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SUMMARY

We consider a finite volume discretization of second order nonlinear elliptic boundary value problems
on polygonal domains. Using relatively standard assumptions we show the existence of the finite
volume solution. Furthermore, for a sufficiently small data the uniqueness of the finite volume
solution may also be deduced. We derive error estimates in H1–, L2– and L∞–norm for small data
and convergence in H1–norm for large data. In addition a Newton’s method is analyzed for the
approximation of the finite volume solution and numerical experiments are presented. Copyright c©
2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We analyze a finite volume element method for the discretization of second order nonlinear
elliptic partial differential equations on a polygonal domain Ω ⊂ R

2. Namely, for a given
function f we seek u such that

L(u)u ≡ −∇ · (A(u)∇u) = f in Ω, and u = 0, on ∂Ω, (1.1)

with A : R → R sufficiently smooth such that there exist constants βi, i = 1, 2, 3, satisfying

0 < β1 ≤ A(x) ≤ β2, |A′(x)| ≤ β3, for x ∈ R. (1.2)

The study of the solution of (1.1) have been done by many authors. Since there is nonlinearity
involves, various assumptions on the coefficient A have been proposed to prove the existence
of solution of (1.1). A typical practice is to assume that the coefficient A follows a polynomial
growth condition with respect to the nonlinearity. Together with the ellipticity of the coefficient
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A, an existence of the weak solution associated with (1.1) may be deduced using theories of
monotone operators [25]. A different approach that does not rely on the monotonicity of the
problem was proposed in [2, 3]. In these papers, the continuity of coefficient A was assumed to
follow Lipschitz-like condition. In particular, the absolute difference of the A is bounded from
above by an Osgood’s function. Using this condition, the uniqueness of the weak solution was
established even in the absence of the monotonicity of the weak variational problem. In the
finite dimensional setting, the authors of [16] studied the existence of Galerkin formulation
associated with (1.1). The corresponding asymptotic error estimates were established using
essentially standard approach.

Finite volume approximations rely on the local conservation property expressed by the
differential equation. Namely, integrating (1.1) over any region V ⊂ Ω and using Green’s
formula, we obtain

−
∫

∂V

(A(u)∇u) · n ds =

∫

V

f dx, (1.3)

where n denotes the unit exterior normal to ∂V .
In general, the finite volume method has the ability to recover fluxes that are numerically

conservative. For many physical and engineering applications, such as heat transfer, transport
phenomena, and flows in porous media, this numerical conservation property is crucial. There
are various approaches in deriving finite volume approximations of nonlinear elliptic equations.
One, often called finite volume element method, uses a finite element partition of Ω, where the
solution space consists of continuous piecewise linear functions, a collection of vertex centered
control volumes and a test space of piecewise constant functions over the control volumes, cf.,
e.g., [7, 23, 22]. A second approach, usually called finite volume difference method, uses cell-
centered grids and approximates the derivatives in the balance equation by finite differences,
cf., e.g., [19]. A third, uses mixed reformulation of the problem, [27]. The first approach is
quite close to the finite element method. The second approach is closer to the classical finite
difference method and extends it to more general meshes other than rectangular shape. It is
used mostly on perpendicular bisector (PEBI) or Voronoi type of meshes. The third approach
is close to mixed and hybrid finite element methods and can deal for example with irregular
quadrilateral and hexahedral cells. Finite volume discretizations for more general nonlinear
convection–diffusion–reaction problems were studied by many authors, cf., e.g., [15, 20].

We shall use the standard notation for the Sobolev spaces W s
p and Hs = W s

2 [1]. Namely,
Lp(V ), 1 ≤ p < ∞, denotes the p–integrable real–valued functions over V ⊂ R

2, (·, ·)V the
inner product in L2(V ), and ‖ · ‖W s

p (V ) the norm in the Sobolev space W s
p (V ), s ≥ 0. If V = Ω

we suppress the index V , and if p = 2 we write Hs = W s
2 and ‖ · ‖ = ‖ · ‖L2

. Further we shall

denote with p′ the adjoint of p, i.e., 1
p + 1

p′ = 1, p > 1.

It is well known that for domains with smooth boundary, for f ∈ Cr, with r ∈ (0, 1), there
exists a unique solution u ∈ C2+r, cf., e.g., [17]. Also for ‖f‖ sufficiently small, there exists
a unique solution u ∈ H2 ∩H1

0 . However, since in this study we assume the domain Ω to be
polygonal, we do not expect the solution u to have such regularity. We shall assume that for
f ∈ L2, problem (1.1) has a solution u ∈W 2

q ∩H1
0 , with 4/3 < q ≤ 2. Note that in order (1.3)

to be well defined, u ∈ H1+s with s > 1/2. Using a standard Sobolev embedding we see that
this is true for u ∈ W 2

q with q > 4/3.
In this paper, we shall study approximations of (1.1) by the finite volume element method,

which for brevity we shall refer to as the finite volume method below. The approximate solution

Copyright c© 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 00:1–26
Prepared using nlaauth.cls



A FVEM FOR A NONLINEAR ELLIPTIC PROBLEM 3

Vz

z

z

Kz

zK

K

Figure 1. Left: A union of triangles that have a common vertex z; the dotted line shows the boundary
of the corresponding control volume Vz. Right: A triangle K partitioned into the three subregions Kz.

will be sought in the piecewise linear finite element space

Xh ≡ Xh(Ω) = {χ ∈ C(Ω) : χ|K linear, ∀K ∈ Th; χ|∂Ω = 0},

where {Th}0<h<1 is a family of quasi-uniform triangulations of Ω, h denotes the maximum
diameter of the triangles of Th.

The discrete finite volume problem will satisfy a relation similar to (1.3) V is in a finite
collection of subregions of Ω which are called control volumes. We note that for the discrete
system to be well defined, the number these control volumes has to be equal to the dimension
of the finite element space Xh. These control volumes are constructed in the following way.
Let zK be the barycenter of K ∈ Th. We connect zK with line segments to the midpoints of
the edges of K, thus partitioning K into three quadrilaterals Kz, z ∈ Zh(K), where Zh(K)
are the vertices of K. Then with each vertex z ∈ Zh = ∪K∈Th

Zh(K) we associate a control
volume Vz , which consists of the union of the subregions Kz, sharing the vertex z (see Figure
1). We denote the set of interior vertices of Zh by Z0

h.
Then, the finite volume method is to find uh ∈ Xh such that

−
∫

∂Vz

(A(uh)∇uh) · n ds =

∫

Vz

f dx, ∀z ∈ Z0
h. (1.4)

The analysis of the finite volume method that we perform in this paper will use existing
results associated with the finite element method applied to (1.1). The Galerkin formulation
of finite element method for (1.1) is to find uh ∈ Xh such that

a(uh;uh, χ) = (f, χ), ∀χ ∈ Xh, (1.5)

with a(·; ·, ·) the form defined by

a(v;w, φ) =

∫

Ω

A(v)∇w · ∇φ dx.

It is known that the solution uh of (1.5) satisfies

‖uh − u‖ + h‖∇(uh − u)‖ ≤ C(u, f)h2

‖uh − u‖L∞

≤ Cp inf
χ∈Xh

‖∇(u− χ)‖W 1
p
, with p > 2. (1.6)
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Numerical methods for this type and more general problems has been considered by many
authors, cf., e.g, [6, 16, 21, 24].

To the best of our knowledge, there has not been many investigations conducted to analyze
the finite volume method for general nonlinear elliptic problems. Li [23] considers a variation
of the finite volume method under investigation here. The method differs in the construction of
the control volumes. Instead of the barycenter zK , the circumcenter is selected. For this finite
volume method, the H1-norm error estimate is similar to one in the finite element method.

The paper is organized as follows. We will first introduce the finite volume method in Section
2. Then in Section 3, we establish existence of the finite volume solution uh of (2.3), using a
fixed point iteration method. In particular, in Theorem 3.1 we show that the iterations remain
inside a fixed ball with a radius that depends only on f . Then in Theorem 3.2 we show that
for a sufficiently small data, f , the fixed point iteration operator is Lipschitz continuous with
Lipschitz constant less that 1.

In Section 4 we derive optimal orderH1–, L2– and almost optimal L∞–norm error estimates,
under the assumption that ‖f‖ is small. Note that for the L2 estimate we assume that A′ is
also Lipschitz continuous, A′′ ∈ L1(R) and f ∈ H1. Also, for large data, assuming a unique
solution u ∈ H1

0 ∩ L∞ we show uh → u, in H1
0 .

Section 5 gives an analysis of a Newton’s method for the approximation of the finite volume
solution uh. A similar approach for the finite element method was analyzed by Douglas and
Dupont in [16]. As already well established, one has to start the Newton iteration with an
initial approximation u0

h sufficiently close to uh. Following the framework presented in [16], we
show that the Newton iterations converge to uh with order 2.

Discussion on several numerical experiments is presented in Section 6. We compare two
iterative methods, namely, the fixed point iteration and the Newton iteration. For the
implementation, we employ an inexact Newton iteration, a variant of the Newton iteration
for nonlinear systems of equations, where the Jacobian of the system is solved approximately,
cf., e.g., [4, 5, 14].

2. PRELIMINARIES–THE FINITE VOLUME METHOD

There has been a tendency of analyzing finite volume element method using the existing results
from its finite element counterpart, cf., e.g., [10, 11, 12, 13]. The investigations recorded in
all these references were concentrated on elliptic and/or parabolic problems with coefficients
independent of the solution, i.e., the function A is only spatially varied. The finite volume
element method is viewed as a perturbation of standard Galerkin finite element method with
the help of an interpolation operator Ih : C(Ω) → Yh, defined by

Ihv =
∑

z∈Z0
h

v(z)Ψz, (2.1)

where
Yh = {η ∈ L2(Ω) : η|Vz = constant, ∀z ∈ Z0

h; η|Vz = 0, ∀z ∈ ∂Ω},
and Ψz is characteristic function of Vz . We note that Ih : Xh → Yh is a bijection and bounded
with respect to the L2−norm, i.e., there exist c1, c2 > 0, such that

c1‖χ‖ ≤ ‖Ihχ‖ ≤ c2‖χ‖, ∀χ ∈ Xh. (2.2)

Copyright c© 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 00:1–26
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The finite volume problem (1.4) can be rewritten in a variational form. For an arbitrary
η ∈ Yh, we multiply the integral relation in (1.4) by η(z) and sum over all z ∈ Z0

h to obtain
the Petrov–Galerkin formulation, to find uh ∈ Xh such that

ah(uh;uh, η) = (f, η), ∀η ∈ Yh, (2.3)

where the form ah(·; ·, ·) : Xh ×Xh × Yh → R is defined by

ah(w; v, η) = −
∑

z∈Z0
h

η(z)

∫

∂Vz

(A(w)∇v) · n ds, v, w ∈ Xh, η ∈ Yh. (2.4)

Obviously, ah(w; v, η) may also be defined by (2.4) for v, w ∈ W 1
p (Ω) ∩ H1

0 (Ω), p > 2. In
particular, using Green’s formula we easily see that

ah(w; v, η) = (L(w)v, η), for v, w ∈W 1
p (Ω) ∩H1

0 (Ω), η ∈ Yh. (2.5)

In the case of w ∈ L∞, the bilinear form ah(w; ·, ·) in (2.4) may be equivalently written as

ah(w; v, η) =
∑

K

{

(L(w)v, η)K + (A(w)∇v · n, η)∂K
}

, ∀v ∈ Xh, η ∈ Yh. (2.6)

Indeed, using integration by parts, the identity
∫

Kz

L(w)v dx = −
∫

∂Kz∩∂K

(A(w)∇v) · n ds−
∫

∂Kz∩∂Vz

(A(w)∇v) · n ds, (2.7)

holds for z ∈ Z0
h and K ∈ Th, and hence (2.6) follows from multiplication of (2.7) by η(z) and

by summing it up first over the triangles that have z as a vertex and then over the vertices
z ∈ Z0

h.
The interpolation operator Ih has the following properties, cf., e.g., [10],

∫

K

Ihχdx =

∫

K

χ dx, ∀χ ∈ Xh, for anyK ∈ Th, (2.8)

∫

e

Ihχds =

∫

e

χds, ∀χ ∈ Xh, for any side e ofK ∈ Th, (2.9)

‖Ihχ‖L∞(e) ≤ ‖χ‖L∞(e), ∀χ ∈ Xh, for any side e ofK ∈ Th, (2.10)

‖χ− Ihχ‖Lp(K) ≤ h‖∇χ‖Lp(K), ∀χ ∈ Xh, 1 ≤ p <∞. (2.11)

In addition in [10, Lemma 6.1, Remark 6.1, Lemma 5.1] the following lemma was derived.

Lemma 2.1. Let e be a side of a triangle K ∈ Th. Then for v ∈W 1
p (K) there exists a constant

C1 > 0 independent of h such that

|
∫

e

v(χ− Ihχ) ds| ≤ C1h‖∇v‖Lp(K)‖∇χ‖Lp′ (K), ∀χ ∈ Xh, with
1

p
+

1

p′
= 1. (2.12)

Moreover, introducing εh : L2 ×Xh → R which is defined by

εh(f, χ) = (f, χ− Ihχ), (2.13)

then for f ∈W i
p, i = 0, 1 and χ ∈ Xh,

|εh(f, χ)| ≤ Chi+j‖f‖W i
p
‖χ‖W j

p′

, f ∈W i
p, i, j = 0, 1, with

1

p
+

1

p′
= 1. (2.14)

Copyright c© 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 00:1–26
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Lemma 2.2. Let v ∈ W 2
q , 4/3 < q ≤ 2. The following identities hold.

∑

K

∫

∂K

A(w̄)∇v · nχds = 0,
∑

K

∫

∂K

A(w̄)∇v · n Ihχds = 0, ∀χ ∈ Xh. (2.15)

where w̄ can be either an element of Xh or the value of an element of Xh at the midpoint of

the edge e of triangle K.

Proof. Note, that for v ∈ W 2
q , the trace ∇v · n on ∂K exists for q > 4/3. The left identity is

obvious by rewriting the sum as integrals of jump terms over the interior edges of Th. These
jumps obviously vanish because of the continuity of A(w̄)∇v · n (in the trace sense). A similar
argument gives the second identity. 2

Our analysis will use arguments similar to the corresponding linear problems, cf., e.g, [10, 11].
In those papers, the error estimates are derived by bounding the error between the bilinear
forms of the finite element, a, and the finite volume methods, ah. This is shown to be O(h)
uniformly in Xh. Then for sufficiently small h the finite volume bilinear form ah is coercive in
Xh, which leads to the existence and uniqueness of the finite volume approximation.

In this paper, we will show that a similar estimate for the error functional εa,

εa(w; vh, χ) = a(w; vh, χ) − ah(w; vh, Ihχ) ∀vh, χ ∈ Xh, w ∈ L∞, (2.16)

is no longer O(h) uniformly in Xh. This is due to the fact that the bound of εa(wh; vh, χ), will
depend on ‖∇wh‖L∞

. We note that inverse inequalities of the form, cf., e.g., [8],

‖∇χ‖Ls
≤ Ch2/s−2/t‖∇χ‖Lt

, ∀χ ∈ Xh, with 1 ≤ t ≤ s ≤ ∞, (2.17)

are true in a quasi-uniform mesh. Applying this inequality for ‖∇wh‖L∞

give a uniform

estimate of O(h1−2/t) for (2.16) in a ball of Xh with respect to W 1
t –norm, for t > 2.

The basic estimate result for (2.16) is stated in the following lemma.

Lemma 2.3. There exists a constant C2 > 0, independent of h, such that

|εa(wh; vh, χ)| ≤ C2β3h‖∇wh · ∇vh‖Lp
‖∇χ‖Lp′

, ∀wh, vh, χ ∈ Xh,
1

p
+

1

p′
= 1. (2.18)

Proof. In view of Green’s formula and (2.6), we may write εa in the following form:

εa(wh; vh, χ) =
∑

K

{

(L(wh)vh, χ− Ihχ)K + (A(wh)∇vh · n, χ− Ihχ)∂K
}

=
∑

K

{IK + IIK} .
(2.19)

Applying Hölder’s inequality to IK , and using the fact that wh and vh are linear in K, and
using (1.2) and (2.11), we have

|IK | ≤ β3‖∇wh · ∇vh‖Lp(K)‖χ− Ihχ‖Lp′ (K) ≤ β3h‖∇wh · ∇vh‖Lp(K)‖∇χ‖Lp′(K). (2.20)

For IIK , we break the integration over the boundary of each triangle K, into the sum of
integrations over its sides, and thus may use (2.12), and follow the same steps as in estimating
IK . Hence,

|IIK | ≤ C1h|A(wh)∇vh|W 1
p (K)‖∇χ‖Lp′ (K) ≤ C1β3h‖∇wh · ∇vh‖Lp(K)‖∇χ‖Lp′(K). (2.21)

Copyright c© 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 00:1–26
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Finally, (2.20) and (2.21) establish the desired estimate with C2 = C1 + 1. 2

To establish an optimal error estimate in the L2–norm, Lemma 2.3 is no longer sufficient.
In other words, we need a stronger result than the one stated in that lemma. For this, we will
need to assume that A′ is Lipschitz continuous with constant L, i.e.

|A′(x) −A′(y)| ≤ L|x− y|, ∀x, y ∈ R. (2.22)

This stronger result is presented in the following lemma which will be used in Section 4 to
estimate the error in the L2–norm.

Lemma 2.4. Assume that A′ is Lipschitz continuous and v ∈ W 2
q ∩ H1

0 , for 4/3 < q ≤ 2.
Then there exists a constant C > 0 independent of h such that for wh, vh, χ ∈ Xh,

|εa(wh; vh, χ)| ≤C
{

h2‖∇wh‖L∞

(‖∇wh · ∇vh‖ + ‖v‖W 2
q
)

+ h‖∇wh · ∇(vh − v)‖Lq

}

‖∇χ‖Lq′
,

(2.23)

with 1/q + 1/q′ = 1.

Proof. Let wK and we denote the average value of a function w over triangle K and the edge
e, respectively. Since v ∈ W 2

q , Lemma 2.2 gives the identity
(

(A(wh) −A(wh,e))∇v · n, χ− Ihχ
)

∂K
= 0, ∀χ ∈ Xh.

Employing this identity, the fact that vh is linear in K, Green’s formula, and (2.8) we get

εa(wh; vh, χ) =
∑

K

(

(A′(wh) −A′(wh,K))∇wh · ∇vh, χ− Ihχ
)

K

+
∑

K

(

(A(wh) −A(wh,e))∇(vh − v) · n, χ− Ihχ
)

∂K
=

∑

K

{IK + IIK}.

Using now Hölder’s inequality, the fact that wh is linear in K, and (2.11), we can bound IK ,

|IK | ≤ C

∫

K

|wh − wh,K | |∇wh · ∇vh| |χ− Ihχ| dx

≤ Ch2‖∇wh‖L∞

‖∇wh · ∇vh‖L2(K) ‖∇χ‖L2(K).

(2.24)

To estimate IIK , we apply (2.12) and obtain,

|IIK | ≤ Ch |(A(wh) −A(wh,e))∇(vh − v)|W 1
q (K) ‖∇χ‖Lq′ (K). (2.25)

Furthermore, a simple calculation gives

|(A(wh) −A(wh,e))∇(vh − v)|W 1
q (K) ≤ C(‖∇wh·∇(vh − v)‖Lq(K) + h‖∇wh‖L∞

‖v‖W 2
q (K)

)

.

Summing up (2.24) and (2.25) over all triangles, and using the fact that q′ > 2, we obtain
(2.23). 2

Next we will derive a “Lipschitz”-type estimate for εa.

Lemma 2.5. Let v ∈ H1 ∩ L∞, w ∈ W 1
p with p > 2 and A′ be Lipschitz continuous with

constant L, cf. (2.22). There exists C2 > 0 such that

|εa(v;φh, χ) − εa(w;φh, χ)|
≤ C2h‖∇φh‖L∞

(β3 + L‖∇w‖Lp
)‖∇(v − w)‖ ‖∇χ‖, ∀φh, χ ∈ Xh,

(2.26)

where β3 is the upper bound of A′, cf., (1.2).

Copyright c© 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 00:1–26
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Proof. We can easily see that

εa(v;φh, χ) − εa(w;φh, χ) =
∑

K

{
∫

K

div((A(v) −A(w))∇φh)(χ− Ihχ) dx

+

∫

∂K

(A(v) −A(w))∇φh · n(χ− Ihχ) ds

}

.

Also, since φh is linear in K, div (∇φh) = 0, therefore,

div((A(v) −A(w))∇φh) =
{

A′(v)∇(v − w) + (A′(v) −A′(w))∇w
}

· ∇φh, in K.

Then, this equality together with (2.11), (2.12), the Hölder inequality

‖vw‖Ls
≤ ‖v‖Lt

‖w‖Lt̄
, with t > s,

s

t
+
s

t̄
= 1, (2.27)

for s = 2 and t = p, and the Sobolev inequality, cf. e.g., [8, 4.x.11],

‖v‖Ls
≤ ‖∇v‖, ∀s <∞, (2.28)

give the following

|εa(v;φh, χ) − εa(w;φh, χ)| ≤ C2h(β3‖∇(v − w)‖ + L‖ |v − w| |∇w| ‖)‖∇χ‖ ‖∇φh‖L∞

≤ C2h(β3‖∇(v − w)‖ + L‖v − w‖Lp̄
‖∇w‖Lp

)‖∇χ‖ ‖∇φh‖L∞

≤ C2h(β3 + L‖∇w‖Lp
)‖∇(v − w)‖ ‖∇χ‖ ‖∇φh‖L∞

,

with C2 = C1 + 1. 2

3. EXISTENCE OF FVE APPROXIMATIONS

In this section, we prove the existence of the finite volume solution uh of (2.3) under some
standard assumptions. A fixed point iteration is applied to (2.3) and in turn the existence is
shown within certain subspace of Xh. To be specific, we are seeking the solution of (2.3) in a
ball BM which is defined as

BM = {χ ∈ Xh : ‖∇χ‖Lp
≤M}, with p > 2,

for some M > 0. We note that there is no restriction required on M to show the existence
of the finite volume solution. Moreover, we can establish the uniqueness of the solution of
(2.3) by imposing further requirements on the coefficient and data, namely that A′ is Lipschitz
continuous and M is sufficiently small.

A crucial ingredient for proving the existence of solution of (2.3) is the inf–sup condition.
Here we will need an inf–sup condition that holds for Lp–norm with p ≥ 2. This is attributed to
the fact that we seek the solution in BM . In view of the Sobolev imbedding, ‖v‖L∞

≤ C‖v‖W 1
p

for p > 2, we shall assume the following inf–sup condition, cf., e.g., [8, Chapter 7]: There exist
constants α = α(A,Ω) > 0, hα > 0 and ε = ε(A,Ω) > 0 such that for all 0 < h ≤ hα and
vh ∈ Xh and w ∈ L∞,

‖∇vh‖Lp
≤ α sup

06=χ∈Xh

a(w; vh, χ)

‖∇χ‖Lp′

, (3.1)

Copyright c© 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 00:1–26
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with 2 ≤ p ≤ 2 + ε and 1
p + 1

p′ = 1.
Using this assumption, our task is show that similar inf–sup condition holds for the

bilinear form ah(w; ·, ·) used in (2.3). In view of the identity a(wh; vh, χ) = ah(wh; vh, Ihχ) +
εa(wh; vh, χ), and using Lemma 2.3, and (2.17), we get

|εa(wh; vh, χ)| ≤ Ch‖∇wh · ∇vh‖Lp
‖∇χ‖Lp′

≤ Ch1−2/p‖∇wh‖Lp
‖∇vh‖Lp

‖∇χ‖Lp′
.

It is then straight forward to see that given M > 0, there exists hM > 0 such that for all
0 < h ≤ hM ≤ hα

‖∇vh‖Lp
≤ α̃ sup

06=χ∈Xh

ah(wh; vh, Ihχ)

‖∇χ‖Lp′

, ∀vh ∈ Xh, wh ∈ BM , 2 < p ≤ 2 + ε, (3.2)

where α̃ depends only α and hM . We note that (3.2) holds also for p = 2 and wh ∈ BM =
{χ ∈ Xh : ‖∇χ‖Lp̃

≤M}, with p̃ > 2.
Having established the inf–sup condition, we are now ready to show the existence of the

solution of (2.3). As mentioned earlier, we will devise a fixed point iteration in (2.3), namely,
for a fixed f ∈ L2, we consider an iteration map Th : Xh → Xh given by

ah(vh;Thvh, η) = (f, η), ∀η ∈ Yh. (3.3)

It is easy to see that by the inf–sup condition (3.2) Thvh is well defined for h < hM and
vh ∈ BM . The following theorem states the existence of (2.3).

Theorem 3.1. Let f ∈ L2 be given and assume that the standard requirements (1.2) on the

coefficient A hold. Choose M > 0 such that ‖f‖ ≤Mα̃−1, where as before α̃ is the coefficient

in the inf–sup condition (3.2). Then there exists a solution of (2.3) in BM .

Proof. Let vh ∈ BM then in view of (3.2) we have

‖∇Thvh‖Lp
≤ α̃ sup

06=χ∈Xh

ah(vh;Thvh, Ihχ)

‖∇χ‖Lp′

≤ α̃ sup
06=χ∈Xh

(f, Ihχ)

‖∇χ‖Lp′

. (3.4)

Then, using (2.2) and the Sobolev inequality ‖v‖ ≤ ‖v‖W 1
p
, for p > 1, cf. [8, 4.x.11], we get

‖∇Thvh‖Lp
≤ α̃‖f‖ ≤M. (3.5)

Thus the operator Th maps the ball vh ∈ BM into itself. By the Brouwer fixed point theorem,
we know that Th has a fixed point, and this implies that (2.3) has a solution in BM . 2

Some comments related to the theorem above worth mentioning. It is clear from the above
proof, that up to existence of the finite volume solution, the regularity on the data f and the
coefficient A are standard. Given the data f , we have a freedom to choose M > 0 that satisfies
the requirement in the theorem. As for the coefficient A, we have used relatively different
constraint. Instead of imposing Lipschitz continuity of A, we have assumed that its derivative
is bounded from above, cf. the second part of (1.2). This kind of requirement is more due to the
construction of the finite volume variational problem (2.3). In particular, the corresponding
bilinear form ah(w; ·, ·) on which our analysis is relied upon involves a stronger form.

In the next theorem we show that in a sufficiently small ball BM and data f , there exists a
unique solution uh ∈ Xh of (2.3).

Next, we will show that the iteration map Th is Lipschitz continuous. For M sufficiently
small, Th is a contraction in BM in H1-norm, which gives the uniqueness of the solution uh of
(2.3)

Copyright c© 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 00:1–26
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Theorem 3.2. Let A′ be Lipschitz continuous with constant L, cf. (2.22). Then there exists

a constant CL = CL(A,Ω) > 0 and h′M > 0, such that for ‖f‖ ≤ Mα̃−1, M < CL
−1 and all

0 < h ≤ h′M , Th is a contraction, with constant ` = CLM < 1,

‖∇(Thv − Thw)‖ ≤ `‖∇(v − w)‖, ∀v, w ∈ BM . (3.6)

Proof. Let v, w ∈ BM . Then, in view of the definition of Th, (3.3) we have

ah(v;Thv, η) − ah(w;Thw, η) = 0, ∀η ∈ Yh.

Therefore, we can easily see that for η = Ihχ, χ ∈ Xh,

ah(v;Thv − Thw, Ihχ) = ah(w;Thw, Ihχ) − ah(v;Thw, Ihχ)

= εa(v;Thw, χ) − εa(w;Thw, χ) + ((A(w) −A(v))∇Thw,∇χ).
(3.7)

Using now the fact that for sufficiently small h, Thw ∈ BM , cf., Theorem 3.1, the Hölder
inequality (2.27) with s = 2 and t = p and the Sobolev (2.28), the last term of the right–hand
side of (3.7) can be bounded for any χ ∈ Xh,

|(A(w) −A(v))∇Thw,∇χ)| ≤ β3‖(w − v)|∇Thw| ‖ ‖∇χ‖
≤ β3‖w − v‖Lp̄

‖∇Thw‖Lp
‖∇χ‖ ≤ β3M‖∇(v − w)‖ ‖∇χ‖. (3.8)

Also, in view of Lemma 2.5 the remaining two terms in the right–handside of (3.7), give

|εa(v;Thw, χ) − εa(w;Thw, χ)| ≤ C2h
1−2/pM(β3 + LM)‖∇(v − w)‖ ‖∇χ‖. (3.9)

Since, ah(vh; ·, ·) is coercive for vh ∈ BM and h sufficiently small, choosing χ = Thv − Thw in
the above relation and in (3.7) and (3.8) gives that there exists a constant CL = CL(A,Ω) > 0
such that

‖∇(Thv − Thw)‖ ≤ CLM‖∇(v − w)‖.
Therefore, for M < C−1

L , Th is a contraction with constant 0 < ` = CLM < 1. 2

Finally, Theorems 3.1 and 3.2 give the following corollary,

Corollary 3.3. Assume that A′ is Lipschitz continuous with a constant L. Then there exist

constants CL = CL(A,Ω) > 0 and h0 > 0 such that if ‖f‖ ≤ α̃−1C−1
L , with 2 < p < 2 + ε then

for h sufficiently small the problem (2.3), i.e., find uh ∈ Xh such that

ah(uh;uh, Ihχ) = (f, Ihχ), ∀χ ∈ Xh,

has a unique solution, with ε given in (3.1).

4. ERROR ESTIMATES

In this section we shall derive the error estimates for the finite volume solution, i.e., the
estimate for uh − u in the W 1

s –, with 2 ≤ s < p, L2– and L∞-norm. We assume that f ∈ L2

and that the nonlinear problem (1.1) has a unique solution u ∈ W 2
q ∩ H1

0 , with 4/3 < q ≤ 2.
Recall that in Section 3 we show that a finite volume solution uh of (2.3) exists and is unique.

First, we will derive an a priori error estimate ‖∇(uh − u)‖Ls
, 2 ≤ s < p. For s = 2 we get

the usual H1–norm error bound. Moreover, for s > 2 the estimate combined with a standard
Sobolev imbedding gives an L∞–norm error estimate, cf. Theorem 4.2.

Copyright c© 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 00:1–26
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Theorem 4.1. Let uh and u be the solutions of (2.3) and (1.1), respectively, with f ∈ L2.

Then, if γ = αβ3M < 1 there exists a constant C = C(u, f), independent of h, such that for

0 < h ≤ hM

‖∇(uh − u)‖Ls
≤ C(u, f)h1+2/s−2/q, with 2 ≤ s < p < 2 + ε,

4

3
< q ≤ 2, (4.1)

where α is the constant appeared in (3.1).

Proof. Using the triangle inequality we get

‖∇(uh − u)‖Ls
≤ ‖∇(u− χ)‖Ls

+ ‖∇(uh − χ)‖Ls
, ∀χ ∈ Xh. (4.2)

In view of the approximation property of Xh,

inf
χ∈Xh

‖∇(v − χ)‖Ls
≤ Ch1+2/s−2/q‖v‖W 2

q
, with 4/3 < q ≤ 2 ≤ s, (4.3)

the first term on the right side of (4.2) is bounded as desired. Also, we can easily see that

a(u;uh− χ, ψ) = a(u;uh− u, ψ) + a(u;u− χ, ψ) ≤ a(u;uh− u, ψ) + β2‖∇(u− χ)‖Ls
‖∇ψ‖Ls′

,

with 1/s+ 1/s′ = 1. Hence, in view of (3.1), we may write for 2 ≤ s < p,

‖∇(uh − χ)‖Ls
≤ α sup

06=ψ∈Xh

a(u;uh − χ, ψ)

‖∇ψ‖Ls′

≤ α sup
06=ψ∈Xh

a(u;uh − u, ψ)

‖∇ψ‖Ls′

+ αβ2‖∇(u− χ)‖Ls
.

(4.4)

Then in view of (4.3), it suffices to estimate the first term of the right–handside in the relation
above. We can easily see for any ψ ∈ Xh,

a(u;uh − u, ψ) = a(u;uh, ψ) − (f, ψ)

= {a(u;uh, ψ) − a(uh;uh, ψ)} + {εa(uh;uh, ψ) − εh(f, ψ)} = I + II.
(4.5)

Then using the fact that uh ∈ BM , the Hölder inequality (2.27), with t = p, and the Sobolev
inequality (2.28), we have for any χ, ψ ∈ Xh,

|I | = |a(u;uh, ψ) − a(uh;uh, ψ)| ≤ β3‖(uh − u)|∇uh|‖Ls
‖∇ψ‖Ls′

≤ β3‖uh − u‖Lp̄
‖∇uh‖Lp

‖∇ψ‖Ls′
≤ β3M‖∇(uh − u)‖ ‖∇ψ‖Ls′

≤ β3M(‖∇(uh − χ)‖Ls
+ ‖∇(u− χ)‖Ls

)‖∇ψ‖Ls′
.

(4.6)

The remaining term II can be bounded using Lemma 2.3 and (2.14), the inverse inequality
(2.17) and the Hölder inequality (2.27), with t = 2q/(2 − q) and t̄ = st/(t− s),

|εh(f, ψ)| ≤ Ch‖f‖‖∇ψ‖ ≤ Ch2−2/s′‖f‖ ‖∇ψ‖Ls′
= Ch2/s‖f‖ ‖∇ψ‖Ls′

, (4.7)

and

|εa(uh;uh, ψ)| ≤ Ch(‖∇uh · ∇(uh − u)‖Ls
+ ‖∇uh · ∇u‖Ls

)‖∇ψ‖Ls′

≤ C
(

h1−2/pM‖∇(uh − u)‖Ls
+ h‖∇uh‖Lt̄

‖∇u‖Lt

)

‖∇ψ‖Ls′

≤ C
(

h1−2/pM‖∇(uh − u)‖Ls
+ h1+2/t̄−2/pM‖∇u‖Lt

)

‖∇ψ‖Ls′
.

(4.8)
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Further, in view of the Sobolev imbedding, cf., e.g., [1]

‖v‖Lt
≤ C‖v‖W 1

r
, ∀v ∈W 1

r , r ≤ 2, and t ≤ 2r/(2 − r), (4.9)

and

1 +
2

t̄
− 2

p
= 1 − 2

t
+

2

s
− 2

p
= 2 − 2

q
+

2

s
− 2

p
> 1 +

2

s
− 2

q
,

relation (4.8) becomes

|εa(uh;uh, ψ)| ≤ C
(

h1−2/pM‖∇(uh − u)‖Ls
+ h1+2/s−2/qM‖u‖W 2

q

)

‖∇ψ‖Ls′
. (4.10)

Thus (4.4)–(4.10) and the fact that 1 − 2/q ≤ 0, give

(1 − γ)‖∇(uh − χ)‖Ls
≤ (γ + αβ2)‖∇(u− χ)‖Ls

+ Ch1−2/p‖∇(uh − u)‖Ls

+ Ch1+2/s−2/q(‖u‖W 2
q

+ ‖f‖).
(4.11)

Finally, for sufficiently small h, the estimate above combined with (4.2) and (4.3) give the
desired result. 2

Corollary 4.2. Let uh and u be the solutions of (2.3) and (1.1), respectively, with f ∈ L2.

Then, if γ = αβ3M < 1 there exists a constant Cs = Cs(u, f), independent of h, such that for

0 < h ≤ hM
‖u− uh‖L∞

≤ Cs(u, f)h1+2/s−2/q , with 2 < s < p < 2 + ε. (4.12)

Proof. In view of the Sobolev imbedding ‖v‖L∞

≤ Cs‖∇v‖Ls
, s > 2 and Theorem 4.1 we can

easily see that (4.12) holds. 2

Note that the constant Cs in Corollary 4.2 gets larger as s → 2. Later, in Theorem 4.6, we
will show an almost optimal order L∞ error estimate.

One drawback in the proof of Theorem 4.1 is that we require the data f to be sufficiently
small. This is evident from (4.11) in which we need γ < 1, where γ depends on M . We can
actually discard this restriction provided that the solution u of (1.1) belongs in W 1

p ∩H1
0 and

is the unique weak solution in H1
0 ∩ L∞. In the next theorem we show a different version of

Theorem 4.1. The result is based on similar estimate for the finite element method in [24].

Theorem 4.3. If the solution u of (1.1) belongs to H1
0 ∩W 1

p , with p > 2 and is unique in

H1
0 ∩ L∞ then uh → u in H1

0

Proof. We will follow the proof of Theorem 4.1 for s = 2 and [24]. Repeating the arguments
in (4.6) we get

|I | = |a(u;uh, ψ) − a(uh;uh, ψ)| ≤ β3M‖uh − u‖Lp̄
‖∇ψ‖L2

. (4.13)

Also, we can reevaluate the bounds in (4.7) and (4.8) by

|II | ≤ Ch
(

‖f‖L2 + ‖∇uh · ∇(uh − u)‖L2
+ ‖∇uh · ∇u‖L2

)

‖∇ψ‖L2

≤ C
(

h‖f‖L2 + h1−2/pM‖∇(uh − u)‖L2
+ h‖∇uh‖Lp̄

‖∇u‖Lp

)

‖∇ψ‖L2

≤ C
(

h‖f‖L2h
2/p̄M‖∇(uh − u)‖L2

+ h4/p̄M‖∇u‖Lp

)

‖∇ψ‖L2

≤
(

o(h)‖∇(uh − u)‖L2
+ o(h)

)

‖∇ψ‖L2
.

Copyright c© 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 00:1–26
Prepared using nlaauth.cls



A FVEM FOR A NONLINEAR ELLIPTIC PROBLEM 13

Then, combining these with the approximation property of Xh

inf
χ∈Xh

‖∇(v − χ)‖L2
≤ Ch1−2/p‖v‖W 1

p
, with p > 2,

and (4.2), (4.4) and (4.5), we get

‖∇(uh − u)‖L2 ≤ αβ3M‖uh − u‖Lp̄ + o(h).

Then we use the Gaglardo–Nirenberg estimate

‖v‖Lp̄ ≤ C‖∇v‖kL2
‖v‖1−k

L2
, with k = 1 − 2/p̄,

and Young’s inequality to obtain

‖∇(uh − u)‖L2 ≤ C‖uh − u‖L2 + o(h),

with a large constant C. Therefore in order to prove this theorem it suffices to show uh → u
in L2.

In view of the fact that uh ∈ BM , we have ‖∇uh‖L2 ≤ K1 and ‖uh‖L∞
≤ K2. Therefore, for

a subsequence uhk
→ w weakly in H1

0 and uhk
→ w ?–weakly in L∞, cf., e.g., [9]. This means

that uh → w strongly in Lp̄. Finally we will show that w is the weak solution of (1.1), and
since we have assumed that the weak solution is unique in H1

0 ∩ L∞, we have w = u. Thus
uh → u in H1.

In order to show that w is a weak solution we consider an arbitrary v ∈ C∞
0 and a sequence

{vh} in Xh satisfying ‖∇(vh − v)‖Lp → 0. This implies

(f, vh − v) ≤ ‖f‖L2‖∇(vh − v)‖Lp → 0.

Also

(f, vh) = a(uh;uh, vh) + εa(uh;uh, vh) (4.14)

= ((A(uh) −A(w))∇uh,∇vh) + a(w;uh, vh − v) + a(w;uh, v). (4.15)

Since uh → w weakly in H1
0 ,

a(w;uh, v) → a(w;w, v).

Also
((A(uh) −A(w))∇uh,∇vh) ≤ L‖uh − w‖Lp̄‖∇uh‖Lp‖∇vh‖L2

Since ‖uh − w‖Lp̄ → 0, ((A(uh) −A(w))∇uh,∇vh) → 0. Finally,

a(w;uh, vh − v) ≤M‖∇uh‖L2‖∇(vh − v)‖L2 → 0

Therefore, passing to the limits we obtain

(f, v) = a(w;w, v), ∀v ∈ C∞
0 .

This gives that w is the weak solution of (1.1) and completes the proof. 2

Next, we will show that ‖∇uh‖Lq̄
, with 2/q + 2/q̄ = 1, is also bounded . This will be used

later in the proof of error estimate in L2–norm.

Theorem 4.4. Let uh and u be the solutions of (2.3) and (1.1), respectively, with u ∈
W 2
q ∩H1

0 , 4/3 < q ≤ 2. Then uh ∈ W 1
q̄ , uniformly for all 0 < h ≤ hM , i.e.,

‖∇uh‖Lq̄
≤ C(u, f), with

2

q
+

2

q̄
= 1. (4.16)
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Proof. Let Rh : H1
0 → Xh be the elliptic projection operator defined by

a(u;Rhu, χ) = a(u;u, χ), ∀χ ∈ Xh,

and Πh : C(Ω) → Xh be the standard nodal interpolant. Then we have

‖∇uh‖Lq̄
≤ ‖∇(uh −Rhu)‖Lq̄

+ ‖∇Rhu‖Lq̄

≤ ‖∇(uh −Rhu)‖Lq̄
+ ‖∇(Rhu− Πhu)‖Lq̄

+ ‖∇Πhu‖Lq̄
.

(4.17)

Using the approximation property (4.3), Πh satisfies

‖∇(Πhv − v)‖Ls
≤ Ch1+2/s−2/q‖v‖W 2

q
, 4/3 < q ≤ 2 ≤ s. (4.18)

In view of (4.9) and (4.18), the last term in (4.17) can easily be estimated as

‖∇Πhu‖Lq̄
≤ C‖u‖W 2

q
. (4.19)

Also, we can easily see that the identity

a(u;Rhu− u,Rhu− u) = a(u;Rhu− u,Πhu− u),

gives
‖∇(Rhu− u)‖ ≤ C‖∇(Πhu− u)‖.

Thus, using the inverse inequality (2.17), (4.18) and the fact that 2 − 2/q = 1 − 2/q̄, we can
bound the second term in (4.17) by

‖∇(Rhu− Πhu)‖Lq̄
≤ Ch2/q̄−1‖∇(Rhu− Πhu)‖
≤ Ch2/q̄−1(‖∇(Rhu− u)‖+ ‖∇(Πhu− u)‖) ≤ C‖u‖W 2

q

(4.20)

Finally, the first term in (4.17) can be estimated similarly. Applying Theorem 4.1, (2.17) and
the fact that 2 − 2/q = 1 − 2/q̄ we have

‖∇(uh −Rhu)‖Lq̄
≤ Ch2/q̄−1‖∇(uh −Rhu)‖
≤ Ch2/q̄−1(‖∇(uh − u)‖+ ‖∇(Rhu− u)‖+ ‖∇(Πhu− u)‖)
≤ C(u, f).

(4.21)

All these estimates establish the claim in the theorem. 2

For the proof of the L2–norm error estimate we will employ a similar duality argument as
the one used in [16]. Let us consider the following auxiliary problem. Let ϕ ∈ H1

0 be such that

a(u;ϕ, v) + (A′(u)∇u∇ϕ, v) = (u− uh, v), ∀v ∈ H1
0 . (4.22)

If A(u) is Lipschitz continuous and A′(u)∇u ∈ L∞, then the solution ϕ of (4.22) satisfies the
following elliptic regularity estimate,

‖ϕ‖W 2
q0

≤ C‖uh − u‖, with 4/3 < q0 ≤ 2, (4.23)

where q0 depends on the biggest interior angle of Ω and the coefficients A(u), A′(u)∇u. If Ω is
convex then q0 = 2, and if it is nonconvex then q0 < 2.

Copyright c© 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 00:1–26
Prepared using nlaauth.cls



A FVEM FOR A NONLINEAR ELLIPTIC PROBLEM 15

Theorem 4.5. Let uh and u be the solutions of (2.3) and (1.1), respectively, with u ∈
W 2
q ∩ H1

0 ∩ W 1
∞, 4/3 < q ≤ 2. Then, if u and A′ are Lipschitz continuous, A′′ ∈ L1(R),

f ∈ H1 and γ = β−1
1 β3M < 1 there exists a constant C, independent of h, such that for

sufficiently small h,
‖uh − u‖ ≤ C(u, f)h4−2/q−2/q0 . (4.24)

Proof. Before we begin the proof we note the following Taylor expansions

A(uh) −A(u) = (uh − u)

∫ 1

0

A′(u− t(u− uh)) dt ≡ (uh − u)Ā′,

A(uh) −A(u) −A′(u)(uh − u) = (uh − u)2
∫ 1

0

A′′(u− t(u− uh))(1 − t) dt

≡ (uh − u)2Ā′′.

(4.25)

Then, in view of (4.22), we have

‖u− uh‖2 = a(u;u− uh, ϕ) + (A′(u)(u− uh)∇u,∇ϕ)

= a(u;u, ϕ) − a(uh;uh, ϕ) + ((A(uh) −A(u))∇uh,∇ϕ)

− ((A(uh) −A(u))∇u,∇ϕ) + ((A(uh) −A(u))∇u,∇ϕ) − (A′(u)(uh − u)∇u,∇ϕ)

= a(u;u, ϕ) − a(uh;uh, ϕ) + ((A(uh) −A(u))∇(uh − u),∇ϕ)

+ ((A(uh) −A(u) − A′(u)(uh − u))∇u,∇ϕ).

Furthermore, using (2.3) and (4.25), the relation above gives for any χ ∈ Xh,

‖u− uh‖2 = a(u;u, ϕ− χ) − a(uh;uh, ϕ− χ) + εh(f, χ) − εa(uh;uh, χ)

+ ((uh − u)Ā′∇(uh − u) + (uh − u)2Ā′′∇u,∇ϕ)

= {a(uh;u− uh, ϕ− χ) + ((uh − u)Ā′∇u,∇(ϕ− χ)) + εh(f, χ)}
− εa(uh;uh, χ) + {(uh − u)Ā′∇(uh − u) + ((uh − u)2Ā′′∇u,∇ϕ)}

= I1 + I2 + I3.

(4.26)

Choosing now χ = Πhϕ in (4.26) and using (2.14) and Lemma 2.4 we get

|I1| ≤ C(‖∇(uh − u)‖ + ‖∇u‖L∞

‖uh − u‖)‖∇(ϕ− Πhϕ)‖ + Ch2‖f‖H1‖∇Πhϕ‖,
|I2| ≤ C

{

h2‖∇uh‖L∞

(‖ |∇uh|2‖ + ‖u‖W 2
q
) + h‖∇uh · ∇(uh − u)‖Lq

}

‖∇Πhϕ‖Lq′
.

(4.27)

Since 2 < q̄ = 2q/(2 − q), (4.19), the approximation property (4.18) and the fact that
2 ≥ 3 − 2/q0, now give

|I1| ≤ Ch2−2/q0(‖∇(u− uh)‖ + ‖∇u‖L∞

‖u− uh‖ + h‖f‖H1)‖ϕ‖W 2
q0

. (4.28)

Using then Theorem 4.1 and (4.23), we obtain

|I1| ≤ C(u)h2−2/q0
{

‖∇(uh − u)‖ + h‖f‖H1 + ‖uh − u‖
}

‖uh − u‖
≤ C(u, f)h4−2/q−2/q0‖uh − u‖+ C(u, f)h2−2/q0‖uh − u‖2.

(4.29)

Also, using the fact that q, q0 > 4/3 we get q′ ≤ 2q0/(2− q0), thus in view of (4.9) and (4.18),

‖∇Πhϕ‖Lq′
≤ C‖ϕ‖W 2

q0

.
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16 P. CHATZIPANTELIDIS, V. GINTING, R. D. LAZAROV

Using this relation, along with the inverse inequality (2.17), the Hölder inequality (2.27), with
s = 2, t = q̄ and s = q, t = 2, and the fact that 2q̄/(q̄ − 2) ≤ q̄, for q > 4/3, we get

|I2| ≤ C
{

h2−2/q̄‖∇uh‖Lq̄
(‖∇uh‖Lq̄

‖∇uh‖L2q̄/(q̄−2)
+ ‖u‖W 2

q
)

+ h‖∇uh‖Lq̄
‖∇(uh − u)‖)

}

‖∇Πhϕ‖Lq′

≤ C‖∇uh‖Lq̄

{

h2−2/q̄(‖∇uh‖2
Lq̄

+ ‖u‖W 2
q
) + h‖∇(uh − u)‖

}

‖ϕ‖W 2
q0

.

Next using Theorems 4.1 and 4.4 and (4.23), we obtain

|I2| ≤ C(u, f)(h2−2/q̄ + h‖∇(uh − u)‖)‖uh − u‖ ≤ C(u, f)h3−2/q‖u− uh‖. (4.30)

Next, we turn to the estimate of the term I3 in (4.26). For this we use the Hölder inequality
(2.27) with t = q0; hence

|I3| ≤ C‖∇(uh − u)‖ ‖(u− uh)∇ϕ‖ ≤ C‖∇(uh − u)‖ ‖uh − u‖Lq0
‖∇ϕ‖Lq̄0

. (4.31)

Then the interpolation inequality, cf., e.g., [18, Appendix B],

‖v‖Lq0
≤ ‖v‖1/2‖v‖1/2

Ls
, with s = 2q0/(4 − q0),

and the Sobolev inequality (2.28) give

‖uh − u‖Lq0
≤ C‖∇(uh − u)‖1/2‖uh − u‖1/2.

Therefore, using the above relation and Theorem 4.1 in (4.31) give

|I3| ≤ C‖∇(u− uh)‖3/2‖u− uh‖1/2‖ϕ‖W 2
q0

≤ (C‖∇(u− uh)‖3 +
1

2
‖u− uh‖)‖u− uh‖

≤ C(u, f)h3(2−2/q)‖u− uh‖ +
1

2
‖u− uh‖2.

We can easily see that 3(2 − 2/q) > 4 − 2/q − 2/q0. Therefore, combining the relation above
with (4.26), (4.29) and (4.30), we get

‖u− uh‖2 ≤ |I1| + |I2| + |I3|
≤ C(u, f)h4−2/q−2/q0‖uh − u‖ + C(u, f)h2−2/q0‖uh − u‖2 + C(u, f)h3−2/q‖u− uh‖

+ C(u, f)h3(2−2/q)‖u− uh‖ +
1

2
‖u− uh‖2,

which for sufficiently small h gives the desired estimate. 2

Theorem 4.6. Let uh and u be the solutions of (2.3) and (1.1), respectively. Then, if Ω is

convex, γ = CΩβ
−1
1 β2β3‖u‖W 1

p
< 1, with CΩ > 0 a constant depending only on Ω, u ∈ W 2

∞

and f ∈ L∞, then there exists a constant C independent of h, such that for sufficiently small

h,

‖u− uh‖L∞

≤ C(u, f)h2 log(
1

h
). (4.32)
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Proof. Using again a triangle inequality we get

‖uh − u‖L∞

≤ ‖uh − u‖L∞

+ ‖uh − uh‖L∞

,

where uh is the Galerkin finite element approximation of u, i.e.,

a(uh;uh, χ) = (f, χ), ∀χ ∈ Xh. (4.33)

In the case of the linear problem −div (A(x)∇w) = f , we have

‖wh − w‖L∞

≤ Ch2 log(
1

h
)‖w‖W 2

∞

,

for A ∈ W 2
∞, cf., eg., [8]. Here wh is the finite element approximation of w. Since f ∈ L∞ and

u ∈W 2
∞, then A(u) ∈W 2

∞. Therefore,

‖Rhu− u‖L∞

≤ C(u)h2 log(
1

h
). (4.34)

Moreover, it has been shown in [24] that

‖uh − Rhu‖L∞

≤ γ‖uh − u‖L∞

, (4.35)

with γ = CΩβ
−1
1 β2β3‖u‖W 1

p
. Thus (4.34) and (4.35) give

(1 − γ)‖uh − u‖L∞

≤ C(u)h2 log(
1

h
). (4.36)

Next, we turn our attention to the estimate of ‖uh − uh‖L∞

. Let x0 ∈ K0 ∈ Th such that
‖uh − uh‖L∞

= |(uh−uh)(x0)| and δx0 = δ ∈ C∞
0 (Ω) a regularized Dirac δ–function satisfying

(δ, χ) = χ(x0), ∀χ ∈ Xh.

For such a function δ, cf., e.g., [8], we have

supp δ ⊂ B = {x ∈ Ω : |x− x0| ≤ h/2},
∫

Ω

δ = 1, 0 ≤ δ ≤ Ch−2, ‖δ‖Lp
≤ Ch2(1−p)/p, 1 < p <∞.

Also let us consider the corresponding regularized Green’s function G ∈ H1
0 , defined by

a(uh;G, v) = (δ, v), ∀v ∈ H1
0 . (4.37)

Then, we have

‖uh − uh‖L∞

= (δ, uh − uh) = a(uh;G, uh − uh) = a(uh;Gh, uh − uh)

= (f,Gh) − a(uh;uh, Gh)

= εh(f,Gh) − εa(uh;uh, Gh) + {a(uh;uh, Gh) − a(uh;uh, Gh)},
(4.38)

where Gh ∈ Xh is the finite element approximation of G, i.e.,

a(uh;G,χ) = a(uh;Gh, χ), ∀χ ∈ Xh.
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18 P. CHATZIPANTELIDIS, V. GINTING, R. D. LAZAROV

Since u ∈ W 2
∞, we have u ∈ H2. Thus, it follows from Theorem 4.4 that ‖∇uh‖L∞

≤ C.
Furthermore, using Lemma 2.4 and (2.14), (1.2) and Theorem 4.5, we obtain

‖uh − uh‖L∞

≤ C
{

h2(‖f‖H1 + ‖∇uh‖2
L∞

‖∇uh‖ + ‖∇uh‖L∞

‖u‖H2)

+ h‖∇uh‖L∞

‖∇(uh − u)‖ + ‖(uh − uh)|∇uh|‖
}

‖∇Gh‖
≤ Ch2(‖f‖H1 + ‖u‖H2 + ‖uh − u‖)‖∇Gh‖.

(4.39)

The last term can be estimated by, cf., e.g., [16],

‖uh − u‖ ≤ C(u, f)h2. (4.40)

In addition in view of [26, Lemma 3.1] we get

‖Gh‖H1 ≤ C‖∇G‖L2
≤ C

1

(s− 1)1/2
‖δ‖Ls

, (4.41)

with s ↓ 1. Choosing now s = 1 + (log(1/h))−1 we have

‖Gh‖H1 ≤ C(log(
1

h
))1/2. (4.42)

Combining (4.38)–(4.42), we obtain

‖uh − uh‖L∞

≤ C(u, f)h2 log(
1

h
)1/2. (4.43)

¿From this and (4.36) for γ < 1 we get (4.32).

5. NEWTON’S METHOD

In this section we shall analyze Newton’s method for the computation of the finite volume
solution uh of (2.3). Our analysis is based on a similar approach used in the finite element
method, studied by Douglas and Dupont in [16].

Also here, we will assume that (1.1) has a unique solution u ∈ H2 ∩ H1
0 . For φ ∈ H1 we

define the bilinear form N(φ; ·, ·) on H1
0 ×H1

0 by

N(φ; v, w) = a(φ; v, w) + d(φ; v, w), (5.1)

where d is given by

d(φ; v, w) = (A′(φ)v∇φ,∇w). (5.2)

Furthermore, let Nh be the form corresponding to N, associated with the finite volume method
defined as

Nh(φ; v, w) = ah(φ; v, w) + dh(φ; v, w), (5.3)

for φ ∈ H2 ∩H1
0 on (H2 ∩H1

0 ) +Xh × (H2 ∩H1
0 ) +Xh, and dh is given by

dh(φ; v, w) = −
∑

K

∫

K

div(A′(φ)v∇φ)Ihw dx+

∫

∂K

(A′(φ)v∇φ) · nIhw ds. (5.4)
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For u0
h ∈ Xh, the Newton approximations to the solution uh forms a sequence {ukh}∞k=0 in

Xh satisfying

Nh(u
k
h;u

k+1
h − ukh, χ) = (f, Ihχ) − ah(u

k
h;u

k
h, Ihχ), ∀χ ∈ Xh. (5.5)

We will show that ukh → uh in H1–norm as k → ∞, with order two, provided that u0
h is

sufficiently close to uh. For this we will assume that uh converges to u sufficiently fast,

‖u− uh‖L∞

+ σh‖u− uh‖H1 → 0, as h→ 0, (5.6)

where
σh ≡ sup{‖χ‖L∞

/‖χ‖H1 : 0 6= χ ∈ Xh}. (5.7)

Since Th is a quasi-uniform mesh, there exists a constant C, independent of h such that

|σh| ≤ C log(
1

h
). (5.8)

Further, let C3 be another constant, independent of h, satisfying

‖uh‖W 1
∞

≤ C3. (5.9)

Note that this assumption holds, for u ∈ H2, cf. Section 3. In addition we assume that A′′ is
bounded and is Lipschitz continuous, i.e.,

|A′′(x)| ≤ β4, |A′′(x) −A′′(y)| ≤ L2|x− y|, ∀x, y ∈ R. (5.10)

Next, we will show various auxiliary results which will be used in the proof of Theorem 5.1.
We start by stating the following lemma of Douglas and Dupont, [16].

Lemma 5.1. Given τ > 0, there exists positive constants δ, h0 and C4 such that the following

holds. If 0 < h < h0, if φ ∈W 1
∞ satisfies

‖φ‖W 1
∞

≤ τ and σh‖φ− u‖H1 ≤ δ,

and if G is a linear functional on H1
0 with

|||G||| = sup
06=χ∈Xh

|G(χ)|
‖χ‖H1

,

then there exists a unique v ∈ Xh satisfying the equations

N(φ; v, χ) = G(χ), w ∈ Xh. (5.11)

Furthermore, v satisfies the bound

‖v‖H1 ≤ C4|||G|||. (5.12)

We shall also use the error functional εN , defined by εN = N −Nh, and we derive similar
estimates to εa, cf. Section 2.

Lemma 5.2. For φ ∈ Xh the error functional εN satisfies

|εN (φ;ψ, χ)| ≤ Ch‖∇φ‖L∞

(1 + σh‖φ‖H1 )‖ψ‖H1‖χ‖H1 , ∀χ, ψ ∈ Xh.
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Proof. ¿From the definition of εN we can easily see that, εN = εa+(d−dh). Therefore in view
of Lemma 2.3, it suffices to bound d− dh. Following the proof of Lemma 2.3 we have,

d(φ;ψ, χ) − dh(φ;ψ, χ)

=
∑

K

{

(div
(

(A′(φ)ψ)∇φ
)

, χ− Ihχ)K +
(

(A′(φ)ψ)∇φ
)

· n, χ− Ihχ)∂K
}

=
∑

K

{IK + IIK} .
(5.13)

Applying Hölder’s inequality to IK , and using the fact that φ is linear in K, (1.2), (5.10) and
(2.11), we have

|IK | ≤ (β3‖∇φ · ∇ψ‖L2(K) + β4‖ |∇φ|2ψ‖L2(K))‖χ− Ihχ‖L2(K)

≤ Ch(β3‖∇φ · ∇ψ‖L2(K) + β4‖ |∇φ|2ψ‖L2(K))‖∇χ‖L2(K).
(5.14)

For the IIK , we break the integration over the boundary of each triangle K, into the sum of
integrations over its sides, and thus may use (2.12), and follow the same steps as in estimating
IK . Hence,

|IIK | ≤ Ch|(A′(φ)ψ)∇φ|H1(K)‖∇χ‖L2(K)

≤ Ch(β3‖∇φ · ∇ψ‖L2(K) + β4‖ |∇φ|2ψ‖L2(K))‖∇χ‖L2(K).

Then combining this with Lemma 2.3 and (5.14), we get

|εN (φ;ψ, χ)| ≤ Ch
(

‖∇φ‖L∞

‖∇ψ‖+ ‖∇φ‖L∞

‖ψ‖L∞

‖∇φ‖
)

‖χ‖H1 .

Finally, in view of the definition of σh we get the desired estimate. 2

Next, we derive a “Lipchitz”–type estimate for εN .

Lemma 5.3. Let v, w, φ, χ ∈ Xh then

|εN (v;φ, χ)−εN (w;φ, χ)| ≤ Ch
{

‖∇(v − w) · ∇φ‖ + ‖∇w‖L∞

‖(v − w)∇φ‖
+ ‖(|∇v|2 − |∇w|2)φ‖ + ‖∇w‖2

L∞

‖(v − w)φ‖
}

‖∇χ‖.
(5.15)

Proof. Similarly as in the proof of the previous lemma, we can easily see that εN =
εa + (d − dh). Thus in view of Lemma 2.5, it suffices to estimate d(v;φ, χ) − dh(w;φ, χ).
Using a similar decomposition as in (5.13) and then applying (2.11) and (2.12) we get

|d(v;φ, χ) − dh(w;φ, χ)| ≤ Ch
{

‖div
(

(A′(v)∇v −A′(w)∇w)φ
)

‖
+ |(A′(v)∇v −A′(w)∇w)φ|H1

}

‖∇χ‖.
(5.16)

Next, since φ ∈ Xh, we have

div((A′(v)∇v −A′(w)∇w)φ)

= (A′′(v)|∇v|2 −A′′(w)|∇w|2)φ + (A′(v)∇v −A′(w)∇w) · ∇φ
= (A′′(v)(|∇v|2 − |∇w|2)φ+ (A′′(v) −A′′(w))|∇w|2φ

+ (A′(v)(∇v −∇w) · ∇φ+ (A′(v) −A′(w))∇w · ∇φ.

(5.17)
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Therefore, (5.16) gives

|d(v;φ, χ) − dh(w;φ, χ)| ≤ Ch(‖∇(v − w) · ∇φ‖ + ‖∇w‖L∞

‖(v − w)∇φ‖)‖∇χ‖
+ Ch(‖(|∇v|2 − |∇w|2)φ‖ + ‖∇w‖2

L∞

‖(v − w)φ‖)‖∇χ‖.
(5.18)

Finally, the above inequality and Lemma 2.5 give (5.15). 2

Next, we show an error bound that will be employed in the proof of Theorem 5.1.

Lemma 5.4. For vh, wh, χ ∈ Xh, we have

|εN(vh;wh − vh, χ) + εa(vh; vh, χ) − εa(wh;wh, χ)|
≤ Ch

(

σh(‖∇vh‖2
L∞

+ ‖∇(wh + vh)‖L∞

) + h−1
)

‖wh − vh‖2
H1‖χ‖H1 .

(5.19)

Proof. In view of the definition of εN and εa we have

εN (vh;wh − vh, χ) + εa(vh; vh, χ) − εa(wh;wh, χ)

=
∑

K

∫

K

div
(

A(vh)∇(wh − vh) +A′(vh)(wh − vh)∇vh +A(vh)∇vh

−A(wh)∇wh
)

(χ− Ihχ) dx

+
∑

K

∫

∂K

(

A(vh)∇(wh − vh) + A′(vh)(wh − vh)∇vh +A(vh)∇vh

−A(wh)∇wh
)

· n(χ− Ihχ) ds.

Then, since vh, wh are linear in K ∈ Th, we get

div
(

A(vh)∇(wh − vh) +A′(vh)(wh − vh)∇vh +A(vh)∇vh −A(wh)∇wh
)

= 2A′(vh)∇vh · ∇(wh − vh) +A′′(vh)(wh − vh)|∇vh|2 +A′(vh)|∇vh|2 −A′(wh)|∇wh|2

= A′′(vh)(wh − vh)|∇vh|2 +A′(vh)|∇vh|2 −A′(wh)|∇vh|2

+A′(wh)|∇vh|2 −A′(wh)|∇wh|2 + 2A′(vh)∇vh · ∇(wh − vh).

We consider now similar Taylor expansions as in (4.25) and denoting this Ã′ and Ã′′ the
expressions corresponding to Ā′ and Ā′′, where we substitute A with A′. Then the previous
relation gives

div
(

A(vh)∇(wh − vh) +A′(vh)(wh − vh)∇vh +A(vh)∇vh −A(wh)∇wh
)

= −(wh − vh)
2Ã′′|∇vh|2 −A′(wh)∇vh · ∇(wh − vh) −A′(wh)∇wh · ∇(wh − vh)

+ 2A′(vh)∇vh · ∇(wh − vh)

= −(wh − vh)
2Ã′′|∇vh|2 + (A′(vh) −A′(wh))∇vh · ∇(wh − vh)

+ (A′(vh) −A′(wh))∇wh · ∇(wh − vh) −A′(vh)|∇(wh − vh)|2

= −(wh − vh)
2Ã′′|∇vh|2 + (A′(vh) −A′(wh))∇(wh + vh) · ∇(wh − vh) −A′(vh)|∇(wh − vh)|2

= −(wh − vh)
2Ã′′|∇vh|2 − (wh − vh)Ã

′∇(wh + vh) · ∇(wh − vh) −A′(vh)|∇(wh − vh)|2.
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Finally, this combined with (2.11) and (2.12) give the desired estimate

|εN (vh;wh − vh, χ) + εa(vh; vh, χ) − εa(wh;wh, χ)|
≤ Ch

(

‖wh − vh‖L∞

‖∇vh‖2
L∞

+ ‖wh − vh‖L∞

‖∇(wh + vh)‖L∞

+ ‖wh − vh‖L∞

)

‖wh − vh‖H1‖χ‖H1

≤ Ch
(

σh(‖∇vh‖2
L∞

+ ‖(wh + vh)‖L∞

) + h−1
)

‖wh − vh‖2
H1‖χ‖H1 . 2

Next, we show that the Newton sequence obtained by (5.5) is well defined and it converges
to the finite volume approximation uh of (2.3) with order 2.

Theorem 5.1. There exists positive constants h0, δ and C5 such that if 0 < h ≤ h0 and

σh‖u0
h − uh‖H1 ≤ δ then {ukh}∞k=0 exists and νk = ‖ukh − uh‖H1 is a decreasing sequence

satisfying

νk+1 ≤ C5σhν
2
k . (5.20)

Proof. The proof is based on a similar result of Douglas and Dupont, [16], for the finite element
method. First we show that for h0 and δ are sufficiently small, and σh‖ukh − uh‖H1 = σhνk ≤ δ,

with 0 < h ≤ h0, there exists a unique uk+1
h , given by (5.5). It suffices to show that if

Nh(u
k
h; v, χ) = 0, ∀χ ∈ Xh,

then v ≡ 0, or else ‖v‖H1 ≤ 0. For this we will employ Lemma 5.1 and demonstrate that
C4|||G||| < ‖v‖H1 , for an appropriately defined functional G. We can easily see that

N(uh; v, χ) = G(χ),

where G is given by

G(χ) = N(uh; v, χ) −Nh(u
k
h; v, χ) = {N(uh; v, χ) −N(ukh; v, χ)} + εN(ukh; v, χ) = I + II,

Following the proof in [16] we have that

|I | ≤ Cσh‖uh − ukh‖H1‖v‖H1‖χ‖H1 = Cσhνk‖v‖H1‖χ‖H1 . (5.21)

For the estimation of II we use the inverse inequality, (2.17), (5.9), Lemma 5.2 and the fact
that induction hypothesis and (5.6) give

‖ukh‖H1 ≤ νk + ‖uh‖H1 ≤ σ−1
h δ + ‖uh‖H1 ≤ C, (5.22)

to get

|II | ≤ C(νk(1 + σh‖ukh‖H1) + h(1 + σh‖ukh‖H1 )‖uh‖W 1
∞

)‖v‖H1‖χ‖H1

≤ Cσhνk‖v‖H1‖χ‖H1 + Chσh‖v‖H1‖χ‖H1 .
(5.23)

Hence, since σh ≤ C log(1/h), (5.21) and (5.23) give for δ and h sufficiently small, ‖v‖H1 ≤
C0σh(νk + h log(1/h))‖v‖H1 < ‖v‖H1 ; thus v = 0.

In order to show (5.20) we will employ again Lemma 5.1 for a different functional G. This
time let

N(uh;u
k+1
h − uh, χ) = G(χ), ∀χ ∈ Xh,
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where G is defined by

G(χ) = N(uh;u
k
h − uh, χ) +N(ukh;u

k+1
h − ukh, χ)

+N(uh;u
k+1
h − ukh, χ) −N(ukh;u

k+1
h − ukh, χ)

= {N(uh;u
k
h − uh, χ) + a(uh;uh, χ) − a(ukh;u

k
h, χ)}

+ {εN(ukh;u
k+1
h − ukh, χ) − εa(uh;uh, χ) + εa(u

k
h;u

k
h, χ)}

+ {N(uh;u
k+1
h − ukh, χ) −N(ukh;u

k+1
h − ukh, χ)} = I + II + III.

(5.24)

We will show that
|||G||| ≤ Cσhνk(νk + νk+1) + Chσhνk+1. (5.25)

Then Lemma 5.1, and σhνk ≤ δ, give

νk+1 ≤ C4|||G||| ≤ Cσhνk(νk + νk+1) + Chσhνk+1

≤ Cσhν
2
k + C(δ + h log(

1

h
))νk+1.

(5.26)

Finally for sufficiently small δ and h, the desired estimate, (5.20), follows easily.
Let us turn now to the estimation of |||G|||, for G given by (5.24). The terms I and III are

similar to the ones that appear in the analysis of the finite element method in [16], thus using
the same arguments we get

|I + III | ≤ Cσhνk(νk + νk+1)‖χ‖H1 . (5.27)

Then, we can easily see that II can be rewritten in the following way,

II = εN(ukh;u
k+1
h − ukh, χ) − εN (uh;u

k+1
h − ukh, χ)

+ εN (uh;u
k+1
h − ukh, χ) − εa(uh;uh, χ) + εa(u

k
h;u

k
h, χ)

= {εN(ukh;u
k+1
h − ukh, χ) − εN(uh;u

k+1
h − ukh, χ)}

+ εN (uh;u
k+1
h − uh, χ)

− {εN (uh;u
k
h − uh, χ) + εa(uh;uh, χ) − εa(u

k
h;u

k
h, χ)} = II1 + II2 + II3.

(5.28)

Using Lemma 5.3, (5.9), inverse inequality, (2.17), (5.6) and (5.22), we can bound II1 in the
following way,

|II1| ≤ Ch
{

(‖∇(ukh − uh)‖L∞

+ ‖∇uh‖L∞

‖ukh − uh‖L∞

)‖∇(uk+1
h − ukh)‖

+
(

‖∇(ukh + uh)‖L∞

‖∇(ukh − uh)‖
+ ‖∇uh‖2

L∞

‖ukh − uh‖
)

‖uk+1
h − ukh‖L∞

}

‖χ‖H1

≤ C
(

(1 + (‖ukh + uh‖H1 + h)σh)νk(νk + νk+1)
)

‖χ‖H1

≤ Cσhνk(νk + νk+1)‖χ‖H1 .

(5.29)

Further, using Lemma 5.2, (5.9) and (5.6), we can easily bound II2,

|II2| ≤ Ch(‖∇uh‖L∞

+ σh‖∇uh‖L∞

‖uh‖H1)‖uk+1
h − uh‖H1‖χ‖H1

≤ Ch(1 + σh)νk+1‖χ‖H1 .
(5.30)

Copyright c© 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 00:1–26
Prepared using nlaauth.cls



24 P. CHATZIPANTELIDIS, V. GINTING, R. D. LAZAROV

Finally using, Lemma 5.4 and the fact that ‖∇uh‖L∞

≤ C3 and h‖∇ukh‖L∞

≤ C‖ukh‖H1 ≤ C,
II3 can be estimated by

|II3| ≤ C(hσh‖∇uh‖2
L∞

+ hσh‖∇(ukh + uh)‖L∞

+ 1)‖ukh − uh‖
2

H1‖χ‖H1

≤ C(σh + 1)ν2
k‖χ‖H1 .

(5.31)

Therefore combining (5.27) and (5.29)–(5.31), we get the desired (5.25). 2

6. NUMERICAL IMPLEMENTATIONS

In this section we present procedures for implementing the finite volume method for the
nonlinear problem. A series of numerical examples is given to further assess the theories
that were preceedingly deduced. Following the previous mathematical works, we implement
two iterative methods to solve the nonlinear finite volume problems, namely the fixed point
iteration and the Newton iteration. As will be clear in the following subsection, these two
methods are built in the finite dimensional setting, i.e., using the finite element space Xh.
We denote {φi}di=1 to be the standard piecewise linear basis functions of Xh. Then the finite
volume element solution may be written as

uh =

d
∑

i=1

αi φi for some α = (α1, α2, · · · , αd)T

6.1. Fixed Point Iteration vs Newton Iteration

To describe the method, we begin with several notations, noting that some of them have
already been mentioned. Let Zh be the collection of vertices zi that belong to all triangles
K ∈ Th and Z0

h = {zi ∈ Zh : zi /∈ ΓD}. Let I = {i : zi ∈ Z0
h}, IK = {m : zm is a vertex of K},

Th,i = {K ∈ Th : i ∈ IK}, and Ii = {m ∈ I : zm is a vertex of K ∈ Th,i}. Let Vi be the control
volume surrounding the vertex zi.

Now we may write this finite volume problem as to find α = (α1, α2, · · · , αd)T such that

F (α) = 0, (6.1)

where F : R
d → R

d is a nonlinear operator with

Fi(α) = −
∫

∂Vi

A(uh)∇uh · n ds−
∫

Vi

f dx ∀ i ∈ I. (6.2)

The fixed point iteration is derived from the linearization of (6.1) on the coefficient A(u) in

(6.2). Thus, given an initial iterate α0 (i.e., equivalently u0
h =

∑d
i=0 α

0
iφi), for k = 0, 1, 2, · · ·

until convergence solve the linear system M(αk)αk+1 = q, where M(αk) is the resulting

stiffness matrix evaluated at ukh =
∑d
i=0 α

k
i φi, whose entries are

Mk
ij = −

∫

∂Vi

A(ukh)∇φj · n ds.

On the other hand, the classical Newton iteration relies on the first order Taylor expansion of
F (α). It results in solving a linear system of the Jacobian of F (α). An inexact-Newton iteration
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is a variation of Newton iteration for nonlinear system of equations in that the system Jacobian
is only solved approximately, cf. e.g., [4, 5, 14]. To be specific, given an initial iterate α0, for
k = 0, 1, 2, · · · until convergence do the following:
(a) Solve F ′(αk)δk = −F (αk) until ‖F (αk) + F ′(αk)δk‖ ≤ βk ‖F (αk)‖;
(b) Update αk+1 = αk + δk.

In this algorithm F ′(αk) is the Jacobian matrix evaluated at iteration k. For iterative
technique solving a linear system such as the Krylov method we only need the action of
the Jacobian to a vector. It has been common practice to use the following finite difference
approximation for such an action:

F ′(αk) v ≈ F (αk + σv) − F (αk)

σ
, (6.3)

where σ is a small number computed as follows:

σ =
sign(αk · v)√ε max(|αk · v|, ‖v‖1)

v · v ,

with ε being the machine unit round-off number. We note that when βk = 0 then we have
recovered the classical Newton iteration. One common used relation is

βk = 0.001

( ‖F (αk)‖
‖F (αk−1)‖

)2

,

with β0 = 0.001. Choosing βk this way we avoid oversolving the Jacobian system when αk is
still considerably far from the exact solution.

Instead of using (6.3), we will present below an explicit construction of the Jacobian matrix.
We note that we may decompose Fi(α) as follows:

Fi(α) =
∑

K∈Th,i

Fi,K(α), where Fi,K(α) = −
∫

K∩∂Vi

A(uh)∇uh · n ds−
∫

K∩Vi

f dx.

¿From the above description it is apparent that Fi(α) is not fully dependent on all

α1, α2, · · · , αd. Consequently, ∂Fi(α)
∂αj

= 0 for j /∈ Ii. Next we want to find an explicit form

of ∂Fi(α)
∂αj

for j ∈ Ii.

Now suppose the edge zizj is shared by triangles Kl,Kr ∈ Th,i. Then

∂Fi
∂αj

= −
∑

e=l,r

∫

Ke∩∂Vi

(A′(uh)φj∇uh · n+A(uh)∇φj · n) ds.

Furthermore,

∂Fi
∂αi

= −
∑

K∈Th,i

∫

K∩∂Vi

(A′(uh)φi∇uh · n+A(uh)∇φi · n) ds.

¿From this derivation it is obvious that the Jacobian matrix is not symmetric but sparse.
Computation of this Jacobian matrix is similar to computing the stiffness matrix resulting
from standard finite volume element, in that each entry is formed by accumulation of element
by element contribution. Once we have the matrix stored in memory, then its action to a vector
is straightforward. Since it is a sparse matrix, devoting some amount of memory for entries
storage is not very expensive.
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6.2. Numerical Examples

In this subsection we present several numerical experiments to verify the theoretical
investigations. We solve a set of Dirichlet boundary value problems in Ω = [0, 1] × [0, 1]. We
compare the fixed point iteration and the Newton iteration. In both methods, the iteration is
stopped once ‖ukh − uk−1

h ‖L∞
< 10−10. In all examples below, the initial iteration is taken to

be α = (0, 0, · · · , 0)T .
The first example is solving −∇·(k(u)∇u) = f in Ω where the function f is chosen such that

the known solution is u(x, y) = (x − x2)(y − y2) The nonlinearity comes from the coefficient
with k(u) = 1

(1+u)2 . The results are listed in Table I. First column represents the mesh size. The

domain is discretized into N numbers of rectangle in each direction. Each of these rectangle is
divided into two triangles. Second and third columns correspond to the number of iterations
performed until the stopping criteria is reached for fixed point iteration (FP) and Newton
iteration (NW), respectively. The table shows that a superconvergence is observed in H 1-norm
due to the smoothness of the solution. Number of iterations in both methods do not depend
on the mesh size. The numerical results for the second example are presented in Table II. Here

Table I. Error of FVEM for nonlinear elliptic BVP, with u = (x − x2)(y − y2) and k(u) = 1/(1 + u)2

h
# iter H1-seminorm L2-norm L∞-norm

FP NW Error ×10−5 Rate Error ×10−5 Rate Error ×10−5 Rate
1/16 7 5 17.1931 - 3.73555 - 7.51200 -
1/32 7 5 4.31635 1.99 0.94094 1.99 1.88100 1.99
1/64 7 5 1.08075 1.99 0.23568 1.99 0.47000 2.00

1/128 7 5 0.27778 1.96 0.05894 2.00 0.01180 1.99

the exact solution is chosen to be u = 40(x−x2)(y−y2) and k(u) = 0.125(−u3 +4u2−7u+8)
if u < 1 and k(u) = 1/(1 +u) if u ≥ 1. Again a superconvergence is observed for this example.
Furthermore, number of iterations needed are slightly higher than the previous example, which
may be due to larger source term f . In this case the Newton iteration is shown to converge in
fewer iterations than the fixed point iteration. Next we consider a problem with known solution

Table II. Error of FVEM for nonlinear elliptic BVP, with u = 40(x − x2)(y − y2) and k(u) =
0.125(−u3 + 4u2 − 7u + 8) if u < 1 and k(u) = 1/(1 + u) if u ≥ 1

N
# iter H1-seminorm L2-norm L∞-norm

FP NW Error ×10−2 Rate Error ×10−2 Rate Error ×10−2 Rate
1/16 16 10 33.65484 - 7.33022 - 13.3000 -
1/32 15 8 9.10047 1.89 1.98347 1.89 3.57150 1.90
1/64 15 7 2.32645 1.97 0.50708 1.97 0.91120 1.97

1/128 15 7 0.58451 1.99 0.12740 1.99 0.22880 1.99

u(x, y) = x1.6 with k(u) = 1 + u. Obviously, this solution is an element of H2(Ω) but not in
H3(Ω). Also the resulting source term f only belongs to L2(Ω). The results are presented in
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Table III. These experiments show that the H1-norm of the error decreases at first order. The
L2-norm of the error decreases slower than second order.

Table III. Error of FVEM for nonlinear elliptic BVP with u(x, y) = x1.6 and k(u) = 1 + u

N
# iter H1-seminorm L2-norm L∞-norm

FP NW Error ×10−4 Rate Error ×10−4 Rate Error ×10−4 Rate
1/16 11 6 34.1671 - 3.71216 - 8.97536 -
1/32 11 7 17.5558 0.96 1.44873 1.36 3.53674 1.34
1/64 11 7 8.68644 1.02 0.53714 1.43 1.33414 1.40
1/128 11 8 4.20084 1.05 0.19272 1.48 0.48582 1.46

Related to number of nonlinear iterations in the two methods are the CPU times used
to solve the problem. Table IV shows the CPU time of the fixed point iteration and the
Newton iteration, corresponding to nonlinear elliptic problem whose results presented earlier
in Table II. It can be seen that the CPU times of the two methods are relatively comparable
for coarser mesh. However, as the mesh size gets smaller, the Newton iteration is more efficient
than the fixed point iteration.

Table IV. Comparion of CPU time for nonlinear elliptic BVP, with u = 40(x − x2)(y − y2) and
k(u) = 0.125(−u3 + 4u2 − 7u + 8) if u < 1 and k(u) = 1/(1 + u) if u ≥ 1

N
CPU time (sec)

FP NW
1/16 1.1 1.5
1/32 5.3 5.5
1/64 30.1 24.7

1/128 192.7 145.3
1/256 1490.3 945.8

Tables V and VI illustrate Theorem 5.1. In this theorem, it has been shown that there
exists a sequence of solutions in the Newton iteration such that their errors with respect to
the finite volume solution uh are a decreasing sequence. Using the notation in that theorem,
νk = ‖ukh − uh‖H1 is a decreasing sequence satisfying

νk+1 ≤ C5σhν
2
k , k = 0, 1, 2, · · · .

We would like to examine the numerical behavior of this sequence for a fixed mesh size h. It
is obvious that given ν0 we have

νk ≤ (C5σh)
2k−1ν2k

0 , k = 1, 2, · · · ,

which after dividing by ν2k

0 and taking logarithm on both sides give

| log(νk/ν
2k

0 )| ≤ C5σh (2k − 1), k = 1, 2, · · · .
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Table V. Results for case 2

k
h = 1/32 h = 1/64 h = 1/128

| log(νk/ν
2k

0 )| m | log(νk/ν
2k

0 )| m | log(νk/ν
2k

0 )| m
1 1.13 1.13 1.13
2 3.40 3.02 3.40 3.02 3.40 3.02
3 7.97 7.08 7.96 7.06 7.96 7.05
4 16.8 15.0 16.8 14.9 16.6 14.7

Hence we should expect that the sequence νk would decrease exponentially as k → ∞.

The Tables V and VI show the decreasing behavior of the sequence resulting from the
Newton iteration for last two model problems described above. In each table, k represents the
iteration level, h is the mesh size, and m is the value of row k divided by the value of row
k − 1.

For case 2 presented in Table V, in which the problem has a piecewise continuous coefficient
and larger source term, we see that the decreasing behavior of the sequence is approximately
exponential, and it is independent of the mesh size. Similar trends are also evident for case 3
shown in Table VI.

Table VI. Results for case 3

k
h = 1/32 h = 1/64 h = 1/128

| log(νk/ν
2k

0 )| m | log(νk/ν
2k

0 )| m | log(νk/ν
2k

0 )| m
1 1.17 1.32 1.45
2 3.57 3.05 3.86 2.93 4.19 2.89
3 8.04 6.85 8.72 6.63 9.26 6.37
4 16.8 14.3 18.2 13.9 19.6 13.4
5 32.7 27.9 36.9 28.1 40.1 27.6

REFERENCES

1. R. A. Adams. Sobolev spaces. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers],
New York-London, 1975. Pure and Applied Mathematics, Vol. 65.
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20. R. Eymard, T. Gallouët, R. Herbin, M. Gutnic, and D. Hilhorst. Approximation by the finite volume
method of an elliptic-parabolic equation arising in environmental studies. Math. Models Methods Appl.
Sci., 11(9):1505–1528, 2001.

21. J. Frehse and R. Rannacher. Asymptotic L∞-error estimates for linear finite element approximations of
quasilinear boundary value problems. SIAM J. Numer. Anal., 15(2):418–431, 1978.

22. R. Li, Z. Chen, and W. Wu. Generalized difference methods for differential equations, volume 226 of
Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc., New York, 2000.
Numerical analysis of finite volume methods.

23. R. H. Li. Generalized difference methods for a nonlinear Dirichlet problem. SIAM J. Numer. Anal.,
24(1):77–88, 1987.

24. Y. Matsuzawa. Finite element approximation for some quasilinear elliptic problems. J. Comput. Appl.
Math., 96(1):13–25, 1998.
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