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Abstract. We study spatially semidiscrete and fully discrete finite volume el-
ement approximations of the heat equation with homogeneous Dirichlet bound-
ary conditions in a plane polygonal domain with one reentrant corner. We show
that, as a result of the singularity in the solution near the reentrant corner,
the convergence rate is reduced from optimal second order, similarly to what
was observed for the finite element method in the earlier work [5]. Optimal
order convergence may be restored by mesh refinement near the corners of the
domain.

1. Introduction

We shall consider the finite volume method, using continuous, piecewise linear
approximating functions, for the model parabolic initial boundary value problem

ut −∆u = f(t) in Ω, with u(·, t) = 0 on ∂Ω, for t > 0,

u(·, 0) = v in Ω,
(1.1)

where Ω is a nonconvex polygonal domain in R2. We assume for simplicity that
exactly one interior angle ω is reentrant, i.e., such that ω ∈ (π, 2π), and set β =
π/ω ∈ ( 1

2 , 1).
In [4] we showed an O(h2) error bound in L2 in the case of a convex Ω, and

in [5] we discussed the error in the nonconvex case for the finite element method.
In the latter case the error in L2 is reduced from O(h2) to O(h2β), as a result of
the singularity which is present in the solution of (1.1) at the reentrant corner.
In this paper we show the corresponding result for a finite volume method. We
also discuss error estimations in H1 and in the maximum–norm. The present work
can be considered as a continuation of [4] and [5], and we refer to these papers for
references to the literature.

The finite volume method relies on a local conservation property associated with
the differential equation. Namely, integrating (1.1) over any region V ⊂ Ω and
using Green’s formula, we obtain

∫

V

ut dx−
∫

∂V

∇u · nds =
∫

V

f dx, for t > 0,(1.2)

where n denotes the unit exterior normal vector to ∂V .
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Figure 1. Left: A union of triangles that have a common vertex
z; the dotted line shows the boundary of the corresponding con-
trol volume Vz. Right: A triangle K partitioned into the three
subregions Kz.

There are various approximation strategies in the finite volume (control-volume)
method. For comprehensive presentations and references to existing results and
various applications we refer to the monographs [7, 9]. Here we shall study spatially
semidiscrete approximations of (1.1) by the finite volume element method, which
for brevity we will refer to as the finite volume method below. The approximate
solution will be sought in the space of piecewise linear finite elements

Sh ≡ Sh(Ω) = {χ ∈ C(Ω) : χ|K linear, ∀K ∈ Th; χ|∂Ω = 0},
where {Th}0<h<1 is a family of regular triangulations of Ω, with h denoting the
maximum diameter of the triangles of Th. In the sequel, for simplicity, we shall
suppress the index Ω in the notation of functional spaces.

The semidiscrete finite volume approximation uh(t) ∈ Sh, t ≥ 0, will satisfy the
relation (1.2) for V in a finite collection of subregions of Ω called control volumes,
the number of which will be equal to the dimension of the finite element space
Sh. These control volumes are constructed in the following way. Let zK be the
barycenter of K ∈ Th. We connect zK with line segments to the midpoints of the
edges of K, thus partitioning K into three quadrilaterals Kz, z ∈ Zh(K), where
Zh(K) are the vertices of K. Then with each vertex z ∈ Zh = ∪K∈Th

Zh(K) we
associate a control volume Vz, which consists of the union of the subregions Kz,
sharing the vertex z (see Figure 1). We denote the set of interior vertices of Zh

by Z0
h. The semidiscrete finite volume method is then to find uh(t) ∈ Sh for t ≥ 0

such that∫

Vz

uh,t dx−
∫

∂Vz

∇uh · nds =
∫

Vz

f dx, ∀z ∈ Z0
h, t > 0, with uh(0) = vh,

with vh ∈ Sh a given approximation of v.
This problem may also be expressed in a weak form. For this purpose we intro-

duce the finite dimensional piecewise constant space

Yh = {η ∈ L2 : η|Vz = constant, ∀z ∈ Z0
h; η|Vz = 0, ∀z ∈ ∂Ω}.

We now multiply the integral relation above by an arbitrary η(z), η ∈ Yh and sum
over all z ∈ Z0

h to obtain the Petrov–Galerkin formulation

(1.3) (uh,t, η) + ah(uh, η) = (f, η), ∀η ∈ Yh, t > 0, with uh(0) = vh,
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where (v, w) =
∫
Ω

vw dx and the bilinear form ah(·, ·) : Sh × Yh → R is defined by

ah(v, η) = −
∑

z∈Z0
h

η(z)
∫

∂Vz

∇v · nds, v ∈ Sh, η ∈ Yh.

Obviously, we can extend the definition of ah(v, η) for v in the fractional order
Sobolev space H1+s, s > 1/2, and using Green’s formula we easily see that for
v ∈ H2,

(1.4) ah(v, η) = −(∆v, η), ∀η ∈ Yh.

The stationary elliptic problem corresponding to (1.1) is the Dirichlet problem,

(1.5) −∆u = f in Ω, with u = 0 on ∂Ω.

For this problem, the reentrant corner O gives rise to a singularity in the solution
with a leading term of the form c(f)rβ sin(βθ), in polar coordinates centered at O,
even when f is smooth. This function is not in the space H1+s for any s ≥ β.

The finite volume method approximates the solution of (1.5) by uh ∈ Sh from

ah(uh, η) = (f, η), ∀η ∈ Yh,

and the error may be shown to satisfy

(1.6) ‖uh − u‖ ≤ Ch2β‖∆u‖H2β−1 , where ‖ · ‖ = ‖ · ‖L2 and 1/2 < β < 1.

For the corresponding finite element method,

a(uh, χ) = (f, χ), ∀χ ∈ Sh, where a(v, w) =
∫

Ω

∇v · ∇w dx,

we have an error bound of the same order, which requires less regularity, namely

(1.7) ‖uh − u‖ ≤ Csh
2β‖∆u‖H−1+s , for β < s ≤ 1.

As a guide to our analysis of (1.3) we use the corresponding finite element prob-
lem,

(1.8) (uh,t, χ) + a(uh, χ) = (f, χ), ∀χ ∈ Sh, t > 0, with uh(0) = vh.

Here, in the error analysis, it is customary to split the error into two terms by

uh(t)− u(t) = (uh(t)−Rhu(t)) + (Rhu(t)− u(t)) = ϑ(t) + %(t).

where Rh : H1
0 → Sh denotes the Ritz projection defined by

(1.9) a(Rhv, χ) = a(v, χ), ∀χ ∈ Sh,

and H1
0 denotes the H1 Sobolev space with homogeneous boundary conditions. As

a result of (1.7), we immediately have

(1.10) ‖%(t)‖ ≤ Csh
2β‖∆u(t)‖H−1+s , for β < s ≤ 1, t > 0,

and we find that ϑ satisfies

(ϑt, χ) + a(ϑ, χ) = −(%t, χ), ∀χ ∈ Sh, t > 0.

This leads to an O(h2β) bound also for ‖ϑ‖, and thus of the total error.
For the error analysis of the semidiscrete method (1.3) it would seem more nat-

ural to split the error using the finite volume elliptic projection R̃h : H1+s ∩H1
0 →

Sh, s > 1/2, defined by

(1.11) ah(R̃hv, η) = ah(v, η), ∀η ∈ Yh,
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and thus write

(1.12) uh(t)− u(t) = (uh(t)− R̃hu(t)) + (R̃hu(t)− u(t)) = ϑ̃(t) + %̃(t).

The second term, %̃ then represents the error in an elliptic problem whose exact
solution is u and by (1.6) this term may be bounded by

‖%̃(t)‖ ≤ Ch2β‖∆u(t)‖H2β−1 , for t > 0.

For the first term in (1.12), ϑ̃(t) ∈ Sh, we have

(1.13) (ϑ̃t, η) + ah(ϑ̃, η) = −(%̃t, η), ∀η ∈ Yh, t > 0.

and it follows easily that ‖ϑ̃(t)‖, and thus also the total error, are of order O(h2β).
However, as we shall see, these error bounds will require higher regularity assump-
tions and compatibility conditions on data than for the finite element method.

In an alternative analysis, proposed in [4], we may split the error using the finite
element Ritz projection Rh, and thus write

(1.14) uh(t)− u(t) = (uh(t)−Rhu(t)) + (Rhu(t)− u(t)) = ϑ(t) + %(t).

We then have estimate (1.10) for %, whereas ϑ now satisfies the somewhat more
complicated equation

(1.15) (ϑt, η) + ah(ϑ, η) = −(%t, η)− ah(%, η), ∀η ∈ Yh, t > 0.

This equation also makes it possible to show an O(h2β) bound for ϑ and thus for
uh − u. It turns out that the regularity requirements using this method, although
still slightly higher than for the finite element method, are less stringent than what
is needed by using the finite volume elliptic projection R̃h.

Using the Ritz projection in the error splitting, i.e., (1.14), we also derive, as for
the finite element method in [5], an O(hβ) bound for the gradient of the error and
an almost O(hβ) global error estimate in maximum–norm. In maximum–norm, we
also show an O(h2β) error bound, away from the corners, and finally demonstrate
that the almost optimal order O(h2) error bound may be restored by refining the
triangulations near the corners. The regularity requirements for these error bounds,
as in the L2 norm estimate, are higher than those needed for the finite element
method.

The following is an outline of the paper. In Section 2 we briefly recall from [5]
some definitions of function spaces, regularity results, and error bounds for finite
element approximations for elliptic and parabolic problems, that will be useful
subsequently. The main section of the paper is Section 3, where and error bounds
in L2, and H1 are shown together with three maximum–norm error estimates,
mentioned above. In Section 4 we derive similar error bounds for a fully discrete
scheme by discretizing also in time using the Backward Euler method.

As in [4] and [5], our error bounds will be expressed in terms of norms of data,
together with compatibility conditions at ∂Ω for t = 0. This should be interpreted
to mean that if the bounds are finite, then the exact solution will have enough
regularity to secure the convergence rate stated. In the error bounds, C will denote
constants which may depend on Ω and on geometrical properties of Th, but are
independent of h and data. Several of the constants in our error and regularity
bounds grow with t, and in order to not to have to account for their precise growth,
we will assume throughout that t ≤ T , for some positive T , without indicating the
dependence of the constant on T . Also, in our analysis, sometimes norms in the
spatial variable of fractional order occur, and to make for easier reading we often
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replace such norms with norms of integral order in our statements. Further, we
shall make particular choices for vh in order to simplify the presentation. Note
that by the stability of (1.3), other natural choices of vh would give the same error
bounds.

2. Review of the error analysis for finite element approximations

In this section we collect some material from [5] that we will need in our subse-
quent analysis, namely some definitions relating to fractional order Sobolev spaces,
regularity results for the Dirichlet problem (1.5) and the parabolic model problem
(1.1), and error bounds for the Ritz projection Rh. To be able to compare our new
results for the finite volume solution of (1.1) with the corresponding error bounds
for the finite element solution, we include some of the latter. For more details and
references to the literature, we refer to [5].

Letting H−1 = (H1
0 )? denote the dual space of H1

0 , with respect to the L2 inner
product, we define the variational solution of (1.5) for f ∈ H−1 as the function
u ∈ H1

0 which satisfies

(2.1) (∇u,∇ϕ) = (f, ϕ), ∀ϕ ∈ H1
0 ,

thus also defining the operator ∆ : H1
0 → H−1. It is well–known that this problem

has a unique solution, and that ‖∇u‖ ≤ ‖f‖H−1 . In order to discuss further regular-
ity results we shall need to use fractional order Sobolev spaces. Let Hm with norm
‖ · ‖Hm denote the standard Sobolev spaces of order m, with m integer. The space
Hs, for s non integer, s = m + σ, 0 ≤ σ ≤ 1, is defined by the real interpolation
method, Hs = [Hm,Hm+1]σ,2.

Also let Hs
0 , 0 ≤ s ≤ 1, be a fractional order Sobolev space obtained by in-

terpolation between L2 and H1
0 . Note that Hs

0 = Hs for 0 < s < 1/2, which
means Hs

0 does not require any boundary condition for small s. Further, we denote
H−s = (Hs

0)∗, the dual space with respect to the L2 inner product, for 0 ≤ s ≤ 1.
For the error analysis of (1.8) and (1.3) we use the Hilbert spaces Ḣs defined by

the norms

‖v‖Ḣs =
( ∞∑

j=1

λs
j(v, ϕj)2

)1/2
, for s ≥ −1, v ∈ H−1.

where {ϕj}∞j=1 are the orthonormal eigenfunctions and {λj}∞j=1 the corresponding
eigenvalues of −∆ in Ω.

Since both Ḣ−s and H−s are the uniquely defined interpolation space between
L2 and H−1, we have Ḣ−s = H−s for 0 ≤ s ≤ 1, and for 1 ≤ s ≤ 2, Ḣs consists
of the functions u ∈ H1

0 such that ∆u is in the space Hs−2. Further it is obvious
that −∆ gives an isomorphism between Ḣ1+s and Ḣ−1+s. Thus,

‖∆u‖H−1+s ≤ C‖∆u‖Ḣ−1+s = C‖u‖Ḣ1+s , for 0 ≤ s ≤ 1.

It is well–known that the nonconvex corner of Ω bounds the regularity of the
solution u of (1.5). Thus u ∈ H1+s for 0 ≤ s < β for f smooth enough, ‖u‖H1+s ≤
Cs‖f‖H−1+s , but u /∈ H1+β . A somewhat more sophisticated regularity result
makes it possible to show the following error bounds in L2 and energy norms, for
the Ritz finite element projection Rh, defined by (1.9).
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Lemma 2.1. Let u be the solution of (1.5) or (2.1). Then, we have, with C = Cs,
for β < s ≤ 1,

(2.2) ‖Rhu− u‖+ hβ‖∇(Rhu− u)‖ ≤ Ch2β‖∆u‖H−1+s ≤ Ch2β‖u‖Ḣ1+s .

Further,

(2.3) ‖Rhu− u‖ ≤ Chβ‖u‖H1 .

In the maximum–norm ‖v‖C = supx∈Ω |v(x)| the following almost O(hβ) error
estimate holds.

Lemma 2.2. Let u be the solution of (1.5). If the triangulations Th are such that
hmin ≥ Chγ for some γ > 0, then, for any s, s1 with 0 ≤ s < s1 < β, we have, with
C = Cs,s1 ,

‖Rhu− u‖C ≤ Chs‖u‖Ḣ1+s1 .

We note that for quasiuniform triangulations the logarithmic stability estimate

‖Rhv‖C ≤ C`h‖v‖C , where `h = max(log(1/h), 1),

may be used to improve the maximum–norm convergence rate to O(hβ`h).
Away from the corners of the domain Ω, the convergence in maximum–norm is

of the same order O(h2β) as in the global L2 error estimate. For this we quote the
following lemma, where we denote the norm in Cs by ‖ · ‖Cs .

Lemma 2.3. Let u be the solution of (1.5). If Ω0 ⊂ Ω1 ⊂ Ω is such that Ω1

does not contain any corner of Ω and the distance between ∂Ω1 ∩ Ω and ∂Ω0 ∩ Ω
is positive and if the triangulations Th are quasiuniform in Ω1, then we have, for
β < s ≤ 1,

‖Rhu− u‖C(Ω0) ≤ Csh
2β

(‖u‖C2s(Ω1) + ‖∆u‖H−1+s

) ≤ Ch2β
(‖u‖C2s(Ω1) + ‖u‖Ḣ1+s

)
,

Optimal order O(h2) and O(h) convergence in L2 and H1, respectively, and
almost optimal O(h2) convergence in the maximum–norm, may be obtained by
systematically refining the triangulations toward the corners of Ω. Such triangula-
tions can be defined as follows. In [8, Theorem 4.4.3.7], it is shown that any corner
of Ω gives rise to singularities, expressed in terms of polar coordinates centered at
the corner under consideration of the form Sjm(r, θ) = ηj(r) rβjm sin(βjmθ), with
βjm = mπ/ωj ∈ (0, 2), where ωj is the interior angle, m is a positive integer, and
ηj a cutoff-function. For the reentrant corner we may have m = 1 or 2, for con-
vex corners with ωj ∈ (1

2π, π) only m = 1 is possible, and for ωj ≤ 1
2π no such

singularity occurs.
Let d(x) denote the distance to a corner, where a singularity, as described pre-

viously, occurs and, with dj = 2−j , let

Ωj = {x ∈ Ω : dj/2 ≤ d(x) ≤ dj}, for j = 0, . . . , J.

Furthermore, let Ω′j = Ωj−1 ∪Ωj ∪Ωj+1 and ΩI = {x ∈ Ω : d(x) ≤ dJ/2}. We also
assume that the mesh is locally quasiuniform on each Ω′j . For each of the corners,
β denotes the minimal corresponding βjm. We now choose J such that dJ ≈ h2/β ,
where h denotes the mesh size in the interior of the domain, and γ ≥ 2/β such that,
with ε any small positive number,

(i) hj ≤ Chd
1−β/2+ε
j and chγ ≤ hI ≤ C h2/β , with c > 0,

where hj denotes the maximal mesh size on Ωj . We also assume that dim Sh ≤
Ch−2 and hmin ≥ hγ .
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Lemma 2.4. Let u be the solution of (1.5), if the triangulations Th satisfy (i),
then we have

(2.4) ‖Rhu− u‖+ h‖∇(Rhu− u)‖ ≤ Ch2‖∆u‖ = Ch2‖f‖.
Further, for any s ∈ [1, 2) and p < ∞ sufficiently large, we have with C = Cs,p,

(2.5) ‖Rhu− u‖C ≤ Chs‖∆u‖Lp = Chs‖f‖Lp .

We note that assumption (i) corresponds to assumption (ii) of [5], and that (2.4)
is true also for a weaker assumption on the triangulations. However, here we shall
only employ (2.4) to show a maximum–norm estimate that also requires (2.5).

We turn now to the parabolic problem (1.1). A basic weak solution of (1.1) is
such that u ∈ L2(0, T ; H1

0 ), with ut ∈ L2(0, T ; H−1) for any T > 0, and a unique
such solution exists if v ∈ L2 and f ∈ L2(0, T ; H−1). However, in our search for
maximal order convergence, the following stronger regularity results, expressed in
terms of the data v and f , will be needed. We will use the notation

(2.6) g0 = ut(0) = ∆v + f(0), for v ∈ Ḣ2, f(0) ∈ L2.

Note that v ∈ Ḣ2 contains the compatibility condition v = 0 on ∂Ω between initial
data and the boundary condition in (1.1).

Lemma 2.5. Let u be the solution of (1.1) and assume v = 0 on ∂Ω. Then we
have, for t ≤ T ,

(2.7)
∫ t

0

‖ut‖2H1dτ ≤ C
(
‖g0‖2 +

∫ t

0

‖ft‖2H−1 dτ
)
,

and if in addition g0 = 0 on ∂Ω then

(2.8)
∫ t

0

(‖∆ut‖2 + ‖utt‖2)dτ ≤ C
(
‖g0‖2H1 +

∫ t

0

‖ft‖2dτ
)
.

Further, for 0 ≤ s < 1, with C = Cs,

(2.9)
∫ t

0

(‖ut‖Ḣ1+s + ‖utt‖Ḣ−1+s) dτ ≤ C
(
‖g0‖+

∫ t

0

‖ft‖ dτ
)
,

and if g0 ∈ Hε for 0 < ε < 1
2 , with C = Cε

(2.10)
∫ t

0

(‖ut‖Ḣ2 + ‖utt‖)dτ ≤ C
(
‖g0‖Hε +

∫ t

0

‖ft‖Hε dτ
)
.

For comparison with the finite volume results to be shown in Section 3 we state
some error estimates for the spatially semidiscrete finite element approximation
(1.8) of the solution of (1.1).

Theorem 2.1. Let uh and u be the solutions of (1.8) and (1.1) with v = 0 on ∂Ω
and let g0 be defined by (2.6). Then if vh = Rhv, we have, for t ≤ T ,

‖uh(t)− u(t)‖ ≤ Ch2β
(
‖∆v‖+ ‖g0‖+

∫ t

0

‖ft‖ dτ
)

and

‖∇uh(t)−∇u(t)‖ ≤ Chβ
(
‖∆v‖+ ‖g0‖+

∫ t

0

‖ft‖ dτ +
( ∫ t

0

‖ft‖2H−1 dτ
)1/2

)
.

Also we have the following maximum–norm error estimates.
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Theorem 2.2. Under the assumptions of Theorem 2.1, if the triangulations Th are
such that hmin ≥ Chγ for some γ > 0, we have, for t ≤ T and s ∈ (0, β),

‖uh(t)− u(t)‖C ≤ Csh
s
(
‖v‖Cβ + ‖f(0)‖+

∫ t

0

‖ft‖ dτ +
( ∫ t

0

‖ft‖2H−1 dτ
)1/2

)
.

Further if Ω0 ⊂ Ω1 ⊂ Ω is such that Ω1 does not contain any corner of Ω and the
distance between ∂Ω1 ∩ Ω and ∂Ω0 ∩ Ω is positive and if the triangulations Th are
quasiuniform in Ω1 and g0 = 0 on ∂Ω, then we have, for s ∈ (β, 1) and t ≤ T ,

‖uh(t)−u(t)‖C(Ω0) ≤ Ch2β`
1/2
h

(
‖u(t)‖C2s(Ω1) +‖∆v‖+‖g0‖H1 +

( ∫ t

0

‖ft‖2dτ
)1/2

)
.

Note that the first term in the parenthesis is finite provided v and f are smooth
in the interior of Ω. In the presence of the appropriate refinements the convergence
is almost O(h2).

Theorem 2.3. Under the assumptions of Theorem 2.1, if the triangulations Th

satisfy (i) and g0 = 0 on ∂Ω, then we have, for any s ∈ [0, 2) and t ≤ T ,

‖uh(t)− u(t)‖C ≤ Csh
s
(
‖g0‖H1 + ‖f(0)‖C +

∫ t

0

‖ft‖Cdτ +
( ∫ t

0

‖ft‖2dτ
)1/2

)
.

3. The semidiscrete finite volume method for the parabolic problem

We begin this section by recalling some basic material concerning the finite
volume method, cf. [1, 2, 6, 7, 9], and then proceed with our error bounds.

We shall first rewrite the Petrov-Galerkin method (1.3) as a Galerkin method.
For this purpose, we introduce the interpolation operator Jh : C 7→ Yh by

Jhu(x) =
∑

z∈Z0
h

u(z)Ψz(x),

where the set {Ψz : z ∈ Z0
h}, with Ψz the characteristic function of the finite

volume Vz, is a basis of Yh. We recall that the bilinear form (χ, Jhψ) is symmetric,
positive definite on Sh, thus an inner product, and that the corresponding discrete
norm is equivalent to the L2 norm, uniformly in h, i.e., with C ≥ c > 0,

(3.1) c‖χ‖ ≤ |||χ||| ≤ C‖χ‖, ∀χ ∈ Sh, where |||χ||| ≡ (χ, Jhχ)1/2
.

It is well–known, cf., e.g., [1], that

(3.2) a(χ, ψ) = ah(χ, Jhψ), ∀χ, ψ ∈ Sh.

It follows then that there exists c > 0, such that

(3.3) ah(χ, Jhχ) ≥ c‖∇χ‖2, ∀χ ∈ Sh.

With this notation, (1.3) may equivalently be written in Galerkin form as

(uh,t, Jhχ) + ah(uh, Jhχ) = (f, Jhχ), ∀χ ∈ Sh, t > 0, with uh(0) = vh.

In the analysis we shall need the error functional εh, defined by

εh(f, χ) = (f, Jhχ)− (f, χ), ∀f ∈ Hs,− 1
2 < s ≤ 1, χ ∈ Sh,

and recall the following bound, cf. [2, Lemma 5.1]:

Lemma 3.1. Let f ∈ Hs, with s ∈ [0, 1]. Then we have

|εh(f, χ)| ≤ Chi+s‖f‖Hs ‖χ‖Hi , ∀χ ∈ Sh, i = 0, 1.
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Our next purpose is to derive an L2 norm error estimate for the semidiscrete
finite volume method (1.3), using the finite volume elliptic projection. The proof is
based on the following error bound for the latter. We note that (3.5) requires more
regularity than the corresponding result for the finite element projection in (2.2).

Lemma 3.2. Let u be the solution of (1.5). Then we have, with C = Cs,

(3.4) ‖∇(R̃hu− u)‖ ≤ Chβ‖∆u‖H−1+s ≤ Chβ‖u‖Ḣ1+s , for β < s ≤ 1.

Further

(3.5) ‖R̃hu− u‖ ≤ Ch2β‖∆u‖H2β−1 .

Proof. The estimate (3.4) is shown in [3, Theorem 5.2]. For the proof of (3.5) we
employ a duality argument. For ψ ∈ H1

0 satisfying −∆ψ = R̃hu− u, we have

‖R̃hu− u‖2 = a(R̃hu− u, ψ −Rhψ) + a(R̃hu− u,Rhψ) = I + II.

For the first term we obtain, using (3.4) and (2.2), for s = 1 and the fact that
2β − 1 > 0,

|I| ≤ ‖∇(R̃hu− u)‖ ‖∇(Rhψ − ψ)‖ ≤ Ch2β‖∆u‖ ‖∆ψ‖
≤ Ch2β‖∆u‖H2β−1‖R̃hu− u‖.

To bound now the second term we note that by (3.2), (1.11) and (1.4), we get

a(R̃hu,Rhψ) = ah(R̃hu, JhRhψ) = ah(u, JhRhψ) = −(∆u, JhRhψ),

so that II = εh(∆u, Rhψ), and hence, by Lemma 3.1,

|II| ≤ Ch2β‖∆u‖H2β−1‖∇Rhψ‖ ≤ Ch2β‖∆u‖H2β−1‖∇ψ‖
≤ Ch2β‖∆u‖H2β−1‖R̃hu− u‖.

Together these estimates show

‖R̃hu− u‖2 ≤ Ch2β‖∆u‖H2β−1‖R̃hu− u‖,
which completes the proof. ¤

We now show an L2 norm error estimate for (1.3) using the finite volume pro-
jection R̃h. Here and below we denote

(3.6) g1 = utt(0) = ∆g0 + ft(0) for g0 ∈ Ḣ2, ft(0) ∈ L2.

Theorem 3.1. Let uh and u be the solutions of (1.3) and (1.1), respectively, and
assume v = g0 = 0 on ∂Ω. Then, if vh = R̃hv, we have, for t ≤ T ,

‖uh(t)− u(t)‖ ≤ Ch2β
(
‖∆v‖H1 + ‖g1‖+

∫ t

0

(‖ftt‖+ ‖ft‖H1)dτ
)
.

Proof. Writing uh − u = ϑ̃ + %̃ as in (1.12) we find by (3.5)

‖%̃(t)‖ ≤ ‖%̃(0)‖+
∫ t

0

‖%̃t‖ dτ ≤ Ch2β
(
‖∆v‖H2β−1 +

∫ t

0

‖∆ut‖H2β−1 dτ
)

≤ Ch2β
(
‖∆v‖H1 +

∫ t

0

(‖utt‖H1 + ‖ft‖H1)dτ
)
,

(3.7)
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where in the last step we have used the fact that 2β−1 ∈ (0, 1) and ∆ut = utt−ft.
Since ut satisfies (1.1), with f and v replaced by ft and ut(0) = g0, respectively,
the regularity estimate (2.9) shows

(3.8)
∫ t

0

‖utt‖H1 ≤ C
(
‖g1‖+

∫ t

0

‖ftt‖ dτ
)
,

which applied to (3.7) bounds %̃ as desired. We now turn to ϑ̃, which satisfies (1.13).
Thus choosing η = Jhϑ̃ we get

(ϑ̃t, Jhϑ̃) + ah(ϑ̃, Jhϑ̃) = −(%̃t, Jhϑ̃),

and hence by standard energy arguments we obtain

‖ϑ̃(t)‖ ≤ C

∫ t

0

‖%̃t‖ dτ.

Finally, in view of (3.7) and (3.8), this completes the proof. ¤

We now show an L2 norm error estimate for (1.3) using instead the finite element
Ritz projection Rh in the analysis. Note that in this case the regularity requirements
on data are weaker than in Theorem 3.1.

Theorem 3.2. Let uh and u be the solutions of (1.3) and (1.1), respectively, and
assume v = 0 on ∂Ω. Then, if vh = Rhv, we have, for t ≤ T ,

‖uh(t)− u(t)‖ ≤ Ch2β
(
‖∆v‖+ ‖g0‖+

(∫ t

0

(‖ft‖2 + ‖f‖2H1) dτ
)1/2

)
.

Proof. We write uh − u = ϑ + %, as in (1.14). Then (2.2), the fact that ‖v‖Ḣ1+s ≤
C‖v‖Ḣ2 = C‖∆v‖, and (2.9) give for s = (1 + β)/2,

‖%(t)‖ ≤ ‖%(0)‖+
∫ t

0

‖%t‖ dτ ≤ Ch2β
(
‖v‖Ḣ1+s +

∫ t

0

‖ut‖Ḣ1+s dτ
)

≤ Ch2β
(
‖∆v‖+ ‖g0‖+

∫ t

0

‖ft‖ dτ
)
,

(3.9)

which yields the desired estimate for %.
We turn to the estimation of ϑ, which satisfies the equation (1.15). In view of

(3.2), (1.4) and (1.9), we get

(3.10) ah(%, Jhχ) = a(Rhu, χ) + (∆u, Jhχ) = εh(∆u, χ), ∀χ ∈ Sh.

Using this, (1.15) with η = Jhϑ is transformed into

(ϑt, Jhϑ) + ah(ϑ, Jhϑ) = −(%t, Jhϑ)− εh(∆u, ϑ).

In view of Lemma 3.1 and the symmetry of (χ, Jhψ) on Sh, this shows

1
2

d

dt
|||ϑ|||2 + ah(ϑ, Jhϑ) ≤ C‖%t‖‖ϑ‖+ Ch2β‖∆u‖H2β−1‖ϑ‖H1

≤ C‖%t‖‖ϑ‖+ Ch2β
(
‖ut‖H1 + ‖f‖H1

)
‖∇ϑ‖.
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Using (3.3) to kick back ‖∇ϑ‖, and integrating over [0, t], we obtain, in view of
(3.1), (2.7), and the fact that ϑ(0) = 0,

‖ϑ(t)‖2 ≤ C

∫ t

0

‖%t‖‖ϑ‖ dτ + Ch4β

∫ t

0

(‖ut‖2H1 + ‖f‖2H1) dτ

≤ C

∫ t

0

‖%t‖‖ϑ‖ dτ + Ch4β
(
‖g0‖2 +

∫ t

0

(‖ft‖2H−1 + ‖f‖2H1) dτ
)
.

Setting Θ(t) ≡ sup0<s≤t ‖ϑ(s)‖, this shows

‖ϑ(t)‖2 ≤ Θ(t)2 ≤ C
(∫ t

0

‖%t‖ dτ
)
Θ(t)+Ch4β

(
‖g0‖2+

∫ t

0

(‖ft‖2H−1+‖f‖2H2β−1) dτ
)
,

which, in view of (3.9), gives the desired bound for ϑ. ¤
Next, we show an O(hβ) estimate for the gradient of the error.

Theorem 3.3. Under the assumptions of Theorem 3.2, we have, for t ≤ T ,

‖∇(uh(t)− u(t))‖ ≤ Chβ
(
‖∆v‖+ ‖g0‖+

(∫ t

0

‖ft‖2 dτ
)1/2

)
.

Proof. In view of (2.2) we have, for s = (1 + β)/2,

(3.11) ‖∇%(t)‖ ≤ ‖∇%(0)‖+
∫ t

0

‖∇%t‖ dτ ≤ Chβ
(
‖v‖Ḣ1+s +

∫ t

0

‖ut‖Ḣ1+s dτ
)
,

and (2.9) then gives the desired bound for %. To bound ϑ we now choose η = Jhϑt

in (1.15), and using (3.10) with the fact that ah(ϑ, Jhϑt) = 1
2

d
dt a(ϑ, ϑ), we get

(3.12) |||ϑt|||2 +
1
2

d

dt
a(ϑ, ϑ) = −(%t, Jhϑt)− εh(∆u, ϑt).

Substituting −∆u = f − ut yields

|||ϑt|||2 +
1
2

d

dt
a(ϑ, ϑ) = −(%t, Jhϑt)− εh(ut, ϑt) +

d

dt
εh(f, ϑ)− εh(ft, ϑ).

Integrating this relation over [0, t], using ϑ(0) = 0, together with (3.1) and Lemma
3.1, we find

∫ t

0

‖ϑt‖2dτ +
1
2
‖∇ϑ(t)‖2 ≤ Ch‖f(t)‖ ‖∇ϑ(t)‖

+
∫ t

0

(‖%t‖ ‖ϑt‖+ Ch(‖ut‖H1‖ϑt‖+ ‖ft‖ ‖∇ϑ‖)) dτ.

This together with (2.3), and the fact that β < 1 give

‖∇ϑ(t)‖2 ≤ Ch2β
(
‖f(t)‖2 +

∫ t

0

(‖ut‖2H1 + ‖ft‖2)dτ
)

+ C

∫ t

0

‖∇ϑ‖2dτ.

Using Gronwall’s lemma, the estimate

‖f(t)‖2 ≤ C
(
‖∆v‖2 + ‖g0‖2 +

∫ t

0

‖ft‖2 dτ
)
,

and (2.7), we finally get,

(3.13) ‖∇ϑ(t)‖2 ≤ Ch2β
(
‖∆v‖2 + ‖g0‖2 +

∫ t

0

‖ft‖2 dτ
)
,

which gives the desired bound for ϑ. ¤
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Based on the above analysis of ∇ϑ we can show the following “super”–closeness
of the gradients of uh and Rhu.

Lemma 3.3. Under the assumptions of Theorem 3.2, let g0 = 0 on ∂Ω and g1 be
defined by (3.6). Then we have, for t ≤ T ,

‖∇ϑ(t)‖ ≤ Ch2β
(
‖∆v‖H1 + ‖g1‖+

(∫ t

0

(‖ft‖2H1 + ‖ftt‖2H−1) dτ
)1/2

)
.

Proof. Rewriting the right hand side of equation (3.12) in the form

|||ϑt|||2 +
1
2

d

dt
a(ϑ, ϑ) = −(%t, Jhϑt)− d

dt
εh(∆u, ϑ) + εh(∆ut, ϑ),(3.14)

integrating this over [0, t], using ϑ(0) = 0, together with Lemma 3.1, and (3.1), we
find ∫ t

0

|||ϑt|||2dτ +
1
2
‖∇ϑ(t)‖2 ≤ Ch2β‖∆u(t)‖H2β−1‖∇ϑ(t)‖

+
∫ t

0

(‖%t‖ |||ϑt|||+ Ch2β‖∆ut‖H2β−1‖∇ϑ‖) dτ.

Together with (2.2) for s = 1 and the fact that 2β − 1 ∈ (0, 1), this gives

‖∇ϑ(t)‖2 ≤ Ch4β
(
‖∆v‖2H1 +

∫ t

0

(‖utt‖2H1 + ‖ft‖2H1)dτ
)

+ C

∫ t

0

‖∇ϑ‖2 dτ.

Since ut satisfies (1.1), with f and v replaced by ft and ut(0) = g0, respectively,
the regularity estimate (2.7) shows

(3.15)
∫ t

0

‖utt‖2H1 ≤ C
(
‖g1‖2 +

∫ t

0

‖ftt‖2H−1 dτ
)
.

Using this together with Gronwall’s lemma, we obtain the desired estimate. ¤

We now turn to error estimates in maximum–norm. If the triangulations are
such that hmin ≥ Chγ , for some γ > 0 then we can get ‖%‖C = O(hs), s ∈ (0, β),
cf. Lemma 2.2 and ‖ϑ‖C = O(hβ`

1/2
h ). In [5], for the finite element approximation,

we demonstrated that the convergence rate is higher in maximum–norm over a
subdomain that is away from the corners or under properly refined (near the corner)
meshes Th. This applies also to the corresponding finite volume approximations.

First we show a global maximum–norm error estimate. Note that the maximum–
norm error for the finite element method, cf. Theorem 2.2, is almost of order O(hβ),
under almost the same regularity assumptions.

Theorem 3.4. Under the assumptions of Theorem 3.2, if the triangulations Th are
such that hmin ≥ Chγ for some γ > 0, then we have, for s ∈ (0, β) and t ≤ T , with
C = Cs,

‖uh(t)− u(t)‖C ≤ Chs
(
‖∆v‖+ ‖g0‖+

(∫ t

0

‖ft‖2dτ
)1/2

)
.

Proof. We have by Lemma 2.2, with s1 ∈ (s, β),

‖%(t)‖C ≤ Chs‖u(t)‖Ḣ1+s1 ≤ Chs
(
‖v‖Ḣ1+s1 +

∫ t

0

‖ut‖Ḣ1+s1 dτ
)
,

which is bounded as desired by (2.9).
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In [5] we showed that the following discrete Sobolev type inequality, is valid for
triangulations satisfying the condition assumed in this theorem

(3.16) ‖χ‖C ≤ C`
1/2
h ‖∇χ‖, ∀χ ∈ Sh.

Hence, in view of (3.13) we get

‖ϑ(t)‖C ≤ Chβ`
1/2
h

(
‖∆v‖+ ‖g0‖+

(∫ t

0

‖ft‖2 dτ
)1/2

)
,

which shows the desired estimate for ϑ. ¤

We remark that under the stronger assumption γ = 1, i.e., when the triangu-
lations Th are globally quasiuniform, one can obtain an O(hβ`h) maximum–norm
estimate, under marginally weaker regularity assumptions on data, as remarked
after Lemma 2.2.

Next, we derive an error estimate away from the corners of Ω.

Theorem 3.5. Under the assumptions of Theorem 3.4, let g0 = 0 on ∂Ω and g1 be
defined by (3.6). If Ω0 ⊂ Ω1 ⊂ Ω is such that Ω1 does not contain any corner of Ω
and the distance between ∂Ω1 ∩Ω and ∂Ω0 ∩Ω is positive, and if the triangulations
Th are quasiuniform in Ω1, then we have, for t ≤ T ,

‖uh(t)− u(t)‖C(Ω0) ≤ Ch2β`
1/2
h

(
‖∆v‖H1 + ‖g0‖+ ‖g1‖

+
(∫ t

0

(‖ft‖2H1 + ‖ftt‖2H−1) dτ
)1/2

)
.

Proof. By Lemma 2.3 we have, with s = (1 + β)/2,

‖%(t)‖C(Ω0) ≤ Ch2β
(
‖u(t)‖C2s(Ω1) + ‖v‖Ḣ1+s +

∫ t

0

‖ut‖Ḣ1+sdτ
)
,

which is bounded as desired in view of the estimate

‖u(t)‖C2s(Ω1) ≤ C‖∆u(t)‖H1 ≤ C
(
‖∆v‖H1 +

∫ t

0

‖∆ut‖H1dτ
)

≤ C
(
‖∆v‖H1 +

∫ t

0

(‖utt‖H1 + ‖ft‖H1)dτ
)

the regularity estimate (3.8), the fact that ‖v‖Ḣ1+s ≤ C‖∆v‖ and (2.9). Further,
using the supercloseness result of Lemma 3.3 together with (3.16) we bound ϑ as
desired, and thus complete the proof. ¤

We also have the following result showing almost O(h2) convergence in the pres-
ence of appropriate refinements.

Theorem 3.6. Under the assumptions of Lemma 3.3, if the triangulations Th be
refined as in Lemma 2.4, then we have, for t ≤ T , with C = Cs and s ∈ (0, 2),

‖uh(t)− u(t)‖C ≤ Chs
(
‖∆v‖H1 + ‖g1‖+

( ∫ t

0

(‖ft‖2H1 + ‖ftt‖2)dτ
)1/2

)
.
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Proof. To bound % we use (2.5) for p sufficiently large and a standard Sobolev
inequality, to obtain with C = Cs,p,

‖%(t)‖C ≤ Chs‖∆u(t)‖Lp
≤ Chs‖∆u(t)‖H1

≤ Chs
(
‖∆v‖H1 +

∫ t

0

(‖utt‖H1 + ‖ft‖H1) dτ
)
,

which in view (3.8) gives the desired bound for %.
We next derive a superconvergent O(h2) order estimate for ‖∇ϑ‖ based on the

L2 norm error bound of (2.4). For this we follow the proof of Lemma 3.3, stating
now (3.14) and obtain this time after the application of Gronwall’s lemma

‖∇ϑ(t)‖2 ≤ Ch4
(
‖∆v‖2H1 +

∫ t

0

‖∆ut‖2H1dτ
)

≤ Ch4
(
‖∆v‖2H1 +

∫ t

0

(‖utt‖2H1 + ‖ft‖2H1)dτ
)
,

which, in view of the regularity estimate (3.15) and (3.16) completes the proof. ¤

We note that under less stringent assumptions on the triangulations Th than
(i), one can show optimal order O(h2) and O(h) convergence, in L2 and H1 norm,
respectively, for the error uh − u, cf. [5] for a corresponding result for the finite
element approximation uh

4. The backward euler fully discrete scheme

In [5], in addition to the semidiscrete finite element problem (1.8), also fully
discrete methods were considered. These were obtained by discretizing (1.8) in
time by the backward Euler and Crank-Nicolson methods. The time discretization
resulted in slightly higher regularity requirements on data than those summarized
in Section 2 above and we refer to [5] for details.

In this section, by application of our analysis of the semidiscrete finite volume
problem (1.3) to a fully discrete scheme, we will show some error estimates for the
discretization in time by the Backward Euler method. Letting k denote the time
step, Un the approximation in Sh of u(t) at t = tn = nk, and ∂̄Un = (Un−Un−1)/k,
we consider the fully discrete scheme

(4.1) (∂̄Un, η) + ah(Un, η) = (f(tn), η), ∀η ∈ Yh, with U0 = vh = Rhv.

We first show the following error estimate in L2, with g0 defined in (2.6).

Theorem 4.1. Let Un and u(tn) be the solutions of (4.1) and (1.1), respectively,
and assume v = 0 on ∂Ω. Then we have, for tn ≤ T and ε ∈ (0, 1

2 ), with C = Cε,

‖Un − u(tn)‖ ≤ C(h2β + k)
(
‖∆v‖+ ‖g0‖Hε +

( ∫ tn

0

(‖f‖2H1 + ‖ft‖2H1)dτ
)1/2

)
.

Proof. Analogously to (1.14) we write

Un − u(tn) = (Un −Rhu(tn)) + (Rhu(tn)− u(tn)) = ϑn + %n.

Here %n is bounded as desired by (3.9). To bound ϑn we note that

(∂̄ϑn, η) + ah(ϑn, η) = −(∂̄%n, η) + (un
t − ∂̄un, η)− ah(%n, η)

= −(ωn, η)− ah(%n, η), ∀η ∈ Yh,
(4.2)
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where

(4.3) ωn = ωn
1 + ωn

2 = (Rh − I)∂̄u(tn) + (∂̄u(tn)− ut(tn)).

Choosing η = Jhϑn in (4.2) we obtain, in view of (3.10),

1
2k

(|||ϑn|||2 − |||ϑn−1|||2) +
1
2k
|||ϑn − ϑn−1|||2 + ah(ϑn, Jhϑn)

= −(ωn, Jhϑn)− εh(un
t − fn, ϑn)

= −(ωn
1 , Jhϑn)− (ωn

2 , ϑn)− εh(∂̄un − fn, ϑn).

Multiplying this by 2k, employing Lemma 3.1 and (3.1), and kicking back ‖∇ϑn‖,
we get

|||ϑn|||2 ≤ |||ϑn−1|||2 + Ck(‖ωn
1 ‖+ ‖ωn

2 ‖)|||ϑn|||+ Ckh4(‖∂̄un‖2H1 + ‖fn‖2H1).

Let now Θn = max0≤j≤n ‖ϑj‖. Then, since ϑ0 = 0 and using again (3.1),

(4.4) ‖ϑn‖2 ≤ (Θn)2 ≤ Ck

n∑

j=1

(‖ωj
1‖+ ‖ωj

2‖)Θn + Ckh4
n∑

j=1

(‖∂̄uj‖2H1 + ‖f j‖2H1).

To bound the first term in the right hand side of (4.4), we employ the inequality

(4.5) k

n∑

j=1

|∂̄gj |p ≤ Ck

n∑

j=1

(
k−1

∫ tj

tj−1

|gt|dτ
)p ≤ C

∫ tn

0

|gt|pdτ, 1 ≤ p < +∞,

where (X, | · |) is a normed linear space, for p = 1, (2.2), with β < s < 1,

Ck

n∑

j=1

(‖ωj
1‖+ ‖ωj

2‖) ≤ Ck

n∑

j=1

(
h2β‖∂̄uj‖Ḣ1+s +

∫ tj

tj−1

‖utt‖dτ
)

≤ Ch2β

∫ tn

0

‖ut‖Ḣ1+sdτ + Ck

∫ tn

0

‖utt‖dτ.

(4.6)

To bound now the last term in (4.4), we use the inequality

k

n∑

j=1

|gj |2 ≤ C

∫ tn

0

(|g|2 + k2|gt|2)dτ ≤ C

∫ tn

0

(|g|2 + |gt|2)dτ

and (4.5) for p = 2 to obtain

(4.7) k

n∑

j=1

(‖∂̄uj‖2H1 + ‖f j‖2H1) ≤ C

∫ tn

0

(‖ut‖2H1 + ‖f‖2H1 + ‖ft‖2H1)dτ.

Finally, (4.4), (4.6) and (4.7) give

‖ϑn‖2 ≤ Ch4β
((∫ tn

0

‖ut‖Ḣ1+sdτ
)2 +

∫ tn

0

(‖ut‖2H1 + ‖f‖2H1 + ‖ft‖2H1)dτ
)

+ Ck2
(∫ tn

0

‖utt‖dτ
)2

.

In view of (2.7) and (2.10) this completes the proof. ¤

Next, we will show the following error estimate for the gradient.
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Theorem 4.2. Under the assumptions of Theorem 4.1, let g0 = 0 on ∂Ω. Then
we have, for tn ≤ T ,

‖∇(Un − u(tn))‖ ≤ C(hβ + k)
(
‖∆v‖+ ‖g0‖H1 +

( ∫ tn

0

‖ft‖2 dτ
)1/2

)
.

Proof. Here %n is bounded as desired by (3.11) and (2.7). To estimate ϑn, we
choose η = Jh∂̄ϑn in (4.2). Using (3.2) together with the identity 2a(ϑn, ∂̄ϑn) =
∂̄‖∇ϑn‖2 + k‖∇∂̄ϑn‖2, and (3.10), we then obtain

|||∂̄ϑn|||2 +
1
2
(∂̄‖∇ϑn‖2 + k‖∇∂̄ϑn‖2) = −(ωn, Jh∂̄ϑn)− εh(∆un, ∂̄ϑn).

Multiplying this by 2k, using (3.1), eliminating |||∂̄ϑn|||2, and summing in time, we
have

(4.8) ‖∇ϑn‖2 ≤ Ck

n∑

j=1

‖ωj‖2 + k

n∑

j=1

εh(∆uj , ∂̄ϑj).

Since ϑ0 = 0, the last term can rewritten as

k
n∑

j=1

εh(∆uj , ∂̄ϑj) = εh(∆un, ϑn)− k
n∑

j=1

εh(∂̄∆uj , ϑj−1).

Thus, employing this identity and Lemma 3.1 in (4.8), and using the discrete version
of Gronwall’s lemma, we get

(4.9) ‖∇ϑn‖2 ≤ Ck

n∑

j=1

(‖ωj
1‖2 + ‖ωj

2‖2) + Ch2
(‖∆un‖2 + k

n∑

j=1

‖∂̄∆uj‖2).

Using (4.5) with p = 2, we easily find

‖∆un‖2 + k

n∑

j=1

‖∂̄∆uj‖2 ≤ C
(‖∆v‖2 +

∫ tn

0

‖∆ut‖2dτ
)
.

Hence by (2.8) the last term in (4.9) is bounded as desired. Using (2.3) and again
(4.5) with p = 2, we obtain

k
n∑

j=1

(‖ωj
1‖2 + ‖ωj

2‖2) ≤ Ck
n∑

j=1

(
h2β‖∂̄uj‖2H1 +

(∫ tj

tj−1

‖utt‖dτ
)2

)

≤ Ch2β

∫ tn

0

‖ut‖2H1 dτ + Ck2

∫ tn

0

‖utt‖2dτ.

Then we complete the proof by applying (2.7) and (2.8) and thus estimating the
remaining term of the right hand side of (4.9) as desired, i.e,

¤(4.10) ‖∇ϑn‖ ≤ C(hβ + k)
(
‖∆v‖+ ‖g0‖H1 +

( ∫ tn

0

‖ft‖2dτ
)1/2

)
.

We finally demonstrate the following time discrete version of the maximum–norm
error estimate of Theorem 3.4.
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Theorem 4.3. Under the assumptions of Theorem 4.2, if the triangulations Th are
such that hmin ≥ Chγ for some γ > 0, then we have, for 0 ≤ s < β and tn ≤ T ,
with C = Cs,

‖Un − u(tn)‖C ≤ C(hs + k`
1/2
h )

(
‖∆v‖+ ‖g0‖H1 +

( ∫ tn

0

‖ft‖2dτ
)1/2

)
.

Proof. The term %n is bounded as stated by following the proof of Theorem 3.4.
The proof is completed by bounding ϑn, using (3.16) and (4.10), as

‖ϑn‖C ≤ `
1/2
h ‖∇ϑn‖ ≤ C(hβ + k)`1/2

h

(
‖∆v‖+ ‖g0‖H1 +

( ∫ tn

0

‖ft‖2dτ
)1/2

)
. ¤

We refrain from stating and proving the straight–forward analogous results of
Theorems 3.5 and 3.6.
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