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For Gorenstein quotient spaces Cd�G, a direct generalization of the classical
McKay correspondence in dimensions d�4 would primarily demand the existence
of projective, crepant desingularizations. Since this turned out to be not always
possible, Reid asked about special classes of such quotient spaces that would satisfy
the above property. We prove that the underlying spaces of all Gorenstein abelian
quotient singularities, which are embeddable as complete intersections of hyper-
surfaces in an affine space, have torus-equivariant projective crepant resolutions in
all dimensions. We use techniques from toric and discrete geometry. � 1998

Academic Press

1. INTRODUCTION

Up to isomorphism, the underlying spaces Cd�G, d�2, of Gorenstein
quotient singularities can always be realized by finite subgroups G of
SL(d, C) acting linearly on Cd. For d=2, these Gorenstein quotient spaces
are embeddable in C3 as hypersurfaces of A-D-E type. In 1979, McKay [19]
observed a remarkable connection between the representation theory of the
finite subgroups of SL(2, C) and the Dynkin diagrams of certain irreducible
root systems. This was the starting-point for Gonzalez-Sprinberg and
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Verdier [8], and Kno� rrer [16] to construct a purely geometric, direct
correspondence

9: Irr0(G) � Exc( f )

``of McKay-type'' between the set Irr0(G) of non-trivial irreducible
representations of G, and the set Exc( f ) of exceptional prime divisors
of the minimal desingularization f: X � C2�G, (or, equivalently, between
Irr0(G) and the members of the natural basis of the cohomology ring
H*(X, Q)). The bijection 9 induces, in fact, an isomorphism between the
graph of Irr0(G) and the dual (resolution-) graph w.r.t. f, i.e., the product
of the images of two distinct elements of Irr0(G) under 9 is mapped onto
the exceptional prime divisor corresponding to the ``right'' graph-vertex.
(For various applications of the geometry of Kleinian singularities, including
also ``quiver-theoretic'' methods, we refer to Slodowy [29]. Recently,
Ito and Nakamura [13] gave another interpretation of the above corre-
spondence by means of Hilbert schemes of G-orbits.)

There are several difficulties (not only of group-theoretic nature) to
generalize (even partially) McKay-type correspondences in higher dimen-
sions. Already for d=3, many things change drastically. For instance, the
minimal embedding dimension of C3�G is in many cases very high, and its
singular locus is only rarely a singleton. In addition, crepant desingulariza-
tions (i.e., the high-dimensional analogues of the above f, cf. [23, 25])
are unique only up to ``isomorphisms in codimension 1'', and there are lots
of examples of non-projective f's. Nevertheless, Markushevich [18], Ito
[10�12], and Roan [27, 28] proved case-by-case the existence of crepant
resolutions of C3�G, for all possible finite subgroups G of SL(3, C), by
making use of Blichfeldt's classification results, and Ito and Reid [14]
established a canonical one-to-one correspondence between the conjugacy
classes of the Tate twist G(&1) with age =1 and the crepant discrete
valuations on Cd�G for any d�2. It is worth mentioning that the existence
of terminal Gorenstein quotient singularities for d�4 (cf. [20, 21]) means
automatically that not all Gorenstein quotient singularities can be resolved
by crepant birational morphisms. On the other hand, Batyrev [2] and
Kontsevich [17] recently announced proofs of the invariance of all
cohomology dimensions of the overlying spaces of all ``full'' crepant
desingularizations for arbitrary d�2. (For the case of abelian acting
groups, see [3, 5.4]). For these reasons, to proceed the investigation of
these quotient spaces in dimensions d�4 one has either to work with at
most partial crepant morphisms (and lose the above quoted cohomology
dimension invariance) or to determine special classes of quotients for which
this classical type of McKay-correspondence makes sense. As there are only
very few known examples to follow the latter approach to the problem
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(cf. Hirzebruch�Ho� fer [9, p. 257] and Roan [27, Section 5]), Reid asked
about conditions on G's which would guarantee the existence of the
required ``full'' crepant (preferably projective) resolutions of the corre-
sponding quotient spaces (see [26; 14, Section 4.5]). We believe that one
significant class of Gorenstein quotient spaces which enjoys this property is
that of complete intersections (``c.i.'s'').

Conjecture 1.1. For all finite subgroups G of SL(d, C), for which Cd�G
is minimally embeddable as complete intersection (in an affine space Cr,
r�d+1), the quotient space Cd�G admits crepant, projective desingulariza-
tions for all d�2.

In this paper, we prove the following:

Theorem 1.2. Conjecture 1.1 is true for all abelian finite groups
G/SL(d, C) ( for which Cd�G is a ``c.i.'').

For other, non-c.i. abelian quotient spaces having such desingularizations,
we refer to [5]. Our proof makes use of toric geometry and Watanabe's
classification result [33], and is motivated by the so-called ``nice poly-
hedral subdivisions'' of Knudsen and Mumford [15, Ch. III]. More precisely,
the paper is organized as follows: In Section 2 we introduce those notions
of the theory of toric varieties which will enable a convenient combinatorial
characterization of the inner structure of Cd�G. Useful tools and arguments
coming from convex geometry and the theory of triangulations of poly-
hedral complexes are presented in Section 3. In Section 4 we explain why
the existence of projective, crepant resolutions can be deduced from the
existence of b.c.b.-triangulations of the junior simplex. The method of how
one passes from ``special data'' (parametrizing the defining groups of
c.i.-quotient spaces) to ``Watanabe forests'' and to their lattice-geometric
realization via ``Watanabe simplices'' is described explicitly in Section 5.
Section 6 provides the inductive, constructive procedure leading to the
desired ``nice'' b.c.b.-triangulations of all Watanabe simplices. Finally, in
Section 7 we give concrete formulae for the computation of the dimensions
of the cohomology groups of the spaces desingularizing Cd�G's (which are
``c.i'') by any crepant morphism.

Concerning the general terminology, we always work with normal com-
plex varieties, i.e., with normal, integral, separated schemes defined over C.
A partial desingularization of such an X is a proper birational morphism
f: Y � X on X, in which Y is assumed to be normal. f: Y � X is called a
full (or overall ) desingularization of X if, in addition, we have Sing(Y)
=<, i.e., if the overlying space Y is smooth. For brevity's sake, the
word desingularization of X (or the phrase resolution of singularities of X)
is sometimes used as synonymous with the phrase ``full (or overall)
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desingularization of X''. When we refer to partial desingularizations, we
mention it explicitly. (By the word singularity we intimate either a singular
point or the germ of a singular point, but the meaning will be in each case
clear from the context.)

A partial desingularization f: Y � X of a Q-Gorenstein complex variety
X with global index j is called non-discrepant or simply crepant if |[ j]

X $
f
*

(| � j
Y ), or, in other words, if the (up to rational equivalence uniquely

determined) difference jKY& f *( jKX) contains exceptional prime divisors
which have vanishing multiplicities. (|X , KX and |Y , KY denote the dualizing
sheaves and the canonical divisors of X and Y respectively.) Furthermore,
f: Y � X is projective if Y admits an f-ample Cartier divisor.

2. A BRIEF TORIC GLOSSARY

We recall some basic facts from the theory of toric varieties and fix the
notation which will be used in the sequel. For details the reader is referred
to the standard textbooks [6, 7, 15, 22].

(a) For a set A of vectors of Rd, the linear hull, the positive hull, the
affine hull and the convex hull of A is

lin(A)={ :
k

i=1

+i xi | xi # A, +i # R, k # N= ,

pos(A)={ :
k

i=1

+i xi | xi # A, +i # R, + i�0, k # N= ,

aff(A)={ :
k

i=1

+i xi | xi # A, +i # R, :
k

i=1

+i=1, k # N= , and

conv(A)={ :
k

i=1

+i xi | xi # A, +i # R�0 , :
k

i=1

+ i=1, k # N= ,

respectively. Moreover, we define the integral affine hull of A as

affZ(A)={ :
k

i=1

+ ixi | x i # A, +i # Z, :
k

i=1

+ i=1, k # N= .

For a set A/Rd the dimension of its affine hull is denoted by dim(A).

(b) Let N$Zd be a free Z-module of rank d�1. N can be regarded
as a lattice in NR :=N� Z R$Rd. (We shall represent the elements of N
by column vectors.) If [n1 , ..., nd] is a Z-basis of N, then

det(N) :=|det(n1 , ..., nd)|
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is the lattice determinant. An n # N is primitive if conv([0, n]) & N contains
no other lattice points except 0 and n.

Let N$Zd be a lattice as above, M :=HomZ(N, Z) its dual, NR , MR

their real scalar extensions, and ( } , } ): NR _MR � R the natural R-bilinear
pairing. A subset _ of NR is a strongly convex polyhedral cone (s.c.p. cone,
for short), if there exist n1 , ..., nk # NR , such that _=pos([n1 , ..., nk]), and
_ & (&_)=[0]. Its relative interior int(_) is the usual topological interior
of it, considered as a subset of lin(_). The dual cone of an s.c.p. cone _ is
defined by

_6 :=[x # MR | (x, y)�0 for all y # _]

and satisfies: _6+(&_6)=MR and dim(_6)=d. A subset { of a s.c.p.
cone _ is called a face of _ (notation: {O_), if {=[y # _ | (m0 , y)=0],
for some m0 # _6. A s.c.p. cone _ is simplicial (resp. rational ) if _=
pos([n1 , ..., nk]), where the vectors n1 , ..., nk are R-linearly independent
(resp. if n1 , ..., nk # NQ). If _/NR is a rational s.c.p. cone, then _ is ``pointed''
and the subsemigroup _ & N of N is a monoid having the origin 0 as its
neutral element. Using its dual M & _6, one constructs a finitely generated,
normal C-subalgebra C[M & _6] of C[M] and a d-dimensional affine
complex variety

U_ :=Max-Spec(C[M & _6]).

(c) For N$Zd we define an algebraic torus TN $(C*)d by

TN :=HomZ(M, C*)=N� Z C*.

Every m # M assigns a character e(m): TN � C* with e(m)(t) :=t(m), for
all t # TN . We have

e(m+m$)=e(m) } e(m$) for m, m$ # M, and e(0)=1.

Moreover, for each n # N we define an 1-parameter subgroup of TN by

#n : C* � TN with #n(*)(m) :=*(m, n) for * # C*, m # M,

(#n+n$=#N b #n$ , for n, n$ # N). We can therefore identify M with the charac-
ter group of TN and N with the group of 1-parameter subgroups of TN .
Furthermore, U_ (as above) can be identified with the set of semigroup
homomorphisms:

U_=[u: M & _6 � C* | u(0)=1, u(m+m$)=u(m) } u(m$),

for all m, m$ # M & _6],

where e(m)(u) :=u(m) for all m # M & _6 and for all u # U_ .
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(d) A fan 2 w.r.t. N$Zd is a finite collection of rational s.c.p. cones
in NR such that:

(i) any face { of _ # 2 belongs to 2, and

(ii) for _1 , _2 # 2, the intersection _1 & _2 is a face of both _1

and _2 .

The union |2| :=�[_ | _ # 2] is called the support of 2. Furthermore, we
define

2(i) :=[_ # 2 | dim(_)=i], for 0�i�d.

If * # 2(1), then there exists a unique primitive vector n(*) # N & * with
*=R�0 n(*) and each cone _ # 2 can be therefore written as

_= :

*O_
* # 2(1)

R�0 n(*).

The set Sk1(_) :=[n(*) | * # 2(1), *O_] is called the set of minimal
generators (within the pure first skeleton) of _. The toric variety X(N, 2)
associated to a fan 2 w.r.t. the lattice N is by definition the identification
space

X(N, 2) :=\ .4
_ # 2

U_+<t

with U_1
% u1 tu2 # U_2

if and only if there is a { # 2, such that {O_1 & _2

and u1=u2 within U{ . As a complex variety, X(N, 2) turns out to be
irreducible, normal, Cohen-Macaulay and to have at most rational
singularities (cf. [7, p. 76] and [22, Thm. 1.4, p. 7 and Cor. 3.9, p. 125]).
X(N, 2) admits a canonical TN -action which extends the group multiplica-
tion of TN=U[0] :

TN_X(N, 2) % (t, u) [ t } u # X(N, 2) (2.1)

where, for u # U_ , (t } u)(m) :=t(m) } u(m), for all m # M & _6. The orbits
w.r.t. the action (2.1) are parametrized by the set of all the cones belonging
to 2. For a { # 2, we denote by orb({) (resp. by V({)) the orbit (resp. the
closure of the orbit) which is associated to {. The spaces orb({) and V({)
have the following properties (cf. [7, pp. 52�55; 22, Section 1.3]):

(i) V({)=~ [orb(_) | _ # 2, {O_] and orb({)=V({)"� [V(_) | {O{_].

(ii) V({)=X(N({), Star({)) is itself a toric variety w.r.t.

N({) :=N�N{ , N{ :=N & lin({), Star({) :=[_� | _ # 2, {O_],

where _� :=(_+(N{)R )�(N{)R denotes the image of _ in N({)R =NR �(N{)R .
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(iii) For { # 2, V({) has a natural affine open covering [U_({) | {O_]
consisting of ``intermediate'' spaces

U{({)=orb({)/�U_({)/�U_

being defined by: U_({) :=Max-Spec(C[_� 6 & M({)]), with M({) denoting
the dual of N({). It should be pointed out, that every TN -invariant sub-
variety of U_ has the form U_({) and that dim(U_({))=dim(_)&dim({).

(e) Let X(N, 2) be a d-dimensional (not necessarily compact) simpli-
cial toric variety w.r.t. N$Zd. A function �: |2| � R is a (rational ) 2-sup-
port function if �(NQ & |2| )/Q and �| _ is linear for all _ # 2. This means
that for all _ # 2 there has to be some m_ # MQ such that

�(x)=(m_ , x) for all x # _ and

(m_ , x)=(m{ , x) whenever {O_ and x # {.

We denote by SFQ(N, 2) the additive group of all rational 2-support func-
tions. A � # SFQ(N, 2) is strictly upper convex if for every maximal _ # 2
then m_ can be chosen such that �(x)�(m_ , x) , with equality if and only
if x # _. Let

SUCSFQ(N, 2) :=[� # SFQ(N, 2) | � strictly upper convex].

The group TN -CDivQ(X(N, 2)) of TN-invariant Q-Cartier divisors on
X(N, 2) has the Q-basis [QV(*) | * # 2(1)] (cf. [22, pp. 68�69]).

Theorem 2.1. The relationship between the rational 2-support functions
and the TN -invariant Q-Cartier divisors on X(N, 2) is given by the following
bijections:

� # SFQ(N, 2) # SUCSFQ(N, 2)

1 :1 1:1 (2.2)

D� # TN -CDivQ(X(N, 2))= �
* # 2(1)

QV(*)#{ ample Q-Cartier
divisors on X(N, 2)=

with

D� :=& :
* # 2(1)

�(n(*)) V(*).

Proof. For the first bijection see [22, Prop. 2.1, pp. 68�69]. The proof
of the second bijection of (2.2), in the case in which X(N, 2) is compact,
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is given in [22, Cor. 2.14, p. 83]. The general case is treated in [15, Ch. I,
Thm. 9, p. 28, and Thm. 13, p. 48]. K

Corollary 2.2. Let X(N, 2) be a simplicial toric variety (resp. a simpli-
cial compact toric variety). Then X(N, 2) is quasiprojective (resp. projective)
if and only if SUCSFQ(N, 2){<.

(f ) A map of fans |: (N$, 2$) � (N, 2) is a Z-linear homomorphism
.: N$ � N whose extension |R : N$R � NR satisfies the property

for all _ # 2$ there is some _ # 2 such that |R (_$)�_.

Every map of fans |: (N$, 2$) � (N, 2) induces a holomorphic map

|
*

: X(N$, 2$) � X(N, 2)

which is equivariant w.r.t. the actions of TN$ and TN on the toric varieties
X(N$, 2$), X(N, 2).

Theorem 2.3. If |: (N$, 2$) � (N, 2) is a map of fans, |
*

is proper if
and only if |&1( |2| )=|2$|. In particular, if N=N$ and 2$ is a refinement
of 2, that is, if each cone of 2 is a union of cones of 2$, then
id

*
: X(N, 2$) � X(N, 2) is proper and birational.

Proof. See [22, Thm. 1.15, p. 20, and Cor. 1.18, p. 23]. K

(g) Let N$Zd be a lattice of rank d and _/NR a simplicial,
rational s.c.p. cone of dimension k�d. _ can be obviously written as
_=*1+ } } } +*k , for distinct 1-dimensional cones *1 , ..., *k . We denote by

Par(_) :={x # (N_)R | x= :
k

j=1

=j n(*j), with 0�=j<1 for 1� j�k=
the fundamental (half-open) parallelotope which is associated to _. The
multiplicity mult(_, N) of _ with respect to N is defined as

mult(_, N) :=*(Par(_) & N_)=Vol(Par(_); N_),

where

Vol(Par(_); N_) :=
Vol(Par(_))

det(N_)
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is the relative volume of Par(_) w.r.t. N_ . The affine toric variety U_ is
smooth if and only if mult(_, N)=1.

Theorem 2.4. Every toric variety X(N, 2) admits a TN -equivariant
desingularization

f =id
*

: X(N, 2$) � X(N, 2)

by a suitable refinement 2$ of 2.

In fact, one can always make 2 simplicial without introducing additional
rays. (This step relies on Carathe� odory's theorem, cf. [6, III 2.6, p. 75].)
In a second step, this new simplicial 2 will be subdivided further into
subcones of strictly smaller multiplicities than those of the cones of the
starting-point. (Since for each _ # 2, mult(_, N) is a volume, mult(_̂, N)<
mult(_, N) for every simplicial subcone _̂ of _.) 2$ is constructed after
finitely many subdivisions of this kind (cf. [15, pp. 31�35]).

(h) For the germ (U_ , orb(_)) of an affine d-dimensional toric
variety w.r.t. a singular point orb(_), (with dim(_)=d=dim(NR )), we
define the splitting codimension splcod(orb(_); U_) of orb(_) in U_ as

splcod(orb(_); U_)

:=max {$ # [2, ..., d] } U_ $U_$_Cd&$, dim(_$)=$

and Sing(U_$){< = .

(For orb(_) regular we can formally define splcod(orb(_); U_)=0.) If
splcod(orb(_); U_)=d, then orb(_) will be called an msc-singularity, i.e., a
singularity having the maximum splitting codimension. An msc-singularity
(U_ , orb(_)) is absolutely unbreakable if U_ cannot be isomorphic even to
the product of (at least two) singular affine toric varieties.

(i) For any abelian finite G/GL(d, C), d�2, of order l�2, which
is small (i.e. which has no pseudoreflections), Cd�G is singular, with
singular locus Sing(Cd�G) containing at least the image [0] of the origin
under the canonical quotient-map Cd � Cd�G. If we fix a decomposition

G$(Z�q1Z)_ } } } _(Z�q}Z)

into cyclic groups, take primitive qi th roots of unity `qi
, and choose eigen-

coordinates z1 , ..., zd , then the action of G on Cd is determined by

GL(d, C)_Cd�#(Z�qiZ)_Cd
% (gi , (z1 , ..., zd))

[ (`:i, 1
qi

z1 , ..., `:i, d
qi

zd) # Cd, 1�i�},
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for generators gi=diag(`:i, 1
qi

, ..., `:i, d
qi

), where the weights (:i, 1 , ..., :i, d)
are unique up to only the usual conjugacy relations. Using the above
toric glossary, we may identify Cd�G with the affine toric variety
U_0

=Max-Spec(C[_ 6
0 & MG]) being associated to the positive orthant

_0=pos([e1 , ..., ed]) with respect to the lattice of weights

NG=Zd+ :
}

i=1

Z \ 1
q i

(: i, 1 , ..., : i, d)T+ with det(NG)=
1
l
,

where MG denotes the dual of NG , which can be viewed as the lattice
parametrizing all G-invariant Laurent monomials. Formally, we identify
[0] with orb(_0) and U_0

with the toric variety X(NG , 2G) w.r.t. the fan 2G

consisting of _0 itself, together with all its faces. In these terms, and since
_0 is a simplicial s.c.p. cone, the singular locus of X(NG , 2G) can be written
as the union

Sing(X(NG , 2G))=orb(_0) _ \. [U_0
({) | {O{_0 , mult({, NG)�2]+ .

For 0�i�d, 2G(i) has ( d
i ) simplicial cones. In particular, 2G(0)=[0], and

for 1�i�d,

2G(i)=[_0(&1 , ..., &i) :=pos(e&1
, ..., e&i

) | 1�&1<&2< } } } <&i�d].

For any cone _0(&1 , ..., &i) # 2G(i), U_0
(_0(&1 , ..., &i)) is nothing but

([z=(z1 , ..., zd) # Cd | z&1
= } } } =z&i

=0])�G,

i.e., a (d&i)-dimensional coordinate-subspace of Cd divided by the
inherited G-action.

Proposition 2.5. For an abelian G (as above) the following conditions
are equivalent:

(i) X(NG , 2G)=U_0
=Cd�G is Gorenstein,

(ii) G/SL(d, C),

(iii) �d
j=1 :i, j #0 mod qi , for 1�i�},

(iv) ( (1, 1, ..., 1), n)�1, for all n # _0 & (NG"[0]),

(v) (U_0
, orb(_0)) is a canonical singularity of index 1.

Proof. (i) � (ii) follows from [32] and (i) � (v) from [23, 24]. All the
other implications can be checked easily. K

From now on, let X(NG , 2G) be Gorenstein. The cone _0=pos(sG) is
supported by the so-called junior lattice simplex sG=conv([e1 , ..., ed])
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(w.r.t. NG ; cf. [3, 14]). Note that up to 0 there is no other lattice point
of _0 & NG lying ``under'' the affine hyperplane of Rd containing sG .
Moreover, the lattice points representing the l&1 non-trivial group
elements are exactly those belonging to the intersection of a dilation *sG

of sG with Par(_0), for some integer *, 1�*�d&1. For c.i.-U_0
's, our

purpose is to construct crepant, projective (full) desingularizations

f: X(NG , 2G@) � X(NG , 2G)=U_0

which are TNG
-equivariant (with TNG

=(C*)d�G denoting the algebraic
torus embedded in U_0

), and have overlying (quasiprojective) spaces
X(NG , 2G@) associated to fans 2G@ which appropriately refine 2G .

3. ON B.C.B.-TRIANGULATIONS OF LATTICE POLYTOPES

In this section we introduce ``b.c.b.-triangulations'' and study their
behaviour with respect to joins and dilations. (We shall mostly use the
standard terminology from the theory of polyhedral complexes and
polytopes, cf. [31, 34]).

(a) By vert(S) we denote the set of vertices of a polyhedral complex
S. By a triangulation T of a polyhedral complex S we mean a geometric
simplicial subdivision of S with vert(S)/vert(T). If T is d-dimensional,
then by T(i), 0�i�d, we denote the set of i-dimensional simplices of T.
A polytope P will be frequently identified with the polyhedral complex
consisting of P itself together with all its faces.

(b) A triangulation T of a polyhedral d-complex S in Rd is coherent
(or regular) if there exists a strictly upper convex T-support function
�: |T| � R, i.e., a piecewise linear real function on the underlying space
|T| for which

�(tx+(1&t) y)�t�(x)+(1&t) �(y)

for all x, y # |T| and t # [0, 1],

such that for each maximal simplex s there is a linear function hs(x) satis-
fying �(x)�hs (x) for all x # |T|, with equality if and only if x # s. The set
of all (real) strictly upper convex T-support functions is denoted by
SUCSFR (T).

Lemma 3.1 (Patching Lemma). Let P/Rd be a d-polytope, T=
[si | i # I] (with I a finite set) a coherent triangulation of P, and Ti=
[si, j | j # Ji] (Ji finite, for all i # I) a coherent triangulation of si , for all
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i # I. If �i : |Ti | � R denote strictly upper convex Ti -support functions, such
that

�i | si & si$
=�i $ | si & si$

for all (i, i $) # I_I, then

T� :=[all the simplices si, j | j # Ji , i # I]

forms a coherent triangulation of the initial polytope P.

The above �i 's can be canonically ``patched together'' to construct an
element � of SUCSFR (T� ); see [15, Cor. 1.12, p. 115] or [4, Lemma 2.2.2,
pp. 143-145].

(c) A triangulation T of a d-dimensional simplex s (or, more
generally, of any pure d-dimensional simplicial complex S) is balanced if
its graph can be (d+1)-coloured, i.e., if there is a function

.: vert(T) � [0, 1, 2, ..., d]

such that any two adjacent vertices receive different values (``colours'')
under .. If T is a balanced triangulation of a d-polytope, then all facets
of T receive all the colours, and the colouring function . is unique (up to
permutation of the colours).

Example 3.2. The first two 2-dimensional triangulations (A) and (B)
of Fig. 1 are balanced, whereas (C) and (D) are not.

(d) Let N be a d-dimensional lattice. A lattice polytope (w.r.t. N) is
a polytope in NR $Rd all of whose vertices belong to N. If [n0 , n1 , ..., nk]
is a set of affinely independent lattice points (k�d ), s the k-simplex
s=conv([n0 , n1 , ..., nk]), and Ns :=lin([n1&n0 , ..., nk&n0]) & N, then s is
basic if it satisfies any one of the following equivalent conditions:

FIGURE 1
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(i) affZ(n0 , ..., nk)=N & aff(s),

(ii) [n1&n0 , n2&n0 , ..., nk&n0] is a Z-basis of Ns ,

(iii) [n1&n0 , n2&n0 , ..., nk&n0] is a part of a Z-basis of N,

(iv) s has relative volume Vol(s; Ns )=Vol(s)�det(Ns)=1�k! (w.r.t. Ns ).

A lattice triangulation T of a lattice polytope P (w.r.t. N$Zd) is a
triangulation of P with vertices in N, and it is called basic if all its simplices
are basic. If T is a basic triangulation of P w.r.t. N, then in particular we
have

affZ(vert(T))=N & aff(P).

Affine maps 8: NR � NR will be called affine integral transformations (w.r.t
N) if they satisfy N=8(N), that is, if they have the form 8(x)=Mx+;,
with M # GLZ(N)$GL(d, Z) and ; # N (i.e., if they are composed of
N-unimodular transformations and N-integral translations).

Definition 3.3. From now on, b.c.b.-triangulation is used as an
abbreviation for a basic, coherent, balanced triangulation of a lattice
polytope.

Lemma 3.4 (Preservation of the ``b.c.b.-Property'' under Affine Transfor-
mations). Let T be a lattice triangulation of a lattice polytope P/NR

(w.r.t. N$Zd) and let 8: NR � NR be a (not necessarily integral ) regular
affine transformation. If T is a b.c.b.-triangulation w.r.t. N, then its image
8(T) :=[8(s) | s # T] under 8 is again a b.c.b.-triangulation of the trans-
formed lattice d-polytope 8(P) w.r.t. the lattice 8(N).

(e) If T1 (resp. T2) is a triangulation of a d1 -polytope P1 (resp. of a
d2 -polytope P2) in Rd such that dim(P1 _ P2)=dim(P1)+dim(P2)+1,
that is, such that aff(P1) and aff(P2) are skew affine subspaces of NR , then
the join T1 V T2 of T1 and T2 is defined by

T1 V T2=[conv(s1 _ s2) | s1 # T1 , s2 # T2].

It is a triangulation of the usual join P=conv(P1 _ P2) of P1 with P2 ,
which is a polytope of dimension d1+d2+1 (cf. [31, Ex. 7, p. 136] and
[34, Ex. 9.9, p. 323]).

Theorem 3.5 (Preservation of the ``b.c.b.-Property'' for Joins). Let T1 ,
T2 be triangulations of polytopes P1 , P2 /NR $Rd of dimensions d1 resp. d2

in skew affine subspaces of NR , i.e., satisfying dim(P1 _ P2)=d1+d2+1.
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If T1 , T2 are b.c.b. triangulations of P1 , P2 w.r.t. N, then T1 V T2 is a
b.c.b.-triangulation of the (d1+d2+1)-polytope P=conv(P1 _ P2) w.r.t. N
if and only if

affZ(vert(T1) _ vert(T2))=N & aff(P1 _ P2).

Proof. By (e) it is obvious that T1 V T2 is a lattice triangulation of P
w.r.t. the lattice N.

(i) Let s be a (d1+d2+1)-simplex of T1 V T2 . By definition it can be
written as

s=conv([n (1)
0 , ..., n (1)

d1
, n (2)

0 , ..., n (2)
d2

]),

where conv([n (i)
0 , ..., n (i)

di
]) # Ti (di) is a basic simplex w.r.t. N & aff(Pi), for

i=1, 2. In particular, we have affZ([n (1)
0 , ..., n (1)

d1
, n (2)

0 , ..., n (2)
d2

])=
affZ(vert(T1) _ vert(T2)). Thus, s is basic w.r.t. N & aff(P1 _ P2) if and only
if

affZ(vert(T1) _ vert(T2))=N & aff(P1 _ P2).

(ii) If �1 # SUCSFR (T1), �2 # SUCSFR (T2), then the function 9
defined by

9(tx+(1&t) y) :=t�1(x)+(1&t) �2(y),

for all x # P1 , y # P2 , and t # [0, 1],

belongs to SUCSFR (T1 V T2).

(iii) If T1 and T2 are both balanced and have dimensions d1 and d2 ,
with colouring functions

.1 : vert(T1) � [0, 1, 2, ..., d1] and

.2 : vert(T2) � [0, 1, 2, ..., d2],

then .1 V .2 : vert(T1 V T2) = vert(T1) _ vert(T2) � [0, 1, ..., d1 + d2 + 1]
defined by

(.1 V .2)(x) :={.1(x),
.2(x)+d1+1,

if x # vert(T1)
if x # vert(T2)

is a colouring function for T1 V T2 . K

(f ) Let now T be a triangulation of a d-polytope P/Rd. If *P=
[*x | x # P] is the *-times dilated P, i.e., the image of P under the dilation
map d* : Rd

% x [ *x # Rd, where * # Z, *�1, then *T will denote the
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FIGURE 2

corresponding triangulation of *P under the same dilation map, i.e., *T=
[*s | s # T].

Lemma 3.6 (Preservation of the ``c.b.-Property'' for Dilations). Let T

denote a triangulation of a d-polytope P/Rd, and *�1 an integer.

(i) If T is coherent, then *T is coherent.
(ii) If T is balanced, then *T is balanced.

(iii) If P is a lattice polytope w.r.t. a lattice N/Rd, and T a lattice
triangulation, then *T is a lattice triangulation too w.r.t. the same lattice.

Proof. For (i), if � # SUCSFR (T), then � b (d*)&1 # SUCSFR (*T). For
(ii), if . is a colouring function for T, then . b (d*)&1 serves as a colouring
function for *T. (iii) is obvious because * is an integer. K

Remark 3.7. If T is a basic triangulation of a lattice d-polytope P/Rd,
then for *�2, the dilation *T is non-basic (see Fig. 2). Nevertheless, as we
shall see below in Theorem 6.5, any dilation of a b.c.b. triangulation admits
a b.c.b. triangulation.

4. TORUS-EQUIVARIANT, CREPANT, PROJECTIVE
RESOLUTIONS

Reverting to (singular) Gorenstein abelian quotient spaces

X(NG , 2G)=U_
0
=Cd�G, G/SL(d, C), d�2,

we explain how the desired desingularizations can be constructed by means
of triangulations. Let f =id

*
: X(NG , 2G@) � X(NG , 2G) be an arbitrary

TNG
-equivariant desingularization of X(NG , 2G) (as in Thm. 2.4). There are

one-to-one correspondences:
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* # (2G@(1)"[R�0e1 , ..., R�0ed])

n(*) # \�[Sk1(_) | _ # 2G@]"[e1 , ..., ed]+ (4.1)

Dn(*) :=V(*)=V(R�0 n(*)) # {exceptional prime divisors
with respect to f =

Furthermore, Dei
:=V(R�0 ei) in X(NG , 2G@), corresponds to the strict

transform of

([z=(z1 , ..., zd) # Cd | zi=0])�G

with respect to f, for 1�i�d.

Proposition 4.1. A TNG
-equivariant partial desingularization

f : X(NG , 2G@) � U_
0

(defined by any fan 2G@ refining 2G w.r.t. NG) is crepant if and only if

�[Sk1(_) | _ # 2G@]/{x=(x1 , ..., xd)T # (NG)R } :
d

i=1

xi=1= . (4.2)

Proof. Let m1 , ..., md be R-linearly independent vectors of MG . The
dualizing sheaf |TNG

of TNG
is generated by the rational differential form

,TNG
:=

\det(MG)
det( � 1�i�d Zm i)

}
du1

u1

7 } } } 7
dud

ud
,

where u1=e(m1), ..., ud=e(md) (,TNG
is independent of the specific choice

of m1 , ..., md). Moreover, for the dualizing sheaf |X(NG, 2G) of X(NG , 2G) we
have

|X(NG, 2G)=OX(NG, 2G)(KX(NG, 2G))=C[MG & int(_6
0 )] } ,TNG

(cf. [23, Lemma 3.3, p. 293]). On the other hand, conditions (i)�(v) of
Prop. 2.5 are equivalent to the triviality of |X(NG, 2G) , as one can easily
verify by using Ishida's criteria [22, p. 126]. This means, in particular, that
the semigroup ideal MG & int(_6

0 ) of the semigroup ring MG & _6
0 is

principal. In fact, it is generated by the element (1, 1, ..., 1, 1) and
C[MG & int(_6

0 )] by e((1, 1, ..., 1, 1)), where ordV(R
�0

ei)
(e((1, ..., 1)) } ,TNG

)
=1 for 1�i�d.
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f is crepant if and only if the difference

KX(NG, 2G@ )& f *(KX(NG, 2G))

between the canonical divisor of X(NG , 2G@) and the pull-back of the
canonical (trivial) divisor of X(NG , 2G) vanishes. In this case, KX(NG, 2G@ ) is
trivial too. Let

X(NG , 2G@)=\.4 _ # 2G@ U@_+<t ,

_$ # 2G@(d ) an arbitrary maximal cone of 2G@ , * a ray from (2G@(1)"
[R�0e1 , ..., R�0ed]) with *O_$, and Dn(*) the corresponding exceptional
prime divisor (as in (4.1)). Since

H0(U� _$ ; |X(NG, 2G@ ))=C[MG & int((_$) 6 )] } ,TNG
,

by the same argument as above, if |U@_$
is trivial, then it is generated

by e((1, 1, ..., 1, 1)) } ,TNG
. The discrepancy of Dn(*) with respect to f |U@_$

is equal to ordDn(*)
(e((1, ..., 1)) } ,TNG

)&1, where this vanishing order of

(e((1, ..., 1)) } ,TNG
) along DN(*) equals

ordDn(*)
(e((1, ..., 1)) } ,TNG

)=( (1, ..., 1), n(*)) ,

by [7, lemma of p. 61] and the definition of ,TNG
. Hence f is crepant if and

only if the condition (4.2) is satisfied. K

Corollary 4.2. All TNG
-equivariant partial crepant desingularizations

of U_
0
=Cd�G (with overlying spaces having at most Gorenstein abelian

quotient singularities) are of the form

fT: X(NG , 2G@(T)) � U_
0

(4.3)

for some fan 2G@(T)=[_s , s # T], where _s :=[#x # (NG)R | x # s, # # R�0]
and T denotes a lattice triangulation of the junior simplex sG .

Since a simplex s # T is basic if and only if mult(_s , NG)=1, i.e., if and
only if the toric variety U_

s
is smooth, we have:

Lemma 4.3. fT: X(NG , 2G@(T)) � U_
0

is a crepant ( full ) desingulariza-
tion if and only if T is basic.
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Example 4.4. Consider the 3-dim. Gorenstein cyclic quotient singularity
of type ( 1

7)(3, 3, 1) (in the sense of [25, Section 4.2]). The junior simplex
sG=conv([e1 , e2 , e3]) contains three additional inner lattice points,
namely n1=( 1

7)(3, 3, 1)T, n2=( 1
7)(2, 2, 3)T, n3=( 1

7)(1, 1, 5)T. The unique
basic triangulation T of sG is drawn in Fig. 3. The three exceptional prime
divisors on X(NG , 2G@(T)) are isomorphic to

Dn
1
$P2

C , Dn
2
$F3 , and Dn

3
$F5 ,

respectively, where Fj :=P(OP
1
C

�OP
1
C
( j)), j�0, denote the Hirzebruch-

surfaces.

Coming back to (4.3), we see that for every � # SUCSFQ (NG , 2G@(T)),
the restriction �|T belongs to SUCSFR (T); and conversely, starting from
any � # SUCSFR (T), one can construct by ``pulling vertices'' a strictly
upper convex T-support function �$ with �$(vert(T)) belonging to Q (or
even to Z after appropriate ``scaling''), and take an extension �� of it on
|2G@(T)|, for which �� (#x)=�$(x), for all x # s, s # T(d ), and # # R�0).
Therefore, by 2.1, 2.2, we obtain:

Proposition 4.5. fT is a projective crepant morphism if and only if T

is coherent.

Hence, the existence of a projective, crepant (full) desingularization of
U_

0
=Cd�G is equivalent to the existence of a basic, coherent triangulation

of the junior simplex sG . Our use of balanced complexes is a requirement
which is not needed from the toric point of view; however, it is our main
technical tool for ``gluing'' triangulations together. In particular, it is not
clear whether every dilation of a basic triangulation has a basic refinement;
but this will be proved for balanced basic triangulations, and for b.c.b.
triangulations, below.

FIGURE 3
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5. FROM SPECIAL DATA TO WATANABE SIMPLICES

In 1980 Watanabe [33, 1.7, 2.1, and 2.8] classified all abelian quotient
c.i.-singularities in terms of ``special data'' which encode complete descrip-
tions of the corresponding polynomial rings and acting groups. Although
his method for proving this theorem is purely algebraic, he also indicated
how could one represent these ``special data'' by certain graphs (which
are actually forests, and will be henceforth called Watanabe forests). As
we shall see in the present section, this graph-theoretic approach to
the Classification Theorem 5.3 yields a very useful lattice-geometric inter-
pretation. More precisely, we work out the following one-to-one corre-
spondences:

special non-trivial abelian quotient c.i.-singularities

{ data D=(D, w) =W { (Cd�G, [0])$(Cd�GD, [0]) =(up to isomorphisms& ) (up to analytic isomorphisms$ )

{
non-trivial

Watanabe forests WD

(up to graph-theoretic
isomorphisms$wg) =W {

Gorenstein, simplicial, singular, toric
varieties X(NG , 2G)=U_0

for which
sG is a Watanable simplex w.r.t. NG

(up to affine integral transformations)=
Let us first formulate Watanabe's result.

Definition 5.1. Let d�2 be an integer. A special datum D=(D, w)
(w.r.t. d ) is a pair consisting of a set of non-empty subsets of [1, 2, ..., d]
(i.e. D�2[1, 2, ..., d]"[<]), together with a ``weight-function'' w: D � N,
such that:

(i) For each i # [1, 2, ..., d] we have [i] # D.

(ii) For every pair of index-subsets J, J$ # D, either J�J$, or J$�J,
or J & J$=<.

(iii) If J is a maximal element with respect to the inclusion relation
``�'', then w(J)=1.

(iv) If J, J$ # D and J % J$, then w(J)>w(J$) and w(J$) | w(J).

(v) For J1 , J2 , J # D, with J1C&J, J2C&J, we have w(J1)=w(J2).

For this the binary cover relation ``C&'' on the sets of D is defined by:

JC&J$ �
def

(J % J$ and _3 J", J" # D: J % J" % J$).
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D=(D, w) is non-trivial if there is at least one subset J # D with cardinality
*(J)�2.

Definition 5.2. Let d�2 be an integer, and let D=(D, w) be a special
datum w.r.t. d. We define the polynomial ring RD and the group GD by

RD :=C[rJ | J # D] with rJ :=\`
i # J

ri+
w(J)

,

and

GD :=�{diag(1, ..., 1, `w

ith pos.

, 1, ..., 1, `w
&1

j th pos.

, 1, ..., 1) }
i # J1 , j # J2

for all J1 , J2 , J # D

with J1C&J, J2C&J
and w=w(J1)=w(J2)=�

Here `w denotes a primitive wth root of unity, and the diagonal matrices
generating GD are (d_d )-matrices in SL(d, C).

Theorem 5.3 (Watanabe's Classification Theorem). Let d�2 be an
integer and G be a finite, abelian subgroup of SL(d, C). The following condi-
tions are equivalent:

(i) The quotient space Cd�G is minimally embeddable as a complete
intersection of hypersurfaces in an affine (complex) space.

(ii) There is a special datum D=(D, w) (w.r.t. d ), such that

Cd�G$Max-Spec(RD)

and G is conjugate to GD (within SL(d, C)).
In other words,

(Cd�G, [0])$(Cd�GD, [0]),

i.e., up to analytic isomorphism, the (germs of ) abelian quotient
c.i.-singularities are parameterized by the set of non-trivial special data
D=(D, w) (w.r.t. d ).

Remark 5.4. Let D=(D, w) be a special datum (w.r.t. d ) and let
J [1]

� , ..., J [}]
� denote the maximal elements of D (w.r.t. ``�''). By the

properties (i) and (ii) in 5.1, we have:

(i) �}
i=1 J [i]

� =[1, 2, ..., d] (set-theoretically).

(ii) For any J # D that is not a singleton (*(J)�2), there is a set-
theoretic partition: J=�4 [J$ # D | J$C&J].
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Remark 5.5. The elements of J's determine the positions of the roots of
unity within the diagonals of the matrices generating GD. As there are
many choices for the elements of J's leading to the same matrices (up to
permutations of their entries), and since Theorem 5.3 gives the classifica-
tion up to isomorphism, we shall define ``isomorphisms'' between special
data in order to work only with convenient representatives of the corre-
sponding equivalence-classes. For a special datum D=(D, w) (w.r.t. d ) let

D( p) :=[J # D | *(J)= p], 1� p�d,

denote the subset of D consisting of all index-sets of fixed cardinality p.
Two special data D=(D, w) and D$=(D$, w$) (w.r.t. d) are isomorphic

(and we denote this isomorphism by D&D$) if there exists a bijection
3: [1, ..., d] � [1, ..., d] for which

(i) J # D � 3(J) # D$ (i.e., 3 induces bijections D( p) W D$( p) for
1� p�d ), and

(ii) w$(3(J))=w(J), for all J # D.

It is easy to verify the following equivalence-implications:

D&D$ � \ GD and GD$ belong to the same
conjugacy class (within SL(d, C))+

� (Cd�GD, [0])$(Cd�GD$ , [0])

Convention A. From now on, as representatives D=(D, w) of the
equivalence-classes from

([all special data (w.r.t. d )]�& ),

we shall consider (without loss of generality) only D's all of whose index
subsets J have the form J=[&, &+1, ..., !&1, !], 1�&�!�d, i.e., con-
tiguous segments of [1, 2, ..., d].

Convention B. We refer to the minimum and maximum elements of
J=[&, &+1, ..., !&1, !] with the notation &=&J and !=!J .

Definition 5.6. Let d�2 be an integer, D=(D, w) a special datum
w.r.t. d, and

J0=[&0 , &0+1, ..., !0&1, !0] # D
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a fixed index-set. We define the subdatum DJ0
=(DJ0

, wJ0
) of D relative to

J0 by

DJ0
:=[J # D | J�J0], and

wJ0
(J) :=

w(J)
w(J0)

, for all J # DJ0
.

The subdatum DJ0
=(DJ0

, wJ0
) can be viewed as an ``autonomous'' special

datum D$=(D$, w$) w.r.t. !0&&0+1 via the bijection

�0 : DJ0 � D$=[1, 2, ..., !0&&0+1]

defined by

�0(&0)=1, �0(&0+1)=2, ..., �0(!0)=!0&&0+1,

(where w$(J) :=wJ0
(�&1

0 (J)), for all J # D$).

Convention C. From now on we shall use a subdatum of a special
datum D relative to some J0 in both ``roles'' without referring explicitly to
the identification map �0 . (In the first case we shall emphasize the induced
embedding RDJ0

/�RD or GDJ0
/GD; in the latter, its own right to enjoy

properties (i)�(v) of 5.1.)

Next we recall some definitions concerning trees. We shall mostly use
standard terminology. As usual, a graph is determined by the set of its ver-
tices and the set of its edges. A vertex v is a neighbour of another vertex v$,
if v and v$ are adjacent in the considered graph. A graph is connected if
there is a path between any two vertices of it. A cycle in a graph is a simple
path from a vertex to itself. By a weighted graph is meant a graph with
weights assigned to its vertices. Two weighted graphs are isomorphic to
each other (denoted by $ wg) if there exists a bijection between the sets of
their vertices preserving both adjacency and weights.

A graph having no cycle is acyclic. A tree is a connected acyclic graph.
(A trivial tree is a tree consisting of only one vertex.) An arbitrary acyclic
graph is called a forest. (So all connected components of a forest are trees.)
A leaf is a vertex of degree at most 1, i.e., a vertex being contained in at
most one edge. A rooted tree distinguishes one vertex as its root. If v is a
non-root vertex of a rooted tree, then its parent is the neighbour of v on
the path connecting v with its root. The children of v are its other
neighbours. In this case, the leaves are exactly the vertices without children.

A rooted plane tree is a rooted tree which is embedded in the plane, i.e.,
a rooted tree which is endowed with a left-to-right ordering specified for
the children of each vertex. (By a plane forest we mean a forest having only
rooted plane trees as connected components.)
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Definition 5.7. Let d be an integer �2 and D=(D, w) be a special
datum w.r.t. d. The Watanabe forest associated to D is defined to be a
weighted plane forest WD whose vertices are in one-to-one correspondence
with the elements of D and whose edges are to be drawn as follows: If J,
J$ are two elements of D, then the corresponding vertices of WD, say vJ ,
vJ$ , should be joinable by an edge of WD if and only if either JC&J$ or
J$C&J. If WD happens to be a tree, then we shall speak of a Watanabe tree
(being associated to D). For a J # D, we associate the weight w(vJ) :=w(J)
to vJ . Moreover, for J, J$ # D, with JC&J$, using Watanabe's original
upside-down convention, we shall join vJ and vJ$ in such a way that vJ$ lies
over vJ . It is therefore useful to regard the edge connecting vJ with vJ$ as
``directed'' and denote it by vJ , vJ$

�. (For typographical reasons, in our
figures we shall denote the vertices of the forest WD by |vJ , w(J)| enclosing
also their weights.)

Remark 5.8. (i) By 5.1(i) we have �* [J # D | vJ leaf]=[1, 2, ..., d]
(set-theoretically).

(ii) By definition,

D&D$ � WD$ wg WD$

(iii) Let D=(D, w) be a special datum and assume that its
Watanabe forest WD has connected components

WD[1] , WD[2] , ..., WD[}&1] , WD[}]

whose vertices are in one-to-one correspondence with the elements of

D[1], D[2], ..., D[}&1], D[}]

for a partition D=�* 1�i�} D[i] of D. Then each component WD[i] has
root vJ�

[i] , with J [i]
� as in 5.4, and D[i] :=(D[i], w|D[i]) is to be identified

with the subdatum DJ�

[i] (in the sense of 5.6), for 1�i�}. Furthermore,
the group GD splits into the direct product

GD=GD[1] _GD[2] _ } } } _GD[}&1] _GD[}] .

Remark 5.9. Let D=(D, w) be a special datum (w.r.t. an integer d�2).
Then we have:

(i) (Cd�GD, [0])$(U_0
, orb(_0)) is a singularity if and only if WD

contains at least one non-trivial tree. In this case,

splcod(orb(_0); U_0
)=d&*[all trivial trees of WD].
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(ii) (Cd�GD, [0]) is a d-dimensional msc-singularity if and only if all
connected components WD[i] of WD are non-trivial trees. In this case, for
d�3, all GD's are abelian, non-cyclic groups.

(iii) (Cd�GD, [0]) is a d-dimensional absolutely unbreakable msc-
singularity if and only if WD itself is a non-trivial Watanabe tree. If, in
addition, this singularity is a hypersurface-singularity, then Theorem 5.3
can be simplified as follows:

Proposition 5.10. Let G be a finite abelian subgroup of SL(d, C), d�2,
of order l�2. Then (X(NG , 2G), orb(_0)) is an absolutely unbreakable
hypersurface-msc-singularity if and only if G is conjugate (within SL(d, C))
to a group of the form

G(d; k) :=([diag(1, 1, ..., 1, `k

ith position

, `k
&1

(i+1)-position

, 1, ..., 1, 1) | 1�i�d&1]) ,

for a k�2. In this case, l=kd&1, and one has the following analytic germ
isomorphisms

(X(NG , 2G), orb(_0))$(Cd�G(d; k), [0Cd])

and

(Cd�G(d; k), [0Cd])$\{(z0 , ..., zd) # Cd+1 } zk
0= `

d

i=1

zi = , 0Cd+1+ . (5.1)

In particular, G(d; k)=GD$(Z�kZ)d&1, where D=(D, w) denotes the
special datum with

D=[[1], [2], ..., [d], [1, 2, ..., d]],

w([ j])=k, 1� j�d, and w([1, 2, ..., d])=1.

Its associated Watanabe tree is given in Figure 4.

FIGURE 4
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Definition 5.11. We shall call the above singularities (5.1) (d; k)-
hypersurface-singularities, or simply (d; k)-hypersurfaces.

Remark 5.12. (i) Using the projection map

{(z0 , z1 , ..., zd) # Cd+1 } zk
0= `

d

i=1

zi= % (z0 , z1 , ..., zd) [ (z1 , ..., zd) # Cd

one may regard (Cd�G(d; k), [0Cd]) as the total space of a k-sheeted
covering of (Cd, 0Cd) having the union of all coordinate hyperplanes of Cd

as its branching locus.

(ii) Removing the assumption for (X(NG , 2G), orb(_0)) to be absolutely
unbreakable, we obtain a direct product of such hypersurface-singularities.

To present a fairly short proof of our Main Theorem 1.2 (by avoiding to
work simultaneously with forests and triangulations), we introduce a new
term, under the name ``Watanabe simplex.''

Definition 5.13. Let d�0 be an integer and N a lattice of rank d in
NR $Rd. The Watanabe simplices w.r.t. N are the lattice simplices s (of
dimension �d ) satisfying

affZ(s & N)=aff(s) & N

which are defined inductively (starting in dimension 0) in the following
manner:

(i) Every 0-dimensional lattice simplex s=[n], n # N, is a Watanabe
simplex.

(ii) A lattice simplex s/NR of dimension d $, 1�d $�d, is a
Watanabe simplex if and only if

v either s=s1 V s2 , where s1 , s2 are Watanabe simplices of
dimensions d1 , d2�0 with d $=d1+d2+1, with respect to sublattices
N1 /aff(s1), N2 /aff(s2) of N, such that affZ(s & N)=affZ(N1 _ N2),

v or s is a lattice translate of some dilation *s$, where *�2 is an
integer, and s$ is a d $-dimensional Watanabe simplex w.r.t. N.

(These conditions are mutually exclusive; with this definition every affine
integral transformation that preserves N also preserves the Watanabe
simplices of N.)

Example 5.14. The 2-dimensional lattice simplices (A) and (B) of
Fig. 5 are Watanabe simplices, whereas (C) and (D) are not Watanabe
simplices.
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FIGURE 5

We are now going to prove the following:

Theorem 5.15 (Reduction Theorem). Let d�2 be an integer, D=
(D, w) a non-trivial special datum (w.r.t. d ), WD the associated Watanabe
forest, and (Cd�GD, [0]) the corresponding abelian quotient c.i.-singularity.
If we identify the underlying space Cd�GD with the toric variety X(NGD

, 2GD
)

=U_0
(as in Section 2, (i)), then the junior simplex sGD

is a (non-basic)
Watanabe (d&1)-simplex w.r.t. NGD

; and conversely, every (non-basic)
Watanabe simplex of dimension �d&1 w.r.t. an N$Zd is (up to an affine
integral transformation) the junior simplex corresponding to some abelian
quotient c.i.-singularity.

The proof will be done in four steps. We begin with the case in which
WD is a Watanabe tree.

v First step. Let WD denote a non-trivial Watanabe tree. At first we
explain how the labeled weights naturally lead to ``free parameters''. By
5.4(i), J� =[1, 2, ..., d] is the maximal element of D (w.r.t. inclusion ``�'').
For any J # D, J % J� , there exists a unique chain of oversets

J0=JC&J1C&J2C& } } } C&J\&1C&J\=J� (with \�1)

which, in fact, corresponds to the directed path

[vJ0
, vJ1

�, vJ1
, vJ2

�, ..., vJ\&2
, vJ\&1

�, vJ\&1
, vJ\

�]

connecting vJ with the root vJ�
of WD. By 5.1(iii)�(iv), the weights of the

vertices of WD can be written in the form

w(vJ)=w(J)={1
>\&1

i=0 kJi, Ji+1

if J=J�

otherwise

for integers kJ0, J1
, kJ1, J2

, ..., kJ\&1, J\
(which are �2), assigned to the edges

vJ0
, vJ1

�, vJ1
, vJ2

�, ..., vJ\&2
, vJ\&1

�, vJ\&1
, vJ\

�.

Definition 5.16. By the above procedure we assign an integer kJ, J$�2
to every edge vJ , vJ$

� of WD (JC&J$). These integers will be called the free
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parameters of D (or of WD). For fixed J$, the value kJ, J$ is the same for all
J's for which JC&J$ (see 5.1(v)). Thus for kJ, J$ we can use the alternative
notation

kJ, J$=: k&J$, !J$

which indicates the ``free parameter source'' (with &J$ and !J$ as defined in
5.5). For example, the free parameter k of (d; k)-hypersurfaces equals k1, d .

Example 5.17. Up to an analytic isomorphism, all four-dimensional
absolutely unbreakable, msc-, quotient, abelian c.i.-singularities are either
(4; k)-hypersurfaces or singularities corresponding to exactly one of the
four special data D, whose associated Watanabe trees WD and free
parameters k... are depicted in Figures 6a�d.

v Second step. Let WD be, as before, a non-trivial Watanabe tree
associated to a special datum D=(D, w) w.r.t. a d�2. Keeping conven-
tions A�C (of 5.5, 5.6) in mind, we fix an enumeration, say J1 , ..., Jp , of all
members of [J # D | JC&J� ], so that

Ji=[&i , &i+1, ..., !i&1, !i] for 1�i� p,

where

&1=1�!1 , &i=!i&1+1, for 2�i� p and &p�!p=d,

and denote by W1 , ..., Wp the subtrees of WD which begin with vJ1
, ..., vJp

as
in Fig. 7.

To the subtrees W1 , ..., Wp we assign the ``autonomous'' Watanabe trees
WD1

, ..., WDp
, induced by the subdata Di=(Di , wi) of D, where

Di :=DJi
, wi :=wJi

, for 1�i� p,

(in the notation introduced in 5.6). WDi
is derived from WD after the killing

of the parent vJ�
of vJi

(w.r.t. WD), the christening of vJi
as its root, and the

adoption of the appropriate weights. In other words, the children of the
root of WD become autonomous roots (and parents).

v In the arguments of the next four lemmas we shall use induction on
the cardinality number d of J� , i.e., on the dimension of the singularity.
(That all assertions are correct for d=2 can be checked easily, and will be
therefore omitted.) Our ``induction hypothesis'' is that all assertions (for-
mulated below) are true for all Watanabe trees having roots corresponding
to maximal index-sets of cardinality <d, and, in particular, true for
WD1

, ..., WDp
. (We do not exclude the possibility that some of the WDi

's
are trivial trees.)
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FIGURE 7

Lemma 5.18. (i) If we define

for all J$ # D

YD := .
J # D {diag(1, ..., 1, `w(J$)

&J -th pos.

, 1, ..., 1, `&1
w(J$)

&J $ -th pos.

, 1, ..., 1) } with J$C& J = ,

and &J<&J$

then GD=(YD) , and YD is a minimal generating system for GD.

(ii) Identifying Cd�GD with X(NGD
, 2GD

)=U_0
as in Section 2(i), we

obtain

NGD
=Zd+ZND, \Zd= :

d

i=1

Zei+ ,

where [e1 , ..., ed] are the unit vectors of (NGD
)R $Rd, and

for all J$ # D

ND := .
J # D { 1

w(J$)
(e&J

&e&J$
) } with J$C&J = .

and &J<&J$

(iii) Furthermore, *(YD)=*(ND)=d&1.

Proof. (i) Obviously, each element of the generating system given in
the definition 5.2 of GD can be written as product of elements of YD, and
any group generated by a proper subset of YD is a proper subgroup of GD.

(ii) This follows from the usual representation of the group elements
of YD by lattice points in NGD

.

(iii) By induction hypothesis, *(YDi
)=*(NDi

) equals !i&&i , for all i,
1�i� p. Hence,
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*(YD)=*(ND)= :
p

i=1

(! i&&i)+( p&1)

= :
p&1

i=1

!i& :
p

i=1

&i+(d&1)+( p&2)

= :
p&1

i=1

(&i+1&1)& :
p

i=2

&i+(d&1)+( p&1)=d&1,

and the proof is completed. K

In the following we denote by [n (D)
2 , n (D)

3 , ..., n (D)
d ] an enumeration of

d&1 elements of ND such that

n (D)
&i

=
1

k1, d
(e1&e&i

) for 2�i� p. (5.2)

Furthermore, we assume that we have chosen an enumeration of the
elements [n (Di)

&i+1 , ..., n (Di)
!i

] of NDi
such that

n (D)
&i+1=

1
k1, d

n (Di)
&i+1 , n (D)

&i+2=
1

k1, d
n (Di)

&i+2 , ...,

n (D)
!i

=
1

k1, d
n (Di)

!i
, for 1�i� p.

Lemma 5.19. (i) [e1 , n (D)
2 , n (D)

3 , ..., n (D)
d ] is a Z-basis of the lattice

NGD
.

(ii) [n(D)
2 , n (D)

3 , ..., n (D)
d ] forms a Z-basis of NGD

& lin([e1&e2 ,
e1&e3 , ..., e1&ed]).

Proof. (i) By definition of NGD
it suffices to show that Zd/

Z[e1 , n (D)
2 , n (D)

3 , ..., n (D)
d ]. By induction hypothesis, we may assume

Ze&i
+Ze&i+1+ } } } +Ze!i

/Z[e&i
, n (Di)

&i+1 , ..., n (Di)
!i

], for 1�i� p.

Since k1, d # Z and e&i
=&k1, dn (D)

&i
+e1 we also have

Ze&i
+Ze&i+1+ } } } +Ze!i

/Z[e1 , e (D)
&i

, n (D)
&i+1

, ..., n (D)
!i

]

and thus

.
p

i=2

[e1 , n (D)
&i

, n (D)
&i+1 , ..., n(D)

!i
]=[e1 , n (D)

2 , n(D)
3 , ..., n (D)

d ]

is indeed a Z-basis of NGD
.
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(ii) By (i), it suffices to prove that each vector n (D)
i , 2�i�d, belongs

to the subspace lin([e1&e2 , ..., e1&ed]). By (5.2) this is true for all n (D)
&i

,
2�i� p. By induction hypothesis, we may assume that

n(Di)
&i+ j # lin([e&i

&e&i+1 , ..., e&i
&e!i

]), 1�i� p, 1� j�!i&& i ,

and hence that

n (D)
&i+ j # lin([e&i

&e&i+1 , ..., e&i
&e!i

])

too. Since e&i
&e&i+ j=(e1&e&i+ j)&(e1&e&i

), we are done. K

v Third step. Since the lattice NGD
is ``skew'' and of rank d, it is not

so convenient to work directly it. For this reason, we shall perform two
affine transformations (cf. Lemma 3.4), such that

NGD
& aff(sGD

)=NGD
& aff([e1 , ..., ed])

becomes the standard lattice �d
i=2 Zei $Zd&1/Rd.

Define first 8D
1 : (NGD

)R � (NGD
)R by

8D
1 (x) :=e1&x.

Obviously,

8D
1 (sGD

)=conv([0, e1&e2 , e1&e3 , ..., e1&ed]),

and 8D
1 (NGD

)=NGD
. After that define the affine (linear) transformation

(cf. Lemma 5.19) 8D
2 : (NGD

)R � (NGD
)R by setting 8D

2 (e1)=e1 and

8D
2 \ 1

w(J$)
(e&J

&e&J$
)+ :=e&J $

, for all elements
1

w(J$)
(e&J

&e&J$
) of ND.

Now let 8D: (NGD
)R � (NGD

)R be the composition 8D :=8D
2 b 8D

1 and let

sGD

t
:=8D(sGD

) and N s
GD

t
:=8D(NGD

& aff(sGD
)).

Observe that N s
GD

t
=�d

i=2 Zei $Zd&1/Rd. To provide a convenient
description of the vertices of 8D(sGD

) incorporating our inductive argu-
mentation, we denote the vertex set of sGDi

t=8Di (sGDi
)/�!i

j=&i+1 Rej

corresponding to the tree WDi
by

vert( sGDi

t )=[0, y (Di)
&i+1 , y (Di)

&i+2 , ..., y (Di)
!i

],

in such a way that

y(Di)
&i+ j :=8Di (e&i+ j)=8Di

2 (e&i
&e&i+ j), 1�i� p, 1� j�!i&&i .
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Analogously, we label the vertices in vert(sGD

t )=[0, y (D)
2 , y (D)

3 , ..., y (D)
d ]

with

y (D)
j+1 :=8D(ej+1)=8D

2 (e1&ej+1) for 1� j�d&1.

Lemma 5.20. Using the notation introduced above,

y (D)
&i

=k1, d } e&i
, 2�i� p, (5.3)

y (D)
&1+ j=k1, d } y (D1)

&1+ j , 1� j�!1&&1 , (5.4)

y (D)
&i+ j=k1, d } (y (Di)

&i+ j+e&i
), 1�i� p, 1� j�!i&&i . (5.5)

Proof. (5.3) follows from (5.2) because

y (D)
&i

=8D
2 (e1&e&i

)=k1, d } 8D
2 (n (D)

&i
)=k1, d } e&i

.

On the other hand,

8D
2 (e&i

&e&i+ j)=k1, d } 8Di
2 (e&i

&e&i+ j)=k1, d } y (Di)
&i+ j

and (5.4) is clear by setting i=1 (&1=1). Finally, to get (5.5) we write

8D
2 (e1&e&i+ j)=8D

2 ((e1&e&i
)+(e&i

&e&i+ j))

=8D
2 (e1&e&i

)+8D
2 (e&i

&e&i+ j)

=k1, d } e&i
+k1, d } y (Di)

&i+ j

and we are done. K

Lemma 5.21. For sGD

t and N s
GD

t
we have:

(i)

:
d

j=2

Zej=Ns
GD

t
=affZ(N s

GD1

t
_ (N s

GD2

t
+e&2

) _ } } } _ (N s
GDp

t
+e&p

)).

(ii)

d&1=dim(sGD

t )=dim(sGD1

t )+ :
p

i=2

dim( sGDi

t +e&i
)+ p&1,
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(iii) The simplex sGD

t can be expressed as a dilation of p&1 simplex-
joins

sGD

t=k1, d ( sGd1

t V (sGD2

t+e&2
) V } } } V (sGDp

t +e&p
))/ :

d

j=2

Rej $Rd&1.

Proof. By construction we have N s
GDi

t
=�!i

j=&i+1 Zej which shows (i).
Obviously, dim( sGDi

t )=!i&&i and since the simplices sGD1

t , (sGD2

t +e&2
),

..., ( sGDp

t+e&p
) are contained in complementary subspaces, (ii) and (iii) are

immediate consequences of Lemma 5.20. K

Example 5.22. If we consider the 7-dimensional absolutely unbreakable,
msc-, quotient c.i.-singularity corresponding to the special datum D whose
Watanabe tree WD is shown in Fig. 8, then the image sD

t of the junior
simplex sD under 8D is the Watanabe simplex defined as convex hull of the
seven vectors:

(0, 0, 0, 0, 0, 0, 0)T, (0, k1, 7k1, 2 , 0, 0, 0, 0, 0)T,

(0, 0, k1, 7 , 0, 0, 0, 0)T, (0, 0, 0, k1, 7 , 0, 0, 0)T,

(0, 0, 0, 0, k1, 7 , k1, 7k4, 7 k4, 5 , 0)T, (0, 0, 0, k1, 7 , 0, k1, 7k4, 7 , 0)T,

(0, 0, 0, k1, 7 , 0, k1, 7k4, 7 , k1, 7k4, 7k4, 5)T.

v Fourth step. By Lemma 5.21 and by construction, it is now clear
that sGD

t is a (non-basic) Watanabe (d&1)-simplex w.r.t. Ns
GD

t
and sGD

a

FIGURE 8
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FIGURE 9

(non-basic) Watanabe (d&1)-simplex w.r.t. N s
GD

whenever WD is a non-tri-
vial Watanabe tree. If WD is a Watanabe forest, then we recall the ``super-
scripts in square brackets'' from 5.8(iii): Taking its connected components
to be WD[i] , 1�i�}, the group GD splits into the direct product of GD[i] 's,
and by arguments similar to those of the previous steps we can show that
sGD

is again a transformed join of sGD
[1] with the junior simplices sGD

[i] ,
2�i�}, corresponding to the other components, after translating by unit
vectors. (We do not need an extra dilation in this case.) Hence, the one
direction of the Reduction Theorem 5.15 is completely proved. The proof of
the converse statement is based on the ``backtracking method'', and on the
fact that any toric affine variety being associated to a rational s.c.p. cone
supported by a (non-basic) simplex, is the underlying space of an abelian
quotient singularity; it is therefore omitted.

Example 5.23. Up to isomorphism, the only four-dimensional abelian,
msc-, quotient c.i.-singularity which ``breaks'' is that corresponding to the
datum D and Watanabe forest WD of Fig. 9. (In fact, it splits into
two Hirzebruch�Jung singularities of types Ak1, 2&1 and Ak3, 4&1 , respec-
tively.)

The junior tetrahedron sGD
(which is the join of two 1-dimensional

Watanabe simplices), is drawn in Fig. 10, for the values of free parameters
k1, 2=3, k3, 4=5.

FIGURE 10
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6. FINAL STEP: BASIC, COHERENT TRIANGULATIONS OF THE
JUNIOR SIMPLEX

In this section we give the proof of our Main Theorem 1.2. To obtain the
desired basic, coherent triangulations of the junior simplices sG of all
abelian quotient c.i.-singularities, it suffices (by 3.4, 5.15) to construct
b.c.b.-triangulations for all Watanabe simplices. (For simplicity's sake, in
the proofs of 6.1 and 6.5, we shall assume that our reference lattice is the
standard lattice Zd within Rd.)

Proposition 6.1. All dilations *s for integral *�2, of a basic lattice
d-simplex s in Rd, have b.c.b.-triangulations.

Proof. Up to an affine integral transformation, we may assume that s
equals sd (w.r.t. Zd), where

sd :=conv([0, e1 , e1+e2 , ..., e1+ } } } +ed])

=[x # Rd | 0�xd�xd&1� } } } �x1�1].

The affine hyperplane arrangement Hd (of type A� d) consisting of the union
of hyperplanes

Hi (k)=[x # Rd | xi=k], for 1�i�d, k # Z,

and

Hi, j (k)=[x # Rd | xi&x j=k] for 1�i< j�d, k # Z,

is infinite, but only the hyperplanes

Hi (k)=[x # Rd | xi=k], for 1�i�d, 1�k�*&1

and

Hi, j (k)=[x # Rd | xi&x j=k] for 1�i< j�d, 1�k�*&1

intersect the interior of *sd . The hyperplanes Hi (k), 1�i�d, k # Z, sub-
divide Rd into unit cubes. Given such a cube

C(+) :=[0, 1]d++ (where +=(+1 , ..., +d) # Zd)

and fixing i, j with 1�i< j�d, we see that there is only one of the hyper-
planes Hi, j (k) intersecting the interior of C(+), namely Hi, j (+i&+j). The
hyperplanes

[Hi, j (+ i&+j) | 1�i< j�d]
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provide the ``usual'' basic triangulation of C(+) into d ! basic subsimplices
of the form

s(+, %)=++conv([0, e%(1) , e%(1)+%(2) , ..., e%(1)+%(2)+ } } } +%(d)]),

for all permutations % # Sd .

Thus, Hd defines a basic triangulation T(d ) of the entire space Rd (cf. [15,
Ch. III]). This triangulation is also coherent because

Rd
% x [ �� (x)=& :

0�i< j�d { :
0�k�xj&xi

H(xj&xi&k)

+ :
xj&xi�k�0

H(k&xj+xi)= # R

with x0 :=0, defined by means of the Heaviside function H: R � R

H(x) :={x
0

if x�0,
otherwise,

is a strictly upper convex function for it. Finally, it is balanced via the
colouring function .d :

Zd
% +=(+1 , ..., +d) [.d (+1+ } } } ++d) mod (d+1) # [0, 1, ..., d]

which (d+1)-colours all the facets s(+, %) of T(d ) .
Since the bounding hyperplanes of *sd are contained in Hd , the restric-

tion T[d; *] :=T(d ) |* sd is a b.c.b.-triangulation of *sd . K

Example 6.2. Figure 11 provides the ``nice'' basic triangulation T[2; 4]

of 4s2 inherited from the affine hyperplane H2 .

FIGURE 11
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Corollary 6.3. Theorem 1.2 is true for all (d; k)-hypersurface-
singularities.

Proof. In this case the junior simplex sG equals (up to an affine integral
transformation) ks, where

s=conv\{1
k

e1 , ...,
1
k

ed=+
w.r.t. NG(d; k) . But s is obviously basic. K

Remark 6.4. Corollary 6.3 generalizes Roan's result in [27, Section 5].
(Roan proved the existence of crepant desingularizations of (d; 2)-hypersur-
faces by successively blowing up the singular parts of the branching locus
of the corresponding double covering of Cd; see Remark 5.12(i).)

By Theorem 5.15, and what we have already explained in Section 4, our
Main Theorem 1.2 is now a consequence of the following:

Theorem 6.5. Every Watanabe simplex has a b.c.b.-triangulation.

Proof. Trivially, every Watanabe 0-simplex has a b.c.b.-triangulation. If
T1 (resp. T2) denotes a b.c.b.-triangulation of a Watanabe d1 -simplex s1

(resp. of a Watanabe d2 -simplex s2), then T1 V T2 is a b.c.b.-triangulation
of s1 V s2 by Theorem 3.5. Hence, it suffices to show that for a given
Watanabe simplex s, being equipped with a b.c.b.-triangulation, say T,
having a colouring function .: s & Zd � [0, 1, ..., d] and a strictly upper
convex function �: s � R, the *-times dilation of s possesses itself a b.c.b.-
triangulation. Every facet F of T gives rise to a unique affine integral trans-
formation 8F : sd � F (sd as before in the proof of 6.1) which respects the
colourings relatively to sd , i.e., which sends every vertex of sd to the vertex
of F that has the same colour. 8F maps *sd onto *F. Thus, the image

T*F
t

:=8F (T[d; *])=*T(d ) |*F

constitutes a triangulation of *F (which is a b.c.b.-triangulation by 3.6, 3.4,
and 6.1). The triangulations [ T*F

t
| F facets of T] fit together to give a

basic triangulation T� of *s. Since �� : |T� | � R defined by

*F % x [ �� (x) :=� \1
*

x++= } �� ((8F)&1 (x)) # R

(for =>0 sufficiently small and fixed for all facets F of T, and for �� as in
6.1), is strictly upper convex, the triangulation T� is also coherent by
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Patching Lemma 3.1. Finally, T� is balanced because .̂: |T� | � R defined
by

*F % x [ .̂(x) :=.d ((8F)&1 (x)) # R

for all facets F of T (with .d as in 6.1), is a colouring map. K

Example 6.6. Let T denote the unique b.c.b.-triangulation of the
2-dimensional Watanabe simplex

s=conv \{\0
0+ , \&1

1+ , \&1
&1+=+ (w.r.t. Z2)

with the facets F1=conv([( &1
1), ( &1

0), ( 0
0)]) and F2=conv([( &1

&1), ( &1
0 ), ( 0

0]).
Figure 12 illustrates how one ``glues together''

T3Fi

t
=8Fi (T[2; 3])=3T(2) | 3Fi , i=1, 2,

to obtain the b.c.b.-triangulation T� . The affine integral transformations 8Fi

are given by

FIGURE 12
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8F1
(x)=\0

1
1
0+ x+\&1

&1+ ,

8F2(x)=\ 0
&1

1
0+ x+\&1

1+ , for x # R2.

7. ON THE COMPUTATION OF COHOMOLOGY
GROUP DIMENSIONS

Let Cd�G=U_0
=X(NG , 2G) be again the underlying space of an abelian

quotient c.i.-singularity and

fT: X(NG , 2G@(T)) � X(NG , 2G) (7.1)

any partial crepant desingularization induced by a lattice triangulation T

of the junior simplex sG . It is easy to verify that the central fiber
FT=( fT)&1 ([0]) of fT is a strong deformation retract of the overlying
space X(NG , 2G@(T)). Theorem 1.2 guarantees the existence of at least one
b.c.b.-triangulation T of sG , so that (7.1) is a projective, crepant, full
desingularization. But even if we let T go through the entire class of all
possible basic triangulations of sG , and use [3, Thm. 5.4], [14, Cor. 1.5],
we obtain the one-to-one McKay-type correspondence

[elements of G] �w�1 : 1 {a basis of H*(FT, Q) consisting
of classes of algebraic cycles =

and, in particular,

[elements of G of age 1] �w�1 : 1 {exceptional prime
divisors w.r.t. fT =
a basis of H2(FT, Q)

�w�1 : 1 {consisting of classes of=algebraic cycles

where the elements of age 1 are those having lattice-point-representatives
lying on sG . In fact, only the even cohomology groups of FT are non-
trivial. To compute their dimensions we need some concepts from enumer-
ative combinatorics.
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For a lattice d-polytope P/NR w.r.t. an N$Zd, and } a positive
integer, let

EhrN(P, })=a0(P)+a1(P) }+ } } } +ad&1(P) }d&1+ad (P) }d # Q[}]

denote the Ehrhart polynomial of P (w.r.t. N), where

EhrN(P, }) :=*(}P & N),

and

EhrN(P; t) :=1+ :
�

}=1

EhrN(P, }) t} # Q�t�

the corresponding Ehrhart series. Writing EhrN(P; t) as

EhrN(P; t)=
$(P)+$1(P) t+ } } } +$d&1(P) td&1+$d (P) td

(1&t)d+1

we get the so-called $-vector $(P)=($0(P), $1(P), ..., $d&1(P), $d (P)) of P.

Definition 7.1. For any integer d�0 we introduce the transfer a-$-
matrix Md # GL(d+1, Q) (depending only on d ) to be defined as

Md :=(Ri, j)0�i, j�d with Ri, j :=
1
d ! { :

d

p=i _
d
p&\

p
i+ (d& j) p&i=

where [ d
p] denotes the Stirling number (of the first kind) of d over p.

The following lemma can be proved easily.

Lemma 7.2. For a lattice d-polytope P/NR w.r.t. an N$Zd, we have

(a0(P), a1(P), ..., ad&1(P), ad (P))

=($0(P), $1(P), ..., $d&1(P), $d (P)) } (Md)T.

Theorem 7.3. For any integer d�2, and for any crepant ( full )
desingularization (7.1) of an abelian quotient c.i.-space Cd�G, the non-trivial
cohomology dimensions of FT (or of X(NG , 2G@(T)), for any basic T), can
be determined inductively (via the coefficients of Ehrhart polynomials) as
follows:

(i) If sG is the join of two Watanabe simplices s1 , s2 , of dimensions d1 , d2 ,
(d1+d2=d&2), then

233ABELIAN QUOTIENT C.I.-SINGULARITIES



File: DISTL1 175141 . By:GC . Date:12:10:98 . Time:09:55 LOP8M. V8.B. Page 01:01
Codes: 2331 Signs: 1158 . Length: 45 pic 0 pts, 190 mm

dimQ H2i (FT, Q)= :

with p+q=i
0� p, q�d&1 \\[(Md&1)&1]p+1 } \

a0(s1)
a1(s1)

b
ad&1(s1)++

_\[(Md&1)&1]q+1 } \
a0(s2)
a1(s2)

b
ad&1(s2)+++ (7.2)

(ii) If sG (up to an affine integral transformation) is the dilation *s,
*�2, of a Watanabe simplex s, then

dimQ H2i (FT, Q)=[(Md&1)&1]i+1 } \
a0(s)

*a1(s)
b

*d&1 ad&1(s)+ (7.3)

for all i, 0�i�d&1, where for all \, 1�\�d, [(Md&1)&1]\ denotes the
\-th row-vector of (Md&1)&1.

Proof. By [3, Thm. 4.4], dimQ H2i (FT , Q) equals the i th component
of the $-vector of sG . That the computation can be done inductively follows
from the converse statement in Theorem 5.15 and Theorem 1.2. In fact, for
any G being conjugate to a GD, the cohomology dimensions can be read
off from the free parameters of WD.

(i) Since T is basic, the $-vector of sG is equal to the h-vector of
T (see Stanley [30, 2.5]). Hence, (7.2) follows from the formula which
provides the h-vector of the join of two simplicial complexes.

(ii) (7.3) is obvious because aj (*s)=* jaj (s) for all j, 0� j�d&1. K

Corollary 7.4. Let G be conjugate to G(d; k) (within SL(d, C)). Then
the non-trivial cohomology dimensions of any crepant, full resolution (7.1) of
the (d; k)-hypersurfaces equals
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dimQ H 2i(FT , Q)= :
i

+=0
\d

++ \
k(i&+)+d&1

d&1 + (7.4)

for all i, 0�i�d&1. In particular, the Euler�Poincare� characteristic /(FT)
of FT equals

/(FT)=/(X(NG(d; k) , 2G(d; k)@(T)))=|G(d; k)|=kd&1 (7.5)

Proof. In this case (up to an affine integral transformation) sG equals
ks, where

s=conv \{1
k

e1 , ...,
1
k

ed =+
w.r.t. NG(d; k) . Since

EhrNG(d; k)
(s, })=\}+d&1

} +=\}+d&1
d&1 +

=
1

(d&1)!
:

d&1

p=0
_d&1

p & (}+d&1) p,

or, alternatively, since

$0(s)=1 and $1(s)= } } } =$d&1(s)=0,

we get

( j+1)-entry of the

aj (s)={ first column of ==
1

(d&1)! { :
d&1

p= j _
d&1

p &\ p
j + (d&1) p& j=

the matrix Md&1

for all j, 0� j�d&1, and (7.4) follows from (7.3) and an easy manipula-
tion with generating functions. Finally, formula (7.5) follows from the
equality /(FT)=(d&1)! ad&1(s). K
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8. COMMENTS AND OPEN PROBLEMS:

(i) All partial, crepant, projective desingularizations (7.1) of (Cd�G, [0])
=(U_0

, orb(_0)) can be studied by means of the secondary polytope of the
junior simplex sG , whose vertices parametrize all coherent triangulations T

of sG . Passing from one vertex of this polytope to another, we perform a
finite series of flops. It should be mentioned that for d�4, it is possible to
start from a vertex corresponding to a basic T, and arrive at another max-
imal, but non-basic triangulation T$. In the language of ``toric MMP'' (see
Reid [24]), our b.c.b.-triangulations lead to smooth minimal models. (Note
that all morphisms fT can be written, by [24, 0.2-0.3], as compositions of
finite sequences of more elementary toric contraction-morphisms).

(ii) For any d�3, the general hyperplane section of the above
(Cd�G, [0]) through [0] is either a rational or an elliptic Gorenstein
singularity (see [25, Section 3.10]). Already for d=3, both possibilities
occur. For example, the general hyperplane section of the (3; k)-hyper-
surfaces is a Du Val singularity (of type D4) for k=2, and an elliptic
Gorenstein surface singularity whenever k�3. It might be interesting to
investigate the class of Gorenstein elliptic singularities obtained by this
procedure by exploiting the inductive character of Watanabe's classifica-
tion, essentially via the forests WD. (What is the relationship between these
general-hyperplane-section singularities and the free parameters of the
starting-point singularities for d�4?)

(iii) Could Theorem 1.2 be generalized for the underlying spaces
of Gorenstein, toric, nonquotient, c.i.-singularities? More precisely, what
would be the geometric analogue of joins and dilations describing the
structure of lattice polytopes which support the Gorenstein cones in this
case?

(iv) Theorem 1.2 has various applications to global geometrical
constructions. For instance, every ``well-stratified'' Calabi�Yau variety
which is locally a complete intersection, and has at most abelian quotient
singularities, possesses global, crepant, full resolutions in all dimensions.
(Nevertheless, to check the projectivity of these globally desingularizing
morphisms one needs to apply the Nakai�Moishezon criterion, and this
is only possible if one has some extra information available about the
intrinsic geometry of the varieties being under consideration.)

(v) A special class of such Calabi�Yau varieties, which is of
particular interest, is that of compactified hypersurfaces Zf /YP being
embedded in a toric variety YP , associated to a reflexive, simple lattice
polytope P. Assuming that Zf is P-regular (in Batyrev's sense [1]), and
that the polar lattice polytope P* of P has only Watanabe simplices
as faces of codimension �2, there exist always global, crepant, full
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desingularizations Zf@ � Zf of Zf . One method to construct at least one of
them is to triangulate the faces of P* as in the present paper and then to
join the single interior point of P* with them. For example, the mirror-
partner Zg of a marginally deformed Fermat-hypersurface Zf (or of
any smooth hypersurface) of degree d in Pd&1

C has global, crepant, full
desingularizations in all dimensions. (In this particular case, one can, in
addition, easily construct a globally projective desingularizing morphism.)
Hence, the so-called ``string-theoretic'' Hodge numbers of this Zg (cf.
[1, 3]) are nothing but the usual Hodge-numbers of an always existing
smooth, projective Zg@ ; in particular, the corresponding monomial-divisor
mirror-map provides the usual dualism between the polynomial first-order
deformations of Zf within Hd&3, 1(Zf ) on the one hand, and the toric part
of H1, 1(Zg@ ), on the other. (So there are concrete exceptional divisors, and
there is no need here to work in the category of singular spaces). This
motivates the formulation of a purely combinatorial problem: to classify
all reflexive, simplicial polytopes, at least in dimension 5, having only
Watanabe simplices as faces of codimension at least 2.
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