
A FINITE VOLUME METHOD BASED ON THE CROUZEIX–RAVIART

ELEMENT FOR ELLIPTIC PDE’S IN TWO DIMENSIONS

Panagiotis Chatzipantelidis
Department of Mathematics, University of Crete, 71409 Heraklion, Crete, Greece, and

Institute of Applied and Computational Mathematics, FO.R.T.H, 71110 Heraklion, Crete, Greece.

Abstract. We introduce and analyse a finite volume method for the discretization of elliptic bound-
ary value problems in R2. The method is based on nonuniform triangulations with piecewise linear
nonconforming spaces. We prove optimal order error estimates in the L2–norm and a mesh depen-
dent H1–norm.

1. Introduction

We consider an elliptic boundary value problem of the form: Seek a function u : Ω ⊂ R2 → R
such that

(1.1)
− div(A∇u) + σu = f in Ω,

u = 0 on ∂Ω,

with Ω a bounded, convex, polygonal domain in R2, f ∈ L2(Ω), A = (aij)
2
i,j=1 a given real–

valued matrix function, aij ∈ C1(Ω), 1 ≤ i, j ≤ 2, and σ a smooth, nonnegative, real function,
uniformly bounded in Ω by a constant σ. We assume that the matrix A is uniformly positive
definite, i.e., there exists a positive constant α0 such that

(1.2) ξT A(x)ξ ≥ α0ξ
T ξ, ∀ξ ∈ R2, ∀x ∈ Ω.

In this paper we will construct and analyse a finite volume method for the discretization of
(1.1). The method is based on the “classical” finite volume method, where we approximate the
solution of the problem by discretizing an integral formulation of the differential equation, on a
finite partitioning of Ω. We will seek an approximation of the solution of the problem in a space
of nonconforming piecewise linear functions, the Crouzeix–Raviart finite element space, cf. [8].

Many researchers have analysed finite difference schemes constructed by a finite volume
method. For example, Morton, Stynes and Süli, in [14], [15] and [17], treat cell–vertex schemes
for convection–diffusion and hyperbolic problems on quadrilateral meshes. Also Süli, in [18], for
Poisson’s equation, Lazarov, Mishev and Vassilevski, in [12], for convection–diffusion problems
and Ewing, Lazarov, Petrova and Vassilevski, in [10] and [20], for second order elliptic equations,
analyse cell–centered schemes on quadrilateral and triangular grids.
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However, many researchers implement a finite volume method (called also box method or finite
volume element method) for elliptic partial differential equations using finite element spaces, see
for example Bank and Rose [1], Hackbusch [11], Cai, Mandel and McCormick [3] and [4], Schmidt
[16]. In these works the approximations of the exact solution are sought in the standard space
of continuous piecewise linear functions, on a given triangular or quadrilateral mesh. Based on
this given mesh they construct a dual partition of Ω, consisting of starshaped regions, in some
cases overlapping, cf. [16], called boxes or volumes, having a one to one correspondence with the
vertices of the mesh. The convergence of the resulting scheme, in a mesh dependent or discrete
H1–norm, is proved then by assuming various properties (depending on the simplicity of the
elliptic equation (1.1)) for the initial mesh and the dual partition of boxes.

In the case of nonstructured triangular meshes, Bank and Rose, [1], analysed a finite volume
method, which they called box method, for the Poisson equation and for an elliptic equation of
the form (1.1), in the case A(x) = a(x)I, with I the identity matrix. They consider a nonuniform
triangulation of Ω satisfying the minimal angle condition, i.e. there exists a constant θ0 > 0
such that all angles of the triangles are bounded below by θ0. In order to construct the dual
partition of Ω they choose a point, zK , in each triangle K and connect it with the middle of
each side of K. The choice of zK is irrelevant for the analysis. However the extension of the
convergence proof in the case of less simple elliptic equations is not straightforward. Cai, [3],
analysed the same method with [1], for an elliptic equation of the form (1.1), with σ = 0. He
constructs the dual partition as in [1]. But the choice of the point zK inside each triangle is
important for the analysis. So he considers either the circumcenter, orthocenter, incenter, or
centroid of a triangle K. In order for the circumcenter and orthocenter to lie inside K, it is
assumed that all angles of the triangles are bounded above by π

2 . The convergence results of
[3] are based on establishing the uniform coercivity of an auxiliary bilinear form. Therefore the
convergence relies on giving sufficient conditions for this assumption to hold. In the case A = I
essentially no additional hypotheses are needed to establish this assumption, [3, Proposition 5.1].
In the case, however, of a general A this assumption is verified (in the case where the volumes
are constructed from circumcenters) provided that each triangle is either right or isosceles, [3,
Theorem 5.1]. Recently in [5] using a different approach than [3], we proved optimal order
H1 and L2 norm error estimates for (1.1), on triangulations satisfying only the minimal angle
condition.

In our analysis, we will use as an approximation space nonconforming piecewise linear ele-
ments on a nonuniform triangulation of Ω satisfying the minimal angle condition. The boxes in
the dual partition are again starshaped regions, but having a one to one correspondence with
the sides of the triangulation. We construct the dual boxes by choosing a point zK inside every
triangle K and connecting it with the vertices of K. We prove optimal order convergence results
in a mesh dependent H1–norm and in the L2–norm for the general problem (1.1), assuming only
the minimal angle condition. The choice of zK is irrelevant for the derivation of the H1–norm
error estimate. However, in order to prove an optimal order L2–norm error estimate, we assume
that the given function f is an element of H1(Ω) and we choose zK to be the barycenter of K,
cf. Theorems 3.2 and 4.2.

A brief outline of the paper is the following. In section 2 we consider a family of nondegenerate
triangulations of Ω with a corresponding dual partition of boxes and we introduce notation. In
section 3 we consider a finite volume method for the approximation of the solution u of the
Poisson equation. The approximate solution uB is a linear polynomial on every triangle of the
triangulation, not necessarily continuous on Ω. Then in Theorems 3.1 and 3.2 we estimate the
difference u−uB in a mesh dependent H1–norm and in the L2–norm, respectively. The analysis
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Figure 1. A sample region Ve. Left: The two triangles K+e and K−e

with a common side e. Right: The box be corresponding to side e (with
dotted lines).

in §3 is performed in order to introduce to the general case of equation (1.1). Indeed in §4
we consider a finite volume method for the approximation of the solution u of problem (1.1)
and in Theorems 4.1 and 4.2 we extend our convergence results to this case. In [13], Kossioris,
Makridakis and Souganidis use a similar method to construct finite volume approximations to
Hamilton–Jacobi equations.

2. Notation

Consider a bounded, convex polygonal domain Ω and a triangulation Th of Ω. Let hK be the
diameter of the triangle K ∈ Th and h = maxK∈Th

hK . We assume that the family {Th}0<h<1

of triangulations is nondegenerate, i.e. there exists a positive constant %, independent of h, such
that, for every K ∈ Th,

(2.1) %K ≥ % hK ,

where by %K we denote the diameter of the largest circle contained in K ∈ Th, see, e.g., [2, p.
106]. This assumption is equivalent to the minimal angle condition, cf. [21].

Given a domain K ⊂ R2, denote by L2(K) the square integrable real functions over K, (·, ·)K

the inner product in L2(K), | · |s,K and ‖ · ‖s,K the seminorm and norm, respectively, of the

Sobolev space Hs(K), s ∈ N. Then, we introduce the norm ‖ · ‖s,h, ‖v‖s,h = {∑K∈Th
‖v‖2s,K}

1/2

and the seminorm | · |s,h, |v|s,h = {∑K∈Th
|v|2s,K}

1/2
, s ∈ N. Also with | · | denote either the

area of a region in R2 or the length of a line segment, ‖ · ‖R2 the Euclidean norm on R2 and also
the subordinate matrix norm.

Given a triangle K ∈ Th, let Eh(K) be the set of the sides of K and Eh = ∪K∈Th
Eh(K).

Also, let Ein
h be the set of the interior sides of the triangulation Th, i.e. e ∈ Ein

h if and only if
e ∈ Eh and e is not part of ∂Ω. With each side e ∈ Ein

h we associate a region Ve, consisting of
the two triangles of Th that have e as a common side, let Th(Ve) be the set of the triangles of
Ve and denote by me the middle point of a side e ∈ Eh (see Figure 1).

We construct the dual partition of Th in the following way. Consider an interior point zK

of K ∈ Th and connect it with line segments to the vertices of K. Thus we partition K into
three subtriangles, Ke, e ∈ Eh(K). We denote this finer triangulation of Ω by T̃h and for every
K ∈ Th, let T̃h(K) be the set {K̃ ∈ T̃h : K̃ subtriangle of K}. Now, with each side e ∈ Ein

h we
associate a region be that consists of the two triangles of T̃h that have e as a common side and
let B = {be : e ∈ Ein

h }. Given also two triangles K1, K2 ∈ Th, with a common side e ∈ Ein
h , let
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Figure 2. The reference triangle K̂.

ne be the normal vector of K1 to e. Denote then K1 by K+e and K2 by K−e (see Figure 1).
Also let b+

e , b−e ∈ T̃h be b+
e = K+e ∩ be and b−e = K−e ∩ be.

Next, let Sh be the nonconforming, piecewise linear finite element space consisting of functions
which reduce to linear polynomials in any K ∈ Th and are continuous at the points me, e ∈ Ein

h ,
cf. [8]. Also denote by S0

h the subspace {v ∈ Sh : v(me) = 0, e ∈ Eh \ Ein
h }. Note that Sh is

not a subspace of H1(Ω). For any K ∈ Th, let vK denote the restriction of v ∈ Sh in K. The
functions ϕe, e ∈ Ein

h , such that

(2.2) supp ϕe = Ve, ϕe(me) = 1 and ϕe(m`) = 0, ∀` ∈ Eh \ {e},

form a basis of S0
h (see, e.g., [19, p. 113]).

Consider now a reference triangle K̂ with vertices (0,0), (1,0), (0,1). Let ê1, ê2 and ê3, be
the sides of K̂, starting from the side opposite to the vertex (1,0) and continuing anticlockwise.
Also denote by m̂i the middle point of side êi, i = 1, 2, 3, and ϕ̂i, i = 1, 2, 3, the first degree
polynomial in K̂ such that ϕ̂i(m̂j) = δij , i, j = 1, 2, 3, (see Figure 2).

Next, let Ŝ(K̂) := span{ϕ̂1, ϕ̂2, ϕ̂3}, and for e ∈ Eh(K) denote by AK,e a linear transfor-
mation of K̂ to K ∈ Th, such that me = AK,em̂3. Also for x̂ ∈ K̂ let AK,ex̂ = aK,ex̂ + bK,e,
with aK,e ∈ GL(R2), bK,e ∈ R2 and for a function v ∈ S0

h denote by v̂K,e the function of Ŝ(K̂)
defined by v̂K,e(x̂) = vK(AK,ex̂).

3. The Poisson equation

As a motivation of the analysis of a finite volume method for a general elliptic operator A,
we study in this section the finite volume method for the simplest elliptic operator, −∆. Thus,
we consider the problem: Seek a function u : Ω ⊂ R2 → R such that

(3.1) −∆u = f in Ω and u = 0 on ∂Ω,

with Ω a bounded, convex, polygonal domain in R2 and f ∈ L2(Ω).
We formulate the finite volume method for problem (3.1) in the following way. Consider a

side e ∈ Ein
h and the associated box, be. Then integrating (3.1) over be, and using Green’s

formula, we get

(3.2) −
∫

∂be

∂u

∂n
ds =

∫

be

f dx.
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Having relation (3.2) in mind we formulate the finite volume method for (3.1) as: Find uB ∈ S0
h

such that

(3.3) −
∫

∂be

∂uB

∂n
ds =

∫

be

f dx, ∀e ∈ Ein
h .

In order to show existence and uniqueness of the solution of (3.3), we will first prove some
lemmas that will be used in the analysis of problem (3.1) and also for the more general problem
(1.1). Consider now a triangle K ∈ Th and a side e ∈ Ein

h ∩ Eh(K). Let ne be the external
normal vector of K to e. According to section 2 we denote by K+e triangle K and by K−e the
other triangle of Th, having e as a common side with K. Let now,

(3.4)
[

∂χ

∂ne

]
=

∂χK+e

∂ne
− ∂χK−e

∂ne
, ∀χ ∈ S0

h.

Lemma 3.1: Let K ∈ Th, e ∈ Ein
h ∩ Eh(K) and v ∈ S0

h. Then,

(3.5)
∫

∂be

∂v

∂n
ds = −

∫

e

[
∂v

∂ne

]
ds,

with ne the normal vector of K to e.
Proof: Let v ∈ S0

h, K ∈ Th, e ∈ Ein
h ∩Eh(K) and ne the external normal vector of K to e. Using

Green’s formula we have

(3.6)
∫

∂Ve

∂v

∂n
ds =

∫

∂K+e

∂v

∂n
ds +

∫

∂K−e

∂v

∂n
ds−

∫

e

[
∂v

∂ne

]
ds.

Combining now the relation above with the fact that ∆v = 0 over any K ∈ Th, as well as over
K+e \ be and K−e \ be, for any e ∈ Ein

h , we obtain (3.5). ¥
In view of Lemma 3.1 we can rewrite (3.3) as: Find uB ∈ S0

h such that

(3.7)
∫

e

[
∂uB

∂ne

]
ds =

∫

be

f dx, ∀e ∈ Ein
h ,

where ne is the external normal vector of K+e to e, cf. (3.4) and Figure 1. We now define the
bilinear forms a, a : (H1(Ω) + Sh)× (H1(Ω) + Sh) → R by

a(v, w) =
∑

K∈Th

(∇v,∇w)K and a(v, w) = −
∑

e∈Ein
h

w(me)
∫

∂be

∂v

∂n
ds.

Then, we can rewrite (3.3) as

(3.8) a(uB , χ) =
∑

e∈Ein
h

χ(me)
∫

be

f dx.

Remark 3.1: In view of (3.8), the finite volume method (3.3) can be viewed as a Petrov–Galerkin
finite element method, where S0

h is the approximation space and the piecewise constants on B
are the test functions.
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Lemma 3.2: Let χ, ψ ∈ S0
h. Then,

(3.9)
∑

e∈Ein
h

ψ(me)
∫

e

[
∂χ

∂ne

]
ds = a(χ, ψ),

with ne as in (3.4).
Proof: Since ψ ∈ S0

h, we can express it as a linear combination of the basis elements of S0
h,

ψ =
∑

e∈Ein
h

ψ(me)ϕe, and thus, in view of (2.2),

(3.10) a(χ, ψ) =
∑

K∈Th

(∇χ,∇ψ)K =
∑

e∈Ein
h

ψ(me)
∑

K∈Th(Ve)

(∇χ,∇ϕe)K .

For e ∈ Ein
h and χ ∈ S0

h, we have

(3.11)
∑

K∈Th(Ve)

(∇χ,∇ϕe)K =
∑

K∈Th(Ve)

∫

∂K

∂χ

∂n
ϕe ds =

∫

∂Ve

∂χ

∂n
ϕe ds +

[
∂χ

∂ne

] ∫

e

ϕe ds.

Since ϕe is a linear polynomial on every side of K ∈ Th(Ve), we get

(3.12)
∫

`

ϕe ds = |`|ϕe(m`), ∀` ∈ ∪K∈Th(Ve)Eh(K),

|`| denoting the length of the side `. Therefore, combining (3.10)–(3.12) and (2.2) we easily
obtain (3.9). ¥

Existence: It follows easily in view of Lemmas 3.1 and 3.2.

Remark 3.2: The Galerkin/finite element method, using S0
h as the approximation space is: Find

uG ∈ S0
h such that

(3.13) a(uG, χ) = (f, χ)Ω, ∀χ ∈ S0
h,

Thus, in view of Lemmas 3.1 and 3.2 we notice that the finite volume method (3.8) and the
Galerkin finite element method (3.13) reduce both to linear systems with the same matrix; they
only differ in the right–hand side terms. Motivated by this observation it is possible to take a
different approach in th error analysis that will be closer to the analysis of the finite element
case, cf. [5]. Note that a similar relation is not true for the general case of equation (1.1)
considered in §4.

Lemma 3.3: There exist positive constants C(%) and C?(%), independent of h, such that, for
every v ∈ H1(K) and K ∈ Th,

C|v|21,K ≤ |v̂K,e|21, bK ≤ C−1|v|21,K ,(3.14)

and C?‖v‖20,K ≤ h2
K‖v̂K,e‖20, bK ≤ C−1

? ‖v‖20,K ,(3.15)

where e ∈ Eh(K) and % the constant in (2.1).
6



Proof: Let K ∈ Th, e ∈ Eh(K) and AK,e be a linear transformation of K̂ to K with me =
AK,em̂3. According to [6, Theorems 15.1 and 15.2], and the notation introduced in §2, there
exists a constant C independent of K such that, for all v ∈ H`(K), ` ∈ N,

(3.16)
|v|`,K ≤ |det aK,e|1/2‖a−1

K,e‖
`

R2 |v̂K,e|`, bK , |v̂K,e|`, bK ≤ |det aK,e|−1/2‖aK,e‖`
R2 |v|`,K ,

‖a−1
K,e‖R2 ≤ C%−1

K , ‖aK,e‖R2 ≤ ChK .

Obviously, |K| = 1
2 |det aK,e| and |K| ≤ Ch2

K , where again by | · | we denote the area of a region
in R2. Thus in view of (3.16) and (2.1), we easily obtain

(3.17) |v|21,K ≤ C%−2|v̂K,e|21, bK and ‖v‖20,K ≤ Ch2
K‖v̂K,e‖20, bK .

Hence, the first inequalities of (3.14) and (3.15) hold. Using now the fact that |K| ≥ |BK | ≥
C%2h2

K , with BK the largest circle contained in K, and similar arguments as before we obtain
the second inequalities of (3.14) and (3.15). ¥

Next, by simple calculations one can prove the following three lemmas.

Lemma 3.4: Let v ∈ Ŝ(K̂); then

(3.18) |v|21, bK = 2
{
(v(m̂3)− v(m̂1))

2 + (v(m̂3)− v(m̂2))
2}

. ¥

Lemma 3.5: There exists a constant C such that, for v ∈ S0
h,

(3.19) C|v|21,h ≤
∑

K∈Th

∑

e, `∈Eh(K)

(v(m`)− v(me))
2 ≤ C−1|v|21,h ¥

Lemma 3.6: Consider a triangulation Th of a convex, bounded, polygonal domain Ω, satisfying
(2.1). Then there exists a constant C(%), independent of h and ε, such that, for every v ∈ L2(Ω)
such that v|K ∈ H1(K) for every K ∈ Th

(3.20)
∫

∂K

v2ds ≤ C
(
ε−1/2h−1

K ‖v‖20,K + ε1/2hK |v|21,K

)
, ∀K ∈ Th,

with ε ∈ (0, 1).
Proof: According to [9, Theorem 1.5.1.10], there exists a constant C(K̂) such that

(3.21)
∫

∂ bK
w2dŝ ≤ C

(
ε−1/2‖w‖20, bK + ε1/2|w|21, bK

)
, ∀w ∈ H1(K̂).

Consider now a triangle K ∈ Th. Using then (3.21) and repeating similar arguments as in
Lemma 3.3 for a function v ∈ H1(K), we see that there exists a constant C(%), independent of
K ∈ Th, such that ∫

∂K

v2ds ≤ C(ε−1/2h−1
K ‖v‖20,K + ε1/2hK |v|21,K).

Hence, we can easily see that (3.20) holds. ¥
In the sequel we state Proposition 4.13 of [19] as Lemma 3.7.
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Lemma 3.7 (Discrete Poincaré Inequality): There exists a positive constant C such that

(3.22) ‖v‖0,Ω ≤ C|v|1,h, ∀v ∈ S0
h. ¥

Next, we will estimate the difference u− uB , in a mesh dependent H1–norm.

Theorem 3.1: Let u be the solution of (3.1) and uB the solution of (3.3). There exists a
constant C, independent of h, such that

(3.23) ‖u− uB‖1,h ≤ C

( ∑

K∈Th

h2
K |u|22,K

)1/2

.

Proof: Combining (3.2) and (3.3), we have

(3.24) a(u− uB , v) = 0, ∀v ∈ S0
h.

Using now Lemmas 3.1, 3.2 and (3.24), we have for any χ ∈ S0
h

(3.25) ‖∇(uB − χ)‖0,h ≤ sup
v∈S0

h
v 6=0

a(uB − χ, v)
|v|1,h

= sup
v∈S0

h
v 6=0

a(uB − χ, v)
|v|1,h

= sup
v∈S0

h
v 6=0

a(u− χ, v)
|v|1,h

.

Next, applying the Cauchy–Schwarz inequality, Lemma 3.5, and Green’s formula, and using the
fact that χ is a linear polynomial in K ∈ Th, we have the following estimation for all v, χ ∈ S0

h

(3.26)

|a(u− χ, v)|2 =
∣∣∣∣

∑

e∈Ein
h

v(me)
∫

∂be

∂(u− χ)
∂n

ds

∣∣∣∣
2

=
1
2

∣∣∣∣
∑

K∈Th

∑

e,`∈Eh(K)

(v(me)− v(m`))
∫

∂be∩∂b`

∂(u− χ)
∂ne

ds

∣∣∣∣
2

≤ C|v|21,h

∑

K∈Th

(
hK

∫

∂K

∣∣∂(u− χ)
∂n

∣∣2ds + h2
K |u|22,K

)
,

with ne denoting the external normal vector of be ∈ B. Consider next a triangle K ∈ Th.
According to Lemma 3.6, for ε = 1/2 and u, χ as above, we obtain

(3.27) hK

∫

∂K

∣∣∂(u− χ)
∂n

∣∣2ds ≤ C
(
h2

K |u|22,K + ‖u− χ‖21,K

)
,

Next, consider the interpolation operator I : H2(Ω) → Sh, Iu(me) = u(me), for all e ∈ Eh.
Choosing now χ = Iu in (3.25)–(3.27) and using Lemma 3.7 we get

(3.28) ‖u− uB‖1,h ≤ C

(
‖u− Iu‖21,h +

∑

K∈Th

h2
K |u|22,K

)1/2

.
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Finally, in view of a standard approximation property of I, cf., e.g., [7, Theorem 5],

(3.29) ‖u− Iu‖21,h ≤ C
∑

K∈Th

h2
K |u|22,K ,

(3.28) gives the desired estimate (3.23). ¥
Remark 3.3: It is well known that the Galerkin/finite element method, (3.13), satisfies a similar
H1 norm error estimate, cf., e.g., [2, Chapter 8.3].

Denote now by Pµ the set of polynomials of degree at most µ ∈ N, in R2, and by Mµ
G the

orthogonal projection operator from L2(G) onto Pµ, G ⊂ R2, defined by

(3.30)
∫

G

wMµ
Gv ds =

∫

G

wv ds, ∀w ∈ Pµ.

Then, according to [8, Lemma 3], we have for K ∈ Th

(3.31)
∣∣∣∣
∫

e

ϕ(v −M0
ev)ds

∣∣∣∣ ≤ ChK |ϕ|1,K |v|1,K , ∀e ∈ Eh(K), ∀ϕ, v ∈ H1(K).

In the sequel we shall use the fact that if v, w ∈ H2(V ) with V = K1 ∪K2, K1, K2 ∈ Th and
∂K1 ∩ ∂K2 = e ∈ Eh, then

(3.32)
∫

e

∇v · n1w ds +
∫

e

∇v · n2w ds = 0,

with ni the external normal vector of Ki to e, i = 1, 2. Next, we will estimate the difference
u− uB in the L2–norm.

Theorem 3.2: Let u be the solution of (3.1) and uB the solution of (3.3). Assume that
f ∈ H1(Ω) and that the interior point zK is the barycenter of K, for every K ∈ Th. Then, there
exists a constant C, independent of h, such that

(3.33) ‖u− uB‖0,Ω ≤ Ch2
(‖u‖2,Ω + ‖f‖1,Ω

)
.

Proof: We consider the following auxiliary problem: Seek ϕ ∈ H2(Ω) such that

(3.34) −∆ϕ = u− uB in Ω and ϕ = 0 on ∂Ω.

We will use the well–known estimate, cf., e.g., [9, Chapter 4],

(3.35) ‖ϕ‖2,Ω ≤ C‖u− uB‖0,Ω.

Using (3.34) and Green’s formula, we easily obtain

(3.36) ‖u− uB‖20,Ω = a(u− uB , ϕ− v) + a(u− uB , v)−
∑

K∈Th

∫

∂K

(u− uB)
∂ϕ

∂n
ds, ∀v ∈ S0

h.

In the sequel we will estimate the three terms on the right–hand side of (3.36). Obviously that

(3.37) a(u− uB , ϕ− v) ≤ ‖u− uB‖1,h‖ϕ− v‖1,h, ∀v ∈ S0
h.
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In view of Lemmas 3.2 and 3.1, (3.1) and (3.8), we rewrite the second term of the right–hand
side of (3.36) as

(3.38)

a(u− uB , v) =
∑

K∈Th

∫

∂K

∇u · n v ds +
∑

K∈Th

∫

K

fv dx−
∑

e∈Ein
h

v(me)
∫

be

f dx

=
∑

K∈Th

∫

∂K

∇u · n v ds +
∑

K∈Th

∫

K

f(v −Q(v)) dx, ∀v ∈ S0
h,

with

(3.39) Q(v)|K =
∑

e∈Eh(K)

v(me)gKe , K ∈ Th,

where Ke ∈ T̃h(K) and gS denotes the characteristic function of a set S ⊂ R2. Now, we will
estimate the first sum in the last relation of (3.38), compare to [8, (3.41)]. Using the definition
of the projection M0

e, (3.30), (3.32), the fact that vK+e(me) = vK−e(me), for every e ∈ Ein
h ,

v ∈ S0
h and u ∈ H2(Ω), we get

(3.40)

∑

K∈Th

∑

e∈Eh(K)

∫

e

M0
e(∇u · n)v ds =

∑

e∈Ein
h

(∫

e

M0
e(∇u · ne) vK+e ds

−
∫

e

M0
e(∇u · ne) vK−e ds

)
+

∑

e∈Eh\Ein
h

∫

e

M0
e(∇u · ne) v ds

=
∑

e∈Ein
h

M0
e(∇u · ne)(vK+e − vK−e)(me) +

∑

e∈Eh\Ein
h

M0
e(∇u · ne)v(me) = 0, ∀v ∈ S0

h,

Thus, in view of (3.40) we get

(3.41)

∑

K∈Th

∫

∂K

∇u · nv ds =
∑

K∈Th

∑

e∈Eh(K)

∫

e

(∇u · n−M0
e∇u · n)v ds, ∀v ∈ S0

h

and
∑

K∈Th

∑

e∈Eh(K)

∫

e

ϕM0
e(∇u · n)ds =

∑

K∈Th

∑

e∈Eh(K)

∫

e

∇u · nϕds = 0.

Therefore, in view of (3.41) and (3.31) we obtain

(3.42)

∣∣∣∣
∑

K∈Th

∫

∂K

∇u · nv ds

∣∣∣∣ =
∣∣∣∣

∑

K∈Th

∑

e∈Eh(K)

∫

e

(∇u · n−M0
e∇u · n)(v − ϕ) ds

∣∣∣∣

≤ Ch|u|2,Ω‖ϕ− v‖1,h, ∀v ∈ S0
h.

Next we estimate the last term of (3.38). To this end, let CK(f) =
∫

B
fωK dx, where B is a ball

in R2, satisfying B ⊂⊂ K and ωK a cut–off function supported in B, cf. [2, Def. 4.1.3]. Then,
according to the Bramble–Hilbert lemma, in the form given in [2, Lemma 4.3.8], we obtain in
view of (2.1)

(3.43) ‖f − CK(f)‖0,K ≤ C(%)hK |f |1,K , ∀f ∈ H1(K).
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Since CK(f) is a constant over K, we have

(3.44)
∫

K

f(v−Q(v)) dx =
∫

K

(f −CK(f))(v−Q(v)) dx + CK(f)
∫

K

(v−Q(v)) dx, ∀v ∈ S0
h.

Since, zK is the barycenter of K ∈ Th, it is easily seen that

(3.45)
∫

K

(v −Q(v)) dx =
∫

K

v dx− |K|
3

∑

e∈Eh(K)

v(me) = 0, ∀v ∈ P2.

Also, we easily obtain

(3.46) ‖v −Q(v)‖0,K ≤ ChK |v|1,K , ∀v ∈ P2.

Thus, using (3.43)–(3.46) and the fact that f ∈ H1(K), we get

(3.47) |
∫

K

f(v −Q(v)) dx| ≤ Ch2
K |f |1,K |v|1,K ≤ Ch2

K |f |1,K(|ϕ− v|1,K + |ϕ|1,K), ∀v ∈ S0
h.

Therefore, combining (3.38), (3.42) and (3.47), we obtain

(3.48) |a(u− uB , v)| ≤ Ch
(‖u‖2,Ω + ‖f‖1,Ω

)(‖ϕ− v‖1,h + h‖ϕ‖1,Ω

)
, ∀v ∈ S0

h.

Finally, we estimate the last term in (3.36). Since u−uB ∈ L2(Ω), ϕ ∈ H2(Ω). Therefore, using
similar arguments as in (3.40), in view of (3.30)–(3.32), the fact that uB ∈ S0

h and u ∈ H2(Ω),
we obtain

(3.49)

∣∣∣∣
∑

K∈Th

∫

∂K

∇ϕ · n(u− uB) ds

∣∣∣∣ =
∣∣∣∣

∑

K∈Th

∑

e∈Eh(K)

∫

e

(∇ϕ · n−M0
e∇ϕ · n)(u− uB) ds

∣∣∣∣

≤ Ch|ϕ|2,Ω‖u− uB‖1,h.

Therefore, choosing v = Iϕ in (3.36) and using (3.37), (3.48), (3.49), (3.35), (3.23), and (3.29),
we have

‖u− uB‖20,Ω ≤
(‖u− uB‖1,h + Ch

(‖u‖2,Ω + ‖f‖1,Ω

))(‖ϕ− Iϕ‖1,h + h‖ϕ‖2,Ω

)

≤ Ch2
(‖u‖2,Ω + ‖f‖1,Ω

)‖u− uB‖0,Ω. ¥

Remark 3.4: In the proof of Theorem 3.2, the hypothesis f ∈ H1(Ω), is only used in (3.43) in
the estimate of the last term of (3.38). It is known, cf. [8], that the corresponding L2 norm error
estimate for the finite element method (3.13) holds without the term ‖f‖1,Ω in the right–hand
side.
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4. A general elliptic equation

In this section we will construct and analyse a finite volume method for problem (1.1). Inte-
grating (1.1) over be and applying Green’s formula, we obtain

(4.1) −
∫

∂be

(A∇u) · nds +
∫

be

σu dx =
∫

be

f dx, ∀e ∈ Ein
h .

We formulate the finite volume method for this problem as: Find uB ∈ S0
h such that

(4.2) −
∫

∂be

(A∇uB) · nds + uB(me)
∫

be

σ dx =
∫

be

f dx, ∀e ∈ Ein
h .

As in [1], in order to discretize the reaction term, σu, we do not generalize the Galerkin formula-
tion. Instead, we choose the “classical” finite volume approach; we discretize it using a diagonal
matrix, while the Galerkin approach would have resulted in a nondiagonal matrix. We redefine
now the bilinear forms a, a : (H1(Ω) + Sh)× (H1(Ω) + Sh) → R by

(4.3) a(v, w) =
∑

K∈Th

∫

K

(A∇v) · ∇w dx and a(v, w) = −
∑

e∈Ein
h

w(me)
∫

∂be

(A∇v) · nds.

Then, we can rewrite (4.2) as

(4.4) a(uB , v) +
∑

e∈Ein
h

v(me)uB(me)
∫

be

σ dx =
∑

e∈Ein
h

v(me)
∫

be

f dx, ∀v ∈ S0
h.

Further combining (4.1) and (4.2) we get

(4.5) a(u− uB , v) +
∑

e∈Ein
h

v(me)
∫

be

σ(u− uB(me))dx = 0, ∀v ∈ S0
h.

In the sequel we will first prove some lemmas that will be used in the analysis of problem (1.1).
Next, denote by ‖ · ‖1,∞,K the norm of W 1,∞(K), where K ⊂ R2, and if B = (bij)

2
i,j=1, let

‖B‖1,∞,K = max1≤i,j≤j ‖bij‖1,∞,K .

Lemma 4.1: Let B(x) = (bij(x))2i,j=1 ∈ GL(R2) for all x ∈ Ω. Assume that bij ∈ W 1,∞(K)
for every K ∈ Th, i, j = 1, 2,

(4.6) max
x∈K

‖B(x)‖R2 ≤ ChK and ‖B‖1,∞,K ≤ C, ∀K ∈ Th,

with a constant C independent of K. Then, there exists a positive constant C1 such that

(4.7)
∑

e∈Ein
h

v(me)
∫

∂be

(B∇v) · n ds ≤ C1h|v|21,h, ∀v ∈ S0
h.

Proof: Using the Cauchy–Schwarz inequality, Lemma 3.5, Green’s formula and the fact that v
is a linear polynomial in every K ∈ Th, we estimate the left–hand side of (4.7) similarly as in
(3.26). Applying then Lemma 3.6 we obtain the desired estimate (4.7). ¥
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We introduce now in S0
h + H1

0 (Ω) the norm ||| · |||h, |||v|||h =
(|v|21,h + ‖√σv‖20,Ω

)1/2.

Lemma 4.2: There exists a positive constant C and h0 ∈ (0, 1), such that for all h ∈ (0, h0)
and every v ∈ S0

h, we have

(4.8) a(v, v) +
∑

e∈Ein
h

v2(me)
∫

be

σ dx ≥ C|||v|||2h.

Proof: Since A satisfies the coercivity condition (1.2), we have, for every v ∈ S0
h,

(4.9) α0|v|21,K ≤ (A(zK)∇v,∇v)K , ∀K ∈ Th,

with α0 the constant in (1.2). Therefore, using (3.12) and the fact that div(A(zK)∇v) = 0, for
all K ∈ Th and v ∈ S0

h, we have

α0|v|21,h ≤
∑

K∈Th

(A(zK)∇v,∇v)K =
∑

e∈Ein
h

v(me)
∑

K∈Th(Ve)

(A(zK)∇v,∇ϕe)K

=
∑

e∈Ein
h

v(me)
∑

K∈Th(Ve)

{∫

∂K

(A(zK)∇v) · nϕe ds−
∫

K

div(A(zK)∇v)ϕe dx

}

=
∑

e∈Ein
h

v(me)
∫

e

(A(zK+e)∇vK+e −A(zK−e)∇vK−e) · ne ds, i.e.,

(4.10) α0|v|21,h ≤ −
∑

e∈Ein
h

v(me)
{∫

∂b+e \e
(A(zK+e)∇v) · n ds +

∫

∂b−e \e
(A(zK−e)∇v) · nds

}
,

with ne denoting the external normal vector of K+e to e. Using Taylor’s theorem we easily see
that assumptions (4.6) in Lemma 4.1 hold for B(x) := A(x) − A(zK), x ∈ K, K ∈ Th. Then,
for h small enough, according to (4.10) and Lemma 4.1, we have

(4.11) a(v, v) ≥ α0|v|21,h − C1h|v|21,h ≥ α1|v|21,h,

with a constant α1 independent of h and C1 the constant in (4.7). Therefore,

(4.12) a(v, v) +
∑

e∈Ein
h

v2(me)
∫

be

σ dx ≥ c|||v|||2h −
∑

e∈Ein
h

∫

be

σ(cv2 − v2(me))dx, ∀v ∈ S0
h

with c = 1
2 min(1, α1) and α1 the constant in (4.11). Also, by an arithmetic geometric mean

inequality, we have

(4.13)
∑

e∈Ein
h

∫

be

σ(cv2 − v2(me))dx ≤ σ
∑

e∈Ein
h

∫

be

(v − v(me))
2
dx ≤ σh2|v|21,h ≤ σh2|||v|||2h.

Finally, combining (4.12) and (4.13) we obtain (4.8). ¥
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Existence: Since solving (4.2) is equivalent to a linear system, in order to prove existence it
suffices to prove uniqueness; this follows easily from Lemma 4.2.

The following two lemmas can be easily proved with simple calculations.

Lemma 4.3: Let v ∈ Ŝ(K̂); then

(4.14) ‖v‖20, bK =
1
6

3∑

i=1

v2(m̂i). ¥

Lemma 4.4: There exists a positive constants C, independent of h and K ∈ Th, such that,

(4.15) C‖v‖20,K ≤
∑

e∈Eh(K)

h2
ev

2(me) ≤ C−1‖v‖20,K , K ∈ Th, ∀v ∈ S0
h,

where he = |e|. ¥

Consider a triangle K ∈ Th and a side e ∈ Ein
h ∩Eh(K). Let ne be the external normal vector

of K to e. According to section 2 we denote by K+e triangle K and by K−e the other triangle
of Th, having e as a common side with K. In analogy to (3.4), we introduce now the notation

(4.16) [A(x)∇χ] · ne = (A(x)∇χK+e) · ne − (A(x)∇χK−e) · ne, ∀x ∈ e, ∀χ ∈ S0
h.

Lemma 4.5: Let v, w ∈ S0
h. Then

a(v, w) = a(v, w)−
∑

K∈Th

(div (A∇v), w −Q(w))K

+
∑

K∈Th

∫

∂K

(A∇v) · nw ds−
∑

e∈Ein
h

w(me)
∫

e

[
A∇v

] · ne ds,

with ne as in (3.4) and Q as in (3.39).
Proof: We apply Green’s formula to

∫
∂be

(A∇v) · nds and
∫

K
A∇v · ∇w dx. Then the desired

relation follows by simple calculations. ¥

Now we will estimate the difference u− uB in the mesh dependent norm ||| · |||h.

Theorem 4.1: Let u be the solution of (1.1) and uB the solution of (4.2). Then, for h
sufficiently small, there exists a constant C, independent of h, such that

(4.17) |||u− uB |||h ≤ C
( ∑

K∈Th

h2
K‖u‖22,K

)1/2
.

Proof: Using Lemma 4.2 and (4.5), and similar arguments as in (3.25), we have, for χ ∈ S0
h,

(4.18) |||uB − χ|||h ≤ C sup
v∈S0

h
v 6=0

a(u− χ, v) +
∑

e∈Ein
h

v(me)
∫

be
σ(u− χ(me)) dx

|||v|||h
.
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In view of (2.1), it is obvious that |be| ≤ C max(h2
K+e , h2

K−e) ≤ C%−2h2
e, for any e ∈ Ein

h .
Applying then Lemmas 4.4 and 3.7, we get

(4.19)
∑

e∈Ein
h

|be|v2(me) ≤ C
∑

K∈Th

∑

e∈Eh(K)

h2
ev

2(me) ≤ C‖v‖20,Ω ≤ C|||v|||2h, ∀v ∈ S0
h.

Using now the Cauchy–Schwarz inequality and (4.19), we obtain for all v, χ ∈ S0
h

(4.20)
∑

e∈Ein
h

v(me)
∫

be

σ(u− χ(me)) dx ≤ C|||v|||h
( ∑

e∈Ein
h

∫

be

σ2(u− χ(me))2 dx

)1/2

.

Then in view of Lemmas 3.5 and 3.6, Green’s formula, the fact that χ is a linear polynomial in
every K ∈ Th and that aij ∈ C1(Ω), i, j = 1, 2, we have similarly as in (3.26) and (3.27)

(4.21) |a(u− χ, v)| ≤ C‖∇v‖0,h

∑

K∈Th

(
h2

K‖u‖22,K + |u− χ|21,K

)
, ∀χ, v ∈ S0

h

Choosing now χ = Iu in (4.18), (4.20) and (4.21), we easily obtain

(4.22) |||u− uB |||2h ≤ C
( ∑

K∈Th

h2
K‖u‖22,K + ‖u− Iu‖21,h +

∑

e∈Ein
h

∫

be

σ2(u− Iu(me))2dx
)
.

Also, from a standard approximation property, cf., e.g., [7, Theorem 5], we get

(4.23)
∑

e∈Ein
h

∫

be

σ2(u− Iu(me))2dx ≤ σ2%−2
∑

K∈Th

h2
K |u|21,K .

Finally, (4.22), (4.23) and (3.29) give (4.17). ¥
Remark 4.1: In the case of the Galerkin/finite element method a similar H1 norm error estimate
holds.

Next, we will estimate the difference u− uB in the L2–norm.

Theorem 4.2: Let u be the solution of (1.1) and uB the solution of (4.2). Assume that
f ∈ H1(Ω), aij ∈ C2(Ω), 1 ≤ i, j ≤ 2, σ ∈ C1(Ω) and that the interior point zK is the
barycenter of K, for every K ∈ Th. Then, there exists a constant C, independent of h, such that

(4.24) ‖u− uB‖0,Ω ≤ Ch2
(‖u‖2,Ω + ‖f‖1,Ω

)
.

Proof: We consider the following auxiliary adjoint problem: Seek ϕ ∈ H2(Ω) such that

(4.25) −div(AT∇ϕ) + σϕ = u− uB in Ω and ϕ = 0 on ∂Ω.

It is well known that (4.25) has a unique solution and the following regularity estimate holds:

(4.26) ‖ϕ‖2,Ω ≤ C‖u− uB‖0,Ω.
15



Using (4.25) and Green’s formula, we easily obtain

(4.27)

‖u− uB‖20,Ω = a(u− uB , ϕ− v) + (u− uB , σ(ϕ− v))Ω + a(u− uB , v)

+ (u− uB , σv)Ω −
∑

K∈Th

∫

∂K

(u− uB)(AT∇ϕ) · nds, ∀v ∈ S0
h.

Obviously,

(4.28) a(u− uB , ϕ− v) + (σ(u− uB), ϕ− v)Ω ≤ C‖u− uB‖1,h‖ϕ− v‖1,h, ∀v ∈ S0
h.

Next, we will estimate the third and forth term of the right–hand side of (4.27). Using Lemma
4.5, (1.1) and Green’s formula, we have for v ∈ S0

h

(4.29)

a(u− uB , v) + (σ(u− uB), v)Ω =
∑

K∈Th

∫

∂K

(A∇u) · n v ds +
∑

K∈Th

∫

K

fv dx− a(uB , v)

− (σuB , v)Ω +
∑

K∈Th

(div(A∇uB), v −Q(v))K −
∑

K∈Th

∫

∂K

(A∇uB) · nv ds

+
∑

e∈Ein
h

v(me)
∫

e

[
A∇uB ] · ne ds,

with Q as in (3.39). Applying similar arguments as in (3.40), we easily obtain

(4.30)
∫

e

[A∇u] · ne ds = 0, ∀e ∈ Ein
h .

Also, in view of (4.30) and the fact that v(me) = 0 for all e ∈ Eh \ Ein
h , we get

(4.31)

∑

K∈Th

∫

∂K

(A∇(u− uB)) · n v ds−
∑

e∈Ein
h

v(me)
∫

e

[A∇(u− uB)] · ne ds

=
∑

K∈Th

∫

∂K

(A∇(u− uB)) · n (v − v(me)) ds, ∀v ∈ S0
h.

Thus, using (4.31) and (4.4), in (4.29) we have

a(u− uB , v) + (σ(u− uB), v)Ω =
∑

K∈Th

∫

K

f(v −Q(v))dx

−
∑

K∈Th

∫

K

σ(uBv −Q(uBv))dx +
∑

K∈Th

(div(A∇uB), v −Q(v))K(4.32)

+
∑

K∈Th

∫

∂K

(A∇(u− uB) · n (v − v(me)) ds, ∀v ∈ S0
h,

In the sequel we will estimate the right–hand side of (4.32). In view of (3.45) and the fact that
CK(f), defined in the proof of Theorem 3.2, is constant over K, we can rewrite the first two
sums of (4.32) in the following way

∫

K

f(v −Q(v)) dx +
∫

K

σ(vuB −Q(vuB)) dx =
∫

K

(f − CK(f))(v −Q(v)) dx
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+
∫

K

(σ − σ(zK))(uBv −Q(uBv)) dx, ∀v ∈ S0
h.

Thus, since f ∈ H1(K) and σ ∈ C1(Ω), according to (3.43)–(3.47), we get

(4.33)

∣∣∣∣
∫

K

f(v −Q(v))σ(vuB −Q(vuB)) dx

∣∣∣∣ ≤ Ch2
K(|f |1,K |v|1,K +

∫

K

|∇(uBv)| dx)

≤ Ch2
K(‖f‖1,K + ‖u− uB‖1,K)(‖ϕ‖1,K + ‖ϕ− v‖1,K), ∀v ∈ S0

h.

Next, we will estimate the third term on the right–hand side of (4.32). Also using (3.45), (3.46)
and the fact that aij ∈ C2, 1 ≤ i, j ≤ 2, we have for all v ∈ S0

h, as above

(4.34)
∑

K∈Th

(div(A∇uB), v −Q(v))K ≤ Ch2(‖u‖1,h + ‖u− uB‖1,h)(‖ϕ‖1,h + ‖ϕ− v‖1,h).

In order to estimate the last term of (4.32) we add and subtract to it the term

∑

K∈Th

∑

e∈Eh(K)

A(me)
∫

e

∇(u− uB) · n(v − v(me)) ds.

Using now Lemma 3.6, we obtain
∣∣∣∣

∑

K∈Th

∑

e∈Eh(K)

∫

e

(A−A(me))∇(u− uB) · n (v − v(me)) ds

∣∣∣∣(4.35)

≤ Ch‖∇(u− uB)‖0,h|v|1,h + Ch2‖u‖2,Ω|v|1,h, ∀v ∈ S0
h.

Next, in view of the fact that v is a linear polynomial restricted on e ∈ Eh, and applying similar
arguments as in (3.40) and (3.32), we get

(4.36)

∑

K∈Th

∑

e∈Eh(K)

A(me)
∫

e

∇(u− uB) · n(v − v(me)) ds

=
∑

K∈Th

∑

e∈Eh(K)

A(me)
∫

e

(∇u · n−M0
e(∇u · n)(v − v(me)) ds

=
∑

K∈Th

∑

e∈Eh(K)

A(me)
∫

e

(∇u · n−M0
e(∇u · n)(v − v(me)− ϕ + ϕ(me)) ds

≤ C
∑

K∈Th

hK‖u‖2,K |v − ϕ|1,K ≤ Ch‖u‖2,Ω‖v − ϕ‖1,h, ∀v ∈ S0
h.

Thus, combining (4.32)–(4.36), we obtain

(4.37)
|a(u− uB , v) + (u− uB , σv)Ω|
≤ Ch

(‖u− uB‖1,h + h
(‖u‖2,Ω + ‖f‖1,Ω

))(‖ϕ‖1,h + ‖ϕ− v‖1,h

)
, ∀v ∈ S0

h.

Finally, we estimate the last term of (4.27), as in (3.49). Thus, we get

(4.38)
∣∣∣∣

∑

K∈Th

∫

∂K

(AT∇ϕ) · n(u− uB) ds

∣∣∣∣ ≤ Ch|ϕ|2,Ω‖u− uB‖1,h.
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Therefore, choosing v = Iϕ in (4.27) and using (4.28), (4.37), (4.38), (4.17), (4.26) and (3.29),
we have

‖u− uB‖20,Ω ≤ C‖u− uB‖1,h‖ϕ− Iϕ‖1,h + Ch
(‖u− uB‖1,h

+ h
(‖u‖2,Ω + ‖f‖1,Ω

))(‖ϕ‖1,Ω + ‖ϕ− Iϕ‖1,h

) ≤ Ch2
(‖u‖2,Ω + ‖f‖1,Ω

)‖u− uB‖0,Ω. ¥

Remark 4.2: In the proof of Theorem 4.2, the hypotheses f ∈ H1(Ω), aij ∈ C2(Ω), 1 ≤ i, j ≤ 2,
σ ∈ C1(Ω) are used in order to estimate the right–hand side of (4.29). In the case of a finite
element method the corresponding L2 error estimate holds without the term ‖f‖1,Ω in the
right–hand side.
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