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ABSTRACT. We consider standard finite volume piecewise linear approximations for

second order elliptic boundary value problems on a nonconvex polygonal domain.

Based on sharp shift estimates, we derive error estimations in H1– and L2–norm,

taking into consideration the regularity of the data.
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1. Introduction

In this note we study the convergence of the standard finite volume element
method for discretization of second order linear elliptic pde’s on a non-convex
polygonal domain Ω ⊂ R2 with Dirichlet boundary conditions. Namely, for a
given function f , we seek u such that

Lu = f, in Ω, and u = 0 on ∂Ω, (1.1)

with Lv ≡ − div(A∇v), A = A(x) = (aij)
2
i,j=1 a given symmetric matrix

function with real–valued entries aij ∈ W 1,∞, 1 ≤ i, j ≤ 2. We assume that
the matrix A(x) is uniformly positive definite in Ω, i.e., there exists a positive
constant α0 such that

ξT A(x)ξ ≥ α0ξ
T ξ, ∀ξ ∈ R2, ∀x ∈ Ω̄. (1.2)

Finite volume discretizations for more general convection–diffusion–reaction
problems were studied by many authors (for a comprehensive presentation and
more references of existing results we refer to [EGH–00]). For convex polygonal
domains, H1 and L2 norm error estimates were derived in [EWI–02], taking
into account the regularity of f .

Our goal in this paper is to study the influence of the corner singularities
and insufficient regularity of the right–hand side f , say f ∈ Lp(Ω), p < 2,
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Figure 1. A non-convex domain Ω with a corner S0 and ω0 > π.

or f ∈ H−`(Ω), 0 ≤ ` < 1/2, on the convergence rate of the finite volume
element method. We note that we use the conservative version of the method,
namely the right–hand side of the scheme is computed by the L2–inner product
of f with the characteristic functions of the finite volumes (or equivalently by
the duality between H` and H−` for 0 ≤ ` < 1/2). For more singular f ,
i.e. f ∈ H−`, 0 ≤ ` ≤ 1, we refer to [DRO–02]. Our analysis of the error
estimates in H1 and L2 norm follows the approach developed in [CHA–02] and
uses known sharp regularity results for the solutions of elliptic boundary value
problems, cf. [GRI–85].

2. Preliminaries

In this paper we use standard notation for Sobolev spaces W s,p and Hs =
W s,2, cf. [ADA–75]. Namely, Lp denotes the space of p−integrable real
functions over Ω, | · |s and ‖ · ‖s the seminorm and norm, respectively, in
Hs = Hs(Ω), | · |W s,p and ‖ · ‖W s,p the seminorm and norm, respectively, in
W s,p = W s,p(Ω), p ≥ 1, and s ∈ R. If s = 0 we suppress this index.

Let us first consider the Dirichlet problem for Poisson’s equation: Given
f ∈ Lp, p ≥ 1, find a function u : Ω → R2 such that

−∆u = f, in Ω, and u = 0 on ∂Ω, (2.1)

with Ω a bounded, non-convex, polygonal domain in R. For simplicity we
assume that Ω has only one inner angle greater than π, namely ω0 ∈ (π, 2π),
cf. Figure 1. It is known that there exists a unique solution u ∈ H1

0 of
(2.1). Furthermore, u could be represented in the form u = c0w0 + v, where
v ∈ W 2,p ∩ H1

0 , c0 is a constant and w0 = rλm 1√
ω0λm

sin(λmθ)η(reiθ). Here
λm = mπ

ω0
, m ∈ N, η is a cutoff function which is one near S0 and zero away

from S0 and (r, θ) are the polar coordinates with respect to the vertex S0 with
angle ω0. A crucial role in determining the regularity of u is played by the
constant p0 ≡ 2

2−π/ω0
.
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If f ∈ Lp, p ≥ 1, in view of [GRI–85, p. 233] and a standard imbedding
result, we have that u ∈ Hs with s = 2− s0 − δ(p), where s0 and δ(p) > 0 are
defined by

s0 =
2
p0
− 1 = 1− π

ω0
, δ(p) =

{ 2
p − 2

p0
, p < p0,

arbitrarily small, p ≥ p0.
(2.2)

Further, if f ∈ H−`, 0 ≤ ` ≤ 1 the solution u of (2.1) satisfies u ∈ Hs, with
s = 2− s0 − δ(`), where δ(`) > 0 is defined by

δ(`) =
{

`− s0, s0 < ` ≤ 1,
arbitrarily small, 0 ≤ ` ≤ s0.

(2.3)

For the more general problem (1.1) similar results hold. Let A and T ,
be matrices such that A = (aij(S0))

2
i,j=1 and −T TAT = I. Also, let ω0(A)

be the measure of the angle at T S0 of T Ω, with T Ω = {T x : x ∈ Ω} and
p0(A) = 2

2−π/ω0(A) . Then in view of [GRI–85, Theorem 5.2.7], if f ∈ Lp, p ≥ 1,
the solution u of (1.1) is in Hs, with s = 2− s0 − δ(p), where in the definition
of s0 and δ, (2.2), we substitute p0(A) for p0.

In the rest of this paper, we will denote by s = 2 − s0 − δ, where s0 and
δ are defined as above, depending if we are referring to problem (1.1) or (2.1)
and whether f is in Lp, p ≥ 1 or H−`, ` ∈ [0, 1].

3. The finite volume element method

We consider a quasi uniform family {Th}0<h<1 of triangulations of Ω, where
h denotes the maximum diameter of the triangles of Th. Let us denote by Z in

h

and Ein
h the set of interior vertices and edges of Th, respectively. We construct

the control volumes by considering an interior point zK in each triangle K ∈ Th

and connecting it with the edge midpoints of K. This partitions K into three
subregions Kz, with z a vertex of K, see Figure 2. With each vertex z ∈ Z in

h we
associate the control volume bz, which consists of the union of the subregions
Kz with common vertex z (see Figure 2). Next, let us consider the finite
dimensional spaces X0

h = {χ ∈ C(Ω) : χ|K is linear for all K ∈ Th and χ|∂Ω =
0} and X̄0

h = {χ̄ ∈ L2(Ω) : χ̄|bz is constant, z ∈ Z in
h , χ̄|bz = 0, if z ∈ ∂Ω}.

We consider then the following finite volume method for (1.1): Find uh ∈ X0
h

such that for every χ ∈ X0
h

ah(uh, χ) ≡ −
∑

z∈Zin
h

χ(z)
∫

∂bz

(A∇uh) · n ds =
∑

z∈Zin
h

χ(z)
∫

bz

f dx. (3.1)

We now introduce the interpolation operator Īh : C(Ω) → X̄0
h, defined by

Īhv =
∑

z∈Zin
h

v(z)ϕ̄z,
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Figure 2. Left: A sample region; with dotted lines the corresponding box bz.
Right: A triangle K partitioned into three subregions Kz.

where ϕ̄z is the characteristic function of bz. Note that,

(f, Īhχ) =
∑

z∈Zh

χ(z)
∫

Ω

fϕ̄z dx =
∑

z∈Zh

χ(z)
∫

bz

f dx, ∀f ∈ L2, χ ∈ X0
h.

Thus (3.1) can be written equivalently in the form

ah(uh, χ) = (f, Īhχ), ∀χ ∈ X0
h. (3.2)

In addition, if A = I, we have

ah(χ, ψ) = a(χ, ψ) =
∫

Ω

∇χ · ∇ψ dx, ∀χ, ψ ∈ X0
h, (3.3)

cf., e.g., [BAN–87]. Thus, (3.2) takes the form

a(uh, χ) = (f, Īhχ), ∀χ ∈ X0
h.

In the general case of problem (1.1), the identity (3.3) is not valid. However,
following [CHA–02], we are able to rewrite ah in a form similar to a. Indeed,
take the integral of (1.1) over Kz, for z ∈ Z in

h and K ∈ Th, so that after
integration by parts we obtain

∫

Kz

Lχ dx +
∫

∂Kz∩∂K

A∇χ · nds = −
∫

∂Kz∩∂bz

A∇χ · nds, ∀χ ∈ X0
h.

Multiplying this by ψ(z), ψ ∈ X0
h, and summing over the triangles that have z

as a common vertex and the vertices z ∈ Z in
h , we get

ah(χ, ψ) =
∑

K

{
∫

K

Lχ Īhψ dx +
∫

∂K

A∇χ · n Īhψ ds}, ∀χ, ψ ∈ X0
h. (3.4)

This is similar to

a(χ, ψ) ≡ (A∇χ,∇ψ) =
∑

K

{
∫

K

Lχ ψ dx +
∫

∂K

A∇χ · nψ ds}, ∀χ, ψ ∈ X0
h.



FVM in Nonconvex Polygons 5

4. Error estimates

For the analysis of the finite volume method (3.2) we shall need to estimate
the errors εh and εa defined by

εh(f, χ) = (f, χ)− (f, Īhχ), ∀f ∈ Lp, χ ∈ X0
h,

εa(χ, ψ) = a(χ, ψ)− ah(χ, ψ), ∀χ, ψ ∈ X0
h.

We can easily see that Īh satisfies the following property:

‖χ− Īhχ‖q
Lq(K) =

∑

z∈Zh(K)

∫

Kz

(χ− χ(z))q dx ≤ hq|χ|qW 1,q(K), ∀χ ∈ X0
h, (4.1)

with 1 ≤ q < ∞ and Zh(K) the set of the vertices of K. Also, if in the
construction of the control volumes we choose zK to be the barycenter of K,
then ∫

K

χdx =
∫

K

Īhχdx, ∀K ∈ Th, ∀χ ∈ X0
h. (4.2)

In addition, using known interpolation results, cf., e.g., [BRE–94, p. 285],
we get

inf
χ∈X0

h

(‖v − χ‖+ h‖v − χ‖1) ≤ Chs‖v‖s, ∀v ∈ Hs ∩H1
0 , 1 ≤ s ≤ 2. (4.3)

In the sequel we shall give some auxiliary lemmas which are used for estimating
εh and εa.

Lemma 4.1 There exists a constant C, such that for every χ ∈ X0
h

|εh(f, χ)| ≤ Chmin (1,2−2/p)‖f‖Lp |χ|1, ∀f ∈ Lp, (4.4)

|εh(f, χ)| ≤ Ch2|f |W 1,p |χ|W 1,q , ∀f ∈ W 1,p,
1
p

+
1
q

= 1, (4.5)

|εh(f, χ)| ≤ Ch1−`‖f‖−` |χ|1, ∀f ∈ H−`, 0 < ` < 1/2, . (4.6)

Proof: The estimate (4.4) is based on (4.1) and the inverse inequality |χ|W 1,q ≤
Ch2/q−1|χ|1, q ≥ 2, for χ ∈ X0

h. The estimate (4.5) is obtained similarly, by
taking into consideration (4.2). Finally, (4.6) is based on

|χ− Īhχ|` ≤ Ch1−`|χ|1, 0 < ` <
1
2
, ∀χ ∈ X0

h. ¤

Lemma 4.2 There exists a positive constant C such that

|εa(ψ, χ)| ≤ Ch|ψ|1 |χ|1, ∀χ, ψ ∈ X0
h, (4.7)

|εa(uh, χ)| ≤ Ch(|uh − u|1 + h|u|W 2,p)|χ|W 1,q , χ ∈ X0
h, A ∈ W 2,∞. (4.8)
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Proof: We first note that in view of (3.4),

εa(ψ, χ) =
∑

K

∫

K

Lψ (χ− Īhχ) dx +
∑

K

∫

∂K

A∇ψ · n (χ− Īhχ) ds = I + II.

Using (4.1) and (4.2), to estimate I, we obtain the desired bounds of (4.7) and
(4.8), respectively. The contribution of II can be calculated using the estimate

∣∣
∫

e

ϕ(χ− Īhχ) ds
∣∣ ≤ Ch|ϕ|W 1,p(K) |χ|W 1,q(K),

and the fact that, if Āe = A(me) with me the midpoint of the edge e, then

∑

K

∫

∂K

Āe∇(uh − u) · n (χ− Īhχ) ds = 0. ¤

Theorem 4.1 Let u and uh be the solutions of (1.1) and (3.2), respectively,
with f ∈ Lp, p > 1. Then, there exists a constant C, independent of h, such
that

‖u− uh‖1 ≤ C
(
hs−1‖u‖s + hmin (1,2−2/p)‖f‖Lp

)
, (4.9)

‖u− uh‖ ≤ C
(
h2(s−1)‖u‖s + hmin (1,2−2/p)‖f‖Lp

)
. (4.10)

Proof: The proof is similar to the corresponding proof in the finite element
method. Hence, for (4.9) it suffices to estimate a(u− uh, ψ), for every ψ ∈ X0

h.
Due to (3.2), we easily see that

a(u− uh, ψ) = εh(f, ψ)− εa(uh, ψ). (4.11)

Combining now Lemmas 4.1 and 4.2 and choosing ψ = uh−χ, for h sufficiently
small, we obtain (4.9). To show (4.10) we use a standard duality argument by
introducing the auxiliary problem: Find ϕ ∈ Hs ∩H1

0 such that: Lϕ = u−uh,
in Ω. Then, it suffices to estimate the terms I and II in

‖u− uh‖2 = a(u− uh, ϕ) = a(u− uh, ϕ− χ) + a(u− uh, χ) = I + II. (4.12)

The first term, I, is estimated similarly as in the finite element method. For
the second term II we use (4.11) and Lemmas 4.1 and 4.2. ¤

Remark 4.1 Since 2(s − 1) > 1, ‖u− uh‖ = O(hmin (1,2−2/p)). If f ∈ Lp, with
p < p0, then s − 1 = 2 − 2/p < 1, cf. [GRI–85, p. 233], thus ‖u− uh‖1 =
O(h2−2/p). Also, if p ≥ p0 then s − 1 < 2 − 2/p, therefore ‖u− uh‖1 =
O(h1−s0−δ).
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Theorem 4.2 Let u and uh be the solutions of (1.1) and (3.2), respectively,
with A = I, f ∈ H−`, 0 ≤ ` < 1/2. Then there exists a constant C independent
of h such that

‖u− uh‖1 ≤ C
(
hs−1‖u‖s + h1−`‖f‖−`

)
, (4.13)

‖u− uh‖ ≤ C
(
h2(s−1)‖u‖s + h1−`‖f‖−`

)
. (4.14)

Proof: The proof is similar to the proof of Theorem 4.1. The desired estimates
are based on bounding a(u − uh, χ) for every χ ∈ X0

h. In view of Lemma 4.1
we have

|a(u− uh, uh − χ)| ≤ Ch1−`‖f‖−`‖χ‖1, ∀χ ∈ X0
h. ¤

Remark 4.2 If f ∈ H−`, with s0 < ` < 1/2, then in view of (2.3) s− 1 = 1− `,
thus ‖u− uh‖1 = O(h1−`). If 0 ≤ ` ≤ s0 then s− 1 < 1− `, thus ‖u− uh‖1 =
O(h1−s0−δ).

Next, we will give an improved error estimate for u− uh in the L2−norm.

Theorem 4.3 Let u and uh be the solutions of (1.1) and (3.2), respectively,
with f ∈ W 1,p, p > 1, then u ∈ Hs, with s = 2−s0−δ and δ > 0 arbitrary small.
Also, if in the construction of the control volumes bz, zK is the barycenter of
the triangle K then, there exists a constant C, independent of h, such that

‖u− uh‖ ≤ C
(
h2(s−1)‖u‖s + hs‖f‖+ hmin (2,s+2−2/p)‖f‖W 1,p

)
= O(h2(s−1)).

Proof: The proof is similar to that of Theorem 4.1. It is obvious that it suffices
to estimate the term II in (4.12). Since f ∈ W 1,p, we have f ∈ L2, and
therefore u ∈ Hs, with s = 2− s0 − δ. Due to (4.11) and Lemmas 4.1 and 4.2,
we obtain

|II| ≤ C
(
h2(|f |W 1,p + |u|s) + h‖u− uh‖1

) |χ|W 1,q , ∀χ ∈ X0
h,

with 1/p + 1/q = 1. Choosing now χ to be an appropriate interpolant of ϕ,
with appropriate stability properties, and using standard imbedding arguments
and an inverse inequality we obtain

‖u− uh‖2 ≤ C
(
h2(s−1)‖u‖s + hs‖f‖+ hmin (2,s+2−2/p)‖f‖W 1,p

)‖u− uh‖.
We can easily see that since 3/2 < s < 2 we have 2(s − 1) ≤ s. Also, the fact
that s ≤ 2 ≤ 4− 2/p suggests 2(s− 1) < min (2, 2 + s− 2/p). Combining now
these with the above error estimation we obtain the desired result. ¤

Remark 4.3 Our L2–norm error estimates are in contrast to known estimates
for the finite element method. For example, the finite element approximation
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Table 1. Convergence rate for exact solution u = (r2/3 + rβ)sin(2θ/3)

β 1/2 2/3 3/4 4/5
H1-norm 0.54 (0.50) 0.66 (0.66) 0.69 (0.66) 0.69 (0.66)
L2-norm 1.20 (1.00) 1.34 (1.34) 1.37 (1.34) 1.37 (1.34)

uFE
h , defined by a(uFE

h , χ) = (f, χ), ∀χ ∈ X0
h, is known to satisfy, cf., e.g.,

[BRE–94, Chapter 12],

‖u− uFE
h ‖1 ≤ Chs−1‖u‖s, ‖u− uFE

h ‖ ≤ Ch2(s−1)‖u‖s.

In Table 4 we present the computed rates of convergence of the finite volume
method which illustrate the results of Theorem 4.1. We considered the Dirichlet
boundary value problem for the Poisson equations in an L-shaped domain with
an exact solution u = (r2/3+rβ)sin(2θ/3). One can see that u is almost in H3/2

if β = 1/2 and u is almost in H5/3 if β ≥ 2/3. The numerical experiments show
that the finite volume scheme recovers the solution with the expected rates in
H1-norm. The convergence rates in L2-norm in some cases are slightly higher
than the ones predicted by the theory.
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