Hence,

d-1

hP"=P (H"(F, ©)) = Y dime (M (f) pa—qurt. 4wy 10)+)
i=1

hp+l’r_p (Hr (F, (C)) = dimc (M (f)(p+1)d—(w1+4..+wr+1)) :

Proof. Extending Griffiths’ results [14] to the case of weighted homogeneous hy-
persurfaces, the global sections of the sheaves

p _ oP
QIP’KC(W)(ZOO) - QP(C(w) ® OJP’{C(W)(ZOO),

(2.5)

as well as the graded pieces of middle cohomolog§otw) . Z.., are described
by means of special auxiliary differential forms with poles alahg. In particular,

g S0

HO(PE W) . Q) (Zoo)) = {

8 € Clxy, ..., xr+l]d—(w1+...+wr+1)} s

where
r+1
Qo = Z (=D wixidxiA---ANdxi A+ Adxpya,
i=1
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and

Grip(H" (Pe (W) \Zoo, ©)) = H'™P (P (W), Qg () (109 Zoo)

- HO®E (W), @y ) ((r = p = DZo0))
 HO®L (W) . Q) (7= P) Zoo)) + DCHOPL W) . Qi (7= P) Zoc))

(0 denotes the corresponding differential operator). Since the map
@
HO®GE W), @y ) (= p = DZ00)) —> CLx, s X2 )r— pt D —(wn 4 n)

8- 20
fr7p+l

defines an isomorphism, and

HOPE (W) . Q) (7 = P)Zoo)) + 0 (HO®L (W) . Q) (7 = P)Zoo)))

has

()
3)61’ Y ax"+l (r—p+1)d—(wi+...+wr41)
as its image unded (see [4, §11]), we get
Griro(H"(PL (W) \Zoo, ©) = M (f)r— p4dyd—(wrt..twpsn) -

Using Hard Lefschetz Theorem one deduces the exact MHS-sequence:

0— H 2(P%. (w),C) — H"(PL (w),C)
— H" (P} (W) \Zoo, C) > H'-1(Zs, C) — 0,

prim
giving
Hi 0 (Zoo) = M (f) =M (f)
prim o) — (r—p)d—(wi+...4+wry1) — (p+1)d—(wi+...4+wp41) *

Formulae (2.5) follow from Lemma 2.5 (iv), (v), and (2.3)x

Lemma2.7. If (X r, 0) isan r-dimensional isolated quasi homogeneous hypersur-
face singularity with L asitslink and F asits Milnor fiber, then

P <H”1 (L, (C)) — 0, whenever p+q #r — 1,
and the “ non-trivial” Hodge numbers of the cohomology groups of itslink L are
T (BN L, ©)) = WP P (HT (L, ©) = hPHYP (BT (F,C)  (2.6)

for p=0,1,...,r — 1, and can be therefore read off from (2.5).
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Proof. If p+¢q ¢ {r — 1, r + 1}, then by 2.3, 2.4 (iv) and 2.5 (i), (iii), we obtain
R'—Pr—4q (Hf—l (L, (C)) — hP4 (HI” (L,C)) = hP4 (Hr—l (L,C)) =0,

because the corresponding Hodge numbe#s’of! (F, C) andH’ (F, C) vanish,
andp+qg <r—1(resp.=r | >r+1)iff r —p)+ @ —¢q) > r + 1 (resp.,
=r| <r —1).0Onthe other hand, f + g € {r — 1,7 + 1}, Cor. 2.3 gives:

hP4H"YL, C) — P4 H" (L, C)=h""P""9H"(F,C) — h"IH"(F, C)).
2.7)

If p+¢g =r—1, the Hodge numbens”-4(H" (L, C)) = ' —Pr=a(H (L, C))
vanish by 2.4 (iv). Analogously;”¢ (H"~1(L, C)) vanishes wheneves + g =
r + 1. Finally, (2.6) follows from Lemma 2.5 (iii) and (2.7).0

Proposition 2.8. If (X ¢, 0) isanr-dimensional isolated quasi homogeneous hyper -
surface singularity of degreed w.r.t. theweightswy, ... , w,4+1, and L itslink, then
the E-polynomial E (X s~{0}; u, v) equals

r—1
(uv —1) |:Z ((uv)'” + (_1)r—l h[l,r—l—p(Hr—l(L’ C)) u? vr_,,_l):|

p=0
(2.8)

and its coefficients are therefore computable in terms of 4 and w1, ... , w,y1 via
(2.6)and (2.5).

Proof. Using (2.1) and Poincaré duality, we obtain:

hP4(H' (L, C)) = h?9(H" (X ;~{0}, C)) = h¥= P49 (g2~ (X y~.{0}, C)).

Hence,
E (X ~{0}; u,v) = (uv)" E (L; u 'l vil) . (2.9)

On the other hand, Proposition 2.4 gives

E(L;u,v) = Z eP4(L) uP vl
0<p.g=<r

- ¥ [hp"f(HO(L))—h”"’(HZ’_l(L))] uP v
0<p.g=r

+-pt Y [hp’q(H”l(L)) —h”"’(H’(L))] uP v
0<p.g=r

- ¥ [hM(HO(L))—hM(HZr*l(L))] uP vl
O<p.g=r

+ (Y [y = PR | el v
O<p.q=r
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=1— @) + D Y RPIHT L))
0<p.g=r

+ (DY RTPTHTT L)) v

0<p.g=<r

=1— (uv) + (-1t > P HTHL) U

O<p.,g=<r-1
O<pt+g=r-1

+ (=1 > R =PT=4(H"Y(L)) uP vd
1<p.g=r
r+l<p+q<2r-—1

(The terms containing coefficientg?(H"~1(L)), with p + ¢ = r, cancel out,

as they occur in both summands). Siri&g&r, 0) is an isolated quasihomogeneous
hypersurface singularity, we may use Lemma 2.7 to write

E(L:u,v) =1— (uv)" + (=11 > hPAHTHL)) uf v

O0<p,g<r-1
p+g=r—1

+=D| YD RTPTIETTYL) uf ot

1<p.q=r
p+q=r+1
r—1
=1— @) + D P ETTN L)) uf v
p=0

r—1
+ (_1)1‘ {Z hp,rflfp(Hrfl(L)) up+1 vrpj|

p=0

r—1
=1— (uv) + (-1t [Z hP =P (g Y(L)) u? v’ll’} (1—uv)

p=0
r—1
= (L—uv) Y @v)”+ (-1 (L -uv)
p=0

p=0

r—1
x {Z PP (HY(L)) u? v’_l_pi|
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r—1
= (1—uv) |:Z ((uv)p + (_1)r—l h[?,r—l—p(Hr—l(L)) uP U,_l_p):|

p=0

Combining the last equality with (2.9)ising

hPT P (HTTYL, ©) = (=D e TP (L)
= (=1 (L) = PP EHL, ©)

and substituting — p — 1 for p, we deduce formula (2.8).0

Remark 2.9. (i) By (2.8),e(X ¢~ {0}) = E (Xf\ {0}; 1, 1) = e¢(L) = 0, which
is also obvious from the fact, thatis anodd-dimensional differentiable manifold.

(i) If the singularity (X ¢, 0) in 2.8 is, in addition, aational singularity, then
ho.l’—l(Hr—l(L)) — hr—l,O(Hr—l(L)) — O

(See the proof of Proposition 4.1 of [7].)
(iii) The defining polynomial (1.3) of aAflf)e—singularity is quasihomogeneous of

degreed = lcm(n + 1, £) w.r.t. the weights(#l, 4.4, %) , with Poincaré
polynomial
n=1 g =2 4\
Pupy (@) =14+ Y1 ) [ 14 D¢ (2.10)
j=1 k=1

and Milnornumbeg (f) =n (¢ — 1)" (see (2.2) and (2.4)). Moreover, sin@#}’s
are canonical, they are also rational singularities. '

Proof of Proposition 1.7. To produce formula (1.7) for thé&-polynomial of
X{)~(0}, it suffices to evaluate (2.8) via (2.6), (2.5) and 2.9 (ii)~(iii) in terms
of n, £ andd. Since the functiom, defined in (1.4), can be expressed as
Ty d_2d —1)d
a(l)z 1, |fl€{0,m,n—+l,...,%}

0, otherwise,
and sinceb (), as defined in (1.5), gives the coefficientséfin the multinomial
expansion of the second factor of (2.10), we need the convolutional function (1.6)
in order to write the required dimensions as

WP (1 (L)) = WL (1 (F,©) = dime (M D 1,-1) )
_ _1 T
_C(d<p+1 i 6))’

n+1 ¢
andtoend upto (1.7).0
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3. Desingularization and theorem’s proof

Next, using blow-ups of closed points, we shall construct snc-resolutions for all
Af&—singularities for which eithet |n oré |n + 1. LetX = X,(f% be their under-
lying spaces and denote by

r+1
-1
Y((r )= [z1:22:... 1 zr41] € P Zzﬁ-:O
j=1

the (r — 1)-dimensional Fermat hypersurface of degfee 2 in the projective
spaceP(..
Proposition 3.1.
(i) Ifn+1=0(mod?), then there exists an snc-desingularization ¢ : X —X
with discrepancy
Kg—¢"(Kx) =i (r—0) D; (3.1)
i=1
where

D ZP(Oyv-2 ® Oyu-a (1), Vi, 1<i<m—1, and Dy = v b,

(i) If n = 0(mod¢), then there is an snc-desingularization ¢ : X —> X with
discrepancy
m—1

Ky —¢*(Kx)= Y i r—0) Di+[m—-D L -0+ r—D] D (3.2)

i=1
where

Di ZP(O,r2 @ O,r2 1), Vi, 1<i<m—1, and D, =P,

(r— (r—
Yl Y(Z

Inbothcases D; N D;11 = Yl(’_z) foralli,1<i<m—1andD;ND; = & for
ali, j,1<i,j<m,with|i — j| # 1. (The number m isdefined asin (1.8)).

Proof. Let f be the polynomial (1.3) anll (= Xy = Xfﬁ) the underlying space
of theAflf;—singuIarity.

Construction of the desingularization. Letx : Blo(C’t1) — C’+1 be the
blow up of C"*+1 at the origin, with

X; tj =X; t,

i, j,

l<ij<r+1

BIO(C’“) = ((xl, - xr+1) , [t]_ Teee tr+1]) et x IP&
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& := =1 (0) = {0} x P%, and letU; denote the open set given lgy # 0). In
terms of analytic coordinates,

o~ 1 X =X'$', V]7
e {((xl”"x’“)’@1""5"’”’5’“)) A Y {1,f.,]r+1}\{i}}’

where§; = % Identifying U; with a copy of C"*1 w.r.t. the coordinates;,
&1, ... g ... 1&r41, the restrictionr |Ui is given by mapping

C s (i, £ &y oy Erp1)

JE
(O 81, s i -1, Xy X G2, s Xi §rgn) S (6100 (1 vt §pqal) € Ui
i-th pos.
Vo7 y;
&1, .. xi &, X xi &g, oo X Erg1)

Further,&; := £ N U; is described as the coordinate hyperplane= 0); i.e.,
the open covefU;}i<j<,41 Of Blo(C" 1) restricts to€ to provide the standard
open cover of’ by affine space@’“, with {£;} je1,... r+13~ i) being the analytic
coordinates of;.

Notation. To work with a more convenient notation we define

r+1

BloC™h = Ui, Ui =SpedCyi1.....yirs1]).
i=1

by setting as coordinates fof's:

R fori =k
Y= Ve fori £k

e Thefirst blow-up. Blowing up X at the origin, we take the diagram

£ C B|0((Cr+l) N crt+l
U U U

Ex = ENBlo(X) C  Blo(X) et x

and consider the strict transform

Blo(X) = 7 ~1(X N (C"t1{0})) = 7 ~1(X) N (Blo(C"tH)\&E))
of X in C"+1 underr, and the corresponding exceptional divisar.
e Local description of Blg(X) and £x. Pulling backf, we get

) o = x fi =i T
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with

fi (i - Yirs1)

+D—t -
y(n - +)’12+ +yf,r+1’ ifi=1

- 1 (n+D)—¢ .
Vi yl(rll . +yiote vl a1y a4+ 1,  Otherwise

Locally,

= [(yi,l, 1) €O | T (it iga) = o},
and the equations fdfy |y, read as follows:
Blo(X) N & = Ex |,

= [(yi,l,-.. ,yi,r+1) (S Cr+l | Yii = }‘; (yl‘,lv'-- !yi,r—l-l) — O} )

Thus, the only singular affine patchlg = Spe¢C [y11. ... , y1.-+1]) Whenever
n>£.

e Global description of Blg(X) and £x. Passing to global coordinates, we can
write

Blg(X)

= {((xl,..,xrﬂ),[rl Dot teya]) € Blo@ Y [TV T 4 zt _o}

and

(1@ s haa]) € O X B[ 5+ iy =) =1
SO [t tega]) €O} x P |5 + 25+ 125, =0}, otherwise

e The (Fermat) singularity Aé’_)u (m = 1). Blowing up the origin once, we
achieve immediately the required desingularization, having exceptional divisor
ex =y b

e The singularity A(’ (m = 2). Inthis caseBlg(X) is smooth, whereaSy on
Blo(X) has a smgular ordinar§+fold pointatQ = (0,[1:0:---: 0] € Ex|u;-
To obtain an snc-resolution of the original singularity, we blow up once mage at
and considep = w1 o 72,

X = Bl (Blo(X)) = Blo(X) 2= x.

The new exceptional divisab is aIP’E:_l, and the strict transfornb, of £x is
nothing but the ¢{—1)-dimensional) blow-up of x atQ. Since€x can be viewed as
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the projective cone‘pr(Y,}’_z)) C P over the Fermat hypersurfag; 2 Pt

with[1:0:...:0] as its vertex, blowingupl : 0: -- - : 0], the diagram
P(OIP’El (&) O]P’E;l(l)) = Bli1.0:--0] (P&) — P{C
U U

BI[l:O:---:O](Cpr(Yg(r_Z))) - Cpr(Yl(r_Z)) = &x

yields the isomorphism
B|[;|_;o;...:o](Cpr(YZ(r_z))) = ]P’(Oyg(r—z) ® Oyé(r_z)(l)).
Hence,D is a]P’(l:-bundIe of rank 2 ovng(”z) meetingD; along
~ v (T—2)
(D1-D2) |p, = ]P(OYe(rfz)(l)) =y,

(see Fig. 1).

Fig. 1.
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. S’ngularitiecAfﬁ withn > ¢, m > 2, either ¢ |n or £ |n + 1. Locally, these
singularities can be reduced successively to one of the above types as follows:

(r) (r) (r) (r) (r) (r)
A~ Anfé,é A g Ay g Al ALY
(if n4+1=0(mod¢))
(r) (r) (r) (r) (r) (r) (r)
At Ao > Aylope ™ Ayl R~ Agy ~ Agy

(if n=0(mod¢))

(Each “~" denotes the result of a local blow-up, aAE_fie, Ag% stand for “smooth

charts”). But also globallyy : X—Xis decomposed into just blow-ups

~ TT, TTin—1 TT: T T
X=Xn 2 Xpo1— - 2 X 55 X 5 Xo=X

(3.3)
X; :=Blg,(Blg, (- (Blg, (X)), Vi, 1< i<m,

of m “separated” point92; =0, Q> = (0,[1:0:0:---:0]),..., Qu, inthe
sense, that all the appearing exceptional divisors are prime (by construction) and,

in addition, if E, = &x, E», ... , E, are the exceptional loci of1, 72, ... , my,
respectively, the singular poidl; is resolved byr; and the (possibly existing) new
singular pointQ; 11 is hot contained in the strict transforms &%, Eo, ... , E;_1

undersn;. Thus, defining the divisob; on X to be the strict transform af; under
41 © Wip2 0 -+- 0 Ty—1 © Ty, W oObtain the intersection graph of Fig. 2 with
DiNDjy1 = Yz(r—Z).

Q- Q Q-0

Computation of thediscrepancy coefficients. Consider the Poincaré residue map
Resy : HOC', o (X)) — HOX, wy),

wherewy = Ox(Ky) = (Q)"" C Qe /e The rational canonical differential

<dx1 ANdxo Ndxz A --- /\dx,+1> dxp Ndxz A --- ANdxr41
s = Reyg =

f (Bf /9x1)

can be viewed as a (local) generator?(X, wy). Assume that # ¢ and that
you have performed the first blow-up @&f at0. Then the new singularity (if any)
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onBIlg(X) will belong to€x |U1 . For this reason, to find the discrepancy coefficient
w.rt. 7 : Blg(X) — X, it suffices to compare with the rational canonical
differential

o dyr2 Ndy13 A -+ Ady1,q1 o
= = C(uy)/C-
@/f1/8yL1) v/

(U is non-singular with local coordinates 2, . . . , y1,-+1 atany point? for which
9 f1(P) /dy11 # 0). InU1 we havex; = y1.1 and

xj=x1& =y11y,;, forall j {23, ...,r+1}.
Hence,

dxo Ndxz A -+ ANdxr41

= )’1_11 (11 (dyr2 Ady1z A+ Adyyry1)

r+1 _ (3.4)
+Y (=D yridyra A Adyri A Adysrg)
i=2

and

n+1

af Joxr=m+D xf =n+1) yi1=<m

)%Jwﬁ/wn>@@
On the other hand,

dfl =(+1—0) yi}_e dyl,l ) (y{;lle,Z 4+ 4 yf;ildyl,r+l) =0

if and only if

14

— -1 -1
m yl,ln (yl,z dy12+---+ Y1r+1 dyl,r+1) . (3.6)

dyr1=—

Substituting the expression (3.6) fdy1 1 into the right-hand side of (3.4), we
obtain

dxp Ndxz A - Adxpya
4 “d4bn ,k e
N <_n +1-¢ yix O+ i) £ 01 ) dyiens s AdyLr
3.7)

Combining now (3.7) witryf2 + 4 Y{,r+1 = —yif‘fl)’e and (3.5), we get

yi1dyr2 Adyi3a Ao Adyrrq =
g= LT S (3.8)
y11 (@f1/3y11) ’
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The equality (3.8) shows that the discrepancy coefficienf pfwith respect to
7 : Blo(X) — X equals — ¢. Using the notation introduced in (3.3), one proves
analogously that

Kx, —n) (Kx,_,) =@ —0 E;, Vi, 1< i<m-1 (3.9)
Moreover,

(r—40)D,,if £In+1
KXm - 7'[:1 (Kmel) = (310)
r—1 D, if £|n

Note that if¢ |n , then we have to pass throug@. The additional blow-up which

resolves the singularity of the exceptional locus (so ¢hatY —> X fulfills the
snc-condition) has amooth point on ther-fold as its centre. Consequently, the
discrepancy coefficient ab,, = Dz equalsr — 1 (see [15, p. 187]). Now (3.9)
gives:

Kz — ¢ (Kx)
m—1

= Z (Tigromigz 0 omy)* ((r —€) Ej) + [Kx,, — 7 (Kx,,_,)] (3.11)
i=1

Since

Dj, if Z|n—|—1

T IME

(Tiv10Miqy20---0my)* (Ei) = 1 (3.12)
D;+tDy, if £in

1

J

foralli, 1 <i < m — 1, the formulae (3.1) and (3.2) follow from (3.10), (3.11)
and (3.12). o

Remark 3.2. (i) If n + 1 = O(mod¢), theng : X —> X is crepant.
(ii) Obviously,

r—1
E(Pfc_l; u,v) = > (uv)?. (3.13)
p=0

(iii) To complete the catalogue of the-polynomials of our exceptional divisors,
it suffices to find out those dfe(’_z) (or, equivalently, oIYZ(’_l)), as we have

-2,

EM®O ,z)eaoyz(,,z)(l));u,v)zE(Yg’ cu,v) - (L4 uv) . (3.14)

ol
(iv) According to the classical Lefschetz Hyperplane Theorem, the Fermat hyper-
surfacng(’_l) has “non-trivial” Hodgg p, g)-numbers only ifp +¢ = r — 1. Next

lemma expresses them by means of the non-central Eulerian numbers of general-
ized factorials (as defined in 81 (e)), and can be easily proven, e.g., by determining
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the x,-characteristic oY;’_l) via Riemann—Roch Theorem (see [19, 82]), or, al-
ternatively, by writing down the exact sequences involving the cohomology groups

of P, and Y(’_l) with coefficients taken from the twisted shea\fe‘eﬁ%, (—¢) and
(, 1 (—1£), respectively. (Note that both proofs are valid &oy smooth hyper-

surface of degreé On the other hand, the formula for the Euler number is simpler
and can be derived directly by evaluating the highest Chern clasé ot and
applying Gauss—Bonnet Theorem; see, e.g., [11, p. 152].)

Lemma 3.3. The Hodge numbers of the (r — 1)-dimensional Fermat hypersurface
Ye(’_l) of degree ¢ > 2 are given by the formula

hp,q(y(r—l))z Sr,p+11€—1,p)+8p,1, If ptg=r—1
Z Spa: if ptg#r—1

Hence, Y,j(’_l) has E-polynomial

EX vy = X )P i) ulv (3.15)
O<p,g<r-1
r—1
=3 u? [vl’ YIS p+1e—1,p) vr—l—P]
p=0

and Euler number

e(v ) =

I—I

i - t&rp+1 Iﬂ—l,P)} +r
p=0 (3.16)

=%((1—z)’+1—1)+r+1

Proof of Theorem 1.8. (i) If » + 1 = 0(mod¢), then Proposition 3.1 and (1.1)
give:
Esu(X; u, v) — E(X\{0}; u, v)
" (wv—1) E(D}; u, v)
(uv)i(r—lf)-i-l -1

i=1
+ mi:l (v =2 E(Df; qy:u. v)
— ((I/tl))l(r O+1 _ ) ((uv)(l+1)(r O+1 1)

But E(DS; u, v) = E(Yg(r_z); u,v) - uv,

E(D?;u,v) = EXS 2 uv)- v —1), Vi, i €{2,...,m—1},

(by (3.14)), ancE(DS,; u, v) = E(Y Vs u,v) — EX' ™25 u, v),

2),

E(Dfi’iJrl};u,v):E(Y[(r su,v), Vi, i €{2,...,m—1}.
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Consequently, the differend®&(X; u, v) — E(X~{0}; u, v) equals

wv —DEY ?;u,v)

m—1
uv uv—1 uv—1
|:(uv)r—f+l 1 + Z (uv)i(r—l)—l-l -1 - (uv)m(r—l)+1 _ 1:|

=2
v =1 EXT D u,v) +'"2‘:1 v — 12 EY 5 u,v)
(Mv)m(r7€)+l -1 P ((uv)i(r*@+l _ 1) ((uv)(i+1)(rfe)+l _ 1) ’

leading to the desired formula via (3.15). Passing to the limEgf( X ; u, v), for
u, v — 1, and taking (1.2) and (3.16) into account, one obtains the corresponding

formula for the string-theoretic Euler numheg(X).
(i) If n =0(mod¢), then 3.1 (ii) and (1.1) give analogously

Est(X; u, v) — E(X\{0}; u, v)

m—1
(uv — 1) E(D?; u, v) uv —1 o
= (uv)i(er)Jri 1 (o) DEC—DFr _ 1 E(Dy;u,v)
i=1
. '"2—:2 (uv — 1)2 E(D{,; 41y 4, V)
~ ((uv)i(r—£)+1 _ 1) ((uv)(i+1)(r—€)+1 _ 1)

. v — 12 E(D{,_1 3 s V)
((uv)(m—l)(r—(f)—&—l o 1) ((uv)(m—l)l(r—lH-r _ 1)

SinceDj, D3, ..., D;, _; are asin (i), and
E(DS;u,v) = E(P Y u,v) — EQY 25 u,v),
E(Df g u.v) = EQY) ?5u,v), forall i € (L,....m — 1},
we obtain by (3.13) (3.14):
Est(X; u, v) — E(X~{O}; 1, v) = (wv — DEY 25 u, v)

m—1

uv uv—1 uv—1

X (o)~ _ 1"' Z; (o) O+ _ 1 - (uv) DI04 _ 1
i=

v — 1) (ZZ;% (uv)P)

(uv)(mfl) L(r—=0)+r _ 1

N ’"Z_Z wo—12 E¥";u,v)
= (@) 7% — 1) () DO+ 1)

wv— 12 EY" 2 u,v)
+ ((uv)(m—l)(r—€)+l _ 1) ((uv)(m—l)f(r—l)+r _ 1)

The string-theoretic Euler number is examined as in ().



String-theoretic Euler number of a class of absolutely isolated singularities 167

4. Some global geometric examples

The Egy-function of a complex-fold V with only & isolated log-terminal singu-
larities 01, O, .., Oy equals:

Esy(Viu,v) =E(Viu,v) + Y (Esur (V. Q)):u,v)—=1).  (4.1)
i=1

In particular, a simple closed formula for the string-theoretic Euler nuregeran
be easily built wheneveY is a (global) complete intersection in a projective space,
equipped with prescribed singularities belonging to the class under consideration.

Proposition 4.1. Let V = V(dl,dz,...,dN,,) be an r -dimensional completeintersec-

tion of multidegree (d1, d2, ... ,dy—;) in IP’N having only & isolated singularities
01,..., 0y of typesAff)e s .. A(r)z with either ¢; |n; or ¢; |n; + 1, for all

i = 1 , k. Thenits strlng theoretlc Eller number equals

N—r
esu(V) = [(N“)Jr XD () (1 X dﬁ)} (l_[l dj)
v <Nn<=p=N-r J=

k
+ 3 [ese v, 00+ 1m0 -1 1], (4.2)

i=1
whereesy (Y, Q;), i =1, ..., k, are computable via Theorem 1.8.

Proof. By a small deformation of one can always obtain a non-singular complete
intersectionV’ in ]P’g having multidegredds, do, ... ,dy—,). Using a standard
technique which involves the Mayer-Vietoris sequence (cf. [11, Ch. 5, Cor. 4.4
(ii)]) one shows easily that

k
e(Vy=e (V') + (=1’ > [Milnor number of (V. 0;)] .
i=1

The Euler number of’ can be computed again by evaluating the highest Chern class
of vV’ at its fundamental cycle (cf. Chen—Ogiue [6, Thm. 2.1]), and is expressible
by the closed formula:

e(vn:[wmm 1y (N*l)( > djf--djv)}(]“nr d,-).
=1 l<ji<<jo<N-r j=1

(4.2) follows clearly from (4.1). O

Examples 4.2. Let us now apply (4.2) for some well-known hypersurfaces and
complete intersections.
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(i) Generalizing Hirzebruch’s method of constructing a singular quintic with 126
nodes ([21, p. 762]), Werner defines in [28, pp. 216-217] a hypersurfac@?. of
degree 5 by homogenizing a three-dimensional affine complex variety of the form

{(z1.22.23.24) € C* | A gi(e1, 22) — g2(z3.24) = O}, A € C¥,

where{g; = 0}, i = 1, 2, are plane quintic curves having the three axes and a cir-
cumscribed conic (about the corresponding coordinate triangle) as their irreducible
components (see Fig. 3). Since each of these curvesbasigularitiesV (after
homogenization) will have®= 9 singularities of type‘\f)s. This means that

esu(V) = 200+ 9- (9+ 2~ 1) = 16
In fact,esy(V) = e(V) = 16, whereV — V is the crepant desingularization Bf

arising from a single simultaneous blow-up of the 9 singularities (cf. 3.2)(ijs
obviously a 3-dimensional Calabi—Yau manifold.

7—X

Fig. 3.

(ii) The (N — 1)-dimensional Goryunov’s quartics [13]:

2
VK:={[11:..:ZN+1]G]P% 2k+1 Y zl-zz§+/<< > zf) =0}

1<i<j<N+1 1<j<N+1

N >«, N >3 « >0)have 2(V11 Aj-singularities (N_l)—singularities, in
K+1 12
our notation), and string-theoretic Euler number

1
esu(Ve) = 5 (3 -1)+N+1

1 1
i (N+1 = _ 1NN _ _1N\N _
+ 2 (K+1)[<—N—2 <2(( 1) 1)+N> + (=1 1)}
Note that, e.g., fotv = 5, the string-theoretic index of the underlying space of

each of the singularities is 3 1, whereas the string-theoretic index igdV, ) of
V. can be equal to 1 (for € {0, 1, 3, 4}).
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Table 1.

n 4 5 6 7 8 9 10 11 12 13 14 15

vy |lg ¢ 27 96 160 120 175 480 648 105 539 1344
o 4 138 19 13 17 43 53 8 38 89

(iii) The(n — 2)-dimensional Segre—Kndrrer complete intersection of two quadrics

Vi={z=[z1:22:...:2041] €PL | ZMz="2M'z = 0}, n=4,

whereM andM’ are the(n + 1) x (n + 1)-matrices:

00 - 01 00 O - 00
00 - 10 00 O - 01
M= : , M = -1 :
00 - 00 00 O - 00
0 1. 00 00 1 - 00
10 00 01 0 - 00
hasQ = [1:0:---:0: 0] as single isolated point which is of tygs, (i.e.,

Afl”z 2 in our notation, see [23, p. 48]). According to (4.2), the string-theoretic
Euler number o equals

esu(V) = 2:(DQMQE@W+D+%MWQH%4ﬁ*n—1

=n —l+estr(V, 0),

with
(n—1)2 .
n2—3p—2° if n odd
estr(V, Q) = s, .
T Aty Ifneven

Forn < 15, es(V) takes the values shown in Table 1.
(iv) Werner’s 3-dimensional complete intersection of a cubic and two quadrics

L3 &2
>3 = Zj
' 2

i=1 j=

=2,H+Zu—$gﬂ_o

V= [11:12:...:z7]eIF’(6C
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has 4 singularities of typA(B) at the point§0:0:0:0: +1: +/=2:1] and
18 singularities of typ@\f’; (i.e., nodes) at the points

[<¢:1:0:0:4+/=1:0:0], [—¢f:0:1:0:0:4+v=1:0],
[~¢§:0:0:1:0:0: +/~1],

J = 1,2, 3, where¢z is a primitive third root of unity (see [28, pp. 221-222]). Its
string-theoretic Euler number equals

es(V) = —144+ 4. (9+ 2 1) +18.2=—12=e(V),

whereV is a Calabi—Yau threefold which arises after a crepant desingularization
of V coming from the simultaneous (usual) blow-up of th@%-singularities and
an appropriatemall, projective resolution of the 18 nodes.

(V) LetVv=vinVon.-.-NVy_, C Pg be a complete intersection of Fermat
hypersurfaces

Zbuz —0} 1<i<N-—r,

V; = {[zlz...:zNH]ePg
]_

of degreeal, 2 < d < r, and assume that is r-dimensional, i.e.,
rank((bij)1<i<N—ri1<j<n+1) =N —r.

Further, consider the map

®q: PN — PV, [z1:...c2n41] — [z‘{:...:zj{url]:[51:...:§N+1].

Dy displaysIP’g as ad-sheeted ramified covering of itself, branched along the
coordinate axe§; = 0}. On the other hand,

®q (V) = {[sl D.iénsa] € PR

N+1
Zb,’jéjzo , 1<i<N —r,
=1

and®, (V) = Pr. ¢ PY. Now if
Li={=0Nds(V)CP;, 1<j<N+1,

denote byM (PY) = C(z2/z1, ... , zv+1/z1) the rational function field oPY

and let
IP’C ( \/@ dl WN+1>

be the Kummer extension g# (]P’N determined by adjoining/-th roots of ratios”,
wherey; is the linear form defining the hyperpladg. This is an abelian extension
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with Galois groupZ / dZ)" . The varietyV can be thought of as the normalization
of ]P’g w.r.t. this field, as being the total space of thé-sheeted covering

Oyly 1V — [P)Ej
of P, branched along th€;’s. The hyperplane arrangement
N+1 N+1

g= Li={[]vi=0¢cP
j=1 j=1

admits a natural stratification

e=cD5p@ — U le’jzg..ljg(r): U L
1<j1<j2<N+1 I<ji<jo<-<jr<N+1

J15J25e 5 Jr

where

=phcPL, 1<k<r

£11 J2s- —lemﬁjzﬂ m‘C]k -

(£ consists of thgoints of £, £~ consists of thdines of £, etc). Let us now
define

elements oft™” (i.e., points ofg)
ti:=10):=# o
contained in exactly hyperplanes off

and, in general,

elements of2" ) contained
fi (k) == 0<

: K=<r
in exactlyi hyperplanes off
£ is called apoint arrangement if
ti(k)=0, forall i >r —x andforallec € {1,...,r —2}.

TheV'’s defined by means of point arrangements have at most isolated singularities;
more precisely, by analogy with the two-dimensional case (cf. [20]inherits
exactlydV ' isolated singularities over each point fcontained ini > r + 1
hyperplanes. In particular, for point arrangemedisithin Pf., for which

=0 Vi, i>r+2,
all singularities ofV have to beAgll’d -singularities. In this case, formula (4.2)
reads as follows:

est(V) = |:Z( l) N+l N r+v l) dU+N r:| +

1

t .dN_"_l. - -
+ 441 (r—d—i—l

E((l—d)f“— D+r+ 1]

+ ()t @ -1t - 1). (4.3)
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Forr = 3, several combinatorial properties of hyperplane arrangemeﬂﬁ%,in

as well as properties of birational geometry of the resulting coverings, have been
studied by Hunt [22]. As far as point arrangements are concerned Qwith1,

t5 = tg = 0) there are some interesting and aesthetically pleasing examples, given
by the facet planes of certain regular (platonic) and semiregular (archimedean)

solids (see Fig. 4). For these point arrangements, formula (4.3) gives the results in
Table 2.

a) b)

__

4%

7

N

AN

\

\

\
N\

\

X

o 4, .

Fig. 4. a) Cube;b) Octahedron;

¢) Trunctated Tetrahedroii3, 6, 6)-solid); d) Trunctated Cube(B, 8, 8)-solid);
€) Trunctated Octahedrori4, 6, 6)-solid); f) Trunctated Cuboctahedro(3( 3, 4)-solid)

Examplesa) (with d = 3) andb) (with d = 2) were first mentioned by Hirze-
bruch [21, pp. 764-765], who used them to construct 3-dimensional Calabi-Yau
manifoldsV with Euler number 72 (resp., 64) by a “big” (resp. “small”, projective)
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Table 2.
: _ 1N+ estr(V) estr(V)

Solids | N 3 14a= 4[( 3 ) [3] (ford = 2) (ford =3)

a) 5 8 3 12 72

b) 7 8 12 64 —-324

c) 7 32 6 -32 —4212
d),e | 13 256 27 —111616 —68496840

f) 13 208 39 —99328 —62828136

crepant resolution of the 9 (resp., 96) singularities/ofcf. the remarks in [28,
p. 219)).

Acknowledgements. The author would like to express his gratitude to Nobuyuki Kakimi
(University of Tokyo) who informed him about some “missed” extra factors of the discre-
pancy coefficients (cf. (3.1), (3.2)) in a previous version of the paper. The patrticular form of
these coefficients led to the counterexamples which are mentioned in 1.9.
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