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Abstract.

Let Ω be a bounded nonconvex polygonal domain in the plane. Consider the initial
boundary value problem for the heat equation with homogeneous Dirichlet boundary
conditions and semidiscrete and fully discrete approximations of its solution by piece-
wise linear finite elements in space. The purpose of this paper is to show that known
results for the stationary, elliptic, case may be carried over to the time dependent
parabolic case. A special feature in a polygonal domain is the presence of singulari-
ties in the solutions generated by the corners even when the forcing term is smooth.
These cause a reduction of the convergence rate in the finite element method unless
refinements are employed.

AMS subject classification (2000): 65M60, 65N30.
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1 Introduction.

The purpose of this paper is to show that certain known error estimates for
piecewise linear finite element approximations to solutions of elliptic equations
in nonconvex polygonal domains carry over to parabolic problems.

We consider the model initial boundary value problem, for u = u(x, t),

ut −∆u = f in Ω, with u(·, t) = 0 on ∂Ω, for t > 0,(1.1)
u(·, 0) = v in Ω,
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where Ω is a nonconvex plane polygonal domain. We assume, for simplicity
of presentation, that exactly one interior angle ω is reentrant, i.e., such that
π < ω < 2π. (Since ω < 2π, crack problems are not covered.)

The corresponding stationary elliptic problem is the Dirichlet problem

(1.2) −∆u = f in Ω, with u = 0 on ∂Ω,

and the regularity of the solutions of this problem has been extensively studied,
see Grisvard [6], [7]. We set β = π/ω, and note that 1

2 < β < 1. In the
special case of an L-shaped domain, ω = 3π/2 and β = 2/3. Assuming that the
associated vertex is at the origin O and describing the domain near O by polar
coordinates (r, θ), with 0 < θ < ω, the corner O then gives rise to a singularity
in the solution with a leading term near O of the form

(1.3) κ(f)rβ sin(βθ),

where, in general, κ(f) 6= 0 even when f is smooth. A regularity shift-theorem
for this problem, shown in Kellogg [8], may be expressed as

(1.4) ‖u‖H1+s ≤ C‖f‖H−1+s = C‖∆u‖H−1+s , for 0 ≤ s < β,

where the Hs = Hs(Ω) are fractional order Sobolev spaces, see Section 2 below,
but such an estimate with s ≥ β cannot be expected due to the singularity (1.3).
A certain replacement of (1.4) in the limiting case s = β was derived by Bacuta,
Bramble, and Xu [3] in a Besov space framework. The singular behavior of the
solutions carry over to the parabolic problem (1.1), see [7, Chapter 5].

We now turn to the approximation by the finite element method, using piece-
wise linear finite element spaces Sh ⊂ H1

0 (Ω) based on triangulations Th = {τ}
with h = maxτ∈Th

diam(τ). For simplicity we shall assume throughout that the
triangulations are shape-regular, i.e., satisfy a minimum angle condition. By
global quasiuniformity we shall mean that there is a constant c > 0 such that
minτ∈Th

diam(τ) ≥ ch.
We begin with the elliptic problem (1.2). The finite element method is then

to find uh ∈ Sh such that

(1.5) (∇uh,∇χ) = (f, χ), for χ ∈ Sh.

For the error in the energy norm in this solution one may show, using the
regularity estimate of [3], that

‖uh − u‖H1 ≤ Chβ‖∆u‖H−1+s , for β < s ≤ 1.

By duality one obtains, with ‖ · ‖ = ‖ · ‖L2 , as we shall write for brevity below,

‖uh − u‖ ≤ Ch2β‖∆u‖H−1+s , for β < s ≤ 1.(1.6)

Error bounds with higher powers of h do not hold in general, even for smooth
f , because of the lack of regularity of the exact solution caused by the reentrant
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corner. The reduction in the convergence rate from the optimal order O(h2)
in a domain with smooth boundary, or a convex polygonal domain, to O(h2β)
may be avoided by the use of mesh refinement near the corners, cf. Babuška [1]
and Raugel [11]. In maximum-norm the global order of convergence is further
reduced to essentially O(hβ). However, away from the corners the error remains
of order O(h2β). Again, suitable refinements will essentially restore the O(h2)
error bound, cf. Schatz and Wahlbin [14]. These results for the elliptic problem
will be reviewed in more detail in Section 2 below.

Our first goal in this work is to see that error estimates of these orders carry
over to the semidiscrete parabolic problem, to find uh(t) ∈ Sh for t ≥ 0 such
that

(1.7) (uh,t, χ) + (∇uh,∇χ) = (f, χ), for χ ∈ Sh, t > 0, with uh(0) = vh ≈ v.

In the error analysis of this problem it is common, following Wheeler [20], to
introduce the Ritz projection Rh : H1

0 → Sh defined by

(∇Rhu,∇χ) = (∇u,∇χ), for χ ∈ Sh,

and to write the error as a sum of two terms

(1.8) uh − u = (uh −Rhu) + (Rhu− u) = θ + ρ.

The second term then represents the error in an elliptic problem whose exact
solution is u(t), and may be bounded in L2 by means of the known error bound
(1.6). The first term θ(t) ∈ Sh satisfies the equation

(1.9) (θt, χ) + (∇θ,∇χ) = −(ρt, χ), for χ ∈ Sh, t > 0.

Introducing the discrete Laplacian ∆h : Sh → Sh by

−(∆hψ, χ) = (∇ψ,∇χ), for ψ, χ ∈ Sh,

the equation (1.9) may be written as

θt −∆hθ = −Phρt, t > 0, with θ(0) = vh −Rhv,

where Ph denotes the orthogonal L2 projection onto Sh. Hence, with Eh(t) =
e∆ht the solution operator of the homogeneous case f = 0 of (1.7), and assuming
for simplicity that vh = Rhv so that θ(0) = 0, we have

(1.10) θ(t) = −
∫ t

0

Eh(t− τ)Phρt(τ) dτ.

It is well-known that both Eh(t) and Ph are stable in L2 with norm 1, and
we therefore conclude that the bound for ρ(t) derived from (1.6) yields, with
s ∈ (β, 1],

‖uh(t)−u(t)‖ ≤ ‖θ(t)‖+‖ρ(t)‖ ≤ Ch2β
(
‖∆u(t)‖H−1+s +

∫ t

0

‖∆ut(τ)‖H−1+sdτ
)
.
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It then remains to verify that the solution of (1.1) has enough regularity that the
right hand side above is finite under the appropriate assumptions on v and f .
Such regularity results will normally be expressed below in the form of bounds
for the norm of the solution involved in terms of norms of the data. In the
present case we use the differential equation in (1.1) to exchange spatial regu-
larity requirements by regularity demands in time, and then show a bound for
utt to demonstrate

∫ t

0

‖∆ut(τ)‖H−1+sdτ ≤
∫ t

0

(‖utt(τ)‖H−1+s + ‖ft(τ)‖H−1+s

)
dτ

≤ C
(
‖g0‖+

∫ t

0

‖ft(τ)‖ dτ
)
, where g0 = ut(0) = ∆v + f(0),

and a similar estimate for ‖∆u(t)‖H−1+s .
This program is carried out in Section 3 below, and error bounds are also

shown for the gradient of the error in L2. This section also includes a so-called
nonsmooth data estimate for the homogeneous heat equation and a discussion
of mesh refinements in the context of the parabolic equation.

Section 4 is devoted to error bounds in maximum-norm. As a preliminary step
we show, under the assumption that the family of triangulations underlying the
Sh is globally quasiuniform, that a resolvent estimate holds in maximum-norm
for the discrete Laplacian −∆h, which, in particular, implies a stability result for
the semidiscrete parabolic equation. Again the results from the elliptic case carry
over to the parabolic problem so that an essentially O(hβ) global error bound
can be shown, also for a somewhat weaker assumption on the triangulations
than quasi-uniformity, as well as an almost O(h2β) error bound away from the
nonconvex corner. Concluding this section, we show optimal order error bounds
in the parabolic case by refining the triangulations, in the same way as for the
stationary problem.

In the final Section 5 we give some examples of error bounds for fully discrete
methods obtained by discretization in time by finite differences of the spatially
semidiscrete parabolic equation.

2 Review of bounds for the elliptic problem.

We begin by collecting some known regularity results for the Dirichlet problem
(1.2), with particular reference to the situation in a plane polygonal domain with
one reentrant corner. This includes a review of some properties of fractional
order Sobolev spaces, defined by interpolation. We then recall relevant error
estimates, in L2 and in maximum-norm, for finite element approximations of
(1.2).

Letting H−1 denote the dual space of H1
0 = H1

0 (Ω), with duality pairing 〈·, ·〉
over the pivot space L2, we define the variational solution of (1.2) for f ∈ H−1

as the function u ∈ H1
0 which satisfies

(2.1) (∇u,∇ϕ) = 〈f, ϕ〉, ∀ϕ ∈ H1
0 .



PARABOLIC F. E. EQUATIONS IN NONCONVEX POLYGONAL DOMAINS 5

It is well-known that this problem has a unique solution, and that

‖u‖H1
0

= ‖∇u‖ ≤ ‖f‖H−1 .

For u ∈ H1
0 , (2.1) defines f ∈ H−1, and then ∆ : H1

0 → H−1 by ∆u = −f . In
order to discuss further regularity results we shall need to use function spaces
with a fractional number of derivatives, cf., e.g., [6], [7]. Letting Hm with norm
‖ · ‖Hm denote the standard Sobolev spaces of integer order m ≥ 0, we set, for
s = m + σ, with 0 < σ < 1,

‖u‖Hs =
(
‖u‖2Hm +

∑

|α|=m

∫∫

Ω×Ω

|Dαu(x)−Dαu(y)|2
|x− y|2+2σ

dx dy
)1/2

,

and let Hs = Hs(Ω) denote the completion of C∞(Ω̄) with respect to this norm.
Since our Ω has a Lipschitz boundary there exists a bounded extension operator
from Hs(Ω) to Hs(R2), which is independent of s, cf. [7, Section 1.3] for a
special such extension operator for a polygonal domain. This may be used to
characterize the spaces Hs in terms of Fourier transforms in Hs(R2), and, in
turn, to show that, in the terminology of real interpolation theory, see, e.g.,
Triebel [17], the Sobolev spaces Hs have the interpolation property

Hθs1+(1−θ)s2 = [Hs1 ,Hs2 ]θ,2, for 0 ≤ θ ≤ 1, 0 ≤ s1 < s2.

We shall also have reason to use fractional order spaces with homogeneous
boundary conditions, and define

(2.2) Hσ
0 = [L2,H

1
0 ]σ,2 and H1+σ

0 = [H1
0 , H2 ∩H1

0 ]σ,2, for 0 < σ < 1,

as well as the negative order spaces

H−σ = [L2,H
−1]σ,2, for 0 ≤ σ ≤ 1.

We note that, by duality and (2.2), H−σ = (Hσ
0 )∗, for 0 ≤ σ ≤ 1. We remark

that H1+σ
0 = H1+σ ∩H1

0 for 0 < σ < 1, see [2]. In the statements of several of
our error bounds below we shall have reason to know the following fact, showing
that Hσ

0 does not require any boundary condition for small σ.
Lemma 2.1. We have Hσ

0 = Hσ for 0 < σ < 1
2 .

This result was shown in [5] for Ω with a smooth boundary and stated without
proof and in greater generality in [21]. The proof in [5] may be seen to work also
for Lipschitz boundaries. For the convenience of the reader we include a proof
in an Appendix.

We now collect some known regularity results for the solution of (2.1). Con-
sider first the restriction of ∆ : H1

0 → H−1 to V 2 = H2 ∩H1
0 , thus to functions

in H2 which vanish on ∂Ω. The range of ∆,

R(∆; V 2) = {f ∈ L2 : f = ∆v for some v ∈ V 2},
is then a closed proper subspace of L2, and hence (1.2) does not always have a
solution in V 2 for f ∈ L2. In fact, referring to [6], [7], we have the following:
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Let η = η(r) be a smooth cutoff function such that η(r) ≡ 1 near the nonconvex
corner O and such that the support of η only meets the two edges emerging from
O. Then, as is seen by a simple calculation, the singular function

(2.3) S(r, θ) = η(r)rβ sin(βθ)

does not belong to V 2 but is the solution of the variational problem with right
hand side F = −∆S ∈ C∞(Ω), with F = 0 near O. We note that S ∈ H1+σ

0 for
0 < σ < β. For, using the K-functional, one finds easily

K(t, S; H1
0 , H2∩H1

0 ) = inf
ψ∈H2∩H1

0

(‖S−ψ‖H1
0
+t‖ψ‖H2) ≤ C min(tβ , 1), for t > 0,

by choosing ψ(r, θ) = ψ(t; r, θ) = ζ(t; r)S(r, θ), with ζ(t; r) = 0 for r ≤ t, = 1
for r ≥ 2t, and ζ ′r(t; r) ≤ C/t, for t ≤ t0 small, and ψ(t; r, θ) = 0 for t ≥ t0.
Hence

‖S‖2
H1+σ

0
=

∫ ∞

0

t−2σ−1K(t, S;H1
0 ,H2 ∩H1

0 )2 dt < ∞, for 0 < σ < β.

One also sees that S 6∈ H1+σ for σ ≥ β.
One can show that for f ∈ L2 there exists a constant κ(f) such that

(2.4) u− κ(f)S ∈ V 2.

In fact, following [7],

(2.5) N := R(∆; V 2)⊥ = {v ∈ D(∆; L2) : ∆v = 0 in Ω, v = 0 on ∂Ω},

where ∆ denotes the distributional Laplacian on L2. In the case of a domain with
smooth boundary, N would equal {0}. In our case with one reentrant corner,
N is one-dimensional and spanned by a function q constructed as follows. Let
S∗(r, θ) = η(r)r−β sin(βθ) be the so-called dual singular function, let F∗ = ∆S∗
(in the distribution sense), which belongs to C∞(Ω), and let w ∈ H1

0 be the
variational solution of

−∆w = F∗ in Ω, with w = 0 on ∂Ω.

Then q := S∗ + w. To determine κ(f) in (2.4) we apply the Laplacian to it.
Then, by (2.5), (f − κ(f)∆S, q) = 0, so that

κ(f) = c(f, q), where c = 1/(∆S, q),

cf. Maz’ya and Plamenevskii [9].
We note that S∗, and hence also q, belongs to H1−s for β < s < 1. In fact, as

above, we have

K(t, S∗; L2,H
1
0 ) = inf

ψ∈H1
0

(‖S∗ − ψ‖+ t‖ψ‖H1
0
) ≤ C min(t1−β , 1), for t > 0,
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and hence

‖S∗‖2H1−s
0

=
∫ ∞

0

t−2(1−s)−1K(t, S∗; L2, H
1
0 )2 dt < ∞, if β < s < 1.

One may thus write

(2.6) u = uR + uS , with uS = κ(f)S = c(f, q)S,

where

(2.7) ‖uR‖H2 ≤ C‖f‖.

Furthermore, the singular part uS satisfies

(2.8) ‖uS‖H1+s1 ≤ ‖S‖H1+s1 |κ(f)| ≤ C‖f‖H−1+s , for 0 ≤ s1 < β < s ≤ 1,

since q ∈ H1−s
0 , but uS 6∈ H1+s for s ≥ β. The splitting (2.6) is only meaningful

if f ∈ H−1+s with s > β.
The following shift theorem was shown by Kellogg [8].
Lemma 2.2. The solution u of (2.1) satisfies, for 0 ≤ s < β, with C = Cs,

‖u‖H1+s ≤ C‖f‖H−1+s = C‖∆u‖H−1+s .

In Bacuta, Bramble, and Xu [3], regularity estimates for elliptic boundary value
problems are given for the critical value s = β in a Besov space setting, which
we will use below. A consequence of their result may be expressed as follows:

Lemma 2.3. For the solution of (2.1) we have, for β < s ≤ 1, with C = Cs,

‖u‖B1+β,∞
2

≤ Cs‖f‖H−1+s = C‖∆u‖H−1+s , where B1+β,∞
2 = [H1,H2]β,∞.

When we study estimates in maximum-norm below we shall need the following
result showing that for certain f the solution of (2.1) is in Cβ = Cβ(Ω̄). We
denote the norm in Cβ by ‖ · ‖Cβ .

Lemma 2.4. Let u be the solution of (2.1). For any s with β < s ≤ 1 we
have, with C = Cs,

‖u‖Cβ ≤ C‖f‖H−1+s = C‖∆u‖H−1+s .

Proof. Since s > β we may write u = uR + uS as in (2.6). As is easily seen,
S ∈ Cβ , and, using also the second inequality in (2.8), we therefore have

(2.9) ‖uS‖Cβ ≤ C|κ(f)| ≤ C‖f‖H−1+s .

By Sobolev’s embedding theorem we find

(2.10) ‖uR‖Cβ ≤ C‖uR‖H1+s0 , where, e.g., s0 = (2β + s)/3 ∈ (β, s).
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To bound the latter norm, recall (2.7). For s1 < β we have, using Lemma 2.2
for u and (2.8) for uS , since s0 > β,

‖uR‖H1+s1 ≤ ‖u‖H1+s1 + ‖uS‖H1+s1(2.11)
≤ C‖f‖H−1+s1 + C‖f‖H−1+s0 ≤ C‖f‖H−1+s0 .

Now choose θ ∈ (0, 1) so that s = θs0 + (1 − θ) and then s1 so that s0 =
θs1 + (1− θ). Note that this defines s1 < β. By interpolation between (2.7) and
(2.11) we now conclude that

‖uR‖H1+s0 ≤ C‖f‖H−1+s .

Together with (2.10) and (2.9) this completes the proof.
We consider now the finite element approximation uh of u defined by (1.5). We

have the following error estimates exhibiting the orders of convergence attainable
with the regularity properties of Lemmas 2.2 - 2.4.

Lemma 2.5. We have, with C = Cs,

(2.12) ‖uh − u‖H1 ≤ Chβ‖∆u‖H−1+s for β < s ≤ 1.

Further,

(2.13) ‖uh − u‖ ≤ Ch2β‖∆u‖H−1+s , for β < s ≤ 1,

and

(2.14) ‖uh − u‖ ≤ Chβ‖u‖H1 .

Proof. The first two estimates are shown in [3], using Lemma 2.3 for (2.12)
and a duality argument for (2.13). For the third we also use duality, with

∆ψ = ϕ in Ω, ψ = 0 on ∂Ω,

and with ψh the corresponding finite element solution, to derive, for β < s ≤ 1,

|(uh − u, ϕ)| = |(∇(uh − u),∇(ψ − ψh))| ≤ ‖∇(uh − u)‖ ‖∇(ψ − ψh)‖
≤ C‖∇u‖hβ‖∆ψ‖H−1+s ≤ Chβ‖∇u‖ ‖ϕ‖,

which shows the desired result.
We now turn to estimates in the maximum-norm, or the norm in C = C(Ω),

which we denote ‖ · ‖C . We first show that, under the assumption of quasiuni-
formity, the global order of convergence is of order essentially O(hβ). Here and
below we use the notation

(2.15) `h = max(log(1/h), 1).

Lemma 2.6. Assume that the family of triangulations underlying the family
Sh is globally quasiuniform. Then we have

‖uh − u‖C ≤ Chβ`h‖u‖Cβ .
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Proof. With Ih the interpolant into Sh, this follows at once by the almost
best approximation property, see Schatz [12],

‖uh − u‖C ≤ C`h‖Ihu− u‖C ,
together with a standard approximation result.

We shall now derive a maximum-norm error estimate by using the gradient
estimate (2.12). This estimate is marginally weaker in terms of regularity re-
quirements, but uses a weaker assumption on the triangulations than that as-
sociated with global quasiuniformity. The proof is based on a discrete Sobolev
type inequality, specific to our two-dimensional situation.

Lemma 2.7. Assume the triangulations are such that hmin ≥ Chγ for some
γ > 0. Then, for any s, s1 with 0 ≤ s < s1 < β, we have, with C = Cs,s1 ,

‖uh − u‖C ≤ Chs‖∆u‖H−1+s1 .

Proof. Under the above condition on the triangulations we have the discrete
Sobolev type inequality

(2.16) ‖χ‖C ≤ C`
1/2
h ‖∇χ‖, for χ ∈ Sh.

In fact (cf. [16, Lemma 5.4]), by a standard inverse inequality, using hmin ≥ Chγ ,
followed by a continuous Sobolev inequality, we find, for any p ∈ [2,∞),

‖χ‖C ≤ Ch
−2/p
min ‖χ‖Lp ≤ Ch−2γ/p‖χ‖Lp ≤ Ch−2γ/pp1/2‖∇χ‖,

from which (2.16) follows by taking p = `h.
We have

‖uh − u‖C ≤ ‖uh − Ihu‖C + ‖Ihu− u‖C .
Here, by (2.16), (2.14) and Lemma 2.2, we have, with s < s1 < β,

‖uh − Ihu‖C ≤ C`
1/2
h ‖∇(uh − u)‖+ C`

1/2
h ‖∇(u− Ihu)‖

≤ C`
1/2
h hs1‖u‖H1+s1 ≤ Chs‖∆u‖H−1+s1 .

By Sobolev’s inequality and Lemma 2.2,

‖Ihu− u‖C ≤ Chs‖u‖Cs ≤ Chs‖u‖H1+s1 ≤ Chs‖∆u‖H−1+s1 ,

which shows the result stated.
Away from the corners of the domain the convergence in maximum-norm is of

the same order O(h2β) as in the global L2-error estimate. This follows from the
following lemma.

Lemma 2.8. Let Ω0 ⊂ Ω1 ⊂ Ω be such that Ω1 does not contain any corner
of Ω and the distance between ∂Ω1 ∩ Ω and ∂Ω0 ∩ Ω is positive. Assume that
triangulations associated with Sh are quasiuniform in Ω1. Then, with C = Cs,

‖uh − u‖C(Ω0) ≤ Ch2β
(‖u‖C2s(Ω1) + ‖∆u‖H−1+s

)
, for β < s ≤ 1.
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Proof. This is a consequence of the following interior estimate, valid up to
the interiors of the sides of Ω, see [19, Example 1.10, p. 415], namely

‖uh − u‖C(Ω0) ≤ C`h‖Ihu− u‖C(Ω1) + C‖uh − u‖,

together with Lemma 2.5 and since h2s`h ≤ Ch2β .
We remark that, in the case of a globally quasiuniform mesh, the singularity

at the nonconvex corner pollutes the finite element solution everywhere in Ω
and that therefore the O(h2β) convergence away from the nonconvex corner is
best possible (indeed, even in any negative norm), see [18]. However, optimal
order O(h) and O(h2) convergence in H1 and L2 respectively, may be obtained
by systematically refining the triangulations toward the nonconvex corner. Such
refinements were first studied in Babuška [1] and Raugel [11].

To be able to state the result needed later, we introduce some notation. Let
d(x) denote the distance to the nonconvex corner, and, with dj = 2−j , let

Ωj = {x ∈ Ω : dj/2 ≤ d(x) ≤ dj}, for j = 0, ..., J.

Furthermore, let Ω′j = Ωj−1 ∪ Ωj ∪ Ωj+1 and ΩI = {x ∈ Ω : d(x) ≤ dJ/2}. We
now choose J such that dJ ≈ h1/β where h denotes the meshsize in the interior
of the domain. Further we choose γ ≥ 1/β such that, with ε any small positive
number,

(i) hj ≤ Chd1−β+ε
j and c hγ ≤ hI ≤ Ch1/β , with c > 0,

where hj denotes the maximal meshsize on Ωj . We also assume that the mesh is
locally quasiuniform on each Ω′j , that dim Sh ≤ Ch−2 and hmin ≥ hγ (γ ≈ 1/β
for an “economical” refinement). Construction of families of meshes which fulfil
these requirements can be found in the references given, and elsewhere. We then
have the following result.

Lemma 2.9. With triangulations as above, satisfying (i), we have

‖uh − u‖+ h‖∇(uh − u)‖ ≤ Ch1+s‖∆u‖H−1+s = Ch1+s‖f‖H−1+s , for s = 0, 1.

Proof. We start with the O(h) estimate in H1, s = 1. With u = uR + uS as
above, we have

‖uh − u‖H1 ≤ ‖Ihu− u‖H1 ≤ ‖IhuR − uR‖H1 + ‖IhuS − uS‖H1 .

If f ∈ L2, then uR ∈ H2 and IhuR exists. Further, we have by (2.7),

‖IhuR − uR‖H1 ≤ Ch‖uR‖H2 ≤ Ch‖f‖.

Since |κ(f)| ≤ C‖f‖, it now remains to show

(2.17) ‖IhS − S‖H1 ≤ Ch.
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With hj the local meshsize on Ωj one has

‖IhS − S‖H1(Ωj) ≤ Chj‖S‖H2(Ω′j) ≤ Chjd
β−1
j ≤ Ch dε

j ,

and
‖IhS − S‖H1(ΩI) ≤ ‖IhS‖H1(ΩI) + ‖S‖H1(ΩI) ≤ Cdβ

J ≤ Ch,

which implies (2.17) after taking squares and summing.
The result in H1 when s = 0 is trivial. The full result stated now follows by

a standard duality argument.
There is a similar theory for refinements which yield an almost O(h2) error

bound in the maximum-norm. To discuss this we first need to note that we
are now able to write the solution of (2.1) as a sum of a singular and a regular
function, and with the regular part almost twice continuously differentiable at
all corners of Ω. More specifically, we want the regular part to be in W 2

p for
large p. In [6, Theorem 4.4.3.7], it is shown that any corner of Ω gives rise
to singularities, expressed in terms of polar coordinates centered at the corner
under consideration of the form Sjm(r, θ) = ηj(r) rβjm sin(βjmθ), with βjm =
mπ/ωj ∈ (0, 2), where ωj is the interior angle, m is a positive integer, and ηj a
cutoff-function as before. For the reentrant corner we may have m = 1 or 2, for
convex corners with ωj ∈ ( 1

2π, π) only m = 1 is possible, and for ωj ≤ 1
2π no

such singularity occurs. The solution of (2.1) may then be written, with {Sl}M
l=1

the finitely many singular functions involved,

u = uS + uR, where uS =
M∑

l=1

κl(f)Sl(x),

where, for any p < ∞,

‖uR‖W 2
p
≤ Cp‖f‖Lp .

The coefficients κl(f) are the solution of a nonsingular linear system of equations
involving the (f, ql) expressing that ∆(u− uS) ⊥ qj , j = 1, . . . , M, where the qj

are defined in terms of the dual singular functions similarly to q in Section 2.
Since the essential behavior of qj is r−βj sin(βjθ) we have

(2.18) |κl(f)| ≤ Cp‖f‖Lp , for p > 2/(2−max
j≤M

βj).

Recall from above that for these bounds to hold for p = 2, the singular part uS

of the solution only needs to contain one term, corresponding to the single reen-
trant corner, and refinement is only needed there, but for large p, also weaker
singularities need to be taken into account, and corresponding refinements, sug-
gested by approximation theory, made at other corners.

Using the notation introduced before Lemma 2.9 for each of the corners, with
β denoting the minimal corresponding βjm, we then require, with ε any small
positive number,

(ii) hj ≤ Chd
1−β/2+ε
j and chγ ≤ hI ≤ C h2/β ≈ dJ , with γ ≥ 2/β, c > 0.
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We note that such refinements also satisfy (i) so that the result of Lemma 2.9
remains valid.

Lemma 2.10. With triangulations as above, this time satisfying (ii) for each of
the corners of Ω, we have for the solutions of (1.5) and (2.1), for any s ∈ [1, 2)
and p < ∞ sufficiently large, with C = Cs,p,

‖uh − u‖C ≤ Chs‖∆u‖Lp = Chs‖f‖Lp .

The proof of this lemma is implicitly contained in [14]. Since that paper is
quite technical and does not account for the regularity needed for f , we give
some indications of how a thus amended proof would proceed.

First, the kind of local estimate already used in the proof of Lemma 2.8 above
shows that (with an Ωj associated with one corner)

‖uh − u‖C(Ωj) ≤ C`h‖Ihu− u‖C(Ω′j) + Cd−1
j ‖uh − u‖L2(Ω′j).

For the first term we have

‖Ihu− u‖C(Ω′j) ≤ Ch
2−2/p
j ‖u‖W 2

p (Ω′j,h),

where Ω′j,h is the smallest meshdomain containing Ω′j . Here (noting that only
the Sl corresponding to the corner under consideration enter),

‖u‖W 2
p (Ω′j,h) ≤ ‖uR‖W 2

p (Ω′j,h) +
M∑

l=1

|κl(f)| ‖Sl‖W 2
p (Ω′j,h) ≤ Cpd

β−2+2/p
j ‖f‖Lp ,

where we have used (2.18) and ‖Sl‖W 2
p (Ω′j,h) ≤ C d

β−2+2/p
j . Hence, with (ii),

‖Ihu− u‖C(Ω′j) ≤ Cph
2−2/p
j d

β−2+2/p
j ‖f‖Lp ≤ Cph

2−2/p‖f‖Lp .

On the innermost domain ΩI , using the discrete Sobolev inequality,

‖uh − u‖C(ΩI) ≤ ‖Ihu− u‖C(ΩI) + ‖Ihu− uh‖C(ΩI)

≤ ‖Ihu− u‖C(ΩI) + C`
1/2
h ‖Ihu− uh‖H1(ΩI)

≤ ‖Ihu− u‖C(ΩI) + C`
1/2
h ‖uh − u‖H1(ΩI) + C`

1/2
h ‖Ihu− u‖H1(ΩI).

The two terms involving the interpolation error are easily bounded in the desired
way. For the middle term we now have the local estimate (known to be valid
also at the corner)

‖uh − u‖H1(ΩI) ≤ C‖Ihu− u‖H1(Ω′I) + Cd−1
I ‖uh − u‖L2(Ω′I).

Again the first term on the right is easily handled.
To complete the proof one still has to treat the terms d−1

j ‖uh − u‖L2(Ω′j)

occurring above. This is the central technicality in [14] and uses a careful duality
technique involving a kick-back argument. The development there only needs
slight adjustments to account for ‖f‖Lp .
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3 L2-based error estimates.

In this section we show how some of the error estimates in L2 for the finite
element approximations of the elliptic problem (1.2) may be carried over to
the spatially semidiscrete finite element approximation (1.7) of the parabolic
problem (1.1). This problem will be considered in this section in the framework
of the spatial space L2, and we will therefore now restrict the domain of ∆ :
H1

0 → H−1 to

(3.1) D(∆) = {v ∈ H1
0 : ∆v ∈ L2}.

We note that −∆ is then a closed densely defined positive definite operator on
L2, and that D(∆) is an extension of the domain V 2 considered in Section 2.
The functions in D(∆) are thus not required to have individual second order
derivatives in L2. For instance, the singular function S in (2.3) belongs to D(∆)
but not to V 2.

In discussing the regularity of the solutions of (1.1) it will be convenient to
use certain Hilbert spaces Ḣs based on the orthonormal eigenfunctions {ϕj}∞j=1

and the corresponding eigenvalues {λj}∞j=1 of −∆. Let thus Ḣs be defined by
the norm

‖v‖Ḣs =
( ∞∑

j=1

λs
j〈v, ϕj〉2

)1/2

, for s ≥ −1, v ∈ H−1.

Then, since both Ḣ−s and H−s is the uniquely defined interpolation space be-
tween L2 and H−1, we have Ḣ−s = H−s, for 0 < s < 1. Also, Ḣs = Hs

0 for
0 ≤ s ≤ 1, and for 1 ≤ s ≤ 2, Ḣs consists of the functions u ∈ H1

0 such that ∆u
is in the negative space Hs−2, cf. [2]. In particular, (3.1) shows that D(∆) = Ḣ2

and the range of ∆ is L2. Since obviously −∆ is an isomorphism between Ḣ1+s

and Ḣ−1+s, the result of Lemma 2.2 may be expressed as

(3.2) ‖u‖H1+s ≤ C‖∆u‖H−1+s ≤ C‖∆u‖Ḣ−1+s = C‖u‖Ḣ1+s , for 0 ≤ s < β.

The solution operator of the homogeneous case (f = 0) of (1.1) may be defined
as

E(t)v =
∞∑

j=1

e−λjt〈v, ϕj〉ϕj , for v ∈ H−1,

and it follows at once by Parseval’s relation that E(t) is a contraction in L2 and
has the smoothing property

(3.3) ‖E(t)v‖Ḣs2 ≤ Ct−(s2−s1)/2‖v‖Ḣs1 , for − 1 ≤ s1 ≤ s2.

In particular, E(t) is an analytic semigroup in L2, and ∆ is its generator, cf.
Pazy [10].

In the present case of a nonconvex domain, one may loose uniqueness if one
allows a solution concept which is too weak. Following [7, Section 5.1.2], consider
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the function q ∈
◦

W 1
p, p < 2/(1+β) < 2 defined in the paragraph following (2.5)

above. Regard this as solution of (1.1) with f = 0 and v = q which is constant
in time. The semigroup solution E(t)q is different.

For the inhomogeneous problem (1.1), with v ∈ L2, f ∈ L1(0, T ; L2), we define
the mild solution by Duhamel’s principle,

(3.4) u(t) = E(t)v +
∫ t

0

E(t− τ)f(τ) dτ.

This is unique among so-called “weak” solutions of (1.1) in the class of functions
u ∈ L2(0, T ;H1

0 ) with ut ∈ L2(0, T ; H−1). As remarked in [7, Remark 5.1.2], this
class is too weak to allow a meaningful splitting into regular and singular parts.
Instead, he considers v ∈ H1

0 , f ∈ L2(0, T ; L2) in which case the mild solution is
unique among “classical” solutions u ∈ L2(0, T ; D(∆)), with ut ∈ L2(0, T ; L2).

In our regularity results below, we shall make stronger assumptions on v and
f which, by (3.4) lead to results needed on u, in particular to apply the elliptic
theory. In the following result we use the notation

(3.5) g0 = ut(0) = ∆v + f(0), for v ∈ D(∆), f(0) ∈ L2.

Note that v ∈ D(∆) contains the compatibility condition v = 0 on ∂Ω between
initial data and the boundary condition in (1.1).

Our first regularity estimates for the solution of (1.1) are as follows.
Lemma 3.1. Let u(t) be the solution of (1.1), and let g0 be defined by (3.5).

Then we have, for 0 ≤ s < 1 and t ≤ T , with C = Cs,T ,

(3.6)
∫ t

0

(‖ut(τ)‖Ḣ1+s + ‖utt(τ)‖Ḣ−1+s

)
dτ ≤ C

(
‖g0‖+

∫ t

0

‖ft(τ)‖ dτ
)
.

Further, for ε ∈ (0, 1
2 ) and t ≤ T , with C = Cε,T

(3.7)
∫ t

0

(‖ut(τ)‖Ḣ2 + ‖utt(τ)‖) dτ ≤ C
(
‖g0‖Hε +

∫ t

0

‖ft(τ)‖Hε dτ
)
.

Proof. We first note that, for 0 < s ≤ 1,

‖ut(t)‖Ḣ1+s = ‖∆ut(t)‖Ḣ−1+s ≤ ‖utt(t)‖Ḣ−1+s + ‖ft(t)‖Ḣ−1+s ,

so that it suffices to consider the second integrands on the left in (3.6) and (3.7).
We now differentiate (3.4) to obtain

(3.8) ut(t) = E(t)g0 +
∫ t

0

E(t− τ)ft(τ) dτ.

By further differentiation this yields

(3.9) utt(t) = E′(t)g0 + ft(t) +
∫ t

0

E′(t− τ)ft(τ) dτ.
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Let ε = 0 if s < 1 and ε ∈ (0, 1
2 ) if s = 1. Then, by (3.3),

‖E′(t)g0‖Ḣ−1+s = ‖E(t)g0‖Ḣ1+s ≤ Ct−σ‖g0‖Ḣε , with σ = (s + 1− ε)/2,

and similarly for the integrand in (3.9). We conclude

‖utt(t)‖Ḣ−1+s ≤ C
(
t−σ‖g0‖Ḣε + ‖ft(t)‖Ḣε +

∫ t

0

(t− τ)−σ‖ft(τ)‖Ḣε dτ
)
,

and hence after integration, since σ = (s + 1− ε)/2 < 1,
∫ t

0

‖utt(τ)‖Ḣ−1+s dτ ≤ C(1 + T 1−σ)
(
‖g0‖Ḣε +

∫ t

0

‖ft(τ)‖Ḣε dτ
)
, for t ≤ T.

Since the norms in Ḣε and Hε are equivalent, this completes the proof.
We remark that in (3.6) the L2−norms on the right could have been replaced

by fractional order negative norms. For simplicity of presentation we avoid using
such norms in the statements of our results.

A second regularity result is as follows. Here, g0 ∈ H1
0 involves a second

compatibility condition at the boundary at initial time, viz., ∆v + f(0) = 0 on
∂Ω.

Lemma 3.2. We have for the solution of (1.1)
∫ t

0

‖ut(τ)‖2H1dτ ≤ C
(
‖g0‖2 +

∫ t

0

‖ft(τ)‖2H−1 dτ
)

and
∫ t

0

(‖∆ut(τ)‖2 + ‖utt(τ)‖2)dτ ≤ C
(
‖g0‖2H1

0
+

∫ t

0

‖ft(τ)‖2dτ
)
, for t ≥ 0.

Proof. By differentiation of (1.1) and multiplication by ut in L2 we obtain

1
2

d

dt
‖ut‖2 + ‖∇ut‖2 = (ft, ut) ≤ C‖ft‖2H−1 + 1

2‖∇ut‖2,

and the first result hence follows by integration. Multiplication instead by utt

shows
‖utt‖2 + 1

2

d

dt
‖∇ut‖2 = (ft, utt) ≤ 1

2‖utt‖2 + 1
2‖ft‖2,

which yields ∫ t

0

‖utt(τ)‖2dτ ≤ ‖∇g0‖2 +
∫ t

0

‖ft(τ)‖2dτ.

Since ‖∆ut‖ ≤ ‖utt‖+ ‖ft‖ the result follows.
We consider the semidiscrete problem (1.7) where for simplicity we take vh =

Rhv, or, with ∆h the discrete Laplacian and Ph the orthogonal L2−projection
onto Sh,

(3.10) uh,t −∆huh = Phf, t > 0, with uh(0) = Rhv.
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The operator −∆h is a positive definite operator on Sh. The solution opera-
tor Eh(t) = e∆ht of the homogeneous equation (f = 0) is again an analytic
semigroup on Sh, uniformly in h. In particular,

‖Eh(t)vh‖ ≤ ‖vh‖ and ‖E′
h(t)vh‖ ≤ Ct−1‖vh‖, for t > 0.

We now show an error estimate for the solution of (3.10).
Theorem 3.3. We have, with C = CT ,

‖uh(t)− u(t)‖ ≤ Ch2β
(
‖∆v‖+ ‖f(0)‖+

∫ t

0

‖ft(τ)‖ dτ
)
, for t ≤ T.

Proof. As in (1.8) we write uh(t) − u(t) = θ(t) + ρ(t). For θ we have the
representation (1.10), and hence, by the stability in L2 of Eh(t) and Ph,

‖uh(t)− u(t)‖ ≤ ‖ρ(t)‖+ ‖θ(t)‖ ≤ ‖ρ(0)‖+ 2
∫ t

0

‖ρt(τ)‖ dτ.

Letting β < s < 1, we have by the elliptic finite element estimate (2.13), together
with (3.2),

‖uh(t)− u(t)‖ ≤ Ch2β
(
‖v‖Ḣ1+s +

∫ t

0

‖ut(τ)‖Ḣ1+s dτ
)
, for t ≥ 0.

Since ‖v‖Ḣ1+s ≤ C‖v‖Ḣ2 = C‖∆v‖, the result stated now follows from (3.6) and
(3.5).

We next show an O(hβ) estimate for the gradient of the error.
Theorem 3.4. We have for t ≤ T , with C = CT ,

‖∇(uh(t)−u(t))‖ ≤ Chβ
(‖∆v‖+‖f(0)‖+

∫ t

0

‖ft(τ)‖ dτ+(
∫ t

0

‖ft(τ)‖2H−1dτ)1/2
)
.

Proof. Using Lemma 2.5 we find, with β < s < 1,

‖∇ρ(t)‖ ≤ Chβ‖u(t)‖Ḣ1+s ≤ Chβ
(
‖v‖Ḣ1+s +

∫ t

0

‖ut(τ)‖Ḣ1+s dτ
)
.

The right hand is bounded as desired by Lemma 3.1.
To bound ∇θ(t) we choose χ = θt in (1.9) to obtain

‖θt‖2 + 1
2

d

dt
‖∇θ‖2 = −(ρt, θt) ≤ 1

2‖ρt‖2 + 1
2‖θt‖2.

Since θ(0) = 0 we have, using (2.14),

(3.11) ‖∇θ(t)‖2 ≤
∫ t

0

‖ρt(τ)‖2dτ ≤ Ch2β

∫ t

0

‖ut(τ)‖2H1dτ, for t ≥ 0.

The bound stated therefore follows by Lemma 3.2.
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The analysis above of ∇θ also yields the following result about the ”super”-
closeness of uh and Rhu.

Lemma 3.5. We have

‖∇θ(t)‖ ≤ Ch2β
(
‖g0‖H1

0
+

( ∫ t

0

‖ft(τ)‖2dτ
)1/2)

, for t ≥ 0.

Proof. Using (3.11) and (2.13) with s = 1, we obtain

(3.12) ‖∇θ(t)‖2 ≤
∫ t

0

‖ρt(τ)‖2dτ ≤ Ch4β

∫ t

0

‖∆ut(τ)‖2dτ,

where the last term is estimated by Lemma 3.2.
We shall now give an example of a nonsmooth data error estimate and demon-

strate that, for the homogeneous parabolic equation, a O(h2β) error estimate
holds for the semidiscrete approximation for positive time even when the ini-
tial data are only assumed to be in L2, provided the discrete initial data are
appropriately chosen.

Theorem 3.6. Let uh(t) and u(t) be the solutions of (1.7) and (1.1) with
f = 0, and let vh = Phv. Then we have, for β < s < 1, with C = Cs,

‖uh(t)− u(t)‖ ≤ Ch2βt−(1+s)/2‖v‖, for t > 0.

Proof. In [16, Chapter 3, formula (3.16)] the following inequality was shown
for smooth ∂Ω,

‖uh(t)− u(t)‖ ≤ Ct−1 sup
τ≤t

(
τ2‖ρt(τ)‖+ τ‖ρ(τ)‖+ ‖ρ̃(τ)‖), for t > 0,

where ρ̃(t) =
∫ t

0
ρ(τ)dτ . However, for proving this, the smoothness of ∂Ω is not

actually required. By (2.13) and (3.3), and using the definition of Ḣ−1+s we
easily obtain that

τ‖ρ(τ)‖ ≤ Cτh2β‖u(τ)‖Ḣ1+s ≤ Ch2βτ (1−s)/2‖v‖.

Hence, since s < 1, we find

‖ρ̃(τ)‖ ≤
∫ τ

0

‖ρ(η)‖dη ≤ Ch2β

∫ τ

0

η(−1−s)/2‖v‖dη ≤ Ch2βτ (1−s)/2‖v‖.

In the same way,

τ2‖ρt(τ)‖ ≤ Ch2βτ2‖ut(τ)‖Ḣ1+s ≤ Ch2βτ (1−s)/2‖v‖.

Together these inequalities complete the proof.
We finally show that the optimal order error bounds for the elliptic problem

in Lemma 2.9 obtained by refinements towards the nonconvex corner can be
carried over to the parabolic problem.
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Theorem 3.7. Assume that the triangulations underlying the Sh are refined
as in Lemma 2.9. We then have, for t ≤ T and any ε ∈ (0, 1

2 ), with C = Cε,T ,

‖uh(t)− u(t)‖ ≤ Ch2
(
‖∆v‖+ ‖g0‖Hε +

∫ t

0

‖ft(τ)‖Hε dτ
)

and

‖∇(uh(t)−u(t))‖ ≤ Ch
(‖∆v‖+‖g0‖Hε+

∫ t

0

‖ft(τ)‖Hεdτ+(
∫ t

0

‖ft(τ)‖2H−1dτ)1/2
)
.

Proof. We use Lemma 2.9 with s = 1. We first have

‖ρ(t)‖+ h‖∇ρ(t)‖ ≤ Ch2‖∆u(t)‖ ≤ Ch2
(
‖∆v‖+

∫ t

0

‖∆ut(τ)‖ dτ
)
.

The right hand side is now bounded by (3.7). For θ we have in a standard way,
choosing χ = θ in (1.9),

‖θ(t)‖ ≤
∫ t

0

‖ρt(τ)‖ dτ ≤ Ch2

∫ t

0

‖∆ut(τ)‖ dτ, for t ≥ 0,

where the right hand side is bounded as above. For the gradient of θ we have
by the first inequality of (3.11),

‖∇θ(t)‖2 ≤
∫ t

0

‖ρt(τ)‖2dτ ≤ Ch2

∫ t

0

‖ut(τ)‖2H1dτ, for t ≥ 0,

which is again bounded as desired by Lemma 3.2.

4 Maximum-norm estimates.

We now turn to maximum-norm error estimates for semidiscrete finite ele-
ment approximations of (1.1), extending such estimates for the stationary elliptic
problem. In the same way as in the discussion in Section 2, we shall be using two
different approaches. In the first the analysis takes place within the framework
of the Banach space C(Ω) and assumes globally quasiuniform triangulations, and
in the second the arguments are based on using the discrete Sobolev inequality,
under weaker assumptions on the triangulations, together with L2−bounds for
the gradient of the θ−part of the error.

We begin the first approach by showing a resolvent estimate for the discrete
Laplacian ∆h, in the case of globally quasiuniform triangulations, and an asso-
ciated stability and smoothing property for the solution operator of the homo-
geneous semidiscrete equation.

We recall that, in the case of a domain Ω with smooth boundary, the operator
∆, with a suitably defined domain, satisfies the resolvent estimate

‖(zI −∆)−1v‖C ≤ C

1 + |z| ‖v‖C , ∀ v ∈ C0(Ω), z ∈ Σα = {z : | arg z| < α},
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for any α ∈ ( 1
2π, π), and hence generates an analytic semigroup E(t) = e∆t on

C0(Ω), see Stewart [15]. It is not known to us if this holds also for a polygonal
domain. However, the corresponding resolvent estimate is valid in Lp, for 1 <
p < ∞, as follows from the proof of Theorem 3.6 of Chapter 7 in [10].

The technique of proof of the following discrete resolvent estimate is based on
[13]. For a domain with smooth boundary such a result was shown in [4] without
the logarithmic factor `h (cf. (2.15)).

Theorem 4.1. Assume that the family of triangulations underlying the Sh is
globally quasiuniform. Then, for any α ∈ (1

2π, π) and h small, we have, with
C = Cα,

‖(zI −∆h)−1vh‖C ≤ C`h

1 + |z| ‖vh‖C , ∀ vh ∈ Sh, z ∈ Σα.

Proof. For any x ∈ Ω, let δx
h ∈ Sh be the discrete delta-function defined by

(χ, δx
h) = χ(x), ∀χ ∈ Sh,

and let ωx
h be the modified distance function

ωx
h(y) = (|y − x|2 + h2)1/2.

Here δx
h is concentrated near x in the sense that one can show as in [16, Lemma

5.3], that, with C independent of x ∈ Ω and h,

(4.1) ‖ωx
hδx

h‖ ≤ C, for x ∈ Ω.

We now introduce the discrete Green’s function

Gz;x
h = (zI −∆h)−1δx

h ∈ Sh,

and note that, for vh ∈ Sh,

(zI −∆h)−1vh(x) = ((zI −∆h)−1vh, δx
h) = (vh, Gz̄;x

h ).

To show the theorem we therefore want to show, with C = Cα,

‖Gz;x
h ‖L1 ≤

C`h

1 + |z| , ∀ x ∈ Ω, z ∈ Σα.

Setting ω = ωx
h, G = Gz;x

h , and noting that ‖ω−1‖ ≤ C`
1/2
h , we have

‖G‖L1 ≤ ‖ω−1‖ ‖ωG‖ ≤ C`
1/2
h ‖ωG‖,

so that it suffices to show

(4.2) ‖ωG‖ ≤ C`
1/2
h

1 + |z| , ∀ x ∈ Ω, z ∈ Σα.



20 P. CHATZIPANTELIDIS ET AL.

We consider the identity

z‖ωG‖2 + ‖ω∇G‖2 = z(G,ω2G) + (∇G,∇(ω2G))− 2(∇G,ωG∇ω).

Note that, with δ = δx
h,

z(G,χ) + (∇G,∇χ) = ((z I −∆h)G,χ) = (δ, χ), ∀ χ ∈ Sh, z ∈ Σα.

Thus, subtracting this equation from the previous, and choosing χ = Ph(ω2G),
where Ph is the L2−projection onto Sh, we find

z‖ωG‖2 + ‖ω∇G‖2 = z(G,ω2G− Ph(ω2G)) + (∇G,∇(ω2G− Ph(ω2G)))

− 2(∇G, ωG∇ω) + (δ, Ph(ω2G)) =
4∑

j=1

Ij .

Obviously, I1 = 0, since G ∈ Sh. To bound I2 we need the following fact
associated with superapproximation, cf. [16, Lemma 5.2], namely

‖∇(ω2χ− Ph(ω2χ))‖ ≤ Ch(‖χ‖+ ‖ω∇χ‖), ∀χ ∈ Sh.

Using this, and also an inverse estimate, we find since G ∈ Sh, for any µ > 0,

|I2| ≤ Ch‖∇G‖(‖G‖+‖ω∇G‖) ≤ C
(‖G‖2+‖G‖ ‖ω∇G‖) ≤ µ

2
‖ω∇G‖2+C‖G‖2.

Also, since ∇ω is bounded,

|I3| ≤ C‖G‖ ‖ω∇G‖ ≤ µ

2
‖ω∇G‖2 + C‖G‖2,

and for I4 we have, using (4.1),

|I4| = |(δ, ω2G)| = |(ωδ, ωG)| ≤ C‖ωG‖.

Altogether, after taking real and imaginary parts,

Re z ‖ωG‖2 + ‖ω∇G‖2 ≤ µ‖ω∇G‖2 + C(‖G‖2 + ‖ωG‖),
| Im z| ‖ωG‖2 ≤ µ‖ω∇G‖2 + C(‖G‖2 + ‖ωG‖).

Thus for any ε > 0, after taking µ < ε/(2(1 + ε)) and kicking back ‖ω∇G‖,

(| Im z|+ εRe z) ‖ωG‖2 + 1
2ε‖ω∇G‖2 ≤ C

(‖G‖2 + ‖ωG‖), with C = Cε.

Choosing, e.g., ε = tan((π − α)/2), we see that

| Im z|+ ε Re z ≥ c|z|, for z ∈ Σα, with c > 0.

Hence, with C = Cα,

|z| ‖ωG‖2 + ‖ω∇G‖2 ≤ C
(‖G‖2 + ‖ωG‖), for z ∈ Σα,
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and since
C‖ωG‖ ≤ 1

2 |z| ‖ωG‖2 + 1
2C2|z|−1,

we obtain, with a new C = Cα,

(4.3) |z| ‖ωG‖2 + ‖ω∇G‖2 ≤ C
(‖G‖2 + |z|−1

)
, for z ∈ Σα.

To bound ‖G‖2, we note that

z ‖G‖2 + ‖∇G‖2 = (δ,G) = G(x),

and taking again real and imaginary parts, as above,

|z|‖G‖2 + ‖∇G‖2 ≤ C|G(x)| ≤ C`
1/2
h ‖∇G‖ ≤ 1

2‖∇G‖2 + C`h, for z ∈ Σα,

and hence

(4.4) |z| ‖G‖2 + ‖∇G‖2 ≤ C`h, for z ∈ Σα, x ∈ Ω.

Together (4.3) and (4.4) show, with C = Cα,

‖ωG‖ ≤ C`
1/2
h |z|−1, for z ∈ Σα, x ∈ Ω,

which concludes the proof of (4.2) for |z| ≥ 1, say. Since also, using (4.4) in the
second step,

‖ωG‖ ≤ C‖∇G‖ ≤ C`
1/2
h ≤ 2C

`
1/2
h

1 + |z| , for z ∈ Σα, |z| ≤ 1,

the proof is complete.
As a consequence of the above discrete resolvent estimate the following result

obtains in a standard way, cf. [10, Section 2.5].
Theorem 4.2. The discrete Laplacian ∆h generates an analytic semigroup

Eh(t) on Sh, equipped with the maximum-norm, defined for any α ∈ ( 1
2π, π) by

Eh(t) = et∆h =
1

2πi

∫

∂Σα

etz(z I −∆h)−1dz, for t > 0,

with Eh(0) = I, and we have, with C independent of h,

‖Eh(t)vh‖C + t‖E′
h(t)vh‖C ≤ C`h‖vh‖C , for vh ∈ Sh, t ≥ 0.

We now show the following error estimate, with g0 defined in (3.5).
Theorem 4.3. Assume that the family of triangulations underlying the Sh is

quasiuniform. Then we have, for the solutions of (3.10) and (1.1), with C = CT ,

‖uh(t)− u(t)‖C ≤ Chβ`2h

(
‖v‖Cβ + ‖g0‖+

∫ t

0

‖ft(τ)‖ dτ
)
, for t ≤ T.
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Proof. With our standard notation we have, using Lemma 2.6,

(4.5) ‖ρ(t)‖C ≤ Chβ`h‖u(t)‖Cβ ≤ Chβ`h

(‖v‖Cβ +
∫ t

0

‖ut(τ)‖Cβ dτ
)
, for t ≥ 0.

As before we use the representation (1.10) for θ(t). Using the stability result of
Theorem 4.2 for Eh(t) and the stability of Ph in C (see, e.g. [16, Lemma 5.1]),
we obtain

‖θ(t)‖C ≤ C`h

∫ t

0

‖ρt(τ)‖C dτ ≤ Chβ`2h

∫ t

0

‖ut(τ)‖Cβ dτ, for t ≥ 0.

By Lemmas 2.4 and 3.1 we find, with β < s < 1, for t ≤ T ,

(4.6)
∫ t

0

‖ut(τ)‖Cβ dτ ≤ C

∫ t

0

‖ut(τ)‖Ḣ1+s dτ ≤ CT

(
‖g0‖+

∫ t

0

‖ft(τ)‖ dτ
)
.

Together these estimates show the theorem.
We now turn to the second approach and derive a maximum-norm error es-

timate by using the error estimate for the gradient in L2, together with the
two-dimensional discrete Sobolev inequality. As in Lemma 2.7 this will be done
under a weaker assumption on the triangulations than the one used in the first
approach above.

Theorem 4.4. Assume that the family of triangulations underlying Sh is such
that hmin ≥ Chγ for some γ > 0. Then, for any s with 0 ≤ s < β, we have, for
the solutions of (3.10) and (1.1), with C = Cs,T , for t ≤ T ,

‖uh(t)−u(t)‖C ≤ Chs
(
‖∆v‖+‖f(0)‖+

∫ t

0

‖ft(τ)‖ dτ +
( ∫ t

0

‖ft(τ)‖2H−1 dτ
)1/2

)
.

Proof. We have by Lemma 2.7, with s1 ∈ (s, β),

‖ρ(t)‖C ≤ Chs‖∆u(t)‖H−1+s1 ≤ Chs‖u(t)‖Ḣ1+s1 .

Here, for t ≥ 0,

‖u(t)‖Ḣ1+s1 ≤ C
(
‖v‖Ḣ1+s1 +

∫ t

0

‖ut(τ)‖Ḣ1+s1 dτ
)
,

which is bounded as desired by (3.6).
Using (2.16) together with (3.11) and Lemma 3.2 we have

‖θ(t)‖C ≤ C`
1/2
h ‖∇θ(t)‖ ≤ C`

1/2
h hβ

(
‖g0‖+

( ∫ t

0

‖ft(τ)‖2H−1dτ
)1/2)

, for t ≥ 0.

Together these estimates show the result stated.
We now derive an estimate away from the corners.
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Theorem 4.5. Let Ω0 ⊂ Ω1 ⊂ Ω be such that Ω1 does not contain any corner
of Ω and the distance between ∂Ω1 ∩ Ω and ∂Ω0 ∩ Ω is positive. Assume that
the triangulations associated with Sh are quasiuniform in Ω1. Then we have, for
β < s < 1, t ≤ T , with C = Cs,T ,

‖uh(t)− u(t)‖C(Ω0) ≤ Ch2β`
1/2
h

(‖u(t)‖C2s(Ω1) + ‖∆v‖+ ‖g0‖H1
0

+
( ∫ t

0

‖ft(τ)‖2dτ
)1/2)

, for t ≤ T.

Proof. By Lemmas 2.8 and 3.1 we have, with β < s < 1,

‖ρ(t)‖C(Ω0) ≤ Ch2β
(‖u(t)‖C2s(Ω1) + ‖u(t)‖Ḣ1+s

)

≤ Ch2β
(
‖u(t)‖C2s(Ω1) + ‖∆v‖+ ‖g0‖+

∫ t

0

‖ft(τ)‖dτ
)
, for t ≤ T.

Further, using the supercloseness result of Lemma 3.5,

‖θ(t)‖C ≤ C`
1/2
h ‖∇θ(t)‖ ≤ Ch2β`

1/2
h

(‖g0‖H1
0

+
( ∫ t

0

‖ft(τ)‖2dτ
)1/2)

, for t ≥ 0.

Together these estimates show the error bound stated.
We also have the following result showing almost O(h2) convergence in the

presence of appropriate refinements.
Theorem 4.6. Let the triangulations underlying the Sh be refined as in

Lemma 2.10. Then, for any s ∈ [0, 2) and t ≥ 0, we have, with C = Cs,

‖uh(t)−u(t)‖C ≤ Chs
(
‖g0‖H1

0
+‖f(0)‖C+

∫ t

0

‖ft(τ)‖Cdτ+
( ∫ t

0

‖ft(τ)‖2dτ
)1/2

)
.

Proof. To bound ρ(t) we use Lemma 2.10 and (3.8), together with the fact
that E(t) is a contraction in Lp, to obtain, for p sufficiently large, with C = Cs,p,

‖ρ(t)‖C ≤ Chs‖∆u(t)‖Lp ≤ Chs(‖f(t)‖Lp + ‖ut(t)‖Lp)

≤ Chs
(
‖f(0)‖Lp + ‖g0‖Lp +

∫ t

0

‖ft(τ)‖Lp dτ
)

≤ Chs
(
‖f(0)‖C + ‖∇g0‖+

∫ t

0

‖ft(τ)‖C dτ
)
.

For θ(t) we first derive a superconvergent order estimate for ∇θ(t) as in (3.12),
now with the L2 error estimate of Lemma 2.9 (valid since the refinement is now
stronger than there), namely

‖∇θ(t)‖2 ≤
∫ t

0

‖ρt(τ)‖2dτ ≤ Ch4

∫ t

0

‖∆ut(τ)‖2dτ.

Using (2.16), and Lemma 3.2 to bound the last integral, we have

‖θ(t)‖C ≤ C`
1/2
h ‖∇θ(t)‖ ≤ C`

1/2
h h2

(
‖∇g0‖+

( ∫ t

0

‖ft(τ)‖2dτ
)1/2)

,

which is bounded as stated for any s ∈ [0, 2). This completes the proof.
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5 Fully discrete methods.

As examples for fully discrete methods we will show some error estimates
for the application of the Backward Euler and the Crank–Nicolson methods to
the discretization in time of the spatially semidiscrete problem (1.7). Letting k
denote the constant time step, Un the approximation in Sh of the exact solution
u(t) of (1.1) at t = tn = nk, and setting ∂̄Un = (Un − Un−1)/k, we consider
first the Backward Euler method

(∂̄Un, χ) + (∇Un,∇χ) = (fn, χ), ∀χ ∈ Sh, n ≥ 1,(5.1)

U0 = vh = Rhv.

We first show the following error estimate in L2−norm, with g0 defined in (3.5).
Theorem 5.1. Let Un and u(tn) be the solutions of (5.1) and (1.1), respec-

tively, and let ε ∈ (0, 1
2 ). Then we have, with C = Cε,T ,

‖Un − u(tn)‖ ≤ C(h2β + k)
(
‖∆v‖+ ‖g0‖Hε +

∫ tn

0

‖ft(τ)‖Hε dτ
)
, for tn ≤ T.

Proof. Analogously to (1.8) we write

(5.2) Un − u(tn) = (Un −Rhu(tn)) + (Rhu(tn)− u(tn)) = θn + ρn.

Here ρn is bounded as desired as in the proof of Theorem 3.3. To bound θn we
note that

(5.3) (∂̄θn, χ) + (∇θn,∇χ) = −(ωn, χ), ∀χ ∈ Sh,

where

(5.4) ωn = ωn
1 + ωn

2 = (Rh − I)∂̄u(tn) + (∂̄u(tn)− ut(tn)).

Choosing χ = θn in (5.3) we obtain in a standard fashion

‖θn‖ ≤ ‖θn−1‖+ k‖ωn‖, for n ≥ 1,

and hence, since θ0 = 0,

‖θn‖ ≤ k

n∑

j=1

‖ωj
1‖+ k

n∑

j=1

‖ωj
2‖ = I + II.

Here kωj
1 =

∫ tj

tj−1
ρt(τ) dτ , and hence, as in Theorem 3.3,

(5.5) I ≤
∫ tn

0

‖ρt(τ)‖ dτ ≤ CT h2β
(
‖g0‖+

∫ tn

0

‖ft(τ)‖ dτ
)
, for tn ≤ T.

Further, using the second part of Lemma 3.1, we find, for any ε > 0,

II ≤ Ck

∫ tn

0

‖utt(τ)‖ dτ ≤ Cεk
(
‖g0‖Hε +

∫ tn

0

‖ft(τ)‖Hε dτ
)
.
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Together these estimates complete the proof.
Next, we will show the following estimate for the gradient of the error.
Theorem 5.2. Let Un and u(tn) be the solutions of (5.1) and (1.1), respec-

tively. Then we have, with C = CT ,

‖∇(Un−u(tn))‖ ≤ C(hβ+k)
(
‖∆v‖+‖g0‖H1

0
+

( ∫ tn

0

‖ft(τ)‖2dτ
)1/2

)
, for tn ≤ T.

Proof. Here∇ρn is bounded as desired by the proof of Theorem 3.4. Further,
choosing χ = ∂̄θn in (5.3), since 2(∇θn,∇∂̄θn) = ∂̄‖∇θn‖2 + k‖∇∂̄θn‖2 we find
easily that ∂̄‖∇θn‖2 ≤ 1

2‖ωn‖2, and hence

‖∇θn‖2 ≤ k

n∑

j=1

‖ωj
1‖2 + k

n∑

j=1

‖ωj
2‖2 = I ′ + II ′.

Here, using (3.11) and Lemma 3.2,

I ′ ≤
∫ tn

0

‖ρt(τ)‖2 dτ ≤ Ch2β
(
‖g0‖2 +

∫ tn

0

‖ft(τ)‖2H−1 dτ
)
, for tn ≥ 0.

Further, by Lemma 3.2

II ′ ≤ Ck2

∫ tn

0

‖utt(τ)‖2 dτ ≤ Ck2
(
‖g0‖2H1

0
+

∫ tn

0

‖ft(τ)‖2 dτ
)
, for tn ≥ 0.

Together these estimates complete the proof.
Also, we will show the following nonsmooth initial data estimate.
Theorem 5.3. Let Un and u(tn) be the solutions of (5.1) and (1.1) with

f = 0, but with vh = Phv. Then we have, for β < s < 1, with C = Cs,T ,

‖Un − u(tn)‖ ≤ C(h2βt−(1+s)/2
n + kt−1

n )‖v‖, for tn ≤ T.

Proof. In view of Theorem 3.6 it suffices to note that

‖Un − uh(tn)‖ ≤ Ckt−1
n ‖Phv‖ ≤ Ckt−1

n ‖v‖, for tn ≤ T.

The former inequality is a special case of, e.g., [16, Theorem 7.2].
We now demonstrate two maximum-norm error estimates, using the two ap-

proaches to such estimates used earlier in Sections 2 and 4. We first have the
following.

Theorem 5.4. Assume that the family of triangulations underlying the Sh

is globally quasiuniform. Let Un and u(tn) be the solutions of (5.1) and (1.1),
respectively, and let g1 = utt(0) = ∆g0 + ft(0). Then, with C = CT , we have,
for tn ≤ T ,

‖Un−u(tn)‖C ≤ C(hβ +k) `2h

(
‖v‖Cβ +‖g0‖+‖g1‖+

∫ tn

0

(‖ft(τ)‖+‖ftt(τ)‖) dτ
)
.
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Proof. The term ρn is bounded as stated by (4.5) and (4.6). For θn we have,
by (5.3),

θn − k∆hθn = θn−1 − kPhωn,

or, with Ekh = (I − k∆h)−1, since θ0 = 0,

θn = Ekh(θn−1 − kPhωn) = −k

n∑

j=1

En+1−j
kh Phωj .

By use of the resolvent estimate of Theorem 4.1, see, e.g., [16, Theorem 8.2], we
have the stability bound

‖Em
khPhv‖C ≤ C`h‖v‖C , for m ≥ 0,

and hence, with the notation (5.4),

‖θn‖C ≤ Ck`h

n∑

j=1

‖ωj
1‖C + Ck`h

n∑

j=1

‖ωj
2‖C = I ′′ + II ′′.

Here, using Lemmas 2.6 and 2.4, we have, with β < s < 1,

I ′′ ≤ Chβ`2h

∫ tn

0

‖ut(τ)‖Cβ dτ ≤ Chβ`2h

∫ tn

0

‖ut(τ)‖Ḣ1+s dτ,

which is bounded as desired by (3.6). Further, for any ε > 0,

II ′′ ≤ Ck`h

∫ tn

0

‖utt(τ)‖C dτ ≤ Ck`h

∫ tn

0

‖utt(τ)‖Ḣ1+ε dτ.

By (3.6), applied to ut, we have the regularity estimate
∫ tn

0

‖utt(τ)‖Ḣ1+ε dτ ≤ CT

(
‖g1‖+

∫ tn

0

‖ftt(τ)‖ dτ
)
, for tn ≤ T,

which completes the proof.
By using the technique for estimating ρ in the proof of Theorem 4.4, combined

with the discrete Sobolev inequality (2.16) and the estimate for ∇θn in the proof
of Theorem 5.2, we have the following.

Theorem 5.5. Assume the family of triangulations underlying Sh is such that
hmin ≥ Chγ for some γ > 0. Then, for any s with 0 ≤ s < β, we have, for the
solutions of (5.1) and (1.1), with C = Cs,T , for t ≤ T ,

‖Un − u(tn)‖C ≤ C(hs + `
1/2
h k)

(
‖∆v‖+ ‖g0‖H1

0
+

( ∫ t

0

‖ft(τ)‖2dτ
)1/2)

.

As a final example of a fully discrete method we will consider the Crank–
Nicolson method for the discretization in time of the semidiscrete problem (1.7),
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combined with such refinement in space that yields an optimal order O(h2) error
estimate in space. With the above notation, and setting Ûn = 1

2 (Un + Un−1),
the Crank-Nicolson method is defined by

(∂̄Un, χ) + (∇Ûn,∇χ) = (f(tn− 1
2
), χ), ∀χ ∈ Sh, n ≥ 1,

U0 = vh = Rhv.
(5.6)

We show the following error estimate.
Theorem 5.6. Let Un and u(tn) be the solutions of (5.6) and (1.1), and let

ε ∈ (0, 1
2 ). Assume that the triangulations are refined as in Lemma 2.9. Then

we have, with g1 as in Theorem 5.4, and C = Cε,T ,

‖Un − u(tn)‖ ≤ C(h2 + k2)
(
‖∆v‖+ ‖g0‖Hε + ‖g1‖Hε

+
∫ tn

0

(‖ft(τ)‖Hε + ‖ftt(τ)‖Hε) dτ
)
, for tn ≤ T.

Proof. We again represent the error as in (5.2). For ρn we have, as in the
proof of Theorem 3.7,

‖ρn‖ ≤ Ch2
(
‖∆v‖+ ‖g0‖Hε +

∫ tn

0

‖ft(τ)‖Hε dτ
)
.

To bound θn we note that this time

(5.7) (∂̄θn, χ) + (∇θ̂n,∇χ) = −(ωn, χ), ∀χ ∈ Sh, n ≥ 1,

where

ωn = (Rh−I)∂̄u(tn)+
(
∂̄u(tn)−ut(tn− 1

2
)
)−∆

(
u(tn− 1

2
)−û(tn)

)
= ωn

1 +ωn
2 +ωn

3 .

Choosing χ = θ̂n in (5.7) we obtain

(∂̄θn, 1
2 (θn + θn−1)) ≤ 1

2‖ωn‖ (‖θn‖+ ‖θn−1‖),

which gives

‖θn‖2 − ‖θn−1‖2 ≤ k‖ωn‖ (‖θn‖+ ‖θn−1‖), for n ≥ 1,

and, after cancellation of a common factor,

‖θn‖ ≤ ‖θn−1‖+ k‖ωn‖, for n ≥ 1.

Since θ0 = 0 this yields

‖θn‖ ≤ k

n∑

j=1

‖ωj
1‖+ k

n∑

j=1

‖ωj
2‖+ k

n∑

j=1

‖ωj
3‖.
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Here, as in (5.5) and the proof of Theorem 3.7,

k

n∑

j=1

‖ωj
1‖ ≤

∫ tn

0

‖ρt(τ)‖ dτ ≤ Ch2
(
‖g0‖Hε +

∫ tn

0

‖ft(τ)‖Hε dτ
)
, for tn ≤ T.

Further, by Taylor expansion around tn− 1
2
,

k‖ωj
2‖ = ‖u(tj)− u(tj−1)− kut(tj− 1

2
)‖ ≤ Ck2

∫ tj

tj−1

‖uttt(τ)‖ dτ,

and similarly

k‖ωj
3‖ = ‖∆(

u(tj− 1
2
)− 1

2 (u(tj)− u(tj−1))
)‖ ≤ Ck2

∫ tj

tj−1

‖∆utt(τ)‖ dτ.

Using once more the differential equation we get ‖∆utt‖ ≤ ‖uttt‖+ ‖ftt‖. Thus,

k

n∑

j=1

(‖ωj
2‖+ ‖ωj

3‖) ≤ Ck2

∫ tn

0

(‖uttt(τ)‖+ ‖ftt(τ)‖) dτ.

Applying (3.7) to utt we obtain
∫ tn

0

‖uttt(τ)‖ dτ ≤ Cε

(
‖g1‖Hε +

∫ tn

0

‖ftt(τ)‖Hε dτ
)
, for tn ≤ T,

which bounds θn as desired. The proof is now complete.
Using techniques similar to the above one may also show an error bound

in maximum-norm for the Crank-Nicolson method, with the appropriate mesh
refinement as in Lemma 2.10, of order essentially O(h2 + k2).

Appendix. Proof of Lemma 2.1.

Proof. Recall that Hs = [L2,H
1]s,2 and Ḣs = [L2,H

1
0 ]s,2. We shall show

that
[L2,H

1]s,q = [L2,H
1
0 ]s,q, for 0 < s < 1

2 , q = ∞.

Using this with 0 < s1 < s < s2 < 1
2 and interpolating between s1, s2 it follows

for any q, in particular for q = 2. Since the opposite inclusion is trivial it now
suffices to show

Bs,∞
2 = [L2,H

1]s,∞ ⊂ [L2,H
1
0 ]s,∞, for 0 < s < 1

2 .

Let u ∈ [L2,H
1]s,∞. Then

K(t, u;L2,H
1) = inf

v∈H1
(‖u− v‖+ t‖v‖H1) ≤ Ust

s, where Us = ‖u‖Bs,∞
2

,

so that there exists v = v(t) ∈ H1 with

(A.1) ‖u− v‖ ≤ CUst
s and ‖v‖H1 ≤ CUst

s−1.
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We want to show that for some w = w(t) ∈ H1
0 and some constant C,

‖u− w‖+ t‖w‖H1 ≤ CUst
s.

It suffices to do this for t ≤ 1, say, because for t > 1 we may choose w(t) = 0, in
which case, by (A.1),

‖u− w‖+ t‖w‖H1 = ‖u‖ ≤ ‖u− v‖+ ‖v‖ ≤ CUst
s, for t > 1.

Let ϕt ∈ C1
0 (Ω) be such that ϕt(x) = 1 in Ωt, the points in Ω with distance at

least t from ∂Ω, and |∇ϕt| ≤ C/t. We now choose w(t) = ϕt v(t) ∈ H1
0 . We

have with ωt = Ω \ Ωt,

‖u− w‖+ t‖∇w‖ ≤ ‖(1− ϕt)u‖+ ‖ϕt(u− v)‖+ t‖∇ϕt v‖+ t‖ϕt∇v‖
≤ C(‖u‖L2(ωt) + ‖u− v‖+ ‖v‖L2(ωt) + t‖∇v‖).

In view of (A.1) and since ‖v‖L2(ωt) ≤ ‖u‖L2(ωt) + ‖v − u‖, it remains to show
that

(A.2) ‖u‖L2(ωt) ≤ CtsUs = Cts‖u‖Bs,∞
2

.

To prove this we note that, for any straight line γ in Ω, we have the trace
inequality

‖u‖L2(γ) ≤ C‖u‖
B

1/2,1
2

.

For this we may first extend functions from Ω to R2 using [17, Theorem 4.2.3]
and then [17, Theorem 2.9.3(c)]. Applying this to lines parallel to ∂Ω shows,
after squaring and integrating,

‖u‖L2(ωt) ≤ Ct1/2‖u‖
B

1/2,1
2

.

The desired result (A.2) now follows by interpolation between this and the trivial
inequality ‖u‖L2(ωt) ≤ ‖u‖.
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