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ENUMERATIVE COMBINATORICS OF INVARIANTS
OF CERTAIN COMPLEX THREEFOLDS
WITH TRIVIAL CANONICAL BUNDLE

D.I. Dails

ABSTRACT. Minimal Calabi-Yau models can be roughly classified by studying the
behaviour of the linear form being induced by their second Chern class on their nef
cone. Strict positivity of [c2] x on Amp(X) leads to CY models X of general type. We
consider a wide class of such models, namely 3-dimensional well-formed quasismooth
complete intersections of hypersurfaces X = X4 = X(dy,... ,dp) In a weighted projec-
tive space P™~!(w) with vanishing amplitude. We give ezplicit formulae for various
invariants depending on two types of functions in the variables w and d. Functions
defined by the residua of some symmetric polynomial expressions of w and d on
the one hand, and enumerating functions of weighted partitions on the other. If X
admits non-pathological stratifications, these formulae enable us to determine the
delta genus A(X,Lx) arising from the natural polarization with respect to Lx and
to give a partial generalization of results of Oguiso whenever A(X,Lx) < 2. More-
over, we describe the construction and some basic properties of the toroidal crepant
desingularizations of X’s and compute their invariants by using certain “local-global
principles” concerning the combinatorially controllable contributions of the excep-
tional divisors to the corresponding invariants of the starting point models.

Finally, [c2] -forms, “triple couplings” and “testing bilinear forms” pave the way for
the development of a formal algorithm, by means of which one can mostly decide
if two distinct toroidal crepant desingularizations have definitely different diffeomor-
phism (resp. homotopy) types or not.

Typeset by AaS-TEX
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Introduction

There are at least two reasons which have made the study of Calabi- Yau man-
ifolds so attractive during the last decade. The former is that they represent the
high dimensional analogues of K 3-surfaces and are naturally expected to inhabit in
some very interesting “moduli space landscapes”, both from algebraic geometrical
and from differential geometrical point of view. The latter is their pivotal role in
the framework of the development of certain conformal field theories, like those
corresponding to the so called one-loop semiclassical non-linear sigma models. (CY
manifolds are used as the best candidates for being fibers of the “target spaces” of
these sigma models. For an introduction to these themes we refer to the book of
Hibsch [65].)

In algebraic geometry, threefolds with trivial canonical bundle occupy a very spe-
cial place within the “3-dimensional cosmography” and one hopes that the methods
which will be required for the solution of a number of important open problems
regarding period maps, diffeomorphism types, possible bounds of Betti or Hodge
numbers, existence and possible “enumeration” of rational curves etc., will consid-
erably promote the whole classification programme of higher dimensional algebraic
varieties. For a wonderful survey article written under this perspective, see Fried-
man [42].

In theoretical physics, on the other hand, where certain concrete constructions
are needed, a string propagation in a Calabi-Yau background can be expressed ge-
ometrically in a convenient way, only in connection with predeterminating Landau-
Ginzburg effective Langrangians. By Witten’s generalized “LG/CY-correspondence”
(129, § 5], one concludes that the most “favourable” CY manifolds have to be either
hypersurfaces or complete intersections embedded in projective spaces, in weighted
projective spaces or products thereof, in general toric varieties or even in Grass-
mannians.

The case of complete intersections in a product of usual projective spaces is dis-
cussed in great detail in the above mentioned book of Hiibsch [65]. The next
CY threefolds coming into question, namely quasismooth hypersurfaces in a 4-
dimensional weighted projective space (or, more general, in a 4-dimensional Fano
toric variety), together with their crepant desingularizations, have been the focal
point of many researches during the past few years. Experimental observation at
the beginning [15], showing a remarkable “dualism” between the non-trivial Hodge
numbers h!'! and A2 of the desingularized models, turned out later not to be an
irony of fate, but the revelation of an exciting symmetry with a deep geometri-
cal interpretation and inestimable, up to now, futuristic consequences. For a first
mathematical approach to this symmetry the reader is referred to the articles of
Roan [102], Morrison [91] and Batyrev [7] and to the collected papers in [131].

However, very little is known for the corresponding complete intersection case.
In our work we attempt to enlighten that part of enumerative combinatorics which
is necessary for the description of the invariants and of other important numbers
characterizing the desingularized complete intersections in a weighted projective
space. Although our results could be valid (with minor modifications) in a more
general setting, we prefer to restrict ourselves to weighted projective spaces, as



these lead directly to problems on linear diophantine equations or, if you wish, on
linear programming depending on systems of certain “weights”.

More precisely, the organization of our thesis is as follows. After reviewing some
basic facts from Wilson’s classification theory of minimal CY models in §1, we
explain all the essential details of our construction in § 2, give the formulae for the
corresponding invariants, and show how the delta genera distribution depends on the
denumerants of weighted partitions. (We should notice that most of the results of § 2
are actually independent of the dimension and of the amplitude of X’s, although in
the end we focus attention on the CY threefold/model case. For certain interesting
new aspects of applications of higher dimensional complete intersections in weighted
projective spaces with negative amplitude for the realization of some useful, suitably
modified (i.e. “non-classical”) Landau-Ginzburg theories, see Schimmrigk [105].)

Using toric geometry in §3, we describe the distinctive features of the Ty,-
equivariant crepant resolutions of 2- and 3-dimensional Gorenstein cyclic quotient
singularities Z(Ng,Zo), such as the nature of the occuring exceptional prime di-
visors, their enumeration by their types, their intersection numbers, and the ele-
mentary transformation mechanism. Globalizing this resolution process along the
components of the singular loci of our X’s in § 4, we define “toroidal” crepant desin-
gularizations and compute their non-trivial Hodge numbers in two different ways.
Intrinsically, with the step by step recognition of the singularity types, and, when
possible, ezplicitly (in terms of w and d) by making use of relative Milnor fibrations,
eventually after a rearrangement of the defining polynomials. (h!'! equals obviously
the Picard number and h1'? “counts” the moduli number of complez structures.) At
the end of §4 we apply our formulae to a wide class of examples.

Section 5 deals with [c;] -forms and intersection trilinear forms (or, in other
words, “topological triple couplings”) of the desingularized models Y. Their eval-
uations at the members of the canonical Q-bases of the Picard group of Y are
encoded partially in the local informations coming from the data of the “toric tri-
angles” lying over the dissident points of X, and partially in the global geometry
of the exceptional divisors and of the pull-back divisor Ly on Y. These evaluations
lend to the various desingularization spaces Y’s a significant topological character-
ization, which, in connection with classification results of Wall, Jupp, Zubr and
Sullivan, allows us to distinguish (in most of the cases) diffeomorphism (resp. ho-
motopy) types. This method is indicated in § 6, where an arithmetical example is
examined thoroughly. On the other hand, the formulae of our main theorems of
§5 seem to have direct applications to physically important CY threefolds, as they
describe the “unquantized” part of the (1, 1) -level Yukawa couplings, and they have
been already used for computations of some special examples in [64].

Finally, the appendix of § 7 is entirely devoted to the pure combinatorial ingred:-
ents of our formulae, namely to the pt-functions which date back to the monumental
work of Euler on the “Partitio Numerorum”. Apart from some historical remarks,
we manifest here their immediate interpretation as Fhrhart quasipolynomials of a
dilated special rational convex polyhedron. In addition, in the case where this (or
a closely related to it) polyhedron is integral, we give formulae which express the
pt-functions by means of the volumes of appropriate polyhedral faces.



Basic notations and definitions

(i) We denote by N, Np,Z,Q, R0, R and C the set of natural, non-negative integer,
integer, rational, non-negative real, real and complex numbers respectively.

(ii) “ged” and “lem” are abbreviations for greater common divisor and lower com-
mon multiple.

For | € N and m € Z, we denote by [m]; the integer which satisfies 0 < [m]; < [
and m = [m];(mod!). Furthermore, for n,k € Ng, n > k, we set:

(k]
<Z> = %c'_’ where nll:=n(n—-1)---(n =k +1).

(iii) Z/(nZ), n € N, will denote the cyclic group of order n and (, := exp(%‘,{—_l)
the “first” n — th primitive root of unity.

(iv) |S| or #(S) are used to express the number of elements of a finite set S. For
S C No, §s denotes the characteristic function of S, i.e.

1, for se€8§

Os(s) = { 0, otherwise

On the other hand, é, 4 denotes the usual Kronecker symbol.

(v) Let A be a local ring with maximal ideal 9. A is called regular (resp. nor-
mal) if dim(4) = dim(9/9M?) (resp. if its localizations are integrally closed do-
mains). A sequence {aj,....as} of elements of A is called regular sequence if
A # (a,...,a5)A and if for all 7+ € {0,...,s — 1}, ai41 is not a zero divisor in
Al(ay,...,a;)A. The depth of A is defined to be the maximum of the lengths of
regular sequences {aj,...,as} with a; € M, Vi, 1 <1 < s. A is called Cohen-
Macaulay if dim(A) = depth(A). If A is Cohen-Macaulay, then A is called Goren-
stein whenever Exti’m(A)(A/fm, A) = A/M.

(vi) In section 2 we shall consider certain graded commutative rings A = @ ;50 Ada
with Ag = C the field of complex numbers and A finitely generated as C-algebra.
We denote by M := Ay := @ ;5 Aa the unique maximal ideal of such a ring A. A
graded A-module is an A-module M, together with a decomposition M = P,z Ma
such that Ay - M, C Myy.. For any graded A-module M, and for any n € Z, we
define the twisted module M(n) by shifting n places to the left, i.e. M(n)q = Mg4n.
(vii) For q € No, let Ext?, denote the derived functors of Hom4 within the category
GM(A) of graded A-modules. HJ, : GM(A) - GM(A) is defined to be the functor

which sends a graded A-module M to the g — th algebraic local cohomology group

HL (M) := l_i_rglEth‘(A/Em’,]\/I)
l

of M supported at M (cf. [55], [56]).
(viii) Let A be a graded ring and M a graded A-module as in (vi).

X = Proj(A) := {p € Spec(4)|p homogeneous and p 2 A,}

will denote, as usual, the projective scheme associated to A, M the Ox-module
sheaf associated to M on X, Ox(n) := A(n)~, n € Z, M(n)~ the twisted sheaf
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associated to M(n) and M(n) := M ®o, Ox(n) (cf. [53, Ch. II, §2.5 - §2.6.]
or 61, Ch.~ IT, §5]). Note that, if A is generated as a C-algebra by A;, then
M(n)~ = M(n), but in general this is not true.

(ix) The Poincaré-series of a Z-graded vector space A = @D,z Av with finite-
dimensional homogeneous components is defined as the formal Laurent series

P(4;z) =) (dimA, )z
vEZ

Correspondingly, the Poincaré series of a projective scheme X is the formal series

P(X;z) ==Y (dim(H°(X,Ox(n)))z"
nez

(x) Let A be again a graded C-algebra. QY := Qi&/c denotes the A-module of

Kdhler C-differentials of A and Q) := APQL, Vp, p € Ny. Furthermore, if for a
homogeneous h € A4, Ay is the subring of elements of degree 0 in the localized
ring Ap, then {Spec(A(y))|h homogeneous element of A.} is a basis of X =
Proj(A) and the Ox-module sheaf of germs of p- forms Qf can be defined by
globalization, so that

QZ)}'Spec(A(h)) = Qgpec(A(,,)) = (Qi(h))’v

(By (Q%)Y 1= Homo, (2%,0x) and (%)Y we shall denote the dual and the
bidual of the sheaf of p-forms on X respectively.)

(xi) By a complez variety we mean an integral, separated algebraic scheme over C.
A complex variety is complete if its structural morphism to Spec(C) is proper. If X
is a complex variety, then a point x € X (resp. the whole space X) will be called
regular, normal, Cohen-Macaulay or Gorenstein if the local ring Ox ; (resp. all
local rings Ox z, Vz € X) is (resp. are) of this type. In particular, we set

Reg(X) :={z € X : Ox, regular} and Sing(X):= X \ Reg(X)

for the regular and the singular locus of X respectively. A (closed) subvariety ¥ of
X is a closed integral subscheme of X. A subvariety ¥ of X with codimx(Y) =1
is especially called a prime divisor of X. A Weil divisor is an element of the free
abelian group which is generated by the prime divisors of X.

(xii) Let X be a normal r-dimensional complex variety. If D is a Weil divisor of
X, let Ox(D) denote the corresponding divisorial sheaf (cf. [98, App. to §1]). D
is called Cartier divisor if Ox (D) is invertible. For r Cartier divisors Dy,... , D,
for which W := (i_, supp(D;) is complete, one defines their intersection number
as (Dy - Dy -+ D,) := degw(D; -+ D,) € Z (see e.g. [46, Ch. 2]). Moreover, if
J : Reg(X) — X is the natural inclusion of the regular locus of X into X, we define
fl} = j*(Q.Reg(X)) = J.(J*N%). wx := Qf‘( is called the canonical or dualizing
sheaf of X. Note that: X is Gorenstein <= X is Cohen-Macaulay and wx is
invertible. On the other hand, we define Q} = m{dy,, where 7 : ¥ — X is an
arbitrary desingularization of X. We have an inclusion Q% < (%, and X has at
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most rational singularities <= X is Cohen-Macaulay and Q8% = ~3(.
(xiii) A complex variety is called V-variety (or rather Q-variety) if it has at most

quotient singularities. If X is a projective V-variety, then
0 = 0 = (23"

because any quotient singularity is rational and X is normal.

(xiv) For a complex variety X of dimension r, we denote by b;(X) := dimgH*(X, Q),
0 < i< 2re(X) = Simo(=1)bi(X), h{(X,F) = dimcH (X, F), x(X,F) =
Y2 o(—=1)hiI(X, F), the i — th Betti number of X, the topological Euler-Poincaré
characteristic of X, the dimension of the 7 — th cohomology group of a coherent
sheaf F over X and the corresponding Euler-Poincaré characteristic of F over X
respectively. Pic(X) will denote the Picard group of X, i.e. the group of isomor-
phism classes of invertible sheaves (or line bundles) over X. (Line bundles will be
identified with linear equivalence classes of Cartier divisors.)

(xv) A pair (X,L) consisting of a normal complete complex variety and an ample
(resp. nef and big) bundle L over X is called a polarized (resp. quasi-polarized)
variety. Fujita’s delta genus of an r-dimensional polarized variety (X, L) is defined

by

A(X,L) :==r +L" - r°(X,L)

and turns out to be a very powerful invariant of (X, L) as it leads to a partial (or,
sometimes, complete) classification of such pairs, when it takes values which are
small enough. (For an introduction to the corresponding classification theories and
adjunction techniques we refer to Fujita’s monograph [45].)



§1. Calabi-Yau models

This section is introductory and serves as a reminder of certain fundamental prop-
erties of CY threefolds and of their singular analogues.

Definition 1.1. By a Calabi- Yau threefold (CY threefold) we mean 3-dimensional
complete, projective, smooth complex variety Y with trivial canonical class and

h'(Y,Oy) = 0. (Note that h*(Y,Oy) = h*°(Y) = 0 by Serre and Hodge duality).

Thanks to Yau’s verification of Calabi’s conjecture [130], the representative of any
such threefold Y in the analytic category admits a Ricci-flat metric. The topological
Euler-Poincaré characteristic of Y is given by

(1.1) e(Y) = 2(h" 1 (Y) = hV3(Y)) = 2(b2(Y) + 1) — bs(Y)

From the exponential cohomology sequence we get Pic(Y) & H*(Y,Z) and p(Y) =
R1Y(Y) = by(Y), where p(Y) denotes the Picard number of Y. On the other
hand, the second non-trivial Hodge number h}%(Y") of Y expresses the number of
parameters for the complex structure on Y in the following sense:

Theorem 1.2. (Bogomolov [12], Tian [118], Todorov [119]) The first order defor-
mations of a CY threefold Y are unobstructed, and the corresponding local moduli
space of Y is smooth and has dimension h!**(Y) = h1(Y,Oy).

Moreover, general structure theorems, due to Beauville, Bogomolov, Kobayashi and
Michelson, inform us that a CY threefold Y has finite fundamental group unless
some finite unramified covering of it is either an abelian threefold or is decomposable
into a product of a K-3 surface with an elliptic curve (see [8], [9]). Up to these two
cases, in which e(Y) = 0,Y has the whole SU(3) as holonomy group.

Definition 1.3. Let Y be a complete, smooth (but not necessarily projective)
complex threefold with h!(Y,Oy) = h%(Y,Oy) = 0 and trivial canonical class. We
define:

[ca]y : Pic(Y) 3 Oy (D) — (c2(Y) — c1(Oy(D)))[Y] € Z,
gy : (Pic(Y))? 3 (Oy(D1), Oy (D2), Oy (D3)) — (D1 - Dy - D3) =
(c1(Oy(D1)) ~ e1(Oy(D2)) ~ c1(Oy(Ds)))[Y] € Z

the linear form on Pic(Y) induced by the second Chern class of ¥ and the trilin-
ear symmetric form induced by intersection numbers respectively. In the physics
literature, in the case in which Y is a CY threefold, the latter is usually called the
unquantized topological Yukawa coupling form. (Remark: We shall use the nota-
tions [cz]g and qg (resp. [c2]¥ and ¢R) if we work with Picg(Y") := Pic(Y) ®z Q
(resp. Picr(Y")) instead of Pic(Y").)



As it is known from the classification theory of simply connected, compact,
oriented, 6-dimensional C*°-differentiable manifolds with vanishing second Stiefel-
Whitney class, developed by Wall [122], Zubr [132] and Sullivan [114], the oriented
diffeomorphism type of simply connected complex threefolds ¥ satisfying the prop-
erties of 1.3. is determined, up to finite possibilities, by means of the quadruple
(H2(Y,Z),b3(Y), —2[c2]y, gy ). In particular, if H3(Y,Z) is assumed to be torsion-
free, this quadruple classifies Y (up to a diffeomorphism) uniquely. (For analogous
classification theorems up to an orientation-preserving homotopy equivalence or up
to a homeomorphism, see Jupp [68] and Zubr [132], [133].)

Unfortunately, these theorems cannot be applied directly in concrete examples,
because

(1) there is no satisfactory way to check whether two symmetric trilinear forms are
equivalent up to change of basis or not,

(i1) it is often very difficult to find explicit integer bases of H?(Y,Z), and

(iii) there is not always adequate information available about the torsion part of
H3(Y,Z).

In practice, one tries to develop methods to distinguish, if possible, diffeomor-
phism (resp. homotopy) types, just by keeping necessary conditions of the above
theorems and by introducing further controllable numerical invariants, which could
hopefully be different for the regarded threefolds. Motivated by similar consid-
erations of Green and Hubsch ({49, p. 314], [65, p. 174]), we give the following
definition:

Definition 1.4. Let Y be a complex threefold as in 1.3. We define

oy : (Pic(Y))* 3 (Oy(D1), Oy (Ds), Oy (D3),Oy(Dy)) —
(gy (Oy(Dy),0y(D2),0y(D3)) - [c2]y (D4) + cyclic permutations) € Z

@y is a symmetric quadrilinear form, which induces a bilinear form:

(1.2) By : (Sym?(Pic(Y)))? — Z

(We just define the image of a pair of decomposable elements of Sym?(Pic(Y"))
under By to be the evaluation of ¢y at its members and we extend linearly.) Sy
will be called the testing bilinear form of Y.

The negation direction of the statement of the next lemma will be very useful.

Lemma 1.5. Let Y;,Y5 be two simply connected complex threefolds satisfying the
properties mentioned in 1.3. A necessary condition, under which Y; and Y, have
the same oriented diffeomorphism (resp. homotopy) type, is the equality of their

Betti numbers and the existence of an isomorphism f : H?(Y;,Q) 5 H? (Y2,Q),
such that [¢;] () = [2]§, (F()) and 6§, (,,-) = 62, (F(), F(-), F()-

In particular, in this case, ﬁg (resp. ﬂ&), i = 1,2, will be equivalent as Q- (resp.
R —) bilinear forms.

Proof. If Y7 and Y3 have the same oriented diffeomorphism (resp. homotopy) type,
then their fundamental classes are isomorphic and it is evident that qgl(-, o) =
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q%(f(-), f(), (). Since —2 c(QQ equals the first rational Pontrjagin class, the equal-

ity [c«_;]gl(-) = [cz]%( f(*)) follows from the topological invariance of the rational
Pontrjagin classes (which is due to Novikov) and the homotopic invariance of a re-

markable class introduced by Zubr [132], [133], which turns into the first Pontrjagin
class after multiplication by 4. a

We shall come back to it with an example in section 6.

Let us now turn our attention to the singular models.

Definition 1.6. ([126], [127]) A complete, projective, normal 3-dimensional com-
plex variety X with trivial dualizing sheaf and A!(X,0x) = R*(X,0x) = 0 is
called CY model if it has at most rational Gorenstein singularities (i.e. canonical
singularities of index 1 in Reid’s terminology [98], [99]) and if there is a (necessarily
crepant) desingularization 7 : ¥ — X of X with ¥ a CY threefold. A CY con-
traction of a CY model X; is defined to be a birational morphism f : X; — X, to
another CY model X3, such that p(X;) < p(X;). A CY model is called minimal if
it does not admit any CY contraction.

Definition 1.7. Let X be a CY model and 7 : Y — X a crepant desingulariza-
tion of X. We define the linear form [c;]x : Pic(X) — Z by [c2]x(Ox (D)) :=
[c2ly (7*Ox(D)), for all Cartier divisors D on X. (Note that [c2] x is essentially
independent of the concrete choice of 7.)

If we now denote by Amp(X) the ample cone of X in Picg(X), generated by
the real classes of ample Cartier divisors, its closure Amp(X) parametrizes the real
classes of nef Cartier divisors and is dual to Mori’s cone NE(X) consisting of the

real classes of effective 1-cycles. We call Amp(X) the nef cone of X. By a result of
Miyaoka (87, thm. 6.6., p. 468] we deduce:

Theorem 1.8. The linear form [02]§: which is associated to a CY model X, takes
non-negative values on the nef cone Amp(X) C Picg(X) of X.

Various properties of the nef cone Amp(X) of CY models X have been studied
extensively by Wilson [126], [127], [128], who proposed to use [c2]% in a role parallel
to the one played by the canonical divisor in the classification theory of compact
complex surfaces, in order to achieve a first type separation for X’s. Wilson’s rough
classification of minimal CY models is outlined in the following table:

Behaviour of [c;)% on Amp(X) | Typeof X

(a) [c2]% s trivial on Amp(X) abelian quotient type
(b)  non-trivial but not strictly positive | fibering type (7)

(¢)  strictly positive on Amp(X) general type

Shepherd-Barron and Wilson [107] proved that the threefolds (a) can always be
represented as quotients of abelian threefolds by (not necessarily freely acting)
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finite groups. Wilson [128] investigated certain models belonging to case (b) and
conjectured the existence of fiber space structure for any such X. In fact, cases
(a) and (b) include minimal CY models of “special type” and there should be a
complete “fine” classification for them, (*) whereas (c) constitutes the “general
case” in which, analogously to the surfaces of general type, there are still a lot of
open questions arising from “geographical problems”. For instance, a minimal CY
model of general type X is equipped with a canonical polarization coming from c;
in a natural way. If L is an ample line bundle on X and A(X,L) the corresponding
delta genus, what kind of lattice regions should be expected to be covered by its
values? In which regions do L® and [cz])x(L) reside? Finally, if A(X,L) > 3,
what kind of relationships are there between them (and eventually the topological
invariants of X) besides the standard RR-inequality [co]x(L) < 10 L3 ? (Is it
possible to get any absolute or relative new bounds?)

In this thesis we construct minimal CY models of general type by considering
certain quasismooth complete intersections X in a weighted projective space with
vanishing amplitude. Especially, we emphasize the combinatorial complexity of the
above mentioned numbers, and we study the forms gy and [c2]y of some natural
crepant desingularizations Y of X in detail.

[\

(*) K. Oguiso has meanwhile classified the CY models of type (a) (see K. Oguiso: "On the
complete classification of Calabi-Yau threefolds of type I11o”, Ochanomizu University, Preprint,
December 1994). His main theorem says that, up to isomorphism, there are only two different
CY models of this kind, both of which are rigid. Namely, the spaces coming from the crepant
resolution of the 27 quotient singularities of A3/G and of the 7 quotient singularities of A7/G’
respectively. Here A3 denotes the triple cartesian product (E¢q)? of the elliptic curve E¢, :=
C/(Z & Z(¢3), A7 = H°(C, Q'C)V/Hl(c, Z) the Jacobian variety of the Kleinian quartic curve
C = {[z1,22,23] € p? | z;a:g + Izafg + 2313? = 0}, and G (resp. G') the cyclic automorphism
group of order 3 (resp. of order 7) generated by the multiplication (zy, z2, 23) = (¢321,{3%2,(323)
(resp. by the multiplication [z}, 2, 23] — (1,722, (E3)).
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§ 2. Complete intersections in weighted projective spaces

In this section we recall briefly some basic facts from the theory of complete in-
tersections in a weighted projective space, we prove a Lefschetz-type theorem for
dimensions > 3 and we give combinatorial formulae which enable the determination
of all the interesting invariants and of the delta genera. For an introduction to the
theory of weighted projective spaces, the reader is referred to the expository articles
of Delorme (28], Dolgachev [32] and Beltrametti-Robbiano [10].

Definition 2.1. Form € N, let P™~! = P™~1(1) denote the usual complex (m—1)
-dimensional projective space. If w = (wy,... ,wm) € N™, we define S(w) to be
the polynomial algebra Clz1,... ,zm] over C, graded by the condition deg(z;) =
w;,Vi,1 < i < m. The (m — 1) -dimensional weighted projective space (w.p.s.)
P™~!(w) is defined as the irreducible normal projective variety

P™~1(w) := Proj(S(w)).
P™~!(w) is isomorphic to P™~!/ H(Z Jw;Z), and the canonical projection

i=1

p(w) : P™1 — P™Y(w)

corresponds to the canonical ramified covering:
[Z1,. .. yzm] > (21,0 s 2m], 2=, Vi, 1<i<m,

m
with Galois. group H(Z Jw;Z). Equivalently, one defines P™~(w) as the geometric

i=1
quotient (C™ \ {0})/C*, where C* acts by:

C* x (C™\{0}) 3 (t, (21, ,2m)) — (t*' 21, ... , 1" 2m) € (CT\ {0}).
Its associated projection map will be denoted by

x(w) : (C™\ {0}) — P™"}(w).
We shall say that w is reduced (resp. normalized) if ged(wy, ... ,wm) =1 (resp. if

ged(wy,... , i, ... ,wm) = 1,¥i,1 <i <m). PmY(w) is called well-formed if w is
normalized.
Definition 2.2. For m € Nand w = (wy,... ,wn) € N™ an arbitrary m-tuple of

weights, we define

w;

Ty e,
ged(wi, ... ,Wm)

‘ pi(w) := ged(wy,... ,%},... ,Wm),
and

12



w; = &\ forall 7, 1<i<m.
lem(py1(W),...,pi(W),..., pm(W))
W = (Wi,... ,Wm) (resp. W' := (w},... ,w’)) will be called the reduction (resp.

the normalization) of w.

Proposition 2.3. ([10,3.A.3, 3.C.5]) There exist natural isomorphisms:

Pm—l(w) o Pm—l(v—v) o Pm—l(wl)

Remark 2.4. In contrast to the case of a usual projective space, the twisted
sheaves Opm-1(yy(n) = S(W)(n)~ on a weighted projective space P™~!(w) are, in
general, not so “well-behaved”. For instance:

(a) It may happen that (9]1,,?‘:,-)1 (n) = Om_)l (ng) with ny # ns.

(b) Even if w = W', Opm-1(w)(n) is not always invertible.
(c) A sheaf Opm-1(w)(n),n > 0, could be invertible but not ample if w # w'.
(d) The canonical homomorphism

Opm-1(w)(n1) @ Opm-1(w)(n2) = Opm-1(w)(n1 +n2)

induced by the natural multiplication

S(w)(n1) ® S(w)(nz) = S(w)(n1 + n2)

may be not an isomorphism.

For counterexamples and further discussion see [32, § 1.5] and [10, 3D]. The patholo-
gies of this kind are mainly due to the number theoretical relations between the
weights and to the existence of singularities on P™~1(w). Mori [90] studied the
largest open subset, for which most of the nice properties of the twisted sheaves,
which are valid for unweighted spaces, can be preserved unchanged. Finally, Dimca
and Dimiev [31] proved that this open set is nothing but the regular locus
Reg(P™~Y(w)) of P™~}(w).

Theorem 2.5. ([31]) P™~}(w) is a V-variety with only cyclic quotient singulari-
ties, and its singular locus can be written as a union

SingP™ (w)) = |J {Pr(w)|c(w,I)>1},
Ic{1,2,...,m}
where
Prw) :=Pr:=P™ Y w)Nn{z; =0,Yi € I}
and

c(w,I):=cr:=ged(w; | 7 €{1,...,m}\I).

13



Definition 2.6. Let w € N™ be an m-tuple of weights, W its reduction, w' its
normalization and p;(w),1 < i < m, defined as in 2.2. Since ged(w@;, pi(w)) = 1,
there exist two unique integers v;(n; w) and ¢;(n; w) with
n = 7i(n; W)wi + €i(n; w)pi(w), 0 < 7i(n;w) < pi(w) forall i, 1<i<m,
and for all n € Z. We define
m . .

(2.1) (s w) o= 1 2z T3 W)

lem(p1(W),... , pm(W))
It is easy to see that 6(n;w) € Z, for all n € Z.
Proposition 2.7. ([10,3.C.1, 3.C.7.]) For all n € Z, we have:

(’)Ipm_l(w)(gcd(wl, N ,wm) . n) = O]pm—l(w)(n) = Opm_l(w,)(é(n; W))

Proposition 2.8. ([10, 4.B.7], [104, Th.2.7]) Let m € N,w € N™ and P™~!(w)
be the corresponding w.p.s. Then:

(i) Opm-1(w)(n) is coherent and Cohen-Macaulay, for all n € Z.

(ii) The sheaf Opm-1(y)(lem(wy,... ,wm)) is ample.

(iii) In the case, in which w = w' Pic(P™~!(w)) is generated by the class
[Opm-1 (wy(lem(wy, ... ,wm))].

For general ampleness criteria of twisted sheaves, see [28, § 2] or [10, §4 B].
Proposition 2.9. ([32,§1.4]) A w.p.s. P™~}(w) has the following properties:

(i) The Serre homomorphism S(w) — @nzo HO(P™ Y (w), Opm-1(wy(n)) is a
graded isomorphism.

(i) H*(P™ (W), Opm-1(w)(n)) =0, for 1 < s <m — 2 and for all n € Z.

(iii) For n € Ny, the natural map

HO (B (w), Opms () (1)) X H™ (P77 (3), Opms (=1 = Y wi)) =

m

Hm_l(IPm—l(W), O]Pm—l(w)(— Z w;))

1=1

1%

C

is a perfect pairing.

Definition 2.10. Let X Lg) P™~!(w) be a closed subvariety of P™~!(w) and

p(w) :P™ ! 5 P Hw), w(w):(C™\{0}) = P™ }(w)

the maps introduced in 2.1. X := p(w)~!(X) is defined to be the variety which
sits over X via the covering map p(w). CN*(X) := n(w) }(X) is called the
punctured affine quasicone over X. The affine quasicone CN(X) over X is the
scheme-theoretic closure of CN*(X) in C™. The interrelation of these objects to
each other can be described by means of two cubes built of commutative diagrams:
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A \ A \p(‘w)
X < f , Pi(w)
A (w) E A
' m(w)
CN*"(X ) oo > (C™\ {0})
W \ noe
ON(X) = e\ (o)
ﬂ i
Y \:'
CN(X) Comoommmmnfommmmmmcccccacmnnaes ~cn
\ ‘L \\‘A \ 4

X is said to be quasismooth (q.s.) if CN*(X) is overall smooth.

Remark 2.11. We should note here that X can be identified with the geometric
quotient CN*(X)/C* with respect to the action, which was introduced in 2.1.
Furthermore, the quasismoothness of X does not, in general, offer any guarantee
for the smoothness of X°Y. Of course, wide classes of quasismooth subvarieties X
of P™~1(w), as for example the class of BP-like complete intersections (see 2.16.)
being defined by means of sufficiently general polynomials, have always smooth

Xeov's,

Proposition 2.12. (cf. [32, 3.1.6]) All quasismooth closed subvarieties X of
P™~Y(w) are V-varieties.

Proof. Let X be the zero locus of the w-homogeneous polynomials fi,... , fk,

U;i={[z1,... ,2m] EP™ (W) | z; # 0}

the standard cover of P™~!(w) and

Vii={(z21,-++ ,zm) €EC" | z; =1} NCN(X), V1,1 <1 <m.
Then
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‘/i = {(21,... ,Zi_1,1,2i+1,... ,Zm) E(Cm |
fj(Zl,... ,2:,'._1,].,2,‘.|.1,... ,Zm) = O,V],l S] S k}

If we would assume that there were a singular point

z?i) =(22,...,2)_,, l,z?_,_l, ey 22)
on V;, then the Euler formula
az, __EZZ“” 'az,

l;éz

would imply

0

3 Ri—1721y %441y - - 7zm) z(A

rank Of1,., fi) < min(m — 1,k) — 1 < min(m, k),
B(zl, Y

contradicting to the quasismoothness of X. Thus, V; is smooth and the chart X NU;
of X can be represented via m(w)|y; : Vi = X N U; as the quotient of V; by the
finite group (Z/w;Z) C C*. a

Definitions 2.13. (i) A closed subvariety of codimension k in P™~!(w) is called
well-formed (or in general position with respect to Sing(P™~1(w)) ) if P™~1(w) is
well-formed and X contains no codimension k + 1 singular stratum of P™~1(w)
i.e. codimx (X N Sing(P™~1(w))) > 2.

(ii) If T is a homogeneous ideal of the graded ring S(w),

bl

X = Proj(S(w)/I) c P™ }(w)

and 7 is generated by a regular sequence {f;j|1 < j < k} of homogeneous elements
of S(w), then X is called a weighted projective (m — k — 1)-dimensional (strict)
complete intersection of the hypersurfaces {f;j = 0} (c.1., for short) with multidegree
d := (dy,... ,d), where deg(f;) = d;,V¥j,1 < j < k. We shall denote S(w)/Z by
A(X). A(X) =D,,50 A(X)n is a graded C-algebra with

A(X)p := S(W)a/(S(W), NT) and Spec(A(X)) = CN(X).

Moreover we shall make use of the notation

X4 C P™Y(w)

to express a sufficiently general element of the family of all w.c.i. of multidegree d.
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Proposition 2.14. (Bertini-type quasismoothness criterion).

Let X = Xq C P Ywy,... ,wy) be a c.i. with defining polynomials f1,... , f&.
Then X is quasismooth if and only if for all possible non-empty index-sets I, :=
{t1,...,i,} C M :={1,2,... ,m}, there exists an integer s = s(I;), 0 < s <k, and
a splitting of the index-set {1,... ,k} into:

g, if s=0 {Js+1s---+Jk}, i 0<s<k—1
Ja=1 . . . and Jp = .
{j1,---,7s}, if 1<s<k g, if s=k
satisfying the following property: In the monomial decomposition of fi,..., f

(i) If Jo # O, there are at least s monomials of type

(Ja) (Ja)
':lil Z(.lira

le s 2y

with degree dj, ((a(ja), . a(-j")) € (No)"\ {(0,...,0)}),Va,1 < a < s.

11 ) ey

(ii) If Jb # @, and if for all B, s + 1 < B < k, we set

N9 = {n e M\ LA™, b0 € (No)" :
bf-f")’"wil +...4 bgfﬁ)’"wi, +wp =dj,},

v(jg) := ﬁ(Nﬁjﬁ)) and NU#) = {y§j”), e ,yl(f(.’j.;)} is an enumeration ofNﬁjﬁ), then

there exist v(jg) monomials of degree dj,

gjﬁ),yg’f’) bgjp),ygj”)

(namely that of type z;* coezT 2z (50, 1 LX< wv(jp)) with
Ya

1 ir

T v(ji,)

|{U U yg‘j"’)}|2r—s+r-—l, for all subsets {ti,...,t:} C{s+1,...,k}

o=1 A-—-1

consisting of T elements, 1 <7 <k —s.

(Note that the above conditions (i) and (ii) hold true for fi,... , fr “general enough”.
This means that the parametrization locus of the non-zero coefficients of (fi,... , fx)

satisfying (i) and (ii) forms a Zariski-open dense subset of Hle CAi )

Sketch of proof. We generalize similar results of Fletcher [41, §1.5.] being valid for
k =1 and k = 2. In fact, one has to show that for a “generic choice” of the defining

polynomials fi,..., fi, the rank of the Jacobian matrix (aﬁ((zf:——-f:% |z=zo) evalu-

ated at a point z° € C'N(X) cannot be < k, except possibly for z° = 0. Assume that
(i) and (ii) hold for each I, # @. By Bertini’s theorem, the singularities of C N(X)
can occur only within CN(X) N P,, where P, := {(z1,... ,2m) € C™|z;,,, = ... =
zi, =0} and {ir41,.-- rim} ={1,...,m}\ {i1,... ,ir}.
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Let P, be the stratum P, := {(21,... ,2m) € Pr |z21 # 0 ., zi, # 0}. We expand
our polynomials in terms of the variables z;, _,,... ,z;

m

high. der t
fo(2z) = galziys oo y2i,) + z zitha(2iy, - - ,Zir)+{ ~1g eroreer erms}

=71 M Zi4yy-0 9 %im

o i higher order terms
faz)= > Zi,hé(zil,-~-,2i,)+{ 18 }

N 2z, 2
I=r+1 trdrrrt o Tim

for1<a<r s+1<8<Ek, with go, A, hg suitable polynomials in the variables
Ziyyeon s Zi,.

(a) Suppose first s = k. P, is not a part of the base loci Bs(L;) of the linear systems

L; = {F (21, Zm5 May,oam)) = Z)\(al,...,am)zf’ 25 N am) € CY },

A; = {(a1,... ,am) € (No)™| X im; aiw; = dj}, 1 < j < k, parametrizing all
quasihomogeneous polynomials of degree d; w.r.t. the weights (wy,... ,wm). Thus
(f; = 0) is non-singular along P,, Vj,1 < j < k. Since (9o = 0),1 < o < 7,
determine free linear systems on P,, {dga(2°)|1 < a < r} are linearly indepen-
dent for z° € P, N CN*(X). Hence, the transversality condition is fulfilled and
(Nr—,(9« = 0)N P.)\ {0} = P, N CN*(X) is non-singular.

(b) Suppose now that s # k. By Bertini’s theorem, (fo = 0),1 < a < r, are
non-singular along P,. This means that

Sing(CN (X)) = (Na=1(9a =0)) N (ﬂmgfénl;(hg =0)).

It is an exercise of linear algebra to verify (from the above decompositions of fo
and fg) that (i) and (ii) are equivalent to dimg(Sing(CN(X))) = 0, i.e. that the
locus of CN(X) consisting of that points, at which the Jacobian matrix has rank
< k — 1, is zero-dimensional. As CN*(X) is C* -invariant (cf. 2.11.), we get
Sing(CN(X)) C {0}. The converse can be proven similarly. a

Proposition 2.15. ([32, pr.2], [41, 1.3.12, 1.3.13]) A ci. Xq C P™ }(w) is well
formed if and only if Xq satisfies one of the following equivalent conditions:
(i)

(a) P™~1(w) is well-formed and

(b) for all p=1,... ,k, the gcd of any (m — k — 2 + p) of the w;’s divides at

least p of the d;’s.

(ii)m—k—t{ie{l,... ,m}:qw}+4{7 € {1,... ,k} : q|d;} > 2, for all integers
q > 2. (In particular, if X4 is quasismaoth, then Xq Is well-formed if and only if
the above inequality is true for all prime numbers q > 2.)

Definition 2.16. A c.i. of the form

m

(2:2) Xa = X(4y,..d0) = {21, 2m) € PP 7Hw)| D Nijzi ™ =0,¥5,1 < j <k}

=1
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is called c.i. of Brieskorn-Pham type (BP c.1., for short). Especially, if either £ = 1
ord; =...=dg, k> 2,Xg is called c.i. of Fermat type. A BP-like c.i. is defined
to be a c.i. Xq C P™~}(w), for which lem(ws,... ,wm)|d;,Vj,1 < j < k.

Using Prop. 2.15, we can easily verify, that any q.s. BP-like c.i., embedded in
a well-formed w.p.s., is itself well-formed. The property of well-formedness of a
g.s.c.i. turns out to be very important, but it was eluded by the authors of [32]
and [10]. In fact, the following theorem, due to Dimca and Fletcher, reduces the
examination of the validity of this property to dimension < 2.

Theorem 2.17. Let X4 C P™~}(w) be a q.s.c.i. of dimension > 3. Then either
X4 1s well-formed, or X4 is the intersection of a linear cone with other hypersurfaces
(i.e. dj = w; for some j and 7). In the second case, Xq is isomorphic either to a
g.s.c.l. of lower codimension or to a w.p.s.

Proposition 2.18. ([30, prop. 8]) The singular locus of a well-formed q.s.c.i.
X4 C P™Y(w) is given by the intersection Sing(Xq4) = Xq N Sing(P™~}(w)), i.e.
Sing(Xa) = Urcq,.. my{Xa(I)ler > 1}, where Xq(I) := Xq NPy in the notation
of 2.5.

Proof. If N is a common multiple of the weights wy, ... ,w, with n; := l_lv\f?’ Vi, 1<
i <m,and Z = {[z1,... ,2m] € P Y W)|fet1(21, -+ y2k41) = Ar27t + ...+
Amzpm = 0}, then Z N X is again a quasismooth complete intersection for coef-
ficients Aq,... , A, general enough (cf. prop. 2.14). Under this quasismoothness
assumption,
W:=A{lz1,-.+ ,2m, zZm+1] € P™(w1,... ,wm, D|fi(21,.. y2m) = ... =
fk(zl,- .. azm) = fk+1(zl,- .- ’zm) - ZTIX—H = O}

is also a g.s.c.i and the branching locus B(g) of the natural covering map

W > [21,... ,2m+1]bi)[21,... ,Zm]EX

is B(g) = {[z1,-- ,2m] € XI§(97 ([z1,--- y2m])) < N} = (X N Sing(P™}(w))) U
(Z N X) with cod xAging(Pm-1 (w))\(znx)(B(g)) > 2. This means that

XNSing(P™~}(w)) C Sing(X) (cf. [31, Cor. 3]). On the other hand, the restriction
of the canonical projection m(w) to m(w)~}(X \ Sing(P™~(w))) is a C* -bundle.
Thus, X \ Sing(P™~!(w)) is smooth, i.e. Sing(X) C XNSing(P™ !(w)). The proof
of the assertion is completed by using prop. 2.12. a

Definition 2.19. Let X4 C P™ !(w) be a g.s.c.i. The number

am(Xq) := am(w;d) := Zdj —

j=1 i

w;

k m
=1

will be called the amplitude of Xg4.
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Proposition 2.20. (Generalized adjunction formula, [32, 3.3.4], [10, p. 152]) Let
Xa be a well-formed q.s.c.i. Then there exists an isomorphism between its dualizing

sheaf and its structure sheaf twisted am(w;d) times, i.e.

(2.3) wx, = Ox,(am(w;d))

(Examples in [41, 1.3.15] show that we cannot drop the assumption of well-formedness

of Xq!)

Proof. 1st step: Let j : Reg(P™ 1(w)) — P™~!(w) be the natural inclusion of the
regular locus of P™~(w) into P™~}(w), Qg(w) := Qg the free module of Kahler

C-differentials of S(w) generated by {dz1,... ,dzm}, and

Qé’m—l(w) = (Ker(eg : /\tﬂs(w) — /\e_le(w)))N

the sheaf associated to the graded kernel of the Koszul complex operator ¢,
V6,1 < £ < m—1. Then wpn-1(w) = JsWReg®Bm-1(w)) = Jx pocy

Q&il(w)) = Qzl;;'l‘l(w)) is iSOInOI‘phiC to O(]Pm—l(w))(— Z:’;l wi) because

Reg(Bn—1(w)) =

Ker(em—1) 2 A™ (@1 S(W)(—wi)) = S(w)(= Y wi).

=1

2nd step: The Koszul complex which is associated to fi,... , fx resolves S(w)/(f1,- -

Applying ~ to this resolution we get an exact sequence of O(pm-1(yw)) -modules:

0 A F o L9 NF o . 5 F = Ox = Om-1(w)) = 0

with F := ®f=10x(—dj). Consequently,

— 1 =
wx = Ef”to(pm_l(w))(O(“’"“I(W))’w(w“‘(w))) &~

k
= coker(Homo(mm_l(w))(/\k"lf,w(]pm_l(w))) — w(lpm—l(w))(z dj)) =
i=1
k
> OX @0 g1y, WEm-1(w)) (Y d5)
J=1

and the assertion follows from the isomorphism of the first step.

If X =Xg4 C P™"}(w) is a q.s.c.i. of dimension r := m — k — 1, the degeneration
of the spectral sequence E}'?(X) = HI(X, Q%) = HP1(X,Q%) = HPT1(X,C) of
hypercohomology (with respect to the complex Q% ) at the term E; gives rise to
a filtration on the spaces HP*7(X,C), which coincides with that one of the usual

Hodge structure. Hence, X admits a pure Hodge structure,

Hodge decomposition H*(X,C) =P HI(X, Q&),

ptg=s

20
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Hodge numbers hP4(X) := dimcH(X, Q%) and Serre duality isomorphisms:

HI(X, Q%) = H(X,0% '), ¥p,q,0< p,g <7
(cf. [112, §1]). On the other hand, according to the hard Lefschetz theorem for
V-varieties, the maps
u(g;p) : H?(X,C) 3 £ — c}(L) — ¢ € HPT?(X,C),
induced by the class of an ample line bundle L over X, are isomorphisms, such
that:
H*(X,C) = P ulgs — 20)(Honal (X,0)),¥s5,0 < s < 2r — 2,
q>0

where

H?(X,C) = Ker(u(r — p+ 1;p) : H?(X,C) » H (X, C)), ¥p, 0 S p < 1,

prim

denote the so called primitive cohomology groups of X. As a consequence of the
compatibility of the Hodge and Lefschetz decompositions we get:

Hin(X,C) = P HEYL(X,0),

prim
ptg=s

where

HPY (X,C) := HY(X, Q%) N Ker(u(r — s + 1;3)).

prim

Moreover, if we set hP! (X)) := dimcH?? (X, C), we obtain:

prim prim

(2.4) hP( Zhg“;f i

and the application of the Lefschetz theorem for hyperplane sections gives the
following:

Proposition 2.21. Forag.s.ci. X = Xq C P™""}(w) of dimensionr = m —k—1,
we have:

(2.5) RPUX) =16p,4, for p+q#r

(2.6) hprim(X) = hAPUX) =65, for (p,q) # (0,0)

prim
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The above invariants (2.5) of X are called the trivial ones. The remaining, non
trivial and most interesting, invariants of X, and their combinatorial expressions by
means of the weights wy,... ,wn, and of the degrees of the defining w-homogeneous
polynomials of X, have been studied by Hamm [59], [60] and Aleksandrov [2]. For
the presentation of their formulae we need to introduce some special notations. Let

(2.7) Wo:=1, Wi(y1,-.- ,Ym) = Z Yiy - Yiy
1<i1<..<ix<m

denote the elementary symmetric polynomials in the variables y;,...,ym,m with
Weight A E No,

(2.8) Da(ys,--ye) = Y, uit...y
Nt Fie=A
jl)"- 1jk 20

the symmetric polynomials in yi,... ,yx of degree \, and

Dk(yi,---»yk) = (=1 y1...yx Da(y1,- - ,vk)
with Dg o :=1 and Dy :=0, VA, A € N.

Theorem 2.22. (Aleksandrov [1], [2, p.447])

Let X = X(q,,....a0) C P™Y(w,... ,wn) be a quasismooth c.i., A(X) its graded
coordinate ring and 90 the maximal ideal of A(X) corresponding to the zero point
0 € CN(X). Suppose that the indices of the degrees of its defining polynomials
are enumerated in order of size

di=...= dkl < dk1+1 =...= dkr_l < dkr_l-}-l =...= dk,,
so that k. =k, kg =0, and set g, :=ky —ky—1 —1,Vo,1 <0 <.

Then the Poincaré-series of the graded A(X)-module Hg’;_k_q(Qj’Q(X)) is given, for
g=1,...,m —k, by the following formula:

(2.9) P(H;Jnt—k_q(QqA(X)); z) = (—1)* Z 2@t Ddes o
o=1
m—k—q+/\1—l q+/\2 —(m—k+A1+1)di,

Ar+A2+As+Ai=gs
’\11A21A3yA420

X Wi —xq (Ko (23 W)) Dy k=g, -1 (Vo (x5 d))
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where p,(z;w), v, (z;d) abbreviate the rational function vectors:

di wy d wm
. e [ ko —1x ko —z
po(z;w) = (Eg=2= .. £2=2") and
1% (iEW) i z41—1 zlko—1-1 ko411 %k =1
o ) . xdka —zd1 LA xdka —z:dko-—l ) xdka- —zdka-+1 LR zdka —rdk

respectively.

Sketch of proof. Let f1,..., fr be the defining polynomials of X,

X© .= P™ (w), xX® .= X(dy,yo dy)s

fo = folen(xw-ny and Ofp =) “5‘;
i=1 "
(w.r.t. a local coordinate system {z1,...,zm} of 0),Vp,1 < p < k. Furthermore,

let

(04, 2N il ez}

denote the Koszul-cocomplex defined by means of the left exterior multiplication

by afp)

p
. : N : -
QJCN(X(P)) = Qépec(A(X(P))) = Qom / <Z filgm +0fi At ) lonxe)
=1

and Q;p = Q]CN(X(,,_I))/afp A Q’C—j\}(x(p_”),‘v’p,l < p < k,Vj,j € Z. By general
de Rham-type lemma (see [50, Prop. 1.7. and Prop. 1.11.(i), pp. 241-242]) the
sequences

. 8f, A i1 i1
(2.10) 0—Qf —— Q]CN(X(P—U) = Q" =0
(2.11) 0= Qp =5 Q% = Qryixey =0

are exact, V7,0 < 7 < m — p. The application of the functor Hgo}(—) to (2.10) and
(2.11), combined with Greuel’s vanishing theorems ([51, pp.165-166]):

Hgo} (QéN(x(p))) =0,

for j+Q¢{m_kam—k+1}a
(J,9) ¢{im = k)0 < i <m—k}U{(i,0)[m —k <i <m}

23



and

{0}(‘Q]) Oa
. {(J',q) ¢H{E,m—k-1)0<i<m—-k}U{(z,0)|m-k+1<1:<m}

respectively, leads to four-term exact sequences of cohomology groups supported
at {0}. The corresponding Poincaré-series must therefore satisfy the following
recursive equations:

(212) P(H,, Q7777 );2) =

- m— m—k— m

T "PP(H?O}I(Q PTI) 2)+P(H {0}(QCN(X€= -p+0)) T 2))- 7)(Hfﬂ}l(QCJNZY?’?1*’+1));:E))
for 1<p<k1<q¢g<m-p

(2.13)  P(H{oy (R n(xih-r) )i ) =
P(HI QERT R, )ia) + (1= 2%)P(Hgy (77 77); )

for 1<p<k1<qg<m-p-1

The system of (2.12) and (2.13) has as solution:

(2.14) P(H{o}( Nix )iz) =

CN(X(k=p))/»
_dk—j k_p _di _ 1
q 1 m—j— _ql'— —_—
ZP H{oy (8 (x(k-1)); ©)Resi=o |¢ L+te=bei AL 14ted

for0 < p <k,1 <g<m-—p—1. The theorem is completed by using Grothendieck’s
local duality theorem [55, thm. 6.3.], which gives a perfect pairing

m—k—
H T QL o xcomny) % Ext
and enables the computation of the Poincaré-series of the desired local cohomology
groups, Greuel’s and Hamm’s computation of P(H{O}( g;,fxt(’k_“)) z) in (2.14)
(see [52, Satz 3.1.]), simple duality for the highest dimension ¢ = m — p, and
“residue-acrobatics” with the symmetric polynomials (2.7), (2.8) (see [52, 3.9]),

combined with

q
CN(x(k))(QCN(X(k))’wCN(X(k))) — C,

P(Hp 12 x))i2) = P(Hoy "1 ( Qe nix))i ©)-
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Lemma 2.23. Let m € Nyw = (wy,... ,wy) € N* and P™"}(w) = Proj(S(w))
be the corresponding w.p.s. with weights w. Then:

1
[Tim (1 —2%)

Proof. It follows directly from Prop. 2.9. O

(2.15) P(S(w);z) =

Lemma 2.24. For a g.s.ci X = Xq4 C P™"}(w) we have:

(2.16) P(A(X);z) =

Proof. If we set S° := S(w),S7 := S(wW)/(f1,---,fi),Vj,1 < j < k, where
fi,..., fr are the defining polynomials of X, then

0 = §9=Y(=d;) -2 §i=1 - 59 0

is exact as coming from an S(w) -regular sequence. Thus,

P(SI 7Y z) = P(S7;2) + i P(Si—1liz),

1.e.

P(S%;z) = (1 — 2z%)P(S771; ).
Substituting (2.15) for P(S°%; z), we get (2.16). O

As it has turned out, using either the Hodge filtration [60] or a Gysin-type exact
sequence between local cohomology groups [2] and further vanishing theorems, the
primitive parts of the non-trivial Hodge numbers of such an X are given by means
of residue calculus on the rational functions (2.9) and (2.16):

Theorem 2.25. (Formulae of Hamm and Aleksandrov)

Let X = Xq C P™}(w) be a q.s.c.i. of dimension r =m —k — 1. Then its non-
trivial primitive Hodge numbers are computed by the following formulae, depending
only on w and d:

(2.17)
1 ke
h’l;;‘i’m(X) = hg’r’-:m(X) = Res,,.=o;;77(}{‘_;';T k q(Q‘A(X));x), for 1<q<r ptq=r
| T T 'd 1 '
(2.18) Ao m(X) = hO% (X)) = Rese=0—rmrgyrr P (A(X); @)

The forthcoming numbers, which are of fundamental importance and charac-
terize q.s.c. intersections X, are the dimensions of their cohomology groups with
coefficients taken from the twisted sheaves Ox(n).
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Definition 2.26. Let m € N and w = (wy,... ,wm) an m-tuple of positive inte-
gers. We denote by pt(n;w),n € Np, the generating function determined by

(2.19) H'-Til(ll— T Z pt(n; w)z

n=0

(For reasons of convention we extend it to the whole Z by setting

pt(n;w) =0, Vn,n € Z\ Np).
Obviously, pt(n; w) = dimc(S(w)r) = RO(P™ "1 (W), Opm-1(w)(n)).
Theorem 2.27. Let X = Xq C P™}(w) be a well-formed g.s.c.i. of dimension
r =m —k — 1, whose ideal T is generated by a regular S(w) -sequence {f1,... , fr}
with deg(f;) = dj,d = (di,... ,dr), and A(X) = S(w)/Z. Then its cohomology

groups with coefficients taken from the twisted sheaves Ox(n) are related to the
graded parts of A(X) by the isomorphisms

A(X)n, fori =0
HY(X,0x(n)) =< 0, for1<i<r—1 or i#0,r
A(X)am(w,d)-n, fori=r

Moreover, the dimensions of the non-vanishing of them are computed by the fol-
lowing formulae, depending only on w and d:

k J
(2.20) AK°(X,0x(n)) = pt(n;w) +Z Z pt(n — de;W)
1=1 A=1

1<y <2< .. <v; <k

(2.21) R"(X,0x(n)) = h°(X,Ox(am(w,d) — n)),Vn,n € Z.

Proof. For the proof of the first assertion we follow Dolgachev 32, §3.2.].
consider at first the long exact sequence

o= Hfo}(CN(X),OcN(X)) — HY(CN(X),O0cn(x))

H{(CN*(X),0cnx)|on+(x)) = H(CN*(X),0cn+(x))
- Hig}l(CN( (), 0cn(x)) = HH(CN(X),Ocn(x)) =

which is associated to the cohomology groups of CN(X) with support {0} =
CN(X)\ CN*(X) (see [55, Cor. 1.9., p.9], [56, Exp. II, Cor. 2.9., p.16]). Since
CN(X) is an affine variety, we have: H}(CN(X); Ocn(x)) = 0,Vi,i > 0 (see [61,
I11.3.5]). Thus, for all ¢ > 0 : H}(CN*(X),Ocn-(x)) = ;g}l(CN(X) Ocn(x))-
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This group vanishes whenever Hé}l(OCN(X)) = Hf'g}l(CN(X),@CN(X)) is 0. As
CN(X) is an affine c.i., its structure sheaf is Cohen-Macaulay and Hé,'{'l((’)CN(X)) =
0, fori+1 < dim CN(X) =r+1 (cf. [56, Exp. VII, prop. 1.2., cor. 1.4, pp.

78-80]). Furthermore,

HY(CN*(X),0cn+(x)) & H(CN*(X), Ox ®0pm_s,,, Ocm\(0}) =
= H'(X,0X ®0ym_s,,, T(W): Ocm\(0})) =
= @Hi(X, Ox ®owm—1(w) O]pm-1(w)(n)) = @Hi(X, Ox(n))
n€Z nez

This means that H'(X,0x(n)) = 0, Vi, 1 < i < r—1. Now since A(X) is
integrally closed, the Serre homomorphism A(X) = @,cz H°(X,0x(n)), as in
the unweighted case ([61, p. 188]), is a graded isomorphism, and therefore by
(2.16)

P(X;z) = P(A(X);2) = (H(l—wdf)> (H (1—:ch)> :

We write
k (%)
[[a-2%)= H(Z(J{o}(n) —dg4;3(n))z™) =
= [(603(n) = 6(ay3(n)) * ... % (60} (n) — 814} (n))]z

where * denotes here the usual Cauchy multiplication. One checks directly that

(6403 (n) = 8a;3(n)) * ... % (803 (n) — 8(4,3(n)) =

1, forn=0

-1, forn=d,,1+...+d,,j,1$1/1<...<1/j§k,jodd
1, forn:d,,1+...+d,,j,1§1/1<...<1/j§k,j even
0, otherwise

After multiplication by []i=,(1 — 2*)~! we get (2.20).
Finally, the last isomorphism and (2.21) follow from Serre duality. a

Corollary 2.28. For a well-formed g.s.ci. X = Xq C P™ !(w) of dimension
r=m—k—1 we get:

RO(X,Ox(am(w,d) + n)),fori =0
(2.22) (X, wx(n)) =4 0,for 1 <i<r—1
RO(X,O0x(—n)),fori=r
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Proof. Obvious by the generalized adjunction formula (2.3) of prop. 2.20. d
Definition 2.29. Let X = X4 C P™ }(w) be a g.s.ci and w be the reduc-

tion of the weights w (as in 2.2). If fi,..., fx are the defining w-homogeneous
polynomials of X, we shall say that X = Xz C P™ (W), defined by the w-
homogeneous polynomials fi,..., fr with degrees deg(f;) = d; := gcd(wl,...,wm)’

is the w-reduction of X. Furthermore, if we suppose that X is not contained in
any hyperplane {z; = 0}, for 1 < ¢ < m, then we can determine a third g.s.c.i
X' = X} c P™}(w') coming from the normalization w' of w (in the notation of
2.2.) with defining w’-homogeneous polynomials f7,... , f; of degrees

d;
lcm(p1 (W), cee ,Pm(W))’

deg(f}) = d} := vj, 1<j <k

(cf. [30, p. 186]).

Proposition 2.30. ([30, pp. 186-187]). Let X = Xq C P™~Y(w) be a g.s.c.i and
X its w-reduction. Assume that X is not contained in any hyperplane {z; = 0}

for 1 <1 < m, and let X' denote the q.s.c.i coming from the normalization w' of
w. Then X,)_( and X' are isomorphic to each other.

Remark 2.31. The above mentioned proposition informs us that under these
relatively weak assumptions, we can consider the weights of q.s.c. intersections

being normalized. Of course, this does not mean that the corresponding germs
(CN(X),0),(CN(X),0), (CN( "),0) will have to be necessarily isomorphic.

Definition 2.32. A g.s.ci X = X4 C P™™1(w) will be called nondegenerate if it
has the following properties:

(a) its w-reduction X is not contained in any hyperplane {z; = 0}, for 1 <1 < m,
and

(b) X’ fulfills, in addition, the condition (i) (b) of Prop. 2.15.,i.e. X' is well-formed.

Proposition 2.33. The degree of the twisted sheaf Ox(n), which is defined over a
nondegenerate one dimensional q.s.c.i X = Xq C P™~!(w), is given by the formula:

(2.23) deg(Ox(n)) =

1

ged(wi, ... ,wm)

{RO(X", O (8(n; w)) = hO (X', O xcr(am(d’, w')—8(n; w)))+9(X") 1)

where X' denotes the space coming from the normalization w' of w,6(n;w) the
function (2.1) introduced in 2.6., and g(X') := h} (X', Ox+) = h°(X', Ox/(am(d’, w')))
its genus.

Proof. By prop. 2.7.,

1 1

deg(Ox(n)) = ged(wy,. .. ,Wwm) deg(Ox (n)) = ged(wy, ... Wi )

deg(Ox(B(n; ))).
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Since X' is well-formed and smooth, the usual Riemann-Roch formula for curves
gives:

deg(Ox:(8(n; w))) = h*(X', Ox:(6(n; w))) — (X', Ox(8(n; w))) + (9(X") = 1).
The proof is completed by using the Serre duality equation

RY X', Ox:(6(n;w))) = h°(X', Ox/(am(d’, w') — 6(n; w))).
a

Let us now go into the description of the nature of the Picard groups of g.s.c.
intersections. Since we are mainly interested in threefolds, we omit the consid-
eration of the surface case referring the reader to Steenbrink [113], Cox [22] and
Jong-Steenbrink [67] instead.

Theorem 2.34. (Mori’s weighted version of the classical Noether-Lefschetz theo-
rem, [90, Th. 3.7.]) The Picard group Pic(X) of a smooth, well-formed c.1.

X = Xq C P™ Y (w) of dimension > 3 is isomorphic to Z and is generated by the
class [Ox(1)].

Theorem 2.35. (Dolgachev’s generalization [32, 3.2.4 (i), 3.2.5]) The Picard group
Pic(X) of a quasismooth, well-formed c.i. X = Xq C P™}(w) of dimension > 3
is isomorphic to Z and is generated by the class of an Lx := Ox(nx), for some
nx € N.

Definition 2.36. Let X = Xg4 be a qs.ci. in P™}w), I C {1,...,m} a
(non-empty) index set and X(I) the corresponding stratum on X (as in 2.18).
(If or : Clz1,... ,zm] = C[{z;lj € {1,... ,m}\ I'}] is the canonical coordinate ring
epimorphism, then the set {¢r(f1),...,91(fx)} contains obviously a minimal set
of generators of the defining ideal of X(I) in Py.)

We define:

V(I) := k — f(elements of a minimal set of generators of the ideal of X (I)in Py).

X will be called well-stratified if
(a) X(I) isa (m —1—1I|) — (k — V(I))-dimensional q.s.c.i. for all I with

[l < (m—1) = (k= V(I)).
(b) for all I with (m —1 — |I|) — (k — V(I)) = 0, X(I) consists of finitely many

points.

(c) X(I) = @ for all I with |I| > (m — 1) — (k — V(I)).

(Note that condition (c) is not superfluous! For instance, the intersection of two
zero-dimensional hypersurfaces in a w.p.s. need not be empty.)

Next theorem strengthens Dolgachev’s result in the well-stratifiedness case, gives a
partial answer to a question of Beltrametti and Robbiano for dimension > 3 [10, p.
155], and generalizes prop. 2.8. (iii).
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Theorem 2.37. Let X = Xq C P™~}(w) be a well-formed, well-stratified, q.s.c.i
of dimension > 3. Then Pic(X) is generated by the class of the ample bundle
LX = OX(UX) with

(2.24)
nx = lem({ged(w;|: € N)|I C{L,... ,m}|I|>k+1-V({1,... , m}\I)}) =
=lem({ged(w;li € DI C {1,... ,m}|I[|=k+1-V{L,...,m}\I)})

Proof. By prop. 2.8. (iii), Pic(P™~!(w)) is generated by [Opm-1 (w)(lem(wy, ... ,wm))].
Now, although X°°? is a not necessarily smooth c.i. (see 2.11.), Pic(X ") is gen-
erated by [Oxcov(1)],p(W)*, (p(W)|x)*,(W)* are injective and ¢(1)* is an isomor-
phism by Grothendieck’s version of Noether-Lefschetz theorem ([56, Exp. XII, Cor.
3.6. and 3.7., p. 153]).

*

Z = Pic(P™™1) LA Pic(P™ }w)) = lem(wy,... ,wn)Z

L(l)'l lt(w)*

7 = Pic(xeov) 0° Pic(X) = nxZ
Thus, Pic(X) is generated by the class of the ample line bundle Lx = Ox(nx),
where nx denotes the minimal positive integer which divides lem(wy,... ,wn) and

for which (p(w)|x)*(Ox(nx)) = Oxeov(nx). In other words, nx is the minimal
divisor of lem(wy, ... ,wn) for which

HO(Spec(A(X)n), Ox (nx)) = AX)(x)n) = {55 19 € AX v }

forms a free A(X)(p)-module of rank 1, for all h € A(X), and for all s € N. For the
determination of nx we identify X with CN*(X)/C*. Note that Pic(CN(X)) =
Pic(CN*(X)) is trivial ([56, Exp. XI, Cor. 3.10., p.130], [32, p.52]). The projection

map 7(W)|x induces a monomorphism

gx : Pic(CN*(X)/C*) <= Picex (CN* (X))

to the group of isomorphism classes of C*-line bundles over CN*(X). By the exact
sequences

{

1}
Pic(X) = Pic(CN*(X)/C*)

{1} = H2,,(C*, Aut(Ocn-(x))) = HY, (C*,C*) 2 Z — Pice (CN*(X)) — Pie(CN*(X)) = {1}

alg
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we deduce that the image of gx consists of those C*-line bundles £ over C N*(X),
for which the isotropy groups {(C*),,z € CN*(X)} act trivially on the fiber £,
(cf. [75, 84, §3]). As these C* -linearizations L, of the trivial line bundle

CN*(X) x C = CN*(X)

are parametrized by n € Z:

La|C* x (CN*(X) x C) 3 (¢,(2,))) — (¢-2,t"\) € CN*(X) x C,

forz = (z1,... ,2m) E CN*(X), t -2 = ("' 21,... ,t¥™2p),
we have (C*), & Z/gcd(w;|i € I,)Z, where
I ={te{l,... ,m}z #0} with |I,| > k+1-V({1,... m}\ L) > 1.

(The latter inequality comes from the well-stratifiedness of X.) Hence, if we set

Qx(z)={teC :t¥' =1, Vi, 1 € I},

we get:

nx =min{n € N[t" =1, forall te n Qx(z)}.
z€CN*(X)

a

Corollary 2.38. If X = X, is a well-formed q.s. hypersurface in P™~}(w) of
dimension > 3 and its defining polynomial is general enough, then:

(2.25)
nx = lem({ged(w;,,wi,)|1 <41 <12 <m}U{w;, 1 <i<m, with w;td}).

Proof. Let X = (f = 0). If the coefficients of f are sufficiently general w.r.t.
each stratum (cf. proof of prop. 2.14), then X is well-stratified. For an index set
Ic{l,...,m} with |I|]=m—1and {1,... ,m}\ I = {i}, Ps consists only of the
point [0,...,0,1,0,...,0] with the 1 in the 7 — th position. X contains this point,
ie. X(I) # @ and V(I) = 1, if and only if in the monomial decomposition of its
defining polynomial there is no monomial involving only z;. But this is equivalent
to d not being a multiple of w;. O

Corollary 2.39. If X is a BP q.s.ci. (2.2) of dimension > 3, with a;j > 2,
Vi, 1 <1 <m,Vj, 1 <j <k, and all (p x p)-subdeterminants of the matrix
(Mij)i1<i<m,1<j<k are non-zero, Vp, 1 < p < k, then:

(2.26) nx = lem({gcd(w;,, ... ,wi,, )1 <11 <iz < ... <ipp1 < m})
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Lemma 2.40. Let X = Xq C P™"}(w) be a well-formed, well-stratified, q.s.c.i.

of dimensionr > 3 and Lx = Ox(nx) the generator of its Picard group. Then we
have:

k r

Proof. It follows directly from the fact, that (Oxecov(nx))" = n%(Oxeer(1))" =
775((H§-_—1 d;) and (Oxeov(nx))" = deg(p(w)|x )L%, because

Oxeon(ix) = (p(W)]x)*(Lx) and deg(p(w)lx) = [] w:

a

Theorem 2.41. The A-genus of a well-formed, well-stratified, q.s.c.i.
X = Xq C P™Y(w) of dimensionr > 3 with respect to Lx is given by the formula:

(2.28) A(X,Lx) =

k
(H] 1 ])nX
T+ = —ptnx; W
Hz 1

Ma-

j
2. pilix =) dniw

]=1 l<u1<z/2<...<uj<k

Proof. Obvious by the formulae (2.20) and (2.27). O

Remarks 2.42. (i) All well-formed, well-stratified g.s.c. intersections X = Xgq C
P™~Y(w) with r = m —k —1 = 3 and am(X) = 0 are minimal CY models of
general type, because they have always (full) crepant desingularizations (see §4),
their Picard number equals 1, and ([c2] X‘m_)) > 0. These models arose first in
the physics literature in connection with the so called “Landau-Ginzburg potentials”
which were first introduced in the article of W. Lerche, G. Vafa and N.P. Warner:
“Chiral rings in N = 2 superconformal theories”, in Nucl. Ph. B, Vol. 324, 1989
(see also [15], [74], [120], [129]). It should be mentioned, that the conditions of
quasismoothness, well-formedness (cf. prop. 2.14 and 2.15) and of the vanishing
amplitude are in fact very restrictive. This is the reason for which the expected
degrees d = (dy,... ,dk) and weights w = (wy,... ,wn) for these X’s have to move
within bounded arithmetical regions and to be, in particular, finitely many. For
example, there is no CY model of the regarded type with codimension k£ > 5, while
only the intersection of four quadrics in the usual 7-dimensional projective space
appears in codimension 4. For 1 < k < 3, however, there are several thousands of
allowable combinations (d; w), the number of which decreases as long as we increase
k.

In the case where k = 1, Klemm and Schimmrigk [74] and, independently, Kreuzer
and Skarke [79], gave a computer aided classification of all possible combinations
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for (d;wy,... ,ws). They found 7555 combinations, the table of which covers a lot
of pages (see preprint version of [74]). Recently Klemm [73] showed that there exist
over 4200 (resp. 300) combinations corresponding to such models of codimension 2
(resp. 3) with dyi,d; < 100 (resp. dq,ds,ds < 30).

(i1) In [94, §5] Oguiso studied polarized CY threefolds by means of their delta
genera and came to the remarkable result, that all the polarized CY threefolds
with A < 2 have to be complete intersections of codimension < 2 in a w.p.s. In the
first step of his method, he makes use of the following Bertini-type theorem due to
Fujita:

Theorem 2.43. (Fujita [44], [45]) Let (X,L) be a polarized smooth complex
variety of dimension r > 3. Suppose that A(X,L) < 2 and L™ > 2. Then
dimBs(|L|) € 1 and all general members of |L| are smooth.

If (X, L) is a polarized CY threefold with A(X,L) <2 and L3 = 1, then obviously
RO(X,L) € {2,3}. If L® > 2, then by 2.43. any general member S of |L| is
smooth with ample canonical divisor K's = L|g. This means that S is a minimal
surface of general type with geometric genus py(S) = h°(X,L) —1 and K% = L* >
2py(S) — 4 = 2R%(X,L) — 6 (cf. Noether’s inequality [5, ch. VII, thm. 3.1., p.
210]). Thus, for A(X,L) = 1, it is necessarily (h°(X,L),L3) € {(3,1),(4,2)}, and
for A(-‘)(’7:[‘) =2, (hO(Xa L)7 LB) € {(2) 1)7 (37 2)a (4') 3)a (5’4)}

Oguiso’s analysis on the corresponding graded rings ®,>0H°(X,nL) for the above
6 possible values of (h°(X,L),L3) lead to the following:

Theorem 2.44. (Oguiso’s (A < 2)-classification [94, thm. 5.1.]) Let (X,L) be a
polarized CY threefold with delta genus < 2. Then X is a complete intersection of
codimension < 2 in w.p.s. and L = Lx = Ox(1). More precisely, for A(X,L) =
1, X is isomorphic either to an Xg C P*(1,1,1,1,4) or to an X0 C P%(1,1,1,2,5).
For A(X,L) = 2, X can be one of the following: Xs C P%(1,1,1,1,2),

Xae C P5(1,1,1,1,1,3), X6 C P5(1,1,1,1,2,3), X4y C P5(1,1,1,2,2,3) or
Xs.6) C P3(1,1,2,2,3,3).

Theorems 2.43 and 2.44 are not true if one drops the assumption of the smoothness
of X. Nevertheless, having formula (2.28) in hand, we can give the corresponding
tables of CY models expressing well-formed, well-stratified q.s.c. intersections of
codimension < 2 in a w.p.s. with A(X,Lx) < 2, by using the “big classification
tables” which were mentioned in 2.42. (i). The author thanks R. Schimmrigk and
A. Klemm for various computer checkings.

Proposition 2.45. (i) The class of minimal CY models X = X4 C P*(w), being
realized as quasismooth hypersurfaces (with sufficiently general defining polynomi-
als) in a four-dimensional w.p.s., where (d; w)’s run through the list of the above
mentioned 7555 combinations contains exactly 11 CY models with delta genus
A(X,Lx) < 2. They are given by the following table:
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Nr. Model X = X4 L% [e2]x(Lx) A(X,Lx) e(X)

(1)  XeCP*1,1,1,1,2) 3 42 2 — 204
(2)  XgCP*1,1,1,1,4) 2 44 1 — 296
(3) X0 CP%1,1,1,2,5) 1 34 1 — 288
(4) X2 CPY1,2,2,3,4) 2 32 2 — 138
(5) X2 CP%1,1,2,2,6) 4 52 2 — 250
(6) X4 CP%1,2,2,2,7) 2 44 1 — 212
(7) X5 C P41,3,3,3,5) 3 42 2 — 124
(8) X3 CP%1,1,1,6,9) 9 102 2 — 542
(9) X3 CP%1,2,3,3,9) 3 42 2 — 188
(10) Xoq C P%(1,1,2,8,12) 8 92 2 — 482
(11) X3¢ C P%(1,2,3,12,18) 6 72 2 — 362

Note that each of them can be defined by a Fermat polynomial.

(i) Only 5 models lie on the (A = 3) -line: [e2]x(Lx) = 10L%, namely X5 C P*,
Xi6 C P4(1, 1,3,3,8), Xo0 C P4(1,4,5,5,5), Xo6 C ]P4(2,2,3,6, 13) and
X30 C P(1,2,6,6,15).

Proof. Apply the formulae (2.25), (2.27), [c2]x(Lx) = 12h%(X,Lx) — 2L% (cf.
(5.3)) and (2.28) to the table of the 7555 combinations of degrees and weights given
in [74]. O

Similar results can be achieved for codimension k& = 2.

Proposition 2.46. There exist exactly 6 well-formed, well-stratified q.s.c. inter-
sections X = X(q4,,4,) C P3(w1,... ,we) with am(X) =0 and A(X,Lx) < 2:

34



Nr. Model X = X4, 4,) L% [e2]x(Lix) A(X,Lx)

(1) X6 CP°(1,1,1,1,1,3) 4 52 2
(2) X@e CP(1,1,1,1,2,3) 3 42 2
(3) Xws CP5(1,1,1,2,2,3) 2 32 2
(4) X6 CP°(1,1,2,2,3,3) 1 22 2
(5) X,10 CP%2,2,2,2,3,5) 2 44 1
(6) X(s12) CP%2,3,3,3,3,4) 3 42 2

Moreover, 5 models of this kind lie on the (A = 3) -line, namely
X(4,4) - Ps(la ]-7 1’ 1) 27 2)7 X(6,8) C P5(1) 27 27 2, 3’4)7 X(10,12) C Ps(la 37 374’ 5a 6)7
X(10,15) C P5(2,3,5,5,5,5) and X(14,18) C P5(2,2,6,6,7,9).

Proof. 1f X is a 2-dimensional well-formed, well-stratified q.s.c.i. in P3(w), then
Pic(X) is generated by the class of Lx = Ox(nx), where nx, similarly to the
hypersurface case of cor. 2.38., is given by nx = lem{W; U W, U W;}, with

Wr = {ged(wi,, wiy, wiy) |1 < 4y < 1p < i3 <6}

Wy = {ged(wi,,wi,) |1 <11 < iy <6 with either ged(w;,,ws,) 1 d;
or ged(wi,,wi,)tda}

Wi :={w;i|]l <t <6 suchthat w;{d; and w;{d:}.

Applying the formula (2.28) for this nx to the combinations of (d; w)’s which were
found by [73], and taking into account that A grows rapidly after the first steps of
a search procedure, we get only the above cases fulfilling the requirement A < 3.0

Remarks 2.47. (i) The complete classification of all polarized CY models with
delta genus < 2 remains an open problem. Nevertheless, the tables of propositions
2.45. and 2.46. give some first indications of how one could attempt to generalize
thm. 2.44. at least under some additional assumptions. As it was pointed out
by K. Oguiso (to whom we are indebted for this information), if one considers,
for instance, a non-smooth polarized CY model (X, L), such that (h°(X,L),L%) =
(3,2), i.e. A(X,L) = 2, having as a general member S € |L| a normal surface S
with at most rational Gorenstein singularities, dimBs(|L|s|) < 0 and any general
C € |L|s| irreducible, then the assertions (5.6.) and (5.7.) from [94, pp. 423-424]
remain true and X has to be a (not necessarily quasismooth) complete intersection
of two hypersurfaces with multidegree (4,6) in P3(1,1,1,2,2,3). Since a Fermat
hypersurface of degree 12 in P*4(1,2,2,3,4) has also (h°(L),L3?) = (3,2) (with L =
O(2), cf. thm. 2.37. and prop. 2.45.) and satisfies the above mentioned properties,
one should expect that it would “degenerate” into this c.i. of multidegree (4,6) in
P5(1,1,1,2,2,3). Similar phenomena also occur for other pairs of models of the
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tables of prop. 2.45. and 2.46., although there are at least three ezceptional cases,
namely those of (8), (10) and (11) of the table of prop. 2.45., which are of another
nature! In these cases, a general member of |L|, say S, does not obey to Noether’s
inequality, which means, that even if we assume that dimBs(|L|s|) < 0 and that
ws is invertible, S has to contain non-rational singularities, as for example elliptic
Gorenstein singularities, comp. [98, thm. (2.6), p. 287]. (Details of the properties
of such models will be discussed elsewhere.)

(ii) Using elementary number theory, we shall verify in 4.12. that, up to per-
mutations of weights and degrees and up to different coefficients of the defining
polynomials, there exist exactly 171 BP q.s.c. intersections of dimension 3 and
of vanishing amplitude satisfying the assumptions of cor. 2.39. Namely 147 with
codimension k£ = 1, 19 with k = 2, 4 with ¥ = 3 and one with £ = 4. By (2.26) and
(2.28), we can deduce that the minimal delta genus for such an X with k € {2,3,4}
occurs when X = X5 C P%(1,2,2,2,2,3) and A = 4.

(iii) R. Schimmrigk studied the diagram of the “geographical placing” of the pairs
(L%, [c2]x(Lx)) for all 7555 combinations of (d; w)’s leading to quasismooth, well-
formed hypersurfaces X' = Xy C P4(w) (cf. comments at the end of §1). As it has
turned out (see R. Schimmrigk: “Scaling behaviour in string theory”, Bonn-TH-
94-29, Preprint, December 1994), the number [c2] x(L x ) grows like:

gy (lezlx(Lx) ~ B (L)’

with approximative values: B = 1,5 and 8 = 0,29, which are in fact due to the
arithmetical behaviour of nx and of the pt-summands of h°(X,Ox(ny)) in (2.20)
(see also §7). Moreover, Schimmrigk’s (L%, [c2) x (Lx)) -diagram (being depicted
in logarithmic scales) shows that, if one ignores the 16 “special” hypersurfaces of
prop. 2.45., the remaining 7539 are located within a lane region which lies far below
the dotted “RR-line” [co]x(Lx) = 10(L%). This gives an evidence in support of
Wilson’s conjecture [128, p. 409] on the existence of further inequalities involving
L? and [cp](L), where L denotes an ample line bundle over an arbitrary CY-model
of general type.

1e+20 T =
Ve

1e+10 | ,/ g

1 1e+10 1€+20

Schimmrigk’s diagram

[\\Y)
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§ 3. Toric crepant resolutions of 2- and 3-dimensional
Gorenstein cyclic quotient singularities

As it was mentioned in prop. 2.5. and 2.18., well-formed q.s.c. intersections have
singular loci consisting of cyclic quotient singularities (c.q.s.) In particular, when
the amplitude vanishes, the occuring c.q.s. are Gorenstein. To resolve them locally
by crepant morphisms, we shall make use of the language of toric geometry as it is
presented by Danilov [25], Oda [93] and Fulton [47].

Let us first review some preliminary definitions and facts and fix certain useful
notations.

(i) For a lattice N of rank r, M = Homgz(N, Z) denotes its dual lattice and Ng :=
N®zR, Mg := M ®zR their scalar extensions to the field of real numbers. A subset
o of NR is said to be a strongly convez rational polyedral cone (SCRPC, for short) if
oN(—0o) = {0} and if there exist ny,... ,n, € N,s.t. 0 = Ryoni+...+R>on,. Its
dimension dim(o) is that of the smallest R-subspace 0+(—0) = Ro of Ng containing
o and its relative interior int(o) (resp. its relative boundary o ) is defined to be the
usual interior (resp. the usual boundary) of o regarded as a subset of the R-vector
space Ro. Such a o is called simplicial if nq,... ,n, are linearly independent over R.
The dual cone & of o is defined by & := {z € Mg| < z,y >> 0,Vy € ¢} and turns
out to be an r-dimensional SCRPC in Mg. (Here <, >: Mg x Ng — R denotes the
natural R-bilinear pairing). A subset 7 of a SCRPC ¢ is called a face of ¢ (notation:
T < 0) if it can be expressed as 7 = 0 N {mo}+ := {y € 0| < Mo,y >= 0} for some
mg € 7.

(ii) For a p-tuple (ny,... ,n,) € N* consisting of R-linearly independent vectors,
we define
s(ni,...,nu) :={y € Nrly = >t Ain; with Sk Ai=land),..., )\, € R>o}
to be the usual closed, affine simplex with vertices ni,... ,n,, and, for a given
s = s(ni1,... ,n,), we set o(s) := Ryony + ...+ Rxon, to indicate the simplicial
SCRPC arising from it after omitting of the affinity condition for its defining linear
combinations.

(iii) If o C Nr is a SCRPC, then the intersection M N & generates M as a group,
is saturated, and is a finitely generated additive subsemigroup of M containing 0,
i.e. there exist my,... ,mr € M, s.t. MN& =Noymq + ...+ Nom. If 7 < o with
7 =0N{mo}*, then M N# = M N &+ No(—mo).

(iv) Let now Ty = (C*)" be the r-dimensional algebraic torus defined by Ty :=
Homgz(M,C*) = N ®z C*. Every m € M (resp. n € N) assigns a character
e(m) : Ty 3 t —> t(m) € C* (resp. a l-parameter subgroup v, : C* 3 \ —
Yn(A) € Tn, Ya(A)(m) = AX<™"> ¥m € M ) of Ty. This means that, after
having chosen a Z-basis {n1,... ,n,} of N and its dual basis {m;,... ,m,}, we shall
always get an isomorphism Ty 3 t — (u1(t),... ,ur(t)) € (C*)" for uj := e(m;),
1 <7 <r, and that {u;,... ,u,} can therefore be considered as a coordinate system
of Tny. On the other hand, for a SCRPC ¢ with M N& = Nymq + ... + Nomy,
we associate to the finitely generated, normal C-algebra C[M N &] an affine variety
U, := Spec(C[M N &]), which can be written

Us ={u: MnNs = Clu(0) = 1,u(m+ m') = u(m)u(m’),Ym,m' € M N &}
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with e(m)(u) = u(m),Vm € M N & and Yu € U,. In the analytic category, U,
identified with its image under (e(my),... ,e(my)) : Uy — C¥, can be regarded as
an analytic set determined by a system of equations of the form: (monomial) =
(monomial). This complex analytic structure induced on U, is independent of the
semigroup generators {my,... ,m} and each polynomial function e(m) on U, is
holomorphic w.r.t. it. In particular, for 7 < o, U, is an open subset of U,.

(v) A fan in N = Z7 is a collection T of SCRPCs in Mg, s.t.(a) any face 7 of
o € ¥ belongs to ¥ and (b) for 01,02 € I, the intersection o1 N o7 is a face of both
o1 and 03. The union |E| := U{c|o € £} is called the support of £. Furthermore,
we define X(z) := {¢ € E|dim(s) =1}, 0< i <r.

If p € £(1), then there exists a unique primitive vector n(p) € NN p with
p = R>on(p) and each cone o € ¥ can be therefore written as

o=y Rxon(p)

pEL(1),p<0

The set Skl(o) := {n(p)|p € (1),p < o} is called the first skeleton of . The toric
variety associated to a fan (N, L) is the identification space
Z(N,Z) = ((I1,ex Us)/ ~) with Ug, 3 uy ~ ug € Uy, 1=
(3t < o1 Nog 1 u; € Ur C Uy, for i = 1,2, and uy = uy within U,).
Z(N,XY) admits a canonical Ty-action, which extends the group multiplication of
In =Uqoy: Tn X Z(N,Z) 3 (t,u) —> t -u € Z(N, %),
where, for u € Uy, (t-u)(m) :=t(m)- -u(m), Vme MNs.

(vi) If we denote by orb(c) (resp. V(o) := orb(c)) the orbit (resp. the closure
of the orbit) of o € ¥ under this action, then

3o+ orb(o) ={u:MNol = C*|lu group homomorphism}
€ {Tn —orbitsin Z(N,X)}

establishes an 1-1 correspondence. The Tn-orbits have the following properties:

(a) orb({0}) = Uyey = Tn and dim(orb(c)) = r — dim(c), Vo € Z.

(b) 7 <o <= orb(s) C V(7).

(c) For o € £, ,orb(o) is the unique closed Ty-orbit in U, and
U, = [[{orb(7)|r < o}.

(d) For 7 € X, we have V(r) = [[{orb(c)|c € Z,7 < o}.

(e) For r € B, V(7) = Z(N(r),Star(r)) is itself a toric variety w.r.t. N(r) :=
N/Z(rN N),Star(r) := {G|lc € ,7 < o}, where & := (¢ + R7)/Rr denotes
the image of o in N(7)r = Ngr/Rr.

(vii) Let Z(N,X) be the toric variety associated to a fan ¥ and N = Z". Then:
(a) for o € ¥, U, is nonsingular <= (3 Z — basis{n;,... ,n,} of N and k < r with
o= Zle R>on;) and Z(N,X) is nonsingular <= (U, is nonsingular, Vo € ).

b) Z(N,X) is compact <= T is finite and || = Ng.

(viii) A map of fans ¢ : (N',Z') = (N, X) is a Z-linear homomorphism ¢ : N/ —
N whose scalar extension ¢ : N — Np satisfies the property: (Vo/ € &', 3o €
¥ :p(0’') C o). Such a ¢ induces an holomorphic map ¢, : Z(N',T') - Z(N,X)
which is equivariant w.r.t. the action of Tys and Tx. Moreover, ¢, is proper
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< (Vo € %,%; = {0’ € Y|p(c¢') C o} is finite and ¢~ (o) = |Z]). In
particular, if N' = N, ¢ =id and ¥’ is a locally finite nonsingular subdivision of
¥, then id, is proper and birational and gives an equivariant desingularization of
Z(N,%).

(ix) For the group TyDiv(Z) of Weil divisors on a toric variety Z = Z(N, ) we
have TnDiv(Z) = @ ,ex(1)ZV(p). (For another approach via support functions
see [93, §2.1].)

Let us now come back to our c.q.s. and see how are they describable in terms of
the above given toric glossary (i)-(ix). Suppose that r > 2 and G C GL(r,C) is
a finite cyclic group of order [ containing no pseudoreflexions and being generated
by diag(¢;™,... ("), for suitable integers 0 < a1, ... ,a, < . If (C"/G,[0]) is the
germ of the corresponding quotient singularity, its underlying space C" /G can be
identified with a toric variety Z(Ng,Zo) of type (I;c1,... ,ar) as follows: Ty, :=
(C*)"/G is an r-dimensional algebraic torus with 1-parameter group Ng and with
group of characters Mg = Homgz(Ng,Z). Let {e; = (1,...,0),... ,e, = (0,...,1)}
be the standard basis of Z". Then

-1 . . r
Nc;zNo—}-ZZ([]O;l]l,...,[JO;T]I> with No:=Y Ze; and

Jj=1 =1

-1 r
Mg = ﬂ Mj with ]ij = {(ml, e ,m,-) € Zrl Zm,-[jai]z = O(mod l)}
j:::l =1

Defining o0 := ) _;_; R>oei, o := {r|r < g0}, and using the exact sequence

O%GENG/NO%TNO—)TNG -0
we get as projection map: C" = Z(Np, Lo) = Z(Ng, Xo) = C"/G.

Proposition 3.1. For Z(Ng,Xo) the following conditions are equivalent:
(i) Z(Ng,%o) is Gorenstein.

(i) wz(Ng,zo) is trivial.

(iii) 3! mg € M : (mo,e;) =1, Vi, 1 <i<r.

Proof. 1f follows from [98, footnote of p. 294] and Ishida’s criteria [93, p. 126]. O

If p =ids : Z(Ng,24) = Z(Ng, o) = C"/G is a Tn,-equivariant desingulariza-
tion of Z(Ng,Xo), then a cone Ryon(p’), p' € T(1), determines a prime divisor
Dy(pry == V(Rxon(p')) = Z(Star(R>on(p’))) on Z(Ng,Z}). So we have an 1-1
correspondence:

{exceptional prime divisors w.r.t. 7} «— U{SEk'(c")|0’ € =4} \ {e1,... ,er}.

D.; corresponds to the strict transform of {(z1,...,2z,) € C'|z; = 0}/G w.r.t.
m, Vi, 1 <i<r.
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Proposition 3.2. ([86], [101] (a)) A Tn,-equivariant resolution n : Z(Ng, X)) —
Z(Ng,Zo) = C"/G of a Gorenstein c.q.s. Z(Ng, %) is crepant if and only if

U{Skl(al)lal € Elo} C H = {(xl, e ,CC—,-) (= RTI Z Tr; = 1}
=1

In this case we get e(Z(Ng, Z4)) = |G|
Proof. Let o' € T and ¢ € H°(U!, waw 2:)|U',) be ¢ = fdul A... Adul, wr.t.
’ G o

local coordinates uf,... ,u}. of U/,. Then th(e): zero order of f along any exceptional
prime divisor Dy, p' € E5(1), p' < o', equals (trace (n(p'))) — 1. So 7 is crepant
if and only if the total union U{Sk'(c’)|0c’ € Z{(r)} lies in the hyperplane H.
Moreover, e(Z(Ng, £4)) = §(Z4(r)), which is equal to the multiplicity [Ng : No] =
|G| of og, because og = U{c’|0’ € T{(r)}. O

For r > 4 it is not always possible to construct such crepant resolutions. Neverthe-
less, in dimension 2 and 3, relatively simple principles of the corresponding lattice
geometry lead to the desired constructions.

Proposition 3.3. Forr =2 and Z(Ng, Xo) a Gorenstein c.q.s. of type (I; a1, as),
there is a unique crepant desingularization = : Z(Ng,%{) — Z(Ng,¥o) with
¥ = {{RZO(IL'II]L, [L';’J’—)ll <7 <1—1}, Ryoer, Ryoes and their faces}, being
provided with | — 1 exceptional prime divisors = P!, which compose a Hirzebruch-
Jung string.

Let now r = 3 and Z(Ng,Zo) = C*/G be of type (I;a1,a2,a3). We define s :=
s(e1,e2,e3) and

S = {(b‘c;m’ ool [jc;?,],)

(If G € SL(3,C), we can always assume, up to a generator change, that
ay+az+az=1.)

3
> el =1, 1SjSl—1}

=1

Proposition 3.4. All toric crepant resolutions of a Gorenstein c.q.s. Z(Ng,Xo) =
C® /@ are of the form 7 : Z(Ng,4(S)) = Z(Ng, o), where S denotes a triangu-
lation of ¥o NH = {r NH|r < 0o} with so N Ng = ®c][{e1,e2,e3} as the sets of
its vertices and X((S) = {{0},{o(s)|s € S}}. Moreover, they fulfill the following
properties:

(i)
(3.1) i(int(so) N Ng) = é-(z - Y ged(as, 1) +1

(ii) Let Dy, := V(o({n})) denote the prime divisor corresponding to ann € soNNg.

(a) We have {exc. pr. divisors w.r.t. w} =U{Dp|n € ®c}.
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(b) If n € int(so) N Ng, then D, is a rational surface coming from finitely many
TNg(o({n})) -€quivariant blow-ups either of P? or of a Hirzebruch surface

F, := P(O]pu & Op (a)), a > 0.

(c) If 8so N ®¢ is non-empty and n one of its members lying on s(e;, , e;,), where
1 <1,12 <3, 41 # 4y and {i3} = {1,2,3}\ {i1,%2}, then D, represents a ruled
fibration over the 13-axis. Its fibers over the “punctured” i3-axis are isomorphic to
Pt

Proof. That the T, -equivariant desingularizations of Z(Ng, Zo) are parametrized
by the above triangulations follows from [101 (a), prop. 2, p. 528].

(i) It is easy to verify that &g = 1(I + Z?:l ged(ai, 1)) — 2 and §(0so N D) =
2?21 ged(ay,l) — 3.

(ii) (a) and (c) are clear from the construction. (b) follows from [93, thm. 1.28]. O
Remarks 3.5.

(i) To each 1-simplex s(n1,n2) of an S corresponds a curve C(ny,n2) := V(o (s(ny, na)).
C(n1,n2) is compact <= int(s(ny,n2)) C int(so). In this case C(n;,ny) = PL.

(i) If n is as in 3.4. (ii) (c), Spl'(S)(n) denotes all 1-simplices of S which are
connected with n having their second vertex in ®¢ \ {n} and b(n) := §(Spl*(S)(n)),
then the fiber of D,, — {73 —axis} over the zero point consists of a tree-configuration
of b(n) rational curves {C(n,n1),... ,C(n,ny,))} with

{a point}, for [t; —t2] =1, 1 < #1,t2 < b(n)

@, otherwise

C(n,ne,) NC(n,ny,) = {

where Spl' (S)(n) = {s(n,n:)|1 <t < b(n)}.

Proposition 3.6. Let Z(Ng,%o) = C*/G be a Gorenstein c.q.s. and
Z(Ng,Zy(S)) = Z(Ng,Zo) be a crepant resolution w.r.t. S.

(i) For three distinct vertices of ny,na2,n3 of S we have (Dy, - Dp, - Dp,) # 0 <
s(n1,n2,n3) is a 2-simplex of S. In this case (Dy, - Dy, - Dp,) = 1.

(ii) If ny,ny € so, s(n1,n2) is an 1-simplex of S, but no both n; and no belong to
the same face of Osg, then there exist exactly two vertices n3,ny of S, such that
s(n1,n2,n3) and s(ny,ny,ny) are 2-simplices of S, and the corresponding intersec-
tion numbers are related by

(3.2) (D2, - Dpy)ny + (D, - D2 Ynp +ng 414 =0

(iii) If n € int(so) is a vertex of S, then:

(3.3) D? =12 — §(Star(R>on)(2))
Proof. For (i) and (ii) apply the general techniques of [47, §5].
(iii) Noether’s formula gives x(D,,0p,) = 1 = wp = 12 — e(Dy,). Since

Wz(Ng,2h(5)) = Oz(Ng, 5 (s)), We have w%n = D? by adjunction. On the other hand
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the topological Euler-Poincaré characteristic is nothing but e(D,,) = e(V(e({n}))) =
e(V(Rxon)) = e(Star(Rxon)) = f(Star(Rxon)(2)) (cf. [47, p. 59]). a

Definition 3.7. Let Z(N,X) be a 3-dimensional nonsingular toric variety, associ-
ated to a fan ¥ (w.r.t. N = Z3), {n1,n2,n3}, {n1,n2,n4} two Z-bases of N and
01,09 € X(3) two cones 0y = R>on1+Ryonz+Rxons, 03 = R>on1+R>on2+R>ony
adjacent along 72 = R>on1 + Ryong. If ny,ng,ng are coplanar and ny + ny =
n3 + ng, then 03 = Ryoni + Ryonz + Rxong, 04 = Ryona + Ryong + Ryong are
adjacent along the 2-dimensional cone 754 = R>on3 + R>ong and Z (N, X), with

Y= (E\{o1,02,71,2}) U{03,04,734}, is a nonsingular toric variety. In this case,

% is called elementary transformation of £ w.r.t. 01,02 and 71 5. (See Fig. 1.)

g2 elementary

T

0 Nna 0 No
transformation

Fig. 1

Proposition 3.8. Let X1, X, be two nonsingular fans in N = Z* with |5;| = |Z,|.
If we assume the existence of an mg in M = Homgz(N, Z), for which (mq,n(p1)) =

(mo,n(p2)) =1 for all p; € £1(1) and all py € T,(1), then T, is obtained from ¥,
by a finite succession of elementary transformations.

Proof. See Danilov [26, prop. 2] or Oda [93, prop. 1.30. (ii)]. a

Corollary 3.9. The fans £((S;), ¢ = 1,2, which correspond to two crepant reso-
lutions m; : Z(Ng, L5(S:)) — Z(Ng,%o), t = 1,2, of a Gorenstein 3-dimensional
cyclic quotient singularity, differ from each other by finitely many elementary trans-
formations.

Proof. Obvious by propositions 3.2. and 3.8. a
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§ 4. Global toroidal crepant desingularizations

Let w = (w1,... ,wn) be a system of weights, d = (dy,... ,d;) € N*, and

X=Xa={[z1,-.-,2m] € Pm_l(w)|f1(zl,... vZm) = ... = fr(z1,... ,zm) =0}

a well-formed, well-stratified q.s.c.i. of dimension 3 (i.e. m—k =4) with am(X) =0
and nondegenerate 1-dimensional singular strata (cf. 2.32). Using the notations of
§2, we define:

To:={IC{l,...,m}:[I|=34+V(I),er>1 and cp =1,V TICI},
To:={Ic{l,...,m}:|I|=3+V({I) with ¢;>1, cr\(iy > 1 for at least one
i€l and ¢y >cpyy) forall that i’s satisfying this property},

and Ty :={I/C{1,...,m}:|I[|=2+V(I) and c;>1}.

Since X is normal and well-formed, we have codimx (Sing(X)) > 2, and Sing(X)
can therefore have at most 1-dimensional components. We write Sing(X) as the
union of 0- and 1-dimensional singular strata

(4.1) Sing(X) = SSt°(X) [ ] sSt*(X)

where SStP(X) := U{X(I)|I € T',}, p = 0,1 (cf. prop. 2.18). Furthermore, we
define INP(X) := U{X(I)|I € ['c}. Without loss of generality, we shall treat here
only the case in which none of the above strata is empty. We first fix an enumeration
'y ={hL,... I} of the index sets of I';. Each C; := X(I;) is an irreducible smooth

curve defined by a non-well formed 1-dimensional complete intersection in P7; and

(4.2) SSt'(X) = {Cj|1 < j < &}

In addition, we introduce the enumerations

(4.3) {t] ot =1L mI\
(4.4)
{s],... 75}k—V(IJ~)} := {a fixed set of indices from {1,... ,k} corresponding to an

enumeration of polynomials whose restrictions on Py, constitute

a minimal set of generators of the ideal of C; = X (I;)}

to be used in the following:
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Lemma 4.1. For the curve C; and any point @ € C;\INP(X) there exist integers

lc; and a( ’), (C3) > 1 with a(c’) + a(C ) = = l¢;, depending on the weights with
indices in I and on the deﬁnmg polynom1als of X, such that:
(i) the germ (X, Q) of X at Q is isomorphic to

(4.5) (X,Q) = (C*/Gc; x C,[0] x {0})

where (C* /G;,[0]) is a c.q.s. of type (lc;; o al®) agcj)), and
(ii) X near C; looks like:

(4.6) (X,C5) = (0c, (o) @ O, (a5))/Ge;, C;)

Proof. (i) Since X is well-stratified and @ ¢ INP(X) (i.e. it is not possible for Q
to contain more than 2 + V(I;) coordinates equal to zero), we have:

a(fs-ile""af ch)

=V(I;)

a(zt{,...,ztj )

m—|Ij|

O(f1y--- 5 fr)
I | == AR =
ren <0(zl,... o) @
Thus, by implicit function theorem, a local chart of the V-variety X centered at
Q W111 have as coordinates Zgis Zgds where {ql,qz} C I;, together with a third one

rank

lo | =k=V(I;) and

z,i expressing the restriction on C; (¢ € {t],.. t’ _i1;1})- Note that the complex
plane determined by z &% is equipped with the action

J]CI [ J]CIJ-
(ZqJ,Z J) (CCI z J, CCIJ 2 qu).

We end the proof just by setting l¢; := cj; = c(w,];) = gcd(wt{,... , Wi ),

agc,-) = [wq Je, agC;) = [wqé]c,j, and taking into account that am(X) =

(ii) We can use the above description or, alternatively, apply the tubular neighbour-
hood theorem to the affine quasicones over Cj and X. For the punctured quasicones

we have (CN*(X),CN*(C;)) = (CN*(Cj) x C*/G¢;, CN*(Cj)). Letting C* act
on them in the usual way (cf. 2.11.) we get (4.6). a

Let us now give enumerations to the points of the singular locus of X. We set:

(4.7) SSt°%(X) ={Pi]1 <i < \} and
INP(X) ={Q.|]1 <¢<pu} aswellas
INP(X)NC; ={QP1<v; < ¢}, 1< <k
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to indicate an enumeration of the points of INP(X) sitting on Cj. It should be
mentioned here that max{£;|]1 <j <&} <p < Z;zl €;, because (for k > 2) it may

happen that there are indices 1 < j, 7' < &, j # j', such that Q, = Qf,i) = QE,{,),

for certain 1 <t <pand 1 <vj <&, 1 <vj < €. (This is exactly the case, in
which C; and Cj have at least one intersection point.)

Lemma 4.2. For any P; € X(I), I € Iy, there exist integers lp, and agp"),agp")

agpi) > 1 with agpi) + agP.-) + agP;) = lp;, such that

)

(4.10) (X, P;) = (C*/Gp,[0])

i.e. the germ of X at P; is isomorphic to that of a c.q.s. of type (Ip;; a(lP‘), agpi), agp")).

(The same holds true if we consider a Q, instead of P;).

Proof. Exactly as in the proof of 4.1. one finds indices {qi1,q2,q3} C I, such that
2q,12q5,2g, Tepresent local coordinates of X centered at P; with respect to the
action:

[wq1]¢1 [qulcl [wQ3]61
(21117211272%)' 5 ( (&4 ¢ qua cr Zqza cr 243)'

Since the acting cyclic group lies in SL(3,C), we set [p, := c; and make use of the
“normalization” of the exponents

(P; P; P; ([wa]c” [wth]Cu [wqa]m)a if Zi:l[wqp]cf =Cr
(al )7 .('2 )70‘:(’, )) = . 3
(CI - [wa]chI - [qu]c,,C[ - [wq3101)7 if Zp:l[wqp]cl = 2cy

d

The points of SSt°(X) are the isolated points of Sing(X). The points of INP(X)

will be called individual. The justification of the choice of this name comes from
the fact, that for a Qf,i.) € INP(X) N Cj, the group G, ;) has order strictly bigger
vj

than that one of the group G¢;. The union SSt°(X) ] INP(X) of isolated and
individual points of Sing(X) constitutes the set of the so called dissident points
in Reid’s terminology (see [98, Cor. 1.14., p. 281]), i.e. the set of points of the
threefold X which are not of compound Du Val type. In other words, the compound
Du Val locus, in our case, is composed of the points of SSt!(X)\ INP(X), and each
point @ € C; \ INP(X) is by lemma 4.1. of type cAig,_,-

Let us now consider appropriate open neighbourhoods Up,, resp. Ug, of P;, resp.
of Q,, 1<t <A 1< < p,such that Up, = Z(NGPi,Eo) = C?/Gp, and

Ug, = Z(Ng,, ,Z0) = C* /G, respectively. Since @, = Qf,i) for some

1 <wvj <§j, 1< <k, we can take a tubular neighbourhood Uc; of Cj, such that

(4.11) Uc, NU

o )Y — &) &)
o = V(r®) = Z(NGQ%) (r9), Star(r(?))
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with 70) = Ryoe, o) + Ryoe 0, {v”,0”} € {{1,2},{2,3},{3,1}}.

Fig. 2 shows these neighbourhoods of two curves of SSt'(X) having an individual
intersection point.

Fig. 2

Using prop. 3.4 we construct toric crepant resolutions
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(4.12) ©p:(Sp:) : (Z(Nap,, Zo(Sp;)), Ep.) = (Z(Ngp,, To), Pi)
(4.13) 7Q.(Sq.) : (Z(Naq, , Z0(S0.)):€q.) = (Z(Naq, , £o), Q.)

with Ep, 1= {DY|n € int(s0) N Ngyp, }, €o, = {D{?|n € int(so) N Ngg, }. (All
the above divisors are assumed to be endowed with the reduced space structure.)
Analogously, we construct uniquely determined crepant resolutions

(4.14) TC; Z(NGCJ,,Z(/-)) x Cj; — UCJ. > Z(lVch,Eo) x C;

by applying prop. 3.3. along the normal sheaf ch/x of C; in X. (4.11) give rise
to the compatibility conditions

and enable us to glue (4.12), (4.13) and (4.14) together in order to define a total
number of

A B
(H f {triangulations Sp, })(H f {triangulations Sg, })
1=1 =1

global resolutions

(4.16) ™ (Y =Y(S1,...,8P,8q,,---:8q,),E(X)) — (X, Sing(X))
of the singularities of X, with ¥’s obtained from X by replacing Sing(X) by £(X).
Their ezceptional loci can be written as

by K 1
E(X) = (H EP,) H U &c; | U (H‘QQL) )

where E¢; = {Dg‘fj)ll < rj < lg; — 1} expresses the union of the ¢, — 1 prime
divisors lying over C;. All 7T|D£gj) : ngcj) — C; are smooth ruled fibrations provided
with two sections = C; and allowing, in general, exceptional fibers. Indeed, if
Qf,i) is an individual point of Cj, it is supp(Dgfj)) ﬂZ/{Q%) = supp(D_w;.r)),

i.e. the support of a non-compact divisor, realized in the corresponding triangle
so = s(e1, ez, €3) by the vertex n(¥i ") of Sy, and if (in the notation of 3.5. (ii))
vj

(4.17)  Spl(S

then

Qyj))(n(w,rj)) = {C(nWi ), ni(u.fj’,rrjj)))ll < 13mi) < b))}

lej=1 [p(nti73))
~1/A0 ) ()
T RP)NEe = | U et ntin)
ri=1 tWimid=1

(i.e. exceptional fibers occur whenever b(n(%:7)) > 1, see fig. 3).
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Fig. 3

Proposition 4.3. The global desingularizations (4.16) of X are all crepant, and
each of them differs from another one by finitely many simple flops, being realized
by elementary transformations which take place within the fans

{Z6(Sk), To(S)It S i< A 1< esp}

Proof. The verification of the first assertion follows from the construction and [99,
thm. 1.14., p. 142]. Now every rational curve C = C(ny,n2) representing an
1-simplex in one of the above triangulations Sp;,Sq,; which is a diagonal of a
convex quadrilateral (determined by lattice points), has normal bundle N¢/y =
Oc(=1)® Oc(—1) and can therefore be flopped (see (78, 2.3.2.1)). Simple flopping,
in our case, means the replacement of the one diagonal of a regarded convex lattice
quadrilateral by the other, i.e. the application of an elementary transformation.

Hence, the second assertion follows from cor. 3.9. a
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Definition 4.4. Although X and Y’s are not themselves toric varieties, we shall
call (4.16) the toroidal crepant desingularizations of X, since they can be completely
described by means of their local toric data.

Remarks 4.5. (i) Most of Y’s are projective, but, in general, there is no guarantee
that all of them will be projective. This is why we shall deal here with both pos-
sibilities. (Of course, all projective ones are CY threefolds.) For the construction
of pathological triangulations for crepant toric resolutions of abelian quotient sin-
gularities which lead, after gluing together, to nonprojective threefolds with trivial
canonical bundle, as well as for a combinatorial method of how one discribes the
projective ones, we refer to [24].

(ii) In both cases, Y’s are Moishezon smooth threefolds and admit Hodge decom-
position according to a theorem of Deligne (see [27, prop. 5.3., p. 121]). Moreover,
all Y’s have the same Hodge numbers, because the surgery of “flopping type” does
not have any influence upon them (cf. [77, §4] or 78, §5]).

(iii) It is not known if X can have crepant desingularizations other than the toroidal
ones or not. Nevertheless, a general theorem of Kawamata-Matsuki [70] and Kollar
(77, Cor. 5.6.] informs us that the number of all projective crepant desingular-
izations has to be always finite. The toroidal crepant desingularizations are, so to
say, the ones which can be characterized, from the combinatorial point of view, in
the best possible manner, because the corresponding “flopping loci” are easily con-
trollable. (There are, of course, examples of X’s containing a plethora of (—1,—1)
-curves which do not belong to that class of (—1,—1) -curves being realized as 1-
simplices within the “toric triangles” assigned to the dissident points of X. These
additional curves can be also “flopped”.)

Before proceeding to the determination of the Hodge numbers of Y’s, we have
to introduce some more useful notations. We set a(P;) := #§(€p,;), a(Q.) := §(€g,)
and we fix the enumerations

(4.18) E€p, = {DIVI1 < pi < a(P)}, €q, = {DIV]1 < g, < a(Q.)}

By Prop. 3.4. (i) we get

3
1 ,
(4.19) a(Pi) = 5(Ip — ) ged(al™,1p)) + 1
2 po
) 3
(4.20) and a(Q,) = ;(lQL - chd(agQ‘),lQl)) +1
2 poe

Theorem 4.6. The Hodge numbers of the toroidal crepant desingularization spaces
Y of X are the following:

ROO(Y) = hO3(Y) = R*O(Y) = B**(Y) = 1,hP9(Y) = 0,Yp, ¢, p # ¢, P + ¢ # 3,
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A © K
(4.21) RUY(Y Za Za Q)+ lg; —(k—1)
(4.22) RUAY) = hM3(X) + Z (lg; = 1)R°(Cj, Oc; (am(C5)))

=1

(AY3(X) = h12 (X) and hO(C}, Oc; (am(C}))) are known from the formulae (2.17)

prim

and (2.20).)

Proof. By (2.5) we know that hP4(X) = 1,Vp,0 < p < 3 and RP(X) = 0,
for p+q # 3, p # ¢q. Since am(X) = 0, formulae (2.6), (2.16) and (2.18) give
R¥9(X) = h%3(X) = 1. The desingularization process alters only the remain-
ing non-trivial Hodge numbers A = A%? and h1? = h?!. Making use of the
Mayer-Vietoris homology (or cohomology) sequences (see [101] (b)), we deduce the
following additive splitting for the Betti numbers coming into question:

(4.23) b2(Y') = ba(X) + §f (exceptional prime divisors w.r.t. 7)
(4.24) bs(Y) = b3(X) + » (lc; — 1)bs(C
=1

The number of the exceptional prime divisors being located only over P; (resp. Q,)
is a(P;) (resp. a(Q.)), while over Cj; lie exactly Ic; — 1 ruled fibrations. Summing
them up and setting b;(Y') = h11(Y), b2(X) = 1, we get (4.21) by (4.23). Finally,
(4.22) follows from (4.24), because h'2(Y) = £ b3(Y) — 1, b3(X) = 2(1 + h12(X))
and bl(Cj) = 2h1(Cj, Ocj) = 2h0(Cj, OC,- (am(Cj))). O

Remarks 4.7. (i) By [32, 3.2.4. (ii)’ ] X is simply connected. Thus, ¥’s are also
simply connected, because the fibers of 7 : ¥ — X are simply connected.

(ii) Let us denote a few words on the precise determination of A\ and yx in (4.7),
(4.8), (4.21), (4.22). Since X is assumed to be well-stratified (cf. 2.36. (b)), each

X(I), I € Ty UTy, consists of finitely many points (expressing the same type of
singularity on our model X ) and

A= HXD), p= > HX))
I€lo Ielo

For an arbitrary X(I), I € T'o UT, let us fix enumerations

{5y T i={1,...,m}\ I,

{o1,... ;o6—y(n} := { aset of indices from {1, ... , k} corresponding to polynomials
whose restrictions on IP; constitute a minimal set of generators of the defining ideal
of X(I) in Py},

and write
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_ _ — _ m—|I|—-
XI(I)—(fél_""—f(;’k_v(j)—o)CP I l l(w:’]_"" w, )

) Tm__III
its isomorphic space coming from the normalization of the weights (wr,,... ,wr_ ;)
(cf. prop. 2.30.) Obviously, kK — V(I) = m — |I| — 1 and it is enough to com-
pute §(X'(1)) = #(X(I)). By condition 2.36. (c), #(X’(I)) is equal to the num-
ber of points of (f, = ... = f; = 0) lying within the algebraic torus

Ok—v(I)
(C)ym=HI=1 = T = (2, -z, - Zr._y 7 0) being embedded in our w.p.s. Thus,
by the Bézout-type formula due to Bernstein and Kouchnirenko (see also [41, §1.6.],
(47, pp. 122-124]), we get:

d ...d
. g1 [0 N (1)
) = s
T1 Tm—|I

(K(X'(I)) is computable, even, if we slightly weaken the above condition. See [41,
1.6.6.(2)].)

(iii) The above formulae (4.21) and (4.22) depend, of course, on the defining polyno-
mials of X. However, they turn out to be very efficient if one examines polynomials
with special prescribed monomial decompositions, without demanding the fulfill-
ment of any other extra conditions.

On the other hand, in certain cases, if each stratum X () is assumed to be defined
by polynomials, which are general enough, and if fi,..., fr can be rearranged in
such a way that (fy = ... = f, = 0) is quasismooth, Vp,1 < p < k, then one
can use a “gluing technique” of the so called relative Milnor fibers, in order to get
ezplicit formulae for A1'! and h''2, depending only on w and d. This computational
method will be applied below. Previous results concerning the hypersurface case
(i.e. when k = 1) are due to Vafa [120] and Roan [101] (b).

Another computation method for the case of hypersurfaces, which are embedded
in a Gorenstein toric Fano variety, was recently presented by Batyrev [7]. Batyrev’s
approach is mainly based on the study of the ambient space and its associated poly-
hedron and it is also applicable to partial crepant resolutions of arbitrary dimension.
The regarded Hodge numbers are expressible by the numbers of the integral points
of certain polyhedron faces. Moreover, for some families of hypersurfaces in spaces
corresponding to reflexive polyhedra, the classical involutive duality of convex sets
leads to a precise mathematical interpretation of the so called mirror phenom-
ena. These phenomena have been initially observed by the physicists within the
framework of investigations of special conformal field theories. Their first rigorous
mathematical formulation for the special case of hypersurfaces in w.p.s. is due to
Roan [102] (a), who constructed “mirror isomorphisms” by using an ezplicit lattice
dualism.

Definition 4.8. For p, 1 < p <k, let X? be a w.c.i.

(4.25)
{[21,.. . ,Zm] € ]P’"‘_l(wl,... ,wm)lfl(zl,... ,Zm) = ... = f,,(zl,... ,Zm) = O}
with deg(f,) = d, and X := X* := X(ay,... dn), X° :=P™"Y(w). X will be called

overall well-stratified (w.r.t. the above enumeration of its defining polynomials) if
X7 is well-stratified (see 2.36) for all p’s.
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Definition 4.9. Let X = X(4, . 4,) be an overall well-stratified w.c.i. with a fixed
enumeration (4.25) of its defining polynomials. For all p, 1 < p < k, (CN(X*),0)
is the zero locus of the holomorphic function germ f, : (CN(X*?71),0) — (C,0).
For a sufficiently small ¢ > 0 we consider the open ball

B.(0):={z€C™ ||z < e}

CN(X?)NOB.(0) is a (m—p—2) -connected (2(m — p) — 1) -dimensional orientable
C -differentiable manifold and CN(X?) N B.(0) is homeomorphic to the cone

{tz|0 <t <1,z € CN(X*?) N IB(0)} over Lk(p) := CN(X?) N dB.(0). Lk(p) is
called the relative link of the origin in CN(X?) w.r.t. CN(X?~!). By assumption,
the set of critical points of f,|cn(xe-1y consists only of the zero point. We can
therefore choose € >> ¢’ small enough in order to construct two fibrations

-~ —_— —_—

ot (folon(xe-1) 71 (Be(0)) N B(0) \ {0} — B=:(0) \ {0}
and

~

A

©Yp - : Lk(p — 1) \ Lk(p) — S*.

The inclusion 0B, (0) < (B (0) \ {0}) is an homotopy equivalence and conse-
2
quently all topological properties of the first fibration are preserved (up to homo-

topy) by its restriction over the circle aB%(O). By identifying 53%(0) with the
unit circle S via the map 7 — 27, we regard this new restricted fibration over S,
which we shall denote again by fp. fp and ¢, are (in this sense) fiberwise diffeomor-
phic in the category of the locally trivial fibrations over S! and define the relative
Milnor fibration of CN(X?) w.r.t. CN(X?~V. The fibers F* are homotopic to a
bouquet S™7PV ...V S™7? of (m — p) -spheres (see [58]). The number of these
spheres is called the relative Milnor number mil(F?) of CN(X?) w.r.t. (X°~1). It
is easy to see that the topological Euler-Poincaré characteristic of F? is given by

e(FP) =14 (—=1)™"Pmil(F?) and mil(F?*) = rk(f{m_p(F”,Z)). F? is furthermore

diffeomorphic to {(z1,...,2zm) € C™|fi(z1,-.. y2m) = ... = fpm1(21,. .. y2m) =
0, fo(21,... ,2m) = 1} and its associated characteristic automorphism b, : F* —
F?, coming from the fiber transport via the standard generator of = (S?!,{1}), is
given by hy(z1,... ,2m) =4, " (21, ,2m) = ((:;‘;‘zl,... ,CZ)’"zm).

For an X as above and indices 0 < r, < d,—-1,0<s,<d,—1,1<p <k, we
introduce the following index-sets and enumerate them increasingly:
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’ ap(’“p)
—_ Tpde (rp) (rp)
Zo(rp)i=qell <e<p: 7 €Z,= { . fﬁp(r,,)}’

SpWv ¢, Tp,S r
T(rp,s,) = {tllStSa(rp):p—£€Z} {'rl( or%e) . {rense) },

» Yo (Tp,85)

Ny(rp) = {z|1 <i1<m: i’c’# € Z} _ {Virp)’“. (7e) }
p

P Tep(Tpy8p)

spd
V(re,s,) = {lll <1< PB(ry): 2P7rp). € Z} _ {vgrp,Sp),.“ U(r‘p,sﬂ) } :

{Tk|1 <rp<dp—1 with ak(rk) —Bk(rk) = 2}, if j=k
{'I‘j]l <rj de-—l with ak(Tj)—,Bk(Tj) =2 and

Nj(rj) # Ni(r1), V1,7 +1 <1<k and
VT],OST[Sdl—l}, if ];ék

£ .—

where the 7 in the last expression is bounded by 1 < j < k and

{7:1<5<kLD # 2} = {5,...,j,}. Furthermore we need the following
abbreviations:

-1

é3;:(".av3p) 'yp(‘r‘p,sp)
2 * .
1-)(IrPVSP) S H dé(";()) H wu("p) ) 3
vi(rp,8p) (rp,s
1=1 I\Tps3p t=1 ™ P Ep
Dp(rp,8p) =
e(p)
— ip.
= (-1)'D; drg)  5eee s dyry) We—i | W 00 5oy W ) ;
. v1(rp,sp) (rp sp) (rp sp) 7.(rp,.sp)
:p(rp ap) 1 ‘yp(rp,.sp)

defined by means of the summetric polynomials (2.7), (2.8), with
¢(p) :=75(rp,5p) — €4(7p,55),
0, if e(p) <0

e(Tpy $p) 1= { 3(rp,,) “D(rp,8,), if e(p)>0

91(‘,,:) ) d Z e(rp, sp))
s,,=0
and
&) . { 0, ifoa=1
DD, i a2
with
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0, if /37‘0-, 0 S ’I‘a S da - 1’ VVith NJ(T‘U) = ZV]A("]/\)
39 =2 g\ if I, =r, with 0<7, <dy—1 and
N'U(f'ff) = Nj,\(rjx)a Vo,1<0 S]A -1
fori1<o<jy—land 1<)\ <q.

Lemma 4.10. Let F?(r,) := (F”)h;p denote the fixed point set of h,7. Suppose
F?(r,) # @. Then

FP(rp) ={(21,-.. y2m) € C™|fj(z1,-. y2m) =0,VY5,1<j<p—-1,5€ Zp(T0),
fo(z1,...,z2m) =1 and 2;=0,Vi,1<i<m,i¢ Ny(r,)}

is an affine complete intersection of dimension a,(r,) — B,(r,) w.r.t. the weights

{wu(r,,),... YW (rp) } in the a,(r,) variables Z (rp)s--+ 12 (rp)  With no singular
1 ap(rp) 1 ap(rp)

points other than the origin. F*(r,) is also diffeomorphic to the relative Milnor

fiber w.r.t.

fp : ({(zuirp),. o5 Z () ) e CQP(TP)Ifj(zuirp),. 5 Z () ) =0,

ap(rp) ap(rp)

Proof. Let t := C;;’ and consider the maps ¥, = (fi,...,f,) : C™ — CP, resp.

C™ 32— “,(z) :=¢,(t-2) € C°, where t - z := (t**z1,... ,t*" z,,). The chain
rule gives

D("Y(2)) = (D, (t - 2)) - diag(t™,... ,t*") = diag(t™, ... ,t%) - (Dy,(2)).
For z € F?(r,) we have t - z = z and therefore

wi 0fi _ #d; ofi

Vi, 1 <1< V7,1< 3 <p.
azi 321" 2’ _'l__m, .7) -—]-—p

This means that

of; _0 i { either i€ Ny(rp,) and j€Z,(r,)

z; or it € No(r,) and j ¢ =,(r,).

On the other hand the functions {f;|j ¢ =,(r,)} are constant on

{zeCt-z=2}={z2€C™|z; =0,Vi,1 <i<m,i¢ N,(r,)}

and therefore vanish. Thus, F*(r,) has the above form. Moreover, for every point
z° € (F*(r,) \ {0}), we get for the Jacobian block matrix:
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a .
rk ( 6_]:]: |z=z° ) FE€No(re) = ,Bp(”'p)
JEE,(7p)

0

and F?(r,) cannot have z° as a singular point. a

Now f, induces the automorphism:

w ("p)

vy (Tp) r
bp(rp) : Fp("p) e (Zvl(rp)a--- Z,(rp) ) — ( Zl " Z,,irp),u- aC elre) o) )€ F”(r,,)

Yap(rp) ap(rp)
and the cyclic group (h,(r,)) generated by b,(r,) has the order
dy, = dp
T ged{wili € Ny(r,)}
For0<r,<d,—1,0<s,<d,—1, we get Ij’”(r,,)hp(rp)sp = FP(r,) N FP(s,) =:
Fe(r,,s,) and FP(r,)00(0)" = Fr(r,)0e(me) if 0 < s, < d, —1 with s, =

sp(mod(dr,)). As in the previous lemma, we can conclude that F?(r,, s,) is an
affine c.i. of dimension ¢(p) with O as the only singular point (for ¢(p) > 0). From
the Lefschetz fixed point formula we deduce:

dy,—1
1—e(F*(r)/(h,) =1 - di S e(Fo(r,)relre))
1 dp—1 Pl_ dp—1
(426)  =1= 3 eF(rpse)) = - 3 (1= e(F2(rp,5,).

Theorem 4.11. Let X = X(dy,....dy C P™"Yw) be a well-formed, overall well-
stratified c.i. with m —k = 4, am(X) = 0. Then the non-trivial Hodge numbers of
the toroidal crepant desmgulanzatmns n:Y — X of X are given by:

(4.27) RU(Y) = %e(Y) +RU2(Y), where
k dp—1

(4.28) Z Z g(P) and
p=1 r,=0

A= 1,«1 eclx)

1
1,2 — 31, 2 2 (73) 4 ( )
(4.29) RL2(Y) = AL (Z Y, (89 4 gl ))
Proof. (4.27) is obvious. By prop. 3.2. we can see that for all strata X := X(I)
of Xand I G M C{1,...,m},
T (ﬂ'_l(X[\U{XM oI _g M})) - X[\U{XM o I g ]V.[}
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is a fibration with e(fiber) = ¢y (cf. 2.5., 2.18.). The stratification of ¥ gives

(4.30) e(Y)=) (Z(—l)'“*“'e(xj)) c1

I IcJ

By assumption, X7 := X? N P; (in the notation of 2.5.) is a q.s.c.i. Since X!
appears as the support of a subcomplez in a topological triangulation of X 1_ (see
[83]), the exact cohomology sequence concerning the complements U? [ =X \X 7

((13, p. 52]):
L= H(UP,Q) = H(X!TH,Q) - HY(X?,Q) = HH (U?,Q) -

yields: e(Uf) = e(X?™!) — e(X}),V¥p,1 < p < k. Summing these k equations
together, we get for X := XF :

6

M»

(4.31) (X] = e P[
p=1

If we set 7, := {I C {1,...,m}|U] # @}, then e(Y), according to (4.30) and
(4.31), can be written as:

= JIe(P)—e(U{P AL € TP)er~ > 5 0D OUSI S T

p=1 I€I,

1, if [Il=m-1

Combining this with e(Pr) — e(U{P|I & J}) = { 0 otheru
, otherwise

we have:

k

(4.33) oY) =D wi=> > [e(Uf) — e(U{USI S J})]
T

=1 p=1 1€,

Defining U)” := U \ U{U4|I G J}, we show similarly

e(Uf) = e(UF) — e(U{U* IS J}) and

(4.34) e(Uf)=>_e(UY), VIeI,
ICcJ

The transition from the local to the global data can be achieved via the relative
Milnor fibers F?, by identifying F*/(},) and U? = X1\ X by means of the
projection
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Gp: F? 3 (21,... yzm) ¥ [21,... ,2m] € UP, forall p, 1<p<k.

Moreover, for I € 7, q;'(UY) is h, -invariant and

(4.35)
ﬁ{rplo < T, < dp —-1: Fp(rp)/<bp> i UJI')} =

Hrol0<rp<dy—1:bp = id on q,'(Uf)} =
d

=Hrpl0<r, <d,-1: c_plrp} =cr
I

Hence (4.33), (4.34) give:

I€T,

k m k
= Z [dp - Z e(U;”)cl} (since Zw,- = de)

k dy—1
CES o= S S UDIF () (5,) > U}’})]

r,=0

r,=0

[ dp—1
= Z - 3 e(FP(m/(np»}

k dp—1
—Z Z[l_errp )/{b,))]
dpo—1

(4.26) Z 3 g,

p=1 r,=0

because e(F?(r,,s,)) = 14 (=1)Pmil(F*(r,,s,)) = e(rp,s,) by the formulae of
Greuel and Hamm in [52, Cor. 3.8. (b), p. 76]. So (4.28) is proven. Now if we
define Jy; :={1,... ,m}\ Nj,(rj,), YA, 1 < X < q, we have

SStH(X) = {X; [1 <A< g}

(Warning (*) ! XJ;, represents the same curve for all rj,’s of the form rj, =
d;
N —Lc,;, l<t])‘ SCJ )
I

On the other hand, forall A\, 1 < A <¢q, 1< riy <dj, — 1, we get:

bi(X,,

Tix

JA
) =2-e(Xy, ) :2—e(PJrjA)+Ze(UPrjA) -

=2={(m =1~ [(m=2) = B ()] + 1} + Y_e(U%, )

p=1
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Note that exactly jx — B, (r;, ) of the US ’s are empty !
IANTIA J,J.,\

.Bj,\(riA)

(rjy) . (riy) .
=— Z (1- e(Uf,r . ))) = (hereis éﬁ;:(rjx) =Jx)
u=1 €u“‘
Bix(riy) (r5) Bix(rjy)—1 (riy)
N )
=~ Z 95&8- )) - Z gfﬁ;‘r, )) —ggﬁ)
u=1 €7 p=1 &7

(rjy) (rjy)
by the identification of USE“(rj : with Fé«’ (re(rh))/(f)é(rh)) and for all re(m)’s
eu A u u u

for which Ngff"k)(r"*) = Nj, (rj,) holds.

If C is an irreducible curve in SSt!(X) with C = Xy, for some A € {1,... 4},
we have exactly ¢ P 1 exceptional prime divisors of Y lying over C. To express
Z{(lc =1)b:1(C)|C € SSt'(X)} in terms of d and w, it is sufficient (by (*)) to sum
our b; (XjrjA )’s over all X’s and ;,’s included in £U*). The representatives of the
required additional summands, which occur w.r.t. each stratum, can be obviously
abbreviated by Qi(rfi) Hence, the above sum equals

q
> T e

A=1 Tiy eclx)

and (4.29) follows directly from (4.24). a

Let us now apply the formulae of thm. 4.6. (or, alternatively, of thm. 4.11.) for
the non-trivial Hodge and Betti numbers to the spaces of crepant toroidal desin-
gularizations of 3-dimensional BP q.s.c.i (with vanishing amplitude) of cor. 2.39.
The classification of these CY models is given by the following:

Proposition 4.12. Up to permutations of weights and degrees and up to different
coefficients of the defining polynomials, there exist exactly 171 BP q.s.c. intersec-
tions

X = X,,...q0) = {l21,-- -, 2m] € P™ (W) Z/\ijz?ij =0,V5,1<7<k}

1=1

of dimension m — k — 1 = 3 and of vanishing amplitude satisfying the assumptions
of cor. 2.39. (see Table 1). More precisely, there are 147 with codimension k = 1,
19 with k = 2, 4 with k = 3, one with k = 4 and none with k > 5. Only 10 of
these complete intersections are smooth. (They are marked with **.) In particular,
X C P%(1,1,1,1,2) (resp. X5 C P*(1,1,1,1,4)) expresses a triple (resp. a double)
covering of P® branched along a smooth sextic (resp. octic) surface. All the others
certain singular loci conmsisting of k irreducible curves, \ isolated points and p
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individual points. If for all (k4 m) -tuples ((dy,... ,di), (w1,... ,wm)), we denote
by

Pll :={{i1,... ,ik+2}C {1,... ,m}|1 < <ig<... < ikt <M
and ged(wi,, ... ,wi,,,) > 1},

F6 ZZ{{il,... ,ik+1} C {]., ,m}|1 < <ip<... <ik+1 <m with
ged(wiy, ... ,wi,,) >1 and
gcd(w,-l,... ,wik+l,wj) =1,Vy,J€ {1,... ,m}\{il,... ,ik+1}},

and

f‘6 ={{in, . e C{L,. . ,mH1 <41 <idp < ... <ipp1 <m  with
ged(wWiy, - -+ Wiy, ) > 1, ged(wiy, ... ,wi,,,,wj) > 1 for at least one
JE{L... ,mI\{ir,... ikt1} and ged(wiy, ..., wi,,) > ged(w;,,. .. s Wi pqs W)
for all that j's satisfying this property}

the complements of 'y, Iy and 'y w.r.t. the index set {1,...,m}, then x = §(T)
and X\ (resp. p) is given by the formula

ged(wiy, . .. ,wik+1) ) Hj'::l d;
Z ) Hk+l

{ily"' 1ik+l

where the sum runs over all the (k + 1) -tuples {i1,... ,ix+1} of T} (resp. of

I').  Moreover, for all non-individual points P of a curve C' = X{ni,ns}, With
{ni,ne} = {1,... ,m}\ {ir,... yikg2}, {31,... ,ir42} € T}, we have:

(4.36) (X,P) = (C*/G¢ x C, [0] x {0}),

where (C? /G, [0]) isa c.q.s. of type (£c; [wn,Jee, [Wnyles ) With e = ged(wiy, ..., w4, ,,).
Correspondingly, for P € X{(ni,nans)> 1n1,n2,m3} = {1,... ,m}\ {i1,. .. ,iks1}s
{t1,... Jik1} €TH U f‘{), we have:

(4.37) (X,P) = (C*/Gp,[0]),

Le. the germ of X at P is isomorphic to that of a c.q.s. of type (€p; y1,y2,ys) with
¢p = ged(w;,, ... ,wi,,,) and
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3
([wm]fp’ [wnz]fzﬂ [wns]fp)v if Z[wnalfp ={p
(ylayZ’y(i):: < N

3
(eP - [wm]fp,[P - [wnz]fpagp - [wna]fP)’ if Z[wns]fp = 2(p.

(Using the types of dissident points of Sing(X ) for all X ’s of Table 1 with SSt°(X)II
INP(X) # @, we have marked with a * the 56 models which admit a unique toroidal
crepant desingularization.)

For the proof of 4.12. we need the following lemma:

Lemma 4.13. Let B1,...,0, be v > 1 integers with 8; > 1,Vt,1 < t < v and
p € {1,...,v}. Then the diophantine equation:

(4.38) p (t]i[l m) = Z Hﬁ,

t=1 11

has no solution for v < 2.

Proof. (4.38) is equivalent to Y ;_, —ﬂl; = p. Without loss of generality, we may
assume that §; is the smallest number among all B;’s. Then 8; < f, ie. B <
1+ "—;’i The assumption of the existence of a solution of (4.38) for v < 2u would
therefore imply 8; < 2, which would lead to a contradiction. d

Proof of 4.12. At first we have to determine all combinations of weights w =
(wi1,... ,wm) and degrees d = (dy,... ,dr) for which

m k
(4.39) S wi=3 4,
=1 7=1
holds true.
Ist case: Let Xq be a Fermat type, i.e. di = ... = di := d. In this case we set
a; = wi‘ = o;j. (4.39) can be rewritten as

(4.40) f: ai =
i=1 "

Since a; > 1, Vi, 1 <1 < m, (4.40) has no solution for k > m —k = 4 (by 4.13.),
ie ke {1,2,3,4}. We order now ay,... ,am as follows:
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ay =...=ag <a51+1:...=a52 <...<a£r_1+1:...:a§,,

wherer € {1,... ,m}, & :=0and & =k+4. Ifq:= &6,y >0fort=1,... ,T,
equation (4.40) can be written as

LI
(4.41) ; ac =k with
(4.42) Y a=m=k+4
t=1
)Forr=1=a =...=ap =ta,w; = ... = w, = 1 and (a — 1)k = 4, i.e.
(k,a) € {(1,5),(2,3),(4,2)}.

(i) If2<r<m,weset kg :=k, ky := <L and

31
kr:=k— qu— Z Lo =k, 1————7'6{1 co,r =1}

aE" a—r+l €o

{k-|0 < 7 < r —1} is a finite decreasing sequence of natural numbers. For k €
{1,2,3,4} we choose an a; = ag, from the interval 2 < a; < T and an arbitrary
natural number ¢; which occurs in the partition (4.42). Then we can determine

iteratively all combinations of r-tuples (ag,, ... ,a¢,), (q1,. .. ,qr), which satisfy the
inequalities:
( m
2< ag, < 7{
m —
ag +1 < ag, < o
1
(443) 'OREREREETE
m—q —q —...—Qqr_2
aEr—2+l S afr—l S k
r—2
m-—qy —q2— ... = Qqr-1
aﬁr—1+1 S afr S k .
\ r—1
It is easy to see that gy, ..., g, have the following bounds:

ag, {k(ag, +1) —=m} < q < kag,
ag {k1(ag, + 1) = (m —q1)} < @2 < krag,
(444) ¢ ...
ag,_{kr—2(ag,_, +1)—(m—q1 —... - ¢r-2)} < gr—1 < kr_sag, _,
{2 {kroa(ag, +1) = (m~q1 — ... = ¢r-1)} < ¢ < kporag,
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The system of (4.41), (4.42), (4.43) and (4.44) can be solved by this algorithm and
leads to 146 solutions for k£ = 1, 17 solutions for k£ = 2, 3 solutions for k = 3, and

no solution for k = 4 respectively. (The computer aided verification of this fact is
due to A. Klemm.)

2d case: (Not all degrees are equal and k > 2.) Since w;|dj, Vi, 1 < i < m, Vj,

1 <5 <k, we have in this case wjlged(dy, ... ,di), Vi, 1 <i < m.
(i) If ged(dy,... ,di) =1 = w; =... = wy = 1 and (4.39) has only one solution
(up to permutations of degrees), namely (k = 3,d; = 2,dy = 2,d3 = 3).
.. d; . .
(ii) If ged(dy, ... ,dk) > 1, we set e; := sad 4y Vi 1 <5< k.
Obviously,
k

(4.45) > ej € {k,k+1,k+2,k+3,k+4}, ged(er, ... ,ex) = 1.

j=1

Thus, (4.39) can be rewritten as:

k m

1 1 . .
(4.46) 1+ — E es | = _;_ —,Vj,1<j<k.
€j s=1 i=1 Qij
s#)

(a) From (4.45) we exclude the case in which Zle e; =k, because Xq is assumed
to be of non-Fermat type.

(b) If Z§=1 ej = k+1, then one of the e;’s equals 2 and all the other = 1. Setting,

for instance, e; =2, e5 = ... = e = 1, we have %L =dy =...=d} and (4.46) can
be reduced to 3, - =k +1,V;,2<j <k
ij

According to our lemma 4.13, this equation has no solution for k > 2, but for k = 2
we get ajp = 2 and a;; =4, Vi, 1 <1 < 6. Hence, the only solution that can occur
(up to permutation of degrees) is (k = 2,d; =4,d, =2,w; = ... = wg = 1).

(c) If Z;?:l e; = k + 2, then the set {ey,... ,ex} equals either

1,1,...,1,3}  (k>1)
———
(k—1)-times

or

{1,...,1,2,2} (k>3)
——’
(k—2)-times
and (4.46) has no solution by 4.13.

(d) The remaining two cases can be investigated similarly. Applying lemma 4.13.
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several times, we conclude that (up to permutations of degrees and weights) (4.46)

has one more solution for & = 2, namely (k = 2,d; = 4,d» = 6,u; =

2,ws = wg = 1), but no further solution for k& > 2.

L= wy =

The proof of the proposition is completed by making use of the “weighted Bézout's
theorem” (for the formulae of A and g, cf. 4.7. (ii)), of lemmata 4.1, and 4.2. (for
the determination of the types of the points of Sing(X)), and of the precise placing
of the exceptional prime divisors on the toric triangles lying over the dissident

points of X (for finding out which of the ¥’s are indeed unique). (W]
Table 1: The k = 1 case

| N° X = XaC P (w) [ <] X [#]eX) ] e(Y)]6s(X) [ ba(Y) [AI?(Y) | AM(Y)
1| =X, cP,1,1,1,1) | 0| 0 [0 -200| -200 | 204 | 204 101 1
2| =Xsc P%1,1,1,1,2) 0| 0 | 0| -204 | -204 | 208| 208 103 1
3| XecPY1,1,2,2,2) |1} 0|0 -164| -168| 168} 174 86 2
4| =XgcP'(1,1,1,1,4) |0 | O | 0| -296 | -206 | 300 | 300 149 1
5| “XocP%1,1,1,3,3) (0] 3]0 -222|-216| 226| 226 112 4
6| =Xioc PY1,1,1,2,5) [0] 0|0 -285} -285| 202| 292 145 1
7| XpcPY2,2,2,3.3) |1 40| -98]-108| 102| 122 60 6
S| X, PY1,2,3,3,3) |10 (0] -124|-132| 128| 140 69 3
9| "XpcPY1,2,2,3,4) 1|0 |0] -138} -144| 142| 150 74 2
10] *X,cP%1,1,3,3,4)|0| 40| -176] -165 | 180 | 130 89 5
11| "XppcPY1,1,2,4,4) | 1] 0|3 -198|-192| 202| 204 101 5
12| "X, cPY1,1,2,2,6) [ 1| 0|0 -250| -252| 254 | 258 128 2
13| "X, cP'(1,1,1,3,6)|0] 2 0| -328| -324} 332| 332 165 3
14| "X PY1,2,2,2,7) |1 0|0 -212| -240| 216 246 122 2
15| =XiscPY(1,3,3,3,5) 1] 0|0 -124| -144} 128} 152 75 3
16| “XscP%1,1,3,53) |0 3|0 -204]-192| 208| 208 103 7
17| "X PY(1,1,2,4,8) | 1| 0|2] -292| -288| 296 | 298 148 4
18| XiscP(1,2,3,66) 2|0 (3] -150]-144} 154| 160 79 7
19| "XiscPY(1,2,3,3,9) 1|00} -18]-192) 192 200 99 3
20| *XiscPY2,2,2,3,9) 1] 2]0]|-166|-216| 170} 226 112 4
91| *Xisc PY(1,1,1,6,9) [ 0| 1 |0 -542| -540 | 346 | 546 272 ?
22| "Xy CPY2,4,4,55) 1|4 5| -64| -48 63 80 39 15
23| "X C PY(1,4,555)[1]0|0]-104]-120} 108| 132 65 5
24 | *Xp c PY(1,2,2,5,10) | 1| 2 | 0| -230| -228 | 234| 242 120 6
25 | "Xpo € P*(1,1,4,4,10) [ 1| 0 | 5| -284 | -272| 288 288 143 7
2| "X cPY1,3,3,7,7) 0100 -128| -96| 132} 132 65 17
27| “Xp CPY2,3,3,88) |1]8 |3 -82| 48 86 88 43 19
25| "X, CPY(3,3,4,6,8) (2] 03| -70] -96 74| 112 55 7
29 Xp € PY(1,3,4,8,8) | 1] 0 |3 -132]-120| 136| 142 70 10
30| X, cPY(1,3,6,6,8) 2] 0|4 -122]|-120| 126| 138 68 8
31 | Xp  c PY(2,3,3,4,12) 2] 0 | 2| -114| -120| 118} 134 66 6
32 | “Xp  c PY(1,3,4,4,12) | 1| 2 | 0| -166 | -168 | 170 | 182 90 6
331 X, c P%1,2,3,6,12) [ 2] 0 |2] -220 | -216 | 224} 230 114 6
34| "X, cPY1,1,6,8,8) | 1| 0|3 ]| -260) -240| 264} 264 131 11
35 | *Xp0 C PY(1,1,4,6,12) | 1] 0 [ 4| -326| -312| 330 330 164 8
36 | "Xpe C PY(1,1,2,8,12) [ 1| 0 | 1| 482 | -480 | 436 4SS 243 3
37| “Xps C PY(1,2,4,7,14) | 1] 2 | 0| -224 | -216 ) 228| 234 116 s
38 | Xs c PY(3,5,6,6,10) | 2| 3 | 5| -52) -48 56 80 39 13
39 | Xao € P4(2.3,5,10,10) | 2| 0|3} -84} -72 88 N 4? 1‘,
uo Xao C P¥(1,3.6,10.10) Ll 5030 32 06| 136 136 67 19
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-108 108 124 61 7
-168 176 184 91 7
-192 156 208 103 7
-216 224 236 117 9
-408 392 418 208 4
-492 504 204 251 S
-48 74 88 43 19
-120 130 142 70 10
-144 184 184 91 19
-168 200 202 100 16
-228 250 254 126 12
-360 366 372 185 5
-528 544 544 271 7
-112 100 128 63 7
-168 186 194 96 12
-432 456 456 227 11
-96 102 132 65 17
-96 120 132 65 17
-156 150 174 86 8
-288 266 304 151 7
-348 338 362 180 6
-96 128 136 67 19
-120 174 174 86 26
-192 222 226 112 16
-240 226 256 127 7
-312 324 330 164 8
-624 644 644 321 9
-408 416 430 214 10
0 56 64 31 31

0 44 96 27 27
-48 110 112 35 31
-48 96 96 47 23
-48 74 86 42 18
-48 48 80 39 15
=72 76 100 49 13
-108 142 150 74 20
-120 168 174 86 26
-120 172 172 85 25
-168 208 210 104 20




(] X=XaCPw) [w[A[p [dX) [0 &) [ 60D [ R [ A7) ]
80 Xeo C IP%(3,3,4,20,30) | 2|0 | 4 | -176 | -192 | 180 | 216 107 11
81 Xeo C P%(2,3,5,20,30) | 2|2 | 1 | -200 | -192 | 204 | 214 106 10
82 Xeo C P%(1,4,5,20,30) | 2|0 | 4 | -300 | -288 | 304 | 312 155 11
83| Xeo C1P%(1,2,12,15,30) | 2|0 | 3 | -340 | -312 | 344 | 348 173 17
84 Xeo C ]P“(l 3,6,20,30) | 2|0 | 3 | -338|-336 | 342 | 358 178 10
85 Xos CIP4(2,3,6,22,33) | 2| 1| 0 | -216 | -240 | 220 | 260 129 9
86 | X C 1P4(2,5, 14,14,35) | 2 | 2| 5 | -104 | -64| 108 | 120 59 27
87 | X7o C IP*(1,10,10,14,35) |2 |1 | 7 | -140 | -96| 144 | 144 71 23
88 X7, C1P%(1,8,9,18,36) | 2| 0| 3 | -164 | -144 | 168 | 184 91 19
89 X7 CTP%(1,3,8,24,36) {2 |0 | 4 | -360 | -336 | 364 | 368 183 15
90 X7 C1P%(1,2,9,24,36) | 2|0 | 3 | -480 | -456 | 484 | 486 242 14
91 X7s C IP*(1,6,6,26,39) | 2 | 1|13 | -284 | -240 | 288 | 288 143 23
92 | Xs CIP%(3,4,21,28,28) | 2|4 | 3 | -74 0 78 84 41 41
93 | Xsq C1P%(2,12,21,21,28) | 3|0 | 5 | -56 0 60 72 35 35
94 | Xsa CPP%(3,4,14,21,42) |30 | 4 | -96| -48| 100| 106 52 28
95 | Xg4 C IP‘*( ,6,21,28,28) | 2|2 | 3 | -150 | -72| 154 | 154 76 40
96 | Xsq CIP%(2,7,12,21,42) |30 | 3 | -98| -72| 102| 120 59 23
97 Xgq C ]P4(3 4,7,28,42) | 2|2 | 4 | -138 | -120 | 142 | 154 76 16
98 | Xss CP%(1,6,14,21,42) |30 | 6 | -190 | -132 | 194 | 194 96 30
99 Xss CIP*(1,6,7,28,42) | 2|0 | 3 | -280 | -264 | 284 | 296 147 15
100 | "Xsq C IP*(1,1,12,28,42) | 1|0 | 3 | -980 | -960 | 984 | 984 491 11
101 | Xoo C IP*(2,10,15,18,45) |3 |0 | 3 | -92| -96 96 | 136 67 19
102 | Xgo C IP4(2,3, 10,30,45) 310 4| -232|-216| 236| 254 126 18
103 Xg0 C ]P“( ,5,9,30,45) [ 2 {0 | 3 | -300 | -276 | 304 | 312 155 17
104 | Xg6 C IP* (1,3,12,32,48) 210| 3| -430 | -408 | 434 | 446 222 18
105 | X0 C IP*(1,4,20,25,50) | 2 [0 | 8 | -280 | -216 | 284 | 284 141 33
106 | X110 C P%(1,10,22,22,55) | 2| 1| 5 | -156 | -80| 160 | 160 79 39
107 | X120 C P4(1,15,24,40,40) | 2 | 1| 3 | -108 0| 112| 112 55 55
108 | Xiz0 C IP* (1,15 20,24,60) | 3|0 | 5 | -136 | -72 | 140 | 140 69 33
109 | X1z C IP4(3,5,12,40,60) |3 | 0| 3 | -138 | -120 | 142 | 166 82 22
110 | X9 C IP*(1,5,24,30,60) [ 2|0 | 3 | -272 | -216 | 276 | 284 141 33
111 | Xy C IP*(2,3,15,40,60) [ 3 |0 | 3 | -270 | -240 | 274 | 288 143 23
112 | Xiz0 C IP%(1,4,15,40,60) | 2 [0 | 3 | -400 | -360 | 404 | 410 204 24
113 | Xip6 CIP*(1,6,14,42,63) [ 3|0 | 7 | -316 | -264 | 320 | 322 160 28
114 | Xi26 C IP“(1,2 18,42,63) | 2 | 0| 3 | -740 | -720 | 744 | 756 377 17
115 | X140 C IP* (1 14,20,35,70) | 3 |0 | 5 | -158 | -72| 162 | 162 80 44
116 | X4 C IP*(2,5,28,35,70) |3 (0| 3 | -160 | -96 | 164 | 176 87 39
117 | Xi56 C 1P4(1,12 39,52,52) [ 21| 3 | -140 0| 144| 144 71 71
118 | X156 C IP*(1,12,26,39,78) |3 |0 | 5 | -176 | -72| 180 | 180 89 53
119 | X156 C P4(1,12,13,52,78) | 2| 0| 3 | -260 | -240 | 264 | 288 143 23
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N | X = X; C PY(w) L [ M [ p [e(X) [e(Y) [ 8s(X) Tos(Y) [AMY) TRUI(Y) |

120 Xies C 1P%(3,4,21,56,84) | 3 [ 0| 3 | -190 | -144 | 194 | 212 105 33
121 Xyes C IP*(1,6,21,56,84) [ 3| 0| 5 | -374 | -312 | 378 | 382 190 34
122 Xies C P%(1,3,24,56,84) | 2 [ 0| 3 | -656 | -624 | 660 | 672 335 23
123 X180 C IP*(4,5,36,45,90) [ 3|0 | 8 | -100 0| 104| 112 55 55
124 X180 C IP*(1,9,20,60,90) |2 /0| 6 | -298 | -216 | 302 | 302 150 42
125 Xios C IP*(2,9,22,66,99) [ 3| 0| 6 | -170 | -96 | 174 | 188 93 45
126 X10 C IP4(6,14,15,70,105) |4 | 0| 6 | -64 0 68 88 43 43
127 Xa10 C P%(2,3,30,70,105) | 3|0 | 3 | -416 | -384 | 420 | 444 221 29
128 X6 C IP*(1,8,27,72,108) | 2| 0| 6 | -358 | -264 | 362 | 362 180 48
129 X0 C P%(1,10,44,55,110) | 3 [0 | 5 | -248 | -120 | 252 | 252 125 65
130 Xa40 C IP%(1,15,24,80,120) | 3|0 | 5 | -266 | -168 | 270 | 270 134 50
131 X4 C IP%(3,8,33,88,132) |3 (0| 6 | -148 | 48| 152 164 81 57
132 Xaea C IP*(1,6,42,98,147) | 3|0 |10 | -572 | -480 | 576 | 576 287 47
133 | Xa12 C 1P%(1,12,39,104,156) | 3 | 0| 5 | -346 | -216 | 350 | 350 174 66
134 | Xa30 C IP%(3,22,30,110,165) |4 |0 | 6 | -96 0| 100| 120 59 59
135 Xaze C IP%(1,7,48,112,168) | 2| 0| 3 | -560 | -480 | 564 | 576 287 47
136 | Xay C P%(1,18,38,114,171) [ 3|0 | 6 | -284 | -144 | 288 | 288 143 71
137 Xars C IP*(2,7,54,126,189) | 3| 0| 3 | -320 | -240 | 324 | 348 173 53
138 | X420 C IP*(1,20,84,105,210) | 3 |0 | 5 | -236 0| 240| 240 119 119
139 X420 C IP*(3,7,60,140,210) |3 [ 0| 3 | -236 | -144 | 240 | 264 131 59
140 | X2 C IP%(2,33,42,154,231) |4 |0 | 5 | -136 0| 140| 160 79 79
141 Xs46 C IP*(6,7,78,182,273) |4 | 0| 10 | -152 0| 156| 168 83 83
142 | Xeoo C IP¥(1,24,75,200,300) [ 3|0 | 5 | -332| -96| 336| 336 167 119
143 | Xeao C IP¥(1,14,90,210,315) [ 3|0 | 6 | -524 | -336 | 528 | 528 263 95
144 | X714 C 1P%(3,14,102,238,357) |4 |0 | 6 | -200 0| 204| 216 107 107
145 | Xog4 C IP*(1,21,132,308,462) [ 3|0 | 5 | -512 | -240 | 516 | 516 257 137
146 | Xoes C IP*(2,21,138,322,483) |4 |0 | 5 | -272 0 276| 288 143 143
147 | X506 C IP%(1,42,258,602,903) |4 | 0| 6 | -500 0| 504| 504 251 251
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The k =2, k =3 and k = 4 cases.

148 ~X@ea CP(1,1,1,1,1,1) [0 0|0 -144 | -144 | 148 148 73 1
149 X4 C P*(1,1,1,1,1,1) |0 |0 |0]| -176 | -176 | 180 | 180 89 1
150 X CP%(1,1,1,1,2,2) | 0| 0 | 0| -144 | -144 | 148 | 148 73 1
151 *Xues C P%(1,1,2,2,2,2) [1|0|0| -126 | -132| 130| 138 68 2
152 *Xee) CP%(1,1,1,3,3,3) [0 4 [0] -152| -144 | 156 | 156 7 5
153 *Xee CP°(1,1,2,2,3,3) 0] 0 [0] -120 | -120 | 124 | 124 61 1
154 *Xee CP*(1,2,2,2,2,3) [1]0]0| -102| -120 | 106 | 126 62 2
155 *Xes CIP%(1,1,2,4,4,4) [ 10| 4| -136| -128 | 140 | 142 70 6
156 *Xo10) C P%(1,2,2,5,5,5) [0 |4 |0} -104 | -88| 108| 108 53 9
157 *Xa212) C P%(1,1,4,6,6,6) |1 [0 [4]| -150 | -132| 154 | 154| 76 10
158 Xaz212) CP°(1,2,3,6,6,6) |2 10| 4| -104 | -96| 108| 114 56 8
159 *X(aa2) CP%(1,3,4,4,6,6) [ 1|4 |0| -718] -72 82 86 42 6
160 *X(212) C P(3,3,4,4,4,6) | 1 [ 89| -34 0 38 40 19 19
161 *X1212) C P%(2,3,3,4,6,6) |2 (0| 0| -62| -84 66 94 46 4
162 Xasas) C P°(1,2,6,9,9,9) [ 1|0 | 4| -112| -84| 116| 116 57 15
163 | X(2020) C P(1,4,5,10,10,10) {2 [0 |4 | -86| -68 90 98 48 14
164 | X@aoq) C P%(1,3,8,12,12,12) |2 |0 | 4| -102| -72| 106| 110 54 18
165 | X(aoa30) C P%(2,3,10,15,15,15) |2 [ 0 | 4| -64| -24 68 72 35 23
166 | X(uzu2) € P5(1,6,14,21,21,21) {2 |0 | 4| -88| -24 92 92 45 33
167 | ~X@a3 C P%(1,1,1,1,1,1,1) | 0 [0 | O | -144 | -144 | 148 148 73 1
168 | *Xpaq C P%(1,1,2,2,2,2,2) |10 ]0]| -104 | -1127| 108| 118 53 2
169 | "Xeee C P(1,2,3,3,3,3,3) [1|0|0| -80| -96 84| 104 51 3
170 | “Xese C P%(2,2,2,3,3,3,3) |08 |0] -52| -36 56 56 27 9
17| . X222 CPT{0]0[0] -128| -128 [ 132| 132 65 1

Example 4.14. Let us explain by an example how the configuration of the excep-
tional prime divisors in a crepant toroidal desingularization becomes “visible”. If
we take X = X(30,30) C P(2,3,10,15,15,15) to be the Fermat 165th CY model of
Table 1, then Sing(X) = C; U C3 is the union of a rational curve C) := X{; 2} and
an elliptic curve Cy 1= X{1,3) with C1 N Cy = {P1, P, P3, P;} composed of four
common individual points. It is easy to verify by (4.36) and (4.37) that

(Cx (Cg/ < diag(C§,<§),{0} x [0]), if P’e Ci\ {Pl,szPs,P4}
(X,P) = { (Cx (C?/ < diag(¢2,¢s) >),{0} x [0]), if P €Cy\{Pi,Ps,Ps, Py}
(C3/<diag(C125,Cfs, xlg) >7[Ol)1 if PE {PlyPZuPJsRl}

and that our formulae give: e(X) = —64, e(Y) = =24, RV (Y) = 14+2+4+44 = 23,
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b3(Y) =68+4-0+ 22 = 72, for every crepant toroidal desingularization space
Y of X. Using, for instance, for a point Pj, j € {1,2,3,4}, the local crepant toric
desingularization being depicted in fig. 4, we can recognize promptly (by §3) what
kind of exceptional prime divisors are contained in €p;. (They are all Hirzebruch
surfaces blown up at 0,2 or 3 points.) Figure 5 shows the corresponding global
configuration of the members of the exceptional locus near P;.

o
173



DD b @ Gl
! ! ! !

Ps

Py

a Hirzebruch-surface

blown up at 2 points

/

4

Cy

P!-bundle

N v

/

a Hirzebruch-surface
blown up at 2 points

X

a Hirzebruch-surface

/ a Hirzebruch-surface

blown up at 3 points
Cy

e

P, j€ {1,2,3,4}/

Fig. 5

Remark 4.15. The formulae of theorem 4.11. are also applicable to that complete
intersections of Brieskorn-Pham type, which become overall well-stratified after a
suitable rearrangement of their defining polynomials. If we consider, for example,

filz1,. .. 26) = 224223 + 323+ 55,128, fa(z1,... ,26) =22+ 22+ 50, 2% and

1=4 “1

X =X,49) = {[21,--- ,26] € P%(3,2,2,1,1,1)|fi(21,... ,26) = fa(z1,-.. ,26) = O},

then X is smooth, e(X) = —156, b3(X) = 160 and A!*(X) = 79.

Table 2: Here we give some examples in codimension 2, where the first variable does not

appear in the second defining polynomial

[N] X =Xuan CPP(w) [ e(X) [ e(Y) ]| ba(X) [ bs(Y) | RV2(Y) | AVN(Y) |
1| Xus CP°2,1,1,1,1,1) | -156 | -156 | 160 | 160 79 1
2| X2 CIP?(3,1,1,1,1,1) | -256 | -256 | 260 | 260 129 1
3| XeaCP(3,2,2,1,1,1) | -156 | -156 | 160 | 160 79 1
4| Xep CP°(2,3,3,3,3,1) | -96 | -108 | 100 | 116 57 3
5| Xga CP°(4,2,2,2,1,1) | -164 | -168 | 168 | 174 86 2
6 | Xaze C IP°(4,3,3,3,3,2) | -76 | -108 80 | 116 57 3
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Remark 4.16. In string theory one class of c.i. in w.p.s., which is of particular
interest, is that leading to toroidal crepant desingularizations Y whose Euler num-
ber has absolute value |e(Y)| = 6. Table 3 shows 39 hypersurfaces discovered by

Klemm and Schimmrigk [74], which satisfy this property.

Table 3:

NOT Xg C P (wy, wa, w3, wy, ws) Polynomial e(Y) [ AVI(Y) [ AT3(Y)
1| Xasr € IP¥(3,8,30,79,117) | =]° + 23325 + = 3 B4 2 34225 + 2388 6 T 4
2 | Xyos € IP*(4,35,26,63,95) :}5.5 +:P+ g+ 3+ :g:w 6 70 67
3| Xias C P*(1,21,30,38,45) | =% + =35 + .g.s +3n+33 6 50 47
4 | X103 C IP(1,16,23,29,34) ;03 +28zg 4 23 4+ 23+ 23 6 50 47
5| Xias C P*(3,6,14,45,63) | ="+ ~“:4 +z -s+~4 +:3n 6 4 42
6 | Xea C IP%(2,9,12,23,37) -. Tt .3.. + .‘.5 + 's-" 2410 252 6 40 37
7| X12a € P*(4,7,13,41,58) | =%z + 35+ -4-5 + 3+ .3~-‘ + s~” +:3:8%5 6 40 37
8 | Xios C IP*(4,6,15,35,45) 6 37 34
9 | Xs1 € P*(2,6,9,17,17) 6 37 34

10 | Xa1 € IP%(2,9,19,24,27) 2 6 32 29
11 | X75 C P*(5,8,12,15,35) S+ fn+ :§:4 + .'3 + :g:‘ 6 30 27
12 | X3o C IP*(3,4,6,13,13) 34 fn 4+ 2+ 2+ mazfag 6 29 26
13 | Xq0 C P(4,5,10,11,19) | sMlza 4 sFos 4 s+ 2820 + :g ;+-,:§ 6 23 20
14 | X5, € IP4(5,6,9,10,21) K+ :2.-5+ 3+ 3 .,.. D+ 252f + 2523 6 23 20
15 | Xrs C IP*(10,12,13,15,25) | zfzq+ 23z + 3o + 23 + 3 + zasfz3 + 2323 6 20 17
16 | X51 € IP*(5,6,9,14,17) R+l :2.—, + 23+ 23+ 2313 6 18 15
17 | X4s C IP4(5,8,9,11,12) D+ -,z, +234fes+ 235 6 16 13
18 | X177 C P(3,10,18,59,87) | 3%+ :3z5 + 235 + 23 + .—;:, +:3:02 -6 57 60
19 | Xi47 C P4(2,8,29,49,59) | =¥za + =blzg + 535y + 2 + 555} -6 43 51

20 | Xias € IP%(1, 18,32, 39,45) -6 47 50

21 | Xor  IPY(1,13,23,28,32) -6 47 50

22 | X7s € IP(3,5,8,24,35) -6 40 43

23 | X7r € IP4(2,6,15,23,31) PR R PR T LR -6 37 40

24 | X7 C 1P4(3,6,8,23,37) 4+-3-s+ -..;+ 2a+ -4 :}8 -6 37 40

25 | Xzs € 1P4(3,9,17,22,24) -6 '35 33

26 | Xe3 C IP4(3,4,14,21,21) | 2} -6 32 3

27 | Xo1 C IP*(3,7,18,26,27) | =77+ s3za+ 355 + 2§z + 23 -6 29 32

28 | Xo3 C IP4(3,8,21,30,31) [ =P+ 354 :5',’:4 + .-3:, + :g -6 29 32

29 | X35 C IP*(3,8,13,15,36) | =3+ -6 29 32

30 | Xes C IP4(3,12,15,16,17) | ={' + = -6 29 32

31| Xss € P4(3,4,12,17,19) | =%+ = -6 2 29

32 | X4s € P¥(3,5,8,9,20) AP+ S 4+ .,.q + 3 A S+ -6 23 26

33 | Xss € IP¥(5,12,13,15,20) | =P+ 3z + 23+ {ni + 230+ 235 + 2300z -6 23 26

34 | Xss C IP*(4,4,11,17,19) :}’:3+:".‘:;.+:§+.. :|+:5:4+.?.5+ 2320 + 252 -6 21 24

35 | X43 C IP*(4,4,7,13,15) N+ .-..3 +adsscdn 4+ sfns 42+ e -6 20 23

36 | Xas C IP(3,5,8,14,15) Brd+dn+dn+d -6 20 23

37 | Xqa C IP*(4,5,7,8,19) oyt slzg+ 2§+ Jos 4 23 -6 20 23

38 | Xas C IP*(4,4,5,5,7) B P -,+.:+:§~.+ ? -6 17 20

39 | X4s C IP(4,7,9,10,15) o+ foe+2f+cdos + o+ 38 -6 13 16




§5. Intersection forms and [c;]-linear forms

Let X be a well-formed, well-stratified q.s.c.i.

X =Xa=A{[21,--- ,2m] € P YW)|fi(21,... ,2m) = ... = fe(z1,... ,2m) = 0} of
dimension 3 with am(X) = 0, such that all curves C; in SSt!(X) are nondegenerate
in the sense of 2.32. (We shall keep here the notations, which were introduced
at the beginning of §4, in order to avoid lengthy repetitions.) By theorem 2.37.,
Pic(X) is generated by the class of Lx = Ox(nx) (with nx given by (2.24)), and
(X,Lx) is polarized. In this section, we shall study the forms qg and [02]9, which
are associated to the crepant toroidal desingularizations 7 : ¥ — X of X (cf. 1.3.),
by using their evaluations at the members of the natural Q-basis

By := {c1(Ly), {c1(Oy(D))|D exc. prime divisor € £(X)}}
of Picg(Y'), where Ly := n*Lx.

Theorem 5.1. Let 7 : Y — X be a crepant toroidal desingularization of X. Then:

(i)
(5.1) gv(Ly,Ly,Ly) =L} = L%

(ii)

(Y,Ly) is a quasi-polarized threefold
(ii)

. 0, for1 >0
5.2 hi(Y,Ly) =
(5:2) (¥>Ly) { KO(X,Lx), fori=0

(iv)
(5.3) [e2]y (Ly) =: (c2(Y) - Ly) = (e2(X) - Lx) = 12p°(X,Lx) — 2L%

(L% and R°(X,Lx) = h%(X,Ox(nx)) are given by (2.27) and (2.20).)

Proof. (i) Obvious by L3} = deg(n)L% and deg(n) = 1.

(ii) For an arbitrary curve C on Y the projection formula gives: (Ly -C) =
(Lx - (m«C)) > 0 and therefore Ly inherits its numerical effectiveness from that
of Lx. Ly is also big, since L3, = L} > 0 by (2.27).

(iii) Ist case: Let us first consider the case where Y is projective. Applying
Kawamata-Viehweg vanishing theorem to Ly (cf. [76, 1.8.]) we get

hi(Y,wY ®Ly) = hi(Y, Ly) =0,V :>0.

2nd case: Let now Y be arbitrary. We shall show that, even in this case, the above
equality remains valid. Since X contains only quotient singularities, i.e. special
rational singularities, we have

t



‘ Ox, fori=0
-Rz *O :\_—J
Y { 0, fori>0

which means that, by the projection formula for direct image sheaves (see [47
12.2.3.2, p. 402]), one obtains:

)

Rir,Ly = Rz, (n*Lx) = R (7, (Oy ® n*Lx))
Lx, fori=0

=~ (R'r,Oy) @ Lx =
(B'm.Oy) @ Lix {O, for: >0

On the other hand, the Leray spectral sequence {E, = D ;o E%7}, which is as-

sociated to m : ¥ — X, converges to the term E; = ... = Eo with Eg’
HY(X,R'm.Ly) abuting to H*+J(Y,Ly). Thus, for all i > 0 : H'(X,Lx)
H'(X,R°m,Ly) = HY(Y,Ly) (comp. [61], Exc. III 8.1., p. 252), and it is suf-
ficient to prove that H{(X,Lx) = 0, Vi,7 > 0. This can be done by applying
a suitable version of Grauert-Riemenschneider vanishing theorem (see [108, thm.
7.80. (f), pp. 157-158]) and taking into account the ampleness of Lx and the
triviality of wx.

Finally, from the connectedness of the fibers of 7 and the projection formula, we
obtain H°(Y,Ly) & H°(X,Lx). q.e.d.

(iv) Since wy = Oy, Atiyah-Singer-Hirzebruch version of Riemann-Roch theorem
(cf. [5, p. 20], [63, p. 155 and p. 187]) expresses the Euler-Poincaré characteristic

1

3

X(Y? LY) = Z(_l)ihi(Ya LY)

=0

of the sheaf of holomorphic sections of Ly as follows:

(5.4) x(Y,Ly) = L_gf_ + (02(Y1)9' Ly)

4

Hence, (5.4), combined with (5.1) and (5.2), implies

(c2(Y)-Ly) = 12x(Y,Ly) — 2L} = 12h°(X, Ly) — 2L%.
O

Lemma 5.2. For a prime divisor D of a smooth, compact complex threefold Y
with trivial canonical bundle we have:

(5.6) (ca(Y) - Oy (D)) = 12x(D, Op) — 2D
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Proof. (a) The adjunction formula and wy = Oy give

wp = wy®0y(D)|p = Op(D) = Np)y = K = ¢{(wp)([D]) = ¢} (Np,y)([D]) =

(b) If Tp, resp. Ty is the tangent bundle of D, resp. of Y, then the normal bundle
sequence 0 = 7p = Ty|p — Np Jy — 0, combined with Noether’s formula and
(5.5), implies

¢(Ty|p) = ¢(Tp)e(Np;y) = ¢(D)c(wp) =
(14 (c2(Y) - Oy(D))) = (1 + c1(D) + c2(D))(1 — e1(D)) =
(c2(Y) - Oy (D)) = —K% + e(D) = 12x(D, Op) — 2D%.

ad

We start the computation of the intersection numbers containing exceptional di-
visors from £(X) by considering firstly the case of a D sitting over a dissident
point of X. (The computation will be done for a fixed Y, i.e. for a fixed choice of
triangulations Sp,,... ,Sp,,8q,,---,8q,-)

Theorem 5.3. The intersection numbers of an exceptional prime divisor D within
(H;\=1 Ep) (115, €q.) with elements of £(X) U {Ly} are given by the following

formulae:
(i) If D = D(P' € &p, (resp. D = Dﬁff;) € &g,) with ny, (resp. ng, ) denoting a
vertex of CI:’GP,- (resp. of ®g,, ), then:

(5.7)  D® =12 —f(Star(Rxonp,)(2) (resp.D? =12 — f(Star(Rsong, )(2)))

(c2(Y')-D) = 2f(Star(R>onyp,)(2))—12 (resp.(c2(Y)-D) = 2§(Star(R>onq, )(2))—12)

(ii) For D = D) ¢ ¢p, andD'—D(P) € Ep, with 1 < p;,p! < a(P;), pi # p', one

computes (D?-D’) and (D-D'?) by means of a single vectorial Z-linear dependence
equation:

(5.9) (D* - D")np, + (D - D*)npy + n(pi, pi) + n(pi, pi) = 0

where n(pi, p;), n(p;, pi) denote the unique vertices of ®,_[[{e1,e2,es} for which
s(np;s nptsn(Pi, 1)) and s(np,,npy, n(pl, pi)) form two distinct 2-simplices of Sp,.
(The intersection numbers (D?-D'), (D-D'?) can be computed by the same method,
if D and D' correspond to vertices of DG, [I{e1,e2,e3} and Q, is an individual
point. We do not exclude the case in which both D and D' correspond to points of

73



Os0 \ {e1,e2,e3}, i.e. (D,D') € (Ec;)?, where Q, = Q(]) € C;j for some j.)
(iii) The intersection numbers involving Ly vanish, i.e.

(5.10) (LY -D)=(Ly -D?) =0

(iv) The intersection behaviour of three distinct divisors from Ep, or £g, is described
by Prop. 3.6. (i). All the other possible triples lead to vanishing intersection
numbers.

Proof. (i) The equality (5.7) is a reformulation of (3.3) applied to the c.q.s.
Z(Ngp,, Lo) (resp. Z(Ng,, , To)). Since x(D,Op) = 1, (5.6) and (5.7) give (5.8).
(ii) is an immediate consequence of prop. 3.6. (ii).

(iii) As Lx is ample, nLx will be very ample for some n >> 0. If D € Ep, (resp.
D € &q,) and if we choose a general member M of the linear system |nLx/|, such
that P; ¢ M (resp. @, ¢ M), then supp(7*M) N supp(D) = @, 7*M|p ~ 0 =
n*(L} - D) = ((v*(nLx))?- D) = ((*M)? - D) = (7*M]|p)? = 0 and n(Ly - D?) =
((r*(nLx) - D?) = ((=*M) - D*) = ((=*M|p) - (D|p)) = 0, i.e.

(L} - D) = (Ly - D*) =0.

(The existence of such an M follows from the fact that |n Lx| separates points of
X. See [61, ch. II, 7.8.2., p. 158].)
(iv) is obvious. O

Our next step will be the description of the intersection numbers which contain a
divisor D located over a curve C; € SSt}(X), 1 < j < k. At first we shall need
some technical lemmata.

Lemma 5.4. Foreach1<j <k, 1<r; <l — 1, one contracts all
(—1)-curves of D( ) by a birational morphism go(J ), DS.JC“ - ngc’ which factors
into a composite 01"26’ L (5(n(¥i>7)) —1) blow-downs. Each D( ) is endowed with

the structure of a minimal (i.e. geometrically) ruled surface by 7r(’ ) ngc, — Cj,

so that 77,(.5) 0 Lp(rf) = 7r|D(cJ). Moreover,

rj

3]
(5.11) K2 c;y = K2 (c;) - > (b(ntim)y — 1)
" i vi=1

Proof. We consider the pull-back

b(n(¥i"i))
(e QPN = D0 L Cnls), nlam))
’ 15 i) =1
of the divisor [Q(J)], 1 < v; < ¢, under 7| (c ) D(CJ — C; (cf. (4.17)), where
[t(“J ri) € N.
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It should be first mentioned that ged (I,;.rj)|1 < t(%73) < b(n(¥im))) = 1. (In-
deed, if the corresponding fiber were multiple, then by [5, Ch. III, Lemma 8.3.,
p. 91] one could conclude that O (fiber) would be a torsion bundle and therefore

that H'(fiber, Z) # 0. But this would be not true, because the fiber is simply
connected.) Now since

-2 = (I{Dgfj) - (generic fiber)) = (I{Dgfj) ‘ ((7T|D£§,~))*([ s,i)])))

J
there exists at least one index #(%i:"i) ¢ {1,... ’b(n("jﬂ‘j))}, such that
(KD(C:') - C(nlvimi), n(fj’rj) )) < 0. Making use of Zariski’s fibration lemma [5,
rj

ivjory)
III. 8.2. (9), (10), p. 90], we deduce that (C(n(¥i:"), ni.f’,fj’yrfj)))f < 0. Thus
(C(ntiimi), rz(iz/,fj’,r;"j))))2 = —1 (see [5, II1.2.2., p. 72]). We blow it smoothly down
by Castelnuovo-Enriques contractibility criterion (5, III. 4.1., p. 78], play again the
same game for the new fibration, and proceed succesively. After

Zijd(b(n(”f”‘i)) — 1) steps we obtain 7"7,(3].') : ngc") — Cj. (5.11) is obvious. O

Lemma 5.5. For a curve C; = X(I;) € SSt'(X),1 < j <k, and ann € Z, we
have:

(5.12)
1
deg(Oc,(n) = 1= {(C}, Oy (b, . vy )~
i J
— hO(O;,, (90; (am(C7) — B(n;wt{ b ,wt{n_”jl)))-i-
+ (€}, Ocy (am(C}))) — 1}
where C} is the q.s.c.i. coming from the normalization w:j,... ,w:j of the
1 m—-IIjI
weights w,i,... ,w,; - (cf. 2.29).
1 me—- Ij
Proof. Apply (2.23) with I¢; = gcd(wt{, ey W ). d

m—IIJ'I
Lemma 5.6. For the union &c; of the exceptional prime divisors lying over a curve
C; = X(I;) € SSt'(X), 1 < j < k and indices 2 < rj <lc; — 1, we have:

(5.13)
ODiéi)lanfj)(Drjil) = Oc; (9(7']' — Qy J ,wtjl, ce ’wtin—ujl )) and
(5.14)
N\ (Cj) ,
OD.(;i)ng")(Dng)) = Ocy(0(1 —rj+ oy wyg, . ’w‘fn-u;l))
respectively. (The numbers agcj) and agcj) are determined by lemma 4.1.)

Proof. The application of resolutions (4.14) to the singularities occuring along
N¢; x and (4.6) give rise to the following relations (cf. [103, thm. 1]):
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O p5) i (Dr; 21) 2 Ocy(rj - e4™) @ Oc (1 = Ic) - ™)
r—-1 L]

O e e (D) 2 0c, (1 = 15) - o{7) ® O, (I — 75 +1) - o8™)
rJ—l ;

To get (5.13) and (5.14), we make use of rja ’)—I—(r, lc )ag Ci) _ le; (r; _agCJ)),

(1—-rj)e ECJ) +(lg; —rj+ 1)y, (G = c;(1—r; +a( ’)) and of the isomorphisms of
prop. 2.7. (]

Theorem 5.7. The intersection numbers of an exceptional prime divisor within
Ec; with elements of Ec; U{Ly} (resp. of £(X)U{Ly }) are given by the following
formulae:

(i) For 1 < r; <lg; — 1 and g(C;) = h'(Cj,0¢;) the genus of the curve C;, we
have:

(5.15)
&

(DICD)® = 8(1—g(Cy)) = Y (b(n'*57)) — 1)

(5.16) J
&i

(c2(Y) - Oy (D)) = =4(1 = g(C})) +2( Y (b(n®373)) — 1))
(5.17) J

(L - D) =0
(5.18)

(D)2 - Ly) = —2deg(Oc; (nx))

(The latter is computable by (5.12)).

(ii) For group orders |G¢;| = lc; > 3 and indices 2 < r; < ¢, — 1, we get:

(5.19)

(D)7 - D) = deg(Ocy (01r; — af ™, wy )
(5.20)

(DY - DI = deg(Ocy (61 =1 + o™y ywg )
(5.21)

(DT - DICD . Ly) = deg(Oc; (nx))

(iii ) The mtersectmn numbers involving D( i) and other divisors of
(1T, €r) T i=1 £q;) are already given by thm. 5.3. (ii). Moreover, if
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k22,157, <k, j#75,CiNCy £0,C;NCy = {Q(j’j’) Q(“ ))} denotes
an enumeration of their common individual points and D( i) (resp. D( ") ) is

realized in the triangulation SQ(J i1y by Dn(r ) (resp. by D) n(rys )), Vp,1<p< < €(j,i")>
then

. (C;1)
(DYDY - Dy = 32 (D%, )F - DY)
p=1
(©) €3G.3") () )
(D(r?j).(D,.j,’ )?) = (DY .(Dn’;r_,))z)
1 i) !
p:

(which are again known from thm. 5.3. (ii)).

(iv) All the other intersection numbers are zero.

Proof. We shall examine each case separately.
(i) (a) (5.15) follows from (5.5), (5.11), and from the fact, that the self-intersection

number of the geometrically ruled surface ngc"), which was defined by lemma 5.4,
is given by K2 (C y =8(1 —g(Cj)) (see [61, ch. V, cor. 2.11., p. 374]).

(b) Since 12x(D( 7,0 0;)-2DEN) = 12(1-9(Cy))~2K? (c,), (5.6) combined
rj ra

with (5.11) gives (5.16). ’

(c) As Lx is ample, nLx will be very ample for some n >> 0. If we consider two

general members M;, My of linear system |nLx|, such that

supp(M;1) Nsupp(M2) N C; = @, then
supp(r*M,) N supp(7*Mz) N supp(D{S3)) = @

forall1 <r; <l¢; — 1 and

n?(LY - D{S¥) = ((v*(nLx)) - (r*(nLx)) - D{%)) =
((7*My) - (v*My) - D{) = 0,

ie. (L} D)) =o.

[The existence of such divisors M; and M on X can be proven as follows: Using
Mumford’s version of the “moving lemma” (cf. [46, §11.4], which is valid for V-
varieties (if rational coefficients are allowed, comp. [46, 11.4.7.]), we can assume
that M; meets C; properly, i.e. that supp(M;) N C; consists of at most finitely
many points. By support moving, we may further choose M, in such a way, that
supp(M3) avoids meeting these points. (Remark: Note that the vanishing of the
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intersection numbers (5.10) and (5.17) imply the non-ampleness of Ly, according
to Nakai-Moishezon criterion, cf. [61, App. A, thm. 5.1., p. 434].)]

(d) ((D%CJ ))2 -Ly) cannot, in general, vanish, because it contains many informations
coming from the underlying curve C;, as we get:

(5.22)
(DEF))? - Ly) = (ng:?ﬁ 'LY|D£;?J‘>) = (ODgfn(KDgfﬁ)("iDifn)*(LXch)) =

= (ODgfj)(I(Df_fj)) : (”ngfj))*(OCj(G))) = (I(Df_fj) : ((7"|D£J?j))*(G)))a
where G = ¥7_,0;G;,0; € Z,1 < i < 7, denotes the divisor of C; which is

associated to the line bundle Lx|c; = Oc;(nx). Suppose that b(n(”f’rf)) > 1 for
all 1 <v; <¢;.

(The case in which b(n(*'™)) = 1, for some v;’s, can be treated similarly.) If we

assume, without loss of generahty, that the set of curves, which are contracted by

L,D(ri), is {C(ntimi) n ("”r’ )2 < tm) < b(n(¥i73))}, then we can describe the

relationship between the canomcal divisors of ng i) and ng i) as follows:

& [b(nlii))
(5.23) I{D(CJ) ~ ( (J) I\ (C ) __|_ E § C (I/J ’I‘J (VJ,TJ))
T

t("_) J)
vi=1 \4(vj:rj)=2o

Note that

(5.24) K ;) ~ (=2) (a section of 7)) + (V)" (K¢, + EY)

J lpg)

where E,(ﬂJ]) is a divisor of C; with deg(Eg)) = C7 and F,gf) a fiber of

7?(’:) : D((,:f) — C; (cf. [61, ch. V, lemma 2.10., p. 373)).

Lx|c; is ample. So there is again an n >> 0 for which n(Lx|c;) is very ample. If
Nj is a general member of |n(Lx|c; )|, such that

supp(IN )O{Q(]) (J)} @, then
& b(ntiei))

supp((7] ;)" (N;)) N U U ey =

tvirs)
VJ—]. t("] J) =2

and therefore (5.23) gives:

535) (K- ((el e (©N) = (64 ee)) - (0l e )*(@)
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Combining now (5.22), (5.24) and (5.25) we get:

(D) - Ly) =

(-2 + (Y (% + By ) 6 ( S0y =
——Z(Zv )" >+Zv A0 (Ko + B ) - (7)*(Gy)) =

= ~2 (i: Di> = —2deg(G) = —2deg(Lx|c;) = —2deg(O¢; (nx)),

=1

because deg(cp(rf)) =1, (ﬂ'g)) (Gi) ~ Fr(f), Vi,1<i<T, (FT(JJ))2 =0 and
(C;- F"%])) = 1.

(ii) (5.19) and (5.20) follow directly from (5.13) and (5.14). On the other hand,

(D(CJ) D(C)L ) ((D( Jll (C)

ri—1

ape) Lyl ) = deg(Lix|c;) = deg(Oc; (nx))-

(iii) and (iv) are obvious. a

Recapitulating, one can verify that the formulae of theorems 5.1., 5.3. and 5.7.,
VYY) + 2
3
from elements of By. We shall now mention two additional arithmetical relations
which are fulfilled by the intersection numbers. (See Oguiso and Peternell (95,

(1.1.)].)

Proposition 5.8. Let 7 : Y — X be a toroidal crepant desingularization of X
and D € £(X). Then

which have been proved above, cover all triples that can be formed

(5.26) (D-1%)* 2 (D* - Ly)(LY)
(5.27) (D-L}) = (D? - Ly)(mod 2)
Proof. ([95]) Let m be a large odd number and S a general element of |mLy|. By

the base-point-freeness theorem, we can choose m in such a way, that S is a smooth
irreducible surface. Hodge- 1nde}~. theorem implies:

(Dls - (Lyls))* 2 (Dls)*(Ly|s)* = (D - L§)* > (D* - Ly)(LY,).

On the other hand, by Riemann-Roch theorem for smooth surfaces and by adjunc-
tion formula K5 = S|g, we get:
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_1
)

which means that (D - L},) = (D? - Ly )(mod 2), because m = 1(mod 2). a

Remark 5.9. Basically, Oguiso and Peternell showed that the above proof remains
valid, even if (X, Lx ) is an arbitrary polarized CY model, (Y, Ly) a quasipolarized
CY model and 7 : Y — X a partial crepant desingularization of X. Note that the
congruence (D} - D;) = (D; - D%)(mod 2) holds true for any divisor D; and Dj of a
smooth simply connected 3-dimensional variety Y with trivial canonical bundle and
torsion-free cohomology groups, and that it was already known by C.T.C. Wall [122,
thm. 5, p. 361]. Furthermore, for such a Y we have: [c;]y (D) = —2D*(mod 12)
for all divisors D, because the first Pontrjagin class equals —2c,.

x(S,0s(D|s))—x(S,0p|s) = %((DIS)Z—(DIS)'KS) (m(D?-Ly)-m?(D-L})),

)

Up to now we have calculated the evaluations of qg- and [6219— forms with
respect to fixed triangulations Sp,,... ,Sp,, Sg,,... 8@, - As we know from prop.
4.3., two distinct toroidal crepant desingularizations of X differ from each other
by finitely many (simple) flops. Hence, up to an “arrangement algorithm” for the
1-simplices within our triangle subdivisions, the alteration of qg and [cz]g due to

the choice of other triangulations will be clear if we describe just the “single-flop”
case.

Theorem 5.10. Let X = Xgq C P™~}(w) be a well-formed, well-stratified g.s.c.i.
with am(X) = 0 and dim¢(X) = 3, and let m : ¥; — X be a toroidal crepant
desingularization of X with SSt°(X) # @. Suppose that P; € SSt°(X) is an isolated
point of Sing(X), for which §(®c,, ) > 4, and that the corresponding triangulation
Sp, satisfies the following properties:

(i) There exist vertices ny,ng,ng,ny from s N Ngp,, such that s(ny,nq,n3) and
s(n1,n2,n4) are two distinct 2-simplices of Sp,, and

(i) s(n1,n2,n3,n4) forms a convex quadrilateral of Sp,.

Ifmy : Yy — X is the toroidal crepant desingularization of X with Y, obtained by Y1
after flopping the curve C(ny,n,) (i.e. after applying the elementary transformation
25(Sp;) of T4(Sp.) w.r.t. o(s(n1,n2,n3)), o(s(n1,n2,n4)) and o(s(ny,n2)) ) and
if DS,'JS.P‘), resp. DS{?P"), denote the exceptional prime divisors associated to nj in

Sp., resp. in 8 P;» V7,1 < 7 <4, then their intersection numbers and their images
under the [c;]-form are related as follows:

(Sp;) (Sp;) (8p;) (8p;) (Sp;) (Sp;) (Sp;) (8p;)
((Dan )2'D"1'P )_((Dnjp )2' "j'P ) =( an '(D"j'P )2)_Dan - ( ; )2)

_1, for (]v]l) € {(172)7(2’ 1)}
(5.28) = 1, for (5,7') € {(3,4),(4,3)}

0, otherwise

V3,3, 1 < 4,5" < 4. In particular, for all j € {1,2,3,4}, for which
nj € int(so) N NG, , we have:
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s ~1, if je{1,2
(5.29) e R
1, if je€{3,4}

Moreover,

[ealv (D7) = [ealwa (DST) = —2(DEP - C(ny, ) =
2, if je{1,2}
-2, Iif j€ {3,4}

(Note that if we assume that INP(X) # @, Q, is an individual point of Sing(X),
and Y, comes from Y; just by an elementary transformation T4(Sg,) of 20(Sa.)
as above, then the formula (5.28) remains true whenever one replaces P; by Q,.
Analogously (5.29) and (5.30) remain valid for all j € {1,2,3,4}, for which

nj € (30 n NGQ,) \ {61’ €2, 63}‘)

Proof. (5.28) follows from ny + ny = ng +ny4 and (3.2) or (5.9). Similarly, one gets
(5.29) and (5.30) by using the formulae (5.7) and (5.8) (resp. (5.15) and (5.16)). O

Remark 5.11. Formulae (5.28), (5.29) and (5.30) can be viewed not only as re-
alizations of our computational algorithm for this concrete construction, but also
as special cases of more general formulae holding true for any flop along a rational
(—1,—1) -curve of an arbitrary smooth complex threefold. For such an approach,

see Friedman [42, 7.4. and 7.5., p. 123].

Remark 5.12. It should be noted that, after having given the description of the
strata of Sing(X), the main part of the desingularization method which was devel-
oped in §4, does not depend intrinsically on the embedding of X’s in P™~1(w),
and can be actually applied to any CY model being a V-variety with cyclic (or,
more general, abelian) quotient singularities and globally known singular locus [24].
If, however, one considers the special case, in which our Y’s can be represented as
strict transforms of appropriate crepant desingularizations of P™~!(w), then it is
possible to determine not only the evaluations of [CQ]% at a member of By, but also

the second rational Chern class c¥(Y) € H4(Y,Q) itself.

Let us explain this more closely. We can conceive the space P™~(w) itself as a
toric complete variety P™~!(w) = Z(N(w),Z(w)) (in the notation of §3) by set-
ting N(w) := No/Zwo, No = B2, Ze;, wo := L wie; (e; 1= 0,...,1,...,0) with
1 in the i-th place), Z(w) := {{0:|1 <1 < m}, together with their faces }, where

(5.30) = (DY Clns,na)) = {

Rzo’n(’wz) +...+ Rzon(wm), 1=1

oi = ¢ Ryon(wi) +... 4+ Ryon(wi—1) + Ry>on(wit1) + ... + R>on(wm),2<i<m—1
Ryon(wi) + ... + Ryon(wm—1), 1 =m

and n(w;) := €; + Zwo, Vi, 1 <1 < m. If we assume that P™=1(w) is Gorenstein,

Le. lem(wi, ..., wnm)|S2 w; (cf. [10, cor. 6.B.10 (a)]), then, following Batyrev [7],
we can always construct a projective maximal crepant T'n(w) -equivariant resolution
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71 Bl (w) o= Z(N(w), $(w)) » B (w)
of singularities of ]P""l(w) (by means of suitable projective subdivisions of the
SCRPC'’s of £(w) gluing together to give $(w)) such that

fly=m:Y 2 X,
i.e. such that our Y appears as strict transform of X under #. If we assume that
the zero-locus of each of the defining polynomials

fi € HO(P™ (W), Opm-1(wy(di)), 1 S1 <k
is an ample divisor, then Y can be represented as the intersection of k divisors
= (¢1=0),..., Di = (px =0), where
@i € HO(B™ (W), 7 Opm-1(w)(di)), Vi, 1 S i <k
Denoting the inclusion map of Y in P™~}(w) by j : ¥ < P™=1(w), we have:

Proposition 5.13. Let S(w)(1) = {31,--, A}, v 2 H(E(w)(1)) = m, be the set
of 1-dimensional SCRPC’s of the fan ¥(w). Then:

(5.31) )= ¥ {RQA0rv(5)) ~ KOV} -
1< <2<
0, if m=5
1 T {6 O D)) = RGOy D))} i m 26,
1<i1 <iz <k

Proof. By the normal bundle sequence

(5.32) 0= Ty = Tpmoi(wyl¥ = Nypmosuy = 0
we get
(5.33) AY) - Ny pm-1 (wy) = €U Tpm=1 (W)l )-
Since

k
(5.34) Ny -1 () )=+ 23" Opmas (uy(Di)))

i=1
and correspondingly

v

(5.35) QE™ "} (w)) = [J(1 + XOpm-i () (V(5:))),

i=1
(see [46, 3.2. 12., p. 59] and (71, p.131]), the relation (5.33), combined with ¢ (Y) =
0, ¢¥(Tjm- 1(w)|Y) = ¢Q(3* (Tpm- 1wy)) = 37(c Q(Tim- 1(w))) (8:34), (5.35) and the
usual multiplication rule, gives (5.31). 0O
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§6. Topology change after flopping

As it follows from rem. 4.5.(ii) and thm. 5.10., two distinct toroidal crepant
desingularizations Y1,Y2 of an X do not respect, in general, the topological “triple
couplings” and the [cz] -forms, although they have identical Hodge diamonds. This
“typical phenomenon” leads to the conjecture that most of the pairs (Y7, Y3) will be
equipped with different topologies. (A geometrical method for the determination of
the number of all possible projective toroidal crepant desingularizations is described
in [24].) We shall illustrate here just an indicative example and explain how the
testing bilinear forms (cf. 1.4.) can be used in order to distinguish diffeomorphism
(resp. homotopy) types according to lemma 1.5.

Let X = X36 = {[21, 22, 23, 24, 25] € P*(1,2,3,12, 18)|z§’6+z%8+z§2+z2+z§ =0}
be the Fermat hypersurface of degree 36 (with delta genus A(X,Lx) = 2). It is
Pic(X) = ([Lx]), Lx = Ox(nx), with nx =1lem(1,2,3,6) = 6, L3, =6, RYY(X) =
b2(X) = 1, h13(X) = 182 (by (2.17)) and e(X) = 2(1 — A1?(X)) = —362. The
singular locus of X can be written as the union Sing(X) = C; U C; of two curves
C1 = X133 and Cy := X{1,2) having the individual point @ := [0,0,0,—1,1] as
their intersection locus C; N Cy = X{1,2,3) = {Q}. By prop. 2.30., we have the
isomorphisms:

C1 = (X3 C P?(2,12,18)) & (X15 C P%(1,6,9)) = (Xs C P%(1,2,3)) = C/,
because, in the notation of 2.2., (2,12,18) = (1,6,9), p1(2,12, 18) = gcd(6,9) = 3,
p2(2,12,18) = p3(2,12,18) = 1 and therefore (2',12',18") = (1,2,3). Since I¢, = 2
and am(C]) = 0, the genus g(C1) = g(C}) of C; equals h°(Cy,0¢,) = 1 and
by (5.12): deg(O¢, (6)) = %hO(C{,OCi(G(fS;Q, 12,18)). Using the notation of 2.6.,
we get: 71(6;2,12,18) = 72(6;2,12,18) = v3(6;2,12,18) = 0, £1(6;2,12, 18) = 2,
€2(6;2,12,18) = 6, £3(6;2,12,18) = 6. Thus, 6(6;2,12,18) = 1(6 — 0) = 2 and
deg(Oc, (6)) = 3(pt(2;1,2,3) — pt(—4;1,2,3)) = 1(2—-0) = 1. Similarly we have:

Cy = (X3s C P*(3,12,18)) = (X1, C P*(1,4,6)) = (X C P(1,2,3)) = Cs = C1,
(3,12,18) = (1,4,6),p1(3,12,18) = 2, p2(3,12,18) = p3(3,12,18) = 1,

(3',12,18") = (1,2,3),lc, =3,9(C2) = 9(C3) = 1,71(6;3,12,18) = v,(6; 3,12, 18) =
73(6;3,12,18) = 0,€1(6;3,12,18) = 3,£2(6;3,12,18) = £3(6;3,12,18) = 6,

1
6(6;3,12,18) = -;—(6 —0) = 3,deg(Oc,(6)) = 3(Pt(3;1,2,3) = pt(=3;1,2,3)) =
1

s3-0)=1.

Now the germ of a point P € Sing(X) is isomorphic to:

((C?/{diag(C2,C2))) x C, [0] x {0}), if PeCi\{Q}
(X, P) = ¢ ((C*/(diag(¢s,¢3))) x C, [0] x {0}), if PeCy\{Q}
(C3/<d1ag(CG,C62,Cg)>a [0])’ if P= Q
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We resolve an open neighbourhood of @ by means of one of the five toric crepant
morphisms Z(Ngg, 55(Si)) =+ Z(Nag, Lo), Gg = (Z/6Z), corresponding to one
of the five possible triangulations S;, 1 < i < 5, of so, as they are drawn in
figure 6. Since these morphisms are compatible with the usual blow-ups along
Ne,yxs Neajx, we can construct five (global) toroidal crepant desingularizations
m 0 Y; = X of X with a(Q) = 1AM (Y;) = 1+(2+3) -1 = 5, R12(Y;) =
AV X)+(2-1)-1+(3—1)-1= 18243 = 185 (cf. (4.21), (4.22)) and topological
Euler-Poincaré characteristic e(Y;) = 2(h*1(Y;) — h12(Y;)) = 2 - (5 — 185) = —360.
Over C1,C> and @ are placed the exceptional prime divisors Dg'), {Dgi), Dgi)} and
Dgf) respectively. (In the “toric picture” they are realized by D, {Dn,, Dn,}
and D,,, Vi, 1 < i < 5, with n; = (%,0,%), ng = (%—,%,0), ng = (%,%,0), ng =
(3,2,%), &1 =(1,0,0), e2 = (0,1,0), es = (0,0,1).)

3
(3) \ (4)
n/1 7 n1 n4
/ \F
e 1 n, n, e2 e 1 ny n, e2




Thus,

Picg(Y;) = (Qer (Ly, ) @ (&1L, Qe (O, (D).

Moreover, it is easy to see that all five desingularization spaces are projective, i.e.
that Y; is a CY threefold, Vi, 1 <1 < 5. Note that Y5,Y3; and Y, are obtained from
Y; after a single flop along the curves C(ny,n3), C(n1,n4) and C(ns, ny) respectively.
Y5 is nothing but Yy being flopped along C(ng,ny).

Proposition 6.1. Y; and Y do not have the same diffeomorphism (resp. homo-
topy) type, Vi,1', 1 <i,i' <5,1#7.

7
3
formed by triples of {By;|1 < ¢ < 5}, as well as the images of the elements of these
bases under [cz]y;, 1 < i < 5, by using the formulae of theorems 5.1., 5.3., 5.7., and
5.10. All formulae, up to (5.19) and (5.20) for Cy, are now directly applicable if
one takes account of the toric data of figure 6 and of the discussion preceding the
formulation of prop. 6.1. For (5.19) and (5.20) we need, in addition, to compute
deg(OCIQ(O(Q—agCQ); 3,12,18))) and deg(OC;_)(G(—l—l—agCQ); 3,12,18))) respectively.
Since (agcz),agCQ)) = (1,2),

6(0;3,12,18) = 0, 71(1;3,12,18) = 1, 72(1;3
e1(1;3,12,18) = 0, £5(1;3,12,18) = e3(1;3
%(1 - 1) = 07

which means that both of the regarded degrees vanish (cf. (5.12)).

The intersection numbers are given by the following table:

Proof. At first we compute the 5 - = 175 intersection numbers which can be

)

,18) = y3(1;3,12,18) = 0,
18

12
,12,18) = 1, we get 6(1;3,12,18) =

Nr.  int. numbers/i 1 2 3 4 5
(1) (D$)3 -1 0 0 -2 -3
2 (@D 0o 0 0 -1 0
3 ("D -1 0 -2 0 0
@4  (@"pP)y -1 -2 0 0 1
(5) (DSy3 0 0 0 -1 0
6) (D)2 DY) 0 0 0 -1 -2
(7) (DS . DY) 0O 0 0 0 0
8) ((D§)?-DPY)y -2 -2 -2 -1 0
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(32) (Ly,-D{.D§Y) 0 0 0 0 0

(33)  (Ly -D{.D§M) 1 1 1 1 1
(34)  (Ly, - DY . D{y 0 0 0 0 ©0
(35)  (Ly,-D{? . DY) 0o 0 0 0 0

Correspondingly, the images of the elements of the bases {By;, 1 < i < 5} under
[c2]y; are given by the table:

Nr. images/i 1 2 3 4 5
(1) [eln(D{) 2 0 0 4 6
2)  [elw(Df?) 0 0 0 2 0
@)  [elw(DS) 2 0 4 0 0
4  lew®d) -2 0 -4 -4 -6
(5) [e2)v: (L) 2072 72 72 72

In the next step we consider the testing bilinear forms of Y;

pY - (Sym*(Picg(¥})))? =+ Q, 1 <i <5.

Sym?(Picg(Y;)) has dimension AL 1(Y)(h1 Y(Yi)+1)

56
=88 =15,

Let M; denote the symmetric matrix {ﬁQ (b('), bgi))|1 <'s,t < 15} defined by the
ordered basis

{b(:) (Ly.,Ly), 68 := (Ly;, D), 68 := (Ly, DY), 6{ := (Ly, D),
6% = (Ly,, D), 6 := (DO, DY, 6 = (D, DLY), 60 = (DL?, DY),
60 i= (D1, D), 63 = (D, D), 0 1= (D, D), 662 1= (D, D),
60 i= (D, D), 63 5= (0, D), o3 = (0, D))

of Sym?(Picg(Y;)). We compute M;’s by the above tables. For typographical
reasons we write the entries of each of their lines between commas:
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(

M =

0
Mz = [0)0?07
4

M

[1728,12,0,12, -12, —288,0,0,0, —288, 144, 0, —288, 0, 0],
(12, -288,0,0,0, 84,0, 76, —68, —4,2,0, —76, 72, —72],
[0,0,-288,144,0,0,—4,2,0, —6, —4, —140, 4, 70, 0],
[12,0,144, —288,0, 76,2, —76, 72, —4, 4,70, —84, —68, —72],
[~12,0,0,0,0,—68,0,72, =72, —140, 70,0, —68, —72, 504],
[—288, —84,0,—76, —68, 8,0, —8, —4, 0,0, 0, —8, 4, 0],
[0,0,—4,2,0,0,0,0,0,0,0,—4,0,2,0]
[0,-76,2,—76,72,—8,0,-8,4,0,0,2, -8, 4, —8],
[0,—68,0,72, —72,—4,0,4,0, —4,2,0,4, 8, 11]
[—288, —4, -6, —4, —140,0,0,0,—4,0,0,0,0, —4, 6],
[144,2, —4,4,70,0,0,0,2,0,0, —4, 0,4, —4],
[0,0,—140,70,0,0,—4,2,0,0, —4, 6,4, —4, 0]
[—288, 76,4, -84, —68, 8,0, —8,4,0,0,4, —8, —4, 0],
[0,72,70,—68, —72,4,2,4, —8, —4,4, —4, —4, 0, 20],
[0,—72,0,-72,504,0,0, -8, 11,6,—4,0,0, 20, —56]

[1728,0,0,0,0,—288,0,0,0, —288, 144, 0, —288, 0, 0],
[0, —288,0,0,0,—6,0,0,—144,0,0,0,0,0,0],
[0,0,-288,144,0,0,0,0,0, —6,0, —144, 0, 72, 0),
[0,0, 144, —288,0,0,0,0,0,0,0, 72,0, —144, 0],
[0,0,0,0,0,0,0,0,0,—144, 72,0, 144, 0, 432],
[-288,-6,0,0,0,0,0,0,0,0,0,0,0,0, 0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
0,0,0,0,0,0,0,0,0,0,0,0],
0,0,0,0,0,0,0,0,0,0,0,0,0],
4
0,

b v

)

OOO

[0,—144,0,0,
[_288a0a_6a07_ y Uy Uy Uy Uy Uy ,0a070],
[144,0,0,0,72,0,0,0,0,0,0,0,0,0,0],
[0,0,—144,72,0,0,0,0,0,0,0,0,0,0,0],
[—288,0,0,0,-144,0,0,0,0,0,0,0,0,0,0],
[0,0,72,—144,0,0,0,0,0,0,0,0,0,0,0],

[0,0,0,0,432,0,0,0,0,0,0,0,0,0,0]

[1728,0,0,24, —24, -288,0,0,0, —288, 144,0, —288, 0, 0],
[0,-288,0,0,0,-6,0,-152,8,0,0,0,0,0,0],
[0,0,—288, 144,0,0,0,0,0,—6,—8,—136,8,68,0],
(24,0, 144, —288,0, —152,0,0,0, —8, 8,68, —168, 8, —144],
(—24,0,0,0,0,8,0,0,0,—136,68,0,8, —144, 576],
(—288,-6,0,-152,8,0,0,0,0,0,0,0,—16,8,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

[0,-152,0,0,0,0,0,-16,8,0,0,0,0,0,0],
[0,8,0,0,0,0,0, 0, 0],
[—288,0, -6, —8, —136, 0 0,
{144707_8v8’687 707 1y Yy Yy ’ 8

0,0,0
8

8,0,0,0,0,
0,0,0,0,0, -8,16],
0,0,0 8],
-8,0],

0,
0,
0,
8,
32,8, —16],

0 0,-
[0,0,-136,68,0,0,0,0,0,0, -8, 16,
(—288,0,8,-168,8,-16,0,0,0,0,0,8, —
[0,0,68,8,—144,8,0,0,0,-8,8,-8,8, —16, 56],
\ [0,0,0,—144,576,0,0,0,0,16,—8,0,—16, 56, —128]
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[24, —288,0,0,0,—168, —76,0,8, —80, 76, 72, —152, 0, — 144],
[12,0,-288,144,0, —76, —80,76, 72, —84, 4, —64, —4, —4, —72)],
0,0, 144, —288,0,0,76, —152,0,4, —4, —4, 0,8, 0],
[-24,0,0,0,0,8,72,0, —144, —64, —4, —72,8, 0, 576,
[—288,-168,-76,0,8,—32,—16,0,8,—12,8, 12, 16,0, —16],
[0, —76,—80,76,72, —16,—12,8,12, —10,4,4, —4, —4, 6],

[0,0,76,—152,0,0,8,—16,0,4, —4, —4
[0,8,72,0, —144,8,12,0, —16,4, —4, —6,
[—288, —80, —84, 4, —64, —12, —10,4
[144,76,4, —4,—4,8,4, —4, —4
-6,
0,

[ [1728,24,12,0,—-24,-288,0,0,0, —288,144,0, —288, 0, 0], \
]

—4,
My 0,8,0],
8,0, 26],
,4,-8,0,-2,0,0,4],
,0,0,0,0,0, 0]

(0,72, —64, —4,—72,12,4, -4, -6, —2,0,4,0,0, 28],
[-288, ~152, —4,0,8, 16,4, 0.8,0,0,0.0,0, 0],
[0,0,—4,8,0,0,—4,8,0,0,0,0,0,0,0],

\ [0, —144, —72,0,576, —16, —6,0, 26, 4,0, 28,0, 0, —128]

2
0

/ [1728,36,0,0, —36, —288,0,0,0, —288, 144, 0, —288, 0, 0],
(36, —288,0,0,0,—252,0,0,84, —156, 78,0, —156, 0, —216],
[0,0,—288,144,0,0,—156,78,0,—6,0,12,0, —6, 0],
[0,0,144,-288,0,0,78,—156,0,0,0,—6, 0,12, 0],
[-36,0,0,0,0,84,0,0, 216,12, —6,0, 12, 0, 648],
[—288, —252,0,0,84, —72,0,0, 36, —24, 12,0, —24, 0, —48],
[0,0,—156,78,0,0,—24,12,0,0,0,12,0, -6, 0],
[0,0,78,~156,0,0,12, —24,0,0,0, —6,0, 12, 0],
[0,84,0,0,-216,36,0,0,—48, 12, —6,0, 12,0, 45],
[—288, —156, —6,0, 12, —24, 0,0, 12,0,0,0, 0,0, 0],
[144,78,0,0,-6,12,0,0,—6,0,0,0,0,0, 0],

Ms

[0707 127 _67070)12a _670,070, 70’0’()]’
[—288,-156,0,0,12,-24,0,0,12,0,0,0,0,0,0],
[0,0,—6,12,0,0,—6,12,0,0,0,0,0,0,0],
\ [0,-216,0,0, 648, —48,0,0,45,0,0,0,0,0, —216]

Using the computer programme MAPLE, we find their ranks:

rk(M;) = rk(M3) = 14, rtk(M3) = 10, tk(My) = rk(Ms) = 13.

For: € {1,...,5}, let 9; denote the quadratic form being associated to M,

(ngf),n( 9 n{?) the signature data of 9, chpi(z) = Z}2 O,uJ 23 the characteristic

polynomial of M; and )\(.) /\55) the corresponding eigenvalues. Obviously,
n(()l) = n((f) =1, n(z) = 5, n(4) = n(()s) = 2. Since M;, 1 <1 < 5, are real sym-
metric matrices, they have only real eigenvalues. Furthermore, according to the
spectral theorem, the triples (nﬁj), n(_’) (i )) give the numbers of positive, negative
and vanishing eigenvalues of M; respectlvely

Let now )\(li), /\g‘;),)\(s) and /\55) be the vanishing eigenvalues of My and Ms.

By Viete’s root theorem, we get ,u( ) = /\(4) /\(14) and ,u(s) )\(5) : /\5‘?. If
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(nﬂi‘), (4)) (nY (5) (5)) then we should have sgn(p, (s )) (— 1)"(—4)+1 = (—1)“(—5)"'1 =
sgn(,u2 )), which would contradict MAPLE’s computations:

Y = —576198190423640899584000 < 0
ug@ — 58528305311105828782080 > 0

Hence Q4 and Qs (resp. ﬁ{% and ﬁ%, B% and [385) are inequivalent. Unfor-
tunately, (ng_l), (1) él)) = (nf),n(_‘q'),ng”) = (7,7,1) and the above trick can-
not be applied to /\/11 and Mj. Nevertheless, we can write Sym?(Picg(Y7)) =
Vie® Wl,Symz(PicQ(Yg)) = V3 & W3, where W; and W3 denote the kernels of
the linear maps corresponding to M; and Mj;, and V;,V; the nondegeneracy

loci, and compare the so arising nondegenerate quadratic forms 9; := 9, lv, and
03 = 3]y, of rank 14 over Q. Note that

w, =((0,0,0,0,0,1,—4,-2,0,0,4,0,1,0,0)) and
ws = ((0,0,0,0,0,0,1,0,0,0,0,0,0)).

In fact, 93 corresponds to the symmetric (14 x 14) -matrix Ms coming from M3
after deletion of the 7-th column and of the 7-th row. If we regard {ey,... ,es,
the generator of Wi, es,...,e15} as a new basis for Q!5, then the matrix of the
quadratic form £; w.r.t. it will be STM; S, where S denotes the change of basis
matrix. Deleting again the zero 7-th column and 7-th row we get the matrix:

(1728,12,0,12, —12, —288,0, 0, —288, 144, 0, —288, 0, 0], \
[12,-288,0,0,0, —84, —76, —68, —4, 2,0, —76, 72, =72,
[0,0,—288,144,0,0,2,0, —6, —4, —140, 4, 70, 0],
[12,0,144, —288,0, —76, —76,72, —4, 4, 70, —84, —68, —72],
[-12,0,0,0,0,—68,72, —72, —140, 70,0, —68, —72, 504],
[—288, 84,0, —76, —68, -8, —8,—4,0,0,0, —8, 4, 0],
y [0,—-76,2,—76,72,—8,—8,4,0,0,2, —8,4, —8],
! [0,—68,0,72, —72, —4,4,0,—4,2,0,4, —8, 11],

[-288, -4, -6, —4,-140,0,0,—4,0,0,0,0, —4, 6],
[144,2,—4,4,70,0,0,2,0,0, —4,0,4, —4],
[0,0,—140,70,0,0,2,0,0,—4,6,4, —4,0],

(288, —76,4, —84, —68, —8, —8,4,0,0,4, —8, —4, 0],

[0,72,70, —68, —72,4,4, —8, —4,4, —4, —4, 0, 20],

\ [0,-72,0,—-72,504,0,—8,11,6,—4,0,0, 20, —56] /

If 9; and 93 were equivalent as Q-quadratic forms, then det(./\;i 1) and det(/\;ig)
would be equal up to muliplication by the square of a number € (Q\ {0}). Luckily,
by MAPLE we get

det(M;) = —14286537432760320000,
det(M3) = —136139852325977063424,
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and

det(My)\® 25 N L
— ) o 2119)%(49298)% ¢ Q,
(det(M3)> ~Sa7cg (2119)2(49298)% ¢ Q

which leads to the desirable contradiction. O

Remarks 6.2. (i) We should mention here, that if we wish (e.g. in another exam-
ple) to compare two nondegenerate rational quadratic forms with identical signature
data, whose ratio of determinants of their structure matrices w.r.t. our bases has
rational square root, then we have to make use of additional local invariants involv-
ing the Hilbert symbol of numbers taken from the field Q, of p-adic numbers. See
Serre [109, Cor. of p. 44].

(ii) It is now obvious from the above that for a given c.i. X = Xq C P™!(w) (asin
§5) with at least two distinct toroidal crepant desingularizations, one can develop
a formal comparison algorithm (or, so to say, a weak C* -classification algorithm)
for all Y’s. Let us describe it in broad outline:

Step 1: Find the number nx by (2.24) and the singular locus Sing(X) of X by
(4.1), as well as the type of the c.q.s. of each of its dissident points using lemma
4.2.

Step 2: Draw a picture for the “toric triangles” corresponding to the dissident points
of X and determine on them all the “new” fixed vertices which are due to our group
actions (cf. §3). After that construct all the possible distinct subdivisions of these
triangles with respect to these new vertices. (For linear time algorithms for the
sorting of subdivisions of a plane triangle or, more general, of a simple polygon into
smaller triangles with prescribed vertices, see Clarkson et al. [19], Chazelle [18] and
further references given in these articles.)

Step 8: Consider an arbitrary pair (¥7,Y2) consisting of two distinct toroidal crepant
desingularizations (4.16) of X. Use step 1, the first part of step 2 and the formulae
of §5, in order to specify the entries of the symmetric ( AT o hRE(RRI4) )
-matrices, say M; and Mj, coming from the evaluations of2 the testing gilinear
forms ,681, ﬁ% at the pairs formed by members of the natural ordered bases of
Sym?(Picg(Y;)), i = 1,2. If M;, M, have different ranks or different signature
data or - in the nondegenerate case - different discriminants, then Y; and Y will
be non diffeomorphic. In the case, where the above invariants are identical, try
to use the “determinant trick” or p-adics (as it is explained in (i)). If this is still
not enough to distinguish the diffeomorphism types of ¥; and Y5, then try to make
use of another testing (real or rational) quadratic form and compare again the
corresponding invariants.

Step 4: If none of the criteria being introduced in step 3 is able to give a definitive
answer to the question, if Y7 and Y; are of different type or not, then throw (Y7, Y3)
into the “basket” of the “undecided cases”. (We do not know any example of a pair
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(Y7,Y2) belonging to the undecided cases, and we conjecture that the above basket
is probably empty !)

Step 5: Repeat for all pairs (Y7,Y2) of the second part of step 2 the procedures of
the other steps and close the flow chart of our algorithm.
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§7. Appendix: On the Combinatorics concerning the Weighted
Partitions and the Counting of Integral Points of a Polyhedron.
From Euler’s “Partitio Numerorum” to Ehrhart Polynomials.

Let w = (wy,... ,wm) € N™ be again a system of “weights”. For a fixed n € Ny
we define:

PT(n;w) := {(\1,-+ , Am) € N[ Y Ajwi =n}
=1
PT*(n;w) := {(A1,-.. ,Am) € N™| D Nw; = n}
i=1

and pt(n; w) := §(PT(n;w)), ptT(n;w) := §(PTT (n;w)). Obviously, pt*(n;w) =
pt(n — >0 wi;w).

The elements of PT(n; w) and PT* (n;w) can always be found by means of stan-
dard polynomial time algorithms within the framework of the theory of integer
linear programming (see Schrijver [106]). Nevertheless, the precise determination
of pt(n;w) or ptt(n; w) as a “closed” functional expression of n and w is indeed a
very subtle problem. pt(n;w) has the following equivalent interpretations:

(a) arithmetical-combinatorial interpretation: pt(n;w) equals the number of non-
negative integral solutions of a linear diophantine equation and expresses the de-
numerant of the weighted partitions of n w.r.t. wy,... ,Wn.

(b) geometrical-combinatorial interpretation: pt(n;w) gives the number of the in-
tegral points of the rational polyhedron

(7.1)  P(w):={(z1,... ,&m) ER™|D wizi =n, z; >0, Vi,i <i <m}
i=1
with vertices (wll,O, .o.40),...,(0,0,...,0,-*). Note that P(n;w) can be repre-

sented as the dilation P(n;w) =n - II(w) of the polyhedron II(w) by the factor n,
where:

(72) H(W) = {(yla 7ym) € le Zwiyi =1,y 20, Vi,1 <1< m}
i=1
with vertices (-J}%,O,... ,0),...,(0,... ,O,;::).

Since (1 — g¥i)™t = Y™ 2™i¥, pt(n; w) is exactly the n-th coefficient of the gen-

erating function of F(z) := [\, (1 — *)~! which was introduced by the formula
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(2.19) in §2. If we define pt(n; w) to be pt(n;w) for n € Ny, and to be given via
the combinatorial identity ({111, p. 206])

(7.3) > pt(-n;w)a" = ~F(z7!), for neN,
n=1

(which means that we choose an extension of pt(n; w) on the whole Z different from
the one introduced in 2.26.), then we get the reciprocity relation:

(7.4) ptt(n;w) = (=1)™"'pt(—n;w) (cf[35]).

We are basically interested in the pt-functions, because they constitute the “com-
binatorial cornerstones” of our formulae (2.20), (4.22), (5.2), (5.3), (5.12), (5.18),
(5.19), (5.20) and (5.21). (Furthermore, PT(d; w) \ {0} is nothing but the param-
eter space of all quasihomogeneous monomials of degree d w.r.t. w.) The purpose
of this appendix is to emphasize the complexity of pt’s, to make some brief histori-
cal remarks, to remind certain (mostly forgotten) combinatorial formulae for their
computation, and to connect them with recent developments of the modern theory
of geometric invariants.

Let us regard the above interpretation (a) as our starting-point. The pt-functions
were first considered 1748 by Euler in his famous work [40]. He placed pt’s among
the most central themes of his “Partitio Numerorum”. Euler himself studied the
case where w; = 1, Vi, 1 <1 < m (and which, from now on, will be referred as
Eulerian case) and gave some preliminary computational rules. During the 19th
century, the investigations of these functions played a crucial role in number theory
and in invariant and partition theory. (For extensive historical comments for this
period the reader is referred to Dickson’s renowned treatment [29], Ch. III. Books
which devote substantial extracts to pt’s or related functions, from the point of
view not only of the classical but also of the modern partition theory, are, among
others, those of Riordan [100], Comtet [20], Andrews [3] and Stanley [111].)

Euler’s researches were mainly continued by Cayley [17] (1856), Sylvester [115],
[116] (1857, 1882), Laguerre [80] (1876-7), Weihrauch [123], [124] (1875, 1877) and
Glaisher (48] (1909). One of their very first results is that pt(n; w) (resp. pt*(n;w))
can be written as a quasipolynomial of degree m — 1:

m—1
(7.5) P W) = 3 Cmot(n; win™ 17k,
k=0

which means that the coeficients cpm—1-k(n, W) are periodic functions (with in-
tegers periods) or, equivalently, that there exists an N € N and polynomials
fos f1,-.., fn=1, such that pt(n; w) = f;(n; w) whenever n = j(mod N).

They also used the splitting

(7.6) pt(n;w) = ®(n';w) + ¥(n; w)
where ®(n'; w) denotes a polynomial in the variable n' := n + 5" w; (with
constant coefficients) and ¥(n;w) the purely periodic part of pt(n;w).

The asymptotics of pt’s are described by the following:
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Theorem 7.1. (Laguerre, Schur) The pt-function behaves asymptotically like:

pt(n; w) 1

=Cm-1(n; W) = (m —1)! (H - Wi)

Theorem 7.2. (Erdés-Lehner [39], Szekeres [117]) In the Eulerian case, for bign’s
and m = o(¥/n) (or even for m = of/n)), we have:

(7.7) lim

n—oco nm—1

(78) pt(n;l’z,.",m)NEi(m*l)Nm
In special cases, one can compute pt(n; w) or pt*(n; w) very easily. For example,
ifw; =... =wy =1, we get directly the binomial coefficients:
n+m-—1 n—1
pt(n;1)=< n ), pt+(n;1)=(n_m>.

On the other hand for n = m, we have:

Proposition 7.3. (Formula of Fergola (1863) and Sardi (1865)). Ifn = m, the
number pt*(n;w) is given by the formula:

(7.9) ptT(n;w) = ;lidet(M),

where M denotes the (n — 1) X (n — 1) -matrix:

8$18p—1 + Sn —31 —382 —S83 ... —8p-3 —Sp-2 \
818pn—2 +Sp—-1 n—1 —8  —82 ... —8p_4 —Sp-3
$18n—3 + Spn—2 0 n—2 —8 ... —S8p_5 —S8pn—4
818n—4 + Sn—3 0 0 n—3 ... —8n_6 —Sn—s
8189 + 83 0 0 0 3 —381
sf + 39 0 0 0 0 2 )
while s; is the sum of those divisors of i which occur among wy, ... ,w,. (In the

Eulerian case, s; becomes the sum of all divisors of i, 1 <i < n).

The first general computational method for the pt’s, due to Cayley, Sylvester
and Glaisher, is based on the decomposition of F(z) into partial fractions. pt(n;w)
is written as a sum of “waves” giving the coefficients of L in the development (in
ascending powers of z) of certain fractions depending on various roots of unity. The
purely periodic part ¥(n; w) of pt(n; w) in (7.6) is described in terms of “circulating
functions”, which have been introduced by Herschel in [62]. The “calculus” with
these circulators seems to be extremely complicated and belongs without doubt to
the (partially undecoded) “19-th century mystics”. For an introduction to it we
refer to the “Lehrbuch der Combinatorik” of Netto [92, §84-95, pp. 140-158].

Weihrauch’s computational technique [123], when w;’s are pairwise coprime, was
somehow different and was complemented 90 years later by Ehrhart [35], [37], who
discovered some beautiful trogonometric expressions for ¥(n; w).
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Theorem 7.4. (Formulae of Weihrauch and Ehrhart). Let wy, ... ,w,, be pairwise
coprime. Then the first summand ®(n'; w) of pt(n;w) in the expression (7.6) is a
polynomial of degree m — 1. In particular, if 2 < m < 6, we have:

For m=2: &(n';w)=(wiwy)™'n'

1
For m=3: ®(n';w)=(2wiwow;z) (n? - 1—2—(2 w?))

1
For m=4: &(n';w)=(6 w1w2w3w4)_1(nl3 - sz)n’)
For m=5: @(nI§W) =
For m=6: &(n;w)=

Moreover, the second summand in (7.6) can be written as

= Z Pw; (1)

3(wi=1)
1
where 1y, (n) := T Z k(p) (for w; odd)
U
3 (wi=2)
—1)" 1
Yuwi(n) = 2(m 1)w +2m—2w~ Z k(p) (for w; even)
R —

are functions of period w; and

-1

m — 1 = 7rw
% = - —(2 : J
r(p) = cos | (— wi( n+jz=2w1)p)7r
J# J#l
On the other hand, pt*(n;w) obeys to the reciprocity law:
ptT(n;w) = (-1)™"1® Z i —n;w) + (=)™ (—n; w).
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Unfortunately, the above condition which has to be satisfied by the weights is
very restrictive as it covers, for instance, only the case in which we compute
RO(X,Ox(n)) (cf. (2.20)) for smooth complete intersections X.

In the most general case, where w;’s are arbitrary, one has to take into consid-
eration the divisibility relations between them. Csorba [23], following a remark of
Weihrauch concerning the dependence of the coefficients ¢—1—k(n; w) of pt(n; w)
(cf. (7.5)) on the Bernoulli numbers, gave formulae for this general case, which re-
duce the computation of ¢,—1-k(n; W)’s to the solutions of finitely many systems
of linear congruence equations with at most m — 1 unknowns. (Similar formulae
for pt*(n; w) were found independently by Vahlen [121].) To present them, let us
first introduce some useful notations.

(i) For 1 <k <m-1,1 <1<k and an index-set {i1,...,5;} C {1,...,m} of
“length [” we set:

6(ila <50 ) (w]|l<]<m ]¢{7‘1’ 721})
(s)(zla . ) ( ’25—1a26+17"' 72m)7 Vf, 1 S € Sl

l
pliin,. .. i) = | [] e9G,. .. ,i,)) (e(iny...,0))t"
e=1
l
T(kyit, ... i1) == {(tiy,... ,t; )1 < ti, <k, ¥s,1<s <1, and Y t;, =k}

ZO(iy,... 1) =

I 6 Z PR £ .
{6(6)--,u| —51(1,) i <e(e)1 B sz,ﬁ() = n(mod e(iy, . . ,21))}

Furthermore, we define I(!) as the set of the following index-sets:

I() :={(t1,...,i)1 <is<m,Vs,1<s<! and 13 <i2<...<1}.

(We notice that §(7'(k;i1,... ,4)) = <I;€€:}> ’

ﬁ(E(E)(il, o ,il)) — Z(l:i“e(g)(llll),) _, ) and ﬁ(I(l)) = (T) )

(i) The Bernoulli numbers are defined by the series

T z Bjz? Boz* Bsjzb
=1—-=+ - +
et —1 2 2! 4! 6!
and are easily computable, as we have B; = é, B, = %, B; = ;115, B, = %,

B;s = % and, in general, for 7 > 1:
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(2]; 1)??131—(2]: 1)24Bz+<2]§ 1)26133—...+(—1)"‘1(2j+1)2“Bj=

(iii) For 1 < k < m—-1,1 <[ <k, a fixed index-set (i1,...,%4) € I(l), and
(tiy,...5tiy) € T(k;i1,... ,11), 5(5) . € =(71,...,1;), we define the function:

1100yl

e EH, ) ZG ( > (e(ee()z(lz"..'..,Z,Ii)z)> (Eigyyin) e ™"

1,

where
G e ]-G {0’ fo=2v+1,vr>0
T L (-1)'Bgy—1, ifv=2u,v>0

Theorem 7.5. (Formulae of Csorba (1914))
The coefficients cm—1—k(n;w) of pt(n;w) in (7.5), for k > 0, are given by the
following formulae:

(7.10)
cm—l—k(n; W) =

(=1)* : : ,
m—1-R I, > p(lra,- .. 1) >

v= =1 (i1,..-,0) EI(1) E(G) e=(e)

l .
,,,,,, 3 I 75

( i1 tt()eT(l" 11y.ee ail) e=1

In the following years, Israilov [66] was eventually the only one who carried on the
tradition of “Cayley-Sylvester era”. Combining the expansion of F(z) into partial
fractions with Mdbius inversion law, he derived a “mammoth algorithmic formula”
consisting of subroutine summations, which reduces the computation of pt(n; w) to
the determination of elements of certain PT’s corresponding to the Eulerian case.
To write it down in a “compact form”, let us introduce some special extra notations.

(i) For 1 <1 < m and an index-set {j1,... ,71} C {1,...,m} let e(y1,... ,71) denote
again

e(j1,--- 1) =ged(will < i <m, i ¢ {j1,...,51})
For 1 <1 <m, 1< v <m, we define successively:
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RY = {({1,e(j)}1 < jr < m, 51 # i}
RY = R U {e(51,52)|1 <j1 < jo <my i ¢ {j1,2}}

.............................................

RO :=RY U{e(r,..., i) 1< <ja<...<jy<m,i¢ {j1,...,5u}}

and R, := 0 Rf,i).

(ii) For 1 <1 <m,v e N keNoy, {51,...,50} € {1,...,m}, and s(j1,... ,J1) a
divisor of e(j1,... ,71), we define:

ﬁw[k+1], ifi ¢ {1,...,51}
V(vitikis(n,-o00) = 1= GGty ik =0andi€{5,.... 5}
_w[klgs(]”lw' Gy ifk>0andie€ {71,--., 31}

. . t! a . .
Utsvis(n, .- 01) = > PR (H V(v; g3 ke;s(1, - - ,Jz)))
Rl !

k1+ +km=t

andfor 1 <p<m-1,

D(p;v; s(J1y--- ,01)) i=

o 127‘1 <I_'[1V (v31;0; 8(51, - ..,j,))>_ C:( (t; v; 531, ..,jl))>rt>,

where the summation runs over all (r1,... ,7p—1) € PT(p—1;1,2,... ,p—1) and
ri=r1+...+rp-1.

(i) Correspondingly, for 1 <7< m, 1 <t <i—1, we set:

t [p1+1] .
Y(t) = Z wlpl o wgﬂgm-}_ ]7 and
0<p1yee,om <t (pr+ D) (pm + 1)!
p1t...Fpm=t
i— —l)r'l‘! i-1 1 Y(t) Tt
Ai = (=1 1—1 ( 1(YQR) |
Y Z (wy...w,)"H! (;E[l ! ( 2

where the sum runs again over all (ry,...,ri—1) € PT(: — 1;1,2,... ,4 — 1) and
ri=ri+...+ri-1.
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Theorem 7.6. (Formulae of Israilov (1981))

(i) If the weights wy,... ,w,, are pairwise coprime, then we have:
(7.11)
-1
= (n+m —i)lm=il e T [ —pws
pt(n;w) =) { A; m—if T > chrort | TT = ot
i=1 ) p=1 j;l.
j#

(ii) In the general case (in which we may assume that w is reduced), the number
of the weighted partitions of n is given by the formula:

N

m—

=2 1<j1<...<ji<m

m—I
(n +m — [ - p)[m-—l—p] vn
Z > D T(psvielsi,---»s5)) sGro i) T

— ] = p)!
® @ (m=1=p)
-1
3 > 2ot | TTa-¢g™)
=1 @ @ -
aFi
By (1) we mean the sum running over all divisors (j1,... ,ji) of €(j1, ... ,ji) with

$(j1s- -+ J0) t Ri—1. 32 (y) denotes the sum of all 1 < v < s(j1,... ,J1), for which
ged(v, $(j1y- - J1)) = 1. 353y denotes the sum of all divisors s(i) of the weight

w; with s(7) ¢t RE,?_T Finally, by }_,) is meant the summation over all indices

1 < o; < (1), for which ged(oi,s(1)) = 1.

Remarks 7.7. (i) As the right hand sides of the formulae of theorems 7.4 and
7.6. contain trigonometric and transcendental functions in their periodic parts,
the computation of the denumerants has to be made by using suitable approxima-
tion procedures. Sometimes it is enough to consider the “nearest integer function”
or other standard inequalities, but in general the minimization of possible errors
demands more sophisticated arithmetical methods. For some simple concrete ex-
amples see [20, pp. 109-115], [34], [38], [66, pp. 268-272], [111, p. 211] and [100,
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pp. 117 -123].
(ii) For the Eulerian case, Gupta [57] gave the following denumerant bounds:

(7.13) . ("—1)spt(n;1,2,...,m)gi<5+‘§'m(m—1)>

m! \m—1 m! m—1

For the general case, Lambe [81] derived the upper bound:

(7.14)
pt(n W) < n + u(m; W) gcd(wl w ) ﬁ i_
) —_ m — 1 y*rrt m - wl’
wyw = [w; - ged(w Wi—1)
1W2 T’ 1.+, Wi—1
‘W) = et 2
w(m;w) i=m + ged(wy,w2) +; [ 2ged(wy, ... ,w;) ] ’
where [-] denotes here the truncation to the nearest integer. (Note that u(m;w)

depends on the enumeration of the weights and that the above bound makes strange
(13 ”
jumps”.)

Remark 7.8. Lee proved in [82] that, in fact, PT’s are enough to describe com-

pletely the power series expansion of any rational function in one variable. For
related topics see Stanley [111, Ch. 4].

Remark 7.9. Another reason which made the occupation with pt-functions very
popular, not only among the mathematicians but also among the bank clerks and
cashiers, was that these functions gave the answer to the money changing prob-
lem. (See Wilf {125, p. 87]). pt(n;w) represents namely the number of the ways
one can change an amount of money, say n, into coins or banknotes of denomi-
nations wj,... ,wn. An indicative example is that one given by Luckey [84] in
1933, who defends the introduction of the “4-Pfennig” coin (100 Pfennig = 1 ger-
man Mark) by using the argument that, for instance, 30 Pfennig can be changed
in pt(30;1,2,4,5,10) = 285 ways, if one makes use of the “4-Pfennig” coin, and in
only pt(30;1,2,5,10) = 98 ways if not.

Let us now proceed to the interpretation (b) of pt’s, which was mentioned at the
beginning of this section. By 1875 Weihrauch had already pointed out [123, pp. 99-
100] that the enumeration of non-negative solutions of linear diophantine equations
can be made “auf geometrischem Wege”. During the period 1955-1975 Ehrhart
([34], [35], [36], [37], [38]) developed a whole theory dealing with polyhedral enu-
merators.

Let P C R™ be a ¢g-dimensional rational polyhedron. (By a polyhedron we mean,
as before, a bounded convez polyhedron, i.e. a convez polytope, which can always
be represented as the convex hull of finitely many points.) We define:

E(n;P):=4(Z™NnP), ET(n;P):=4(Z™Nint(nP))
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and the Ehrhart series:

Ep(z) := ZE(n;P)x", with E(0;P)=1, and
=0

Ef(z) = Z E*(n;P)z", with E*(0;P)=0, respectively.

n=0

Theorem 7.10. (Ehrhart (1967)) If ¢ > 0, then:
(i) Ep(z) is a rational function and there is a quasipolynomial f of degree ¢ with

E(n;P) = f(n), forall n € Np.

(ii) It is E*(n;P) = (=1)1E(—n;P), for all n € N, where E(—n;P) := f(—n), and
Ef(z) = (-1)"' Ep(z7").

Remarks 7.11. (i) f is called the Ehrhart quasipolynomial of P. In particular, if
P is an integral polyhedron (i.e. if all the coordinates of its vertices are integers),
then f has constant (rational) coefficients and we call it the Ehrhart polynomial of
P.

(i) In the notation of (7.1) and (7.2) we have obviously ¢ = m — 1, pt(n;w) =
E(n;TI(w)) and pt*(n; w) = Et(n;II(w)), Vn € Ny, while pt(n;w) = E(n; II(w)),
Vn € Z (cf. (7.4)).

Ehrhart’s work was extended to various directions by Macdonald [85], Stanley
(see [110], [111] and the other references given therein), Frumkin [43] and Betke-
McMullen [11]. They did not only consider quasipolynomials arising from arbitrary
systems of linear diophantine equations, but they also made use of techniques which

allow a precise study of the properties of general E(n;P)’s. (See also rem. 7.14

(i),

Especially Stanley connected E(n,P)’s with “magic labelings” of certain graphs
and with a whole “corpus” of interesting invariants appearing in the abstract com-
mutative algebra.

Even more recently, and parallel to algorithmic investigations of the counting of
integer points in polyhedra, like those of Dyer [33], Cook et al. [21], Banéry et al.
[4] and Barvinok (6], combinatorialists and algebraic geometers attempted to find
expressions for the coefficients a; of the Ehrhart polynomials

(7.15) E(n;P)=1+a;(P)n+a(P)n® + ...+ a,-1(P)n?™! + a,(P)n?

of a g-dimensional integral polyhedron P in terms of the geometry of P by means
of the theory of toric varieties.

It is well-known (see [25, § 5.8]) that one can associate every integral polyhedron
P in a g-dimensional lattice M with a complete toric variety Z(N,Xp) (w.r.t. to
its dual lattice N) by defining the corresponding fan ¥p as follows: If F is a face
of P, let oF in M denote the cone consisting of all vectors - (z — '), where ) is a
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nonnegative rational number, + € P and z’ € F. Then (in the notation of § 3) we
set Tp := {GF|F is aface of P}.

Applying Hirzebruch’s version of Riemann-Roch theorem [63, p. 155], [46, p.
288], to the line bundle Oz £,)(D) of a Ty- Cartier divisor D being generated
by its sections [47, p. 110], we get:

(7.16) X(Z(N,Zp), Oz(n gy (nD)) = E(n; P)

and consequently

(7.17) a;(P) = ;—!deg(pf ~Td;(Z(N,Zp)))

where Td(Z(N,Zp)) denotes the homology Todd class of Z(N,Zp).

In fact, (7.17) is enough to show that a;(P) is nothing but a linear combination
of the volumes of the intersection of P with the corresponding translations of the
subspaces which are perpendicular to the j-codimensional cones of Lp ([25, pp. 134-
135], [47, pp. 112-113]). Therefore, what one needs, is a geometric characterization
of the rational (not always uniquely defined) coefficients of this linear combination.

The last two coefficients of E(n;P) are actually easily computable, because by
the classical Pick’s theorem [96] (1899) we get:

(i) a,(P) = Vol(P),

(i1) ag—1(P) equals half the sum of volumes of the (¢ — 1) -dimensional faces (By
the volume of a j-dimensional face of P is meant the relative volume w.r.t. the
J-dimensional lattice in the j-plane containing it.)

For ¢ > 3, however, the description of a;(P), ... ,a;—2(P) by means of the “local
geometry” of Ep (resp. of P) turned out to be much more complicated. (Even for
q = 3, a;(P) cannot be given by only using the 1-dimensional faces of P.) The
determination of these remaining coefficients of E(n; P) became possible only after
the proof of “finer” versions of combinatorial Riemann-Roch theorem and after
further analysis of the corresponding Todd classes, due to Brion [14], Khovanskii-
Pukhlikov [71] [72], Pommersheim [97], Kantor-Khovanskii [69], Morelli [89] and
Capell-Shaneson {16]. For ¢ = 3, Pommersheim derived a formula for a;(P) in
terms of the lattice volumes of 1- and 2-dimensional faces of P and of functions
depending on certain Dedekind sums. He generalized in this way a beautiful formula
due to Mordell [88] (1951). Kantor and Khovanskii discussed the 4-dimensional
case. For another approach to the most general case, see Morelli [89, p. 208].

Completing this appendix, we shall recall the formulae of Capell and Shaneson
[16] as they lead to concrete computations and they connect, in a certain sense,
Sylvester’s “waves” with the “RR-arithmetics”. The latter was originally intro-
duced by Hirzebruch in his “Grundlehren”-monograph [63, ch. I, §1, and ch. II,
§9] and involved many useful properties of hyperbolic tangent and cotangent func-
tions relating the Todd classes with the L-classes. Some extra notations will be
again unavoidable.
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Let P be a g-simplex with vertices in M = Z? and N be the dual lattice of M.
For each face R of P we set: Fr := {faces of P of codimension one containing R}
and Hgr := Fp \ Fr. For a simplicial ¢g-dimensional cone ¢ in N, generated by
ni,...,ng, let n},... ,n; be the unique primitive elements of N with n}-n; =0
for i # j, and & := n}-n; > 0, N’ := BI_,Zn!, G, :== N/N'. Furthermore, for a
g=no+ N', let A\n;(g) be the number

/\nj(g) = exp(2ﬂ' \/:I ’Ynj(g))’

where v, (g) := "_(z‘jﬁi, and

G%:={g € Golhn;(9) #1,¥4,1<j < g}

(GY consists of the elements of G, having the form ng + N’ with ng lying in the
interior of the cone spanned by nj,... ,ng.)

Keeping now these notations, as well as their “relative” analogues for all the cones
of ¥p, in mind, we have:

Theorem 7.12. (Formulae of Capell and Shaneson (1994)).
Let P be a g-simplex with vertices in the lattice M. For 0 < j < q let r; denote
the coefficient of z’ in the power series

1 Vol(H)z
> | 2 T oS 5 )

R<P F<R HeMNp 9€GY,

where y(F) := |Gsp| - [[ger, (Vol(H)z) and
t(R;g) := H coth{r V=1 ~E(g) + Vol(H)z}.
HEeFr

(vE’s are “measured” again via the sublattices corresponding to H ’s.) Furthermore,
for any R < P with dim(R) = j, let

. Vol(R)
1 3T Gan] Tlers VOUH)

Then the Ehrhart polynomial of P is given by

q
(7.18) E(n;P) = ersjnj.
=0

Applications 7.13. The formulae of Capell and Shaneson can be applied for spe-

cial n’s in our specific cases. Let w := (wy,... ,wm) be a system of weights.
(i) If lem(wy, ... ,wm)|n, i.e. if n =k -lem(wy,... ,wy) for some k € N, then
(7.19) ph(n; w) = E(k; P'(w)),
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where P'(w) := {(z1,... ,2m) € Rmol Yo wiz; = lem(wy, ... ,wy)} with vertices
,0),.

(;ll-lcm(wl,... , Wm),0 .,(0,...,0, wmlcm(wl,... y Wm))-

(ii) For an n € N, let n o= n+ Zi=1 wi. If lem(wy,... ,wn)|R, le. if 7 =
A-lem(wy, ... ,wm) for some A € N, and if for a weight, say w,, we have w,, = 1,
then:

(7.20)

pt(n;w) = ptt(a; w) = ET(#; (w1, ... ,wm-1,1)) = EY(\;P(wi,... ,wm_1)),

where P(wy,... ,wm—1) denotes the convex hull of the points (0, ... ,0),
(w%lcm(wl,... y Wm—-1),0,...,0),...,(0,...,0, w"}_llcm(wl,... ,Wm—1)). Thus,
pt(n; w) can be found by the reciprocity law of theorem 7.10. (ii) and the formula
(7.18) of Capell and Shaneson.

(i) If X = Xg C P™Y(w) is a well-formed BP-like (cf. 2.16.) quasismooth
hypersurface, then (2.20) gives:

(7.21) h(X,Ox(am(X))) = pt(d — Zw,, = ptT(d;w)

If one of the weights happens to be 1, (7.21) can be computed by (7.20).

(iv) In the special case in which m = 4, wy = 1, ged(wy,w2,w3) = 1, 7 := n +
wy + wy + w3 and 77 = A - lem(w;, wy, ws) for some A € N, one obtains (7.20) via
Pommersheim’s formula for the tetrahedron P(wy,ws,ws) ([97, thm. 5, p. 17])
after having substracted the lattice points on its faces. The result is the following:

(7.22)
pt(n, wy, w2, ws, 1) = E+()‘1 P(lU],?.UQ,lUg)) =
1 1
= g(wfwgwg T3\ — Z[wlwgwg(wl + we + w3 + 1)T?\2+

1
+ { 12(w1 +wj +wi +1)T + —[(w1w2 + wawz + wawy )T + wi + wy + w;)
— wy - DS(wy, ged(we, w3)) — w; - DS(we, ged(wy, w3))

— wj; - DS(ws, ged(w1, w2)) } A-1

In (7.22) we use the abbreviations:

-1 -1
= (chd(wi,wj)) , W= w; (chd(w,-,wj)) , Vi, 1<:<3.

i<y JFi

Moreover, by DS(u, v) we denote the Dedekind sum of two coprime integers p and
v being defined by
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(7.23) DS(u, v) = =1 ((‘)) ((“‘))

where for an z € Q:

z—|z|-1% 2¢7Z
0, x €7

and |z | is the greatest integer < z.

(v) Formulae similar to (7.22), when m = 5, can be derived by the results of Kantor
and Khovanskii [69].

Additional remarks 7.14. (i) For those who are interested in numerical appli-
cations, we would recommend a very useful MAPLE package for the computation
of denumerants of weighted partitions, which has been recently implemented by P.
Lisonék (“Quasi-polynomials: a case study in experimental combinatorics”, RISC-
report, 93-18, 1993) and relies on formulae being presented in Comtet’s book [20,
§2.6].

(ii) After having written this section, we received a new preprint of Prof. B. Sturm-
fels (“On vector partition functions”, Cornell University, 1994) which deals with
vectorial denumerants pt(n; A) defined by

m

H (1 — .’Ewl'i.’llizi £Cwu’i) = Z pt(l‘l, A)Jj?l :1,‘32 e :EZN

i=1 1 2 e neNy
and expressing the number of non-negative integer vectors (A1,...,A\n) € NJ,
which are solutions of the system A - (A,... ,Am)T = Wi 4+ ... + A Wy, =
n = (ny,...,n,) of u linear diophantine equations with A = (wq,... , W), w; =
(w1,1,... ,wﬂ,l)T,... y Wi = (W1,m,--- Wy m)T. His main result is a formula of

type

pt(n; A) = (a polynomial of degree m—p in n=(ngy,...,n,)) +

+ (certain rational linear combinations of “corrector polynomials”),

where these corrector polynomials, as well as their corresponding rational coeffi-
cients, can be computed by means of the chamber complez of the cone R>ow; +
...+ R>ow,, and of certain linear partial differential equations depending on it.
Sturmfels formula provides therefore a generalization of the “usual” theory of de-
numerants (the y = 1 case) and gives an ezplicit geometrical-combinatorial inter-
pretation of their higher dimensional analogues.
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ample cone, 10

amplitude, 19

Bernoulli numbers, 97

Bertini quasismoothness criterion, 17
Brieskorn-Pham c.i., 19

BP-like c.i., 19

canonical (or dualizing) sheaf, 6
Cartier divisor, 6

characteristic automorphism, 52
Cohen-Macaulay ring, 5

complete intersection (c.i.) in a w.p.s., 16

c.i. of Fermat type, 19

combinatorial Riemann-Roch theorem, 103

compound Du Val locus, 15
compound Du Val type points, 45
CY model, 10
CY threefold, 8
cyclic quotient singularities (c.q.s.), 37
Dedekind sum, 105
delta genus, 7
denumerant of weighted partitions, 93
depth of a local ring, 5
dissident points, 45
dual cone, 37
Ehrhart (quasi) polynomial, 102
Ehrhart series, 102
elementary transformation, 42
face of a cone, 37
fan, 38
first skeleton of a cone, 38
flop (simple flop), 48
formulae
of Cappel and Shaneson, 104
of Csorba, 98
of Fergola and Sardi, 95
of Israilov, 100
of Sturmfels, 106
of Weihrauch and Ehrhart, 96
generalized adjunction formula, 20
Gorenstein ring, 5
graded A-module, 5
Hodge decomposition, 20
Hodge numbers, 21
individual points of Sing(X), 45
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intersection number, 6

isolated points of Sing(X'),45
local cohomology group, 5

map of fans, 38

minimal CY model, 10

mirror phenomena, 3, 51

money changing problem, 101
Mori’s cone, 10

nef cone, 10

nondegenerate q.s.c.i., 28
normalized (system of) weights, 12
overall well-stratified c.i., 51
Picard group, 7

Picard number, 8

Poincaré series, 6

polarized variety, 7

prime divisor, 6

primitive cohomology groups, 21
punctured affine quasicone, 14
pure Hodge structure, 20
quasipolarized variety, 7
quasipolynomial, 94
quasismooth subvariety of a w.p.s., 15
reciprocity relation/law, 94
reduced (system of) weights, 12
relative boundary, 37

relative interior, 37

relative link, 52

relative Milnor fibers (fibration), 51 — 52

relative Milnor number, 52

regular local ring, 5

regular sequence, 5

simplicial cone, 37

singular locus, 6

strongly rational polyhedral cone, 37
support of a fan, 38

testing bilinear form, 9

topological Yukawa coupling form, 8

toric variety (associated to a fan), 38
toroidal crepant desingularization, 49
twisted module, 5

type of a c.q.s.,39

V-variety, 7

waves, 95

weighted projective space (w.p.s.), 12



Weil divisor, 6

well-formed w.p.s., 12

well-formed subvariety of a w.p.s., 16
well-stratified q.s.c.i., 29
w-reduction of a c.i. in a w.p.s., 28
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